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Abstract

We describe several families &fmer based string kernels related to the recently presenied
match kernel and designed for use with support vector mashifVMs) for classification of pro-
tein sequence data. These new kernels — restricted gapmyi&esubstitution kernels, and wildcard
kernels — are based on feature spaces indexéddygth subsequencesk{mers”) from the string
alphabetz. However, for all kernels we define here, the kernel vae,y) can be computed in
O(ck (x| +|yl)) time, where the constask depends on the parameters of the kernel but is inde-
pendent of the sizgZ| of the alphabet. Thus the computation of these kernelsaatim the length
of the sequences, like the mismatch kernel, but we improws upe parameter-dependent con-
stantck = k™1™ of the (k, m)-mismatch kernel. We compute the kernels efficiently usitriga
data structure and relate our new kernels to the recentlyritbes! transducer formalism. In protein
classification experiments on two benchmark SCOP datawetshow that our new faster kernels
achieve SVM classification performance comparable to tlemaich kernel and the Fisher kernel
derived from profile hidden Markov models, and we invesgégae dependence of the kernels on
parameter choice.

Keywords: kernel methods, string kernels, computational biology

1. Introduction

The original work on string kernels — kernel functions defined on thefssequences from an al-
phabe® rather than on a vector space (Cristianini and Shawe-Taylor, 20G0jhe from the field of
computational biology and was motivated by algorithms for aligning DNA antepr@equences.
Pairwise alignment algorithms, in particular the Smith-Waterman algorithm for opiticedlalign-
ment and the Needleman-Wunsch algorithm for optimal global alignment (ivareet al., 1991),
model the evolutionary process of mutations — insertions, deletions, addeesibstitutions rela-
tive to an ancestral sequence — and give natural sequence similarigg setated to evolutionary
distance. However, standard pairwise alignment scores do not eepresdid kernels (Vert et al.,
2004), and the first string kernels to be defined — dynamic alignmentlkdrased on pair hidden
Markov models by Watkins (1999) and convolution kernels introduceddnyssler (1999) — had to
develop new technical machinery to translate ideas from alignment algorithores kernel frame-
work. More recently, there has also been interest in the developmetirngf kernels for use with

(©2004 Christina Leslie and Rui Kuang.



LESLIE AND KUANG

support vector machine classifiers (SVMs) and other kernel methoddds Gutside computational
biology, such as text processing and speech recognition. For exahplgappyn-gram kernel de-
veloped by Lodhi et al. (2002) implemented a dynamic alignment kernel fockassification. A
practical disadvantage of all these string kernels is their computationahs&p In general, these
kernels rely on dynamic programming algorithms for which the computation &f kamel value
K(x,y) is quadratic in the length of the input sequencasdy, that is,O(|x||y|) with constant factor
that depends on the parameters of the kernel.

The recently presentddspectrum (gap-frele-gram) kernel and thék, m) mismatch kernel pro-
vide an alternative model for string kernels for biological sequenags/ane designed, in particular,
for the application of SVM protein classification. These kernels use cafictanmon occurrences
of shortk-length subsequences, calledners, rather than notions of pairwise sequence alignment,
as the basis for sequence comparison. K-hger idea still captures a biologically-motivated model
of sequence similarity, in that sequences that diverge through evolutostil likely to contain
short subsequences that match or almost match. Leslie et al. (2002aug#da linear time
(O(K(|x| + |y|)) implementation of th&-spectrum kernel, using exact matcheskaher patterns
only, based on a trie data structure. Later,(then)-mismatch kernel (Leslie et al., 2002b) extended
thek-mer based kernel framework and achieved improved performance @ndtein classification
task by incorporating the biologically important notion of character mismateke&l(le substitu-
tions). Using a mismatch tree data structure, the complexity of the kernel daloweas shown
to beO(ck (|X| + |y])), with cx = k™ 1|Z|™ for k-grams with up tan mismatches from alphab&t
A different extension of thé&-mer framework was presented by Vishwanathan and Smola (2002),
who computed the weighted sum of exact-matchirgpectrum kernels for differektby using suf-
fix trees and suffix links, allowing elimination of the constant factor in the tspetkernel for a
compute time oD(|x| +y]).

In this paper, we extend tHemer based kernel framework in new ways by presenting several
novel families of string kernels for use with SVMs for classification of proseiguence data. These
kernels — restricted gappy kernels, substitution kernels, and wildcanelke- are again based on
feature spaces indexed Bylength subsequences from the string alphabédr the alphabet aug-
mented by a wildcard character) and use biologically-inspired models cfédhexatching. Thus
the new kernels are closely related both to ¢kien)-mismatch kernel and the gapgygram string
kernels used in text classification. However, for all kernels we define, lthe kernel valuk (x,y)
can be computed i®(ck (|x| +|y|)) time, where the constack depends on the parameters of the
kernel but is independent of the si2g of the alphabet. Our efficient computation uses a recursive
function based on a trie data structure and is linear in the length of the s &ke the mismatch
kernel, but we improve upon the parameter-dependent constant; a sireHaased sequence search
strategy has been used, for example, in work of Sagot (1998) for mstibekry. The restricted
gappy kernels we present here can be seen as a fast approximattiengafppyk-gram kernel of
Lodhi et al. (2002), where by using okimer based computation, we avoid dynamic programming
and the resultant quadratic compute time; we note that the dagmm kernel can also be seen as
a special case of a dynamic alignment kernel (Watkins, 1999), giving &étkeen this work and
some of the kernels we define. Cortes et al. (2002) have recentliynpedsetransducer formalism
for defining rational string kernels, and all tkener based kernels can be naturally described in this
framework. We relate our new kernels to the transducer formalism aedrgisducers correspond-
ing to our newer kernels. We note that Cortes et al. (2002) also deshghmriginal convolution
kernels of Haussler (1999) within their framework, suggesting that tmsdrecer formalism is a
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natural unifying framework for describing many string kernels in the liteeatblowever, the com-
plexity for kernel computation using the standard rational kernel algorigh®icr|x||y|), wherecy

is a constant that depends on the transducer, leading again to quaatraidinan linear dependence
on sequence length.

Finally, we report protein classification experiments on two benchmark d&tdased on the
SCOP database (Murzin et al., 1995), where we show that our new kasteels achieve SVM
classification performance comparable to the mismatch kernel and the Feshet derived from
profile hidden Markov models. We also use kernel alignment scoredié@iis et al., 2001) to
investigate how different the various inexact matching models are fromm ether, and to what
extent they depend on kernel parameters. Moreover, we show theity linear combinations of
different kernels, we can improve performance over the best individrnel.

The current paper is an extended version of the original paperminegehese inexact string
matching kernels (Leslie and Kuang, 2003). We have added the sestoofdCOP experiments to
allow more investigation of the dependence of SVM performance on kpanaimeter choices. We
have also included the kernel alignment results to explore different@séekernels and parameter
choices and the advantage of combining these kernels.

2. Definitions of Feature Maps and String Kernels

Below, we review the definition of mismatch kernels (Leslie et al., 2002b) agskpt three new
families of string kernels: restricted gappy kernels, substitution kernmediswddcard kernels.

In each case, the kernel is defined via an explicit feature map from e s all finite se-
guences from an alphabEtto a vector space indexed by the sekdéngth subsequences fram
or, in the case of wildcard kernels,augmented by a wildcard character. For protein sequeBces,
is the alphabet ofZ| = 20 amino acids. We refer tolkalength contiguous subsequence occurring
in an input sequence as an instalkemer (also called &-gram in the literature). The mismatch
kernel feature map obtains inexact matching of instdapeers from the input sequence kamer
features by allowing a restricted number of mismatches; the new kernelyaaméxact matching
by allowing a restricted number of gaps, by enforcing a probabilistic tbtdsin character sub-
stitutions, or by permitting a restricted number of matches to wildcard charadieese models
for inexact matching have all been used in the computational biology literatotaer contexts, in
particular for sequence pattern discovery in DNA and protein seqadegot, 1998) and proba-
bilistic models for sequence evolution (Henikoff and Henikoff, 1992 vigestr and Dayhoff, 1978,
Altschul et al., 1990).

2.1 Spectrum and Mismatch Kernels

In previous work, we defined thgk, m)-mismatch kernel via a feature mais" to the |Z[*-
dimensional vector space indexed by the set-afers fromZ. For a fixedk-mera = aja. .. &,
with eacha a character iz, the (k,m)-neighborhood generated hy is the set of allk-length
sequencep from X that differ froma by at mostm mismatches. We denote this setMy, y (a).
For ak-mera, the feature map is defined as

Ol (00 = (@(ar))pes
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wheregg(a) = 1 if B belongs td\ m) (), andgg(a) = O otherwise. For a sequencef any length,
we extend the map additively by summing the feature vectors for ak-thers inx:

Mi oM
q)(k[;rr)]atch(x) — z |smatch<a
k-mersa in x
Each instance of &mer contributes to all coordinates in its mismatch neighborhood, anf-the
coordinate ofd)'(v“sma“’h(x ) is just a count of all instances of tikemer 3 occurring with up tom
mismatches irx. The (k,m)-mismatch kerneK ) is then given by the inner product of feature

vectors:
Mlsmatcrrx y Mlsmatch(x q)Mlsmatcrry

Form= 0, we obtain th&-spectrum (Leslle et al., 2002a) kigram kernel (Lodhi et al., 2002).

2.2 Restricted Gappy Kernels

For the(g,k)-gappy string kernelg > k, we use the sami&|-dimensional feature space, indexed
by the set ok-mers fromZ, but we define our feature map based on gappy matchgsradrs to
k-mer features. For a fixeg-mera = a;a;...3g(eacha; € 2), let Ggy)(a) be the set of all the
k-length subsequences occurringoinwith up tog— k gaps). Then we define the gappy feature
map ona as

Cbgjf)(a) = (@p(a1))pes,

whereg(a) = 1 if B belongs taG g (a), andgg(a) = O otherwise. In other words, each instance
g-mer contributes to the set &fmer features that occur (in at least one way) as subsequences with
up tog—k gaps in theg-mer. Now we extend the feature map to arbitrary finite sequextgs
summing the feature vectors for all tgemers inx:

Gap . Gap
Pigig(X) = P (00).
g-mérsaex

The kerneK( a’:’(x y) is defined as before by taking the inner product of feature vectossgndy.

AIternatlvefy, given an instanag mer, we may wish to count the number of occurrences of each
k-length subsequence and weight each occurrence by the numbgrsoffgdiowing (Lodhi et al.,
2002), we can define fa;-mera andk-mer featurgd = by b,. . . bk the weighting

1 i
G-z 3 N
1<ip<iz<...<ik<g
aij:bj for j=1...k

where the multiplicative factor satisfies<OA < 1. We can then obtain a weighted version of the

gappy kerneKE"’e'g';tecl Sa%rom the feature map:
pWeighted G
Plgicny =5 (@h(@))gest
g-mérsaex
k—i1t+1

Here, the weighting)\ik penalizes a gappy occurrence ok-aer by a factoi raised to the
number of internal gaps. This feature map is related to the glygpgm kernel defined by Lodhi
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et al. (2002) but enforces the following restriction: here, only tHesharacter subsequences that
occur with at mosg — k gaps, rather than all gappy occurrences, contribute to the cormisgon
k-mer feature. When restricted to input sequences of leggthur feature map coincides with
that of the usual gappk-gram kernel. Note, however, that for our kernel, a gakyyer instance
(occurring with at mosg — k gaps) is counted in all (overlapping)mers that contain it, whereas
in Lodhi et al. (2002), a gappiy-mer instance is only counted once. If we wish to approximate the
gappyk-gram kernel, we can define a small variation of our restricted gappgketrere one only
counts a gapp¥-mer instance if its first character occurs in the first position gfraer window.
That is, the modified feature map is defined on egahera by coordinate functions

R@)=sp y N
1=i1<ip<...<ik<g
a;j:bj for j=1..k
0 < A <1, andis extended to longer sequences by adding feature vectgrawers. This modified
feature map now gives a “truncation” of the usual gagqgram kernel.

In Section 3, we show that our restricted gappy kernel ®@é&sg,k)(|x| + |y|)) computation
time, where constart(g, k) depends on size af andk, while the original gappyk-gram kernel
has complexityO(k(|x||y|)). Note in particular that we do not compute the standard g&ggmam
kernel on every pair off-grams fromx andy, which would necessarily be quadratic in sequence
length since there a®(|x||y|) such pairs. We will see that for reasonable choiceg afdk, we
obtain much faster computation time, while in experimental results reported in 5&ctiee still
obtain good classification performance.

2.3 Substitution Kernels

The substitution kernel is again similar to the mismatch kernel, except that Yezeghe combi-
natorial definition of a mismatch neighborhood with a similarity neighborhooddasa a proba-
bilistic model of character substitutions. In computational biology, it is stahttacompute pair-
wise alignment scores for protein sequences using a substitution matrik¢@ffeand Henikoff,
1992, Schwartz and Dayhoff, 1978, Altschul et al., 1990) that gpaisvise scores(a,b) de-
rived from estimated evolutionary substitution probabilities. In one scoystes (Schwartz and
Dayhoff, 1978), the scorega,b) are based on estimates of conditional substitution probabilities
P(alb) = p(a,b)/q(b), wherep(a,b) is the probability that andb co-occur in an alignment of
closely related proteingj(a) is the background frequency of amino aeidandP(alb) represents
the probability of a mutation inta during fixed evolutionary time interval given that the ancestor
amino acid wad. We define the mutation neighborhobtl, ;) (a) of ak-mera = aja;...a as
follows:

k
Mo (@) = {B=Dibyp... € Z¢: — Y logP(ai|bi) < o}.

Mathematically, we can defire= o(N) such that max.s«|[M ) (a)| < N, so we have theoretical
control over the maximum size of the mutation neighborhoods. In practioesaigo to allow an
appropriate amount of mutation while restricting neighborhood size may esgxrerimentation
and cross-validation.

Now we define the substitution feature map analogously to the mismatch feature map

O = > (®B(a))gex,

k-mersa in x
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wheregg(a) = 1 if B belongs to the mutation neighborhobl (), andgs(a) = 0 otherwise.

2.4 Wildcard Kernels

Finally, we can augment the alphal¥tvith a wildcard character denoted By and we map to
a feature space indexed by the g#t of k-length subsequences frorU {x} having at mosin

occurrences of the characterThe feature space has dimensigi, <l|(> ||,

A k-mer a matches a subsequenBan 7/ if all non-wildcard entries of3 are equal to the
corresponding entries of (wildcards match all characters). The wildcard feature map is given by

Dm0 = > (@(a)pear;

k-mersa in x

wheregs(a) = Al if a matches patterfi containingj wildcard charactersps(a) = 0 if a does not
matchp, and O< A < 1.

Other variations of the wildcard idea, including specialized weightings aaaiugroupings of
related characters, are described by Eskin et al. (2003).

3. Efficient Computation

All the k-mer based kernels we define above can be efficiently computed usindratrieval tree)
data structure, similar to the mismatch tree approach previously presensdig @feal., 2002b).

In this framework k-mer features correspond to paths from the root to the leaf nodes okthe tr
and the data structure is used to organize a traversal of all the inexadtimggittcstance patterns
in the data that contribute to eakhmer feature count. We will describe the computation of the
gappy kernel in most detail, since the other kernels are easier adap@titresmismatch kernel
computation. For simplicity, we explain how to compute a single kernel Vviélpey) for a pair

of input sequences; computation of the full kernel matrix in one travefdéle data structure is a
straightforward extension.

3.1 (g,k)-Gappy Kernel Computation

For the(g,k)-gappy kernel, we represent our feature space as a rooted treptbikdvhere each
internal node haiz| branches and each branch is labeled with a symbol Zom this depthk trie,
each leaf node represents a fixether in feature space by concatenating the branch symbols along
the path from root to leaf and each internal node represents the pyethoke for the set démer
features in the subtree below it.

Using a depth-first traversal of this tree, we maintain at each node thasiva set of pointers
to all g-mer instances in the input sequences that contain a subsequence (sjtthga matches the
current prefix pattern; we also store, for egeimer instance, an index pointing to the last position
we have seen so far in tlgemer. At the root, we store pointers to ghmer instances, and for each
instance, the stored index is 0, indicating that we have not yet seen argctérs in they-mer.

As we pass from a parent node to a child node along a branch labeledywitioka, we process
each of parent’s instances by scanning ahead to find the next awoeiroé symbola in eachg-
mer. If such a character exists, we passdhaer to the child node along with its updated index;
otherwise, we drop the instance and do not pass it to the child. Thustahede of depthl, we
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have effectively performed a greedy gapped alignmemg-wfers from the input sequences to the
currentd-length prefix, allowing insertion of up f@p— k gaps into the prefix sequence to obtain each
alignment. When we encounter a hode with an empty list of pointers (no validrecces of the
current prefix), we do not need to search below it in the tree; in fatésarhere is a valig-mer
instance from each ofandy, we do not have to process the subtree. When we reach a leaf node, we
sum the contributions of all instances occurring in each source segjteeabtain feature values for

x andy corresponding to the currekimer, and we update the kernel by adding the product of these
feature values. Since we are performing a depth-first traversal, waaamplish the algorithm

with a recursive function and do not have to store the full trie in memory.rEigjishows expansion
down a path during the recursive traversal.

0/0]0
gba
ala
a alalb
albla
bla|b
112/ 1
(alhfa)
b&a
alalb b
albla
bla|b
214/ 3
b|a
Bed o
a
aﬁa
bla|b
O

Figure 1: Trie traversal for gappy kernel. Expansion along a path from root to leaf during traveral
of the trie for the(5,3)-gappy kernel, showing only the instance 5-mers for a single
sequence = abaabab Each node stores its valid 5-mer instances and the index to the
last match for each instance. Instances at the leaf node contribute tamied foe 3-mer
featureabhb,

The computation at the leaf node depends on which version of the gappsi kee uses. For
the unweighted feature map, we obtain the feature valugsnély corresponding to the currekt
mer by counting thg-mer instances at the leaf coming fromand fromy, respectively; the product
of these counts gives the contribution to the kernel forlthiser feature. For the-weighted gappy
feature map, we need a count of all alignments of each \gliger instance against themer
feature allowing up tay— k gaps. This can be computed with a simple dynamic programming
routine (similar to the Needleman-Wunsch algorithm), where we sum ovetrectes set of paths,
as shown in Figure 2. The complexity@k(g—K)), since we fill a restricted trellis dk+ 1)(g—
k+1) squares. Note that when we align a subsequépbg ... b;, against &k-meraja;...ax, we
only penalize interior gaps corresponding to non-consecutive indicgsdim < iz... < ix < g.
Therefore, the multiplicative gap cost is 1 in the zeroth and last rows ofehis indA in the other
rows.

In order to determine the worst case complexity of the kernel computatiorestimate the
traversal time — which can be bounded by the total numbermer instances that are processed
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b, b, b; by b a b a b b
e 1|1 1
a A a 1 PR eS|
a, REERE b 1| a |22
a3 I i b g & 2;»31?
(A) (B)

Figure 2: Dynamic programming at the leaf node. The trellis in (A) shows the restricted paths
for aligning ag-mer against &-mer, with insertion of up t@ — k gaps in thek-mer, for
g=>5andk = 3. The basic recursion for summing path weightS(is ) = m(a;, bj)S(i —
1,j—1)4+9(i)S(i,j — 1), wherem(a,b) = 1 if a andb match, 0 if they are different,
and the gap penalty(i) = 1 fori = 0,k andg(i) = A for other rows. That is, except for
the top and bottom rows, every time we move to the right, we introduce an adtlitiona
internal gap and incur a multiplicative penalty xif when we move diagonally, we see
whether the corresponding characters match or not. Trellis (B) showsxtmaple of
aligningababbagainst 3-meabh. An explanation of how to interpret trellis diagrams for
dynamic programming can be found in Durbin et al. (1998).

at the leaf nodes multiplied by the maximum number of times an instance is operassditois
passed from root to leaf — plus the processing time at the leaf nodes neethpute the kernel

update. Eaclg-mer instance in the input data can contribute(E)) k-mer features, which we can

write asO(g? K) if g— k is smaller thark andO(g¥) otherwise. For simplicity, we assume the more
typical former case, and we let the reader make simple adjustments in the lattebarefore, at
mostO(g%¥(|x| + |y|) g-mer instances are processed at leaf nodes in the traversal. Sinceates iter
through at mosg positions of eaclg-mer instance as we pass from root to leaf, the traversal time is
O(g? **1(|x|+y|)). The total processing time at leaf node®ig? ¥(|x| +|y|)) for the unweighted
gappy kernel an®(k(g—k)g¥*(|x| + |y|)) for the weighted gappy kernel. Therefore, in both cases,
we have total complexity of the for®(c(g,k)(|x| + |y|)), with c(g,k) = O((g— k)g®**1) for the
more expensive kernel. Further discussion of the complexity argumenpseudocode for the
algorithm can be found in Shawe-Taylor and Cristianini (2004).

Note that with the definition of the gappy feature maps given above, a dapbgracter sub-
sequence occuring with< g— k gaps is counted in each of tige- (k+ c) + 1 g-length windows
that contain it. To obtain feature maps that count a gdpplaracter subsequence only once, we
can make minor variations to the algorithm by requiring that the first charatsegappyk-mer
occurs in the first position of thg-length window in order to contribute to the correspondinger
feature.
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3.2 (k,0)-Substitution Kernel Computation

For the substitution kernel, computation is very similar to the mismatch kernel algoritve
use a deptlk trie to represent the feature space. We store, at each deptite that we visit,
a set of pointers to ak-mer instancest in the input data whosd-length prefixes have current
mutation score— zid:llog P(ai|bj) < o of the current prefix patterbib,...by, and we store the
current mutation score for eag&hmer instance. As we pass from a parent node at dgfla child
node at depthd + 1 along a branch labeled with symbml we process eack-mer a by adding
—logP(ag+1/b) to the mutation score and pass it to the child if and only if the score is still less
thanao. As before, we update the kernel at the leaf node by computing the adidribof the
correspondindc-mer feature.

The number of leaf nodes visited in the traversaD{®Nq(|X| + |y|)), where the constant is the
maximum mutation neighborhood si2é; = max,cs«|M |- We can choose sufficiently small
to get any desired bound a¥, but it is difficult to estimate how to set the parameters to obtain
good SVM classification performance except by empirical results. Totaptexity for the kernel
value computation i©(kNy(|x| + |y]))-

3.3 (k,m)-Wildcard Kernel Computation

Computation of the wildcard kernel is again very similar to the mismatch kerngiiflgo We use

a depthk trie with branches labeled by character&in{«}, and we prune (do not traverse) subtrees
corresponding to prefix patterns with greater thawildcard characters. At each node of degth
we maintain pointers to ak-mers instances in the input sequences whibkngth prefixes match
the currend-length prefix pattern (with wildcards) represented by the path down fihemoot.

Eachk-mer instance in the data matches at mpst, <l|(> = O(k™M) k-length patterns having

up tomwildcards. Thus the number of leaf nodes visited is in the traver€(k%(|x| +|y|)), and
total complexity for the kernel value computatiorQ$k™(|x| + |y|)).

3.4 Comparison with Mismatch Kernel Complexity

For the (k,m) mismatch kernel, the size of the mismatch neighborhood of an instanuer is
O(k™M=|™), so total kernel value computation@k™1|=|™(|x| + |y|)). All the other kernels pre-
sented here have running tir@ck (|x| + |y|)), where constantk depends on the parameters of the
kernel but not on the size of the alphaketTherefore, we have improved constant term for larger
alphabets (such as the alphabet of 20 amino acids). In Section 5, wetlshibthese new, faster
kernels have performance comparable to the mismatch kernel in proteiifictdiss experiments.

4. Transducer Representation

Cortes et al. (2002) recently showed that many known string kerneldeassociated with and
constructed from weighted finite state transducers with input alpl®&ab@fe briefly outline their
transducer formalism and give transducers for some of our newlyatekarnels. For simplicity,
we only describe transducers over the probability semifing= [0, ), with regular addition and
multiplication.

Following the development in Cortes et al. (2002), a weighted finite stateltraasoveiR , is
defined by a finite input alphabgt a finite output alphabet, a finite set of state®, a set of input
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stated C Q, a set of output statds C Q, a finite set of transitiong C Q x (XU {e}) x (AU{e}) x

R, x Q, an initial weight functior\ : | — R, and a final weight functiop : F — R . Here, the
symbole represents the empty string. The transducer can be represented lightedelirected
graph with nodes indexed iy and each transitioa € E corresponding to a directed edge from its
origin statep[€] to its destination state{e] and labeled by the input symbid¢] it accepts, the output
symbolo[e] it emits, and the weight/[€] it assigns. We write the label ds] : o[€] /w[€] (abbreviated
asi[e] : o[¢] if the weight is 1).

For a pathit= e1&,. .. & of consecutive transitions (directed path in graph), the weight for the
path isw[r] = wlej|w[ey]...w[e], and we denot[r] = p[e;] andn[1] = n[e¢]. We write ¥* =
Uk=02K for the set of all strings oveX. For an input string« € =* and output string € A*, we
denote byP(l,x,z F) the set of paths from initial statégo final stateg~ that accept string and
emit stringz. A transduceiT is called regulated if for any pair of input and output strifgs), the
output weight[T]](x,z) thatT assigns to the pair is well-defined. The output weight is given by:

[TIx2) = > A(p[mM)wlrip(n[r)

meP(l,x,zF)

A key observation from Cortes et al. (2002) is that there is a generabeh&ihdefining a string
kernel from a weighted transducé&r Let W : R, — R be a semiring morphism (for us, it will
simply be inclusion), and denote By ! the transducer obtained from by transposing the input
and output labels of each transition. Then if the composed trans8uedro T~ is regulated, one
obtains a rational string kernel for alphabketia

K(xy) = ®(([S1xy) = 3 PT(x2)P(TI(y,2)

where the sum is over all stringss A* (whereA is the output alphabet fdr) or equivalently, over
all output strings that can be emitted By Therefore, we can think of as defining a feature map
indexed by all possible output strings A* for T.

Using this construction, Cortes et al. showed thattgeam counter transduceég corresponds
to thek-gram ork-spectrum kernel, and the gapgygram counter transducdy , gives the unre-
stricted gappk-gram kernel from Lodhi et al. (2002). Figure 3(a) shows the @iagof the 3-gram
transducefls, and Figure 3(b) gives the gappy 3-gram transddggr Our (g,k,A)-gappy kernel

Kz’vgek'a?ted ©2Pcan be obtained from the composed transddcer Ty o Ty using theT o T~ con-
struction. (In all our examples, we uaés) = 1 for every initial statesandp(t) = 1 for every final
statet.)

For the(k, m)-wildcard kernel, we set the output alphabet tad¥se > U {x} and define a trans-
ducer withm+ 1 final states, as indicated in the figure. The- 1 final states correspond to des-
tinations of paths that emikgrams with 0, 1, ... mwildcard characters, respectively. Tf1)-
wildcard transducer is shown in Figure 4.

The (k,0)-substitution kernel does not appear to fall exactly into this frameworlyghaf
we threshold individual substitution probabilities independently rather thastbld the product
probability over all positions in thke-mer, we can define a transducer that generates a similar kernel.
Starting with thek-gram transducer, we add additional transitions (between “consetstates of
the k-gram) of the forma.: b for those pairs of symbols with- logP(alb) < 0,. Now there will be
a (unique) path in the transducer that accéptsera = aja . ..ax and emitf3 = bib, ... by if and
only if every substitution satisfieslogP(a;|b;) < 0.
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Figure 3: The k-gram and gappyk-gram transducers. The diagrams show the 3-gram transducer
(a) and the gappy 3-gram transducer (b) for a two-letter alphabeg, lter edge label
a:e: A, for example, means “accept symtploutput the empty symbal, multiply the
weight byA”.

Figure 4: The (k,m)-wildcard transducer. The diagram shows the, 1)-wildcard transducer for
a two-letter alphabet.

5. Experiments

We tested all the new string kernels with SVM classifiers on two benchmarksdtta Jaakkola
etal., 1999, Weston et al., 2003), both designed for the remote proteindgyetection problem,
in order to compare to results with the mismatch kernel reported previousii€let al., 2002b) and
other recent kernel representations for protein sequence datdsd\fgesent results to explore how
parameter choices for the new kernels affect SVM classification peaioce. The benchmarks are
based on different versions of the SCOP database (Murzin et al.),J89Bxpert-curated database
of protein domains with known 3D structure, organized hierarchically intisfeuperfamilies, and
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families. Protein domain sequences belonging to different families but the sapeefamily are
considered to be remote homologs in SCOP. In these experiments, remote gypimsaonulated
by holding out all members of a target SCOP family from a given superfarsily t@st set, while
examples chosen from the remaining families in the same superfamily form thedasining
set. The negative test and training examples are chosen from disjoiof $gltds outside the target
family’s fold, so that negative test and negative training sets are urttdtaiach other and to the
positive examples. More details of the experimental set-up can be fouadkkala et al. (1999).

While in principle, we can define and test inexact matching string kernela feide range
of parameters, in practice, only a small parameter range is biologically matif@taise in the
remote protein homology detection problem. For the exact matdasmectrum kernel (Leslie
et al., 2002a), the only interesting parameter choicek ar8 andk = 4, since exact occurrences of
k-mers of lengttk > 5 in remotely homologous proteins are so rare that the spectrum kernkel wou
mostly be 0 off the diagonal. By incorporating inexact matching such as misesatetgaps, we
can use slightly longer subsequence instances and allow a few mismatcjaggsphowever, using
very long subsequences, or allowing a great amount of mutation of gu#asee instances in our
inexact matching scheme, would not capture biologically realistic sequanidargy. For example,
for the gappy kernel, we expect that lendthk) = (6,4) — 4-mers allowing up to 2 gaps — would
be a useful parameter choice, while allowing many more gaps and henageadgdength window
would be less useful. We test a range of parameter choices that sesmabke in the experiments
below.

In the first and larger SCOP benchmark data set, based on SCOP ve&ionve compare to
the Fisher kernel of Jaakkola et al. (1999) in addition to our previous niéisrkarnel. In the Fisher
kernel method, the feature vectors are derived from profile HMMsedthon the positive training
examples. The feature vector for sequexcethe gradient of the log likelihood function I1&x|0)
defined by the model and evaluated at the maximum likelihood estimate for madehgters:
®(x) = UplogP(x|0)|e=g,- The Fisher kernel was the best performing method on this data set prior
to the mismatch-SVM approach, whose performance is as good as Fighkeat®]1 better than all
other standard methods tried (Leslie et al., 2002b). We note that in this daséadiional positive
training sequences were pulled in from the non-redundant proteireseguatabase using an iter-
ative training method for the profile HMMs. The presence of these additidnanain homologs”
makes the learning task easier for all methods.

We also include a second set of experiments to further investigate thediswenof SVM
performance on parameter choices for the new kernels. This sectadetas based on SCOP
version 1.59 and contains only sequences from the SCOP databasecmamdomologs are
added. The experiments are similar to those described by Liao and NobI2) (20t use a more
recent version of SCOP. In this data set, the positive training sets aresquale and the learning
task is more difficult in this setting. In particular, there is not enough positai@ing data to
train profile HMMs in these experiments, so we do not report Fisher keggalts (which are not
competitive in this setting).

There is another successful feature representation for proteirfickatssn, the SVM-pairwise
method presented in Liao and Noble (2002). Here one uses an empiricel keap based on
pairwise Smith-Waterman (Waterman et al., 1991) alignment scores

®(x) = (d(x1,X),-..,d(Xm,X)),
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wherex;, i = 1...m, are the training sequences alit,x) is the E-value for the alignment score
betweenx andx,. We have previously shown (Leslie et al., 2004) that the mismatch keradl us
with an SVM classifier is competitive with SVM-pairwise on the SCOP benchmaggemted in
Liao and Noble (2002), so we do not repeat the SVM-pairwise expetsrfenthe very similar
benchmark here.

In both experiments, we normalized the kerne __Kxy)__ p methods are eval-
P Ko%Y) — o)

uated using the receiver operating characteristic (ROC) score, whilch &rea under the receiver
operating curve, which plots the rate of true positives as a function oftieeof false positives as
the threshold for the classifier varies (Gribskov and Robinson, 18@8ject ranking of all positives
above all negatives gives an ROC score of 1, while a random clagsiean expected score close to
0.5. We also use the ROC-50 score, which is the normalized area undecénesreperating curve
up to the first 50 false positives; this score focuses on the top of théntankthe test examples
produced by the classifier and is more informative when there are varpdsitive examples in
the test set. Use of ROC-50 scores (or other ROC-N scores) is the tawodaed way of evaluating
performance of homology detection methods in bioinformatics (Gribskov abthRon, 1996).
Finally, we use kernel alignment scores (Cristianini et al., 2001) on ttenseSCOP data set
to investigate the empirical differences between the different inexact mgtatodels for protein
sequence data, and we investigate methods for combining kernels to impblpesformance.

5.1 SCOP Experiments with Domain Homologs: Comparison with Fisher and Nématch
Kernels

We first present experimental results for the new kernels on the lafrtjer ttvo SCOP data sets, the
Fisher-SCOP benchmark introduced by Jaakkola et al. (1999) thttiosmlomain homologs for
additional positive training data, and compare SVM classification perfaetaboth the mismatch
kernel and the Fisher kernel.

We tested thég, k)-gappy kernel with parameter choioggsk) = (6,4), (7,4), (8,5), (8,6), and
(9,6). Among them(g,k) = (6,4) yielded the best results, though other choices of parameters had
quite similar performance (data not shown). We also tested the alternatigetec: gappy kernel,
where the contribution of an instangemer to ak-mer feature is a weighted sum of all the possible
matches of th&mer to subsequences in tener with multiplicative gap penalty (0 <A <1). We
used gap penalty = 1.0 andA = 0.5 with the(6,4) weighted gappy kernel. We found that= 0.5
weighting slightly weakened performance (results not shown). In Figune see that unweighted
and weightedX = 1.0) gappy kernels have comparable resultgtd )-mismatch kernel and Fisher
kernel.

We tested the substitution kernels with o) = (4,6.0). Here,o = 6.0 was chosen so that the
members of a mutation neighborhood of a particular 4-mer would typically halyeooe position
with a substitution, and such substitutions would have fairly high probabiliter&fbre, the mu-
tation neighborhoods were much smaller than, for exan{gld,)-mismatch neighborhoods. The
results are shown in Figure 6. Again, the substitution kernel has contpgratfiormance with
mismatch-SVM and Fisher-SVM, though results are perhaps slightly wéakerore difficult test
families.

In order to compare with thg, 1)-mismatch kernel, we tested wildcard kernels with parameters
(k,mA) = (5,1,1.0) and(k,m,A) = (5,1,0.5). Results are shown in Figure 7. The wildcard kernel
with A = 1.0 seems to perform as well or almost as well as(#é)-mismatch kernel and Fisher
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Figure 5: Comparison of of Mismatch-SVM, Fisher-SVM and Gappy-SVM. The graph plots
the total number of families for which a given method exceeds an ROC saeshtid
(a) or ROC-50 score threshold (b).
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Figure 6: Comparison of mismatch-SVM, Fisher-SVM and substitution-SVM.The graph plots
the total number of families for which a given method exceeds an ROC saeshtid
(a) or ROC-50 score threshold (b).

kernel, while enforcing a penalty on wildcard charactera ef 0.5 seems to weaken performance
somewhat.

If we compare results for the best-performing parameter choices thaieddrsm each kernel
family — the (5,1)-mismatch kernel, th¢5,1,1.0)-wildcard kernel, thg6,4)-gappy kernel with
A = 1.0, and the(4, 6.0)-substitution kernel — then a signed ranked test with Bonferroni daorec
for multiple comparisons (Henikoff and Henikoff, 1992, Salzberg, 338W a p-value cut-off of
0.05 finds no significant differences between the four kernels, eithtiracbasis of ROC or ROC-50
scores.

5.2 SCOP Experiments without Domain Homologs: Dependence on Paratees

In the second set of SCOP experiments, we take advantage of the smtdlesetifrom Weston
et al. (2003) to generate kernels corresponding to a wider rangerafpger values, so that we
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Figure 7: Comparison of mismatch-SVM, Fisher-SVM and wildcard-SVM. The graph plots the
total number of families for which a given method exceeds an ROC scoshtiice(a) or
ROC-50 score threshold (b).

can explore how parameter choices affect SVM classification perfa®akiVe also use kernel
alignment and kernel-target alignment scores (Cristianini et al., 2001 )vé&stigate differences
between different kernel models. Note that this data set contains no dooramlogs, and thus the
small amount of positive training data makes the experiments more difficult.

In experiments with the gappy kernel, we chose parameter vidues= (6,4), (7,5) and(8,6)
and set the gap penalty do= 1.0, the preferred choice from the previous experiments. The choice
(9,k) = (6,4) still produced the best classification results, which were slightly but noifisigntly
weaker than those a5, 1)-mismatch kernel. The results are shown in Figure 8. Performance
deteriorates as larger values of thparameter are chosen with the number of gaps held fixed.
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Figure 8: Dependence on parameters for the gappy kernellhe graph plots the total number of
families for which a given method exceeds an ROC (a) or ROC-50 (bg $bogshold.

The substitution kernel was tested with parameter chdices = (4,6.0), (5,7.5) and(6,9.0).
All of these three kernels gave slightly stronger performance thatbttig-mismatch kernel, and
results for the different parameter choices were remarkably similar,aensim Figure 9. Thus,
more so than for other inexact matching models, the substitution kernetparioe seems stable
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as we vank while o is adjusted additively; however, as we see below, the Gram matricesgaebdu
by these different choices of kernels are in fact quite different.
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Figure 9: Dependence on parameters for substitution kernelThe graph plots the total number
of families for which a given method exceeds an ROC (a) or ROC-50 (seghreshold.
Results for three parameter choices give almost identical results.

We tested the wildcard kernel wittk, m,A) = (5,1,1.0) and(5,2,1.0). We observed a signif-
icant improvement in performance when we allowed up to 2 wildcards insteadmith k = 5.
The performance of5,2,1.0)-wildcard kernel gave the best results among all kernel families and
parameters that we tried, though several other kernel choices ggv&wvdar performance. The re-
sults are shown in Figure 10. Intuitively, it is clear that allowing 1 mismatch ickospermitting 2
wildcards than to permitting a single wildcard: tkeamers that are identical excepttiwo positions
have intersectingk, 1)-mismatch neighborhoods and hence tli&irl)-mismatch feature vectors
have non-zero inner product; similarly, such a paikehers have non-orthogongi, 2)-wildcard
feature vectors but orthogon@, 1)-wildcard feature vectors.
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Figure 10: Dependence on parameters for the wildcard kernelThe graph plots the total number
of families for which a given method exceeds an ROC (a) or ROC-50 s shreshold.
In the graph, the curve @b, 2,1.0)-wildcard kernel clearly outperforms tt{g, 1, 1.0)-
wildcard kernel.
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Kernel Kernel Alignment ROC ROC-50
(5,1)-mismatch 0.0982 0.875 0.416
(6,4)-gappy 0.1428 0.851  0.387
(7,5)-gappy 0.0269 0.825 0.315
(8,6)-gappy 0.0090 0.782  0.242
(4,6.0)-substitution 0.1643 0.876  0.441
(5,7.5)-substitution 0.0369 0.865 0.428
(6,9.0)-substitution 0.0170 0.871 0.442
(5,1,1.0)-wildcard 0.0310 0.816  0.304
(5,2,1.0)-wildcard 0.1565 0.881  0.447

Table 1: Mean ROC and ROC-50 scores over 54 target families.

Kernel | (5,1)-mismatch (6,4)-gappy  (4,6)-subst (6,9)-subst (5,1)-wildcard  (5,2)-wildcard
(5,1)-mismatch 1.000 0.923 0.812 0.947 0.968 0.864
(6,4)-gappy 1.000 0.915 0.742 0.775 0.955
(4,6)-subst 1.000 0.591 0.622 0.942
(6,9)-subst 1.000 0.991 0.626
(5,1)-wildcard 1.000 0.669
(5,2)-wildcard 1.000

Table 2: Pairwise kernel alignment scores over the full SCOP data set.

In Table 1, we summarize the mean ROC and ROC-50 scores across thgé&i4danilies for
all the string kernels families and parameter values chosen. The table alge stean training
setkernel-target alignmenscores across the experiments. Kernel alignment was introduced by
Cristianini et al. (2001) as a measure of similarity between pairs of kernéksteween a kernel and
a target function. Thempirical kernel alignmerdgcore between two kernels is defined as the value

<K1a K2>

V/ (K1, K1) (K2,K2)
(-,-) is the euclidean inner product when the Gram matrices are viewed ass/gdiidert-Schmidt
inner product). Thus the alignment score is simply the cosine of the angle&rtive two vectors
representing Gram matrices. Thepirical kernel-target alignmens the kernel alignment for a
Gram matrix and the targgt, wherey is the column vector of labels.

Table 1 shows that for the gappy and wildcard kernels, high kernedttatmnment scores do
seem to correlate with good SVM classification performance. Howevehdgsubstitution kernels,
the kernel-target alignment is low for larger valuekathile performance remains strong. In Table
2, we show the pairwise kernel alignment scores between normalizedikem the full SCOP
data set of 7329 sequences. In some cases, the alignment scoresrbkéneels of the same
family with different parameters can be quite low, for example (8, 1.0)-wildcard kernel and
(5,2,1.0)-wildcard kernel. Surprisingly, the, 9)-substitution kernel Gram matrix is very similar to
the (5,1, 1.0)-wildcard kernel Gram matrix when compared by alignment score, evemglththeir
SVM performance is somewhat different, showing that the score gingsaorough measure of
kernel similarity. The(6,4)-gappy kernel(4, 6)-substitution kernel an¢b, 2,1.0)-wildcard kernel
are a group of well aligned Gram matricé€$, 1)-mismatch kernel seems to be in between the two
previous groups in terms of kernel alignment. Clearly, all the models of miewatching are fairly
similar, but there do appear to be several significantly different Gramceatin the set below that
all successfully represent the data for the purposes of SVM learning.

, whereK; andK; are the Gram matrices for the kernels on the sample data, and
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Kernel ROC ROC-50
Keg(ai = 1) 0.907 0520
Kopt(0 =0.01) 0.901 0502

Table 3: Mean ROC and ROC-50 scores of linearly combined kernelse Kigf = ZiNzldiKi,
whereN is the number of kernelsy is the optimal vector for the best alignment with
targetyy, and the the regularization parameter depends as described in the text.

Since different kernels capture somewhat different notions of segusimilarity, we consider
whether a convex combination of kern&lga) = SN | a;jK;, with o; > 0 fori = 1...N, can outper-
form individual kernels. We consider two schemes for choosing sdiciear combination. In the
first approach, we simply assign equal weighis= 1/N for all i to obtain a new kernefeq. For
a second approach, we follow Kandola et al. (2002), who propoggtharal method for learning
the a; by solving a optimization problem to maximize the kernel alignment between Grarixmatr

of K(a) and targeyy,
YK(@)y

YIK ()]’

yielding a new kerneKq . Here, one introduces a regularization paramgtierconstrain |a|| and
prevent over-alignment; the optimization then amounts to a quadratic prograrpnobigm that
can be solved through standard methods. We now pick 6 kernels with e§fagivod performance
and low pairwise kernel alignment as components for the new keriig] 1}-mismatch,(6,4)-
gappy,(4,6.0)-substitution 5, 7.5)-substitution (6, 9.0)-substitution and5, 2, 1.0)-wildcard — and
repeat the second set of SCOP experiments with these two linear combinatraisk Forkopy,
we use a regularization parameter of the favm ; 5 (Ki, Kj), where(., -) is the Hilbert-Schmidt
inner product between matrices. We found that performance variedlglmltt significantly as we
variedo = .001,.01,.1,1,10,100,1000 (results not shown); since the experiments do not contain
a cross-validation set, we simply report the performance of the beshpteachoice ¢ = .01)
with the caveat that this result may be somewhat optimistic. We report the meamRDROC-50
scores across 54 experiments for the simple sageand the optimal alignment ca&gy in Table
3. We found thaK,: with the best regularization parameter choice does achieve significant im-
provement over the best individual kernel (indeed, almost all reigatéon parameters that we tried
displayed some advantage over the best individual kernel); howtbeesimple weighting used in
Keq slightly outperformed, in these experiments. Interestingly, for most of 54 experiméis,
(o =0.01) had non-zero weights only for the two best performing kernelg,4/&0)-substitution
and(5,2,1.0)-wildcard kernels, with the weight for the latter about an order of magnisucis|ier
than that of the former. These results suggest that some of the kera@sraplementary to each
other and that combining them can help improve performance, though ipibat optimal align-
ment does not outperform a simple uniform weighting scheme for combinimglser

A(SK(a).yy) =

6. Discussion

We have presented a number of differkmner based string kernels that capture a notion of inex-
act matching — through use of gaps, probabilistic substitutions, and wikleabdt maintain fast
computation time. Using a recursive function based on a trie data structishyow that for all our
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new kernels, the time to compute a kernel vak&,y) is O(ck (|X| + |y|)), where the constartk
depends on the parameters of the kernel but not on the size of the elphdthus we improve on
the constant factor involved in computation of the previously presented misrkeiticel, in which
|Z| as well ak andm control the size of the mismatch neighborhood and hence the congtant

We also show how many of our kernels can be obtained through the repeasignted trans-
ducer formalism of rational o T~ kernels and give the transducErfor several examples. This
connection gives an intuitive understanding of the kernel definitionscaottl inspire new string
kernels.

Finally, we present results on two benchmark SCOP data sets for the rerotim homology
detection problem and show that many of the new, faster kernels actégieerpance comparable
to the mismatch kernel. We also investigate how kernel performance depemdsameter choice
for the different inexact matching models. Intuitively, it is clear that the ditjogical reasonable
choices involve shok-mer features, since as we alléo grow, we cannot permit sufficient inexact
matching without also introducing noise. However, within these constraimtsesults demonstrate
the somewhat different behavior of the various kernel families.

We note that Vishwanathan and Smola (2002) used counting statistics afffikdrse con-
struction to eliminate the constant factorkoh computation time for the exact-matching spectrum
kernel (Leslie et al., 2002a). It may be possible to extend this technique taghinexact-matching
kernels presented here.

A promising direction for applied work in this area is combining string kerngtegentations
with semi-supervised approaches for leveraging the abundant urdgirekein sequence data (se-
guences whose 3D structure is unknown) available in sequence degaltrse recent approach is
presented by Weston et al. (2003), where string kernels are usebtas® &ernel representation,
and unlabeled sequence data together with a dissimilarity measure betwaencggxamples are
used to builccluster kernelghat modify the base kernel for a richer representation. In more recent
work (Kuang et al., 2004), we defihkemer based string kernels for probabilistic sequence profiles
(Gribskov et al., 1987), which also give a richer representation aiessgps by estimating posi-
tion specific residue emission probabilities from unlabeled data. Thestegdrafed string kernels
provide another promising semi-supervised approach for kernedgeptation of protein sequence
data.
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