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Abstract
We discuss basic prediction theory and its impact on classification success evaluation, implications
for learning algorithm design, and uses in learning algorithm execution. This tutorial is meant to
be a comprehensive compilation of results which are both theoretically rigorous and quantitatively
useful.

There are two important implications of the results presented here. The first is that common
practices for reporting results in classification should change to use the test set bound. The second
is that train set bounds can sometimes be used to directly motivate learning algorithms.
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1. Introduction

Classifiers are functions which partition a set into two classes (for example,the set of rainy days
and the set of sunny days). Classifiers appear to be the most simple nontrivial decision making
element so their study often has implications for other learning systems. Classifiers are sufficiently
complex that many phenomena observed in machine learning (theoretically or experimentally) can
be observed in the classification setting. Yet, classifiers are simple enough tomake their analysis
easy to understand. This combination of sufficient yet minimal complexity for capturing phenomena
makes the study of classifiers especially fruitful.

The goal of this paper is an introduction to the theory of prediction for classification. Here
“prediction theory” means statements about the future error rate of learned classifiers. A typical
statement has the form, “With probability 1− δ over an i.i.d. draw of some sample, the expected
future error rate of a classifier is bounded byf (δ,error rate on sample)”. These statements are con-
fidence intervals on the error rate of a learned classifier. Many of theseresults have been presented
elsewhere, although the style, tightness, and generality of the presentationare often new here (and
particularly oriented towards practical use). The focus of this tutorial is on those results which are
both theoretically sound and practically useful.

There are several important aspects of learning which the theory here casts light on. Perhaps the
most important of these is the problem of performance reporting for classifiers. Many people use
some form of empirical variance to estimate upper and lower bounds. This is an error-prone practice,
and the test set bound in Section 3 implies a better method by nearly any metric. Hopefully, this
will become common practice.

After discussing the test set bound we cover the Occam’s Razor bound,the simplest train set
bound, which explains (and quantifies) the common phenomenon of overfitting. We also prove that
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the Occam’s Razor bound cannot be improved without incorporating extrainformation and apply
the bound to decision trees.

Next, we discuss two train set bounds, the PAC-Bayes bound and the sample compression
bound, which have proved to give practical results for more general classifiers, such as support
vector machines and neural networks. All of the results here should be easily approachable and
understandable. The proofs are simple, and examples are given. Pointers to related work are also
given.

There are some caveats about the scope of this document.

1. All of the results presented here fall in the realm of classical statistics. In particular, all ran-
domizations are over draws of the data, and our results have the form of confidence intervals.

2. This tutorial isnotcomprehensive for prediction theory in general (which would be extremely
difficult due to the scope of the subject). We only focus on those results yielding quantifiably
interesting performance.

3. In particular, other nonquantitative uses of bounds (such as providing indirect motivations for
learning algorithms via constant fitting) do exist. We do not focus on those uses here.

The layout of this document is as follows.

• Section 2 presents the formal model.

• Section 3 presents the test set bound.

• Section 4 presents the Occam’s Razor bound.

• Section 5 presents the PAC-Bayes bound.

• Section 6 presents the sample compression bound.

The formal model and test set bound must be understood in order to appreciate all later results.
There is no particular dependency between the various train set boundswe present.

2. Formal Model

There are many somewhat arbitrary choices of learning model. The one weuse can (at best) be
motivated by its simplicity. Other models such as the online learning model (Kivinenand War-
muth, 1997), PAC learning (Valiant, 1984), and the uniform convergence model (Vapnik and Cher-
vonenkis, 1971) differ in formulation, generality, and in the scope of addressable questions. The
strongest motivation for studying the prediction theory model here is simplicity and corresponding
generality of results. The appendix discusses the connections between various models.

2.1 Basic Quantities

We are concerned with a learning model in which examples of (input, output) pairs come inde-
pendently from some unknown distribution (similar to Shawe-Taylor et al., 1998, and many other
papers). The goal is to find a function capable of predicting the output given the input. There are
several mathematical objects we work with.
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Object Description

X The (arbitrary) space of the input to a classifier
Y = {−1,1} The output of a classification.

D An (unknown) distribution overX×Y
S A sequence of examples drawn independently fromD.
m = |S| the number of examples
c A function mappingX to Y

Table 1: Mathematical objects in the considered model.

There are several distinctions between this model and other (perhaps morefamiliar) models.
There is no mention of a classifier space, because the results do not depend upon a classifier space.
Also, the notion of a distribution onX×Y is strictly more general than the “target concept” model
which assumes that there exists some functionf : X →Y used to generate the label (Valiant, 1984).
In particular we can model noisy learning problems which do not have a particularY value for each
X value. This generalization is essentially “free” in the sense that it does notadd to the complexity
of presenting the results.

It is worth noting that theonly unverifiable assumption we make is that examples are drawn
independently fromD. The strength of all the results which follow rests upon the correctness ofthis
assumption.

Sometimes, we decorate these objects with labels likeStrain (a train set1) or Stest (a test set).
These decorations should always be clear.

Example 1 Weather prediction: Will it rain today or not? In this case X= barometric pressure,
observations of cloud cover or other sensory input and Y= 0 if the prediction is “no rain” and1
otherwise. The distribution D is over sensory inputs and outcomes. The sample set S, might consist
of m= 100(observation, outcome) pairs such as (pressure low, cloudy, rain),(pressure high, cloudy,
not rain), etc. A classifier, c, is any function which predicts “rain” or “not rain” based upon the
observation.

Note that the independence assumption here is not perfectly satisfied although it seems to be
a reasonable approximation for well-separated days. In any application of this theory, it must be
carefully judged whether the independence assumption holds or not.

2.2 Derived Quantities

There are several derived quantities which the results are stated in terms of.

Definition 2.1 (True Error) The true error cD of a classifier c is defined as the probability that the
classifier errs:

cD ≡ Pr
(x,y)∼D

(c(x) 6= y)

under draws from the distribution D.

1. Throughout this tutorial we use the word ’set’ when ’sequence’ is what is actually meant. This usage pattern is
historical.
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The true error is sometimes called the “generalization error”. Unfortunately, the true error is not an
observable quantity in our model because the distributionD is unknown. However, there is a related
quantity which is observable.

Definition 2.2 (Empirical Error) Given a sample set S, theempirical error, ĉS is the observed num-
ber of errors:

ĉS≡ m Pr
(x,y)∼S

(c(x) 6= y) =
m

∑
i=1

I(c(xi) 6= yi)

where I() is a function which maps “true” to1 and “false” to 0. Also,Pr(x,y)∼S(...) is a probability
taken with respect to the uniform distribution over the set of examples, S.

The empirical error is sometimes called the “training error”, “test error”, or “observed error” de-
pending on whether it is the error on a training set, test set, or a more general set.

Example 2 (continued) The classifier c which always predicts “not rain” might havean empirical
error of 38out of100examples and an unknown true error rate (which might in fact be0.5).

2.3 Addressable Questions

Given the true errorcD of a classifierc we can precisely describe the distribution of success and
failure on future examples drawn according toD. This quantity is derived from the unknown distri-
butionD, so our effort is directed toward upper and lower bounding the value ofcD for a classifier
c.

The variations in all of the bounds that we present are related to the method of choosing a
classifierc. We cover two types of bounds:

1. Test: Use examples in a test set which were not used in pickingc.

2. Train: Use examples for both choosingc and evaluatingc.

These methods are addressed in the next two sections.
It is worth noting that one question thatcannotbe addressed in this model is “Can learning

occur for my problem?” Extra assumptions (Valiant, 1984; Vapnik and Chervonenkis, 1971) are
inherently necessary.

3. The Test Set Method

The simplest bound arises for the classical technique of usingm fresh examples to evaluate a clas-
sifier. In a statistical setting, this can be viewed as computing a confidence interval for the binomial
distribution as in (Clopper and Pearson, 1934). This section is organizedinto two subsections:

• Subsection 3.1 presents the basic upper bound on the true error rate, handy approximations,
and a lower bound.

• Subsection 3.2 discusses the implications of the test set bound on error reporting practice. A
better method for error reporting is applied to several datasets and the results are shown.
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Figure 1: A depiction of the binomial distribution. The cumulative of the binomial isthe area under
the curve up to some point on the horizontal axis.
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3.1 The Bound

Before stating the bound, we note a few basic observations which make the results less surprising.
The principal observable quantity is the empirical error ˆcS of a classifier. What is the distribution of
the empirical error for a fixed classifier? For each example, our independence assumption implies
the probability that the classifier makes an error is given by the true error,cD. This can be modeled
by a biased coin flip: heads if you are right and tails if you are wrong.

What is the probability of observingk errors (heads) out ofm examples (coin flips)? This is a
very familiar distribution in statistics called the binomial and so it should not be surprising that the
bounds presented here are fundamentally dependent upon the cumulative distribution of a binomial.
For the following definitionB(p) is the distribution of a Bernoulli coin flip.

Definition 3.1 (Binomial Tail Distribution)

Bin(m,k,cD) ≡ Pr
Z1,...Zm∼B(cD)m

(

m

∑
i=1

Zi ≤ k

)

=
k

∑
j=0

(

m
j

)

c j
D(1−cD)m− j

equals the probability that m examples (coins) with error rate (bias) cD produce k or fewer errors
(heads).

A depiction of the binomial distribution is given in Figure 1.

For the learning problem, we always choose a bias ofcD andXi =error or not on theith example.
With these definitions, we can interpret the binomial tail as the probability of an empirical error less
than or equal tok.

Since we are interested in calculating a bound on the true error given a confidenceδ, and an
empirical error ˆcS, it is handy to define the inversion of a binomial tail.

Definition 3.2 (Binomial Tail Inversion)

Bin(m,k,δ) ≡ max
p

{p : Bin(m,k, p) ≥ δ}

equals the largest true error such that the probability of observing k or more “heads” is at leastδ.

For intuition’s sake, the quantityBin(m,k,δ) obeys the following inequalities (some of which we
prove later).

1. Bin(m,k,δ) ≤ k
m +

√

ln 1
δ

2m

2. Bin(m,k,δ) ≤ k
m +

√

2 k
m ln 1

δ
m +

2ln 1
δ

m

3. Bin(m,0,δ) ≤ ln 1
δ

m

With these definitions finished, the results are all very simple statements.

Theorem 3.3 (Test Set Bound) For all D, for all classifiers c, for allδ ∈ (0,1]

Pr
S∼Dm

(

cD ≤ Bin(m, ĉS,δ)
)

≥ 1−δ.
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Figure 2: A graphical depiction of the test set bound. The first graph depicts several possible bino-
mials given their true error rates. The second depicts several binomials, each with a tail
cut. The third figure shows the binomials consistent with the tail cut and observed test
error. The worst case over all true error rates is the consistent binomial with the largest
bias.

Note thatm in this equation ismtest= |Stest|, the size of the test set.

Proof (pictorially in 2) The proof is just a simple identification with the binomial. For any distribu-
tion over(x,y) pairs and any classifierc, there exists some probabilitycD that the classifier predicts
incorrectly. We can regard this event as a coin flip with biascD. Since each example is picked
independently, the distribution of the empirical error is a binomial distribution.

Whatever our true errorcD is, with probability 1− δ the observation ˆcS will not fall into a tail
of sizeδ. Assuming (correctly with probability 1−δ) that the empirical error is not in the binomial
tail, we can constrain (and therefore bound) the value of the true errorcD.

The test set bound is, essentially, perfectly tight. For any classifier with a sufficiently large true
error, the bound is violated exactly aδ portion of the time.
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Figure 3: A graph suggestinge−εm ≥ (1− ε)m.

3.1.1 APPROXIMATIONS

There are several immediate corollaries of the test set bound (3.3) which are more convenient when
a computer is not handy. The first corollary applies to the limited “realizable” setting where you
happen to observe 0 test errors.

Corollary 3.4 (Realizable Test Set Bound) For all D, For all classifiers c, for allδ ∈ (0,1]

Pr
S∼Dm

(

ĉS = 0⇒ cD ≤
ln 1

δ
m

)

≥ 1−δ.

Proof Specializing the test set bound (Theorem 3.3) to the zero empirical error case, we get

Bin(m,0,ε) = (1− ε)m ≤ e−εm.

Setting this equal toδ and solving forε gives us the result. The last inequality can be most simply
motivated by comparing graphs as in figure 3.

Approximations which hold for arbitrary (nonzero) error rates rely upon the Chernoff bound which
we state next, for completeness. For this bound (and it’s later applications) we overload the defini-
tion of KL-divergence so it applies to twop,q∈ [0,1] variables.

Definition 3.5 (KL-divergence overload) KL+ (q||p) = qlog q
p + (1−q) log 1−q

1−p for p > q and 0
otherwise.

280



PRACTICAL PREDICTION THEORY FORCLASSIFICATION

Lemma 3.6 (Relative Entropy Chernoff Bound)2 For k
m < p:

Bin(m,k, p) ≤ e−mKL+( k
m||p).

Proof (Originally from (Chernoff, 1952). The proof here is based on (Seung).) For allλ > 0, we
have

Bin(m,k, p) = Pr
Xm∼pm

(

m

∑
i=1

Xi ≤ k

)

= Pr
Xm∼pm

(

e−mλ 1
m ∑m

i=1 Xi ≥ e−mλ k
m

)

.

Using Markov’s inequality (X ≥ 0, EX = µ, ⇒ Pr(X ≥ δ) ≤ µ
δ ), this must be less than or equal to

EXm∼pme−λ∑m
i=1 Xi

e−λk
.

Using independence, this expression is equal to

eλk
(

pe−λ +(1− p)
)m

,

and rewriting, we get
em f(λ),

where f (λ) = λ k
m + ln

(

pe−λ +1− p
)

.
λ is a free parameter which can be optimized to find the tightest possible bound. To find the

optimal value, findλ∗ so thatf ′(λ∗) = 0.

0 = f ′(λ∗) =
k
m
− pe−λ∗

pe−λ∗ +1− p

⇒
k
m

p

(

pe−λ∗
+1− p

)

= e−λ∗

⇒
k
m

p
(1− p) =

(

1− k
m

)

e−λ∗

⇒ eλ∗
=

p
(

1− k
m

)

k
m(1− p)

,

which is valid forp > k
m. Using this, we get

f (λ∗) =
k
m

ln
p
(

1− k
m

)

k
m(1− p)

+ ln

(

1− p

1− k
m

)

=
k
m

ln
p
k
m

+

(

1− k
m

)

ln

(

1− p

1− k
m

)

= −KL

(

k
m
||p
)

.

Using the Chernoff bound, we can loosen the test set bound to achieve amore analytic form.

2. The closely related Hoeffding bound (Hoeffding, 1963) makes the same statement for sums of[0,1] random variables.
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Corollary 3.7 (Agnostic Test Set Bound) For all D, for all classifiers c, for allδ ∈ (0,1]

Pr
S∼Dm

(

KL

(

ĉS

m
||cD

)

≤
ln 1

δ
m

)

≥ 1−δ.

Proof Loosening the test set bound (theorem 3.3) with the Chernoff approximation for k
m < cD we

get

Bin(m,k,cD) ≤ e−mKL( k
m||cD).

Setting this equal toδ, and solving forε gives the result.

The agnostic test set bound can be further loosened by bounding the value of KL(q||p).

Corollary 3.8 (Agnostic Test Set Bound II) For all classifiers c, for allδ ∈ (0,1]

Pr
S∼Dm



cD ≤ ĉS

m
+

√

ln 1
δ

2m



≥ 1−δ.

Proof Use the approximation

KL

(

k
m
||cD

)

≥ 2(cD − k
m

)2

with the Chernoff bound and test set bounds to get the result.

The differences between the agnostic and realizable case are fundamentally related to the decrease in
the variance of a binomial as the bias (i.e. true error) approaches 0. Notethat this implies using the
exact binomial tail calculation can result infunctional(rather than merely constant) improvements
on the above corollary.

3.1.2 A TEST SET LOWER BOUND

The true error can be lower bounded using a symmetric application of the sametechniques.

Theorem 3.9 (Test Set Lower Bound) For all classifiers, c, for allδ ∈ (0,1]

Pr
S∼Dm

(

cD ≥ min
p

{p : 1−Bin(m, ĉS, p) ≥ δ}
)

≥ 1−δ.

The proof is completely symmetric. Note that both bounds hold with probability 1− 2δ since
Pr(A or B) ≤ Pr(A) + Pr(B). This is particularly convenient when the square-root version of the
Chernoff approximation is used in both directions to get

∀c Pr
S∼Dm





∣

∣

∣

∣

cD − ĉS

m

∣

∣

∣

∣

≤

√

ln 2
δ

2m



≥ 1−δ.

Example 3 (continued) letδ = 0.1. Using the square root Chernoff bound withĉS = 38 out of
100examples, we get the confidence interval cD ∈ [0.26,0.50]. Using an exact calculation for the
binomial tail, we get cD ∈ [0.30,0.47]. In general, as the observed error moves toward0, the exact
calculation provides a tighter confidence interval than the agnostic approximation.
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3.1.3 THE STATE OF THE ART

Although the test set bound is very well understood, the same cannot be said of other testing meth-
ods. Only weak general results in this model are known for some variants of cross validation (see
Blum et al., 1999). For specific learning algorithms (such as nearest neighbor), stronger results are
known (see Devroye et al., 1996). There are a wide range of essentially unanalyzed methods and a
successful analysis seems particularly tricky although very worthwhile if completed.

3.2 Test Set Bound Implications

There are some common practices in machine learning which can be improved byapplication of the
test set bound. When attempting to calculate a confidence interval on the trueerror rate given the
test set, many people follow a standard statistical prescription:

1. Calculate the empirical mean ˆµ=
ĉStest

m = 1
m ∑m

i=1 I(h(xi) 6= yi).

2. Calculate the empirical varianceσ̂2 = 1
m−1 ∑m

i=1(I(c(xi) = yi)− µ̂)2.

3. Pretend that the distribution is Gaussian with the above variance and construct a confidence
interval by cutting the tails of the Gaussian cumulative distribution at the 2σ̂ (or some other)
point.

This approach is motivated by the fact that for anyfixed true error rate, the distribution of the
observed accuracy behaves like a Gaussianasymptotically. Here, asymptotically means “in the
limit as the number of test examples goes to infinity”.

The problem with this approach is that it leads to fundamentally misleading resultsas shown in
Figure 4. To construct this figure, a collection of discrete (aka “nominal”)feature datasets from the
UCI machine learning database were split into training and test sets. A decision tree classifier was
learned on each training set and then evaluated on the held-out test set.

This “misleading” is both pessimistic and (much worse) optimistic. The pessimism canbe seen
by intervals with boundaries less than 0 or greater than 1 and the optimism by observing what
happens when the test error is 0. When we observe perfect classification, our confidence interval
shouldnot have size 0 for any finitem.

The basic problem with this approach is that the binomial distribution is not similar toa Gaussian
when the error rate is near 0. Since our goal is finding a classifier with a small true error, it is
essential that the means we use to evaluate classifiers work in this regime. Thetest set bound can
satisfy this requirement (and, in fact, operates well for all true error regimes).

1. The test set bound approach isneveroptimistic.

2. The test set bound based confidence interval always returns an upper and lower bound in
[0,1].

The 2̂σ method is a relic of times when computational effort was expensive. It is nowsimple and
easy to calculate a bound based upon the cumulative distribution of the binomial(see Langford).

The test set bound can be thought of as a game where a “Learner” attempts to convince a
reasonable “Verifier” of the amount of learning which has occurred. Pictorially we can represent
this as in Figure 5.

283



LANGFORD

0

0.25

0.5

0.75

1

1.25

1.5

ad
ul

t
sh

ro
om

au
di

o
ba

la
nc

e
ca

r
vo

te
s

kr
kp

lu
ng

nu
rs

er
y

po
st

op
sh

ut
tle

so
yb

ea
n

ye
llo

w

T
ru

e 
er

ro
r 

(b
ou

nd
)

Learning Problem

Holdout vs. 2 Sigma Bound

bound
error

Figure 4: This is a graph of the confidence intervals implied by the test set bound (theorem 3.3) on
the left, and the approximate confidence intervals implied using the common two sigma
rule motivated by asymptotic normality on the right. The upper bounds of the testset
bound haveδ = 0.025 failure rate, so as to be comparable with the 2-sigma approach.
The test set bound is better behaved as the confidence interval is confined to the interval
[0,1] and is never over-optimistic.
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Verifier Learner

Test Set Bound

Evaluate Bound

Draw Examples

δ

Choose cclassifier c

Figure 5: For this diagram “increasing time” is pointing downwards. The onlyrequirement for
applying this bound is that the learner must commit to a classifier without knowledge
of the test examples. A similar diagram for train set bounds is presented later(and is
somewhat more complicated). We can think of the bound as a technique by which the
“Learner” can convince the “Verifier” that learning has occurred (and the degree to which
it has occurred). Each of the proofs can be thought of as a communication protocol for
an interactive proof of learning by the Learner.
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4. The Occam’s Razor Bound

Given that the simple test set bound works well, why do we need to engage in further work? There
is one serious drawback to the test set technique—it requiresmtestotherwise unused examples. An
extramtestexamples for the training set decreases the true error of the learned hypothesis to 0 from
0.5 for some natural learning algorithm/learning problem pairs. This loss of performance due to
holding out examples is very severe.

There is another reason why training set based bounds are important. Many learning algorithms
implicitly assume that the train set accuracy “behaves like” the true error in choosing the hypothesis.
With an inadequate number of training examples, there may be very little relationship between the
behavior of the train set accuracy and the true error. Training set based bounds can be usedin the
training algorithm and can provide insight into the learning problem itself.

This section is organized into three subsections.

1. Subsection 4.1 states and proves the Occam’s Razor bound.

2. Subsection 4.2 proves that the Occam’s Razor bound cannot be improved in general.

3. Subsection 4.3 discusses implications of the Occam’s Razor bound and shows results for its
application.

4.1 The Occam’s Razor Bound

This Occam’s Razor bound (Blumer et al., 1987; McAllester, 1999) in more approximate forms has
appeared elsewhere. We use “prior” (with quotes) here because it is an arbitrary probability distri-
bution over classifiers and not necessarily a Bayesian prior. The distinction is important, because
the theory holds regardless of whether or not a Bayesian prior is used.

Theorem 4.1 (Occam’s Razor Bound) For all D, for all “priors” P(c) over the classifiers c, for all
δ ∈ (0,1]:

Pr
S∼Dm

(

∀c : cD ≤ Bin(m, ĉS,δP(c))
)

≥ 1−δ

The application of the Occam’s Razor bound is somewhat more complicated thanthe application
of the test set bound. Pictorially, the protocol for bound application is given in Figure 6. It is very
important to notice that the “prior”P(c) must be selectedbeforeseeing the training examples.
Proof (pictorially in Figure 7) First, note that ifP(c) = 0, thenBin(m, ĉS,0) = 1 and the bound is
always valid. The remainder of this proof applies to the countable set ofc satisfyingP(c) > 0.

The proof starts with the test set bound:

∀c Pr
S∼Dm

(

cD ≤ Bin(m, ĉS,δP(c))
)

≥ 1−δP(c)

Negating this statement, we get

∀c Pr
S∼Dm

(

cD > Bin(m, ĉS,δP(c))
)

< δP(c)

then, we apply the union bound in a nonuniform manner. The union bound says that Pr(A or B) ≤
Pr(A)+ Pr(B). Applying the union bound to every classifier with a positive measure givesa total
probability of failure of

∑
c:P(c)>0

δP(c) = δ ∑
c:P(c)>0

P(c) = δ
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Verifier Learner

m examples

Draw Training 
Examples

Evaluate Bound

Classifier, c Choose c

"Prior", P(c)

δ
Occam’s Razor Bound

Figure 6: In order to apply the Occam’s Razor bound it is necessary thatthe choice of “prior” be
made before seeing any training examples. Then, the bound is calculated based upon the
chosen classifier. Note that itis “legal” to chose the classifier based upon the priorP(c)
as well as the empirical error ˆcS.

287



LANGFORD

 0

 0.1

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Empirical Error Rate

Occam’s Razor Tail Cuts

cut

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Empirical Error Rate

Occam Bound Calculation

empirical error

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Empirical Error Rate

Consistent Error Rates

empirical error

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

P
ro

ba
bi

lit
y

Empirical Error Rate

True Error Rate Bound

empirical error
true error bound

Figure 7: The sequence of pictures is the pictorial representation of the proof of the Occam’s Razor
Bound. The first figure shows a set of classifiers, each with a tail cut of some varying
depth. The second picture shows an observed training error and the possible binomial
distributions for a chosen classifier. The third picture shows the true errors which are
consistent with the observation and the tail cuts. The fourth picture shows the true error
bound.

which implies
Pr

S∼Dm

(

∃c : cD > Bin(m, ĉS,δP(c))
)

< δ.

Negating this again completes the proof.

4.1.1 OCCAM’ S RAZOR COROLLARIES

Just as with the test set bound, we can relax the Occam’s Razor bound (Theorem 4.1) with the
Chernoff approximations to get a somewhat more tractable expression.

Corollary 4.2 (Chernoff Occam’s Razor Bound) For all D, for all “priors” P(c) over classifiers,
for all δ ∈ (0,1]:

Pr
S∼Dm



∀c : cD ≤ ĉS

m
+

√

ln 1
P(c) + ln 1

δ

2m



≥ 1−δ

Proof Approximate the binomial tail with the Chernoff Bound (lemma 3.6).
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Many people are more familiar with a degenerate form of this bound whereP(c) = 1
|H| andH is

some set of classifiers. In that case, simply replace ln1
P(c) with ln |H|. The form presented here is

both more general and necessary if the bound is to be used in practice.
Other corollaries as in Section 3.1.1 exist for the Occam’s Razor bound. Ingeneral, just substi-

tuteδ → δP(c).

4.1.2 OCCAM’ S RAZOR LOWER BOUND

Just as for the test set bound, a lower bound of the same form applies.

Theorem 4.3 (Occam’s Razor Lower Bound) For all D, for all “priors” P(c) over the classifiers,
c, for all δ ∈ (0,1]:

Pr
S∼Dm

(

∀c : cD ≥ min
p
{p : 1−Bin(m, ĉS, p) ≥ δP(c)}

)

≥ 1−δ.

Example 4 (continued) Suppose that instead of having100 test examples, we had100 train ex-
amples. Also suppose that before seeing the train examples, we committed toP(c) = 0.1 for c the
constant classifier which predicts “no rain”. Then, the Chernoff approximations of the upper and
lower bound give the interval, cD ∈ [0.22,0.54]. With an exact calculation, we get cD ∈ [0.26,0.51].

4.1.3 THE STATE OF THE ART

A very large amount of work has been done on train set bounds. In addition to those included here,
there are:

1. Reinterpretations of uniform convergence (Vapnik and Chervonenkis, 1971) results for con-
tinuously parameterized classifiers.

2. Reinterpretations of PAC convergence (Valiant, 1984) results.

3. Shell bounds (Langford and McAllester, 2000) which take advantage of the distribution of
true error rates on classifiers.

4. Train and test bounds (Langford, 2002) which combine train set andtest set bounds.

5. (Local) Rademacher complexity (Bartlett et al., 2004) results which take advantage of the
error geometry of nearby classifiers.

... and many other results.
Of this large amount of work only a small fraction has been shown to be useful on real-world

learning algorithm/learning problem pairs. The looseness of train set based bounds often precludes
analytical use.

4.2 The Occam’s Razor Bound is Sometimes Tight

The question of tightness for train set bounds is important to address, as many of them have been
extremely loose. The simplest method to address this tightness is constructive:exhibit a learning
problem/algorithm pair for which the bound is almost achieved. For the test set bound, this is trivial
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as any classifier with a large enough true error will achieve the bound. For the train set bound, this
is not so trivial.

How tight is the Occam’s Razor bound (4.1)? The answer issometimestight. In particular, we
can exhibit a set of learning problems where the Occam’s Razor bound can not be made significantly
tighter as a function of the observables,m, δ, P(c), andĉS. After fixing the value of these quantities
we construct a learning problem exhibiting this near equivalence to the Occam’s Razor bound.

Theorem 4.4 (Occam’s Razor tightness) For all P(c), m, k,δ there exists a learning problem D and
algorithm such that:

Pr
S∼Dm

(

∃c : ĉS≤ k and cD ≥ Bin(m, ĉS,δP(c))
)

≥ δ−δ2.

Furthermore, if c∗ is the classifier with minimal training error, then:

Pr
S∼Dm

(

c∗D ≥ Bin(m, ĉ∗S,δP(c))
)

≥ δ−δ2.

Intuitively, this theorem implies that we can not improve significantly on the Occam’s Razor bound
(Theorem 4.1) without using extra information about our learning problem.
Proof The proof is constructive: we create a learning problem on which large deviations are likely.
We start with a priorP(c), probability of errorδ, m, and a targeted empirical error number,k. For
succinctness we assume thatP(c) has support on a finite set of sizen.

To define the learning problem, let:X = {0,1}n andY = {0,1}.
The distributionD can be drawn by first selectingY with a single unbiased coin flip, and then

choosing theith component of the vectorX independently, Pr((X1, ...,Xn)|Y) = Πn
i=1Pr(Xi |Y) . The

individual components are chosen so Pr(Xi = Y|Y) = Bin(m,k,δP(c)).
The classifiers we consider just use one feature to make their classification: ci(x) = xi . The true

error of these classifiers is given by:cD = Bin(m,k,δP(c)).
This particular choice of true errors implies that if any classifier has a too-small train error, then

the classifier with minimal train error must have a too-small train error.
Using this learning problem, we know that:

∀c,∀δ ∈ (0,1] : Pr
S∼Dm

(

cD ≥ Bin(m, ĉS,δP(c))
)

= δP(c)

(negation)
⇒∀c,∀δ ∈ (0,1] : Pr

S∼Dm

(

cD < Bin(m, ĉS,δP(c))
)

= 1−δP(c)

(independence)

⇒∀δ ∈ (0,1] : Pr
S∼Dm

(

∀c cD < Bin(m, ĉS,δP(c))
)

< ∏
c

(1−δP(c))

(negation)

⇒∀δ ∈ (0,1] : Pr
S∼Dm

(

∃c cD ≥ Bin(m, ĉS,δP(c))
)

≥ 1−∏
c

(1−δP(c))

=
n

∑
i=1

δP(ci)∏
j<i

(1−δP(c j)) ≥
n

∑
i=1

δP(ci)(1−δ) = δ−δ2
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Figure 8: This is a plot comparing confidence intervals built based upon thetest set bound (Theorem
3.3) with an 80%/20% train/test split on the left and the Occam’s Razor bound (Theorem
4.1) with all data in the training set on the right. The Occam’s razor bound is sometimes
superior on the smaller data sets and always nonvacuous (in contrast to many other train
set bounds).

where the last inequality follows from(1−a)(1−b) ≥ 1−a−b for a,b∈ [0,1].

The lower bound theorem implies that we can not improve an Occam’s Razor like statement. How-
ever, it is important to note that large improvements are possible if we use othersources of infor-
mation. To see this, just note the case where every single classifier happens to be the same. In
this case the “right” bound would the be thetestset bound, rather than the Occam’s Razor bound.
The PAC-Bayes bound and the sample compression bound presented in thenext sections use other
sources of information. Another common source of information is specialization to classifiers of
some specific sort.

4.3 Occam’s Razor Bound Implications

The Occam’s Razor bound is strongly related to compression. In particular, for any self-terminating
description language,d(c), we can associate a “prior”P(c)= 2−|d(c)| with the property that∑cP(c)≤
1. Consequently, short description length classifiers tend to have a tighterconvergence and the
penalty term, ln 1

P(c) is the number of “nats” (bits base e). For any language fixed before seeing the
training sequence, classifiers with shorter description lengths have tighterbounds on the true error
rate.
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One particularly useful description language to consider is the execution trace of a learning
algorithm. If we carefully note the sequence of data-dependent choiceswhich a learning algorithm
makes, then the output classifier can be specified by a sequence such as“second choice, third choice,
first choice, etc....” This is the idea behind microchoice bounds (Langfordand Blum, 1999). Results
for this approach are reported in Figure 8 and are strong enough to actas an empirical existence
proof that Occam’s Razor bounds can be made tight enough for usefulapplication.

5. PAC-Bayes Bound

The PAC-Bayes bound (McAllester, 1999) is particularly exciting because it can provide quantita-
tively useful results for classifiers withreal valuedparameters. This includes such commonly used
classifiers as support vector machines and neural networks.3 This section is divided into three parts:

1. Subsection 5.1 states and proves the PAC-Bayes Bound.

2. Subsection 5.2 shows that the PAC-Bayes Bound is nearly as tight as possible given the ob-
servations.

3. Subsection 5.3 discusses results from the application of the PAC-Bayesbound to support
vector machines.

5.1 The PAC-Bayes Bound

The PAC-Bayes bound has been improved by tightening (Langford and Seeger, 2001) and then
with a much simpler proof (Seeger, 2002) since it was originally stated. The statement and proof
presented here incorporate these improvements and improve on them slightly.

The PAC-Bayes bound is dependent upon two derived quantities, an average true error:

QD ≡ Ec∼QcD

and an average train error rate:

Q̂S≡ Ec∼Q
ĉS

m
.

These quantities can be interpreted as the train error rate and true error of the meta-classifier which
chooses a classifier according toQ every time a classification is made. If we refer to this meta-
classifier asQ, the notation for error rates is consistent with our earlier notation.

The “interactive proof of learning” viewpoint of the PAC-Bayes boundis shown in Figure 9. It is
essentially the same as for the Occam’s Razor bound except for the commitmentto the metaclassifier
Q rather than the classifierc.

Theorem 5.1 (PAC-Bayes Bound) For all D, for all “priors” P(c) over the classifiers c, for all
δ ∈ (0,1]:

Pr
S∼Dm

(

∀Q(c) : KL+

(

Q̂S||QD
)

≤
KL(Q||P)+ ln m+1

δ
m

)

≥ 1−δ

where KL(Q||P) = Ec∼Q ln Q(c)
P(c) is the KL-divergence between Q and P.

3. There is a caveat here—the bound only applies to stochastic versions of the classifiers. However, the probability that
the stochastic classifier differs from the classifier can be made very small.
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δ

Figure 9: The “interactive proof of learning” associated with the PAC-Bayes bound. The figure is
the same as for the Occam’s razor bound, except that instead of committing to asingle
classifier, the PAC-Bayes bound applies to any distribution over classifiers.

Note that the PAC-Bayes bound applies to anydistributionover classifiers. WhenQ is concentrated
on one classifier, we have KL(Q||P) = ln 1

P(c) , just as in the Occam’s razor bound,4 with the only

distinction being the additiveln(m+1)
m term. It is somewhat surprising that the bound holds forevery

distributionQ with only the slight worsening byln(m+1)
m .

Since the KL-divergence applies to distributions over continuous valued parameters, the PAC-
Bayes bound can be nontrivially tight in this setting as well. This fact is used inthe application
section.

We first state a couple simple lemmas that are handy in the proof. The intuition behind this
lemma is that the expected probability of an event is not too small.

Lemma 5.2 For all D, for all P(c), for all δ ∈ (0,1]:

Pr
S∼Dm

(

Ec∼P
1

PrS′∼Dm (ĉS = ĉS′)
≤ m+1

δ

)

≥ 1−δ.

Proof Note that:

∀c ES∼Dm
1

PrS′∼Dm (ĉS = ĉS′)
= ∑

k
m

Pr
S∼Dm

(ĉS = k)
1

PrS′∼Dm (ĉS′ = k)
= m+1.

Taking the expectation over classifiers according toP and switching the order of expectation, we
get

4. As weakened with the relative entropy Chernoff bound (Lemma 3.6)on the binomial.
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ES∼DmEc∼P
1

PrS′∼Dm (ĉS = ĉS′)
= m+1

and using the Markov inequality (X ≥ 0, EX = µ, ⇒ Pr(X > µ
δ) < δ), we get

∀P Pr
S∼Dm

(

Ec∼P
1

PrS′∼Dm (ĉS = ĉS′)
>

m+1
δ

)

< δ.

The next lemma shows that a certain expectation is bounded by the Kullback-Leibler distance be-
tween two coin flips, just as for the relative entropy Chernoff bound (Lemma 3.6).

Lemma 5.3 Fix all example sequences S. For all Q(c):

Ec∼Q ln 1
PrS′∼Dm(ĉS=ĉs′ )

m
≥ KL(Q̂S||QD).

Proof
Ec∼Q ln 1

PrS′∼Dm(ĉS=ĉs′ )

m
=

1
m

Ec∼Q ln
1

(

m
ĉS

)

cĉS
D (1−cD)m−ĉS

≥ 1
m

Ec∼Q ln
1

∑ĉS
k=0

(

m
k

)

ck
D(1−cD)m−k

≥ Ec∼QKL

(

ĉS

m
||cD

)

where the last inequality follows from the relative entropy Chernoff bound. Since ∂2

∂p∂qKL(q||p) =

− 1
p − 1

1−p < 0 the function is concave in both arguments. Jensen’s inequality (f (x,y) concave
⇒ E f(x,y) ≥ f (Ex,Ey)) gives us

≥ KL(Ec∼QĉS||Ec∼QcD),

which completes the proof.

With these two lemmas, the PAC-Bayes theorem is easy to prove.
Proof (Of the PAC-Bayes theorem) Fix a training setS. Let

PG(c) =
1

PrS′∼Dm (ĉS′ = ĉS)Ed∼P
1

PrS′∼Dm(d̂S=d̂S′)

P(c).

PG(c) is a normalized distribution because it has the formac
Eac

P(c) whereP(c) is a distribution.

⇒ 0≤ KL(Q||PG) = Ec∼Q ln

[

Q(c)
P(c)

Pr
S′∼Dm

(ĉS′ = ĉS)Ed∼P
1

PrS′∼Dm

(

d̂S = d̂S′
)

]

= KL(Q||P)−Ec∼Q ln
1

PrS′∼Dm (ĉS′ = ĉS)
+ lnEd∼P

1

PrS′∼Dm

(

d̂S = d̂S′
)
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⇒ Ec∼Q ln
1

PrS′∼Dm (ĉS′ = ĉS)
≤ KL(Q||P)+ lnEd∼P

1

PrS′∼Dm

(

d̂S = d̂S′
) .

Applying lemma 5.3 on the left hand term we get

mKL(Q̂S||QD) ≤ KL(Q||P)+ lnEd∼P
1

PrS′∼Dm

(

d̂S = d̂S′
) .

This holds for allS. Applying Lemma 5.2 which randomizes overS, we get the theorem.

5.2 The PAC-Bayes Bound is Sometimes Tight

Since the PAC-Bayes bound is (almost) a generalization of the Occam’s Razor bound, the tightness
result for Occam’s Razor also applies to PAC-Bayes bounds.

5.3 Application of the PAC-Bayes Bound

Applying the PAC-Bayes bound requires specialization (Langford and Shawe-Taylor, 2002). Here,
we specialize to classifiers of the form

c(x) = sign(~w·~x) .

Note that via the kernel trick, support vector machines also have this form.
The specialization is naturally expressed in terms of a few derived quantities:

1. The cumulative distribution of a Gaussian. LetF̄(x) =
R ∞

x
1√
2πe−x2/2. Here we usēF rather

thanF to denote the fact that we integrate fromx to ∞ rather than−∞ to x.

2. A “posterior” distributionQ(~w,µ) which isN(µ,1) for someµ > 0 in the direction of~w and
N(0,1) in all perpendicular directions.

3. The normalized margin of the examples

γ(~x,y) =
y~w ·~x

||~w||||~x|| .

4. A stochastic error rate,̂Q(~w,µ)S = E~x,y∼SF̄ (µγ(~x,y)) .

This last quantity in particular is very important to understand. Consider the case asµ approaches
infinity. When the margin is negative (indicating an incorrect classification),F̄ (µγ(~x,y)) approaches
1. When the margin is positivēF (µγ(~x,y)) approaches 0. Thus,̂Q(~w,µ)S is a softened form of the
empirical error ˆcS which takes into account the margin.

Corollary 5.4 (PAC-Bayes Margin Bound) For all distributions D, for allδ ∈ (0,1], we have

Pr
S∼Dm

(

∀~w,µ : KL
(

Q̂(~w,µ)S||Q(~w,µ)D
)

≤
µ2

2 + ln m+1
δ

m

)

≥ 1−δ.
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Proof The proof is very simple. We just chose the priorP= N(0,1)n and work out the implications.
Since the Gaussian distribution is the same in every direction, we can reorientthe coordinate

system of the prior to have one dimension parallel tow. Since the draws in the parallel and perpen-
dicular directions are independent, we have

KL(Q||P) = KL(Q⊥||P⊥)+KL(N(µ,1)||N(0,1))

=
µ2

2

as required.
All that remains is calculating the stochastic error rateQ̂(~w,µ)S. Fix a particular example(~x,y).

This example has a natural decomposition~x =~x|| +~x⊥ into a component~x|| parallel to the weight
vector~w and a component~x⊥ perpendicular to the weight vector.

To classify, we draw weight vector~w
′

from Q̂(~w,µ). This ~w
′

consists of three components,
~w

′
= ~w

′
|| + ~w

′
⊥ + ~w

′
⊥⊥. Here~w

′
|| ∼ N(µ,1) is parallel to the original weight vector,~w

′
⊥ ∼ N(0,1)

which is parallel to~x⊥ and~w
′
⊥⊥ is perpendicular to both~w and~x. We have

Q̂(~w,µ)S = E~x,y∼S,~w′∼Q(~w,µ)I
(

y 6= sign
(

~w
′ ·~x
))

= E~x,y∼S,~w′∼Q(~w,µ)I (y~w ·~x≤ 0) .

If we let w
′
|| = ||~w′

||||, w
′
⊥ = ||~w′

⊥||, x|| = ||~x||||, andx⊥ = ||~x⊥||, and assume (without loss of gener-
ality) thaty = 1 we get

= E~x,y∼S,w
′
||∼N(µ,1),w

′
⊥∼N(0,1)I

(

y(w
′
||x|| +w

′
⊥x⊥) ≤ 0

)

= E~x,y∼SEw
′
||∼N(µ,1)Ew

′
⊥∼N(0,1)I

(

y(w
′
||x|| +w

′
⊥x⊥) ≤ 0

)

= E~x,y∼SEz′∼N(0,1)Ew
′
⊥∼N(0,1)I

(

yµ≤−yz
′ −yw

′
⊥

x⊥
x||

)

.

Using the symmetry of the Gaussian, this is:

= E~x,y∼SEz′∼N(0,1)Ew
′
⊥∼N(0,1)I

(

yµ≤ yz
′
+yw

′
⊥

x⊥
x||

)

Using the fact that the sum of two Gaussians is a Gaussian:

= E~x,y∼SE
v∼N

(

0,1+
x2
⊥

x2
||

)I (yµ≤ yv)

= E~x,y∼SE
v∼N

(

0, 1
γ(~x,y)2

)I (yµ≤ yv)

= E~x,y∼SF̄ (µγ(~x,y))

finishing the proof.
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Using the corollary, the true error bound̄Q(~w,µ)D satisfies the equation:

KL
(

Q̂(~w,µ)S||Q̄(~w,µ)D
)

=
µ2

2 + ln m+1
δ

m
.

This is an implicit equation for̄Q which can be easily solved numerically.
The bound is stated in terms of dot products here, so naturally it is possible tokernelize the

result using methods from (Herbrich and Graepel, 2001). In kernelized form, the bound applies to
classifiers (as output by SVM learning algorithms) of the form:

c(x) = sign

(

m

∑
i=1

αik(xi ,x)

)

. (1)

Since, by assumption,k is a kernel, we know thatk(xi ,x) = ~Φ(xi) · ~Φ(x) where~Φ(x) is some
projection into another space. In kernelized form, we get~w ·~x = ∑m

i=1 αik(xi ,x), ~x ·~x = k(x,x),
~w·~w= ∑i, j αiα jk(xi ,x j), defining all of the necessary quantities to calculate the normalized margin,

γ(x,y) =
∑m

i=1 αik(xi ,x)
√

k(x,x)∑m,m
i, j=1,1 αiα jk(xi ,x j)

.

One element remains, which is the value ofµ. Unfortunately the bound can be nonmonotonic
in the value ofµ, but it turns out that for classifiers learned by support vector machines on reason-
able datasets, there is only one value ofµ which is (locally, and thus globally) minimal. A binary
search over some reasonable range ofµ (say from 1 to 100) can find the minima quickly, given the
precomputation of the margins. It is worth noting again here that we are not “cheating”—the bound
holds for all values ofµ simultaneously.

The computational time of the bound calculation is dominated by the calculation of themargins
which is O

(

m2
)

wherem is the number of support vectors with a nonzero associatedα. This
computational time is typically dominated by the time of the SVM learning algorithm.

5.3.1 RESULTS

Application of this bound to support vector machines is of significant importance because SVMs
are reasonably effective and adaptable classifiers in common and widespread use. An SVM learns
a kernelized classifier as per equation (1).5

We apply the support vector machine to 8 UCI database problems chosen to fit the criteria “two
classes” and “real valued input features”. The problems vary in size over an order of magnitude
from 145 to 1428 examples. In Figure 10 we use a 70/30 train/test split of thedata.

In all experiments, we use SVMlight (Joachims) with a Gaussian kernel andthe default band-
width. Results for other reasonable choices of the “C”, bandwidth,6 and kernel appear to be quali-
tatively similar (although of course they differ quantitatively).

It is important to note that the PAC-Bayes margin bound isnot precisely a bound (or confidence
interval) on the true error rate of the learned classifier. Instead, it is a trueerror rate bound on an

5. Some SVM learning algorithms actually learn a classifier of the form:c(x) = sign
(

b+∑m
i=1 αik(xi ,x)

)

. We do not
handle this form here.

6. Note that the bandwidth of a Gaussian kernel used by an SVM is not directly related to the optimized value ofµ we
find.
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Figure 10: This figure shows the results of applying SVMlight to 8 datasets with a Gaussian kernel
and a 70/30 train/test split. The observed test error rate is graphed as anX. On the
test set, we calculate a binomial confidence interval (probability of bound failure equals
0.01) which upper bounds the true error rate. On the training set we calculate the PAC-
Bayes margin bound for an optimized choice ofµ.

298



PRACTICAL PREDICTION THEORY FORCLASSIFICATION

 0

 0.2

 0.4

 0.6

 0.8

 1

liver bostonpima ion sonar dig1 dig2 adult

er
ro

r 
ra

te

problem

test set errors
test set bound
margin bound

7/10 margin

Figure 11: In addition to comparing with everything in Figure 10, we graph themargin bound
whenall of the data is used for the train set. Note that it improves somewhat on the
margin bound calculated using the 70% train set (7/10 margin bound), but not enough
to compete with the test set bound.

associated stochastic classifier chosen so as to have a similar test error rate. These bounds can be
regarded as bounds for the original classifier only under an additionalassumption: that picking a
classifier according to the majority vote of this stochastic distribution does not worsen the true error
rate. This is not true in general, but may be true in practice.

It is of course unfair to compare the train set bound with the test set boundon a 70/30 train/test
split because a very tight train set bound would imply that it is unnecessaryto even have a test set.
In Figure 11 we compare the true error bounds on all of the data to the true error bounds generated
from the 70/30 train/test split.

The results show that the PAC-Bayes margin bound is tight enough to give useful information,
but still not competitive with the test set bounds. This is in strong contrast with atradition of
quantitatively impractical margin bounds. There are several uses available for bounds which provide
some information but which are not fully tight.

1. They might be combined with a train/test bound (Langford, 2002).

2. The train set bound might easily become tighter for smaller sample sizes. Thiswas observed
in (Langford, 2002).

3. The train set bound might still have the right “shape” for choosing an optimal parameter
setting, such as “C” in a support vector machine.
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6. Sample Compression Bound

The sample compression bound (Littlestone and Warmuth), (Floyd and Warmuth, 1995) is like the
PAC-Bayes bound in that it applies to arbitrary precision continuous valued classifiers. Unlike
the PAC-Bayes bound, it applies meaningfully to nonstochastic classifiers.Mainstream learning
algorithms do not optimize the sample compression metric, so the bound application issomewhat
rarer. Nonetheless, there do exist some reasonably competitive learningalgorithms for which the
sample compression bound produces significant results.

The section is organized as follows:

1. Subsection 6.1 states and proves the sample compression bound.

2. Subsection 6.2 shows that the sample compression bound is nearly as tightas possible given
the observations.

3. Subsection 6.3 discusses results from the application of the sample compression bound to
support vector machines.

6.1 The Sample Compression Bound

The sample compression bound (Littlestone and Warmuth) (Floyd and Warmuth,1995) stated here
differs from older results by generalization and simplification but the boundbehavior is qualitatively
identical.

Suppose we have a learning algorithmA(S) whose training is “sparse”7 in the sense that the
output classifier is dependent upon only a subset of the data,A(S) = A(S′) for S′ ⊆ S. The sample
compression bound is dependent on the errors, ˆcS−S′ on the subsetS−S′. The motivation here is that
the examples which the learning algorithm doesnot depend upon are “almost” independent and so
we can “almost” get a test set bound. In general, the bound becomes tighter as the dependent subset
S′ becomes smaller and as the error number on the nondependent subsetS−S′ becomes smaller.

Viewed as an interactive proof of learning (in Figure 12), the sample compression bound is
unique amongst training set bounds because it does not requireanyinitial commitment to a measure
over the classifiers.8

Theorem 6.1 (Sample Compression Bound) For allδ ∈ (0,1], D, A:

Pr
S∼Dm

(

∀S′ ⊆ S with c= A(S′) : cD ≤ Bin

(

m, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

≥ 1−δ.

Proof Suppose we knew in advance that the learning algorithm will not depend upon some subset
of the examples. Then, the “undependent” subset acts like a test set andgives us a test set bound:

∀S′ ⊆ S, c = A(S′) : Pr
S∼Dm

(

cD ≤ Bin

(

m, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

≥ 1− δ
m
( m
|S−S′|

) .

7. This is satisfied, for example, by the support vector machine algorithmwhich only depends upon the set of support
vectors.

8. However, we can regard the commitment to a learning algorithm as an implicit commitment to a measure over
classifiers which is dependent on the learning algorithm and the distribution generating the data. Viewed from this
perspective, the sample compression bound is the Occam’s Razor bound, except for the minor detail that the set of
evaluating examples varies.
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Verifier Learner

m examples

Draw Training 
Examples

Evaluate Bound

δ

Choose Subset
S’, c=A(S’)

Subset S’

For c=A(S’)

Sample Compression Bound

Learning Algorithm A

Figure 12: The interactive proof of learning for the sample compression bound. Note that the learn-
ing algorithm is arbitrary here, similar to the test set bound.

(Note that, technically, it is possible to refer toS′ unambiguously before randomizing overS by
specifying the indexes ofScontained inS′.) Negating this, we get

∀S′ ⊆ S, c = A(S′) : Pr
S∼Dm

(

cD > Bin

(

m, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

<
δ

m
( m
|S−S′|

)

and using the union bound (Pr(A or B) ≤ Pr(A)+Pr(B)) over each possible subset,S′, we get

Pr
S∼Dm

(

∃S′ ⊆ S with c = A(S′) : cD > Bin

(

m, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

< δ.

Negating this again gives us the proof.

6.2 The Sample Compression Bound is Sometimes Tight

We can construct a learning algorithm/learning problem pair such that the sample compression
bound is provably near optimal, as a function of its observables.

Theorem 6.2 (Sample Compression Tightness) For allδ ∈ (0,1], m, k, there exists a distribution D
and learning algorithm A s.t.

Pr
S∼Dm

(

∃S′ ⊆ S with c= A(S′) : cD > Bin

(

m, ĉS−S′ ,
δ

m
( m
|S−S′|

)

))

> δ−δ2.
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furthermore, if S∗ minimizesBin

(

ĉS−S′ ,
δ

m( m
|S−S′ |)

)

, then

Pr
S∼Dm

(

c∗ = A(S∗) : c∗D > Bin

(

m, ĉ∗S−S∗ ,
δ

m
( m
|S−S∗|

)

))

> δ−δ2.

Proof The proof is constructive and similar to the Occam’s Razor tightness result. In particular,
we show how to construct a learning algorithm which outputs classifiers thaterr independently
depending on the subsetS′ used.

Consider an input spaceX = {0,1}2m
. Each variable in the input spacexS′ can be thought of as

indexing a unique subsetS′ ⊆ Sof the examples. In the rest of the proof, we index variables by the
subset they correspond to.

Draws from the distributionD can be made by first flipping an unbiased coin to gety = 1
with probability 0.5 andy = −1 with probability 0.5. The distribution onX consists of a set of
independent values after conditioning ony. Choose

Pr(xS′ 6= y) = Bin

(

m,k,
δ

m
( m
|S−S′|

)

)

.

Now, the learning algorithmA(S′) is very simple—it just outputs the classifierc(x) = xS′ . On the
setS−S′, we have

∀S′ Pr
S∼Dm

(

ĉS−S′ ≥
k
m

)

= 1− δ
m
( m
|S−S′|

) .

Using independence, we get

Pr
S∼Dm

(

∀S′ ĉS−S′ ≥
k
m

)

= ∏
S′

(

1− δ
m
( m
|S−S′|

)

)

.

Negating, we get

Pr
S∼Dm

(

∀S′ ĉS−S′ <
k
m

)

= 1−∏
S′

(

1− δ
m
( m
|S−S′|

)

)

and doing some algebra, we get the result.

6.3 Application of the Sample Compression Bound

One obvious application of the sample compression bound is to support vector machines, since the
learned classifier is only dependent on the set of support vectors. IfS′ is the set of support vectors
thenS−S′ is the set of nonsupport vectors. Unfortunately, it turns out that this does not work so
well, as observed in Figure 13.

There are other less common learning algorithms for which the sample compression bound
works well. The set covering machine (Marchand and Shawe-Taylor, 2001) has an associated bound
which is a variant of the sample compression bound.
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Figure 13: The sample compression bound applied to the output of a support vector machine with
a Gaussian kernel. Here we useδ = 0.01

7. Discussion

Here, we discuss several aspects and implications of the presented bounds.

7.1 Learning Algorithm Design

Everytrain set bound implies a learning algorithm: choose the classifier which minimizes the true
error bound. This sounds like a rich source of learning algorithms, but there are some severe caveats
to that statement.

1. It is important to note that the form of a train set bound doesnot imply that this minimization
is a good idea. Choosing between two classifiers based upon their true error bound implies a
better worst-case bound on the true error. It does not imply an improved true error. In many
situations, there is some other metric of comparison (such as train error) which in fact creates
better behavior.

2. Another strong caveat is that, historically, train set bounds have simply not been tight enough
on real datasets for a nonvacuous application. This is changing with new results, but more
progress is necessary.

3. Often the optimization problem is simply not very tractable. In addition to sample complexity,
learning algorithms must be concerned with run time and space usage.
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7.2 Philosophy

Train set bounds teach us about ways in which verifiable learning is possible, a subject which
borders on philosophy. The train set bound presented here essentiallyshows that a reasonable
person will be convinced of learning success when a short-descriptionclassifier does well on train
set data. The results here donot imply that this is the only way to convincingly learn. In fact, the
(sometimes large) looseness of the Occam’s Razor bound suggests that other methods for convincing
learning processes exist. This observation is partially shown by the other train set bounds which are
presented.

7.3 Conclusion

This introduction to prediction theory covered two styles of bound: the test set bound and the train
set bound. There are two important lessons here:

1. Test set bounds provide a better way to report error rates and confidence intervals on future
error rates than some current methods.

2. Train set bounds can provide useful information.

It is important to note that the train set bound and test set bound techniquesare not mutually ex-
clusive. It is possible to use both simultaneously (Langford, 2002), anddoing so is often desirable.
Test set bounds are improved by the “free” information about the trainingerror and train set bounds
become applicable, even when not always tight.

Acknowledgments

Many people were critical to this tutorial. This includes Sam Roweis who startedthis, anony-
mous reviewers who were patient and capable, several coauthors on previous papers, Imre Kon-
dor, Arindam Banerjee, Alina Beygelzimer, Varsha Dani, Tom Hayes, Timothy Ross, and Robert
Schapire. I would also like to thank IBM which supported me during much of thepreparation of
this tutorial.

Appendix A.

For those interested in comparing models, uniform convergence (Vapnik and Chervonenkis, 1971)
additionally requires the axiom of choice (to achieve empirical risk minimization) and a hypothesis
space of bounded complexity. Typical theorems are of the form “afterm examples, all training
errors are near to true errors”.

The PAC learning model (Valiant, 1984) requires a polynomial time complexity learning algo-
rithm and the assumption that the learning problem comes from some class. Theorems are of the
form “aftermexamples learning will be achieved”.

Both of these models can support stronger statements than the basic prediction theory model
presented here. Results from both of these models can apply here after appropriate massaging.

The online learning model (Kivinen and Warmuth, 1997) makesno assumptions. Typical the-
orems have the form “This learning algorithm’s performance will be nearly as good as anyone of
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a set of classifiers.” The online learning model has very general results and no9 ability to answer
questions about future performance as we address here.

The prediction theory model can most simply be understood as a slight refinement of the infor-
mation theory model.

References

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities.Annals of Statistics,
2004.

A. Blum, A. Kalai, and J. Langford. Beating the holdout: Bounds for k-fold and progressive cross-
validation. InComputational Learning Theory (COLT), 1999.

A. Blumer, A. Ehrenfueucht, D. Haussler, and M. Warmuth. Occam’s razor. Information Processing
Letters, 24:377–380, 1987.

H. Chernoff. A measure of asymptotic efficiency of tests of a hypothesis based upon the sum of the
observations.Annals of Mathematical Statistics, 24:493–507, 1952.

C. J. Clopper and E. S. Pearson. The use of confidence intervals forfiducial limits illustrated in the
case of the binomial.Biometrika, 26:404–413, 1934.

L. Devroye, L. Gyorfi, and G. Lugosi.A Probabilistic Theory of Pattern Recognition. Springer-
Verlag, New York, 1996.

S. Floyd and M. Warmuth. Sample compression, learnability, and the vapnik-chervonenkis dimen-
sion. Machine Learning, 21:269–304, 1995.

R. Herbrich and T. Graepel. Large scale bayes point machines. InAdvances in Neural Information
System Processing 13 (NIPS), pages 528–534, 2001.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58:13–30, 1963.

T. Joachims. program SVMlight.

J. Kivinen and M. Warmuth. Additive versus exponentiated gradient updates for linear prediction.
Information and Computation, 132(1):1–64, 1997.

J. Langford. Programbound.

J. Langford. Combining train set and test set bounds. InInternational Conference on Machine
Learning, 2002.

J. Langford and A. Blum. Microchoice bounds and self bounding learning algorithms. Machine
Learning, 1999.

9. Note that there do exist online to batch conversions, but these conversions always occur under an assumption of i.i.d.
samples, essentially changing the setting to the one described here.

305



LANGFORD

J. Langford and D. McAllester. Computable shell decomposition bounds. In Computational Learn-
ing Theory (COLT), 2000.

J. Langford and M. Seeger. Bounds for averaging classifiers. Technical report, Carnegie Mellon,
Department of Computer Science, 2001.

J. Langford and J. Shawe-Taylor. PAC-Bayes & margins. InNeural Information Processing Systems
(NIPS), 2002.

N. Littlestone and M. Warmuth. Relating data compression and learnability.

M. Marchand and J. Shawe-Taylor. The set covering machine. InInternational Conference on
Machine Learning (ICML), 2001.

D. McAllester. PAC-Bayesian model averaging. InComputational Learning Theory (COLT), 1999.

M. Seeger. PAC-Bayesian generalization error bounds for gaussianprocess classification.Journal
of Machine Learning Research, 3:233–269, 2002.

S. Seung. Unpublished notes.

J. Shawe-Taylor, P. Bartlett, R. Williamson, and M. Anthony. Structural risk minimization over
data-dependent hierarchies.IEEE Transactions on Information Theory, 44(5):1926–1940, 1998.

L.G. Valiant. A theory of the learnable.Communications of the ACM, 27(11):1134–1142, 1984.

V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence ofrelative frequencies of events
to their probabilities.Theory of Probability and its Applications, 16(2):264–280, 1971.

306


