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Abstract
We study the problem of long-run average cost control of Markov chains conditioned on a rare
event. In a related recent work, a simulation based algorithm for estimating performance measures
associated with a Markov chain conditioned on a rare event has been developed. We extend ideas
from this work and develop an adaptive algorithm for obtaining, online, optimal control policies
conditioned on a rare event. Our algorithm uses three timescales or step-size schedules. On the
slowest timescale, a gradient search algorithm for policy updates that is based on one-simulation
simultaneous perturbation stochastic approximation (SPSA) type estimates is used. Deterministic
perturbation sequences obtained from appropriate normalized Hadamard matrices are used here.
The fast timescale recursions compute the conditional transition probabilities of an associated chain
by obtaining solutions to the multiplicative Poisson equation (for a given policy estimate). Further,
the risk parameter associated with the value function for a given policy estimate is updated on a
timescale that lies in between the two scales above. We briefly sketch the convergence analysis
of our algorithm and present a numerical application in the setting of routing multiple flows in
communication networks.

Keywords: Markov decision processes, optimal control conditioned on a rare event, simulation
based algorithms, SPSA with deterministic perturbations, reinforcement learning

1. Introduction

Markov decision processes (MDPs) (Bertsekas, 2001; Puterman, 1994), form a general framework
for studying problems of control of stochastic dynamic systems (SDS). Many times, one encounters
situations involving control of SDS conditioned on a rare event of asymptotically zero probability.
This could be, for example, a problem of damage control when faced with a catastrophic event.
For instance, in the setting of a large communication network such as the internet, one may be
interested in obtaining optimal flow and congestion control or routing strategies in a subnetwork
given that an extremal event such as a link failure has occurred in another remote subnetwork. Our
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objective in this paper is to consider a problem of this nature wherein a rare event is specifically
defined to be the time average of a function of the MDP and its associated control-valued process
exceeding a threshold that is larger than its mean. We consider the infinite horizon long-run average
cost criterion for our problem and devise an algorithm based on policy iteration for the same.

Research on developing simulation based methods for control of SDS has gathered momentum
in recent times. These largely go under the names of neuro-dynamic programming (NDP) or rein-
forcement learning (RL), (see, for example, Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998),
and are applicable in the case of systems for which model information is not known or computa-
tionally forbiddingly expensive, but output data obtained either through a real system or a simulated
one is available. Our problem does not share this last feature, but we do borrow certain algorithmic
paradigms from this literature. Before we proceed further, we first review some representative recent
work along these lines. In Baxter and Bartlett (2001), an algorithm for long-run average cost MDPs
is presented. The average cost gradient is approximated using that associated with a corresponding
infinite horizon discounted cost MDP problem. The variance of the estimates however increases
rapidly as the discount factor is brought closer to one. In Baxter et al. (2001), certain variants based
on the algorithm in Baxter and Bartlett (2001) are presented and applications on some experimental
settings shown.

In Cao and Guo (2004), a perturbation analysis (PA) type approach is used to obtain the per-
formance gradient based on sample path analysis. In Cao (1998), a PA-based method is proposed
for solving long-run average cost MDPs. This requires keeping track of the regeneration epochs
of the underlying process for any policy and aggregating data over these. The above epochs can
however be very infrequent in most real life systems. In Marbach and Tsitsiklis (2001), the average
cost gradient is computed by assuming that sample path gradients of performance and transition
probabilities are known in functional form. Amongst other RL-based approaches, the temporal dif-
ference (TD) and Q-learning, (see Sutton and Barto, 1998; Watkins and Dayan, 1992, respectively),
have been popular in recent times. These are based on value function approximations. A parallel
development is that of actor-critic algorithms based on the classical policy iteration algorithm in
dynamic programming. Note that the classical policy iteration algorithm proceeds via two nested
loops—an outer loop in which the policy improvement step is performed and an inner loop in which
the policy evaluation step for the policy prescribed by the outer loop is conducted. The respective
operations in the two loops are performed one-after-the-other in a cyclic manner. The inner loop
can in principle take a long time to converge, making the overall procedure slow in practice. In
Konda and Borkar (1999), certain simulation-based algorithms that use multi-timescale stochastic
approximation are proposed. The idea is to use coupled stochastic recursions driven by different
step-size schedules or timescales. The recursion corresponding to policy evaluation is run on the
faster timescale while that corresponding to policy improvement is run on the slower one. Thus
while both recursions proceed simultaneously, the algorithm converges to the optimal policy. The
algorithms of Konda and Borkar (1999) (as with those described in the previous paragraph) are for
finite state and finite action MDPs, under both the discounted and long-run average cost criteria. A
variant of the above algorithms for the case of finite state but compact (non-discrete) action sets, in
the setting of infinite horizon discounted cost MDPs is presented by Bhatnagar and Kumar (2004),
and performs gradient search in the space of stationary deterministic policies using a simultaneous
perturbation stochastic approximation (SPSA) gradient estimate.

Standard SPSA (Spall, 1992) uses two simulations for estimating the performance/cost gradient
regardless of the dimension N of the parameter vector, unlike Kiefer-Wolfowitz (K-W) based esti-
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mates that require (N +1) simulations for the same. This it done by randomly perturbing all param-
eter components at each update epoch. The original SPSA algorithm of Spall (1992) is, however,
a one-timescale Robbins-Monro variant for parameter optimization and is not directly applicable
when the cost to be optimized is for instance the long-run average of a running cost function, viz.,
the objective function for a given parameter value is derived only after viewing the entire sample
path / trajectory of the system for that parameter value. Perturbation analysis (PA) schemes (see
Chong and Ramadge, 1994; Ho and Cao, 1991), that were proposed for problems such as these
use largely one simulation, however, they require certain constraining regularity conditions on the
system dynamics and cost functions in order to allow for an interchange between the ‘gradient’
and ‘expectation’ operators. Moreover, many of these schemes update parameters only at certain
regeneration epochs of the underlying process, making them slow in practice. In Bhatnagar and
Borkar (1997, 1998), certain two-timescale stochastic approximation algorithms were introduced as
alternatives to PA type schemes. These do not require constraining regularity conditions like PA,
while they also update parameters at certain deterministic epochs. The key in the above algorithms
is the use of two-timescale stochastic approximation, whereby on the faster timescale, data corre-
sponding to a given parameter update is aggregated and on the slower timescale, the parameter is
updated. These algorithms, however, use K-W estimates. In Bhatnagar et al. (2001), variants that
use SPSA estimates were proposed and were found to show significantly improved performance.
In Spall (1997), a one-simulation (one-timescale) variant of the original SPSA algorithm was pro-
posed, which however does not show good performance because of the presence of an ‘additional’
bias term in its gradient estimate whose contribution to overall bias tends to be high. In Bhatnagar
et al. (2003), it was observed in a similar setting by Bhatnagar and Borkar (1997), Bhatnagar and
Borkar (1998) and Bhatnagar et al. (2001), respectively, that the use of deterministic perturbation
sequences (instead of randomized) derived using normalized Hadamard matrices significantly alle-
viates this problem in the case of one-simulation SPSA with the latter subsequently showing good
performance. It was shown that perturbation sequences derived using normalized Hadamard matri-
ces satisfy the desired properties on such sequences that result in all bias terms getting cancelled at
regular intervals. Further, the space of perturbations derived as above has a cardinality of 2log2(N+1)

as against 2N when randomized perturbations are used (the perturbation vectors in both spaces be-
ing {±1}N-valued). To sum up, the use of normalized Hadamard matrix based perturbations in the
setting as described above has the inherent advantage that one may use a fast one-simulation SPSA
based algorithm that updates all parameter components at each update epoch (the epochs themselves
being deterministically spaced). In particular, the algorithms of Bhatnagar et al. (2003) update the
parameter once every L epochs for a given, arbitrarily chosen integer L while working with a more
general class of systems than what the PA based methods allow.

The works cited above represent some recent developments in the general area of simulation
based optimization and control of SDS. We now review some of the work that is more directly re-
lated to the problem we study in this paper. In Borkar et al. (2004), a simulation-based algorithm for
estimating performance measures of a Markov chain conditioned on a rare event of zero probability
has been developed. This is based on the result that the transition probabilities of the Markov chain
conditioned on a rare event as above are the same as those of another irreducible chain on the same
state space whose transition probabilities are absolutely continuous w.r.t. those of the former chain.
The calculation of these calls for the solution of an associated multiplicative Poisson equation, an
object familiar from risk-sensitive control and large deviations theory (see Kontoyiannis and Meyn,
2003; Balaji and Meyn, 2000). The simulation based algorithm of Borkar et al. (2004) recursively
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obtains the solution to this multiplicative Poisson equation and uses the same to learn, online, the
new transition probabilities. In Ahamed et al. (2006), a reinforcement learning based importance
sampling scheme for estimating expectations associated with rare events has also been proposed.

A related paper by Rubinstein (1997), in which a simulation based technique for optimizing cer-
tain performance measures in discrete event systems conditioned on rare events is presented. The
problem there is formulated as a constrained optimization problem with an importance sampling
estimate in the objective function that is obtained by assuming the underlying processes to be re-
generative. The constraint there corresponds to the occurrence of the given rare event. The above
problem is then solved as a two-stage stochastic programming problem. Our work is fundamentally
different from that of Rubinstein (1997) in many ways. First, we consider the problem of obtaining
an optimal control policy conditioned on a rare event and not just one of optimizing certain per-
formance metrics within a parameterized class as with Rubinstein (1997). Next, even though we
assume that our underlying process for any given stationary policy is ergodic Markov and hence re-
generative, we do not use the regenerative structure per se in obtaining estimates of performance as
Rubinstein (1997) does. For the latter, one needs in particular to keep track of regeneration epochs
of the underlying process that can be very infrequent in the case of most systems. Finally, we
use a stochastic approximation based recursive procedure that incorporates reinforcement learning
type estimates, unlike (as already mentioned) Rubinstein (1997) who formulates the problem as a
stochastic program.

Our work can be viewed as an extension of Borkar et al. (2004) that addresses the important
problem of optimal control of a Markov chain conditioned on a rare event. In our framework, the
results of Borkar et al. (2004) correspond to policy evaluation for a fixed stationary deterministic
policy. We develop and use a simulation-based algorithm to find the optimal randomized policy
‘on top of’ the algorithm of Borkar et al. (2004). Our algorithm uses three timescales or step-size
schedules and iterates in the space of stationary randomized policies. The policy itself, however,
is updated on the slowest timescale. The value function updates for finding the solution to the
multiplicative Poisson equation for a given policy, based on which the transition probabilities of an
associated chain are obtained, are performed on the fastest timescale. The risk parameter associated
with the multiplicative Poisson equation is updated on a timescale that is faster than the one on which
policy is updated, but slower than that on which value function is updated. Finally, there is another
recursion that is used for averaging the cost function with the latter average used in the policy
update step. This proceeds on the fastest scale as well (same as the one on which the value function
is updated). We show in the analysis that the difference in timescales of the various recursions
results in the desired algorithmic behavior. For policy updates, we use a one-simulation SPSA
based recursion with normalized Hadamard matrices (Bhatnagar et al., 2003). Finally, we present
numerical experiments using our algorithm in the setting of routing multiple flows in communication
networks conditioned on a rare event. We observe that our algorithm exhibits good performance in
this setting. It must be noted here that adaptive importance sampling (IS) schemes require storage of
transition probabilities and our algorithm is no different in this regard. Thus it may not be applicable
(as is also the case with other IS methods) in scenarios that involve very large state spaces for which
storage of such information is not possible. Nevertheless, feature based methods as in RL may still
be applied for ease of computation in the case of problems with state and action spaces that are
moderately large but for which storage of vectors of the size of state space is not a major concern.
Further, in many cases such as queuing networks, the transition probabilities are easy to compute
and transitions easy to simulate using simple local dynamic laws. In such scenarios, storage of
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transition probability matrices may also not be a major concern as these are known to be highly
sparse.

The rest of the paper is organized as follows: Section 2 presents the problem formulation and
gives the basic results. Section 3 presents the simulation-based algorithm. Its convergence analysis
is also briefly sketched here. The numerical results are presented in Section 4. Finally, Section 5
presents the concluding remarks.

2. Problem Formulation and Basic Results

Consider a Markov decision process (MDP) {Xn, n ≥ 0} on a finite state space S = {1,2, . . . ,s}.
For Xn = i, i ∈ S, let A(i) be the set of feasible controls or actions. We assume A(i) has the form
A(i) = {a1

i ,a
2
i , . . ., aNi

i }. Let A = ∪i∈SA(i) denote the action space (which is also finite). Let {Zn,
n ≥ 0} denote the associated control-valued sequence such that Zn ∈ A(Xn) ∀n. Suppose p(i, j,a)
denotes the transition probability from state i to state j under action a ∈ A(i). Then the evolution of
{Xn} is governed by

Pr(Xn+1 = j | Xn = i,Zn = a,Xn−1 = in−1,Zn−1 = an−1, . . . ,X0 = i0,Z0 = a0) = p(i, j,a),

for any i0, . . . , in−1, i, j, a0, . . . ,an−1, a, in appropriate sets.
A sequence of functions π = {µ1, µ2, . . .} with each µn : S → A, n ≥ 1, is said to be an admissible

policy if µn(i) ∈ A(i), ∀i ∈ S. This corresponds to the control choice Zn = µn(Xn) ∀n. An admissible
policy π = {µ1, µ2, . . .} with each µn = µ, n ≥ 1, is said to be a stationary deterministic policy (SDP).
By a common abuse of notation, we simply refer to µ itself as the SDP. By a randomized policy (RP)
ψ, we mean a sequence ψ = {φ1, φ2, . . .} with each φn : S → P (A), n ≥ 1. Here P (A) is the set of
all probability vectors on A such that for each i ∈ S, n ≥ 1, φn(i) ∈ P (A(i)), with P (A(i)) being the
set of all probability vectors on A(i). A stationary randomized policy (SRP) is an RP ψ for which
φn(i) = φ ∀n ≥ 1. By an abuse of notation, we refer to φ itself as the SRP. The a−th component of
φ(i), φ(i)(a) is the probability of choosing action a when in state i. Thus this corresponds to picking
Zn with probability distribution φ(Xn) at time n, independent of all other random variables realized
till n. We make

Assumption (A) Under any SDP µ, the process {Xn} forms an irreducible Markov chain.

Let Eµ[·] denote the expectation w.r.t. the stationary distribution of {Xn} under SDP µ. Let
g : S×A → R be a given function such that Eµ[g(Xn,µ(Xn))] < α < ∞ for a given constant α, for
every SDP µ. The rare event that we consider corresponds to

lim
n→∞

1
n

n−1

∑
m=0

g(Xm,µ(Xm)) ≥ α.

The choice of the function g(·, ·) and α will be, in practice, dictated by the application. For example,
in reliability, one may want to look at the stationary probability of crossing a very large threshold,
say, N. Then g(Xm,µ(Xm)) can be chosen to be I{Xm ≥ N}, where I{·} is the indicator function and
α could be a convenient upper bound on the stationary expectation.

Let h : S×A×S → R denote the cost function that we assume is bounded. For any SDP µ, let
for any (initial state) X0 ∈ S,

J(µ) = lim
n→∞

1
n

n−1

∑
m=0

h(Xm,µ(Xm),Xm+1)
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be the long-run average cost. Let D be the set of all possible stationary deterministic policies. The
aim is to find

µ∗ = argmin
µ∈D

J(µ),

conditioned on the rare event lim
n→∞

1
n

n−1

∑
m=0

g(Xm,µ(Xm)) ≥ α, ∀µ ∈ D. Let pµ,∗(i, j) = lim
n→∞

P(X1 = j

| X0 = i,Z0 = µ(i),
1
n

n−1

∑
m=0

g(Xm,µ(Xm)) ≥ α) denote the transition probabilities under SDP µ condi-

tioned on a rare event (as defined above). We now present the basic results for a given SDP µ. These
have been directly adapted from Borkar et al. (2004) for a fixed SDP and are stated here for the sake
of completeness. Some of these results are also available in the context of risk sensitive control of
Markov chains (see, for instance, Balaji and Meyn, 2000; Hernández-Hernández and Marcus, 1996;
Kontoyiannis and Meyn, 2003). We briefly explain the risk sensitive control problem in order to put
things in perspective. Suppose (that instead of the original) the aim is simply to find an SDP µ that
minimizes Jζ(µ) defined by

Jζ(µ) = lim
n→∞

1
n

ln

(

E

[

exp(
n−1

∑
m=0

ζg(Xm,µ(Xm)))

])

,

where ζ denotes the risk parameter. Note above that the cost considered in this setting is given
by the function g and not h. The cases ζ > 0 and ζ < 0 correspond to the risk-averse and risk-
preferring cases, respectively. For a given µ, Jζ(µ) and ρµ

ζ are a solution (see Balaji and Meyn, 2000;
Hernández-Hernández and Marcus, 1996) to the multiplicative Poisson equation: For i ∈ S,

V µ
ζ (i) =

exp(ζg(i,µ(i)))

ρµ
ζ

∑
j

p(i, j,µ(i))V µ
ζ ( j), i ∈ S, (1)

where V µ
ζ (·) is a bounded function (that is unique up to a multiplicative constant). It turns out that ρµ

ζ
corresponds to exp(Jζ(µ)) or that Jζ(µ) = lnρµ

ζ. Note that solution of this equation is an eigenvalue

problem for the positive matrix [[exp(ζg(i,µ(i)))p(i, j,µ(i))]]i, j∈S with V µ
ζ and ρµ

ζ corresponding to
its Perron-Frobenius eigenvector and eigenvalue respectively.

For the problem considered in this paper, as shown by Borkar et al. (2004), the multiplicative
Poisson equation also arises via the conditional transition probabilities pµ,∗(i, j) (for given SDP µ),
see (2) below. In fact, for any given i ∈ S, upon summing over all j ∈ S on both sides of (2), one
obtains the multiplicative Poisson Equation (1). For any SDP µ and risk parameter ζ, Jζ(µ) = lnρµ

ζ
corresponds to the infinite horizon risk-sensitive cost. As in Borkar et al. (2004), we fix the choice
of V µ

ζ (·) by setting V µ
ζ (i0) = ρµ

ζ for a given i0 ∈ S in order to obtain unique V µ
ζ (i) ∀i ∈ S.

Theorem 1 (Borkar et al., 2004)

(a) The map ζ → ρµ
ζ is convex for each SDP µ and there exists a unique ζµ

∗
4
= argmaxζ≥0(ζα−

ln(ρµ
ζ)) for any µ.
(b) pµ,∗(i, j), i, j ∈ S is given by

pµ,∗(i, j) =
exp(ζµ

∗g(i,µ(i)))p(i, j,µ(i))V µ
∗ ( j)

ρµ
∗V

µ
∗ (i)

. (2)
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(c) The regular conditional law of the MDP {Xm, m ≥ 0} under SDP µ, conditioned on the event

{X0 = x,
1
n

n−1

∑
k=0

g(Xk,µ(Xk)) ≥ α} converges to the law of a Markov chain starting at x with transition

probabilities pµ,∗(·, ·).

In the above, ρµ
∗

4
= ρµ

ζµ
∗

and V µ
∗

4
= V µ

ζµ
∗
, respectively. It can be shown as in Lemma 2 of Borkar

et al. (2004) using a generalization of Theorem 6.3 of Kontoyiannis and Meyn (2003) that as n → ∞,

Px(
1
n

n−1

∑
m=0

g(Xm,µ(Xm)) ≥ αn) ∼
V µ
∗ (x)exp(−n(ζµ

∗α− ln(ρµ
∗)))exp(kζµ

∗)

ζµ
∗

√

2πnλµ
∗

where αn = α−
k
n

and λµ
∗ =

√

∂2 lnρµ
ζ

∂ζ2 |ζ=ζ∗ . The result in Theorem 1(b) follows in a straightfor-

ward manner from the above. Thus the transition probabilities pµ,∗(·, ·) depend on the risk parameter
ζµ
∗ given in Theorem 1(a).

For a given ζ > 0 and SDP µ, let {X ζ,µ
n , n ≥ 0} represent a Markov chain on S with (suitably

normalized) transition probabilities

pµ,ζ(i, j)
4
=

exp(ζg(i,µ(i)))p(i, j,µ(i))V µ
ζ ( j)

ρµ
ζV µ

ζ (i)
, i, j ∈ S.

In particular, we consider here the corresponding risk-averse case (ζ > 0). The risk-preferring case
(ζ < 0) is easier to handle and is not considered in this paper. In view of Assumption (A), {X ζ,µ

n } is
irreducible. Let ηµ

ζ(·) denote its unique stationary distribution. We now have the following lemma
whose proof follows as in Proposition 4.9 of Kontoyiannis and Meyn (2003).

Lemma 1
∂ ln(ρµ

ζ)

∂ζ
= ∑

i∈S

ηµ
ζ(i)g(i,µ(i)).

In classical Markov decision theory, one is minimizing expectation and not conditional expec-
tation of the ergodic cost and one can prove that it suffices to consider only SDPs. Such a result is
not proved here, so it is our choice to restrict to these. Finally, in principle, the requirement that the
rare event condition hold for all SDPs µ (see the problem definition above) is not strictly needed in
order for the theory to go through. However, one expects this to be true in typical applications. In
the next section, we present an adaptive algorithm for finding optimal µ and ζ by building on the
basic results of Theorem 1 and Lemma 1.

3. The Adaptive Algorithm

Given an SRP φ : S → P (A), one can identify φ(i) with a parameter vector θi = (θ1
i , . . ., θNi−1

i )T ,

where θ j
i ≥ 0 are the probabilities of picking actions a j

i , j = 1, . . . ,Ni−1. Thus
Ni−1

∑
j=1

θ j
i ≤ 1. Further,

θNi
i (the probability of selecting action aNi

i ) is directly obtained from the above representation of

φ(i) as θNi
i = 1 −

Ni−1

∑
j=1

θ j
i . Let θ = (θ1 . . ., θs)

T = (θ1
1, . . ., θN1−1

1 , θ1
2, . . ., θN2−1

2 , . . ., θ1
s , . . ., θNs−1

s )T .

Let pθi(i, j), i, j ∈ S, be defined by pθi(i, j) = θ1
i p(i, j,a1

i ) + . . . + θNi
i p(i, j,aNi

i ). Thus pθi(i, j)
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correspond to the transition probabilities of the resulting Markov chain under SRP φ. Suppose
gθi(i) = θ1

i g(i,a1
i ) + . . .+θNi

i g(i,aNi
i ) and hθi(i, j) = θ1

i h(i,a1
i , j) + . . .+θNi

i h(i,aNi
i , j), respectively,

denote the expected values of the function g(·, ·) and the single-stage cost h(·, ·, ·) under SRP φ.
Define three step-size sequences {a(n)}, {b(n)} and {c(n)} satisfying

Assumption (B)

∑
n

a(n) = ∑
n

b(n) = ∑
n

c(n) = ∞, ∑
n

(a(n)2 +b(n)2 + c(n)2) < ∞, (3)

c(n) = o(b(n)), b(n) = o(a(n)). (4)

Examples of {a(n)}, {b(n)} and {c(n)} that satisfy (3)-(4) are a(n) =
1

n3/5
, b(n) =

1

n4/5
, c(n) =

1
n

,

and a(n) =
logn

n
, b(n) =

1
n

, c(n) =
1

n logn
, respectively. Let

Ti = {xi
4
= (x1

i , . . . ,x
Ni−1
i )T | x j

i ≥ 0, j = 1, . . . ,Ni −1, and
Ni−1

∑
j=1

x j
i ≤ 1}

denote the policy simplex in state i onto which, after each policy update recursion, the vector of
probabilities corresponding to the first Ni − 1 actions is projected. The probability xNi

i of selecting

the Ni−th action in state i is then set according to xNi
i = 1−

Ni−1

∑
j=1

x j
i .

For any i ∈ S, let 4 j
i (n), j = 1, . . . ,Ni −1, n ≥ 0, be ±1-valued variables. These shall constitute

the perturbations in SPSA type gradient estimates. Exact values of these for any given n are obtained
using a normalized Hadamard matrix based construction as in Bhatnagar et al. (2003) (see below).
Let 4i(n) = (41

i (n), . . ., 4Ni−1
i (n))T denote the vector of perturbations at the nth epoch. In general,

an m×m (m≥ 2) matrix H is said to be a Hadamard matrix of order m if its entries belong to {1,−1}
and HT H = mIm, where Im is the m×m identity matrix. A Hadamard matrix is said to be normalized
if all the elements in its first column are 1. The construction used by Bhatnagar et al. (2003) that we
also use here is the following:

• For k = 1, let

H2 =

[

1 1
1 −1

]

• For general k > 1,

H2k =

[

H2k−1 H2k−1

H2k−1 −H2k−1

]

.

For an (Ni − 1)-dimensional parameter vector as above, the order of the Hadamard matrix used is
Mi = 2dlog2(Ni)e. It is easy to see that Ni −1 < Mi. Next form a matrix Ĥi in the following manner:
Remove the first column from the normalized Hadamard matrix constructed above. Next pick any
(Ni−1) of the remaining (Mi−1) columns and all Mi rows to form the new matrix. If only (Ni−1)
columns remain after deleting the first column above, then pick all the remaining columns. Thus
Ĥi is an Mi × (Ni − 1) matrix. Let the Mi rows of this matrix be represented by Ĥi(1), . . ., Ĥi(Mi),
respectively. Finally, the perturbation sequence 4i(n) is cyclically moved through the sequence
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{Ĥi(1), . . ., Ĥi(Mi)} of vectors by setting 4i(n) = Ĥi(n mod Mi + 1). In what follows, we present
an adaptive single simulation stochastic approximation based algorithm that performs asynchronous
updates. Suppose νi(n) denotes the number of times that state i is visited by the MDP {Xm} in n

epochs. Then, one can write, νi(n) =
n

∑
m=1

I{Xm = i}. We generate new 4i(n) only for those instants

n for which state i is visited by the chain, that is, Xn = i. For all other instants, θi(n) and 4i(n) are

held fixed. Let 4i(n)−1 denote the vector 4i(n)−1 = (
1

41
i (n)

, . . . ,
1

4Ni−1
i (n)

)T . We now present

our algorithm.

3.1 The Algorithm

Suppose δ > 0 is a given constant and Γi : R Ni−1 → R Ni−1 be the projection from R Ni−1 to the
simplex Ti. Let θi(n), n ≥ 0 denote the nth update of θi. Let θ̄i(n) = Γi(θi(n) + δ4i(n)), where
4i(n), n ≥ 0 are obtained using normalized Hadamard matrices as explained earlier. We analo-

gously denote θ̄i(n) as the vector θ̄i(n) = (θ̄1
i (n), . . ., θ̄Ni−1

i (n))T and let θ̄Ni
i (n) = 1−

Ni−1

∑
j=1

θ̄ j
i (n).

The simulated MDP {Xn} is governed by the perturbed randomized policy in the following manner:
If Xn = i, then an action from the set A(i) is selected according to the randomized policy θ̄i(n).
Let Yi(n), n ≥ 0 be quantities defined via the recursions below that are used for averaging the cost
function. Let Vn(i), i ∈ S denote the nth update of value function and ζn the nth update of the risk

parameter, respectively. We also let θ j
i (0) =

1
Ni

, ∀ j = 1, . . . ,Ni, i ∈ S, implying that the simulation

is started with a policy that assigns equal weightage to every feasible action in each state. Other
initial values for the same could be selected as well. The algorithm is described as follows:

The Algorithm

• Step 0 (Initialize): Fix θi(0)
4
= (θ1

i (0), . . .θNi−1
i (0))T , i ∈ S, as the vectors of initial proba-

bilities for selecting actions in states i with θNi
i (0) = 1−

Ni−1

∑
j=1

θ j
i . Fix integers L and (large)

P arbitrarily. Fix a (small) constant δ > 0. Set n := 0 and m := 0. Generate Mi × Mi,
normalized Hadamard matrices (Hi) where Mi = 2dlog2(Ni)e, i ∈ S. Let Ĥi, i ∈ S, be Mi ×Ni

matrices formed from Hi by choosing any Ni of its columns other than the first and let Ĥi(p),
p = 1, ...,Mi denote the Mi rows of Ĥi. Now set ∆i(0) := Ĥi(1), ∀i ∈ S. Set θ̄i(0) = Γi(θi(0)
+δ∆i(0)), i ∈ S as the initial value of the perturbed randomized policy. Alternatively, denote

θ̄i(0) = (θ̄1
i (0), . . . , θ̄Ni−1

i (0)) and let θ̄Ni
i (0) = 1−

Ni−1

∑
j=1

θ j
i (0). Obtain initial transition proba-

bilities pθ̄i(0)(i, j), i, j ∈ S by setting pθ̄i(0)(i, j) = θ̄1
i (0)p(i, j,a1

i ) + . . .+ θ̄Ni
i (0)p(i, j,aNi

i ). Set

pθ̄i(0)
0 (i, j)

4
= pθ̄i(0)(i, j) as the transition probabilities of the new Markov chain. Set gθ̄i(0)(i) =

θ̄1
i (0)g(i,a1

i ) + . . .+ θ̄Ni
i (0)g(i,aNi

i ) and hθ̄i(0)(i, j) = θ̄1
i (0)h(i,a1

i , j) + . . .+ θ̄Ni
i (0)h(i,aNi

i , j),
respectively. Set V0(i), ∀i ∈ S as the initial estimates of the cost-to-go function. Also, set
ζ0 = 0. Fix a state i0 ∈ S to be a given reference state and set Yi(0) = 0,∀i ∈ S.
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• Step 1: For all states XnL+m = i∈ S, simulate the corresponding next states XnL+m+1 according

to transition probabilities pθ̄i(n)
n (i, ·). For all i ∈ S, perform the following updates:

VnL+m+1(i) = VnL+m(i)+a(νi(n))I{XnL+m = i}×
(

exp(ζnL+mgθ̄i(n)(i))
VnL+m(i0)

VnL+m(XnL+m+1)
pθ̄i(n)(i,XnL+m+1)

pθ̄i(n)
n (i,XnL+m+1)

−VnL+m(i)

)

(5)

ζnL+m+1 = ζnL+m +b(n)
(

α−gθ̄XnL+m+1 (n)(XnL+m+1)
)

(6)

Yi(nL+m+1) = Yi(nL+m)+a(νi(n))I{XnL+m = i}×
(

hθ̄i(n)(i,XnL+m+1)

(

pθ̄i(n)(i,XnL+m+1)

pθ̄i(n)
n (i,XnL+m+1)

)

−Yi(nL+m)

)

(7)

If m = L−1, set nL := (n+1)L, m := 0 and go to Step 2;

else, set m := m+1 and repeat Step 1.

• Step 2: For all i ∈ S,

θi(n+1) = Γi

(

θi(n)− c(νi(n))I{XnL = i}
Yi(nL)4i(νi(n))−1

δ

)

. (8)

Set n := n+1. If n = P, go to Step 3;

else, for all i ∈ S, set ∆i(n) := Ĥ(n mod Mi +1) as the new Hadamard matrix generated
perturbation. Set θ̄i(n) = (Γi(θi(n) +δ∆i(n)), i ∈ S as the new perturbed randomized policy.
For all i, j ∈ S, set pθ̄i(n)(i, j), = θ̄1

i (n)p(i, j,a1
i ) + . . . + θ̄Ni

i (n)p(i, j,aNi
i ). Set gθ̄i(n)(i) =

θ̄1
i (n)g(i,a1

i ) + . . .+ θ̄Ni
i (n)g(i,aNi

i ) and hθ̄i(n)(i, j) = θ̄1
i (n)h(i,a1

i , j) + . . .+ θ̄Ni
i (n)h(i,aNi

i , j),

respectively. Finally, for all i, j ∈ S, update estimates pθ̄i(n)
n (i, j) of the transition probabilities

for the new chain according to

pθ̄i(n)
n (i, j) =

exp(ζnLg(i, θ̄i(n)))

VnL(i)VnL(i0)
pθ̄i(n)(i, j)VnL( j).

Normalize pθ̄i(n)
n (i, j) such that pθ̄i(n)

n (i, j) ≥ 0, ∀i, j and ∑ j∈S pθ̄i(n)
n (i, j) = 1,∀i.

Go to Step 1.

• Step 3 (termination): Terminate algorithm and output θ̄i(P), i ∈ S as the final randomized
policy.

Remark 1: As we did in the algorithm, and because we found it useful in the experiments, we
update the slowest timescale recursion (8) every (given) L ≥ 1 visits to state i, i ∈ S, and keep the
randomized policy fixed in between. This, in effect, amounts to an additional averaging over and
above that resulting from the use of different step-size schedules (see also Bhatnagar et al., 2001,
2003) for certain simulation based parametric optimization algorithms that use a similar ‘additional’
averaging. As observed by Spall (1997) and also Bhatnagar et al. (2003), the one-simulation SPSA
algorithms that use randomized perturbation sequences do not show good performance because of
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the presence of extra bias terms in the gradient estimates of these. As described in Section 1 (see
also the discussion after Eq.(15) below), the use of normalized Hadamard matrices significantly
improves performance since all bias terms get cancelled after regular deterministic intervals that
are, in general, also significantly shorter in duration as compared to the case when randomized
perturbations are used. Finally, even though we present our algorithm for the case when the number
of iterations P is fixed apriori, it can be easily modified to allow for stopping criteria based on
desired accuracy levels, a scenario that we consider in our numerical experiments in Section 4. The
convergence analysis that follows carries through for this case with minor modifications.

3.2 Sketch of Convergence Analysis

The convergence analysis uses the following basic principle of two timescale, or more generally
multiple timescale, stochastic approximation (Borkar, 1997): Each iteration in such a scheme can
be analyzed separately by treating other iteration(s) on slower timescale(s) as quasi-static, that is,
freezing the parameter(s) updated by the latter; while treating other iteration(s) on faster timescale(s)
as quasi-equilibrated, that is, averaging the parameter(s) updated by the latter w.r.t. their equilib-
rium behavior, arrived at similarly by treating all slower components as constants and all faster
components as equilibrated. For simplicity of presentation, we show here the analysis for the case
corresponding to L = 1. The extension to the general case is straightforward (see Bhatnagar et al.,
2001, 2003). Let us first consider the synchronous version of the algorithm. Recursions (5)-(8) can
be written as follows: For all i ∈ S,

Vn+1(i) = Vn(i)+a(n)

(

exp(ζngθ̄i(n)(i))
Vn(i0)

Vn(Xn+1)

(

pθ̄i(n)(i,Xn+1)

pθ̄i(n)
n (i,Xn+1)

)

−Vn(i)

)

, (9)

ζn+1 = ζn +b(n)
(

α−gθ̄Xn+1 (n)(Xn+1)
)

, (10)

Yi(n+1) = Yi(n)+a(n)

(

hθ̄i(n)(i,Xn+1)

(

pθ̄i(n)(i,Xn+1)

pθ̄i(n)
n (i,Xn+1)

)

−Yi(n)

)

, (11)

θi(n+1) = Γi

(

θi(n)− c(n)
Yi(n)4i(n)−1

δ

)

. (12)

Iteration (9):

It can be shown that iteration (9) for fixed ζn and θ̄i(n) viz., ζn ≡ ζ and θ̄i(n) ≡ θ̄i, respectively,
asymptotically tracks the trajectories of the ordinary differential equation (ODE): For i ∈ S,

.
xt(i) =

exp(ζgθ̄i(i))
xt(i0)

∑
j∈S

pθ̄i(i, j)xt( j)− xt(i). (13)

The ODE (13) has a unique asymptotically stable fixed point in the positive quadrant (which is
invariant under the ODE) which corresponds to the solution to the multiplicative Poisson equation.
To see how this comes by, we use the fact that

E

[

exp(ζgθ̄i(i))
Vn(i0)

Vn(Xn+1)

(

pθ̄i(i,Xn+1)

pθ̄i
n (i,Xn+1)

)

| Xn = i

]

=
exp(ζgθ̄i(i))

Vn(i0)
∑
j∈S

pθ̄i(i, j)Vn( j).
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Thus (9) can be rewritten as

Vn+1(i) = Vn(i)

+ a(n)

(

exp(ζgθ̄i(i))
Vn(i0)

∑
j∈S

pθ̄i(i, j)Vn( j))−Vn(i)

)

+ a(n)

(

exp(ζngθ̄i(n)(i))
Vn(i0)

Vn(Xn+1)

(

pθ̄i(n)(i,Xn+1)

pθ̄i(n)
n (i,Xn+1)

)

−
exp(ζgθ̄i(i))

Vn(i0)
∑
j∈S

pθ̄i(i, j)Vn( j))

)

.

This is seen as a noisy discretization of the ODE (13) with decreasing stepsize a(n) and a ‘martin-
gale difference’ or ‘noise’ error term. The contribution to the net error due to the former vanishes
asymptotically because a(n) → 0 and so does the contribution of the latter ‘almost surely’ follow-
ing a standard martingale argument. This is a commonly used technique in reinforcement learning
based algorithms (see Konda and Borkar, 1999; Bhatnagar and Kumar, 2004), with the idea being
to replace conditional averages by evaluation at actual or simulated transitions and, then exploit the
incremental nature of stochastic approximation scheme to do the averaging for you.

Iteration (10):

The iteration (10) is a stochastic gradient scheme that, for fixed θ̄i(n) ≡ θ̄i, can be seen, from
the first part of Theorem 1 and Lemma 1, to asymptotically track the point ζθ̄

∗ corresponding to the
given policy above (using again martingale type arguments and the latter part of (3) on {b(n)} now).

Note from (4) that c(n) = o(b(n)) and c(n) = o(a(n)), respectively. This implies that recursions
(9) and (10), respectively, proceed on faster timescales as compared to (12). Moreover, since b(n) =
o(a(n)) as well, (9) proceeds on a faster scale than (10). Using standard analysis of multi-timescale
stochastic approximations (Borkar, 1997), one can show that the iterations (10) and (12) appear to
be quasi-static when viewed from the timescale on which (9) is updated. Moreover, when viewed
from either of the timescales on which (10) or (12) are updated, the recursion (9) appears to be
essentially equilibrated. Similarly, when viewed from the timescale on which (10) is performed,
the recursion (9) appears to be equilibrated while, as already stated, (12) appears to be quasi-static.
The above justifies selecting time-invariant quantities ζn ≡ ζ and θ̄i(n)≡ θ̄i (resp. θ̄i(n)≡ θ̄i) in the
convergence analysis of recursion (9) (resp. (10)).

Iteration (11):

The iteration (11) proceeds on the fastest timescale {a(n)} as well and is merely used to perform
averaging of the cost function. The updates from this recursion are then used in the gradient estimate
for average cost in the slow timescale recursion (12).

Iteration (12):

Iteration (12) does policy update. Note that here one is interested in finding the minimizing
policy parameters (i.e., the probabilities) for the long-run average cost albeit conditioned on the rare
event. Thus one is interested in finding the gradient of the average cost. This is achieved by our
slow timescale iteration as explained below.

For a bounded, continuous vi(·) : R Ni−1 → R Ni−1, define

Γ̄i(vi(y)) = lim
η↓0

(

Γi(y+ηvi(y))−Γi(y)
η

)

.
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Suppose θ = (θ1
1, . . . ,θ

N1−1
1 , . . ., θ1

s , . . . ,θNs−1
s )T be a given SRP. Let Ĵ(θ) denote the long-run aver-

age cost under SRP θ. Let ∇ j
i Ĵ(θ) denote the derivative of Ĵ(θ) w.r.t. θ j

i , j = 1, . . . ,Ni − 1, and let
∇iĴ(θ) correspond to ∇iĴ(θ) = (∇1

i Ĵ(θ), . . ., ∇Ni−1
i Ĵ(θ))T . The policy update can be shown to track

(in the limits as P → ∞ and δ → 0) the trajectories of the ODE: For i ∈ S,

.
θi(t) = Γ̄i(−∇iĴ(θ)). (14)

The proof broadly proceeds as follows. A standard analysis of (11), see for instance, Bhatnagar
and Borkar (1998), Bhatnagar et al. (2001), using the fact that the chain under each stationary policy
is irreducible (and hence positive recurrent) shows that

‖ Yi(n)− Ĵ(θ̄(n)) ‖→ 0 as n → ∞.

Here θ̄(n) = (θ̄1(n), . . . , θ̄s(n))T . Suppose for all i ∈ S, θi(n) ∈ T 0
i , where T 0

i corresponds to the
interior of the simplex Ti. Then for δ sufficiently small, θi(n) +δ4i(n) ∈ T 0

i as well. Hence θ̄i(n)
= Γi(θi(n) +δ4i(n)) = θi(n) +δ4i(n). Moreover, since c(n) → 0 as n → ∞, ‖ Ĵ ‖< ∞ and δ > 0,
one can ensure by choosing n large enough that

Γi

(

θi(n)− c(n)
Ĵ(θ̄(n))4i(n)−1

δ

)

= θi(n)− c(n)
Ĵ(θ(n)+δ4(n))4i(n)−1

δ
.

Using a Taylor series expansion of Ĵ(θ(n) +δ4(n)) around θ(n), one obtains

Ĵ(θ(n)+δ4(n)) = Ĵ(θ(n))+δ
s

∑
l=1

Nl−1

∑
j=1

4
j
l (n)∇ j

l Ĵ(θ(n))+O(δ2).

For a given k ∈ {1, . . . ,Ni −1},

Ĵ(θ(n)+δ4(n))

δ4k
i (n)

=
Ĵ(θ(n))

δ4k
i (n)

+∇k
i Ĵ(θ(n))+

Ni−1

∑
j=1, j 6=k

4
j
i (n)∇ j

i Ĵ(θ(n))

4k
i (n)

+
s

∑
l=1,l 6=i

Nl−1

∑
j=1

4
j
l (n)∇ j

l Ĵ(θ(n))

4k
i (n)

+O(δ). (15)

The first term in the RHS above corresponds to the ‘additional’ bias term, described earlier, whose
overall contribution to bias depends on the magnitude of δ and the frequency with which 4k

i (n)
change sign as a function of n, for all k and i. It can be shown as in Theorem 2.5 of Bhatnagar

et al. (2003) that for any n ≥ 0,
n+Mi

∑
m=n

1

4k
i (m)

= 0, ∀k = 1, . . . ,Ni, and
n+Mi

∑
m=n

4
j
i (m)

4k
i (m)

= 0, ∀ j 6= k,

j,k ∈ {1, . . . ,Ni}, respectively. Note that because of the use of Hadamard matrices, Mi is typically
small, as a result of which the bias contributed by the above terms is not significant in general.

One can also show in a similar manner as Corollary 2.6 of Bhatnagar et al. (2003) that

‖
n+M̄

∑
m=n

s

∑
l=1,l 6=i

Nl−1

∑
j=1

c(m)

c(n)

4
j
l (m)∇ j

l Ĵ(θ(m))

4k
i (m)

‖→ 0 as n → ∞,
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where M̄ = max(M1, . . . ,Ms). (Recall that Mi is the number of rows in the Ĥi, i = 1, . . . ,s, matrix
defined earlier.) Thus (12) can be seen to be analogous to the recursion

θi(n+1) = Γi(θi(n)− c(n)(∇iĴ(θ(n))+ξ1(n)+O(δ))), (16)

where ξ1(n) = o(n). In general, one can write Γi(θi(n) +δ4i(n)) = θi(n) +δ4i(n) +δri(n) where
ri(n) correspond to error terms because of the projection operator, such that ‖ ri(n) ‖ ≤ ‖ 4i(n) ‖
with equality only when ri(n) = −4i(n). In the latter case,

‖
n+Mi

∑
m=n

c(m)

c(n)

Ĵ(θ(m))

δ4k
i (m)

‖→ 0 as n → ∞, ∀δ > 0. (17)

Finally, we consider the case of any other θi(n) lying on the boundary of Ti. Suppose the

correction term ri(n)
4
= (r1

i (n), . . ., rNi−1
i (n))T , i ∈ S. Now ∃ j ∈ {1, . . . ,Ni − 1} for which if sign

of 4 j
i (n) is such that the vector θi(n) +δ4i(n) points outwards from the boundary, then r j

i (n) =

−4
j
i (n). For simplicity, suppose all other 4l

i(n) are such that components θl
i(n)+δ4l

i(n) lie inside
their respective regions. Then again one can see that (16) is valid. Also, for k = j, (17) continues to

hold. Now the function Ĵ(·) itself serves as a Liapunov function for the ODE (14) which has K
4
=

{θ ∈ T1×T2 ×·· ·×Ts | Γ̄i(∇iĴ(θ)) = 0 ∀i ∈ S} as its asymptotically stable fixed points. A standard
argument now shows that the iterations (12) converge to K almost surely in the limits as P → ∞ and
δ→ 0. The equilibria for the projected gradient scheme here correspond to Kuhn-Tucker points with
the stable ones being local minima. By ‘avoidance of traps’ results, see Borkar (2003), Brandiere
(1998), the scheme converges to one of these with probability one. (Strictly speaking, this requires
some additional conditions on the noise component of the iterations that can be ensured by adding
independent noise if necessary. Most often, as here, it is empirically observed that the existing noise
suffices.)

For the asynchronous case that we actually work with, the step-size sequences are {a(νi(n))},
{b(νi(n))} and {c(νi(n))}, respectively, and the parameters corresponding to state i are updated
only at instants when the MDP {Xn} under the running policy visits state i. It can be shown as in
Borkar (1998), Borkar (2001), Borkar (2002), and Borkar and Meyn (2002), respectively, that the
iterate (5) for fixed ζ and θ̄ as before, asymptotically tracks trajectories of the (combined) ODE

.
xt = Π(t)

















exp(ζgθ̄1 (1))
xt(i0) ∑ j∈S pθ̄1(1, j)xt( j)− xt(1)

.

.

.
exp(ζgθ̄s (s))

xt(i0) ∑ j∈S pθ̄s(s, j)xt( j)− xt(s)

















.

Here Π(t) is an s× s scaling matrix which is a positive scalar in [0,1] times the identity matrix
under some additional technical conditions on the stepsize sequence, see (i)− (iv), pp. 842 of
Borkar (1998). Hence this ODE is a time-scaled version of the synchronous ODE. One thus obtains
the same result here as before with the only difference being that the convergence to the desired
limit points can now become slower as compared to the synchronous case. We now present our
numerical results.
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4. Numerical Results

The problem of routing multiple flows in communication networks has been well studied during the
last few decades (Bertsekas and Gallager, 1991) with several approaches having been proposed for
static and dynamic optimization of routing. In Tsitsiklis and Bertsekas (1986) as well as Bertsekas
and Gallager (1991), gradient based projection algorithms for optimal routing have been studied.
More recently, in Marbach et al. (2000), Nowe et al. (1998) and Varadarajan et al. (2003), rein-
forcement learning techniques have also been applied to the problem of routing. We consider here
an application of our algorithm to finding optimal routes for flows in communication networks,
conditioned on a rare event. The basic setting is shown in Fig. 1.

NODE 2

LINK 1

LINK 2

INCOMING FLOWS OUTGOING FLOWS
NODE 1

Figure 1: The Model

Nodes A and B are connected via two links. We assume that the system is slotted with time slots
of equal length. Customers/flows arrive at the beginning of time slots at A, and have to be sent to
B. There are two routes R1 and R2 from A to B. An arrival occurs with a certain probability (p) in a
given time slot independent of others. At the beginning of a time slot, decision on whether to route
all arrivals (that occur in the time slot) onto R1 or R2 is made by a controller (at Node A). Thus, all
new arrivals at the beginning of a time slot are routed either to R1 or R2. However, we also assume
that both R1 and R2 can accommodate at most M customers (or flows) at any given instant. All flows
that cannot be accommodated in a given slot immediately leave the system. Suppose each flow at
any given instant (or a slot boundary) finishes service w.p. q1 on R1 and w.p. q2 on R2, respectively,
independent of other flows. Further, if a flow does not finish service in a time slot, its service
extends to the next slot independently of the number of flows in either route and the number of slots
the given flow has been in service for. The above process is repeated again in subsequent slots.
Thus the number of slots that a customer is in service at node j, j = 1,2 equals i with probability
(1− q j)

i−1q j, for i ≥ 1. Let X (1)
n (resp. X (2)

n ) denote the number of flows on R1 (resp. R2) in time
slot n. Let {A(n)} with A(n) ∈ {a1,a2} ∀n ≥ 1, denote the associated action-valued process, where
ai corresponds to the action of routing new flows in a time slot on the route Ri, i = 1,2. Then under
a given SDP, {Xn}, where Xn = (X (1)

n ,X (2)
n ), n ≥ 0, forms a discrete time Markov chain with state

transition equation given by

(

X (1)
n+1

X (2)
n+1

)

=

(

min[X (1)
n −Q1(n)+ I{A(n) = a1}B(n),M]

min[X (2)
n −Q2(n)+ I{A(n) = a2}B(n),M]

)

,

1951



BHATNAGAR, BORKAR AND MADHUKAR

where the departures from routes R1 and R2 during time slot n are denoted as Q1(n) and Q2(n),
respectively, and satisfy 0 ≤ Q j(n)≤ N j(n), j = 1,2. Also, B(n) denotes the number of new arrivals
at Node A, at the beginning of time slot (n+1). Note that since there are only two actions associated
with each state here, the parameter vector θi(n) of the randomized policy is simply θi(n) = θ1

i (n).
The simplex Ti associated with each state here corresponds to the interval [0,1] ∀i. The projection
map Γi is thus defined by Γi(x) = max(0,min(x,1)) ∀i. Also, θ̄i(n) = Γi(θ1

i (n) +δ41
i (n)). The

sequences {41
i (n), n ≥ 0}, i ∈ S are generated using normalized Hadamard matrices. These turn

out to be simply 41
i (n) = (−1)n. The step-sizes are chosen as a(n) = b(n) = c(n) = 1, n = 0,1, and

for n ≥ 2,

a(n) =
log(n)

n
,b(n) =

1
n
,c(n) =

1
n log(n)

.

The single-stage cost in state i under policy θ̄i(n) is given by hθ̄i(n)(i,Xn+1) = |X (1)
n+1 − N1|

+|X (2)
n+1 −N2|, where N1 and N2 are given thresholds and (as before) Xn+1 = (X (1)

n+1, X (2)
n+1) corre-

sponds to the state at the next instant. The cost function thus aims to keep the number of flows
along R1 to be near threshold N1 and those along R2 to be near N2 for some 0 ≤ N1, N2 ≤ M. Here
the parameters N1 and N2 may be set arbitrarily. Note that since all new arrivals in a time slot are
routed to either R1 or R2, N1 and N2 should be judiciously chosen. A value of N1 or N2 close to zero
would lead to under-utilization while a value close to M would result in leaving less room for ac-
commodating future flows on the corresponding route. The latter is required, for instance, in cases
where there are different categories of traffic flows in the network each having a possibly different
pay off (a scenario not considered in this paper). Any other choice for the cost function may be used
as well.

The function g·(·) used for defining the rare event is given as gθ̄Xn (Xn) = I{X (2)
n > N}, where N

is another (given integer) threshold. Thus g·(·) equals one if X (2)
n ∈ {N +1, . . . ,M} and is zero other-

wise. The long-run average lim
n→∞

1
n

n−1

∑
m=0

gθ̄Xm (Xm) in this case corresponds to the stationary probability

of the number of flows at the second node exceeding N. For any given SDP, the latter quantity would
depend on the resulting transition probability matrix for the process {Xn} under that SDP. We con-
sider two different settings for our experiments that we refer to as settings (a) and (b), respectively.
The input parameters for the two settings are given in Table 1 below.

Note that in the algorithm in Section 3.1, the number of iterations P is fixed apriori. However,
for obtaining more accurate estimates, we use a different stopping criterion for the algorithm that
is based on an accuracy parameter ε as explained below and not one based on a fixed value of P.
For a given ε > 0, let kε be the transition number of the Markov chain at which the estimate of
ρµ∗

ζ ≡V µ∗

ζ (i0) converges to within ε of its previous value 100 times in succession. We let the value

of ε to be 5× 10−9 for setting (a) and 5× 10−8 for setting (b), respectively. The above values of
ε (for the two settings) will in fact be denoted as ε̄. More experiments using other values of ε are
subsequently discussed.

In Figs. 2 and 4, we show the optimal policies θ∗(·) for the two settings. The corresponding
value functions are shown in Figs. 3 and 5. We observed from the optimal policies in both settings
that for states (i1, i2), for given i1, the value of θ∗(·), that is, the probability of selecting action a1,
on the whole seems to increase, starting from a low value, as i2 is increased from 0 to M. Thus, in
general, for low values of i2, for given i1, the preferred action is a2 (i.e., to route customers on the
second link) while for higher values of i2, the preferred action becomes a1. This is along expected
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Input Parameter Setting (a) Setting (b)

Link Capacity, M 10 20
Ni N1 = 3, N2 = 5 N1 = 6, N2 = 12
N 7 13
α 0.25 0.25
Arrival probability, p 0.65 0.85
Departure probability, qi q1 = 0.7,

q2 = 0.52
q1 = 0.7,
q2 = 0.52

δ 0.01 0.01
L 11 11
ε̄ 5.000000e-09 5.000000e-08
n (see Equation (18) ) 50 150
ζ0 0 0
V0(i), ∀i ∈ S 1 1
Yi(0), ∀i ∈ S 0 0
Initial policy ∀i ∈ S θ1

i (0) = θ2
i (0) =

0.5
θ1

i (0) = θ2
i (0) =

0.5
Reference state, i0 (2,2) (2,2)

Table 1: Input Parameters for the two settings

lines given the form of the associated cost function. The value function V ∗(·) (in both settings)
takes low values for low values of (i1, i2) and gradually increases (overall) when either i1 or i2 is
increased. What is more interesting, however, is that there is a step-increase in these values as soon
as the set of rare event states is reached and it stays high over those states. This is not surprising
since the conditional probabilities of the rare event states will be higher as we are conditioning on
the rare event.

In Table 2, values of various performance metrics under the optimal policy are shown. Note that
ζ∗ corresponds to the converged value of the risk parameter obtained from the recursion (6). The
quantities Eθ∗X [X (1)] and Eθ∗X [X (2)] denote the mean numbers of flows on the two routes. These, in
general, depend on the parameters p, q1, q2, M and θ∗, and in the present case, can be seen to be less
than the thresholds N1 and N2, in either setting. The mean cost Eθ∗X [hθ̄i(i,X (1),X (2))], is higher in
Setting (b) as compared to Setting (a) since the values of thresholds N1 and N2 in the former setting
are higher.

Next, we performed some additional experiments along similar lines as Borkar et al. (2004)
and Bucklew (1990), to estimate the rare event probability p̂n (see below) under the optimal policy
for both settings. Note that even though our main aim is to obtain the optimal policy (above), the
additional experiments provide insight on the choice of the accuracy parameter ε and its effect on
computational performance. We define

p̂n = Px(
1
n

n−1

∑
m=0

gθ∗Xm (Xm) ≥ α). (18)
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Figure 2: Setting (a): Optimal Policy θ∗(·)
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Figure 3: Setting (a): Value Function V ∗(·)
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Figure 4: Setting (b): Optimal Policy θ∗(·)
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Figure 5: Setting (b): Value Function V ∗(·)
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Performance Metric Setting (a) Setting (b)

ζ∗ 1.652923e+00 7.370684e-01
ζ∗α− ln(ρζ∗) 2.456064e-01 5.742653e-02
Eθ∗X [X (1)] 1.092038e+00 2.836020e+00
Eθ∗X [X (2)] 4.183547e+00 8.720516e+00
Eθ∗X [hθ̄i(i,X (1),X (2))] 5.488044e+00 1.096857e+01

Table 2: Performance under optimal policy

The values of n are described in Table 1 for the two settings. An importance sampling estimator for
this probability is the average of the i.i.d. samples

I{
1
n

n−1

∑
m=0

gθ∗(Xm) ≥ α}
pθ∗X0 (X0,X1)pθ∗X1 (X1,X2) · · · pθ∗Xn−2 (Xn−2,Xn−1)

p
θ∗X0
∗ (X0,X1)p

θ∗X1
∗ (X1,X2) · · · p

θ∗Xn−2
∗ (Xn−2,Xn−1)

.

In practice, one is able to obtain the above estimate only upto a certain specified degree of accuracy
as obtained from the quantity ε (see above). There is however a tradeoff involved in the choice of
ε. The variance of the estimates tends to be high if ε is not chosen to be small enough, which may
affect their accuracy. On the other hand, as the value of ε is decreased beyond a point, the amount
of computational effort required increases rapidly.

We run the algorithm for different values of ε. For each value of ε, we obtain an estimate pε
∗(·, ·)

of pθ∗
∗ (·, ·) that is then used to generate i.i.d. samples for the estimate of the rare event probability

p̂n (see above). The mean and variance of the rare event probability are then determined using the
batch means method. The simulation is terminated when the 95% confidence interval, see Law and
Kelton (2000), of probability lies within 5% of its estimated mean value. Let Tε denote the total
computational effort involved in terms of the number of simulated transitions of the MDP that are
generated during this process. We show in Figs. 6 and 8, plots of kε, Tε and (kε +Tε) as functions of
ε for settings (a) and (b), respectively. The total computational effort (in terms of (kε +Tε)) is found
to be the least for ε ≡ ε∗ = 5×10−5 in setting (a) and for ε ≡ ε∗ = 10−4 in setting (b), respectively.
Also, Figs. 7 and 9 show the plots of the rare event probability p̂n (described in the figures as pε)
obtained for different accuracy levels ε. The values of ε in the above figures are shown on the log
scale for convenience.

In Table 3, we describe the values of the various parameters and metrics obtained for the rare
event probability experiments. The quantities kε∗ , Tε∗ and (kε∗ + Tε∗), respectively, correspond to
the case when ε = ε∗ is chosen for both settings. Also ε̄ = 5× 10−9 (resp. ε̄ = 5× 10−8) is the
lowest value of ε for which the simulations were run for setting (a) (resp. setting (b)). This level of
accuracy was obtained in about 1.18×1010 iterations in setting (a) and about 3.05×109 iterations
in setting (b). As stated previously, the value of ε̄ is used as the accuracy parameter in the earlier
experiments (cf. Figs. 2 to 5 and Table 2). In Table 3, pε∗ (resp. pε̄) corresponds to the value of p̂n

obtained when ε = ε∗ (resp. ε = ε̄). Note that these values are much lower for setting (a) than for
setting (b) (see also Figs. 7 and 9). As a consequence of the above, the values of kε∗ and Tε∗ are seen
to be much less for setting (b) as compared to the corresponding values of these for setting (a).
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Figure 6: Setting (a): Plot of kε,Tε and (kε +Tε) w.r.t. ε
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Figure 7: Setting (a): Variation of pε with ε
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Figure 8: Setting (b): Plot of kε,Tε and (kε +Tε) w.r.t. ε
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Figure 9: Setting (b): Variation of pε with ε
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Parameters/Performance Metrics Setting (a) Setting (b)

kε̄ 11287258742 1247427803
pε̄ 5.785067e-07 1.704158e-05
ε∗ 5.000000e-05 1.000000e-04
kε∗ 9292162 1197983
Tε∗ 2760999897 92719997
(kε∗ + Tε∗) 2770292059 93917980
pε∗ 5.446732e-07 1.574290e-05

Table 3: Rare Event Probability Experiments

5. Conclusions

We developed an adaptive simulation based stochastic approximation algorithm for ergodic control
of Markov chains conditioned on a rare event of zero probability. Our algorithm uses coupled re-
cursions that are driven by different timescales. We briefly sketched the convergence analysis of our
algorithm and presented numerical experiments on a setting involving routing multiple flows in com-
munication networks. The results obtained demonstrate the usefulness of the proposed algorithm in
obtaining optimal policies conditioned on a rare event and in estimating the rare event probability.
The numerical setting considered here was, however, a simple setting designed to demonstrate the
usefulness of the proposed algorithm. More complex settings involving, say, networks with multiple
nodes and more routes with large numbers of flows on each should be tried in order to study the
scalability of the proposed algorithm. The SPSA technique, in general, is known to be highly scal-
able as has been demonstrated through several applications over the last decade. In the simulation
based optimization framework, SPSA based multi-timescale algorithms have been found to perform
well computationally in the case of high-dimensional parameter settings studied in Bhatnagar et al.
(2001) and Bhatnagar et al. (2003) (by more than an order of magnitude over related K-W based
algorithms). Implementations involving such high-dimensional settings (along the lines described
above) need to be studied for the proposed algorithm in the setting of this paper. Recently, in Bhat-
nagar (2005), certain Newton-based multiscale SPSA algorithms that estimate both the gradient and
Hessian of the average cost have been developed in the simulation optimization setting. Similar
algorithms for the setting considered here may also be developed.

One may extend these ideas further by applying these for optimal control conditioned on multi-
ple rare events. For problems with large action spaces, one may consider suitable parameterizations
of the policy space. One may also use feature based methods for problems with moderately large
state spaces. Our adaptive algorithm can be used to derive optimal parameterized policies using
features in place of states. It must be noted here that adaptive importance sampling techniques re-
quire storage of transition probabilities and our algorithm is no different in this regard. Hence it
cannot directly be applied in the case of problems with very large state spaces where storage of such
information itself is computationally infeasible. However, in many cases such as queuing networks,
the transition probabilities are easy to compute and transitions easy to simulate using simple local
dynamic laws. Further, storage of transition probability matrices may not be a major concern in
such scenarios since these are known to be highly sparse. Developing similar algorithms in general
scenarios involving very large state spaces would be an interesting research direction to pursue.
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