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Abstract
In this short note we highlight the fact that linear blind source separation can be formulated as a

generalized eigenvalue decomposition under the assumptions of non-Gaussian, non-stationary, or
non-white independent sources. The solution for the unmixing matrix is given by the generalized
eigenvectors that simultaneously diagonalize the covariance matrix of the observations and an ad-
ditional symmetric matrix whose form depends upon the particular assumptions. The method criti-
cally determines the mixture coefficients and is therefore not robust to estimation errors. However
it provides a rather general and unified solution that summarizes the conditions for successful blind
source separation. To demonstrate the method, which can be implemented in two lines of matlab
code, we present results for artificial mixtures of speech and real mixtures of electroencephalogra-
phy (EEG) data, showing that the same sources are recovered under the various assumptions.
Keywords: blind source separation, generalized eigenvalue decomposition, non-Gaussian, non-
white, non-stationary

1. Introduction

The problem of recovering sources from their linear mixtures without knowledge of the mixing
channel has been widely studied. In its simplest form it can be expressed as the problem of iden-
tifying the factorization of the N-dimensional observations X into a mixing channel A and M-
dimensional sources S,

X = AS . (1)

The T columns of the matrices X and S represent multiple samples. Often the samples in the
data have a specific ordering such as consecutive samples in time domain signals or neighboring
pixels in images. Without loss of generality we consider each column of X and S as a sample in
time. In this case we can write Equation (1) as,

x(t) = As(t) . (2)

The term blind source separation (BSS) is frequently used to indicate that no precise knowledge
is available of either the channel A or the sources s(t). Instead, only general statistical assumptions
on the sources or the structure of the channel are made. A large body of work exists for the case
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that one can assume statistically independent sources. The resulting factorization is known as in-
dependent component analysis (ICA) and was first introduced by Comon (1994). ICA makes no
assumptions on the temporal structure of the sources. In this paper we consider additional assump-
tions related to the statistical structure of neighboring samples. In these cases separation is also
obtained for decorrelated sources.

We begin by noting that the matrix A explains various cross-statistics of the observations x(t) as
an expansion of the corresponding diagonal cross-statistics of the sources s(t). An obvious example
is the time averaged covariance matrix, Rx = ∑t E[x(t)xH(t)],

Rx = ARsAH , (3)

where Rs is diagonal if we assume independent or decorrelated sources. In this paper we consider
the general case of complex-valued variables, and AH denotes the Hermitian transpose of A. In the
following section we highlight that for non-Gaussian, non-stationary, or non-white sources there
exists, in addition to the covariance matrix, other cross-statistics Qs which have the same diagonal-
ization property, namely,

Qx = AQsAH . (4)

Note that these two conditions alone are already sufficient for source separation. To recover the
sources from the observation x(t) we must find an inverse matrix W such that WHA = I. In this
case we have,

s(t) = WHAs(t) = WHx(t) . (5)

Let us further assume nonzero diagonal values for Qs. After multiplying Equations (3) and (4) with
W and Equation (4) with Qs

−1 we combine them to obtain,

RxW = QxWΛ , (6)

where by assumption, Λ = RsQs
−1, is a diagonal matrix. This constitutes a generalized eigenvalue

equation, where the eigenvalues represent the ratio of the individual source statistics measured by
the diagonals of Rs and Qs. For distinct eigenvalues Equation (6) fully determines the unmixing
matrix WH specifying N column vectors corresponding to at most M = N sources. As with any
eigenvalue problem the order and scale of these eigenvectors is arbitrary. Hence, the recovered
sources are arbitrary up to scale and permutations. This is also reflected in (5), where any scaling and
permutation that is applied to the coordinates of s can be compensated by applying the inverse scales
and permutations to the columns of W. A common choice to resolve these ambiguities is to scale
the eigenvectors to unit norm, and to sort them by the magnitude of their generalized eigenvalues.
For identical eigenvalues the corresponding sources are determined only up to rotations in the space
spanned by the respective columns of W. If A is of rank M < N only the first M eigenvectors will
represent genuine sources while the remaining N −M eigenvectors span the subspace orthogonal to
A. This formulation therefore combines subspace analysis and separation into a single step. It does
not, however, address the case of more sources than observations, i.e. M > N.

Incidentally, note that if we choose, Q = I, regardless of the observed statistic, Equation (4)
reduces to the assumption of an orthonormal mixing, and the generalized eigenvalue equation re-
duces to a conventional eigenvalue equation. The solutions are often referred to as the Principal
Components of the observations x.

In general, the mixing A and the solution for W are not orthogonal. In the following section we
describe several common statistical assumptions used in BSS and show how they lead to different

1262



BLIND SOURCE SEPARATION VIA GENERALIZED EIGENVALUE DECOMPOSITION

diagonal cross-statistics Q. A summary of the different assumptions and choices for Q is given
in Table 1. We also show experimental results for signals that simultaneously satisfy the various
assumptions. The results demonstrate that the method recovers the same set of underlying sources
for different forms of Q.

2. Statistical Assumptions and the Form of Q

The independence assumption gives a set of conditions on the statistics of recovered sources. All
cross-moments of independent variables factor, i.e.

E[su
i (t)s

∗v
j (t + τ)] = E[su

i (t)]E[s∗v
j (t + τ)] , i 6= j , (7)

where E[ . ] represents the mathematical expectation, and ∗ is the complex conjugate. With (5) these
equations define for each choice of {u,v, t,τ} a set of conditions on the coefficients of W and the
observable statistics of x(t). With a sufficient number of such conditions the unknown parameters
of W can be identified up to scale and permutation. Depending on the choice this implies that,
in addition to independence, the sources are assumed to be either non-stationary, non-white, or
non-Gaussian as discussed in the next three sections.

2.1 Non-Stationary Sources

First, consider second order statistics, u + v = 2, and sources with non-stationary power. The co-
variance of the observations varies with the time t,

Rx(t) = E[x(t)xH(t)] = AE[s(t)sH(t)]AH = ARs(t)AH . (8)

Without restriction we assume throughout this paper zero mean signals.1 For zero mean signals
Equation (7) implies that Rs(t) is diagonal. Therefore, A is a transformation that expands the
diagonal covariance of the sources into the observed covariance at all times. In particular, the
sum over time leads to Equation (3) regardless of stationarity properties of the signals. Setting,
Qx = Rx(t), for any time t, or linear combination of times, will give the diagonal cross-statistics
(4) required for the generalized eigenvalue Equation (6). Note that we have assumed non-stationary
power. For sources that are spectrally non-stationary, but maintain a constant power profile, this
approach is insufficient.

More generally, Equation (8) specifies for each t a set of N(N −1)/2 conditions on the NM
unknowns in the matrix A. The unmixing matrix can be identified by simultaneously diagonalizing
multiple covariance matrices estimated over different stationarity times. In the square case, N = M,
when using the generalized eigenvalue formulation, the N2 parameters are critically determined by
the N2 conditions in (6). To avoid the resulting sensitivity to estimation errors in the covariances
Rx(t) it is beneficial to simultaneously diagonalize more than two matrices. This is discussed in
detail by Pham and Cardoso (2001).

1. The mean E[x(t)] can always be subtracted after estimating it with the same estimation procedure that is used for the
correlations.
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2.2 Non-White Sources

For non-white sources (non-zero autocorrelation) one can use second order statistics in the form of
cross-correlations for different time lags τ:

Rx(τ) = E[x(t)xH(t + τ)] = AE[s(t)sH(t + τ)]AH = ARs(τ)AH . (9)

Here we assume that the signals are stationary such that the estimation is independent of t, or
equivalently, that the expectation E[ . ] includes a time average. Again, (7) implies that Rs(τ) is
diagonal with the auto-correlation coefficients for lag τ on its diagonal. Equation (9) has the same
structure as (4) giving us for any choice of τ, or linear combinations thereof, the required diagonal
cross-statistics, Qx = Rx(τ), to obtain the generalized eigenvalue solution. The identification of
mixing channels using eigenvalue equations was first proposed by Molgedey and Schuster (1994)
who suggested simultaneous diagonalization of cross-correlations. Time lags τ provide new infor-
mation if the source signals have distinct auto-correlations. Simultaneous diagonalization for more
than two lags has been previously presented (Belouchrani et al., 1997).

2.3 Non-Gaussian Sources

For stationary and white sources different t and τ do not provide any new information. In that case
(7) reduces to,

E[su
i s∗v

j ] = E[su
i ]E[s∗v

j ] , i 6= j . (10)

To gain sufficient conditions one must include more than second order statistics of the data (u+m ≥
2). Consider for example 4th order cumulants expressed in terms of 4th order moments:

Cum(si,s
∗
j ,sk,s

∗
l ) = E[sis

∗
jsks∗l ]−E[sis

∗
j ]E[sks∗l ]−E[sisk]E[s∗js

∗
l ]−E[sis

∗
l ]E[s∗jsk] . (11)

For Gaussian distributions all 4th order cumulants (11) vanish (Papoulis, 1991). In the follow-
ing we assume non-zero diagonal terms and require therefore non-Gaussian sources. It is straight-
forward to show using (10) that for independent variables the off-diagonal terms vanish, i 6= j:
Cum(si,s∗j ,sk,s∗l ) = 0, for any k, l, i.e. the 4th order cumulants are diagonal in i, j for given k, l. Any
linear combination of these diagonal terms is also diagonal. Following the discussion by Cardoso
and Souloumiac (1993) we define such a linear combination with coefficients, M = {mlk},

ci j(M) = ∑
kl

Cum(si,s
∗
j ,sk,s

∗
l )mlk .

With Equation (11) and covariance, Rs = E[ssH ], one can write in matrix notation:

Cs(M) = E[sHMsssH ]−RsTrace(MRs)−E[ssT ]MT E[s∗sH ]−RsMRs .

We have added the index s to differentiate from an equivalent definition for the observations x.
Using the identity I this reads:

Cx(I) = E[xHxxxH ]−RxTrace(Rx)−E[xxT ]E[x∗xH ]−RxRx . (12)

By inserting (2) into (12) it is easy to see that,

Cx(I) = ACs(AHA)AH .

1264



BLIND SOURCE SEPARATION VIA GENERALIZED EIGENVALUE DECOMPOSITION

Since Cs(M) is diagonal for any M, it is also diagonal for M = AHA. We therefore find that A
expands the diagonal 4th order statistics to give the corresponding observable 4th order statistic
Qx(I). This again gives us the required diagonal cross-statistics (4) for the generalized eigenvalue
decomposition. This method is instructive but very sensitive to estimation errors and the spread
of kurtosis of the individual sources. For robust estimation simultaneous diagonalization using
multiple Ms is recommended (Cardoso and Souloumiac, 1993).

3. Experimental Results

We first demonstrate, for an artificial mixture, that if a signal satisfies the various statistical assump-
tions, the different choices for Q result in the same unmixing. Figure 1 shows an example where two
speech signals were artificially mixed with a random mixing matrix A. 105 samples were used in
this experiment. Speech satisfies all three statistical assumptions, namely it is non-stationary, non-
white and non-Gaussian. The results show that the recovered source orientations are independent,
and equivalent, for all three choices of Q.
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% linear mix of sources S

X=A*S;

% Separation based on Generalized Eigenvalues

[W,D]=eig(X*X’,Q);

S=W’ *X;
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X=A*S;

% Separation based on Generalized Eigenvalues

[W,D]=eig(X*X’,Q);

S=W’ *X;
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S=W’ *X;

% linear mix of sources S

X=A*S;
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% Separation based on Generalized Eigenvalues

[W,D]=eig(X*X’,Q);

S=W’ *X;
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X=A*S;

% Separation based on Generalized Eigenvalues

[W,D]=eig(X*X’,Q);

S=W’ *X;

% linear mix of sources S
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% Separation based on Generalized Eigenvalues

[W,D]=eig(X*X’,Q);

S=W’ *X;

Figure 1: Results for recovery of two speech sources from an instantaneous linear mixture. (top)
Scatterplot of mixture and MATLAB code used for mixing/unmixing. (bottom) Scatter-
plots showing recovered sources for different choices of Q.
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Table 1: Summary of procedures for blind source separation using generalized eigenvalue decomposition. Given a N×T matrix X containing
T samples of N sensor readings generated by, X = AS, the sources S are recovered with the MATLAB code: [W,D]=eig(X*X’,Q);
S=W’*X;

Assuming
sources are

Use MATLAB code Details Simple ver-
sion of

References

non-stationary
and decorre-
lated

Qx = Rx(t) = E[x(t)xH(t)] Q=X(:,1:t)*X(:,1:t)’; Q is the covariance
computed for a sepa-
rate period of station-
arity. Use t in the
order of magnitude of
the stationarity time of
the signal.

simultaneous
decorrelation

Molgedey
and Schus-
ter (1994),
Parra and
Spence
(May 2000)

non-white and
decorrelated

Q = Rx(τ) = E[x(t)xH(t +τ)] Q=X(:,1:T-tau)*
X(:,tau+1:T)’+
X(:,tau+1:T) *
X(:,1:T-tau)’;

Q is the symmetric
cross-correlation for
time delayed τ. Use
tau with non-zero
autocorrelation in the
sources.

simultaneous
decorrelation

Weinstein
et al.
(1993),
Parra and
Spence
(May 2000)

non-Gaussian
and indepen-
dent

Q = ∑k Cum(si,s j,sk,sk) =
E[xHxxxH ]−RxTrace(Rx)−
E[xxT ]E[x∗xH ]−RxRx

Q=((ones(N,1) *
sum(abs(X).ˆ 2)).*X)*X’
-X*X’*trace(X*X’)/T
-(X*X.’)*conj(X*X.’)/T
-X*X’*X*X’/T;

Q is the sum over 4th
order cumulants.

ICA Cardoso
and
Souloumiac
(1993)

decorrelated
and mixing
matrix is
orthogonal

Q = I Q=eye(N); Q is the identity ma-
trix. The method re-
duces to a standard
eigenvalue decompo-
sition.

PCA any linear
algebra
textbook
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Results for real mixtures of EEG signals are shown in Figure 2. This data was collected as part
of an error-related negativity (ERN) experiment (for details see Parra et al., 2002). To obtain robust
estimates of the source directions we simultaneously diagonalized five or more cross-statistics, for a
given condition, using the diagonalization algorithm by Cardoso and Souloumiac (1996).2 Sources
with the largest generalized eigenvalues are shown in Figure 2. First note that for each of the three
different statistical assumptions the same sources are recovered, as evidenced by the similarity in
the scalp plots and their averaged time courses. It is clear that the same eight sources were selected
among a posible 64 as having the largest generalized eigenvalue (with exeption of the last source
in the non-stationary case). In addition, the spatial distribution of the first and fourth sources are
readily identified as visual response (occipital) and and ERN (fronto-central) respectively. Fronto-
central localization is indicative of the hypothesized origin of the ERN in the anterior cingulate
(Dehaene et al., 1994). The consistent results, using different assumptions on the source statistics in
combination with their functional neuroanatomical interpretation, is a validation of this approach.
We note that others have attempted to recover EEG sources using a supervised method,3 which
attempts to jointly diagonalize spatial sensor covariances for two different conditions, for example
left and right motor imagery. This method, termed “common spatial patterns” (CSP) by Ramoser
et al. (2000) can be seen as another example of the generalized eigenvalue decomposition, with the
matrices Rx and Qx representing the covariances for the two different conditions.

4. Conclusion

In this paper we formulate the problem of BSS as one of solving a generalized eigenvalue problem,
where one of the matrices is the covariance matrix of the observations and the other is chosen based
on the underlying statistical assumptions on the sources. This view unifies various approaches
in simultaneous decorrelation and ICA, together with PCA and supervised methods such as CSP.
Though in some cases the most straightforward implementation is not robust (e.g. see Table 1), we
believe that it is a simple framework for understanding and comparing the various approaches, as
well as a method for verifying the underlying statistical assumptions.
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2. For an alternative diagonalization algorithm see also Yeredor (2002).
3. The method is supervised in that one constructs the covariance matrices to diagonalize given the assignment of a

window in time (ti) to one of the two conditions (t1 or t2).
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Figure 2: Recovered EEG sources using the different assumptions of non-white (NW), non-
stationary (NS) and non-Gaussian sources (NG). Eight sources with the largest magni-
tude generalized eigenvalues are shown. Sources have been sorted from left to right to
match their spatial distributions. Top three rows show sensor scalp plots (columns of A).
The bottom three rows show trial averaged time course (solid line) and standard deviation
(shaded area). Dotted line indicates time of visual stimulus presentation.
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