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Abstract
We address the problem of learning a symmetric positive definite matrix. The central issue is to de-
sign parameter updates that preserve positive definiteness. Our updates are motivated with thevon
Neumanndivergence. Rather than treating the most general case, we focus on two key applications
that exemplify our methods: on-line learning with a simple square loss, and finding a symmetric
positive definite matrix subject to linear constraints. Theupdates generalize the exponentiated gra-
dient (EG) update and AdaBoost, respectively: the parameter is now a symmetric positive definite
matrix of trace one instead of a probability vector (which inthis context is a diagonal positive def-
inite matrix with trace one). The generalized updates use matrix logarithms and exponentials to
preserve positive definiteness. Most importantly, we show how the derivation and the analyses of
the original EG update and AdaBoost generalize to the non-diagonal case. We apply the resulting
matrix exponentiated gradient(MEG) update andDefiniteBoostto the problem of learning a kernel
matrix from distance measurements.

1. Introduction

Most learning algorithms have been developed to learn avectorof parameters from data. However,
an increasing number of papers are now dealing with more structured parameters. More specifically,
when learning a similarity or a distance function among objects, the parameters are defined as asym-
metric positive definite matrixthat serves as a kernel (e.g., Xing et al., 2003; Shai-Shwartz et al.,
2004; Tsang and Kwok, 2003; Tsuda and Noble, 2004). Learning is typically formulated as a pa-
rameter updating procedure to optimize aloss function. The gradient descent update is one of
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the most commonly used algorithms, but it is not appropriate when the parameters form a posi-
tive definite matrix, because the updated parameter matrix does not necessarily stay positive def-
inite. Xing et al. (2003) solved this problem by always correcting the updated matrix to be pos-
itive definite. However no bound has been proven for this update-and-correct approach. Also,
Shai-Shwartz et al. (2004) proposed an on-line algorithm for learning akernel matrix when only
some of the class labels of the examples are provided. This algorithm is also based on the update-
and-correction approach, but since the update step performs rank-one modification, the correction
step can be efficiently implemented. They have shown a generalization boundinspired by similar
previously known bounds for the perceptron.

In this paper, we introduce thematrix exponentiated gradient updatewhich works as follows:
First, the matrix logarithm of the current parameter matrix is computed. Then a step is taken in the
direction of the steepest descent of the loss function. Finally, the parameter matrix is updated to the
exponential of the modified log-matrix. Our update preserves symmetry and positive definiteness
because the matrix exponential maps any symmetric matrix to a symmetric positive definite matrix.

Bregman divergences play a central role in the motivation and the analysis of on-line learning
algorithms(Kivinen and Warmuth, 1997). A learning problem is essentially defined bya loss func-
tion and a divergence that measures the discrepancy between parameters. More precisely, the up-
dates are motivated by minimizing the sum of the loss function and the Bregman divergence, where
the loss function is multiplied by a positive learning rate. Different divergences lead to radically
different updates (Kivinen and Warmuth, 1997, 2001). For example, the gradient descent update
is derived from the squared Euclidean distance, and the exponentiated gradient update from the
Kullback-Leibler divergence (relative entropy). In this work we use the von Neumanndivergence
(also called quantum relative entropy) for measuring the discrepancy between two positive definite
matrices (Nielsen and Chuang, 2000). We derive a newmatrix exponentiated gradient updatefrom
this divergence (which is a Bregman divergence for symmetric positive definite matrices). Finally
we proverelative loss boundsusing thevon Neumanndivergence as a measure of progress.

We apply our techniques to solve the following related key problem that has received a lot of
attention recently (Xing et al., 2003; Shai-Shwartz et al., 2004; Tsang andKwok, 2003; Tsuda
and Noble, 2004). Find a symmetric positive definite matrix that satisfies a number of linear
inequality constraints. The newDefiniteBoostalgorithm greedily chooses a violated linear con-
straint and performs an approximated Bregman projection. In the diagonalcase, we recover Ada-
Boost (Schapire and Singer, 1999). We also show how the convergence proof of AdaBoost general-
izes to the non-diagonal case.

2. Preliminaries

In this section, we first present mathematical definitions and basic lemmas.

2.1 Matrix Basics

We denote matrices by capital bold letters and restrict ourselves to square matrices with real entries
in this paper. For any such matrixA ∈ R

d×d, expA and logA denote the matrix exponential and
logarithm, respectively. The matrix exponential is defined as the following power series,

exp(A) := I +A+
1
2!

A2 +
1
3!

A3 + · · · . (2.1)
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MATRIX EXPONENTIATED GRADIENT UPDATES

In the case of symmetric matrices, the matrix exponential operation can be computed using the
eigenvalue decompositionA = V ΛV >, whereV is an orthonormal matrix with the eigenvectors
of A as columns andΛ the diagonal matrix of eigenvalues. Thus,expA = V (expΛ)V >, where
(expΛ)i,i = exp(Λi,i). The matrix logarithmlogA is defined as the inverse function ofexpA, which
does not always exist for arbitraryA. However, whenA is symmetric and strictly positive definite,
logA is computed aslogA := V (logΛ)V >, where(logΛ)i,i = logΛi,i . Throughout the paper loga
and expa denote the natural logarithm and exponential of scalar “a”.

A square matrix is positive definite if all its eigenvalues are strictly positive. Positive semi-
definiteness only requires the non-negativity of the eigenvalues. For twomatricesA andB, A �
B iff B−A is positive semi-definite. Similarly,A ≺ B iff B−A is (strictly) positive definite.

The trace of a matrix is the sum of its diagonal elements, i.e. tr(A) = ∑i Ai,i and thus tr(AB) =

∑i, j Ai, jB j,i = tr(BA). In matrix algebra, tr(AB) plays a similar role as the dot product for vectors.
Furthermore, tr(A) = ∑i λi , whereλi are the eigenvalues ofA and the determinant det(A) = ∏i λi .

If F(W ) : R
d×d →R is a real-valued function on matrices, then∇WF(W ) denotes thegradient

with respect to matrixW :

∇WF(W ) =




∂F
∂W11

· · · ∂F
∂W1d

...
. ..

...
∂F

∂Wd1
· · · ∂F

∂Wdd


 .

For example, it is easy to see that∇Atr(AB) = B>. More examples of computing gradients are
given in Appendix A.

For a square matrixX, sym(X) = (X +X>)/2 denotes the symmetric part ofX. If W is
symmetric andX an arbitrary matrix, then

tr(WX) = tr

(
W

X +X>

2

)
+ tr

(
W

X −X>

2

)
= tr(W sym(X)). (2.2)

Our analysis requires the use of the Golden-Thompson inequality (Golden,1965):

tr(exp(A+B)) ≤ tr(exp(A)exp(B)), (2.3)

which holds for arbitrarysymmetricmatricesA andB.
We also need the following two basic inequalities for symmetric matrices. The firstone gener-

alizes the following simple inequality, which is a realization of Jensen’s inequalityfor the convex
function exp(x): For any 0≤ a≤ 1 andρ1,ρ2 ∈ R,

exp(aρ1 +(1−a)ρ2) ≤ aexp(ρ1)+(1−a)exp(ρ2).

In the below generalization, the distribution(a,1−a) is replaced by(A,I −A), whereA is any
symmetric matrix for which0 � A � I.

Lemma 2.1 For any symmetric matrixA ∈ R
d×d such that0 � A � I, and anyρ1,ρ2 ∈ R,

exp(Aρ1 +(I −A)ρ2) � Aexp(ρ1)+(I −A)exp(ρ2).
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Proof AssumeA is eigen-decomposed asA = V ΛV >, whereΛ is the diagonal matrix of eigen-
values andV is an orthogonal matrix with the eigenvectors ofA as columns. By assumption,
0≤ λk ≤ 1. Letθk be thek-th eigenvalue of the left hand side of the inequality that we are to prove.
Clearlyθk = exp(λkρ1+(1−λk)ρ2) and by Jensen’s inequality,θk ≤ λk exp(ρ1)+(1−λk)exp(ρ2).
Let Θ be the diagonal matrix with entriesθk. ThenΘ � Λexp(ρ1)+(I−Λ)exp(ρ2), and by multi-
plying both sides byV from left and byV > from right, we obtain the desired inequality.

Lemma 2.2 For any positive semi-definite symmetric matrixA ∈ R
d×d and any two symmetric

matricesB,C ∈ R
d×d, B � C impliestr(AB) ≤ tr(AC).

Proof Let D = C −B, thenD � 0 by assumption. Suffices to show that tr(AD) ≥ 0. Let us
eigen-decomposeA asV ΛV >. SinceV V > = V >V = I, D = V PV > whereP = V >DV � 0.
Then tr(AD) = tr(V ΛV >V PV >) = tr(ΛP) = ∑n

i=1 λiPii . SinceP is positive semi-definite, the
diagonal elementsPii are nonnegative. Also by assumption the eigenvaluesλi of A are nonnegative.
Thus we conclude that tr(AD) ≥ 0.

2.2 Von Neumann Divergence or Quantum Relative Entropy

If F is a real-valued strictly convex differentiable function on the parameterdomain (a subset of
matrices inRd×d) andf(W ) := ∇WF(W ), then the Bregman divergence between two parameters
W̃ andW is defined as

∆F(W̃ ,W ) := F(W̃ )−F(W )− tr((W̃ −W )f(W )>).

Since F is strictly convex,∆F(W̃ ,W ) is also strictly convex in its first argument. Furthermore, the
gradient in the first argument has the following simple form:

∇
W̃

∆F(W̃ ,W ) = f(W̃ )−f(W ),

since∇Atr(AB) = B> (cf. Section 2.1).
For the divergences used in this paper, we restrict ourselves to the domain of symmetric positive

definite matrices. Our main choice of F is F(W ) = tr(W logW −W ), which is calledvon Neu-
mann entropyor quantum entropy. The strict convexity of this function is well known (Nielsen and
Chuang, 2000). Furthermore we show in Appendix A that∇WF(W ) = f(W ) = logW .

The Bregman divergence corresponding to this choice of F is thevon Neumann divergenceor
quantum relative entropy(e.g., Nielsen and Chuang, 2000):

∆F(W̃ ,W ) = tr(W̃ logW̃ −W̃ logW −W̃ +W ).

In this paper, we are primarily interested in the case when the parameters arenormalized in the
sense that tr(W ) = tr(W̃ ) = 1. Symmetric positive definite matrices of trace one are related to
density matrices commonly used in Statistical Physics. For normalized parametersthe divergence
simplifies to

∆F(W̃ ,W ) = tr(W̃ logW̃ −W̃ logW ).
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MATRIX EXPONENTIATED GRADIENT UPDATES

If W = ∑i λiviv
>
i is our notation for the eigenvalue decomposition, then the von Neumann

entropy1 becomes F(W ) = ∑i λi logλi . We can rewrite the normalized divergence2 as

∆F(W̃ ,W ) = ∑
i

λ̃i logλ̃i −∑
i, j

λ̃i logλ j(ṽ
>
i v j)

2. (2.4)

This divergence quantifies the difference in the eigenvalues as well as the eigenvectors. When both
eigen systems are the same (i.e., ˜vi = vi), then the divergence becomes the usual relative entropy

between the eigenvalues∆F(W̃ ,W ) = ∑i λ̃i log λ̃i
λi

.

2.3 Rotation Invariance

One can visualize a symmetric positive definite matrixW = ∑i λiviv
>
i = V ΛV > as an ellipse,

where the eigenvectorsvi are the axes of the ellipse and the square-roots of the eigenvalues (i.e.√
λi) are the lengths of the corresponding axes. Thus the von Neumann divergence quantifies the

“discrepancy” between two ellipses and is invariant under a simultaneous rotation of both eigen
systems. That is, for any orthonormal matrixU , the von Neumann divergence has the property that

∆F(W̃ ,W ) = ∆F(UW̃U>,UWU>). (2.5)

This follows from (2.4) and

∆F(Ṽ Λ̃Ṽ >,V ΛV >) = ∆F(UṼ Λ̃(UṼ )>,UV Λ(UV )>).

However, the divergence is decidedly not invariant under the unitary rotation of both parameters,
i.e. typically∆F(W̃ ,W ) 6= ∆F(UW̃ ,UW ) for an orthonormal matrixU . This is because such ro-
tations can change the sign of the eigenvalues. Also rotating symmetric matrices typically produces
non-symmetric matrices.

There is a second important divergence between symmetric positive definitematrices that is
invariant under the simultaneous rotation of both eigen systems (2.5). It is a Bregman divergence
based on the strictly convex function F(W ) =− logdet(W ) (e.g., Boyd and Vandenberghe (2004))
over the cone of positive definite matrices. Note that F(W ) = −∑i logλi , where theλi denote the
eigenvalues ofW . Also sincef(W ) = ∇WF(W ) = (W−1)> = W−1, the Bregman divergence
becomes:

∆F(W̃ ,W ) = log
det(W )

det(W̃ )
+ tr(W−1W̃ )−d

= ∑
i

log
λi

λ̃i
+ tr(W−1W̃ )−d,

whered is the dimension of the parameter matrices. We call this theLogDetdivergence. Notice
that in this case, F(W ) is essentially minus the log of the volume of the ellipseW , and the LogDet
divergence is the relative entropy between two multidimensional Gaussians with fixed mean and
covariance matrices̃W andW , respectively (see Singer and Warmuth, 1999). At the end of Section
3.1 we will also briefly discuss the updates derived from the LogDet divergence. Note that for this
divergence∆F(W̃ ,W ) = ∆F(UW̃ ,UW ) for any orthonormal matrixU and parameter matrices
in the domain ofF .

1. F(W ) can be extended to symmetric positive semi-definite matrices by using the convention 0log0= 0.
2. The domain of the first argument can be extended to symmetric positive semi-definite matrices.
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3. On-line Learning

In this section we present a natural extension of theexponentiated gradient(EG) update (Kivinen
and Warmuth, 1997) to an update for symmetric positive definite matrices.

3.1 Motivation of the Updates

On-line learning proceeds in trials. In the most basic form, the on-line algorithm produces a param-
eterWt at trial t and then incurs a lossLt(Wt). In this paper, the parameters are square matrices in
R

d×d.
In a refined form, the algorithm aims to predict a label and several actions occur in each trial:

The algorithm first receives aninstanceXt in some instance domainX . It then produces a prediction
ŷt for the instanceXt based on the algorithm’s current parameter matrixWt and receives a labelyt .
(The prediction ˆyt and the labelyt lie some labeling domainY .) Finally the algorithm incurs a real
valued lossL(ŷt ,yt) and updates its parameter matrix toWt+1.

For example in Section 3.3 we consider a case where the labeling domainY is the real line.
The on-line algorithm we analyze for this case predicts with ˆyt = tr(WtXt) and is based on the loss
Lt(Wt) = L(ŷt ,yt) = (ŷt −yt)

2.
In this section we only discuss updates at a high level and only consider thebasic form of the

on-line algorithm. We assume thatLt(W ) is convex in the parameterW (for all t) and that the
gradient∇WLt(W ) is a well defined matrix inRd×d. In the update, we aim to solve the following
problem (see Kivinen and Warmuth, 1997, 2001):

Wt+1 = argmin
W

∆F(W ,Wt)+ηLt(W ), (3.1)

where the convex function F defines the Bregman divergence andη is a non-negative learning rate.
The update balances two conflicting goals: staying close to the old parameterWt (as quantified by
the divergence) and achieving small loss on the current labeled instance. The learning rate becomes
a trade-off parameter.

We can eliminate the argmin by setting the gradient (with respect toW ) of its objective to zero:

Wt+1 = f−1(f(Wt)−η∇WLt(Wt+1)) . (3.2)

If we assume thatf andf−1 preserve symmetry, then constrainingW in (3.1) to be symmetric
changes the update to (cf. Appendix B for details):

Wt+1 = f−1(f(Wt)−ηsym(∇WLt(Wt+1))) . (3.3)

The aboveimplicit update is usually not solvable in closed form. A common way to avoid this
problem (Kivinen and Warmuth, 1997) is to approximate∇WLt(Wt+1) by ∇WLt(Wt), leading to
the followingexplicitupdate for the constraint case:

Wt+1 = f−1(f(Wt)−ηsym(∇WLt(Wt))) .

In the case of the von Neumann divergence, the functionsf(W ) = logW andf−1(Q) = expQ

clearly preserve symmetry. When using this divergence we arrive at thefollowing (explicit) update:
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Wt+1 = exp


log

sym.pos.def.︷︸︸︷
Wt −ηsym(

pos. semi. def.︷ ︸︸ ︷
∇WLt(Wt) )︸ ︷︷ ︸

symmetric




︸ ︷︷ ︸
symmetric positive definite

. (3.4)

We call this update theunnormalized matrix exponentiated gradient update. Note thatf(W ) =
logW maps symmetric positive definite matrices to arbitrary symmetric matrices, and after adding
a scaled symmetrized gradient, the functionf−1(Q) = expQ maps the symmetric exponent back
to a symmetric positive definite matrix.

When the parameters are constrained to trace one, then we arrive at theMatrix Exponentiated
Gradient (MEG) update, which generalizes the exponentiated gradient (EG) update of Kivinen and
Warmuth (1997) to non-diagonal matrices:

Wt+1 =
1
Zt

exp(logWt −ηsym(∇WLt(Wt))) , (3.5)

where Zt = tr(exp(logWt −ηsym(∇WLt(Wt)))) is the normalizing constant (See Appendix B for
details.)

Finally, observe that for the LogDet divergencef(W ) = ∇WF = −W−1 and f−1(Q) =
−Q−1. Thus bothf and f−1 negate and invert all eigenvalues. Both functions also preserve
symmetry. However,f−1 does not map an arbitrary symmetric matrix back to a symmetric positive
definite matrix. Note that for this divergence update (3.3) becomes

Wt+1 = −


−(

sym.pos.def.︷︸︸︷
Wt )−1−ηsym(

pos.semi.def.︷ ︸︸ ︷
∇WLt(Wt+1))︸ ︷︷ ︸

symmetric negative definite




−1

︸ ︷︷ ︸
symmetric positive definite

.

This update also preserves symmetric positive definiteness of the parametermatrix under the as-
sumption that the gradient∇WLt(Wt+1) is positive semi-definite: IfWt is symmetric positive def-
inite, thenf(Wt) is symmetric negative definite. Using this assumption, we have that the argument
of f−1 is symmetric negative definite and thereforeWt+1 is again symmetric positive definite.

In this paper we prove a certain type of relative loss bound for the MEG update which generalize
the analogously known bounds for the EG algorithm to the non-diagonal case. To our knowledge,
no relative loss bounds have been proven for the above update that is derived from the LogDet
divergence. For this update, such bounds are not even known for the diagonal case. Also, if the
gradients of the loss are only known to be symmetric thenη must be small in order to guarantee that
Wt+1 stays in the positive definite cone.

3.2 Numerically Stable MEG Update

The MEG update (3.5) is numerically unstable when the eigenvalues ofWt are around zero. How-
ever we can “unwrap” this update to the following:

Wt+1 =
1

Z̃t
exp

(
ctI + logW1−η

t

∑
s=1

sym(∇WLs(Ws))

)
,
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where the constant̃Zt normalizes the trace ofWt+1 to one. As long as the eigenvalues ofW1 are
not too small, the computation oflogW1 is stable. Note that the update is independent of the choice
of ct ∈ R. We incrementally maintain an eigenvalue decomposition of the matrix in the exponent
(O(n3) per iteration):

VtΛtV
>

t = ctI + logW1−η
t

∑
s=1

sym(∇WLs(Ws))

where the constantct is chosen so that the maximum eigenvalue of the above is zero. NowWt+1 =
Vt exp(Λt)V

>
t /tr(exp(Λt)). The pseudo-code is given in Algorithm 1.

Algorithm 1 Pseudo-code of the matrix exponentiated gradient (MEG) algorithm for quadratic Loss
ChooseW1 andη
Initialize G0 = logW1

for t = 1,2, . . . do
Obtain instance matrixXt

Predictŷt = tr(WtXt)
Obtain labelyt and determine the lossLt = (yt − ŷt)

2

UpdateGt = Gt−1−2η(ŷt −yt)sym(Xt)
Compute spectral decomposition:Gt = VtΛtV

>
t

UpdateWt+1 = Vt exp(Λt −ctI)V >
t /tr(exp(Λt −ctI)), wherect = maxs(Λt)s,s

end for

3.3 Relative Loss Bounds

For the sake of simplicity we now restrict ourselves to the case when the algorithm predicts with
ŷt = tr(WtXt) and the loss function is quadratic:Lt(Wt) = L(ŷt ,yt) := (ŷt −yt)

2.
We begin with the definitions needed for the relative loss bounds. LetS = (X1,y1), . . . ,

(XT ,yT) denote a sequence of examples, where the instance matricesXt ∈R
d×d and the labelsyt ∈

R. The total loss of the on-line algorithm on the entire sequenceS is LMEG(S) = ∑t
t=1(tr(WtXt)−

yt)
2. We prove a bound on therelative loss LMEG(S)−LU(S) that holds for any comparator param-

eterU . Such a comparator parameter is any symmetric positive semi-definite matrixU with trace
one, and its total loss is defined asLU(S) = ∑T

t=1(tr(UXt)−yt)
2. The relative loss bound is derived

in two steps: Lemma 3.1 upper bounds the relative loss for an individual trialin terms of the progress
towards the comparator parameterU (as measured by the divergence). In the second Lemma 3.2,
the bound for individual trials is summed to obtain a bound for a whole sequence. These two lem-
mas generalize similar lemmas previously proven for the exponentiated gradient update (Lemmas
5.8 and 5.9 of Kivinen and Warmuth, 1997).

Lemma 3.1 Let Wt be any symmetric positive definite matrix. LetXt be any square matrix for
which the eigenvalues ofsym(Xt) have range at most r, i.e.

λmax(sym(Xt))−λmin(sym(Xt)) ≤ r.

AssumeWt+1 is produced fromWt by the MEG update with learning rateη, and letU be any
symmetric positive semi-definite matrix. Then for any b> 0 and a= η = 2b/(2+ r2b):

a (yt − tr(WtXt))
2

︸ ︷︷ ︸
MEG-loss

−b (yt − tr(UXt))
2

︸ ︷︷ ︸
U -loss

≤ ∆F(U ,Wt)−∆F(U ,Wt+1)︸ ︷︷ ︸
progress towardsU

. (3.6)

1002



MATRIX EXPONENTIATED GRADIENT UPDATES

The above type of inequality is central to all relative loss bounds (Kivinenand Warmuth, 1997). If
the loss of the algorithm is small, then the inequality becomes vacuous. However, if the algorithm
incurs a large loss, then its parameterWt must make progress towards any parameter vectorU that
has small loss on the current example (if such parameters exist).

The proof of this inequality is given in Appendix C. It has the same structureas the correspond-
ing previous lemma proven for the exponentiated gradient algorithm, but nowwe apply the various
matrix inequalities given at the end of Section 2.1 (in particular the Golden-Thompson inequality
(2.3) and the approximation of the matrix exponential (Lemma 2.1)). These inequalities will also
be essential for the analysis ofDefiniteBoostin the next section.

Lemma 3.2 Let S be any sequence of examples with square real matrices as instances and real
labels, and let r be an upper bound on the range of eigenvalues of the symmetric part of each
instance matrix of S. Let the initial parameterW1 and comparison parameterU be arbitrary
symmetric positive definite matrices of trace one. Then for any c such thatη = 2c/(r2(2+c)),

LMEG(S) ≤
(

1+
c
2

)
LU(S)+

(
1
2

+
1
c

)
r2∆F(U ,W1). (3.7)

Proof For the maximum tightness of (3.6),a should be chosen asa = η = 2b/(2+ r2b). Let
b = c/r2, and thusa = 2c/(r2(2+c)). Then (3.6) is rewritten as

2c
2+c

(yt − tr(WtXt))
2−c(yt − tr(UXt))

2 ≤ r2(∆F(U ,Wt)−∆F(U ,Wt+1))

Adding the bounds fort = 1, · · · ,T, we get

2c
2+c

LMEG(S)−cLU(S) ≤ r2(∆F(U ,W1)−∆F(U ,Wt+1)) ≤ r2∆F(U ,W1),

which is equivalent to (3.7).

AssumingLU(S) ≤ Lmax and ∆F(U ,W1) ≤ dmax, then the bound (3.7) is tightest whenc =
r
√

2dmax/Lmax. With this choice ofc, we have

LMEG(S)−LU(S) ≤ r
√

2Lmaxdmax+
r2

2
∆F(U ,W1).

In particular, ifW1 = 1
dI, then∆F(U ,W1) = logd−∑i λi log 1

λi
≤ logd. Additionally, whenLmax=

0, then the total loss of the algorithm is bounded byr2 logd
2 .

Note that the MEG algorithm generalizes the EG algorithm of Kivinen and Warmuth (1997). In
the case of linear regression, a square of a product of dual norms appears in the bounds for the EG
algorithm: ||u||21X2

∞. Hereu is a parametervectorandX∞ is an upper bound on the infinity norm
of the instance vectorsxt . Note the correspondence with the above bound (which generalizes the
bounds for EG to the non-diagonal case): the one norm of the parametervector is replaced by the
trace and the infinity norm by the maximum range of the eigenvalues.

4. Bregman Projection andDefiniteBoost

Using the von Neumann divergence, we will generalize the boosting algorithms for matrix parame-
ters.

1003
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4.1 Preliminaries

In this section, we address the following Bregman projection problem of finding a positive semi-
definite symmetric matrixW ∈ R

d×d of trace one satisfying a set of linear constraints:3

W ∗ = argmin
W

∆F(W ,W1) (4.1)

s.t. W = W>, tr(W ) = 1

tr(WC j) ≤ 0, for j = 1, . . . ,n,

where the symmetric positive definite matrixW1 of trace one is the initial parameter matrix and
C1, . . . ,Cn are arbitrary matrices. Note that we do not explicitly constrainW to be positive semi-
definite because when the von Neumann divergence is used, then the solution W ∗ will always
be positive semi-definite. Prior knowledge aboutW is encoded in the constraints, and the ma-
trix closest toW1 is chosen among the matrices satisfying all constraints. Tsuda and Noble (2004)
employed this approach for learning a kernel matrix among graph nodes, and this method can be po-
tentially applied to learn a kernel matrix in other settings (e.g., Xing et al., 2003; Tsang and Kwok,
2003). In the previous work by (Tsuda and Noble, 2004), an algorithmwas developed that pro-
cesses a batch of constraints. The problem was converted to a dual unconstraint problem (as done
below) and an iterative gradient descent algorithm was given. However, no convergence proofs were
provided previously. In this paper we give on-line algorithms with strong convergence proofs.4

The problem (4.1) is a projection ofW1 to the intersection of convex regions defined by
the constraints. It is well known that the Bregman projection into the intersection of convex re-
gions can be solved by sequential projections to each region (Bregman, 1967; Censor and Lent,
1981). In the original papers only asymptotic convergence was shown.More recently a connection
(Kivinen and Warmuth, 1999; Lafferty, 1999) was made to the AdaBoostalgorithm which has an
improved convergence analysis (Freund and Schapire, 1997; Schapire and Singer, 1999). We gen-
eralize the latter algorithm and its analysis to symmetric positive definite matrices andcall the new
algorithmDefiniteBoost. As in the original setting, onlyapproximateprojections (Figure 1) are
required to show fast convergence.

Before presenting the algorithm, let us describe the dual problem of minimizingthe von Neu-
mann divergence subject to linear constraints (4.1). The dual variablesare the Lagrange multipliers
α ∈ R

n (α ≥ 0) associated with this optimization problem:

α∗ = argmax
α≥0

− log

{
tr

(
exp(logW1−

n

∑
j=1

α j sym(C j))

)}
. (4.2)

See Appendix D for a detailed derivation of the dual problem that handlesthe case when the con-
straint matrixC j is allowed to be an arbitrary square matrix. Previous derivations requiredsymmet-
ric C j (Tsuda and Noble, 2004). When (4.1) is feasible, the optimal solution is described as

W ∗ =
1

Z(α∗)
exp(logW1−

n

∑
j=1

α∗
j sym(C j)),

3. Note that ifη is large then the on-line update (3.1) becomes a Bregman projection subject to a single equality
constraint tr(W Xt) = yt .

4. The methodology employed in this paper is not limited to on-line learning. For example in Littlestone et al. (1992),
cf. Corollary 15, the EG algorithm was used for solving a system of linear equations and fast convergence was shown.
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Figure 1: The intersection of two convex sets (here two straight lines) canbe found by projecting
back and forth between the two sets with exact Bregman projections (W1,W2, . . .). In
this paper we use certain approximate projections (W1,W

′
2, . . .). Now each projection

may over or undershoot the alternating target set. Nevertheless, globalconvergence to the
optimal solution is still guaranteed via our proofs.

where Z(α∗) = tr
(

exp(logW1−∑n
j=1 α∗

j sym(C j))
)

andα∗ is the optimal dual solution.

4.2 Exact Bregman Projections

Problem (4.1) can be solved with the following algorithm: Start from some initial parameterW1

(for instanceW1 = 1
dI). At the t-th step, choose an unsatisfied constraintjt , i.e. tr(WtC jt ) > 0.5

Then solve the following Bregman projection with respect to the chosen constraint:

Wt+1 = argmin
W

∆F(W ,Wt) (4.3)

s.t. W = W>, tr(W ) = 1,

tr(WC jt ) ≤ 0.

By means of a Lagrange multiplierα, the dual problem is described as (cf. Appendix D)

α∗
t = argmin

α≥0
tr(exp(logWt −αsym(C jt ))) . (4.4)

Using the solution of the dual problem,Wt is updated as

Wt+1 =
1

Zt(α∗
t )

exp(logWt −α∗
t sym(C jt )) (4.5)

where the normalization factor is Zt(α∗
t ) = tr(exp(logWt −α∗

t sym(C jt ))). If Wt is symmetric
positive definite, thenWt+1 is as well. Note that we can use the same numerically stable reformu-
lation of the update as discussed in Section 3.2.

5. For instance, the most unsatisfied constraint, i.e.jt = argmaxj=1,··· ,n tr(WtC j ), can be chosen.
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4.3 Approximate Bregman Projections

The solution of (4.4) cannot be obtained in closed form. However, one can use the following ap-
proximate choice ofαt :

α̂t =
1

λmax
t −λmin

t
log

(
1+ rt/λmax

t

1+ rt/λmin
t

)
, (4.6)

when the eigenvalues ofsym(C jt ) lie in the interval[λmin
t ,λmax

t ] andrt = tr(WtC jt ). Since the most
unsatisfied constraint is chosen,rt ≥ 0 and thuŝαt ≥ 0. We call this approximate Bregman projection
algorithmDefiniteBoost. It may be seen as a natural extension of AdaBoost (cf. Section 4.5), where
probability distributions are replaced by symmetric positive definite matrices of trace one. The
pseudo-code of DefiniteBoost is given in Algorithm 2.

Algorithm 2 Pseudo-code of the DefiniteBoost algorithm;λmin
t and λmax

t are lower and upper
bounds on the eigenvalues ofsym(Ct).

ChooseW1

Initialize G0 = logW1

for t = 1,2, . . . do
Choose an unsatisfied constraintjt (i.e. tr(WtC jt ) > 0) or stop when all constraints satisfied
Compute constraint violationrt = tr(WtC jt )

Compute approximate step sizeα̂t =
1

λmax
t −λmin

t
log

(
1+ rt/λmax

t

1+ rt/λmin
t

)

UpdateGt = Gt−1− α̂t sym(C jt )
Compute spectral decomposition:Gt = VtΛtVt

UpdateWt+1 = Vt exp(Λt −ctI)V >
t /tr(exp(Λt −ctI)), wherect = maxs(Λt)s,s

end for

Although the projection is done only approximately,6 the convergence of the dual objective (4.2)
can be shown using the following upper bound of the negative dual objective , i.e.

tr

(
exp(logW1−

n

∑
j=1

α j sym(C j))

)
.

Theorem 4.1 The negative exponentiated dual objective is bounded from above by

tr

(
exp

(
logW1−

T

∑
t=1

α̂t sym(C jt )

))
≤

T

∏
t=1

ρ(rt), (4.7)

where

α̂t =
1

λmax
t −λmin

t
log

(
1+ rt/λmax

t

1+ rt/λmin
t

)
, rt = tr(WtC jt ),

and

ρ(rt) =

(
1− rt

λmax
t

) λmax
t

λmax
t −λmin

t

(
1− rt

λmin
t

) −λmin
t

λmax
t −λmin

t
.

6. The approximate Bregman projection (withαt as in (4.6)) can also be motivated as an on-line algorithm based on an
entropic loss and learning rate one (following Section 3 and Kivinen and Warmuth (1999)).

1006



MATRIX EXPONENTIATED GRADIENT UPDATES

The proof of this inequality for our setting is given in Appendix E. The bound (4.7) is monotonically
decreasing, becauseρ(rt) ≤ 1. Also, since we always chose a violated constraint (if there is one),
we havert > 0 and thereforeρ(rt) < 1 (or we stop). Thus the dual objective (4.2) continues to
increase until all constraints are satisfied.

4.4 Convergence Speed

Next we determine the maximal number of iterations needed to find a matrixW which satisfies all
constraints up to the predetermined accuracyε, i.e. tr(WC j) ≤ ε, for 1≤ j ≤ n. The algorithm
selects in each iteration an constraintjt that is violated by at leastε (i.e. rt = tr(WtC jt ) ≥ ε), or
stops if no such constraint exists. Assuming the algorithm stops at(T + 1)-th step, we derive an
upper bound onT as a function ofε.

For simplicity, let us assumeW1 = 1
dI, λmin

j = −λ, and λmax
j = λ (for all j). Denote by

hprimal(W ) andhdual(α) the primal and dual objective functions in (4.1) and (4.2), respectively.

hprimal(W ) = ∆F(W ,W1) (4.8)

hdual(α) = − logtr

(
exp

(
logW1−

n

∑
j=1

α j sym(C j)

))
(4.9)

The primal objective is upper-bounded by logd, since∆F(W ,W1) = ∑i λi logλi + logd ≤ logd.
Since the algorithm stops at the(T + 1)-th iteration (withrt ≥ ε for t = 1, . . . ,T), we get from
Theorem 4.1:

exp(−hdual(α̃)) = tr

(
exp

(
logW1−

T

∑
t=1

α̂t sym(C jt )

))
≤
(

λ2− ε2

λ2

)T/2

,

whereα̃ is the cumulative coefficient vector for the constraints, i.e.α̃ j = ∑T
t=1 α̂tδ( jt = j), for

1≤ j ≤ n.
Thus the objective in (4.2) is lower bounded by1

2T ε2

λ2 , since

hdual(α̃) ≥ − log

(
λ2− ε2

λ2

)T/2

≥ Tε2

2λ2 , (4.10)

where the last inequality follows by convexity of− log
(

λ2−ε2

λ2

)
with respect toε. At the optimal

solutionW ∗ andα∗, the values of the objective functions coincide, i.e.hdual(α
∗) = hprimal(W

∗).
Finally, we obtain

Tε2

2λ2 ≤ hdual(α̃) ≤ hdual(α
∗) = hprimal(W

∗) ≤ logd,

and the upper boundT ≤ 2λ2 logd
ε2 . In summary, we have proven the following:

Corollary 4.2 Suppose we are solving problem(4.1) with DefiniteBoost, whereC j ( j = 1, . . . ,n)
are arbitrary matrices withλmin(C j) ≥ −λ andλmax(C j) ≤ λ andW1 = 1

dI. Assume an optimal
solutionW ∗ to (4.1)exists and the algorithm selects in each iteration anε-violated constraint, i.e.
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rt = tr(WtC jt ) ≥ ε, or stops if no such constraint exists. Then after at most T= 2λ2 logd
ε2 iterations,

DefiniteBoost stops and the resultingW satisfies all linear constraints up to accuracyε, i.e.

tr(WC j) ≤ ε for all j = 1, . . . ,n.

This result implies that we can solve (4.1) with accuracyε in O(d3 logd/ε2) operations (exclud-
ing the cost of identifying violated constraints). Similar bounds on the number of iterations for
solving a system of linear equations with the EG algorithm were first proven in(Littlestone et al.,
1992, Corollary 15). Observe that if (4.1) is not feasible, then one may continue findingε-violated
constraints and the primal objective can become unbounded, i.e.∑t α̂t may become unbounded.

4.5 Relation to Boosting

When all matrices are diagonal, then DefiniteBoost specializes to the AdaBoost algorithm (Schapire
and Singer, 1999). Let{xi ,yi}d

i=1 be the training samples, wherexi ∈ R
m andyi ∈ {−1,1}. Let

h1(x), . . . ,hn(x) ∈ [−1,1] be the weak hypotheses. For thej-th hypothesish j(x), let us defineC j =
diag(y1h j(x1), . . . ,ydh j(xd)). Since|yhj(x)| ≤ 1, we may chooseλmax

t = 1 andλmin
t = −1 for anyt.

SettingW1 = 1
dI, the dual objective (4.7) is rewritten as

− log

(
1
d

d

∑
i=1

exp

(
−yi

n

∑
j=1

α jh j(xi)

))
,

which is equivalent to the exponential loss function used in AdaBoost. Since C j andW1 are di-
agonal, the matrixWt stays diagonal after the update. Ifwt,i = (Wt)i,i , the updating formula (4.5)
becomes the AdaBoost update:wt+1,i = wt,i exp(−αtyiht(xi))/Zt(αt). The approximate solution of
αt (4.6) is described asαt = 1

2 log 1+rt
1−rt

, wherert is the weighted training error of thet-th hypothesis,

i.e. rt = ∑d
i=1wt,iyiht(xi).

4.6 Solving Semi-definite Programs

Suppose we aim to solve the following semi-definite programming problem:

W ∗ = argmin
W ,θ

θ (4.11)

s.t. tr(W ) = 1,W � 0,W = W>

tr(WC j) ≤ θ, for j = 1, . . . ,n.

If one would know the optimalθ∗ beforehand, then following problem would lead to an optimal
solution of (4.11):

W ∗ = argmin
W

∆F(W ,
1
d
I) (4.12)

s.t. tr(W ) = 1,W = W>

tr(W (C j −θ∗I)) ≤ 0, for j = 1, . . . ,n.

Running DefiniteBoost on the above problem with matricesC̃ j = (C j − θ∗I) can approximate
the solution of (4.12) rather efficiently and, hence, it is only left to determinethe optimal value
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θ∗. If it is chosen too small, then no feasible solution to (4.12) exists and DefiniteBoost will not
terminate after 2λ2 logd/ε2 iterations with accuracyε,7 whereλmin(C̃j) ≥ −λ andλmax(C̃j) ≤ λ.
If it is chosen too large, then a feasible solution exists and DefiniteBoost terminates in a bounded
number of iterations. Hence one has a way of identifying whenθ < θ∗ and alsoθ > θ∗. This allows
the design of a binary search procedure to approximateθ∗ in a few steps. Based on this idea we
previously proposed a margin maximizing version of AdaBoost (Rätsch and Warmuth, 2002). For
this algorithm we could show that afterO(logd log(1/ε)/ε2) iterations the algorithm achieved an
optimal solution within accuracyε. We claim that the outlined binary search procedure can also
be applied in combination with DefiniteBoost for solving the semi-definite problem(4.11) in time
O(d3 logd log(1/ε)/ε2) (excluding the cost of identifying violated constraints). Additionally we
assert that a slightly more advanced adaptation ofθ during the optimization (as was done by Rätsch,
2001; R̈atsch and Warmuth, 2005, for the diagonal case) will yield the reduced time complexity of
O(d3 logd/ε2). Rigorous proofs of these conjectures go beyond the scope of this paper.

5. Experiments on Learning Kernels

In this section, our technique is applied to learning a kernel matrix from a setof distance measure-
ments. This application is not on-lineper se, but it shows nevertheless that the theoretical bounds
can be reasonably tight on natural data.

WhenK is a d× d kernel matrix amongd objects, then theKi j characterizes the similarity
between objectsi and j. In the feature space,Ki j corresponds to the inner product between ob-
ject i and j, and thus the Euclidean distance can be computed from the entries of the kernel ma-
trix (Scḧolkopf and Smola, 2002). In some cases, the kernel matrix is not given explicitly, but only
a set of distance measurements is available. The data are represented either as (i) quantitative dis-
tance values (e.g., the distance betweeni and j is 0.75), or (ii) qualitative evaluations (e.g., the
distance betweeni and j is small) (Xing et al., 2003; Tsuda and Noble, 2004). Our task is to obtain
a positive definite kernel matrix which fits well to the given distance data.

5.1 On-line Kernel Learning

In the first experiment, we consider the on-line learning scenario in which only one distance example
is shown to the learner at each time step. The distance example at timet is described as{at ,bt ,yt},
which indicates that the squared Euclidean distance between objectsat andbt is yt . Let us define
a time-developing sequence of kernel matrices as{Wt}T

t=1, and the corresponding points in the
feature space as{xti}d

i=1 (i.e. (Wt)ab = x>
taxtb). Then, the total loss incurred by this sequence is

T

∑
t=1

(
‖xtat −xtbt‖2−yt

)2
=

T

∑
t=1

(tr(WtXt)−yt)
2,

whereXt is a symmetric matrix whose(at ,at) and (bt ,bt) elements are 0.5,(at ,bt) and (bt ,at)
elements are -0.5, and all the other elements are zero. We consider a controlled experiment in which
the distance examples are created from a knowntarget kernel matrix. We used a 52× 52 kernel
matrix amonggyrB proteins of bacteria (d = 52). This data contains three bacteria species (see
Tsuda et al., 2003, for details). Each distance example is created by randomly choosing one element
of the target kernel. The initial parameter was set asW1 = 1

dI. When the comparison matrixU is set

7. This statement is slightly simplified. Please check Rätsch and Warmuth (2002) for details.
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Figure 2: Numerical results of on-line learning. (Left) total loss against the number of iterations.
The dashed line shows the loss bound. (Right) classification error of the nearest neighbor
classifier using the learned kernel. The dashed line shows the error by the target kernel.

to the target matrix, then because all the distance examples are derived from this matrix,LU(S) = 0
andLmax = 0. Therefore we choose learning rateη = 2, which minimizes the relative loss bound of
Lemma 3.2. The total loss of the kernel matrix sequence obtained by the matrix exponential update
is shown in Figure 2 (left). In the plot, we have also shown the relative loss bound. The bound
seems to give a reasonably tight performance guarantee—it is about twicethe actual total loss.
To evaluate the learned kernel matrix, the prediction accuracy of bacteriaspecies by the nearest
neighbor classifier is calculated (Figure 2, right), where the 52 proteins are randomly divided into
50% training and 50% testing data. The value shown in the plot is the test erroraveraged over 10
different divisions. It took a large number of iterations (∼ 2×105) for the error rate to converge
to the level of the target kernel. In practice one can often increase the learning rate for faster
convergence, but here we chose the small rate suggested by our analysis to check the tightness of
the bound.

5.2 Kernel Learning by Bregman Projection

Next, let us consider a batch learning scenario where we have a set of qualitative distance evaluations
(i.e. inequality constraints). Givenn pairs of similar objects{a j ,b j}n

j=1, the inequality constraints
are constructed as‖xa j −xb j‖≤ γ, j = 1, . . . ,n, whereγ is a predetermined constant. IfX j is defined
as in the previous section andC j = X j − γI, the inequalities are then rewritten as tr(WC j) ≤
0, j = 1, . . . ,n. The largest and smallest eigenvalues of anyC j are 1− γ and−γ, respectively.
As in the previous section, distance examples are randomly generated fromthe target kernel matrix
betweengyrB proteins. Settingγ = 0.2/d, we collected all object pairs whose distance in the feature
space is less thanγ to yield 980 inequalities (n = 980). Figure 3 (left) shows the convergence of
the dual objective function as proven in Theorem 4.1. The convergence was much faster than the
previous experiment, because in the batch setting, one can choose the mostunsatisfied constraint
and optimize the step size as well. Figure 3 (right) shows the classification error of the nearest
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Figure 3: Numerical results of Bregman projection. (Left) convergenceof the dual objective func-
tion. (Right) classification error of the nearest neighbor classifier usingthe learned kernel.

neighbor classifier. As opposed to the previous experiment, the error rate is higher than that of
the target kernel matrix, because a substantial amount of information is lostby the conversion to
inequality constraints.

6. Summary and Discussion

We motivated and analyzed a new update for symmetric positive matrices using the von Neumann
divergence. We showed that the standard bounds for on-line learningand boosting generalize to
the case when the parameters are symmetric positive definite matrices of trace one instead of a
probability vector. As in quantum physics, the eigenvalues act as probabilities. In addition to
the applications suggested by the experiments, our algorithm can be straightforwardly applied to
learning a covariance matrix. It would also be interesting to use a robust lossLt(W ) for the purpose
of ignoring outliers (Huber, 1981) and investigate possible applications ofour learning algorithms
to quantum statistical inference problems (Barndorff-Nielsen et al., 2003).

Our method is designed for learning a positive definite parameter matrix of fixed size. It is
not straightforward to extend it to the case where the size of the parameter matrix grows on-line
as more examples are seen. Our methods immediately generalize to the Hermitian matrices, i.e.
square matrices inCd×d for which A = Ā> = A∗. The spectral decomposition of these matrices
becomesA = UΛU ∗, whereU is a unitary matrix (i.e.UU ∗ = I) andΛ is a diagonal matrix of
real eigenvalues. In the case when all entries of the matrix are real, then Hermitianis equivalent
to symmetric. All algorithms of this paper (and their analyzes) immediately generalize to the case
when symmetric is replaced by Hermitian and symmetric positive definite by positiveHermitian
(i.e. Hermitian with positive eigenvalues). In particular, the Golden-Thompson inequality, Jensen’s
inequality for the matrix exponential (Lemma 2.1) and Lemma 2.2 all hold for Hermitianmatrices.
Note that density matrices (as used in Statistical Physics) are positive Hermitianmatrices of trace
one.
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Appendix A. Derivatives of Matrix Functions

The matrix functions considered in this paper are mostly trace functions e.g. tr(exp(W )) and
tr(W logW ), which we will expand into power series. Thus we begin with computing the gra-
dient of F(W ) = tr(W k). The partial derivative with respect to(i, j) element is described as

∂tr(W k)

∂Wi j
= lim

λ→0

tr((W +λEi j )
k)− tr(W k)

λ
,

whereEi j is the sparse matrix whose(i, j) element is one and all the others are zero. For example,
whenk = 3,

(W +λEi j )
3 = (W 3 +λEi j WW +λWEi j W +λWWEi j )+O(λ2).

The trace is simply described as

tr((W +λEi j )
3) = tr(W 3)+3λtr(Ei j W

2)+O(λ2)

= tr(W 3)+3λ[W 2] j,i +O(λ2).

Therefore,∇W tr(W 3) = 3(W 2)>. For generalk, we get

∇W tr(W k) = k(W k−1)>. (A.1)

The matrix exponential is defined as

exp(W ) = I +W +
1
2!

W 2 +
1
3!

W 3 + · · · .

Applying (A.1) to all terms, we get∇W tr(exp(W )) = exp(W )>. Next, let us calculate the gradient
of tr(W logW −W ). Using the expansion

logW =
∞

∑
i=1

(−1)i−1

i
(W −I)i ,

we get

W logW −W =
∞

∑
i=2

(−1)i

i(i−1)
(W −I)i −I.

Applying the shifted version of (A.1), i.e.∇W tr((W − I)k) = k((W − I)k−1)>, to all terms, the
gradient is obtained as∇W tr(W logW −W ) = (logW )>. WhenW is symmetric, then one can
drop the transposition. Thus in in this case∇W tr(expW ) = expW .
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Appendix B. Derivation of the MEG Update

In this appendix we derive parameter updates when the parameter must meetsome linear constraints.
One method is to incorporate such constraints into the strictly convex function Fdefining the Breg-
man divergence. The modified function F is then only defined when the constraints are met. The
updates always have the simple form (3.2). However this method often leadsto difficult forms of F
andf = ∇F. Here we choose the alternate method of keeping the linear constraints on theside. We
begin by discussing how to enforce symmetry. Consider the following optimization problem, where
Xt is an arbitrary matrix inRd×d, Wt an arbitrary symmetric matrix inRd×d andyt ∈ R:

Wt+1 = argmin
W

∆F(W ,Wt)+ηLt(W )

s.t.W = W>.

We assume that∇WLt(W ) is always a well defined matrix inRd×d.
We introduce one Lagrange multiplierΓi, j for the each of the constraintsWi, j = W j,i . This

contributes the termΓi, j(Wi, j −W j,i) to the Lagrangian. In matrix form these constraints can be
summarized as tr(Γ(W>−W )) = tr((Γ>−Γ)W ). This gives us the Lagrangian

L(W ,Γ) = ∆F(W ,Wt)+ηLt(W )+ tr((Γ>−Γ)W ).

for Γ ∈ R
d×d. Setting the gradient with respect toW to zero yields:

Wt+1 = f−1
(
f(Wt)−η∇WLt(Wt+1)− (Γ−Γ

>)
)

.

Since the objective is convex, it suffices to exhibit a choice ofΓ such that the symmetry constraint
is satisfied. Under the assumption thatf andf−1 preserve symmetry,Γ = −η∇WLt(Wt+1)/2
achieves this and the update becomes (3.3):

Wt+1 = f−1
(
f(Wt)−ηsym(∇WLt(Wt+1))

>)
)

.

For the normalized case we still need to enforce the trace one constraint onWt+1. This adds a
termδ(tr(W )−1) to the Lagrangian and the update now has the form

Wt+1 = exp
(

logWt −η∇WLt(Wt+1)− (Γ−Γ
>)−δI

)
.

ChoosingΓ = −η∇WLt(Wt+1)/2 and

δ = − log(tr(exp(logWt −ηsym(∇WLt(Wt+1)))))

enforces the symmetry and trace constraints and after approximating the gradient we arrive at the
explicit MEG update (3.5).

Appendix C. Proof of Lemma 3.1

Let δt = −2η(tr(XWt)−yt), then the right hand side of (3.6) can be reformulated as

∆F(U ,Wt)−∆F(U ,Wt+1) = δt tr(UXt)− logtr(exp(logWt +δt sym(Xt))).
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Therefore, (3.6) is equivalent tof ≤ 0, where

f = logtr(exp(logWt +δt sym(Xt)))−δt tr(UXt)+a(yt − tr(WtXt))
2−b(yt − tr(UXt))

2.

Let us bound the first term. Due to Golden-Thompson inequality (2.3), we have

tr(exp(logWt +δt sym(Xt))) ≤ tr(Wt exp(δt sym(Xt))) . (C.1)

The right hand side can be rewritten as

exp(δt sym(Xt)) = exp(r0δt)exp(δt(sym(Xt)− r0I)).

Let r0 be a lower bound of the eigenvalues ofsym(Xt). By assumption, the range of the eigenvalues
of sym(Xt) is at mostr, i.e.

r0I � sym(Xt) � (r0 + r)I.

Thus0 � A � I, for A = (sym(Xt)− r0I)/r. Applying Lemma 2.1 with this choice ofA and
ρ1 = rδt , ρ2 = 0, we obtain

exp(δt(sym(Xt)− r0I)) � I − sym(Xt)− r0I

r
(1−exp(rδt)).

SinceWt is symmetric positive definite and both sides of the above inequality are symmetric,we
can apply Lemma 2.2 by pre-multiplying the inequality byWt and taking a trace of both sides:

tr(Wt exp(δt sym(Xt))) ≤ exp(r0δt)

(
1− tr(WtXt)− r0

r
(1−exp(rδt))

)
.

Note that we used the assumption that tr(Wt) = 1. The above gives an upper bound on the right
hand side of inequality (C.1) We now plug this upper bound into the first term of f and obtainf ≤ g,
where

g = r0δt + log(1− tr(WtXt)−r0
r (1−exp(rδt)))− tr(UXt)δt

+a(yt − tr(WtXt))
2−b(yt − tr(UXt))

2. (C.2)

Let us definez= tr(UXt) and maximize the upper bound (C.2) with respect toz. Solving ∂g
∂z = 0,

we havez= yt −δt/(2b) = yt +η(tr(XtWt)−yt)/b. Substituting this into (C.2), we have the upper
boundg≤ h where

h = 2ηr0(yt − tr(XtWt))+ log
(

1− tr(XtWt)−r0
r (1−exp(2ηr(y− tr(XtWt))))

)

−2ηyt(yt − tr(XtWt))+(a+ η2

b (y− tr(XtWt))
2.

We now upper bound the second term using the inequality log(1− p(1−expq)) ≤ pq+ q2/8, for
0≤ q≤ 1 andq∈ R (Helmbold et al., 1997):

h≤ (yt − tr(XtWt))
2

2b
((2+ r2b)η2−4bη+2ab).

It remains to showq = (2+ r2b)η2−4bη + 2ab≤ 0. We easily see thatq is minimized forη =
2b/(2+ r2b) and that for this value ofη we haveq≤ 0 if and only ifa≤ 2b/(2+ r2b).
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Appendix D. Derivation of the DefiniteBoost Dual Problem

For the sake of brevity we assume that the primal problem has one inequality constraint (note that
(4.1) has multiple constraints):

W ∗ = argmin
W

tr(W (logW − logW1)+W1−W

s.t. tr(WC) ≤ 0

tr(W ) = 1

W = W>.

Following Appendix B we arrive at the Lagrangian

L(W ,α,β,Γ) := tr(W (logW − logW1)+W1−W +αtr(WC)+

+β(tr(W )−1)+ tr((Γ>−Γ)W ), (D.1)

which is minimized w.r.t.W and maximized w.r.t.α ≥ 0, β ∈ R andΓ ∈ R
d×d. Setting the gradient

w.r.t. W to zero we obtain

W ∗ = exp(logW1−αC−βI − (Γ−Γ
>)

= exp(−β)exp(logW1−αC− (Γ−Γ
>).

We now enforce the symmetry constraint, giving usΓ = −α(C−C>)/2, and plug this choice into
the above

W ∗ = exp(−β)exp(logW1−αsym(C)).

Similarly, β = logtr(exp(logW1−α sym(C))) enforces the trace constraint. Now

W ∗ = exp(logW1−αsym(C)/Z(α),

whereZ(α) = − logtr(exp(logW1−αsym(C))). PluggingW ∗ into in the Lagrangian, we obtain
the dual optimization problem for one constraint:

α∗ = argmax
α≥0

− logZt(α).

One can easily verify that the solution of the problem withn constraints is of the form:

α∗ = argmax
α≥0

− logtr(exp(logW1−
n

∑
j=1

α j sym(C j))).

Appendix E. Proof of Theorem 4.1

Recall the definition of the normalization factor Zt(α) = tr(exp(logWt −αsym(C jt ))) of Definite-
Boost. By the Golden-Thompson inequality,

Zt(α) ≤ tr(Wt exp(−αsym(C jt ))). (E.1)
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Similarly to the proof of Lemma 3.1, we now upper bound the right hand side of this inequal-
ity by applying lemmas 2.1 and 2.2. We chooseA as (λmin

t I + sym(C jt ))/(λmax
t + λmin

t ). Then
sym(C jt ) can be expressed asλmax

t A−λmin
t (I −A) and0 � A � I. Thus by Lemma 2.1,

exp(−αsym(C jt )) � exp(−αλmax
t )A+exp(αλmin

t )(I −A).

SinceWt is positive definite and both sides of the above inequality are symmetric, we canapply
Lemma 2.2 by multiplying this inequality byWt and taking a trace of both sides:

tr(Wt exp(−αsym(C jt ))) ≤ exp(−αλmax
t )tr(WtA)+exp(αλmin

t )tr(Wt(I −A)) .

By expandingA and using the shorthandrt = tr(WtC jt ), we obtain

Zt(α) ≤ exp(−αλmax
t )

λmin
t + rt

λmax
t +λmin

t
+exp(αλmin)

λmax
t − rt

λmax
t +λmin

t
.

We now choose theα that minimizes the right hand side of the above inequality (which is theα̂t

given in equation (4.6)). With this choice, the inequality becomes

Zt(α̂t) ≤ (1− rt

λmax
t

)
λmax
t

λmax
t +λmin

t (1+
rt

λmin
t

)
λmin
t

λmax
t +λmin

t . (E.2)

Applying the update rule (4.5)T times, we have

WT+1 =
exp(logW1−∑T

t=1 α̂t sym(C jt ))

∏t Zt(α̂t)
.

Taking the trace of both sides and rearranging terms, we get

tr

(
exp(logW1−

T

∑
t=1

α̂t sym(C jt ))

)
=

T

∏
t=1

Zt(α̂t).

By using the bound (E.2) for each Zt(αt), the inequality of the theorem readily follows.
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B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

S. Shai-Shwartz, Y. Singer, and A. Y. Ng. Online and batch learning of pseudo-metrics. In C. E.
Brodley, editor,Machine Learning, Proceedings of the Twenty-first International Conference
(ICML 2004). ACM Press, New York, NY, 2004.

1017
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