
Journal of Machine Learning Research 3 (2002) 233–269 Submitted 3/02; Published 10/02

PAC-Bayesian Generalisation Error Bounds for Gaussian
Process Classification

Matthias Seeger seeger@dai.ed.ac.uk

Institute for Adaptive and Neural Computation
University of Edinburgh
5 Forrest Hill, Edinburgh EH1 2QL, UK

Editor: Peter Bartlett

Abstract

Approximate Bayesian Gaussian process (GP) classification techniques are powerful non-
parametric learning methods, similar in appearance and performance to support vector
machines. Based on simple probabilistic models, they render interpretable results and can
be embedded in Bayesian frameworks for model selection, feature selection, etc. In this
paper, by applying the PAC-Bayesian theorem of McAllester (1999a), we prove distribution-
free generalisation error bounds for a wide range of approximate Bayesian GP classification
techniques. We also provide a new and much simplified proof for this powerful theorem,
making use of the concept of convex duality which is a backbone of many machine learning
techniques. We instantiate and test our bounds for two particular GPC techniques, includ-
ing a recent sparse method which circumvents the unfavourable scaling of standard GP
algorithms. As is shown in experiments on a real-world task, the bounds can be very tight
for moderate training sample sizes. To the best of our knowledge, these results provide
the tightest known distribution-free error bounds for approximate Bayesian GPC methods,
giving a strong learning-theoretical justification for the use of these techniques.
Keywords: Gaussian Processes, Generalisation Error Bounds, PAC-Bayesian Framework,
Bayesian Learning, Sparse Approximations, Gibbs Classifier, Kernel Machines, Convex
Duality.

1. Introduction

The Bayesian framework for probabilistic inference is widely used all over the statistics and
machine learning communities, due to its high flexibility, its ability to render interpretable
results and its conceptual simplicity. Within the framework, essential and difficult tasks
like model and feature selection have canonical solutions. Complex models for real-world
situations can be combined from simple, well-understood components in a structured way.
Last, but not least, pitfalls hindering successful generalisation from finite data, such as
over-fitting, can be tackled in a clear and principled way, so that Bayesian or approximate
Bayesian solutions are typically among the top performers on difficult learning tasks. It
is therefore of high theoretical and practical importance to analyse and understand the
generalisation capability of (approximate) Bayesian methods. Many analyses so far have
concentrated on the case where the true data distribution (stable aspects of which we
try to learn) comes from a known family, which is either exactly the model family that
the Bayesian method is using, or one which is close in some sense (e.g., Haussler and

c©2002 Matthias Seeger.

Seeger

Opper, 1997, Haussler et al., 1994, Sollich, 1999). Such analyses are important because
they show up the principal limitations of the model family and the induction method, and
because they often render close approximations to the true generalisation error we observe
on independent test samples. However, they cannot give a guaranteed upper bound on
the generalisation error (or other expectations of the true data distribution), because the
validity of the whole analysis depends on assumptions that may not hold for the data
distribution. PAC analyses1 of the generalisation capability of a learning technique provide
such guaranteed bounds, in the sense that the probability of observing a violation of the
bound is shown to be smaller than some a priori fixed δ > 0, where the probability is
over random draws of the training sample from the true data distribution. We can hope
to find such non-trivial bounds for finite training sample sizes, because we constrain the
sampling process which generates the training set.2 Recently, a general result was obtained
by McAllester (1999a) which allows distribution-free analyses of competitive Bayesian or
approximate Bayesian methods: the PAC-Bayesian theorem. In this paper, we show how to
apply this result to approximate Bayesian Gaussian process classifiers (GPC), in order to
obtain data-dependent PAC bounds for these powerful non-parametric methods. The PAC-
Bayesian theorem and our results for GPC can be stated in simple and familiar terms and
can be proved using elementary concepts only. Furthermore, experiments to be presented
here indicate that our bounds can be very tight on real-world classification tasks with
moderate training sample sizes, to an extent that they can provide practically meaningful
generalisation error guarantees and may even be used for model selection in practice.

The structure of the paper is as follows. In the remainder of this section, we give a brief
introduction to Gaussian process models for classification settings, together with fixing our
notation. We also state McAllester’s PAC-Bayesian theorem, the backbone for our results,
for which a simplified proof is given in Appendix A. In the following Section 2, we introduce
the class of GP classification techniques we are interested in here and show how to apply
the PAC-Bayesian theorem to any method from this class: this is our main result. In
Section 3, we instantiate our main result for two particular GPC methods, namely Laplace
GPC and sparse greedy GPC. The latter is of especially high practical significance due to
its linear scaling with the training set size (our experimental results in Section 4.2 serve
as demonstration of its impressive performance). Experimental results on a handwritten
digits recognition task are presented in Section 4, testing our main result for the special GPC
techniques discussed and comparing it to other state-of-the-art kernel classifier bounds. We
close with a discussion in Section 5. The notation we use in this paper is summarised in
Appendix B.

1. PAC stands for probably approximately correct, the framework was introduced by Valiant (1984). In this
paper, we use the term PAC bound as synonym for “distribution-free large deviation bound”: a bound
on the probability that an i.i.d. training sample gives rise to a large deviation between empirical and
generalisation error. The bound is distribution-free, i.e. holds for any data distribution.

2. Typically, we assume that the training sample is drawn i.i.d. (independently and identically distributed)
from the data distribution, but other less restrictive assumptions (e.g., Martingale sequences) are also
possible.

234

PAC-Bayesian Bounds for GP Classification

1.1 The Binary Classification Problem. PAC Bounds

In the binary classification problem, we are given data S = {(xS
i , tSi) | i = 1, . . . , n}, xi ∈

X , ti ∈ {−1,+1}, sampled independently and identically distributed (i.i.d.) from an un-
known data distribution over X × {−1,+1}. Our goal is to compute a classification func-
tion X → {−1,+1} from S which has small generalisation error on future test points
x∗, where (x∗, t∗) is sampled from the data distribution, independently of S. Given an
algorithm for computing such functions from samples S, we would like to construct a
PAC upper bound on the generalisation error of this method. In the sequel, we denote
XS = {xS

i | i = 1, . . . , n}, t = (tSi)i.
Data-independent (or uniform or a priori) PAC bounds ignore aspects of the learning

algorithm other than the error of the selected classifier on the training set, and instead
constrain the classification function to come from a restricted class of finite complexity in
some sense. This restriction is done a priori, without looking at the sample S, which allows
the difference between empirical error (on S) and generalisation error (this difference is
referred to as the gap in this paper) to be bounded uniformly over all functions in the class,
simply because the variability of all functions is uniformly restricted. Vapnik-Chervonenkis
theory (see Vapnik, 1998) essentially answers the question under which circumstances the
gap converges uniformly to 0.

Uniform PAC bounds can answer questions about theoretical learnability of problems,
however they are often extremely loose or even trivial in many practically relevant cases.
There are two main reasons for this, apart from the distribution-free character of the PAC
setting itself. First, the gap bounds do not depend on the observed sample S at all. Whether
the particular sample S we encounter matches our prior assumptions or not does not influ-
ence the bound value. Second, the gap bound value does not depend on the algorithm used
to learn the predictor. It holds uniformly over all algorithms which select their classifica-
tion function from the restricted class, even for a “maximally malicious” algorithm which,
knowing the true data distribution, selects a function from the class which maximises the
generalisation error, subject to a constraint on the empirical error on S. As a consequence,
we either choose a very restricted class a priori to arrive at a small gap bound for reasonable
n, thus typically observing high empirical errors on a nontrivial task, or we live with a gap
bound value which is trivial for all practically interesting sample sizes n. Both options are
not tolerable from a practical viewpoint.

Data-dependent (or a posteriori) PAC bounds on the difference between empirical and
generalisation error depend on the sample S. The idea is that prior knowledge about the
unknown data distribution is used to introduce a weighting in the bounding technique
which is biased towards our expectations. Namely, if it turns out that the data distribution
matches our expectations rather closely, as judged by an empirical divergence measure which
can be evaluated on the sample S, the gap bound value will be small (the lucky case).3 If
we are grossly wrong, the bound can be large, usually trivial. At this point, the notion of
two different sets of assumptions we are working with becomes most clear:

3. The concept of “luckiness” has been introduced to Statistical Learning Theory by Shawe-Taylor et al.
(1998). We think that it is very much related to the concept of using prior distributions which penalise
complex models (so-called “Occam’s Razor” priors); another good reason for applying PAC analysis to
(approximate) Bayesian methods, in which luckiness can be formulated by the well-studied devices of
modelling and prior assessment.

235

Seeger

• In order to construct a classification method and a data-dependent bound for it, we
follow Bayesian modelling assumptions: Available prior knowledge is encoded, within
feasibility constraints, into a probabilistic model and prior distributions. The extent
to which the unknown data distribution is compatible with these assumptions will in
general determine the accuracy of the method and the observed tightness (yet not the
validity) of the bound.

• The statement of the bound holds under standard PAC assumptions: We are given
an i.i.d. training sample from the data distribution which is otherwise completely
unknown.

Apart from the data dependency, our bound also concentrates only on the algorithm we
are interested in. Even if this algorithm selects a classification function from some class
or uses a mixture of such functions, the bound is specific to the way in which this is
done. While a uniform bound merely suggests to select, from within the restricted class, a
classifier which minimises the empirical error, in data-dependent bounds we have a trade-
off between empirical error and the quality of the match between our prior assumptions
and the classification function we construct. We know of no interesting real-world learning
problem which comes without any sort of prior knowledge, and most of these problems
are at least partly “non-malicious” in the sense that using this prior knowledge improves
performance instead of deteriorating it. From this perspective, data-dependent bounds for
specific algorithms are most promising for providing practically meaningful generalisation
error guarantees.

1.2 The Approach. Gaussian Process Models

Recall from the previous subsection that in order to come up with a meaningful data-
dependent PAC bound, we have to formalise our prior knowledge about the task in some
concrete way, so that we can construct data-dependent complexity measures for the set of
classification functions. The simplest way to do this is to model the relationship x → t.

A binary classification model can be seen as a probabilistic formulation of the relations
between the variables x → y → t, where the input variable x ∈ X , the latent output
y ∈ R and the observable target t ∈ {−1,+1}. Learning and generalisation works by
assuming that the latent relationship x → y is smooth and regular in some sense, however
these regularities are obscured by noise; our task is then to separate the structure from the
noise.4 Note that in this paper, we are interested only in discrimination models, i.e. we do
not attempt to model the data distribution over input points x. Distributions such as the
data likelihood will always be conditioned on the corresponding input datapoints, although
for simplicity this is not made explicit in the notation. Discrimination models typically
are more robust and outperform complete models for the whole joint data distribution on
tasks where the true input distribution cannot be identified well given the data. In general,
a (discrimination) model is decomposed into some kind of family for the latent function
x 7→ y(x) and a classification noise model P (t | y). From the Bayesian viewpoint, y(·) is a

4. In this context, it is largely irrelevant whether there really exists a smooth, underlying latent function.
Being restricted to finite data, we cannot test such a hypothesis anyway. The perspective is positivistic:
the model is “true” if we can use it to predict the future well.

236

PAC-Bayesian Bounds for GP Classification

random function, i.e., our knowledge about it will always remain uncertain to some extent.
A common noise model is based on the Bernoulli distribution, with P (t | y) = σ(ty), where
σ(u) = (1 + exp(−u))−1 is the logistic function. Here, the latent function y(·) models the
logit log(P (t = +1 |x)/P (t = −1 |x)), which is why P (t | y) is often referred to as logit
noise. Note that if, for a test point x∗, we knew the true logit ytrue(x∗), then the most
probable target t∗ at x∗ is sgn ytrue(x∗). Thus, a natural way to do classification within this
model-based framework is to estimate the latent function y(·) and then use the classifier
x 7→ sgn y(x). For more information about such discrimination models (see McCullach and
Nelder, 1983, Green and Silverman, 1994).

The parametric modelling approach imposes a family of candidates {x 7→ y(x |w)} for
y(·), where w is a parameter vector, determining the function y(· |w). Examples are lin-
ear models (i.e. y(x |w) = vT x + w0, w = (vT w0)T) or multi-layer perceptrons. If we
place a prior distribution P (w) on the parameter vector, the model is completely speci-
fied and encodes our prior assumptions about the unknown data distribution. The non-
parametric modelling approach differs from this, by placing a distribution directly on y(·),
without assuming its membership in a fixed parametric family. Such a random process
distribution is often constructed implicitly, by defining distributions over y(X) for every
finite subset X ⊂ X . Here, we use the Matlab notation, i.e. if X = {x1, . . . ,xq}, then
y(X) = (y(x1) . . . y(xq))T . A Gaussian process (GP) is a random process y(·) over X
whose finite-dimensional marginal distributions are normal, i.e. for every finite set X ⊂ X
the corresponding random vector y(X) is Gaussian. Furthermore, marginalisation has to
be consistent, in the sense that for two overlapping finite sets X1, X2, the marginal dis-
tributions of y(X1) and y(X2) on X1 ∩ X2 have to be the same. The process is essen-
tially determined by a mean function m(x) = E[y(x)] and a covariance kernel K(x, x̃) =
E[(y(x)−m(x))(y(x̃)−m(x̃))]. In the special case m(x) ≡ 0, we refer to y(x) as a zero-mean
Gaussian process. Note that in this case, K(x, x̃) = E[y(x)y(x̃)]. By placing a zero-mean
Gaussian process prior on the latent function y(·), we can specify a non-parametric model
in which the choice of the kernel K encodes our prior assumptions about the unknown data
distribution.5 Note that this definition of a GP is nothing more than the mathematically
rigorous generalisation of a multivariate Gaussian random vector if X is infinite: vectors
become functions X → R, random vectors become random processes, and positive definite
matrices become operators with positive definite kernels. In fact, for classification purposes
we always condition on a finite number of input points from X and have to deal with
finite-dimensional Gaussians only, yet the kernel is what associates observations with each
other, allows us to generalise to future test points, draw decision boundaries, etc. For an
introduction to Gaussian process models in the Bayesian context see (Williams, 1997). We
will show in Section 2.1 how approximate Bayesian predictions for GP classification models
can be obtained.

Let us finally introduce some notation. For two finite sets X1, X2 of input points, let
K(X1, X2) be the kernel matrix, i.e. K(X1, X2) = (K(x(1)

i ,x
(2)
j))i,j , where x

(k)
i runs over

5. This prior is reasonable if we know that the classes have equal prior probability, as we will assume in
this paper for simplicity. The general case can be treated by a straightforward parametric extension of
the model, for which our results remain valid.

237

Seeger

the points in Xk. Define K(X) = K(X, X). The kernel matrix over the training inputs is
denoted KS = K(XS). In the sequel, we will always assume that KS is positive definite.6

1.3 The PAC-Bayesian Theorem

In this subsection, we introduce the PAC-Bayesian theorem of McAllester (1999a), where
in this paper we restrict ourselves to the binary classification scenario.

Suppose we are given a function class {y(· |w)} parameterised by w. Many readers
will be most familiar with this parametric formulation, however, note that w need not
be a finite-dimensional vector. For example, in our application to non-parametric models
below we will identify w with the function y(· |w) itself. In the binary classification setting
defined in Section 1.1, it is understood that y(x |w) predicts t(x) = sgn y(x |w). A certain
type of classifier, called Gibbs classifier, depends on the hypothesis class as well as on
a distribution Q(w) over parameter vectors. Namely, given a test point x∗, the Gibbs
classifier predicts the corresponding target by first sampling w ∼ Q(w), then returning
t∗ = sgn y(x∗|w), plugging in the parameter vector just sampled. Note that a Gibbs
classifier has a probabilistic element, i.e. requires coin tosses for prediction. Note also that
if the targets of several test points are to be predicted, the parameter vectors sampled for
this purpose are independent7. This is in contrast to the more familiar Bayes classifier
which (in the case of our classification model) predicts t∗ = sgn Ew∼Q[y(x∗ |w)]. Another
type of rule, called Bayes voting classifier here, predicts t∗ = sgn Ew∼Q[sgn y(x∗ |w)], i.e.
“votes” over classifiers sgn y(x∗ |w) instead of averaging discriminants y(x∗ |w).

McAllester’s PAC-Bayesian theorem deals with Gibbs classifiers for which the distribu-
tion Q(w) may depend on the training sample S, which is why Q(w) is sometimes referred
to as a “posterior distribution”. In order to eliminate the probabilistic element in the Gibbs
classifier itself, the bound is on the gap between expected generalisation error and expected
empirical error, where the expectation is over Q(w). The theorem can be configured by
a prior distribution P (w) over parameter vectors, and the gap bound term depends most
strongly on the relative entropy

D[Q ‖P] = Ew∼Q(w)

[
log

dQ(w)
dP (w)

]
(1)

between Q(w) and the prior P (w). The relative entropy as a measure of deviation between
two distributions is well-founded in information theory, statistics and many other fields
(see Cover and Thomas, 1991). It arises naturally in maximum likelihood estimation and
variational Bayesian approximations and is certainly one of the most important concepts in
machine learning. Here, we assume that Q(w) and P (w) are absolutely continuous w.r.t.

6. It is possible to work with covariance kernels which have a non-zero null space and which can give rise
to singular kernel matrices (for example spline kernels, see Wahba, 1990), however this requires the use
of semi-parametric models which is not pursued here. Note that KS will typically have a numerical
rank smaller than n, i.e. will often be ill-conditioned, and one has to be careful to employ appropriate
numerically stable techniques.

7. Readers familiar with Markov chain Monte Carlo methods will note the similarity with a MCMC approx-
imation (based on one sample of w only) of the corresponding Bayes classifier for Q(w). The difference
is that typically in MCMC, the sample representing the posterior Q(w) is retained and used for many
predictions, while in the Gibbs classifier, we use each posterior sample only once.

238

PAC-Bayesian Bounds for GP Classification

some positive measure, and dQ(w)/dP (w) is the Radon-Nikodym derivative (e.g., Ihara,
1993, Sect. 1.4) of Q(w) w.r.t. P (w). If Q(w) is not absolutely continuous w.r.t. P (w),
i.e. if there is a null set of P (w) which is not a null set of Q(w), we define D[Q ‖P] = ∞.
Let us give some examples. If the mass of w is concentrated on a finite set of size L, say
{1, . . . , L}, the dominating measure is the counting measure, Q(w) and P (w) are finite
distributions and

D[Q ‖P] =
L∑

l=1

PrQ{w = l} log
PrQ{w = l}
PrP {w = l} . (2)

If w ∈ Rm, the dominating measure is typically the Lebesgue measure dw, and

D[Q ‖P] = Ew∼Q(w)

[
log

Q(w)
P (w)

]
.

Recall that for simplicity we use the same notation for a distribution and its density w.r.t.
dw, i.e. Q(w) = dQ/dw. For the formulation of Theorem 1, we require (as a special
case of Equation 2) the relative entropy between two Bernoulli variables (skew coins) with
probabilities of heads q, p,

DBer[q ‖ p] = q log
q

p
+ (1− q) log

1− q

1− p
. (3)

DBer is convex in (q, p), furthermore p 7→ DBer[q ‖ p] is strictly monotonically increasing for
p ≥ q, mapping [q, 1) to [0,∞). Thus, the following function

D−1
Ber(q, ε) = t s.t. DBer[q ‖ q + t] = ε, t ≥ 0 (4)

is well-defined for q ∈ [0, 1) and ε ≥ 0. We also define D−1
Ber(q,∞) = 1− q. Note that, due

to the convexity of DBer, we can compute D−1
Ber(q, ε) easily using Newton’s algorithm. It is

clear by definition that for ε ≥ 0, t ∈ [0, 1− q):

t ≥ D−1
Ber(q, ε) ⇐⇒ DBer[q ‖ q + t] ≥ ε. (5)

Suppose we are given an arbitrary prior distribution P (w) over parameter vectors, and
we choose a confidence parameter δ ∈ (0, 1). Then, the following result holds.

Theorem 1 (PAC-Bayesian theorem (McAllester, 1999a)) For any data distribution
over X × {−1,+1}, we have that the following bound holds, where the probability is over
random i.i.d. samples S = {(xS

i , tSi) | i = 1, . . . , n} of size n drawn from the data distribu-
tion:

PrS

{
gen(Q) > emp(S, Q) + D−1

Ber(emp(S, Q), ε(δ, n, P, Q)) for some Q
} ≤ δ. (6)

Here, Q = Q(w) is an arbitrary “posterior” distribution over parameter vectors, which may
depend on the sample S and on the prior P . Furthermore,

emp(S, Q) = Ew∼Q(w)

[
1
n

n∑
i=1

I{sgn y(xS
i |w) 6=tSi }

]
,

gen(Q) = Ew∼Q(w)

[
E(x∗,t∗)

[
I{sgn y(x∗ |w) 6=t∗}

]]
,

ε(δ, n, P, Q) =
1
n

(
D[Q ‖P] + log

n + 1
δ

)
.

239

Seeger

Here, emp(S, Q) is the expected empirical error, gen(Q) the expected generalisation error
of the Gibbs classifier based on Q(w) (note that the probability in gen(Q) is over (x∗, t∗)
drawn from the data distribution, independently of the sample S). D−1

Ber(q, ε) is defined by
(4), and D[Q ‖P] denotes the relative entropy between the distributions Q and P , as defined
in (1).

Note that McAllester’s theorem applies more generally to bounded loss functions and
makes use of Hoeffding’s inequality for bounded variables. However, for the special case of
zero-one loss, we can use techniques tailored for binomial variables which give considerably
tighter results than Hoeffding’s bound if the expected empirical error of the Gibbs classifier
is small. This version of McAllester’s theorem is proved in (Langford and Seeger, 2001).
The proof of Theorem 1 we present here in Appendix A, is considerably simpler and more
direct than the arguments used by McAllester (1999a) and McAllester (2002). It is based
on the concept of convex duality which is itself a cornerstone of many techniques used
in machine learning, such as the expectation maximisation algorithm, certain variational
approximations to Bayesian inference and primal-dual optimisation schemes.

We should also stress once more, in accordance with what has been said in Section 1.1,
that the PAC-Bayesian theorem does not require the true data distribution to be con-
strained in any way depending on the prior P (w) and the model class. Other non-
PAC analyses would probably require that the conditional data distribution is equal to∏

i P (tSi | y(xS
i ,w∗)), w∗ ∼ P (w∗), and under this restriction it might be possible to prove

stronger results than the PAC-Bayesian theorem (given that the model class is not too
large).

1.3.1 Extension to the Bayes Classifier

In most situations in practice, when comparing Gibbs and Bayes classifier for the same
posterior distribution Q(w) directly, it turns out that the Bayes variant can be computed
more efficiently and often performs better than the Gibbs variant. Therefore, it would be
of high interest to obtain a PAC-Bayesian theorem for Bayes classifiers as well. For fixed
(x∗, t∗), define the errors of Gibbs, Bayes and Bayes voting classifiers as

eGibbs(x∗, t∗) = Ew∼Q[I{sgn y(x∗ |w) 6=t∗}],

eBayes(x∗, t∗) = I{sgn Ew∼Q [y(x∗ |w)] 6=t∗},

eVote(x∗, t∗) = I{sgn Ew∼Q [sgn y(x∗ |w)] 6=t∗}.

Furthermore, for A ∈ {Gibbs,Bayes,Vote}, define eA = E(x∗,t∗)[eA(x∗, t∗)] where the ex-
pectation is over the data distribution. It is easy to relate eVote and eGibbs, by noting that if
eVote(x∗, t∗) = 1, then eGibbs(x∗, t∗) ≥ 1/2, thus eVote ≤ 2 eGibbs (as remarked in Herbrich,
2001, lemma 5.3). The Bayes and the Bayes voting classifier are different rules in general,
but in the special case that for each fixed (x∗, t∗), the distribution of y(x∗ |w), w ∼ Q is
symmetric around its mean, one can easily show that they are identical (thanks to Manfred
Opper for pointing this out). Namely, fix x∗, write y∗ = y(x∗ |w), 〈y∗〉 = Ew∼Q[y(x∗ |w)]
and let u = y∗ − 〈y∗〉. The latter has a distribution which is symmetric with mean 0. Now,
the product of the predictions of t∗ by the Bayes and the Bayes voting variant is

sgn E [sgn (〈y∗〉y∗)] = sgn E
[
sgn

(〈y∗〉2 + 〈y∗〉u
)]

,

240

PAC-Bayesian Bounds for GP Classification

which is 1 if 〈y∗〉 6= 0. Since for 〈y∗〉 = 0, both variants predict sgn 0, we see that they
always predict the same t∗.

Combining these observations, we see that under the symmetry condition we have that
eBayes ≤ 2 eGibbs, thus in this case Theorem 1 applies to the Bayes classifier as well. However,
this is not really the result we are ideally looking for. Namely, given special distributional
families for P and Q, we would like to obtain an analogue of Theorem 1 which results in a
bound for eBayes which is the same or better than what we know for eGibbs, or at least no
more than 1+ε times the eGibbs bound, where ε ¿ 1. Very recently, Meir and Zhang (2002)
obtained a strong PAC-Bayesian margin bound for the Bayes voting classifier, combining a
new inequality based on Rademacher complexities with convex duality (as in our proof).

2. The PAC-Bayesian Theorem for Approximate Bayesian Gaussian
Process Classification

In this section, we derive our main result: the application of the PAC-Bayesian Theorem 1 to
a wide class of approximate Bayesian Gaussian process classification methods. We begin in
Section 2.1 by introducing the Bayesian inference problem for binary GP classification and
the class of approximate solutions we are interested in here. Methods in this class approxi-
mate the true intractable predictive posterior process by a Gaussian one. In Section 2.2, we
show how to compute the relative entropy (1) between such prior and posterior Gaussian
processes. Finally, we state and discuss our main result (Theorem 2) in Section 2.3.

2.1 Approximate Bayesian Gaussian Process Classification

In this section, we introduce the Bayesian inference problem over GP classification models
and the class of approximate methods which we are concerned with in this paper. This
class is very broad and encompasses almost all Bayesian GPC approximations we know of.

Given some data S with input points XS = {xS
i | i = 1, . . . , n} and targets t = (tSi)i,

let yS = y(XS) ∈ Rn. The Bayesian posterior distribution for yS is given by P (yS |S) ∝
P (S |yS)P (yS), where P (yS) = N(0,KS), KS = K(XS) by the GP prior, and

P (S |yS) =
n∏

i=1

P (tSi | yS
i), yS = (yS

i)i

is the (conditional) likelihood. Unfortunately, due to the non-Gaussian noise distribution
P (t | y), it is in general intractable to work with the exact posterior P (yS |S) in order to
do predictions. The class of approximations we are interested in here replaces P (yS |S)
by a Gaussian distribution Q(yS |S). Once we have done this replacement, no further
approximations are necessary, because the corresponding approximation of the predictive
or posterior process turns out to be Gaussian as well. Namely, for any finite (ordered) set
X ⊂ X , let y = y(X). Now, by y \ yS , we denote the (ordered) collection of variables
obtained by deleting all components in y which correspond to input points of X that occur
in XS . yS \ y is defined analogously. Now, define the distribution of y to be

Q(y |S) =
∫

P (y \ yS |yS)Q(yS |S) d(yS \ y). (7)

241

Seeger

Here, we follow the usual convention that densities over an empty set of variables are taken
to be constant 1, and integrals over an empty set of variables are simply not done. This
definition is a consequence of our data model, if we plug in Q(yS |S) for P (yS |S). Namely,
first Q(y ,yS |S) = P (y \ yS |yS)Q(yS |S), from which we obtain (7) by integrating over
yS \ y. It is clear that Q(y |S) is Gaussian, and the consistency requirement can be
checked straightforwardly, thus we have defined a Gaussian process approximating the true
intractable posterior process, which can be used for (approximate) prediction as follows.

Suppose that
Q(yS |S) = N(yS |KSα̂S ,ΣS) (8)

is the posterior approximation. Here, the parameters α̂S ∈ Rn and ΣS ∈ Rn,n can be
chosen in an arbitrary way, given that ΣS and KS are positive definite. In order to predict
y∗ = y(x∗) at a test point x∗, we need to compute Q(y∗ |x∗, S) = N(y∗ |µ(x∗), σ2(x∗)).
Let k(x∗) = K(XS , {x∗}). By computing the joint Gaussian P (y∗,yS) and conditioning
on yS , it is easy to see that

P (y∗ |yS) = N(y∗ |k(x∗)T K−1
S yS , K(x∗,x∗)− k(x∗)T K−1

S k(x∗)).

From this equation and (7) we see that y∗ ∼ Q(y∗ |x∗, S) has the same distribution as
r + k(x∗)T K−1

S yS , where r ∼ N(r | 0, K(x∗,x∗)− k(x∗)T K−1
S k(x∗)) independent of yS ∼

Q(yS |S). Thus, by standard theorems of Normal theory (e.g., Mardia et al., 1979, Chap. 3),
we arrive at

µ(x∗) = k(x∗)T α̂S , σ2(x∗) = K(x∗,x∗)− k(x∗)T MSk(x∗),

MS = K−1
S −K−1

S ΣSK−1
S .

(9)

The Equations (9) can typically be somewhat simplified for concrete α̂S , ΣS (as chosen by
one of the approximate GPC methods we discuss below). Note that a predictive distribu-
tion for the target t∗, i.e. Q(t∗ |x∗, S), can be obtained by averaging the noise distribution
P (t∗ | y∗) over Q(y∗ |x∗, S). This is a simple one-dimensional integral which can be approx-
imated using a numerical quadrature rule. The corresponding approximate Bayes classifier,
i.e. the rule which chooses t∗ to maximise Q(t∗ |x∗, S) is given by x∗ 7→ sgn µ(x∗), due to
the symmetry of Q(y∗ |x∗, S) around its mean and the fact that P (t∗ = +1 | y∗) − 1/2 is
an odd function. This rule depends on the predictive mean µ(x∗) only, while it will turn
out below that the evaluation of the corresponding approximate Gibbs classifier requires
the evaluation of σ2(x∗) as well. Thus, in the context of the GPC approximations we are
interested in here, the Bayes classifier can usually be evaluated more efficiently than the
Gibbs variant if extra information such as Q(t∗ |x∗, S) is not required.

Approximation methods in the class we consider here differ in their choice of the pa-
rameters of Q(yS |S). Optimally, these parameters are chosen such that the true predictive
process P (t∗ |x∗, S) is closest to Q(t∗ |x∗, S) in relative entropy. A more feasible choice
is, however, to match the predictive processes P (y∗ |x∗, S) and Q(y∗ |x∗, S) in this way,
which is equivalent to the maximum likelihood projection of P (y∗ |x∗, S) onto the family
of Gaussian processes of the form shown in (7). The optimal choice of parameters requires
matching of moments between P (yS |S) and Q(yS |S), and we can see from (9) that for
this choice, the (approximate) Bayes classifier depends on the posterior mean of P (yS |S)

242

PAC-Bayesian Bounds for GP Classification

only. However, this mean is difficult to find (it can be approximated using MCMC sam-
pling techniques, see Neal, 1997), and most approximations settle for other parameters of
Q(yS |S).

In the context of this paper, we are interested in the posterior Gibbs rather than the
posterior Bayes classifier. The former predicts the target t∗ at a test point x∗ by sampling
y∗ ∼ Q(y∗ |x∗, S) from the approximate predictive distribution, then outputting sgn y∗.
The expected error is given by

eGibbs(x∗, t∗) = Pry∗∼Q(y∗ |x∗,S){sgn y∗ 6= t∗} = Φ
(−t∗µ(x∗)

σ(x∗)

)
, (10)

where Φ denotes the cumulative distribution function (c.d.f.) of N(0, 1).
Finally note that another frequently used way to introduce Gaussian process models is

to view them as linear models with Gaussian prior distributions in a feature space which
is typically infinite-dimensional. This view is very useful when designing new algorithms
for approximate inference, since many ideas proposed originally for linear models can be
imported rather straightforwardly. However, the feature space view requires a mathemati-
cally rigorous treatment involving some functional analysis over so-called reproducing kernel
Hilbert spaces, while working with Gaussian process models in the way introduced here is
completely elementary. In this paper, we do not require the feature space view. We refer to
(Williams, 1997) for a discussion of the relationships between the two views, and to (Wahba,
1990, Chap. 1) for the mathematical details required to establish the feature space view.

2.2 The Relative Entropy between Posterior and Prior Gaussian Process

In Section 1.2, we introduced Gaussian processes as distributions over random functions
y(·) : X → R, and in Section 2.1 we defined two Gaussian processes in particular: the
zero-mean prior process P with covariance kernel K and the corresponding Gaussian pro-
cess approximation Q to the true intractable posterior process, as given by (7) and (8).
Our main result is an application of the general PAC-Bayesian Theorem 1 to approximate
Bayesian GPC. For this non-parametric model, the parameter vector is the latent func-
tion itself, i.e. w ≡ y(·), and the prior P and posterior Q are the corresponding Gaussian
process distributions. To this end, we need to compute the Radon-Nikodym derivative
dQ(y(·))/dP (y(·)) and the relative entropy term (1).

It is easy to see that
dQ(y(·))
dP (y(·)) =

Q(yS |S)
P (yS)

,

where yS = y(XS), the outputs over the training input points. Here, P (yS) = N(yS |0,KS),
and Q(yS |S) is given by (8). All we need to show is that the process defined by

dQ̂(y(·)) =
Q(yS |S)
P (yS)

dP (y(·))

is a Gaussian process with the same parameters as Q. To see this, let X ⊂ X be finite and
define y = y(X). Recall the notations y \ yS and yS \ y from Section 2.1. Then we have

Q̂(y) =
∫

Q(yS |S)
P (yS)

P (y ,yS) d(yS \ y) =
∫

Q(yS |S)P (y \ yS |yS) d(yS \ y) = Q(y |S),

243

Seeger

where the last equality uses (7). Therefore, the relative entropy D[Q ‖P] is simply

D[Q ‖P] = Ey(·)∼Q

[
log

Q(yS |S)
P (yS)

]
= D[Q(yS |S) ‖P (yS)].

Since both Q(yS |S) and P (yS) are Gaussians in Rn, this is easily computed (e.g., Kullback,
1959):

D[Q ‖P] =
1
2

log
∣∣Σ−1

S KS

∣∣ +
1
2

tr
(
Σ−1

S KS

)−1 +
1
2
α̂T

SKSα̂S −
n

2
. (11)

This formula depends of course on the parameters α̂S and ΣS of the posterior approximation
Q(yS |S). In Section 3, we show how to compute the relative entropy for a range of concrete
GPC approximations.

2.3 Main Result

In this section, we state and discuss our main result, namely an application of the PAC-
Bayesian Theorem 1 to Gibbs variants of approximate Bayesian Gaussian process classifi-
cation methods from the class introduced in Section 2.1. Examples for how this result looks
like for several concrete methods are given in Section 3.

Choose some δ ∈ (0, 1). Then, the following result holds for any zero-mean Gaussian
process prior P with covariance kernel K.

Theorem 2 (PAC-Bayesian Theorem for GPC) For any data distribution over X ×
{−1,+1}, we have that the following bound holds, where the probability is over random i.i.d.
samples S = {(xS

i , tSi) | i = 1, . . . , n} of size n drawn from the data distribution:

PrS

{
gen(Q) > emp(S, Q) + D−1

Ber(emp(S, Q), ε(δ, n, P, Q))
} ≤ δ. (12)

Here, we have

emp(S, Q) =
1
n

n∑
i=1

Pryi∼Q(yi |xS
i ,S)

{
sgn yi 6= tSi

}
,

gen(Q) = E(x∗,t∗)
[
Pry∗∼Q(y∗ |x∗,S) {sgn y∗ 6= t∗}

]
,

ε(δ, n, P, Q) =
1
n

(
D[Q ‖P] + log

n + 1
δ

)
.

Thus, emp(S, Q) is the expected empirical error, gen(Q) the expected generalisation er-
ror of the GP Gibbs classifier (note that the probability in gen(Q) is over (x∗, t∗) drawn
from the data distribution, independently from the sample S) whose predictive distribu-
tion Q(y∗ |x∗, S) is given by (9), and D−1

Ber(q, ε) is defined by (4). Finally, D[Q ‖P] in
ε(δ, n, P, Q) is given in (11). All of these terms depend on the parameters α̂S , ΣS of the
posterior approximation (8).

We have essentially already proved this theorem. In Section 2.1, we have shown how to
compute the predictive distribution Q(y∗ |x∗, S) (see Equation 9), thus emp(S, Q) can be
computed easily using (10). ε(δ, n, P, Q) is computed using (11). Below, when specialising
to several concrete methods (i.e. “fill in” α̂S and ΣS), we will give more detailed comments
on how to compute the terms the bound depends upon.

244

PAC-Bayesian Bounds for GP Classification

3. Applications to Concrete Gaussian Process Classification Methods

In the previous section, we stated and proved our main result (Theorem 2) which is valid for
a large class of approximate Bayesian GPC techniques. In this section, we will instantiate
this result with two particular GPC methods, both of high practical relevance. For these
methods, which will both be introduced briefly, we provide computational details and some
further analysis. The experiments presented in Section 4 are based on the GPC methods
we describe here.

3.1 Laplace Gaussian Process Classification

In this section, we concentrate on a particular simple, yet powerful approximate GPC
method suggested by Williams and Barber (1998). This technique is referred to as Laplace
Gaussian process classification, and we will begin by briefly introducing this framework. A
detailed introduction can be found in (Williams and Barber, 1998).

Recall from Section 1.1 that we are given some i.i.d. data sample S of size n, drawn
from an unknown data distribution. Our noise model will be Bernoulli (logit), i.e. P (t|y) =
σ(ty), and for this non-Gaussian noise distribution, exact Bayesian analysis is intractable.
In a nutshell, the Laplace GPC approximation works by first determining the vector ŷS

maximising the posterior P (yS |S), where yS = y(XS), XS = {xS
1 , . . . ,xS

n}. This is a
convex optimisation problem, and therefore has a unique solution. Let KS = K(XS). In
our context, it is useful to operate on the dual vector αS = K−1

S yS . Then, the log posterior
can be written, up to additive constants, as a criterion

F (αS ,KS) =
n∑

i=1

log σ(tSi yS
i)− 1

2
αT

SKSαS , yS = (yS
i)i = KSαS . (13)

Since F is concave, it has a unique maximiser α̂S which can be found using the Newton-
Raphson algorithm. Furthermore, ŷS = KSα̂S is the posterior mode. We now approximate
the posterior P (yS |S) by a Gaussian Q(yS |S), using the Laplace approximation (e.g., Kaas
and Raftery, 1995) around the mode ŷS . This results in

Q(yS |S) = N(yS |KSα̂S , (W + K−1
S)−1), (14)

where W is a diagonal matrix with positive entries. In fact, at the mode ŷS , we have:

α̂S = (tSi σ(−tSi ŷS
i))i, W = diag(σ(−tSi ŷS

i)σ(tSi ŷS
i))i. (15)

Note that if ΣS = (W + K−1
S)−1, then (14) becomes consistent with (8). If we define the

positive definite matrix
A = In + W 1/2KSW 1/2, (16)

then some matrix algebra results in

MS = K−1
S −K−1

S ΣSK−1
S = W 1/2A−1W 1/2,

Σ−1
S KS = W 1/2AW−1/2.

(17)

This allows us to compute the predictive distribution (9) and the relative entropy term (11)
in a stable way. Suppose we are given the Cholesky decomposition (e.g., Horn and Johnson,

245

Seeger

1985, Chap. 7) A = LLT , where L is lower-triangular with positive diagonal. Then, the
predictive variance is computed as

σ2(x∗) = K(x∗,x∗)− rT r, Lr = W 1/2k(x∗),

which is O(n2) due to the back-substitution for r. The Cholesky decomposition is by
far the most stable (and also most efficient) exact method to do these computations, and
we discourage the reader from using other techniques involving matrix inversions. The
evaluation of the expected empirical error emp(S, Q) in Theorem 2 requires the evaluation
of the predictive variances at the training points, thus is O(n3).

Using (17), the relative entropy term (11) simplifies to

D[Q ‖P] =
1
2

log |A|+ 1
2

trA−1 +
1
2
α̂T

SKSα̂S −
n

2
. (18)

Note that log |A| = 2 log |diag L|. The term trA−1 can be computed from L in roughly
the same time as L is obtained from A. Thus, the computation of (18) is O(n3) as well.

The Gibbs classifier seems unattractive for predictions on large test sets, because each
evaluation requires O(n2). In contrast to this, the Bayes classifier variant depends on the
mean µ(x∗) = k(x∗)T α̂S only, which is O(n) per test point. However, we show in (Seeger,
2002) how one can use sparse approximation techniques together with rejection sampling
in order to avoid the exact computation of the variance term for most of the predictions,
ending up with O(n) (average case) per prediction.

3.1.1 Some Analysis of the Relative Entropy Term

In this section, we present some analysis of the relative entropy term D[Q ‖P] (see Equa-
tion 18) in the bound of Theorem 2, as applied to Laplace GPC. In normal situations (i.e.
δ not extremely small), the expression ε(δ, n, P, Q) in (12) is dominated by this term.

Now to the remaining terms in (18). The matrix A of (16) is positive definite, and all
its eigenvalues are ≥ 1. Furthermore, by taking any unit vector u and using the min-max
characterisation of the eigenvalue spectrum (e.g., Horn and Johnson, 1985, Sect. 4.2) of
Hermitian matrices, we have uT Au = 1 + (W 1/2u)T KS(W 1/2u) ≤ 1 + λmaxu

T Wu <
1 + λmax/4, where λmax is the largest eigenvalue of KS (note that the positive coefficients
of W are all < 1/4). Thus, all eigenvalues of A lie in (1, 1 + λmax/4). By analysing
(1/2) log |A|+(1/2) tr A−1 for general8 A º In, we see that this term must lie between n/2
and (n/2)(log(1 + λmax/4) + (1 + λmax/4)−1), although these bounds are not necessarily
tight.

3.2 Sparse Greedy Gaussian Process Classification

A principal drawback of many approximate GPC techniques in practice is their scaling of
O(n3) with the sample size n during training. For example, the Laplace GPC technique
discussed in Section 3.1, although one of the fastest (non-sparse) known GPC techniques,
scales as O(n3) in a straightforward implementation.9 Furthermore, these techniques typ-
8. A º In means that A− In is positive semidefinite.
9. This is true for Laplace Gibbs GPC and for the evaluation of the terms determining the bound value

in Theorem 2. Laplace Bayes GPC typically scales as O(n2) (average case), if the Newton steps are
approximated using a conjugate gradients solver.

246

PAC-Bayesian Bounds for GP Classification

First, we can use (15) to show that
α̂T

SKSα̂S = ŷT
S α̂S =

∑
i t

S
i ŷS

i σ(−tSi ŷS
i),

which is simply
∑

i f(tSi ŷS
i), f(x) = x σ(−x),

and tSi ŷS
i is the so-called margin at example

(xS
i , tSi). f(x) is plotted in Figure 1. It is

maximal at x∗ ≈ 1.28, converges to 0 expo-
nentially quickly for x →∞ and behaves like
x 7→ x for x → −∞. Thus, at least w.r.t.
the third term in (18), classification mistakes
(i.e. tSi ŷS

i < 0) render a negative contribu-
tion to the gap bound value. This is what we
expect for a Bayesian architecture. Namely,
the method chose a simple solution, at the
expense of making this mistake, yet with the
goal to prevent disastrous over-fitting. In our
bound, we are penalised by a higher empirical
error, but we should be rewarded by a smaller
gap bound term.

−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

margin x

f(x
) =

 x
 s

ig
m

a(
−x

)

x
*

Figure 1: Relation between margin and gap
bound part

ically require the evaluation of the complete kernel matrix KS . Recently, a number of
sparse approximation techniques for Bayesian GPC have been proposed (e.g., Tipping,
2001, Williams and Seeger, 2001, Smola and Bartlett, 2001, Tresp, 2000, Csató and Opper,
2002, Lawrence, Seeger, and Herbrich, 2002), providing an important alternative for prac-
titioners. The common theme of these techniques is to restrict the number of coefficients to
be used in the final discriminant expansion to a controllable number k ¿ n (an exception is
the method of Williams and Seeger (2001) which results in a dense expansion). By means of
this, some of these methods achieve a training complexity of at most O(nk2). This involves
the selection of a “representative” subset of size k of the training inputs. Since an optimal
selection (in any meaningful sense) is intractable, the methods resort to randomised and/or
greedy strategies, often of heuristic nature.

Here, we focus on a class of sparse GPC techniques proposed by Csató and Opper (2002)
and Lawrence, Seeger, and Herbrich (2002). Due to space limitations, a detailed description
of these methods cannot be given here, for details see (Seeger et al., 2002). In what follows,
we introduce aspects of the methods we require in this section, but the exposition is not
self-contained. We then show how the terms determining the bound value of Theorem 2
can be evaluated in time O(nk2).

The method falls in the class described in Section 2.1 and propagates Gaussian approx-
imations Q(yS |S) to the intractable true posterior P (yS |S) (see Csató and Opper, 2002,
Lawrence, Seeger, and Herbrich, 2002). Q(yS |S) is parameterised by a diagonal matrix Π
with nonnegative elements and a vector m:

Q(yS |S) = N
(
yS |KS(In + ΠKS)−1TΠm, (K−1

S + Π)−1
)
,

where T = diag(tSi)i contains the targets. This becomes consistent with (8) if we set α̂S =
(In + ΠKS)−1TΠm and ΣS = (K−1

S + Π)−1. In sparse variants of this approximation,
we allow for elements of diag Π to be zero. In fact, for such methods we keep an active

247

Seeger

set I ⊂ {1, . . . , n}, with k = |I| ¿ n, and make sure that if diagΠ = (pi)i, then pi = 0
whenever i 6∈ I. The active set is grown up to a desired size (or until a stopping criterion is
met) by including new datapoints (xS

i , tSi). In order to include a new point i, the algorithm
only requires the i-th row of the kernel matrix KS , i.e. K({xS

i }, XS). After I has reached
the desired size, the method can be stopped, but some variants try to continue to refine the
approximation while keeping the size of I constant. In sparse greedy variants of this scheme,
the next datapoint to be included is selected greedily using a heuristic scoring criterion. In
this work, we employ the heuristic proposed in (Lawrence, Seeger, and Herbrich, 2002),
referred to as differential entropy score, which can be evaluated very efficiently.10 The first
few patterns to be included are chosen at random. Later, we select a pattern by scoring all
remaining ones using the differential entropy criterion and pick the winner. The algorithm
stops once k patterns have been included.

Due to the fact that at most k of the elements in diag Π are non-zero, it turns out
that the quantities depending on the final posterior approximation Q(yS |S) which we are
interested in, namely the parameters of the predictive distribution (9) and the relative
entropy term (11) can be computed efficiently and using only the part [KS]I,· of the kernel
matrix. First note that

MS = (In + ΠKS)−1 Π, Σ−1
S KS = In + ΠKS .

Denote Πk = [Π]I,I and define

B = Ik + Π1/2
k [KS]I,IΠ

1/2
k ∈ Rk×k, β = Π1/2

k B−1Π1/2
k [Tm]I ∈ Rk.

If EI ∈ Rk,n denotes the “selection” matrix for I, i.e. EIg = [g]I , then some elementary
matrix algebra using the Sherman-Morrison-Woodbury formula (e.g., Press et al., 1992,
Sect. 2.7) gives

(In + ΠKS)−1 = In −ET
I Π1/2

k B−1Π1/2
k [KS]I,IEI ,

MS =
(
Π1/2

k EI

)T
B−1Π1/2

k EI .
(19)

Since α̂S = MSTm, we have α̂S = ET
I β. The predictive variance is best computed using

the Cholesky decomposition B = LkL
T
k . Plugging (19) into (9), we have

µ(x∗) = βT kI(x∗), σ2(x∗) = K(x∗,x∗)− rT r, Lkr = Π1/2
k kI(x∗),

where kI(x∗) = (K(x∗,xS
i))i∈I ∈ Rk. Thus, each Gibbs prediction can be computed in

O(k2), and the expected empirical error of the Gibbs classifier is obtained at a cost of

10. We remark that although the schemes proposed in (Csató and Opper, 2002) and (Lawrence, Seeger, and
Herbrich, 2002) seem quite similar, in that they include new datapoints into the approximation in the
same way, they are algorithmically quite different. The method proposed by Csató and Opper (2002) is
an on-line scheme in which datapoints are used to refine the posterior approximation even if they are
not included into the active set, while this does not hold for the method suggested in (Lawrence et al.,
2002). This means that the latter can be significantly faster, yet less accurate in practice, although both
methods scale as O(nk2). Furthermore, the greedy method is a compression scheme (see Section 4.3),
which is not the case for the on-line algorithm.

248

PAC-Bayesian Bounds for GP Classification

O(nk2). Note that the corresponding Bayes classifier can be evaluated in O(k), due to the
sparse expansion for µ(x∗). For the computation of the relative entropy term (11), we use
(19) and the well-known matrix formulas |I + UV | = |I + V U | and trUV = trV U (the
former follows from a well-known formula using Schur products, e.g., Horn and Johnson,
1985, Sect. 0.8.5). Then, log |Σ−1

S KS | = log |B| and tr(Σ−1
S KS)−1 = n − k + trB−1,

therefore

D[Q ‖P] =
1
2

log |B|+ 1
2

trB−1 +
1
2
βT [KS]I,I β − k

2
. (20)

This is computed in O(k3), given the Cholesky decomposition of B. All in all, the upper
bound on gen(Q) given by Theorem 2 for sparse greedy GPC can be computed in O(nk2).

It is interesting to point out the close similarity between the two relative entropy formulas
(18) and (20). This is due to the similar form of ΣS (covariance matrix of Q(yS |S)) both
methods are employing, namely ΣS = (K−1

S + D)−1, where D is a diagonal matrix. In
the Laplace GPC case, with D = W , the components of diag D are positive, and there is
no force which drives many of these components towards zero. In the sparse greedy GPC
case, with D = Π, n − k of the components of diag D are zero, allowing us to use more
efficient computations. Note that the method we have discussed in this section becomes
identical to the “cavity” approach suggested by Opper and Winther (2000) if we let k = n,
i.e. allow all components of Π to become non-zero (see also Minka, 2001). Another idea to
control sparsity in Π, different from the approaches in (Csató and Opper, 2002, Lawrence,
Seeger, and Herbrich, 2002), would be to place special priors on the components of Π,
forcing them to be small under the posterior if the data does not suggest otherwise. This is
the approach adopted by the relevance vector machine (RVM) of Tipping (2001), although
there the sparsity of a set of parameters different from Π is controlled.

We would also like to remark that our bound for sparse greedy GP methods is (in
general) not a compression bound. Theorems of the latter class require that the finally
selected discriminant is exactly recovered if we restrict ourselves, in an independent training
run, to the datapoints in the final expansion as a training set (see Section 4.3). Although
our bound applies to compression scheme versions of sparse greedy GPC, it is not restricted
to such. The experiments presented in Sections 4.2 and 4.3 suggest that Theorem 2 for
sparse greedy GPC renders a much tighter generalisation error bound than a standard PAC
compression bound in situations where both bounds apply.

4. Experiments

Here, we present experiments testing our main result (Theorem 2) for the Laplace GP Gibbs
classifier of Section 4.1 and the sparse greedy GP Gibbs classifier of Section 4.2, using a
setup to be described shortly. The results indicate that the bounds are very tight even for
training samples of moderate sizes. In Section 4.3, we compare our bound to a state-of-
the-art PAC compression bound for the sparse greedy GP Bayes classifier, and to the same
compression bound for the soft-margin support vector classifier in Section 4.3.1. Finally, in
Section 4.4 we try to evaluate the model selection qualities of our result for sparse greedy
GP classification.

249

Seeger

A real-world binary classification task was created on the basis of the well-known MNIST
handwritten digits database11 as follows. MNIST comes with a training set of 60000 and
a test set of 10000 handwritten digits, represented as 28-by-28-pixel bitmaps, the pixel
intensities are quantised to 8 bit values. First, the input dimensionality was reduced by
cutting away a 2-pixel margin, then averaging intensities over 3-by-3-pixel blocks, resulting
in 8-by-8-pixel bitmaps. The task of discriminating handwritten twos against threes is
among the harder binary ones.12 By selecting these digits only, a training pool of 12089
cases and a test set of l = 1000 cases were created.

For our experiments, we employed the frequently used Radial Basis Functions (RBF)
covariance kernel

K(x(1),x(2)) = C exp
(
− w

2d

∥∥∥x(1) − x(2)
∥∥∥2

)
.

Here, d is the dimensionality of the inputs (d = 64 in our case), w and C are positive
parameters. C determines the variance of the underlying random process (see Section 1.2),
while w−1/2 determines its average length scale.

The experimental setup is as follows. An experiment consists of L = 10 independent
iterations. During an iteration, three datasets are sampled independently and without
replacement from the training pool: a model selection (MS) training set of size nMS, a
MS validation set of size lMS and a task training sample S of size n. Note that the latter
set is sampled independently from the model selection sets, ensuring that the prior P in
Theorem 2 is independent of the task training sample. This issue is discussed in more detail
in Section 5. Then, model selection is performed over a list of candidates for (w, C), where
a classifier is trained on the MS training set and evaluated on the MS validation set (the MS
score is the expected empirical error of the Gibbs classifier on the MS validation set). The
winner is then trained on the task training set and evaluated on the test set. Alongside, the
upper bound value given by Theorem 2 is evaluated, where the confidence parameter δ is
fixed to 0.01. We also quote total running time, as observed on a DEC Alpha workstation
with almost four gigabytes of RAM.

4.1 Experiments with Laplace GPC

Our implementation uses the Newton-Raphson algorithm in order to maximise the log
posterior criterion (13). The Newton steps are computed using a conjugate gradients solver
for symmetric positive definite linear systems. The prediction vector α̂S is found in O(n2)
(average case). The Cholesky decomposition of the system matrix (16), the evaluation of
the expected empirical error of the Gibbs classifier and of the relative entropy term (18)
require O(n3) each. The specifications and results for the experiments of this section are
listed in Table 1. For all these experiments, we chose model selection validation set size
lMS = 1000 (recall that the test set is fixed with size l = 1000). Experiments #1 to #5 have
growing sample sizes n = 500, 1000, 2000, 5000, 9000, the corresponding MS training set
sizes are nMS = 1000 for experiments #2 to #5, and nMS = 500 for experiment #1. Note
that nMS < n in experiments #3 to #5 is chosen for computational feasibility, due to the

11. Available online at http://www.research.att.com/∼yann/exdb/mnist/index.html.
12. We will consider other binary subtasks of MNIST as well as other binary tasks in future work.

250

PAC-Bayesian Bounds for GP Classification

considerable size of the candidate list for (C, w). In Table 2, we list additional information
about the experiments.

n nMS emp gen upper
1 500 500 0.036 0.0469 0.182

(±0.0039) (±0.0015) (±0.0057)
2 1000 1000 0.0273 0.036 0.131

(±0.0023) (±0.001) (±0.0041)
3 2000 1000 0.0243 0.028 0.1091

(±0.0026) (±0.0013) (±0.0079)
4 5000 1000 0.0187 0.0195 0.076

(±0.0016) (±0.0011) (±0.002)
5 9000 1000 0.0178 0.0172 0.0706

(±0.0012) (±0.0013) (±0.0037)

Table 1: Experimental results for Laplace GPC. n: task training set size; nMS: model
selection training set size. emp: expected empirical error; gen: expected generali-
sation error (estimated as average over test set). upper: upper bound on expected
generalisation error after Theorem 2. Figures are mean and width of 95% t-test
confidence interval.

gen-bayes C pars w pars approx-time
1 0.0339 50(6),30(2),20,25 0.5(5),2(3),0.75(2) 14 min

(±0.0023)
2 0.0274 10(9),20 3(5),2(2),5 67 min

(±0.0022)
3 0.0236 5(5),3(3),10(2) 10(6),7.5(2),5(2) 91 min

(±0.0029)
4 0.0171 5(6),7.5(2),15,20 7.5(3),10(3),12(2),5,3 762 min

(±0.0016)
5 0.0158 2(4),3(2),5(2),7.5(2) 12(4),10(3),5(2),7.5 3618 min

(±0.0017)

Table 2: Additional information for Laplace GPC experiments. gen-bayes: test error of
corr. Bayes classifier. C pars, w pars: Values of C, w chosen by MS (frequency
in parentheses). approx-time: approximate total running time. Figures are mean
and width of 95% t-test confidence interval.

Note that the resource requirements for our experiments are well within today’s desktop
machines computational capabilities. For example, experiment #4 was completed in total
time of about 12 to 13 hours, the memory requirements are around 250M. Now, for this
setting both the expected empirical error and the estimate (on the test set) of the expected
generalisation error lie around 2%, while the PAC bound on the expected generalisation error
given by Theorem 2 is 7.6% — an impressive, highly nontrivial result on samples of size

251

Seeger

n = 5000. Our largest experiment #5 was done mainly for comparison with experiment #2
for sparse greedy GPC (see Section 4.2). The total computation time was 6 hours for each
iteration, and the memory requirements are around 690M. We note a slight improvement
in test errors as well as in the upper bound values (which now lie around 7%).

The “gen-bayes” column in Table 2 contains the test error that a Bayes classifier with the
same approximate posterior as the Gibbs classifier attains. Note that it is not necessarily the
best we could obtain for a Bayes classifier, because the model selection is done specifically
for the Gibbs, not the Bayes classifier. In the Laplace GPC case we note that Bayes and
Gibbs variants perform comparably well, although the Bayes classifier attains slightly better
results and, as mentioned in Section 2.1, can be evaluated more efficiently. We include these
results for comparison only: although our main result implies a bound on the generalisation
error of the Bayes classifier (see Section 1.3.1), the link is too weak to render a sufficiently
tight result.

4.2 Experiments with Sparse Greedy GPC

The algorithmic details of our implementation can be found in a separate paper (Seeger
et al., 2002). Training proceeds in two phases. In the first phase, a number krand of patterns
from the training sample are selected at random and included into the approximation. In
the second phase, we include further patterns until the active set has grown to size k.
However, now the next pattern to be included is determined by scoring all remaining ones
using the differential entropy criterion (see Section 3.2) and choosing the one with the
best value. Empirically, we found the greedy selection to be very effective, thus typically
krand ¿ k. Note that we require krand ≥ 1, because the differential entropy criterion is
constant over all patterns if the active set is empty and the kernel diagonal is constant.
We use different values for k and krand during model selection, denoted by kMS, krand,MS.
For all experiments reported here, we chose MS training size nMS = 1000, MS validation
size lMS = 1000, kMS = 150, krand = 3 and krand,MS = 2. Note that in experiments which
have the same (n, nMS, lMS) constellation as Laplace GPC experiments, we use the same
data subsets, in order to facilitate direct comparisons. The results are listed in Table 3. In
Table 4, we list additional information about the experiments.

n k emp gen upper
1 5000 500 0.0154 0.0207 0.067

(±0.0021) (±0.0015) (±0.0026)
2 9000 900 0.0101 0.0116 0.0502

(± 6.88e-4) (± 5.49e-4) (± 6.13e-4)

Table 3: Experimental results for sparse GPC. n: task training set size; k: final active set
size. emp: expected empirical error; gen: expected generalisation error (estimated
as average over test set). upper: upper bound on expected generalisation error
after Theorem 2. Figures are mean and width of 95% t-test confidence interval.

Let us compare these results to the ones obtained for Laplace GPC. The sparse GPC
Gibbs classifier trained with 5000 examples attains an expected test error of 2.1%, and the

252

PAC-Bayesian Bounds for GP Classification

gen-bayes C pars w pars approx-time
1 0.0084 120(9),100(1) 3(5),2(3),5(2) 16 min

(±0.0014)
2 0.0042 150(5),125(2),120(2),100 3(7),2(2),5 82 min

(± 8.79e-4)

Table 4: Additional information for sparse GPC experiments. gen-bayes: test error of corr.
Bayes classifier. C pars, w pars: Values of C, w chosen by MS (frequency in
parentheses). approx-time: approximate total running time. Figures are mean
and width of 95% t-test confidence interval.

upper bound evaluates to 6.7%. While the former is the same as for the Laplace GPC
variant, the latter is significantly lower. The ratio between upper bound and expected test
error is 3.19, the ratio between gap bound and expected test error is 2.46 — demonstrating
an impressive tightness for a state-of-the-art classifier trained on just 5000 examples. Also
important for the practitioner, experiment #1 for the sparse GPC was completed in total
time of about 16 minutes on the machine mentioned in Section 4.1 — almost fifty times faster
than the Laplace GPC experiment #4. Note that the limited size of the task database does
not allow samples sizes much larger than n = 9000 (experiments on much larger datasets
are subject to future work). It is interesting to observe that for this sample size, the results
here are significantly better than for the full Laplace GPC on the same task13 (experiment
#5 in Section 4.1). Finally note that we did not try to optimise the final active set size k,
but simply fixed k = n/10 a priori. An automatic choice of k could be based on heuristics
which evaluate the error on the datapoints outside the active set.

The “gen-bayes” column in Table 4 serves the same purpose as the “gen-bayes” column
in Table 2. In case of sparse greedy GPC, the results show that the Bayes classifier performs
somewhat significantly better than the Gibbs variant, although the latter still attains very
competitive results. A possible explanation for this difference, given that it cannot be
observed for Laplace GPC, is obtained by inspecting the (C, w) kernel parameters values
that are preferred by sparse greedy GPC. The parameter C is much larger for sparse GPC,
i.e. the latent process has a larger a priori variance. This is sensible, because sparse GPC
has to rely on much fewer terms in the final expansion than Laplace GPC, thus has to
make sure that the kernels corresponding to active patterns span a larger range, and also
the coefficients in the expansion (the coefficients of β) lie in a broader interval. However,
this typically leads to an increase in the predictive variances, which in turn might introduce
more sampling errors in the Gibbs predictions.

13. Note that we are comparing two entirely different ways of approximating the true posterior by a Gaussian:
a Laplace approximation around the mode (which is different from the posterior mean — the “holy
grail” of Bayesian logistic regression, see Section 2.1) and an approximation based on repeated moment
matching. A more meaningful direct comparison would involve the TAP method of Opper and Winther
(2000) which is, however, significantly more costly to compute than the Laplace approximation.

253

Seeger

4.3 Comparison with PAC Compression Bound

In this section, we present further experiments in order to compare our result for sparse
GPC with a state-of-the-art PAC compression bound. Note that here, we employ Bayes GP
classifiers instead of Gibbs GP classifiers: it would not be fair to compare our Gibbs-specific
bound to an “artificially Gibbs-ified” version of a result which is typically used with Bayes
classifiers. A compression bound applies to learning algorithms which have a particular
characteristic. Namely, suppose we are given a learning algorithm A which maps data
samples S of size n to hypotheses A(S), which are then used to classify future input points.
A is called a compression scheme if there exists another algorithm R, mapping samples of
size smaller than n to hypotheses, such that for every sample S we can find a k < n and a
subsample of S of size k such that R trained on this subsample outputs the same hypothesis
as A trained on S. Popular examples of compression schemes are the perceptron learning
algorithm of Rosenblatt (1958) and the support vector machine (see Section 4.3.1).

It turns out that the sparse greedy GPC variant we are using in the experiments re-
ported in Section 4.2, is a compression scheme where k is fixed a priori. Herbrich (2001,
Theorem 5.18) gives a PAC bound for compression schemes (drawing from earlier work of
Littlestone and Warmuth, 1986) which can be considered state-of-the-art. In order to en-
sure a fair comparison, we use a refined version of this bound which can be found in (Seeger,
2002). There, it is also shown why and to what extent our sparse greedy GPC variant is a
compression scheme. The PAC upper bound on the generalisation error depends only on the
training error on the remaining n−k patterns of S outside the active set (called emp\k(S)),
furthermore on k and krand. We repeated the experimental setup used in Section 4.2 and
employed the same dataset splits. The results can be found in Table 5.

n k emp gen upper
1 5000 500 0.0025 0.0058 0.3048

(± 6.79e-4) (±0.0015) (± 0)
2 9000 900 0.0024 0.003 0.3041

(± 4.25e-4) (± 7.54e-4) (± 0)

Table 5: Experimental results for PAC compression bound with sparse GP Bayes classifier.
n: task training set size; k: final active set size. emp: empirical error (on full
training set); gen: error on test set. upper: upper bound on generalisation error
given by PAC compression bound. Figures are mean and width of 95% t-test
confidence interval.

For both experiments, emp\k(S) = 0 was achieved in all runs, the compression bound is
tightest in this case. Nevertheless, in experiment #1, the upper bound on the generalisation
error is 30.5%, a factor of 50 above our estimate on the test set. The ratio is even worse for
experiment #2.

The reader may wonder why the generalisation errors here are slightly lower than the
ones reported in Table 4. This should be due to the fact that in Section 4.2, we evaluated
the Bayes classifier based on the hyperparameter values which have been optimised for the
Gibbs variant, while here we performed model selection for the Bayes classifier explicitly.

254

PAC-Bayesian Bounds for GP Classification

4.3.1 Comparison with Compression Bound for Support Vector Classifiers

We can also compare our main result for sparse GP Gibbs classifiers with state-of-the-
art bounds for the popular support vector machine (SVM). This kernel machine is non-
probabilistic, due to its ε-insensitive loss which cannot be seen as the negative log of a
proper noise distribution (see Seeger, 2000). A trained SVM discriminant function is a ker-
nel expansion much like the discriminant function of a GP Bayes classifier (the predictive
mean). The special form of the loss function encourages sparse expansions on tasks which
are not very noisy. The training patterns corresponding to non-zero dual expansion coeffi-
cients are referred to as support vectors. However, sparseness is not a directly controllable
parameter, furthermore it is not an explicit algorithmic goal of the SVM algorithm to end
up with a maximally sparse expansion. The aim is rather to maximise the “soft” minimal
empirical margin which is, loosely speaking, the minimal empirical margin (i.e. the distance
of the discriminating hyperplane to the closest datapoints, as measured in the feature space
norm) after removing some outlier training points (we are penalised for the margin vio-
lations of these outliers). This particular statistic of the empirical margin distribution is
inspired by some PAC generalisation error bounds (e.g., Shawe-Taylor et al., 1998, Herbrich
and Graepel, 2001), but in our opinion this link is rather weak for “non-near-asymptotic”
situations. In practice, modern algorithms for SV classification such as Sequential Minimal
Optimisation (SMO) proposed by Platt (1998) can often tackle problems with rather large
sample sizes n in much less than O(n3) (average case), by concentrating optimisation efforts
on a small active set. For more details on SVM see (Vapnik, 1998, Burges, 1998, Cristianini
and Shawe-Taylor, 2000, Schölkopf and Smola, 2002, Herbrich, 2001). Due to the setup of
SVM training as a constrained optimisation problem, it is possible to show that the algo-
rithm is a k-compression scheme, where k is the number of support vectors. Thus, if we
observe a small ratio k/n, the PAC compression bound will render a nontrivial guarantee
on the generalisation error. It is important to observe that in case of SV classification, we
always have emp\k(S) = 0, i.e. the trained discriminant does not make any errors on the
points which are not support vectors, and that this zero-error case is maximally favourable
to the PAC compression bound. Experimental results for SV classifiers and the PAC com-
pression bound can be found in Table 6. Again, we employed the same dataset splits as
used in Section 4.2.

n emp gen upper num-sv
1 5000 0.0016 0.0048 0.2511 370.8

(± 9.49e-4) (±0.0012) (±10.71)
2 9000 0.0021 0.0036 0.213 529

(± 7.67e-4) (±0.0012) (±29.12)

Table 6: Experimental results for PAC compression bound with SV classifiers. n: task
training set size. emp: empirical error (on full training set); gen: error on test set.
upper: upper bound on generalisation error given by PAC compression bound.
Figures are mean and width of 95% t-test confidence interval.

255

Seeger

In both experiments, a higher degree of sparsity is attained than the one chosen in the
experiments above for sparse GPC (as mentioned above, we did not try to optimise this
degree in the sparse GPC case), leading to somewhat better values for the PAC compression
bound. However, the values of 25% (experiment #1) and 21% (experiment #2) are still
by factors > 50 above the estimates computed on the test set. The compression bound
applies to SVM, but is certainly not specifically tailored for this algorithm, since it does
not even depend on the empirical margin distribution. The margin bound of Shawe-Taylor
et al. (1998), commonly used to justify data-dependent structural risk minimisation for
SVM, becomes nontrivial (i.e. smaller than 1) only for n > 34816 (see Herbrich, 2001,
Remark 4.33). The algorithmic stability bound of Bousquet and Elisseeff (2002) does not
work well for support vector classification either. In fact, the gap bound value converges to
zero at some rate r(n) (for n →∞) only if the variance parameter14 C goes to zero at the
same rate r(n). If r(n) = O(1/n) or r(n) = O(log n/n), this would correspond to severe
over-smoothing. Herbrich and Graepel (2001) use some older PAC-Bayesian theorems of
McAllester (1999b) in order to prove a bound which depends on the minimal normalised
empirical margin (SVC maximises this margin if the input points are normalised in the
feature space). This theorem applies to hard-margin SVC only and becomes nontrivial
once the minimal normalised (hard) margin15 is > 0.91, given that the feature space has
dimension > n. Hard-margin SVMs tend to overfit on noisy real-world data, with small
normalised margins at least on some points, and in practice the soft-margin variant is
typically preferred. In a separate experiment using the same setup and dataset splits as
in #1 of this section (i.e. training sample size n = 5000), but training hard margin SVMs
without bias parameter, we obtained generalisation error estimates on the test set of gen =
0.0056 (± 3.904e-5), minimum normalised margins of minmarg = 0.0242 (± 2.813e-5) and
generalisation upper bound values of upper = 16.28 (± 4.7e-3) using the theorem of Herbrich
and Graepel (2001). These results back the simple observation that the minimum normalised
(hard) margin is not suitable as a PAC gap bound statistic and should be replaced by one
which is more robust against noise, such as soft margin, sparsity degree or combinations
thereof (see Herbrich and Williamson, 2002, for some recent ideas). All in all, we were not
able to find any proposed SVC-specific bound which would be tighter on this task than the
PAC compression bound used above.

4.4 Using the Bounds for Model Selection

Can our results be used for model selection? In our opinion, this issue has to be approached
with care. It seems rather obvious that a generalisation error bound should not be used
for model selection on a real-world task if it is very far above reasonable estimates of the
generalisation error on this task. When proving a PAC bound, the only link between the

14. In the SVM literature, it is common practice to separate C from the covariance kernel and write it in front
of the sum over the slack variables. The parameter λ in (Bousquet and Elisseeff, 2002) is λ = 2/(Cn),
and their gap bound behaves as 1/(nλ) as n→∞.

15. If we view SVC as a linear method in a feature space induced by the covariance kernel, the minimal
normalised margin is the arc cosine of the maximal angle between the normal vector of the separating
plane and any of the input points mapped into feature space. A minimal normalised margin close to 1
means that all mapped input points lie within a double cone of narrow angle around the line given by
the normal vector. For noisy data, such a situation is arguably quite unlikely to happen.

256

PAC-Bayesian Bounds for GP Classification

final upper bound value and the generalisation error itself that needs to be shown, is that the
former dominates the latter on all but a δ-fraction of samples. Even if such a far-off bound
follows the curve of a good generalisation error estimate on some task, there is usually no
guarantee that it will do so on another one. If we minimise the upper bound value anyway
for model selection, we step out of the security potentially given by the weakness of the
PAC assumptions, thus could just as well use any other model selection technique such as
Bayesian evidence maximisation or cross-validation.

Even though our main result offers highly non-trivial generalisation error guarantees for
the real-world task described in this section, they still lie by a factor > 3 above the estimates
on the test set. In our opinion, PAC generalisation error bounds in practice on samples of
moderate size should rather be seen as secondary “safety nets” alongside a (typically) more
accurate model selection criterion, such as the Bayesian evidence or a cross-validation score.
To this end, the bound of course has to be tight enough to render a useful value for the
sample size at hand.

In spite of these comments, we follow the usual conventions and present results of an
experiment trying to assess the model selection qualities of our bound. As in Section 4.2,
we use sparse greedy GPC within the setup described at the beginning of this section. The
experiment consists of L = 6 iterations. We fixed the variance parameter C to 120 (this
is sensible, given the results in Table 4) and chose a range of values for w (from 2.4 to
13, in steps of 0.2). In each iteration, we draw a training sample S of size n = 5000. For
each configuration (C, w), w from the range, we train the method on S (using k = 500
and krand = 3), test it on the test set and also evaluate the upper bound on the expected
generalisation error given by Theorem 2. It does not make sense to average the results over
the L trials, so we present them all in Figure 2. In order to facilitate shape comparisons,
we translate the upper bound values towards the expected test errors, by subtracting a
constant (determined as 95% of the average distance between points on the two curves). In
each graph, the scale printed on the left hand side is for the expected test error, the scale
on the right hand side for the upper bound value. Note that the constant by which the
upper bound curve is translated, as well as the curve value scales are different for each of
the plots. In Figure 3, we plot expected test errors on the horizontal axis against upper
bound values on the vertical axis. Note that in this type of plot, a mostly monotonically
increasing relationship is what we would ideally expect. The dotted curves are lines x + b
with slope 1, where b is fitted to the corresponding solid curves using linear regression. The
ordering of the six subplots is consistent with the ordering in Figure 2.

We see that in this particular experiment, the shape of the upper bound curve follows the
shape of the expected test error rather closely, so that model selection based on minimising
the upper bound value might have worked in this case. However, note that the constants we
have to subtract from the upper bound curves in order to bring them close to the expected
generalisation error estimates for visual inspection, are an order of magnitude larger than
the range of variation of the individual curves shown in the plots. Also note that our rigid
choice k = n/10 may be a reason behind the fairly rough behaviour of the expected test
error curve. Some of the upward kinks may be due to stopping after inclusion of a bad
candidate, possibly changing the posterior approximation rather drastically. Since both the
expected empirical error and gap bound terms depend strongly on Q, some of these jumps

257

Seeger

2 4 6 8 10 12
0.019

0.021

0.023

0.025

0.027

w

0.065

0.067

0.069

0.071

0.073

Exp. gen. error
Upper bound

2 4 6 8 10 12
0.019

0.021

0.023

0.025

0.027

w

0.065

0.067

0.069

0.071

0.073

Exp. gen. error
Upper bound

2 4 6 8 10 12
0.018

0.02

0.022

0.024

0.026

w

0.064

0.066

0.068

0.07

0.072Exp. gen. error
Upper bound

2 4 6 8 10 12
0.018

0.02

0.022

0.024

0.026

0.028

w

0.068

0.07

0.072

0.074

0.076

0.078

Exp. gen. error
Upper bound

2 4 6 8 10 12
0.018

0.02

0.022

0.024

w

0.058

0.06

0.062

0.064

Exp. gen. error
Upper bound

2 4 6 8 10 12 14
0.018

0.02

0.022

0.024

0.026

w

0.065

0.067

0.069

0.071

0.073

Exp. gen. error
Upper bound

Figure 2: Comparing upper bound values with expected test errors. Solid line: expected
test error (scale on left side). Dashed line: upper bound value (translated, scale
on the right). Respective minimum points marked by an asterisk.

0.0195 0.0205 0.0215 0.0225 0.0235
0.067

0.068

0.069

0.07

0.071

0.072

Exp. gen. error

U
pp

er
 b

ou
nd

0.019 0.02 0.021 0.022 0.023
0.0665

0.0675

0.0685

0.0695

0.0705

0.0715

0.0725

Exp. gen. error

U
pp

er
 b

ou
nd

0.0185 0.0195 0.0205 0.0215 0.0225
0.066

0.067

0.068

0.069

0.07

0.071

0.072

Exp. gen. error

U
pp

er
 b

ou
nd

0.0185 0.0195 0.0205 0.0215 0.0225 0.0235
0.07

0.071

0.072

0.073

0.074

0.075

0.076

0.077

Exp. gen. error

U
pp

er
 b

ou
nd

0.0185 0.0195 0.0205 0.0215
0.0595

0.0605

0.0615

0.0625

0.0635

Exp. gen. error

U
pp

er
 b

ou
nd

0.0182 0.0192 0.0202 0.0212 0.0222
0.0667

0.0677

0.0687

0.0697

0.0707

0.0717

0.0727

Exp. gen. error

U
pp

er
 b

ou
nd

Figure 3: Comparing upper bound values (vertical axis) with expected test errors (horizon-
tal axis). Dotted line: fitted regression line with slope 1.

258

PAC-Bayesian Bounds for GP Classification

induce equivalent jumps in the bound, showing just about the behaviour we would expect
from a useful bound.

One might suspect that it is really only the expected empirical error which follows the
expected test error closely, and that the complexity term remains fairly constant. After all,
most of the points the empirical error is evaluated on are not in the active set. However, this
argument ignores the fact that there is a dependence of the posterior on patterns outside the
active set: namely, the fact that they have not been chosen for inclusion. For example, it is
possible to exchange k patterns outside the active set against a set Snew such that another
run of the algorithm will end up with the active set Snew. In general, a PAC bound tells us
that such dependencies have to be accounted for by an additional complexity term which
is of rather crude union bound type in the PAC compression bound and of a more refined
type in the PAC-Bayesian theorem. Indeed, by splitting the upper bound curves above into
expected empirical error and gap bound contributions, we can see that this extension is
indeed necessary even if k ¿ n. In Figure 4 we plot all these curves together in common
graphs, the association of graphs with experiment iterations is the same as in Figure 2. In
each graph, the two curves at the top are the upper bound (dashed) and the expected test
error (solid), while the two curves at the bottom are the expected empirical error (dash-
dotted) and the gap bound (dotted). The scale is correct for both the expected empirical
and test error curves, while the gap and upper bound curves are translated downwards by
different constants. The scale for the latter two curves is omitted.

2 4 6 8 10 12
0.0075

0.0125

0.0175

0.0225

0.0275

w
2 4 6 8 10 12

0.0075

0.0125

0.0175

0.0225

0.0275

w
2 4 6 8 10 12

0.0075

0.0125

0.0175

0.0225

0.0275

w

2 4 6 8 10 12
0.0075

0.0125

0.0175

0.0225

0.0275

w
2 4 6 8 10 12

0.0075

0.0125

0.0175

0.0225

w
2 4 6 8 10 12

0.0075

0.0125

0.0175

0.0225

0.0275

w

Figure 4: Comparing upper bound values with expected test errors (upper parts) and gap
bound values with expected training errors (lower parts). Solid: expected test
error (scale on left side). Dashed: upper bound value (translated). Dash-dotted:
expected training error (scale on left side). Dotted: gap bound value (translated).
Respective minimum points marked by an asterisk.

259

Seeger

The necessity of the complexity term in our case becomes even more clear if we plot
expected test errors against expected training errors in the same way as we did in Figure 3
for test errors versus upper bound values. These graphs are presented in Figure 5. We
see that the linear correlation between expected training and test errors is poor. Most of
the graphs in Figure 4 clearly exhibit over-fitting, in that model selection based on the
expected training error would lead to preference of too large values of w, corresponding to
a too narrow kernel width.

0.0195 0.0205 0.0215 0.0225 0.0235
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

Exp. gen. error

E
xp

. e
m

pi
r.

 e
rr

or

0.0192 0.0202 0.0212 0.0222 0.0232
0.0117

0.0127

0.0137

0.0147

0.0157

0.0167

0.0177

Exp. gen. error

E
xp

. e
m

pi
r.

 e
rr

or

0.0187 0.0197 0.0207 0.0217 0.0227
0.011

0.012

0.013

0.014

0.015

0.016

0.017

Exp. gen. error

E
xp

. e
m

pi
r.

 e
rr

or

0.0183 0.0193 0.0203 0.0213 0.0223 0.0233

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Exp. gen. error

E
xp

. e
m

pi
r.

 e
rr

or

0.0185 0.0195 0.0205 0.0215
0.0085

0.0095

0.0105

0.0115

0.0125

0.0135

Exp. gen. error

E
xp

. e
m

pi
r.

 e
rr

or

0.0182 0.0192 0.0202 0.0212 0.0222

0.012

0.013

0.014

0.015

0.016

0.017

0.018

Exp. gen. error

E
xp

. e
m

pi
r.

 e
rr

or

Figure 5: Comparing expected training errors (vertical axis) with expected test errors (hor-
izontal axis). Dotted line: fitted regression line with slope 1.

5. Discussion

In this work, we have shown how to apply David McAllester’s PAC-Bayesian theorem in
order to obtain PAC generalisation error bounds for approximate Bayesian Gaussian process
classification methods. Our main result applies to a wide class of methods, namely those
that approximate the predictive process by a non-degenerate Gaussian one (e.g., Williams
and Barber, 1998, Opper and Winther, 2000, Jaakkola and Haussler, 1999, Gibbs, 1997,
Seeger, 2000, Csató and Opper, 2002, Lawrence, Seeger, and Herbrich, 2002). As a further
contribution, we have given a simplified proof of the general PAC-Bayesian theorem.

We have derived instantiations of this result to Laplace GPC and to a class of sparse
greedy GPC and tested these on a real-world task, showing that the bounds can be very tight
in practically relevant situations and give more useful results than other state-of-the-art PAC
bounds for kernel classifiers we considered here. One possible source of lack in tightness for
many of the current data and algorithm-dependent kernel classifier bounds we know of, is
that the dependence on the algorithm is actually rather weak, given only through a large
margin, a certain degree of sparsity or other limited statistics, but completely independent

260

PAC-Bayesian Bounds for GP Classification

of much of the information the algorithm has actually learned from the training sample.16

They cannot be “configured” using prior knowledge or assumptions about the relationship
between the method and the task, and therefore they cannot go very far in realizing the
potential power behind the concepts of data and algorithm-dependence (see Section 1.1).
These problems are directly addressed in the main result of this work (as they are in general
in the PAC-Bayesian theorem). Prior knowledge can be encoded in a very general way via
the choice of the covariance function, and the deviation of the sample from our assumptions
is measured in a satisfactory and familiar way, by the relative entropy between approximate
posterior and prior. Although, by definition every PAC bound can only depend on some
statistics of the sample S, the particular ones we end up with in our main result are more
flexible, configurable and depend more strongly on the particular algorithm than any of
the ones employed in other kernel classifier bounds we know of. To conclude, although
it is theoretically interesting to find general a priori or a posteriori characteristics which
guarantee good generalisation performance in near-asymptotic situations over a large, even
infinite set of methods, all we are really interested in in practice is to give such a guarantee
for the one method we apply to a task, and it is not risky to conjecture that PAC bounds
will have to be tailored very specifically to a given method in order to ultimately render
practically useful results. As we can see from the PAC-Bayesian theorem, it is nevertheless
possible to retain generality in the theorem.

We think that another important contribution of this work is to give an example of an
effect which may be surprising at first sight: the fact that approximate Bayesian techniques
deliberately use simplifications to overcome the intractability of exact Bayesian analysis on
a model, such as decomposition or Gaussian assumptions, can often be used to simplify
a PAC-Bayesian analysis of the technique as well. In this paper, we showed that a large
class of approximations to Bayesian GPC use a Gaussian process, obtained in a simple
way from the prior GP, in order to replace the true intractable posterior process, and it is
exactly this fact that allows us to compute the corresponding relative entropy between the
processes tractably as well. For a sparse GPC approximation, the computational complexity
of evaluating the bound drops accordingly. Finally, relations between Gibbs and Bayes
classifiers (see Section 1.3.1) can be inferred from symmetry properties of the approximate
predictive distribution, while they probably do not hold for the true predictive distribution
which may be skew. In short, PAC or also average-case analyses of Bayesian inference on a
model might be simplified (and tightened) in many situations if instead of analysing exact
intractable Bayesian inference, we focus on tractable approximations which are actually
used in practice. Of course, analyses of the latter type are also of much higher interest to
practitioners.

16. Actually, in most cases other, very different algorithms will attain the same (or a better) value in this
statistic (or a related one) on the same sample. An example is the PAC compression bound used in
Section 4.3, which actually holds uniformly for all methods which compress a n-sample to size k. The
dominating factor in the bound comes from the fact that, in a crude union-bound argument, we have to
sum over all of these combinatorial many possibilities (see Seeger, 2002). Another example is given in
(Graepel et al., 2001), where one can infer the degree of sparsity for a kernel perceptron from the hard
margin a support vector machine attains on the same sample.

261

Seeger

5.1 Future Work

Sparse approximations of Bayesian GPC (e.g., Tipping, 2001, Williams and Seeger, 2001,
Smola and Bartlett, 2001, Luo and Wahba, 1997, Tresp, 2000, Csató and Opper, 2002,
Lawrence, Seeger, and Herbrich, 2002) are currently of large practical interest, and it is
important to determine whether our result can be applied to them. In this paper we have
shown that they apply to sparse algorithms such as proposed by Csató and Opper (2002),
Lawrence, Seeger, and Herbrich (2002), Tipping (2001), and to a sparse version of the varia-
tional method of Jaakkola and Haussler (1999). In contrast to this, the Nyström method of
Williams and Seeger (2001) does not employ a Gaussian process posterior approximation.
A combination of the subset-of-regressors method (Wahba, 1990) with Laplace GPC uses a
GP approximation to the posterior, however of a degenerate kind, leading to a trivial bound
only.

In future work, we will test our result for sparse greedy GPC on more difficult tasks.
To this end, the simple method we used here will have to be refined in order to increase
robustness against outliers and to allow improvement of the approximation even once the
desired active set size is attained. By using a motivation of the support vector machine as
a limiting case of probabilistic GP classification techniques (see Opper and Winther, 2000),
our Theorem 2 may imply a bound on this popular architecture as well. Furthermore,
we think that the general PAC-Bayesian theorem can be rather straightforwardly applied
to a host of approximate Bayesian schemes for parametric models (see also Langford and
Caruana, 2002). Many of these schemes show excellent performance on real-world problems,
but are not motivated by learning-theoretical analyses.

Several open problems remain. First, it would be very important to extend our results
to approximate GP Bayes classifiers in a less crude way as has been suggested in Sec-
tion 1.3.1. Typically, approximate Bayes classifiers are simpler, more efficient to evaluate,
deterministic, usually perform better and are by far more frequently used in practice than
the corresponding Gibbs versions. In fact, our experiments in Section 4 indicate that while
the guarantees given by our main result for Gibbs kernel classifiers are tighter than guar-
antees for Bayes (or “Bayes-like”) kernel classifiers given by state-of-the-art PAC bounds,
the performance ranks we observe in practice are reversed (somewhat in test error, but
especially in time requirements): this dilemma needs to be resolved, or at least understood
better. As McAllester (2002) points out: Intuitively, model averaging [the Bayes variant]
should perform even better than stochastic model selection [the Gibbs variant]. But prov-
ing a PAC guarantee for model averaging superior to the PAC guarantees given here for
stochastic model selection remains an open problem.17 Note that very recently, Meir and
Zhang (2002) obtained a PAC-Bayesian margin bound for the Bayes voting classifier.

Another problem is whether the PAC-Bayesian theorem can be applied to regression
estimation models, using an unbounded, convex loss (instead of the bounded, non-convex
zero-one loss used in classification). This is not possible if the data distribution is completely
unrestricted. The convexity of the loss implies that the risk of the Bayes classifier is less

17. The term “stochastic model selection” in (McAllester, 2002) refers to the probabilistic choice made by
the Gibbs classifier on every test point. It has nothing to do with the term “model selection” used
in our paper, which in the statistics literature refers to the choice of one model among a set of such,
depending on criteria which are independent of the final test dataset. The term “model averaging” refers
to Bayes-type classifiers.

262

PAC-Bayesian Bounds for GP Classification

than the expected risk of the Gibbs variant. However, under sensible restrictions on the
data distribution it seems challenging to extend the proof of the PAC-Bayesian theorem to
unbounded losses, even in the special case of Gaussian process regression.

The fairly close “fit” (up to a large constant!) of expected test error and the PAC-
Bayesian upper bound observed in Section 4.4 indicates the usefulness of the bound in this
case, yet a theoretical argument why this is the case would be very satisfying.

Finally, it would be interesting to find a way to incorporate certain widely used model
selection techniques over infinite parameter spaces into the PAC-Bayesian framework. For
example, for some of the approximations of Bayesian GPC proposed in the literature (e.g.,
Laplace GPC or the RVM of Tipping, 2001), it is possible to compute and optimise approx-
imations to the marginal likelihood, a powerful Bayesian model selection criterion. In such
cases, we can simultaneously choose good values for a large number of kernel parameters,
each from within a possibly infinite set, using the training data only. In general, we will have
to employ some sort of model selection method in order to choose free kernel parameters
or other parameters of our prior. In practice, selection among a finite set of models can be
incorporated by using a union bound argument, at the expense of a factor in the gap bound
term which essentially replaces δ by δ/M , where M is the number of models. Such model
selection techniques are, however, very limited in flexibility and scope.

A quick way around this problem is to ensure that model selection is done independently
from the training sample S, that is we sample a separate training set to be used for model
selection only. This has been done in the experiments for this paper (see Section 4). Now,
from the Bayesian viewpoint, such a model selection strategy is somewhat questionable. Free
parameters of the prior should be selected (if selected at all!) according to their posterior
distribution, i.e., conditioned on the training data we have, and not on some independent
“model selection training sample” we do not intend to use for prediction later on. Holding
out part of the available training data is also wasteful.

Another idea is to simply extend the parameter w in the PAC-Bayesian theorem by the
parameters of the prior and, by defining a prior distribution and computing an approximate
posterior distribution over these parameters, to lift the problem one level higher in the
hierarchy. However, the drawbacks of this approach for GPC techniques are severe. First
of all, the relative entropy term in the bound cannot be computed analytically anymore,
thus we would have to find a good analytic upper bound. Much worse, the resulting Gibbs
discriminant would be very costly to evaluate, because for each evaluation we have to
sample a new set of prior parameters and deal with a new covariance function for which
(at least part of) a new kernel matrix has to be evaluated and a new conditioned posterior
approximation has to be computed. Thus, the issue of using the PAC-Bayesian theorem
together with such model selection strategies over infinite hyperparameter spaces remains
without a practically satisfying solution (to our knowledge).

263

Seeger

Acknowledgments

We thank Manfred Opper for inviting us to Aston, and for many comments which led
to great simplifications of the proof of our main result, furthermore Chris Williams, Ralf
Herbrich, John Langford and David McAllester for helpful discussions, and Lehel Csató
and Neil Lawrence for help with the sparse GPC techniques discussed here. Chris Williams
and Ralf Herbrich read several versions of the paper and made comments which led to
many simplifications and improved clarity. We thank the anonymous referees for comments
which led to a more readable paper. The author gratefully acknowledges support through
a research studentship from Microsoft Research Ltd.

Appendix A. Proof of the PAC-Bayesian Theorem

In this section, we present a proof of the PAC-Bayesian Theorem 1 which is adapted to the
use of classification zero-one loss employed in this work. A proof for general bounded loss
functions can be found in (McAllester, 2002), making use of Hoeffding’s inequality at the
core, thus resulting in a less tight bound for the special case of zero-one loss. The proof we
give here is considerably simpler than the one given in (McAllester, 2002).

Recall the notation introduced in Section 1. We require that there is a common dominat-
ing positive measure for the distributions P and Q over parameters. Define p(w, (x, t)) =
I{sgn y(x|w) 6=t}, furthermore let

p(w) = E(x∗,t∗)[p(w, (x∗, t∗))], p̂(w) = n−1
∑

i

p(w, (xS
i , tSi)),

where the expectation is over the unknown data distribution, and the sample is S =
{(xS

i , tSi) | i = 1, . . . , n}. Let ∆(w) = DBer[p̂(w) ‖ p(w)], where the Bernoulli relative en-
tropy is defined in (3).

Fix w, and write p̂ = p̂(w), p = p(w). Then, n p̂ is binomial (n, p) distributed, thus a
direct computation shows

ES

[
enDBer[p̂ ‖ p]

]
=

n∑
m=0

(
n

m

)
exp (n(DBer[m/n ‖ p] + (m/n) log p + (1−m/n) log(1− p)))

=
n∑

m=0

(
n

m

)
e−nH[m/n],

where H[q] = −q log q − (1 − q) log(1 − q) is the entropy of a q-Bernoulli variable. But(
n
m

) ≤ enH[m/n] (e.g., Cover and Thomas, 1991, Sect. 12.1), therefore

ES

[
enDBer[p̂ ‖ p]

]
≤ n + 1.

Now, taking the average over w ∼ P and using Markov’s inequality, we obtain

PrS

{
Ew∼P

[
en ∆(w)

]
>

n + 1
δ

}
≤ δ. (21)

264

PAC-Bayesian Bounds for GP Classification

Now, fix an arbitrary sample S for which indeed

Ew∼P

[
en ∆(w)

]
≤ T, T =

n + 1
δ

. (22)

If we can show that

Ew∼Q[n ∆(w)] ≤ D[Q ‖P] + log Ew∼P

[
en ∆(w)

]
, (23)

then we have that

Ew∼Q[∆(w)] ≤ D[Q ‖P] + log T

n
. (24)

In order to show (23), define the Gibbs measure

dPG(w) =
en ∆(w)

Ew∼P

[
en ∆(w)

] dP (w),

which is a probability measure relative to P (w) (the definition is proper because exp(n ∆(w))
is measurable w.r.t. P (w)). It is a well-known fact that the relative entropy between two
distributions is always non-negative (e.g., Ihara, 1993, Theorem 1.4.1). Thus,

0 ≤ D[Q ‖PG] =
∫

log

(
Ew∼P

[
en ∆(w)

]
en ∆(w)

dQ(w)
dP (w)

)
dQ(w)

= D[Q ‖P] + log Ew∼P

[
en ∆(w)

]
− Ew∼Q[n ∆(w)].

Note that what we have shown is actually a special case of a convex duality relation:

D[Q ‖P] = sup
u(w)

(
Ew∼Q [u(w)]− log Ew∼P

[
eu(w)

])
, (25)

meaning that the convex functions Q 7→ D[Q ‖P] and u 7→ log EP [exp(u(w))] are in a dual
relationship (i.e., Equation (25) holds as well if we interchange these functions and take the
supremum over Q). (Rockafellar, 1970) is a good introduction to convex functions. Here,
we only note that convex duality is a central concept in machine learning whose applications
include the expectation maximisation algorithm, variational Bayesian learning and primal-
dual optimisation. We can conclude the proof by noting the convexity of DBer and using
Jensen’s inequality. Namely, if (24) holds for S, then

DBer [Ew∼Q[p̂(w)] ‖Ew∼Q[p(w)]] ≤ Ew∼Q [DBer[p̂(w) ‖ p(w)]] ≤ D[Q ‖P] + log n+1
δ

n
. (26)

Altogether, since emp(S, Q) = Ew∼Q[p̂(w)], gen(Q) = Ew∼Q[p(w)], we can combine (21)
and the fact that for fixed S Equation (22) implies (26), and finally invoke (5) in order to
conclude that (6) must hold.

265

Seeger

Appendix B. Summary of the Notation

We use the notation a = (ai)i = (a1 . . . an)T for vectors, and A = (ai,j)i,j for matrices
respectively. The superscript T denotes transposition. We use [·] as an operator to select
parts from a matrix. Namely, for A ∈ Rm,n and ordered index18 sets I ⊂ {1, . . . , m}, J ⊂
{1, . . . , n}, [A]I,J is obtained by selecting the corresponding entries (i, j), i ∈ I, j ∈ J
of A and forming a |I| × |J | sub-matrix out of them. For I = {k, k + 1, . . . , l} we write
I = k . . . l, instead of I = {1, . . . , m} we write I = ·, and instead of I = {i} we write I = i.
For example, [A]·,j denotes the j-th column of A and [A]i,j denotes element (i, j). diag a
is the matrix with diagonal a and 0 elsewhere. diag A is the vector containing the diagonal
of A. trA is the sum of the diagonal elements of A. diag and tr operators have lower
priority than multiplication. For example, diag AT b is the matrix with diagonal AT b and
0 elsewhere. |A| denotes the determinant of A. ‖a‖ is the Euclidean norm of the vector a.
With δi,j , we denote the discrete Dirac delta function, i.e. δi,j = 1 for i = j, and δi,j = 0 for
i 6= j. The identity matrix (δi,j)i,j is denoted by I. The unit vector (δi,j)i is denoted by δj ,
the vector (1)i of all ones by 1.

If a distribution has a density, we generally use the same symbolic notation for the
distribution and its density function. We use the convention of denoting a random variable
and a possible value thereof with the same symbol. In general, we use E[x] to denote the
expectation of x, and Pr{A} to denote the probability of an event A. By IA, we denote
the indicator function of an event A, i.e. IA = 1 if A is true, IA = 0 otherwise. N(x|m,Σ)
denotes the Gaussian distribution/density with mean m and covariance matrix Σ. We
sometimes write N(m,Σ) if x is clear from the context. log denotes the logarithm to
Euler’s base e. The notation f(x) ∝ g(x) means that f(x) = cg(x) for c constant w.r.t.
x. By sgn x, we denote the sign of x, i.e. sgnx = +1 for x > 0, sgn x = −1 for x < 0, and
sgn 0 = 0.

References

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002.

Christopher Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

Thomas Cover and Joy Thomas. Elements of Information Theory. Series in Telecommuni-
cations. John Wiley & Sons, 1st edition, 1991.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other
Kernel Based Methods. Cambridge University Press, 2000.

Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural Computation,
14:641–668, 2002.

Mark N. Gibbs. Bayesian Gaussian Processes for Regression and Classification. PhD thesis,
University of Cambridge, 1997.

18. All index sets and sets of data points are assumed to be ordered, although we use a notation known from
unordered sets.

266

PAC-Bayesian Bounds for GP Classification

Thore Graepel, Ralf Herbrich, and Robert Williamson. From margin to sparsity. In T. Leen,
T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems
13, pages 210–216. MIT Press, 2001.

P.J. Green and Bernhard Silverman. Nonparametric Regression and Generalized Linear
Models. Monographs on Statistics and Probability. Chapman & Hall, 1994.

David Haussler, Michael Kearns, and Robert Schapire. Bounds on the sample complexity
of Bayesian learning using information theory and the VC dimension. Machine Learning,
14:83–113, 1994.

David Haussler and Manfred Opper. Mutual information, metric entropy and cumulative
relative entropy risk. Annals of Statistics, 25(6):2451–2492, 1997.

Ralf Herbrich. Learning Kernel Classifiers. MIT Press, 1st edition, 2001.

Ralf Herbrich and Thore Graepel. A PAC-Bayesian margin bound for linear classifiers:
Why SVMs work. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 224–230. MIT Press, 2001.

Ralf Herbrich and Robert Williamson. Algorithmic luckiness. In T. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14,
pages 391–397. MIT Press, 2002.

Roger Horn and Charles Johnson. Matrix Analysis. Cambridge University Press, 1st edition,
1985.

Shunsuke Ihara. Information Theory for Continuous Systems. World Scientific, 1st edition,
1993.

Tommi Jaakkola and David Haussler. Probabilistic kernel regression models. In D. Heck-
erman and J. Whittaker, editors, Workshop on Artificial Intelligence and Statistics 7.
Morgan Kaufmann, 1999.

R. E. Kaas and A. E. Raftery. Bayes factors and model uncertainty. Journal of the American
Statistical Association, 90:773–795, 1995.

S. Kullback. Information Theory and Statistics. John Wiley & Sons, 1959.

John Langford and Rich Caruana. (Not) bounding the true error. In T. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14,
pages 809–816. MIT Press, 2002.

John Langford and Matthias Seeger. Bounds for averaging classifiers. Technical Report
CMU-CS-01-102, Carnegie Mellon University, January 2001.

Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process meth-
ods: The informative vector machine. To appear in Neural Information Processing Sys-
tems 15, 2002.

267

Seeger

Nick Littlestone and Manfred Warmuth. Relating data compression and learnability. Tech-
nical report, University of California, Santa Cruz, 1986.

Z. Luo and G. Wahba. Hybrid adaptive splines. Journal of the American Statistical Asso-
ciation, 92:107–116, 1997.

K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Statistics. Academic Press, 1st
edition, 1979.

David McAllester. PAC-Bayesian model averaging. In Conference on Computational Learn-
ing Theory 12, pages 164–170, 1999a.

David McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355–363, 1999b.

David McAllester. PAC-Bayesian stochastic model selection. To appear in Machine Learn-
ing. See www.autoreason.com., 2002.

P. McCullach and J.A. Nelder. Generalized Linear Models. Number 37 in Monographs on
Statistics and Applied Probability. Chapman & Hall, 1st edition, 1983.

Ron Meir and Tong Zhang. Data-dependent bounds for Bayesian mixture
methods. To appear in Neural Information Processing Systems 15. See
citeseer.nj.nec.com/536920.html, 2002.

Thomas Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis,
Massachusetts Institute of Technology, January 2001.

Radford M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian
classification and regression. Technical Report 9702, Department of Statistics, University
of Toronto, January 1997.

Manfred Opper and Ole Winther. Gaussian processes for classification: Mean field algo-
rithms. Neural Computation, 12(11):2655–2684, 2000.

John C. Platt. Fast training of support vector machines using sequential minimal optimiza-
tion. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods:
Support Vector Learning, pages 185–208. MIT Press, 1998.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Nu-
merical Recipes in C. Cambridge University Press, 2nd edition, 1992.

R. Rockafellar. Convex Analysis. Princeton University Press, 1970.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review, 65(6):386–408, 1958.

Bernhard Schölkopf and Alexander Smola. Learning with Kernels. MIT Press, 1st edition,
2002.

Matthias Seeger. Bayesian model selection for support vector machines, Gaussian processes
and other kernel classifiers. In S. Solla, T. Leen, and K.-R. Müller, editors, Advances in
Neural Information Processing Systems 12, pages 603–609. MIT Press, 2000.

268

PAC-Bayesian Bounds for GP Classification

Matthias Seeger. PAC-Bayesian generalization error bounds for Gaussian process clas-
sification. Technical Report EDI-INF-RR-0094, Division of Informatics, University of
Edinburgh, 2002. See www.dai.ed.ac.uk/~seeger/papers.html.

Matthias Seeger, Neil D. Lawrence, and Ralf Herbrich. Sparse Bayesian learning: The
informative vector machine. Technical report, Department of Computer Science, Sheffield,
UK, 2002. See www.dcs.shef.ac.uk/~neil/papers/.

John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. Struc-
tural risk minimization over data-dependent hierarchies. IEEE Transactions on Informa-
tion Theory, 44(5):1926–1940, 1998.

Alex Smola and Peter Bartlett. Sparse greedy Gaussian process regression. In T. Leen,
T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems
13, pages 619–625. MIT Press, 2001.

Peter Sollich. Learning curves for Gaussian processes. In M. Kearns, S. Solla, and D. Cohn,
editors, Advances in Neural Information Processing Systems 11, pages 344–350. MIT
Press, 1999.

Michael Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211–244, 2001.

Volker Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719–2741,
2000.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1st edition, 1998.

Grace Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference
Series. SIAM Society for Industrial and Applied Mathematics, 1990.

Christopher Williams and Matthias Seeger. Using the Nyström method to speed up kernel
machines. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Informa-
tion Processing Systems 13, pages 682–688. MIT Press, 2001.

Christopher K. I. Williams. Prediction with Gaussian processes: From linear regression
to linear prediction and beyond. In M. I. Jordan, editor, Learning in Graphical Models.
Kluwer, 1997.

Christopher K.I. Williams and David Barber. Bayesian classification with Gaussian pro-
cesses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12):1342–
1351, 1998.

269

