
Journal of Machine Learning Research 5 (2004) 1435–1455 Submitted 1/04; Revised 7/04; Published 11/04

Fast String Kernels using Inexact Matching for Protein Sequences

Christina Leslie CLESLIE@CS.COLUMBIA .EDU

Center for Computational Learning Systems
Columbia University
New York, NY 10115, USA

Rui Kuang RKUANG@CS.COLUMBIA .EDU

Department of Computer Science
Columbia University
New York, NY 10027, USA

Editor: Kristin Bennett

Abstract

We describe several families ofk-mer based string kernels related to the recently presentedmis-
match kernel and designed for use with support vector machines (SVMs) for classification of pro-
tein sequence data. These new kernels – restricted gappy kernels, substitution kernels, and wildcard
kernels – are based on feature spaces indexed byk-length subsequences (“k-mers”) from the string
alphabetΣ. However, for all kernels we define here, the kernel valueK(x,y) can be computed in
O(cK(|x|+ |y|)) time, where the constantcK depends on the parameters of the kernel but is inde-
pendent of the size|Σ| of the alphabet. Thus the computation of these kernels is linear in the length
of the sequences, like the mismatch kernel, but we improve upon the parameter-dependent con-
stantcK = km+1|Σ|m of the(k,m)-mismatch kernel. We compute the kernels efficiently using atrie
data structure and relate our new kernels to the recently described transducer formalism. In protein
classification experiments on two benchmark SCOP data sets,we show that our new faster kernels
achieve SVM classification performance comparable to the mismatch kernel and the Fisher kernel
derived from profile hidden Markov models, and we investigate the dependence of the kernels on
parameter choice.

Keywords: kernel methods, string kernels, computational biology

1. Introduction

The original work on string kernels – kernel functions defined on the set of sequences from an al-
phabetΣ rather than on a vector space (Cristianini and Shawe-Taylor, 2000) – came from the field of
computational biology and was motivated by algorithms for aligning DNA and protein sequences.
Pairwise alignment algorithms, in particular the Smith-Waterman algorithm for optimallocal align-
ment and the Needleman-Wunsch algorithm for optimal global alignment (Waterman et al., 1991),
model the evolutionary process of mutations – insertions, deletions, and residue substitutions rela-
tive to an ancestral sequence – and give natural sequence similarity scores related to evolutionary
distance. However, standard pairwise alignment scores do not represent valid kernels (Vert et al.,
2004), and the first string kernels to be defined – dynamic alignment kernels based on pair hidden
Markov models by Watkins (1999) and convolution kernels introduced by Haussler (1999) – had to
develop new technical machinery to translate ideas from alignment algorithms into a kernel frame-
work. More recently, there has also been interest in the development of string kernels for use with

c©2004 Christina Leslie and Rui Kuang.

LESLIE AND KUANG

support vector machine classifiers (SVMs) and other kernel methods in fields outside computational
biology, such as text processing and speech recognition. For example,the gappyn-gram kernel de-
veloped by Lodhi et al. (2002) implemented a dynamic alignment kernel for text classification. A
practical disadvantage of all these string kernels is their computational expense. In general, these
kernels rely on dynamic programming algorithms for which the computation of each kernel value
K(x,y) is quadratic in the length of the input sequencesx andy, that is,O(|x||y|) with constant factor
that depends on the parameters of the kernel.

The recently presentedk-spectrum (gap-freek-gram) kernel and the(k,m) mismatch kernel pro-
vide an alternative model for string kernels for biological sequences and were designed, in particular,
for the application of SVM protein classification. These kernels use countsof common occurrences
of shortk-length subsequences, calledk-mers, rather than notions of pairwise sequence alignment,
as the basis for sequence comparison. Thek-mer idea still captures a biologically-motivated model
of sequence similarity, in that sequences that diverge through evolution are still likely to contain
short subsequences that match or almost match. Leslie et al. (2002a) introduced a linear time
(O(k(|x|+ |y|)) implementation of thek-spectrum kernel, using exact matches ofk-mer patterns
only, based on a trie data structure. Later, the(k,m)-mismatch kernel (Leslie et al., 2002b) extended
thek-mer based kernel framework and achieved improved performance on the protein classification
task by incorporating the biologically important notion of character mismatches (residue substitu-
tions). Using a mismatch tree data structure, the complexity of the kernel calculation was shown
to beO(cK(|x|+ |y|)), with cK = km+1|Σ|m for k-grams with up tom mismatches from alphabetΣ.
A different extension of thek-mer framework was presented by Vishwanathan and Smola (2002),
who computed the weighted sum of exact-matchingk-spectrum kernels for differentk by using suf-
fix trees and suffix links, allowing elimination of the constant factor in the spectrum kernel for a
compute time ofO(|x|+ |y|).

In this paper, we extend thek-mer based kernel framework in new ways by presenting several
novel families of string kernels for use with SVMs for classification of proteinsequence data. These
kernels – restricted gappy kernels, substitution kernels, and wildcard kernels – are again based on
feature spaces indexed byk-length subsequences from the string alphabetΣ (or the alphabet aug-
mented by a wildcard character) and use biologically-inspired models of inexact matching. Thus
the new kernels are closely related both to the(k,m)-mismatch kernel and the gappyk-gram string
kernels used in text classification. However, for all kernels we define here, the kernel valueK(x,y)
can be computed inO(cK(|x|+ |y|)) time, where the constantcK depends on the parameters of the
kernel but is independent of the size|Σ| of the alphabet. Our efficient computation uses a recursive
function based on a trie data structure and is linear in the length of the sequences, like the mismatch
kernel, but we improve upon the parameter-dependent constant; a similar trie-based sequence search
strategy has been used, for example, in work of Sagot (1998) for motif discovery. The restricted
gappy kernels we present here can be seen as a fast approximation ofthe gappyk-gram kernel of
Lodhi et al. (2002), where by using ourk-mer based computation, we avoid dynamic programming
and the resultant quadratic compute time; we note that the gappyk-gram kernel can also be seen as
a special case of a dynamic alignment kernel (Watkins, 1999), giving a linkbetween this work and
some of the kernels we define. Cortes et al. (2002) have recently presented a transducer formalism
for defining rational string kernels, and all thek-mer based kernels can be naturally described in this
framework. We relate our new kernels to the transducer formalism and give transducers correspond-
ing to our newer kernels. We note that Cortes et al. (2002) also describethe original convolution
kernels of Haussler (1999) within their framework, suggesting that the transducer formalism is a

1436

FAST STRING KERNELS

natural unifying framework for describing many string kernels in the literature. However, the com-
plexity for kernel computation using the standard rational kernel algorithmis O(cT |x||y|), wherecT

is a constant that depends on the transducer, leading again to quadratic rather than linear dependence
on sequence length.

Finally, we report protein classification experiments on two benchmark data sets based on the
SCOP database (Murzin et al., 1995), where we show that our new faster kernels achieve SVM
classification performance comparable to the mismatch kernel and the Fisher kernel derived from
profile hidden Markov models. We also use kernel alignment scores (Cristianini et al., 2001) to
investigate how different the various inexact matching models are from each other, and to what
extent they depend on kernel parameters. Moreover, we show that byusing linear combinations of
different kernels, we can improve performance over the best individual kernel.

The current paper is an extended version of the original paper presenting these inexact string
matching kernels (Leslie and Kuang, 2003). We have added the second set of SCOP experiments to
allow more investigation of the dependence of SVM performance on kernelparameter choices. We
have also included the kernel alignment results to explore differences between kernels and parameter
choices and the advantage of combining these kernels.

2. Definitions of Feature Maps and String Kernels

Below, we review the definition of mismatch kernels (Leslie et al., 2002b) and present three new
families of string kernels: restricted gappy kernels, substitution kernels, and wildcard kernels.

In each case, the kernel is defined via an explicit feature map from the space of all finite se-
quences from an alphabetΣ to a vector space indexed by the set ofk-length subsequences fromΣ
or, in the case of wildcard kernels,Σ augmented by a wildcard character. For protein sequences,Σ
is the alphabet of|Σ| = 20 amino acids. We refer to ak-length contiguous subsequence occurring
in an input sequence as an instancek-mer (also called ak-gram in the literature). The mismatch
kernel feature map obtains inexact matching of instancek-mers from the input sequence tok-mer
features by allowing a restricted number of mismatches; the new kernels achieve inexact matching
by allowing a restricted number of gaps, by enforcing a probabilistic threshold on character sub-
stitutions, or by permitting a restricted number of matches to wildcard characters. These models
for inexact matching have all been used in the computational biology literaturein other contexts, in
particular for sequence pattern discovery in DNA and protein sequences (Sagot, 1998) and proba-
bilistic models for sequence evolution (Henikoff and Henikoff, 1992, Schwartz and Dayhoff, 1978,
Altschul et al., 1990).

2.1 Spectrum and Mismatch Kernels

In previous work, we defined the(k,m)-mismatch kernel via a feature mapΦMismatch
(k,m) to the |Σ|k-

dimensional vector space indexed by the set ofk-mers fromΣ. For a fixedk-mer α = a1a2 . . .ak,
with eachai a character inΣ, the (k,m)-neighborhood generated byα is the set of allk-length
sequencesβ from Σ that differ fromα by at mostm mismatches. We denote this set byN(k,m)(α).
For ak-merα, the feature map is defined as

ΦMismatch
(k,m) (α) = (φβ(α))β∈Σk

1437

LESLIE AND KUANG

whereφβ(α) = 1 if β belongs toN(k,m)(α), andφβ(α) = 0 otherwise. For a sequencex of any length,
we extend the map additively by summing the feature vectors for all thek-mers inx:

ΦMismatch
(k,m) (x) = ∑

k-mersα in x

ΦMismatch
(k,m) (α).

Each instance of ak-mer contributes to all coordinates in its mismatch neighborhood, and theβ-
coordinate ofΦMismatch

(k,m) (x) is just a count of all instances of thek-mer β occurring with up tom

mismatches inx. The (k,m)-mismatch kernelK(k,m) is then given by the inner product of feature
vectors:

KMismatch
(k,m) (x,y) = 〈ΦMismatch

(k,m) (x),ΦMismatch
(k,m) (y)〉.

Form= 0, we obtain thek-spectrum (Leslie et al., 2002a) ork-gram kernel (Lodhi et al., 2002).

2.2 Restricted Gappy Kernels

For the(g,k)-gappy string kernel,g≥ k, we use the same|Σ|k-dimensional feature space, indexed
by the set ofk-mers fromΣ, but we define our feature map based on gappy matches ofg-mers to
k-mer features. For a fixedg-mer α = a1a2 . . .ag(eachai ∈ Σ), let G(g,k)(α) be the set of all the
k-length subsequences occurring inα (with up to g− k gaps). Then we define the gappy feature
map onα as

ΦGap
(g,k)(α) = (φβ(α))β∈Σk,

whereφβ(α) = 1 if β belongs toG(g,k)(α), andφβ(α) = 0 otherwise. In other words, each instance
g-mer contributes to the set ofk-mer features that occur (in at least one way) as subsequences with
up to g− k gaps in theg-mer. Now we extend the feature map to arbitrary finite sequencesx by
summing the feature vectors for all theg-mers inx:

ΦGap
(g,k)(x) = ∑

g-mersα∈x
ΦGap

g,k (α).

The kernelKGap
(g,k)(x,y) is defined as before by taking the inner product of feature vectors forx andy.

Alternatively, given an instanceg-mer, we may wish to count the number of occurrences of each
k-length subsequence and weight each occurrence by the number of gaps. Following (Lodhi et al.,
2002), we can define forg-merα andk-mer featureβ = b1b2 . . .bk the weighting

φλ
β(α) =

1
λk ∑

1≤i1<i2<...<ik≤g
ai j =b j for j=1...k

λik−i1+1,

where the multiplicative factor satisfies 0< λ ≤ 1. We can then obtain a weighted version of the
gappy kernelKWeighted Gap

(g,k,λ) from the feature map:

ΦWeighted Gap
(g,k,λ) (x) = ∑

g-mersα∈x
(φλ

β(α))β∈Σk.

Here, the weighting
λik−i1+1

λk penalizes a gappy occurrence of ak-mer by a factorλ raised to the

number of internal gaps. This feature map is related to the gappyk-gram kernel defined by Lodhi

1438

FAST STRING KERNELS

et al. (2002) but enforces the following restriction: here, only thosek-character subsequences that
occur with at mostg− k gaps, rather than all gappy occurrences, contribute to the corresponding
k-mer feature. When restricted to input sequences of lengthg, our feature map coincides with
that of the usual gappyk-gram kernel. Note, however, that for our kernel, a gappyk-mer instance
(occurring with at mostg− k gaps) is counted in all (overlapping)g-mers that contain it, whereas
in Lodhi et al. (2002), a gappyk-mer instance is only counted once. If we wish to approximate the
gappyk-gram kernel, we can define a small variation of our restricted gappy kernel where one only
counts a gappyk-mer instance if its first character occurs in the first position of ag-mer window.
That is, the modified feature map is defined on eachg-merα by coordinate functions

φ̃λ
β(α) =

1
λk ∑

1=i1<i2<...<ik≤g
ai j =b j for j=1...k

λik−i1+1,

0 < λ≤ 1, and is extended to longer sequences by adding feature vectors forg-mers. This modified
feature map now gives a “truncation” of the usual gappyk-gram kernel.

In Section 3, we show that our restricted gappy kernel hasO(c(g,k)(|x|+ |y|)) computation
time, where constantc(g,k) depends on size ofg andk, while the original gappyk-gram kernel
has complexityO(k(|x||y|)). Note in particular that we do not compute the standard gappyk-gram
kernel on every pair ofg-grams fromx andy, which would necessarily be quadratic in sequence
length since there areO(|x||y|) such pairs. We will see that for reasonable choices ofg andk, we
obtain much faster computation time, while in experimental results reported in Section 5, we still
obtain good classification performance.

2.3 Substitution Kernels

The substitution kernel is again similar to the mismatch kernel, except that we replace the combi-
natorial definition of a mismatch neighborhood with a similarity neighborhood based on a proba-
bilistic model of character substitutions. In computational biology, it is standard to compute pair-
wise alignment scores for protein sequences using a substitution matrix (Henikoff and Henikoff,
1992, Schwartz and Dayhoff, 1978, Altschul et al., 1990) that givespairwise scoress(a,b) de-
rived from estimated evolutionary substitution probabilities. In one scoring system (Schwartz and
Dayhoff, 1978), the scoress(a,b) are based on estimates of conditional substitution probabilities
P(a|b) = p(a,b)/q(b), wherep(a,b) is the probability thata andb co-occur in an alignment of
closely related proteins,q(a) is the background frequency of amino acida, andP(a|b) represents
the probability of a mutation intoa during fixed evolutionary time interval given that the ancestor
amino acid wasb. We define the mutation neighborhoodM(k,σ)(α) of a k-mer α = a1a2 . . .ak as
follows:

M(k,σ)(α) = {β = b1b2 . . .bk ∈ Σk :−
k

∑
i

logP(ai |bi) < σ}.

Mathematically, we can defineσ = σ(N) such that maxα∈Σk|M(k,σ)(α)|< N, so we have theoretical
control over the maximum size of the mutation neighborhoods. In practice, choosingσ to allow an
appropriate amount of mutation while restricting neighborhood size may require experimentation
and cross-validation.

Now we define the substitution feature map analogously to the mismatch feature map:

ΦSub
(k,σ)(x) = ∑

k-mersα in x

(φβ(α))β∈Σk,

1439

LESLIE AND KUANG

whereφβ(α) = 1 if β belongs to the mutation neighborhoodM(k,σ)(α), andφβ(α) = 0 otherwise.

2.4 Wildcard Kernels

Finally, we can augment the alphabetΣ with a wildcard character denoted by∗, and we map to
a feature space indexed by the setW of k-length subsequences fromΣ∪ {∗} having at mostm

occurrences of the character∗. The feature space has dimension∑m
i=0

(
k
i

)
|Σ|k−i .

A k-mer α matches a subsequenceβ in W if all non-wildcard entries ofβ are equal to the
corresponding entries ofα (wildcards match all characters). The wildcard feature map is given by

ΦWildcard
(k,m,λ) (x) = ∑

k-mersα in x

(φβ(α))β∈W ,

whereφβ(α) = λ j if α matches patternβ containing j wildcard characters,φβ(α) = 0 if α does not
matchβ, and 0< λ≤ 1.

Other variations of the wildcard idea, including specialized weightings and use of groupings of
related characters, are described by Eskin et al. (2003).

3. Efficient Computation

All the k-mer based kernels we define above can be efficiently computed using a trie(retrieval tree)
data structure, similar to the mismatch tree approach previously presented (Leslie et al., 2002b).
In this framework,k-mer features correspond to paths from the root to the leaf nodes of the tree,
and the data structure is used to organize a traversal of all the inexact matching instance patterns
in the data that contribute to eachk-mer feature count. We will describe the computation of the
gappy kernel in most detail, since the other kernels are easier adaptationsof the mismatch kernel
computation. For simplicity, we explain how to compute a single kernel valueK(x,y) for a pair
of input sequences; computation of the full kernel matrix in one traversalof the data structure is a
straightforward extension.

3.1 (g,k)-Gappy Kernel Computation

For the(g,k)-gappy kernel, we represent our feature space as a rooted tree of depthk where each
internal node has|Σ| branches and each branch is labeled with a symbol fromΣ. In this depthk trie,
each leaf node represents a fixedk-mer in feature space by concatenating the branch symbols along
the path from root to leaf and each internal node represents the prefix for those for the set ofk-mer
features in the subtree below it.

Using a depth-first traversal of this tree, we maintain at each node that wevisit a set of pointers
to all g-mer instances in the input sequences that contain a subsequence (with gaps) that matches the
current prefix pattern; we also store, for eachg-mer instance, an index pointing to the last position
we have seen so far in theg-mer. At the root, we store pointers to allg-mer instances, and for each
instance, the stored index is 0, indicating that we have not yet seen any characters in theg-mer.
As we pass from a parent node to a child node along a branch labeled with symbol a, we process
each of parent’s instances by scanning ahead to find the next occurrence of symbola in eachg-
mer. If such a character exists, we pass theg-mer to the child node along with its updated index;
otherwise, we drop the instance and do not pass it to the child. Thus at each node of depthd, we

1440

FAST STRING KERNELS

have effectively performed a greedy gapped alignment ofg-mers from the input sequences to the
currentd-length prefix, allowing insertion of up tog−k gaps into the prefix sequence to obtain each
alignment. When we encounter a node with an empty list of pointers (no valid occurrences of the
current prefix), we do not need to search below it in the tree; in fact, unless there is a validg-mer
instance from each ofx andy, we do not have to process the subtree. When we reach a leaf node, we
sum the contributions of all instances occurring in each source sequence to obtain feature values for
x andy corresponding to the currentk-mer, and we update the kernel by adding the product of these
feature values. Since we are performing a depth-first traversal, we can accomplish the algorithm
with a recursive function and do not have to store the full trie in memory. Figure 1 shows expansion
down a path during the recursive traversal.

a

b

b

a
a

a
a

a
b
a b
a

1 2 1

a
a

a
a

a
b
a b
a

2 4 3

a
a

a b

b

5

0 00
a
a

a
a

a
b
a b
a

b

b

b

b

b

b

a
b

a

b
a

b
a

b
a

a
b

a
b

a

a
b

b
5

Figure 1: Trie traversal for gappy kernel. Expansion along a path from root to leaf during traveral
of the trie for the(5,3)-gappy kernel, showing only the instance 5-mers for a single
sequencex = abaabab. Each node stores its valid 5-mer instances and the index to the
last match for each instance. Instances at the leaf node contribute to the kernel for 3-mer
featureabb.

The computation at the leaf node depends on which version of the gappy kernel one uses. For
the unweighted feature map, we obtain the feature values ofx andy corresponding to the currentk-
mer by counting theg-mer instances at the leaf coming fromx and fromy, respectively; the product
of these counts gives the contribution to the kernel for thisk-mer feature. For theλ-weighted gappy
feature map, we need a count of all alignments of each validg-mer instance against thek-mer
feature allowing up tog− k gaps. This can be computed with a simple dynamic programming
routine (similar to the Needleman-Wunsch algorithm), where we sum over a restricted set of paths,
as shown in Figure 2. The complexity isO(k(g−k)), since we fill a restricted trellis of(k+1)(g−
k+1) squares. Note that when we align a subsequencebi1bi2 . . .bik against ak-mera1a2 . . .ak, we
only penalize interior gaps corresponding to non-consecutive indices in1≤ i1 < i2 . . . < ik ≤ g.
Therefore, the multiplicative gap cost is 1 in the zeroth and last rows of the trellis andλ in the other
rows.

In order to determine the worst case complexity of the kernel computation, weestimate the
traversal time – which can be bounded by the total number ofg-mer instances that are processed

1441

LESLIE AND KUANG

(A) (B)

Figure 2: Dynamic programming at the leaf node. The trellis in (A) shows the restricted paths
for aligning ag-mer against ak-mer, with insertion of up tog− k gaps in thek-mer, for
g= 5 andk = 3. The basic recursion for summing path weights isS(i, j) = m(ai ,b j)S(i−
1, j − 1) + g(i)S(i, j − 1), wherem(a,b) = 1 if a and b match, 0 if they are different,
and the gap penaltyg(i) = 1 for i = 0,k andg(i) = λ for other rows. That is, except for
the top and bottom rows, every time we move to the right, we introduce an additional
internal gap and incur a multiplicative penalty ofλ; when we move diagonally, we see
whether the corresponding characters match or not. Trellis (B) shows theexample of
aligningababbagainst 3-merabb. An explanation of how to interpret trellis diagrams for
dynamic programming can be found in Durbin et al. (1998).

at the leaf nodes multiplied by the maximum number of times an instance is operated onas it is
passed from root to leaf – plus the processing time at the leaf nodes need tocompute the kernel

update. Eachg-mer instance in the input data can contribute to

(
g
k

)
k-mer features, which we can

write asO(gg−k) if g−k is smaller thank andO(gk) otherwise. For simplicity, we assume the more
typical former case, and we let the reader make simple adjustments in the latter case. Therefore, at
mostO(gg−k(|x|+ |y|) g-mer instances are processed at leaf nodes in the traversal. Since we iterate
through at mostg positions of eachg-mer instance as we pass from root to leaf, the traversal time is
O(gg−k+1(|x|+ |y|)). The total processing time at leaf nodes isO(gg−k(|x|+ |y|)) for the unweighted
gappy kernel andO(k(g−k)gg−k(|x|+ |y|)) for the weighted gappy kernel. Therefore, in both cases,
we have total complexity of the formO(c(g,k)(|x|+ |y|)), with c(g,k) = O((g− k)gg−k+1) for the
more expensive kernel. Further discussion of the complexity argument and pseudocode for the
algorithm can be found in Shawe-Taylor and Cristianini (2004).

Note that with the definition of the gappy feature maps given above, a gappyk-character sub-
sequence occuring withc≤ g− k gaps is counted in each of theg− (k+ c)+1 g-length windows
that contain it. To obtain feature maps that count a gappyk-character subsequence only once, we
can make minor variations to the algorithm by requiring that the first character of a gappyk-mer
occurs in the first position of theg-length window in order to contribute to the correspondingk-mer
feature.

1442

FAST STRING KERNELS

3.2 (k,σ)-Substitution Kernel Computation

For the substitution kernel, computation is very similar to the mismatch kernel algorithm. We
use a depthk trie to represent the feature space. We store, at each depthd node that we visit,
a set of pointers to allk-mer instancesα in the input data whosed-length prefixes have current
mutation score−∑d

i=1 logP(ai |bi) < σ of the current prefix patternb1b2 . . .bd, and we store the
current mutation score for eachk-mer instance. As we pass from a parent node at depthd to a child
node at depthd + 1 along a branch labeled with symbolb, we process eachk-mer α by adding
− logP(ad+1|b) to the mutation score and pass it to the child if and only if the score is still less
than σ. As before, we update the kernel at the leaf node by computing the contribution of the
correspondingk-mer feature.

The number of leaf nodes visited in the traversal isO(Nσ(|x|+ |y|)), where the constant is the
maximum mutation neighborhood size,Nσ = maxα∈Σk|M(k,σ)|. We can chooseσ sufficiently small
to get any desired bound onNσ, but it is difficult to estimate how to set the parameters to obtain
good SVM classification performance except by empirical results. Total complexity for the kernel
value computation isO(kNσ(|x|+ |y|)).

3.3 (k,m)-Wildcard Kernel Computation

Computation of the wildcard kernel is again very similar to the mismatch kernel algorithm. We use
a depthk trie with branches labeled by characters inΣ∪{∗}, and we prune (do not traverse) subtrees
corresponding to prefix patterns with greater thanm wildcard characters. At each node of depthd,
we maintain pointers to allk-mers instances in the input sequences whosed-length prefixes match
the currentd-length prefix pattern (with wildcards) represented by the path down fromthe root.

Eachk-mer instance in the data matches at most∑m
i=0

(
k
i

)
= O(km) k-length patterns having

up tom wildcards. Thus the number of leaf nodes visited is in the traversal isO(km(|x|+ |y|)), and
total complexity for the kernel value computation isO(km+1(|x|+ |y|)).

3.4 Comparison with Mismatch Kernel Complexity

For the(k,m) mismatch kernel, the size of the mismatch neighborhood of an instancek-mer is
O(km|Σ|m), so total kernel value computation isO(km+1|Σ|m(|x|+ |y|)). All the other kernels pre-
sented here have running timeO(cK(|x|+ |y|)), where constantcK depends on the parameters of the
kernel but not on the size of the alphabetΣ. Therefore, we have improved constant term for larger
alphabets (such as the alphabet of 20 amino acids). In Section 5, we showthat these new, faster
kernels have performance comparable to the mismatch kernel in protein classification experiments.

4. Transducer Representation

Cortes et al. (2002) recently showed that many known string kernels canbe associated with and
constructed from weighted finite state transducers with input alphabetΣ. We briefly outline their
transducer formalism and give transducers for some of our newly defined kernels. For simplicity,
we only describe transducers over the probability semiringR+ = [0,∞), with regular addition and
multiplication.

Following the development in Cortes et al. (2002), a weighted finite state transducer overR+ is
defined by a finite input alphabetΣ, a finite output alphabet∆, a finite set of statesQ, a set of input

1443

LESLIE AND KUANG

statesI ⊂Q, a set of output statesF ⊂Q, a finite set of transitionsE⊂Q× (Σ∪{ε})× (∆∪{ε})×
R+×Q, an initial weight functionλ : I → R+, and a final weight functionρ : F → R+. Here, the
symbolε represents the empty string. The transducer can be represented by a weighted directed
graph with nodes indexed byQ and each transitione∈ E corresponding to a directed edge from its
origin statep[e] to its destination staten[e] and labeled by the input symboli[e] it accepts, the output
symbolo[e] it emits, and the weightw[e] it assigns. We write the label asi[e] : o[e]/w[e] (abbreviated
asi[e] : o[e] if the weight is 1).

For a pathπ = e1e2 . . .ek of consecutive transitions (directed path in graph), the weight for the
path isw[π] = w[e1]w[e2] . . .w[ek], and we denotep[π] = p[e1] andn[π] = n[ek]. We write Σ∗ =
∪k≥0Σk for the set of all strings overΣ. For an input stringx ∈ Σ∗ and output stringz∈ ∆∗, we
denote byP(I ,x,z,F) the set of paths from initial statesI to final statesF that accept stringx and
emit stringz. A transducerT is called regulated if for any pair of input and output strings(x,z), the
output weight[[T]](x,z) thatT assigns to the pair is well-defined. The output weight is given by:

[[T]](x,z) = ∑
π∈P(I ,x,z,F)

λ(p[π])w[π]ρ(n[π])

A key observation from Cortes et al. (2002) is that there is a general method for defining a string
kernel from a weighted transducerT. Let Ψ : R+ → R be a semiring morphism (for us, it will
simply be inclusion), and denote byT−1 the transducer obtained fromT by transposing the input
and output labels of each transition. Then if the composed transducerS= T ◦T−1 is regulated, one
obtains a rational string kernel for alphabetΣ via

K(x,y) = Ψ([[S]](x,y)) = ∑
z

Ψ([[T]](x,z))Ψ([[T]](y,z))

where the sum is over all stringsz∈ ∆∗ (where∆ is the output alphabet forT) or equivalently, over
all output strings that can be emitted byT. Therefore, we can think ofT as defining a feature map
indexed by all possible output stringsz∈ ∆∗ for T.

Using this construction, Cortes et al. showed that thek-gram counter transducerTk corresponds
to thek-gram ork-spectrum kernel, and the gappyk-gram counter transducerTk,λ gives the unre-
stricted gappyk-gram kernel from Lodhi et al. (2002). Figure 3(a) shows the diagram of the 3-gram
transducerT3, and Figure 3(b) gives the gappy 3-gram transducerT3,λ. Our (g,k,λ)-gappy kernel

KWeighted Gap
(g,k,λ) can be obtained from the composed transducerT = Tk,λ ◦Tg using theT ◦T−1 con-

struction. (In all our examples, we useλ(s) = 1 for every initial states andρ(t) = 1 for every final
statet.)

For the(k,m)-wildcard kernel, we set the output alphabet to be∆ = Σ∪{∗} and define a trans-
ducer withm+ 1 final states, as indicated in the figure. Them+ 1 final states correspond to des-
tinations of paths that emitk-grams with 0, 1, . . . ,m wildcard characters, respectively. The(3,1)-
wildcard transducer is shown in Figure 4.

The (k,σ)-substitution kernel does not appear to fall exactly into this framework, though if
we threshold individual substitution probabilities independently rather than threshold the product
probability over all positions in thek-mer, we can define a transducer that generates a similar kernel.
Starting with thek-gram transducer, we add additional transitions (between “consecutive” states of
thek-gram) of the forma : b for those pairs of symbols with− logP(a|b) < σo. Now there will be
a (unique) path in the transducer that acceptsk-merα = a1a2 . . .ak and emitsβ = b1b2 . . .bk if and
only if every substitution satisfies− logP(ai |bi) < σo.

1444

FAST STRING KERNELS

(a)

(b)

Figure 3: The k-gram and gappyk-gram transducers.The diagrams show the 3-gram transducer
(a) and the gappy 3-gram transducer (b) for a two-letter alphabet. Here, the edge label
a : ε : λ, for example, means “accept symbola, output the empty symbolε, multiply the
weight byλ”.

Figure 4: The (k,m)-wildcard transducer. The diagram shows the(3,1)-wildcard transducer for
a two-letter alphabet.

5. Experiments

We tested all the new string kernels with SVM classifiers on two benchmark datasets (Jaakkola
et al., 1999, Weston et al., 2003), both designed for the remote protein homology detection problem,
in order to compare to results with the mismatch kernel reported previously (Leslie et al., 2002b) and
other recent kernel representations for protein sequence data. We also present results to explore how
parameter choices for the new kernels affect SVM classification performance. The benchmarks are
based on different versions of the SCOP database (Murzin et al., 1995), an expert-curated database
of protein domains with known 3D structure, organized hierarchically into folds, superfamilies, and

1445

LESLIE AND KUANG

families. Protein domain sequences belonging to different families but the samesuperfamily are
considered to be remote homologs in SCOP. In these experiments, remote homology is simulated
by holding out all members of a target SCOP family from a given superfamily as a test set, while
examples chosen from the remaining families in the same superfamily form the positive training
set. The negative test and training examples are chosen from disjoint setsof folds outside the target
family’s fold, so that negative test and negative training sets are unrelated to each other and to the
positive examples. More details of the experimental set-up can be found in Jaakkola et al. (1999).

While in principle, we can define and test inexact matching string kernels fora wide range
of parameters, in practice, only a small parameter range is biologically motivated for use in the
remote protein homology detection problem. For the exact matchingk-spectrum kernel (Leslie
et al., 2002a), the only interesting parameter choices arek = 3 andk = 4, since exact occurrences of
k-mers of lengthk≥ 5 in remotely homologous proteins are so rare that the spectrum kernel would
mostly be 0 off the diagonal. By incorporating inexact matching such as mismatches or gaps, we
can use slightly longer subsequence instances and allow a few mismatches orgaps; however, using
very long subsequences, or allowing a great amount of mutation of subsequence instances in our
inexact matching scheme, would not capture biologically realistic sequence similarity. For example,
for the gappy kernel, we expect that length(g,k) = (6,4) – 4-mers allowing up to 2 gaps – would
be a useful parameter choice, while allowing many more gaps and hence a longerg-length window
would be less useful. We test a range of parameter choices that seem reasonable in the experiments
below.

In the first and larger SCOP benchmark data set, based on SCOP version1.37, we compare to
the Fisher kernel of Jaakkola et al. (1999) in addition to our previous mismatch kernel. In the Fisher
kernel method, the feature vectors are derived from profile HMMs trained on the positive training
examples. The feature vector for sequencex is the gradient of the log likelihood function logP(x|θ)
defined by the model and evaluated at the maximum likelihood estimate for model parameters:
Φ(x) = ∇θ logP(x|θ)|θ=θ0. The Fisher kernel was the best performing method on this data set prior
to the mismatch-SVM approach, whose performance is as good as Fisher-SVM and better than all
other standard methods tried (Leslie et al., 2002b). We note that in this data set, additional positive
training sequences were pulled in from the non-redundant protein sequence database using an iter-
ative training method for the profile HMMs. The presence of these additional “domain homologs”
makes the learning task easier for all methods.

We also include a second set of experiments to further investigate the dependence of SVM
performance on parameter choices for the new kernels. This second data set is based on SCOP
version 1.59 and contains only sequences from the SCOP database – no domain homologs are
added. The experiments are similar to those described by Liao and Noble (2002) but use a more
recent version of SCOP. In this data set, the positive training sets are quitesmall, and the learning
task is more difficult in this setting. In particular, there is not enough positivetraining data to
train profile HMMs in these experiments, so we do not report Fisher kernel results (which are not
competitive in this setting).

There is another successful feature representation for protein classification, the SVM-pairwise
method presented in Liao and Noble (2002). Here one uses an empirical kernel map based on
pairwise Smith-Waterman (Waterman et al., 1991) alignment scores

Φ(x) = (d(x1,x), . . . ,d(xm,x)),

1446

FAST STRING KERNELS

wherexi , i = 1. . .m, are the training sequences andd(xi ,x) is the E-value for the alignment score
betweenx andxi . We have previously shown (Leslie et al., 2004) that the mismatch kernel used
with an SVM classifier is competitive with SVM-pairwise on the SCOP benchmark presented in
Liao and Noble (2002), so we do not repeat the SVM-pairwise experiments for the very similar
benchmark here.

In both experiments, we normalized the kernel byk(x,y)← k(x,y)√
k(x,x)
√

k(y,y)
. All methods are eval-

uated using the receiver operating characteristic (ROC) score, which isthe area under the receiver
operating curve, which plots the rate of true positives as a function of the rate of false positives as
the threshold for the classifier varies (Gribskov and Robinson, 1996).Perfect ranking of all positives
above all negatives gives an ROC score of 1, while a random classifierhas an expected score close to
0.5. We also use the ROC-50 score, which is the normalized area under the receiver operating curve
up to the first 50 false positives; this score focuses on the top of the ranking of the test examples
produced by the classifier and is more informative when there are very few positive examples in
the test set. Use of ROC-50 scores (or other ROC-N scores) is the most standard way of evaluating
performance of homology detection methods in bioinformatics (Gribskov and Robinson, 1996).

Finally, we use kernel alignment scores (Cristianini et al., 2001) on the second SCOP data set
to investigate the empirical differences between the different inexact matching models for protein
sequence data, and we investigate methods for combining kernels to improve SVM performance.

5.1 SCOP Experiments with Domain Homologs: Comparison with Fisher and Mismatch
Kernels

We first present experimental results for the new kernels on the larger of the two SCOP data sets, the
Fisher-SCOP benchmark introduced by Jaakkola et al. (1999) that contains domain homologs for
additional positive training data, and compare SVM classification performance to both the mismatch
kernel and the Fisher kernel.

We tested the(g,k)-gappy kernel with parameter choices(g,k) = (6,4), (7,4), (8,5), (8,6), and
(9,6). Among them(g,k) = (6,4) yielded the best results, though other choices of parameters had
quite similar performance (data not shown). We also tested the alternative weighted gappy kernel,
where the contribution of an instanceg-mer to ak-mer feature is a weighted sum of all the possible
matches of thek-mer to subsequences in theg-mer with multiplicative gap penaltyλ (0< λ≤ 1). We
used gap penaltyλ = 1.0 andλ = 0.5 with the(6,4) weighted gappy kernel. We found thatλ = 0.5
weighting slightly weakened performance (results not shown). In Figure5, we see that unweighted
and weighted (λ = 1.0) gappy kernels have comparable results to(5,1)-mismatch kernel and Fisher
kernel.

We tested the substitution kernels with(k,σ) = (4,6.0). Here,σ = 6.0 was chosen so that the
members of a mutation neighborhood of a particular 4-mer would typically have only one position
with a substitution, and such substitutions would have fairly high probability. Therefore, the mu-
tation neighborhoods were much smaller than, for example,(4,1)-mismatch neighborhoods. The
results are shown in Figure 6. Again, the substitution kernel has comparable performance with
mismatch-SVM and Fisher-SVM, though results are perhaps slightly weakerfor more difficult test
families.

In order to compare with the(5,1)-mismatch kernel, we tested wildcard kernels with parameters
(k,m,λ) = (5,1,1.0) and(k,m,λ) = (5,1,0.5). Results are shown in Figure 7. The wildcard kernel
with λ = 1.0 seems to perform as well or almost as well as the(5,1)-mismatch kernel and Fisher

1447

LESLIE AND KUANG

0

5

10

15

20

25

30

35

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
r

of
 fa

m
ili

es

ROC

(5,1)-Mismatch-SVM ROC
Fisher-SVM ROC

(6,4)-Gap-SVM(Weight=0.5) ROC

(6,4)-Gap-SVM(Weight=1.0) ROC

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 fa

m
ili

es

ROC50

(5,1)-Mismatch-SVM ROC50
Fisher-SVM ROC50

(6,4)-Gap-SVM(Weight=0.5) ROC50

(6,4)-Gap-SVM(Weight=1.0) ROC50

(a) (b)

Figure 5: Comparison of of Mismatch-SVM, Fisher-SVM and Gappy-SVM. The graph plots
the total number of families for which a given method exceeds an ROC score threshold
(a) or ROC-50 score threshold (b).

0

5

10

15

20

25

30

35

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
r

of
 fa

m
ili

es

ROC

(5,1)-Mismatch-SVM ROC
Fisher-SVM ROC

(4,6)-Substitution-SVM ROC
0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 fa

m
ili

es

ROC50

(5,1)-Mismatch-SVM ROC50
Fisher-SVM ROC50

(4,6)-Substitution-SVM ROC50

(a) (b)

Figure 6: Comparison of mismatch-SVM, Fisher-SVM and substitution-SVM.The graph plots
the total number of families for which a given method exceeds an ROC score threshold
(a) or ROC-50 score threshold (b).

kernel, while enforcing a penalty on wildcard characters ofλ = 0.5 seems to weaken performance
somewhat.

If we compare results for the best-performing parameter choices that we tried from each kernel
family – the (5,1)-mismatch kernel, the(5,1,1.0)-wildcard kernel, the(6,4)-gappy kernel with
λ = 1.0, and the(4,6.0)-substitution kernel – then a signed ranked test with Bonferroni correction
for multiple comparisons (Henikoff and Henikoff, 1992, Salzberg, 1997) and a p-value cut-off of
0.05 finds no significant differences between the four kernels, either on the basis of ROC or ROC-50
scores.

5.2 SCOP Experiments without Domain Homologs: Dependence on Parameters

In the second set of SCOP experiments, we take advantage of the smaller data set from Weston
et al. (2003) to generate kernels corresponding to a wider range of parameter values, so that we

1448

FAST STRING KERNELS

0

5

10

15

20

25

30

35

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
r

of
 fa

m
ili

es

ROC

(5,1)-Mismatch-SVM ROC
Fisher-SVM ROC

(5,1,1.0)-Wildcard-SVM ROC
(5,1,0.5)-Wildcard-SVM ROC

0

5

10

15

20

25

30

35

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 fa

m
ili

es

ROC50

(5,1)-Mismatch-SVM ROC50
Fisher-SVM ROC50

(5,1,1.0)-Wildcard-SVM ROC50
(5,1,0.5)-Wildcard-SVM ROC50

(a) (b)

Figure 7: Comparison of mismatch-SVM, Fisher-SVM and wildcard-SVM.The graph plots the
total number of families for which a given method exceeds an ROC score threshold (a) or
ROC-50 score threshold (b).

can explore how parameter choices affect SVM classification performance. We also use kernel
alignment and kernel-target alignment scores (Cristianini et al., 2001) to investigate differences
between different kernel models. Note that this data set contains no domainhomologs, and thus the
small amount of positive training data makes the experiments more difficult.

In experiments with the gappy kernel, we chose parameter values(g,k) = (6,4), (7,5) and(8,6)
and set the gap penalty toλ = 1.0, the preferred choice from the previous experiments. The choice
(g,k) = (6,4) still produced the best classification results, which were slightly but not significantly
weaker than those of(5,1)-mismatch kernel. The results are shown in Figure 8. Performance
deteriorates as larger values of theg parameter are chosen with the number of gaps held fixed.

0

10

20

30

40

50

60

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
r

of
 fa

m
ili

es

ROC

(5,1)-Mismatch-SVM ROC

(6,4)-Gap-SVM(Weight=1.0) ROC

Gap(5,7)

Gap(6,8)

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 fa

m
ili

es

ROC50

(5,1)-Mismatch-SVM ROC50

(6,4)-Gap-SVM(Weight=1.0) ROC50

(7,5)-Weight-Gap-SVM (Weight=1.0) ROC50

(8,6)-Weight-Gap-SVM (Weight=1.0) ROC50

(a) (b)

Figure 8: Dependence on parameters for the gappy kernel.The graph plots the total number of
families for which a given method exceeds an ROC (a) or ROC-50 (b) score threshold.

The substitution kernel was tested with parameter choices(k,σ) = (4,6.0),(5,7.5) and(6,9.0).
All of these three kernels gave slightly stronger performance than the(5,1)-mismatch kernel, and
results for the different parameter choices were remarkably similar, as shown in Figure 9. Thus,
more so than for other inexact matching models, the substitution kernel performance seems stable

1449

LESLIE AND KUANG

as we varyk while σ is adjusted additively; however, as we see below, the Gram matrices produced
by these different choices of kernels are in fact quite different.

 0

 10

 20

 30

 40

 50

 60

 0.5 0.6 0.7 0.8 0.9 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

(6,9)-Substitution

(5,1)-Mismatch-SVM ROC

(4,6)-Substitution-SVM ROC

(6,9)-Substitution

 0

 10

 20

 30

 40

 50

 60

 0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

(6,9)-Substitution-SVM ROC50

(5,1)-Mismatch-SVM ROC50

(4,6)-Substitution-SVM ROC50

(6,9)-Substitution-SVM ROC50

(a) (b)

Figure 9: Dependence on parameters for substitution kernel.The graph plots the total number
of families for which a given method exceeds an ROC (a) or ROC-50 (b) score threshold.
Results for three parameter choices give almost identical results.

We tested the wildcard kernel with(k,m,λ) = (5,1,1.0) and(5,2,1.0). We observed a signif-
icant improvement in performance when we allowed up to 2 wildcards instead of 1 with k = 5.
The performance of(5,2,1.0)-wildcard kernel gave the best results among all kernel families and
parameters that we tried, though several other kernel choices gave very similar performance. The re-
sults are shown in Figure 10. Intuitively, it is clear that allowing 1 mismatch is closer to permitting 2
wildcards than to permitting a single wildcard: twok-mers that are identical except intwopositions
have intersecting(k,1)-mismatch neighborhoods and hence their(k,1)-mismatch feature vectors
have non-zero inner product; similarly, such a pair ofk-mers have non-orthogonal(k,2)-wildcard
feature vectors but orthogonal(k,1)-wildcard feature vectors.

0

10

20

30

40

50

60

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
um

be
r

of
 fa

m
ili

es

ROC

(5,1)-Mismatch-SVM ROC

(5,1,1.0)-Wildcard-SVM ROC

(5,2,1.0)-Wildcard-SVM ROC

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 fa

m
ili

es

ROC50

(5,1)-Mismatch-SVM ROC50

(5,1,1.0)-Wildcard-SVM ROC50

(5,2,1.0)-Wildcard-SVM ROC50

(a) (b)

Figure 10: Dependence on parameters for the wildcard kernel.The graph plots the total number
of families for which a given method exceeds an ROC (a) or ROC-50 (b) score threshold.
In the graph, the curve of(5,2,1.0)-wildcard kernel clearly outperforms the(5,1,1.0)-
wildcard kernel.

1450

FAST STRING KERNELS

Kernel Kernel Alignment ROC ROC-50
(5,1)-mismatch 0.0982 0.875 0.416

(6,4)-gappy 0.1428 0.851 0.387
(7,5)-gappy 0.0269 0.825 0.315
(8,6)-gappy 0.0090 0.782 0.242

(4,6.0)-substitution 0.1643 0.876 0.441
(5,7.5)-substitution 0.0369 0.865 0.428
(6,9.0)-substitution 0.0170 0.871 0.442
(5,1,1.0)-wildcard 0.0310 0.816 0.304
(5,2,1.0)-wildcard 0.1565 0.881 0.447

Table 1: Mean ROC and ROC-50 scores over 54 target families.

Kernel (5,1)-mismatch (6,4)-gappy (4,6)-subst (6,9)-subst (5,1)-wildcard (5,2)-wildcard
(5,1)-mismatch 1.000 0.923 0.812 0.947 0.968 0.864
(6,4)-gappy 1.000 0.915 0.742 0.775 0.955
(4,6)-subst 1.000 0.591 0.622 0.942
(6,9)-subst 1.000 0.991 0.626
(5,1)-wildcard 1.000 0.669
(5,2)-wildcard 1.000

Table 2: Pairwise kernel alignment scores over the full SCOP data set.

In Table 1, we summarize the mean ROC and ROC-50 scores across the 54 target families for
all the string kernels families and parameter values chosen. The table also shows mean training
set kernel-target alignmentscores across the experiments. Kernel alignment was introduced by
Cristianini et al. (2001) as a measure of similarity between pairs of kernels or between a kernel and
a target function. Theempirical kernel alignmentscore between two kernels is defined as the value

〈K1,K2〉√
〈K1,K1〉〈K2,K2〉

, whereK1 andK2 are the Gram matrices for the kernels on the sample data, and

〈·, ·〉 is the euclidean inner product when the Gram matrices are viewed as vectors (Hilbert-Schmidt
inner product). Thus the alignment score is simply the cosine of the angle between the two vectors
representing Gram matrices. Theempirical kernel-target alignmentis the kernel alignment for a
Gram matrix and the targetyyt , wherey is the column vector of labels.

Table 1 shows that for the gappy and wildcard kernels, high kernel-target alignment scores do
seem to correlate with good SVM classification performance. However, for the substitution kernels,
the kernel-target alignment is low for larger values ofk while performance remains strong. In Table
2, we show the pairwise kernel alignment scores between normalized kernels on the full SCOP
data set of 7329 sequences. In some cases, the alignment scores between kernels of the same
family with different parameters can be quite low, for example the(5,1,1.0)-wildcard kernel and
(5,2,1.0)-wildcard kernel. Surprisingly, the(6,9)-substitution kernel Gram matrix is very similar to
the(5,1,1.0)-wildcard kernel Gram matrix when compared by alignment score, even though their
SVM performance is somewhat different, showing that the score gives only a rough measure of
kernel similarity. The(6,4)-gappy kernel,(4,6)-substitution kernel and(5,2,1.0)-wildcard kernel
are a group of well aligned Gram matrices.(5,1)-mismatch kernel seems to be in between the two
previous groups in terms of kernel alignment. Clearly, all the models of inexact matching are fairly
similar, but there do appear to be several significantly different Gram matrices in the set below that
all successfully represent the data for the purposes of SVM learning.

1451

LESLIE AND KUANG

Kernel ROC ROC-50
Keq(αi = 1) 0.907 0.520

Kopt(σ = 0.01) 0.901 0.502

Table 3: Mean ROC and ROC-50 scores of linearly combined kernels. Here Kopt = ∑N
i=1 αiKi ,

whereN is the number of kernels,α is the optimal vector for the best alignment with
targetyy′, and the the regularization parameter depends onσ as described in the text.

Since different kernels capture somewhat different notions of sequence similarity, we consider
whether a convex combination of kernelsK(α) = ∑N

i=1 αiKi , with αi ≥ 0 for i = 1. . .N, can outper-
form individual kernels. We consider two schemes for choosing such alinear combination. In the
first approach, we simply assign equal weightsαi = 1/N for all i to obtain a new kernelKeq. For
a second approach, we follow Kandola et al. (2002), who proposed ageneral method for learning
theαi by solving a optimization problem to maximize the kernel alignment between Gram matrix
of K(α) and targetyy′,

A(S,K(α),yy′) =
y′K(α)y
|y|||K(α)|| ,

yielding a new kernelKopt. Here, one introduces a regularization parameterλ to constrain||α|| and
prevent over-alignment; the optimization then amounts to a quadratic programmingproblem that
can be solved through standard methods. We now pick 6 kernels with relatively good performance
and low pairwise kernel alignment as components for the new kernel –(5,1)-mismatch,(6,4)-
gappy,(4,6.0)-substitution,(5,7.5)-substitution,(6,9.0)-substitution and(5,2,1.0)-wildcard – and
repeat the second set of SCOP experiments with these two linear combination kernels. ForKopt,
we use a regularization parameter of the formλ = σ

N2 ∑i j 〈Ki ,K j〉, where〈·, ·〉 is the Hilbert-Schmidt
inner product between matrices. We found that performance varied slightly but significantly as we
variedσ = .001, .01, .1,1,10,100,1000 (results not shown); since the experiments do not contain
a cross-validation set, we simply report the performance of the best parameter choice (σ = .01)
with the caveat that this result may be somewhat optimistic. We report the mean ROC and ROC-50
scores across 54 experiments for the simple caseKeq, and the optimal alignment caseKopt in Table
3. We found thatKopt with the best regularization parameter choice does achieve significant im-
provement over the best individual kernel (indeed, almost all regularization parameters that we tried
displayed some advantage over the best individual kernel); however,the simple weighting used in
Keq slightly outperformedKopt in these experiments. Interestingly, for most of 54 experiments,Kopt

(σ = 0.01) had non-zero weights only for the two best performing kernels, the(4,6.0)-substitution
and(5,2,1.0)-wildcard kernels, with the weight for the latter about an order of magnitudesmaller
than that of the former. These results suggest that some of the kernels are complementary to each
other and that combining them can help improve performance, though it appears that optimal align-
ment does not outperform a simple uniform weighting scheme for combining kernels.

6. Discussion

We have presented a number of differentk-mer based string kernels that capture a notion of inex-
act matching – through use of gaps, probabilistic substitutions, and wildcards – but maintain fast
computation time. Using a recursive function based on a trie data structure, we show that for all our

1452

FAST STRING KERNELS

new kernels, the time to compute a kernel valueK(x,y) is O(cK(|x|+ |y|)), where the constantcK

depends on the parameters of the kernel but not on the size of the alphabet Σ. Thus we improve on
the constant factor involved in computation of the previously presented mismatch kernel, in which
|Σ| as well ask andmcontrol the size of the mismatch neighborhood and hence the constantcK .

We also show how many of our kernels can be obtained through the recentlypresented trans-
ducer formalism of rationalT ◦T−1 kernels and give the transducerT for several examples. This
connection gives an intuitive understanding of the kernel definitions andcould inspire new string
kernels.

Finally, we present results on two benchmark SCOP data sets for the remote protein homology
detection problem and show that many of the new, faster kernels achieve performance comparable
to the mismatch kernel. We also investigate how kernel performance dependson parameter choice
for the different inexact matching models. Intuitively, it is clear that the onlybiological reasonable
choices involve shortk-mer features, since as we allowk to grow, we cannot permit sufficient inexact
matching without also introducing noise. However, within these constraints, our results demonstrate
the somewhat different behavior of the various kernel families.

We note that Vishwanathan and Smola (2002) used counting statistics and a suffix tree con-
struction to eliminate the constant factor ofk in computation time for the exact-matching spectrum
kernel (Leslie et al., 2002a). It may be possible to extend this technique to the fast inexact-matching
kernels presented here.

A promising direction for applied work in this area is combining string kernel representations
with semi-supervised approaches for leveraging the abundant unlabeled protein sequence data (se-
quences whose 3D structure is unknown) available in sequence databases. One recent approach is
presented by Weston et al. (2003), where string kernels are used as abase kernel representation,
and unlabeled sequence data together with a dissimilarity measure between sequence examples are
used to buildcluster kernelsthat modify the base kernel for a richer representation. In more recent
work (Kuang et al., 2004), we definek-mer based string kernels for probabilistic sequence profiles
(Gribskov et al., 1987), which also give a richer representation of sequences by estimating posi-
tion specific residue emission probabilities from unlabeled data. These profile-based string kernels
provide another promising semi-supervised approach for kernel representation of protein sequence
data.

Acknowledgments

We would like to thank Eleazar Eskin, Risi Kondor and William Stafford Noble for helpful dis-
cussions and Corinna Cortes, Patrick Haffner and Mehryar Mohri for explaining their transducer
formalism to us. This work is supported by an Award in Informatics from the PhRMA Foundation,
NIH grant LM07276-02, and NSF grant ITR-0312706.

References

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local alignment search
tool. Journal of Molecular Biology, 215:403–410, 1990.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels.Neural Information Processing Systems 16,
2002.

1453

LESLIE AND KUANG

N. Cristianini and J. Shawe-Taylor.An Introduction to Support Vector Machines.Cambridge, 2000.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. InNeural
Information Processing Systems, volume 15, 2001.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Biological Sequence Analysis. Cambridge UP,
1998.

E. Eskin, W. S. Noble, Y. Singer, and S. Snir. A unified approach for sequence prediction using
sparse sequence models. Technical report, Hebrew University, 2003.

M. Gribskov, A. D. McLachlan, and D. Eisenberg. Profile analysis: Detection of distantly related
proteins.PNAS, pages 4355–4358, 1987.

M. Gribskov and N. L. Robinson. Use of receiver operating characteristic (ROC) analysis to evaluate
sequence matching.Computers and Chemistry, 20(1):25–33, 1996.

D. Haussler. Convolution kernels on discrete structure. Technical report, UC Santa Cruz, 1999.

S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from proteinblocks. PNAS, 89:
10915–10919, 1992.

T. Jaakkola, M. Diekhans, and D. Haussler. Using the Fisher kernel method to detect remote protein
homologies. InProceedings of the Seventh International Conference on Intelligent Systems for
Molecular Biology, pages 149–158. AAAI Press, 1999.

J. Kandola, J. Shawe-Taylor, and N. Cristianini. Optimizing kernel alignment over combinations of
kernels. NeoroCOLTTechnicalReport NC-TR-2002-121, http://www.neurocolt.org, 2002.

R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie. Profile-based string
kernels for remote homology detection and motif extraction. InComputational Systems Bioinfor-
matics, 2004.

C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble. Mismatch stringkernels for discrimina-
tive protein classification.Bioinformatics, 2004.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM protein
classification.Proceedings of the Pacific Biocomputing Symposium, 2002a.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for SVM protein classifi-
cation.Neural Information Processing Systems 16, 2002b.

C. Leslie and R. Kuang. Fast kernels for inexact string matching.Proceedings of COLT/Kernel
Workshop, 2003.

C. Liao and W. S. Noble. Combining pairwise sequence similarity and supportvector machines for
remote protein homology detection.Proceedings of the Sixth Annual International Conference
on Research in Computational Molecular Biology, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels.Journal of Machine Learning Research, 2:419–444, 2002.

1454

FAST STRING KERNELS

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural classification of
proteins database for the investigation of sequences and structures.Journal of Molecular Biology,
247:536–540, 1995.

M. Sagot. Spelling approximate or repeated motifs using a suffix tree.Lecture Notes in Computer
Science, 1380:111–127, 1998.

S. L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended approach.Data
Mining and Knowledge Discovery, 1:371–328, 1997.

R. M. Schwartz and M. O. Dayhoff. Matrices for detecing distant relationships. InAtlas of Protein
Sequence and Structure, pages 353–358, Silver Spring, MD, 1978. National Biomedical Research
Foundation.

J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

J.-P. Vert, H. Saigo, and T. Akutsu.Kernel Methods in Computational Biology, chapter Local
alignment kernels for biological sequences. MIT Press, 2004.

S. V. N. Vishwanathan and A. Smola. Fast kernels for string and tree matching. Neural Information
Processing Systems 16, 2002.

M. S. Waterman, J. Joyce, and M. Eggert.Computer alignment of sequences, chapter Phylogenetic
Analysis of DNA Sequences. Oxford, 1991.

C. Watkins. Dynamic alignment kernels. Technical report, UL Royal Holloway, 1999.

J. Weston, C. Leslie, D. Zhou, A. Elisseeff, and W. S. Noble. Cluster kernels for semi-supervised
protein classification.Neural Information Processing Systems 17, 2003.

1455

