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Abstract

The linear support vector machine has a parametrised decision boundary. The paper
considers inference for the corresponding parameters, which indicate the effects of individual
variables on the decision boundary. The proposed inference is via a convolution-smoothed
version of the SVM loss function, this having several inferential advantages over the original
SVM, whose associated loss function is not everywhere differentiable. Notably, convolution-
smoothing comes with non-asymptotic theoretical guarantees, including a distributional
approximation to the parameter estimator that scales more favourably with the dimension
of the feature vector. The differentiability of the loss function produces other advantages
in some settings; for instance, by facilitating the inclusion of penalties or the synthesis of
information from a large number of small samples. The paper closes by relating the linear
SVM parameters to those of some probability models for binary outcomes.

Keywords: support vector machines, Bahadur representation, convolution smoothing,
non-asymptotic statistics

1. Introduction

Owing to their ability to predict complex phenomena across many applications, support
vector machines (SVMs) (Cortes and Vapnik, 1995) have become one of the most pop-
ular classification algorithms. While the interpretation of its implicit parameters is less
direct than from a parametric model-based approach, inference for such parameters is valu-
able in that it indicates the strength of evidence for variables having a real effect on the
decision boundary. Inference for the support vector machine requires minimisation of a non-
differentiable hinge loss, leading to a quadratic programming problem. Previous literature
has pursued a more computational line of enquiry regarding the scaling of this quadratic
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program with dimension (e.g. Joachims, 1998; Hsieh et al., 2008; Fan et al., 2008). Such
scaling issues are exacerbated if an `1 penalty is added to the SVM objective function, as
interior point methods then need to be used (Wang et al., 2023).

Several smooth surrogate losses have been proposed in the literature, typically emphasis-
ing computation; our concern is with the associated statistical guarantees. We provide a
theoretical analysis of a general type of convolution-based smoothing in the context of the
support vector machine, which generalises the approach proposed by Lee and Mangasarian
(2001). In comparison to alternative smoothing devices, convolution-smoothing comes with
non-asymptotic theoretical guarantees for the implicit parameters. Additionally, the dis-
tributional approximation for the convolution-smoothed estimator is valid under a weaker
requirement on the number of explanatory variables compared to the original SVM and the
smoothed version of Wang et al. (2019), the implication being that, with many potential
explanatory variables, convolution-smoothing the hinge loss improves statistical properties
of the resulting estimator, in addition to any computational advantages more commonly
emphasised.

Lee and Mangasarian (2001) proposed smoothing the non-differentiable hinge loss by an
integral of a cumulative distribution function, which results in a twice-differentiable sur-
rogate loss. This allowed the authors to replace the quadratic programming problem of
standard SVMs by second-order methods (Lee and Mangasarian, 2001). However, theoret-
ical guarantees for this method have not been ascertained. Replacement of the quadratic
optimisation by a more feasible alternative is also an objective of Suykens and Vandewalle
(1999), who considered ridge regression with binary targets. By adopting Horowitz smooth-
ing (Horowitz, 1998) from the quantile regression literature, Wang et al. (2019) made use
of a smooth surrogate for the hinge loss. Although the resulting objective function is twice
continuously differentiable, it is also non-convex.

Finite-sample results for variable selection and estimation error of linear SVMs have been
established by Zhang (2004). The distributional properties of an unpenalised linear SVM
estimator were studied by Koo et al. (2008), who derived a Bahadur representation for
linear SVMs. In particular, in the non-separable case and under appropriate regularity
conditions, Koo et al. (2008) showed that the population hinge loss is differentiable and
locally strongly convex around its minimiser. However, due to the non-differentiability of
the hinge loss, the empirical loss does not share these properties. The analysis of Koo et al.
(2008) is restricted to an asymptotic setting, but the simulations presented there suggest
that the distributional approximation for the SVM estimator is valid only when n � p,
where n is the sample size and p is the number of potential explanatory variables.

We consider convolution smoothing in the context of the SVM. This was previously pro-
posed in the context of quantile regression (Fernandes et al., 2021; He et al., 2023), and its
application to SVMs was independently studied in the complementary work by Wang et al.
(2023). The resulting empirical loss function is twice continuously differentiable, globally
convex, and locally strongly convex. We show that convolution-type smoothing can be seen
as a generalisation of the smoothing method of Lee and Mangasarian (2001). We establish
non-asymptotic bounds for the estimation error and the Bahadur linearisation error of the
convolution-smoothed SVM. Our results indicate that the distributional approximation for
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the convolution-smoothed hinge loss is valid under a weaker requirement on the number
of variables than for the original SVM and the smoothing of Wang et al. (2019), and is
thus more suitable for large-p settings. While a similar result has been established in the
quantile regression literature by He et al. (2023), non-asymptotic analysis of SVMs requires
appreciable modifications due to a different structure of the error term, a point further
elaborated by Wang et al. (2019).

The emphasis for the majority of this paper is on inference for the parameters of the
linear SVM, these having an interpretation as outlined above and developed in more detail
in Section 9. If, however, the sole purpose is prediction, non-linear classifiers such as
kernel SVMs are often advocated for settings with relatively few explanatory variables.
Convolution smoothing can be applied in this context too. The extension of the objective
function to non-linear SVMs and the resulting quadratic program is given in Section 8.

The paper is organised as follows. Section 3 reviews the existing approaches to smoothing
and introduces the convolution-smoothed SVM. In Section 4, finite-sample bounds for the es-
timation error (Section 4.1) and Bahadur linearisation error (Section 4.2) of the convolution-
smoothed estimator are derived. Our finite-sample results rely on local strong convexity of
the smoothed hinge loss, which is derived in Appendix A. A comparison of distributional
approximations for the convolution-smoothed loss and the original SVM is presented in
Section 5, while the comparison with the estimator proposed by Wang et al. (2019) is the
subject of Section 6. Bahadur representation derived in Section 4 leads to Wald-type infer-
ence. A further advantage of smoothing is that it enables the construction of confidence sets
based on an inversion of a score-type test, whose advantages over Wald-based inference in
some contexts have been pointed out by Tan et al. (2022) for quantile regression. Score-type
inference for convolution-smoothed SVM is briefly outlined in Section 7. In Section 8 we
present a non-linear extension of the convolution-smoothed SVM. The paper closes with
some conceptual discussion of the interpretation of parameters in the linear support vector
machine in Section 9.

2. Notation

Except when it is helpful to be explicit, all constants are represented by C, although their
numerical value may change from line to line. For every integer k ≥ 1, Rk denotes the
k-dimensional Euclidean space. For any vector v ∈ Rk, let v−j denote a vector obtained
from v by omitting the element with index j and for any u,w ∈ Rk, 〈u,w〉 denotes the
inner product of the two vectors. For r ≥ 0, define the Euclidean ball and sphere in Rk as
Bk(r) = {u ∈ Rk : ‖u‖2 ≤ r} and Sk−1(r) = ∂Bk(r) = {u ∈ Rk : ‖u‖2 = r}, respectively.
For unit balls we omit the radius r and write simply B. For a pair of radii 0 < r1 < r2,
B(r1, r2) denotes the resulting “doughnut set”, i.e. Bk(r1, r2) , {u ∈ Rk : r1 ≤ ‖u‖2 ≤ r2}.
When k = p + 1 we omit the superscript and write B(r) and ∂B(r). For two sequences of
non-negative numbers {an}n≥1 and {bn}n≥1, an . bn indicates that there exists a constant
C > 0 independent of n such that an ≤ Cbn, while an � bn is equivalent to an . bn and

bn . an. Equality by definition is written ,, whereas
d
= denotes equality in distribution.
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For x ∈ R, {x}+ is the positive part of x, sgn(x) denotes the sign of x and 1{·} is the
indicator function.

Unless otherwise stated, upper-case letters X and Y denote random variables, with corre-
sponding lower-case letters their realisations. For a random variable X valued in Rp, let
X̊ , (1, XT )T . The first element of X̊ is indexed by zero, which implies that the sth element
of X̊ coincides with the sth element of X. Where appropriate, we use an analogous notation
for deterministic vectors, i.e. v̊ = (v0, v), v0 ∈ R and v ∈ Rp. We use the same indexing
for all (p+ 1)-dimensional vectors, i.e. for α ∈ Rp+1, α = (α0, α1, . . . , αp). For a parameter
vector θ ∈ Rp+1, θ = (b, w), where in the machine learning literature b ∈ R is referred to
as the bias parameter, and w ∈ Rp is the vector orthogonal to the hyperplane given by
θTx = 0. The conditional density functions of X given Y = 1 and Y = −1 are f(·) and g(·)
respectively. The conditional density of Xs given X1, . . . , Xs−1, Xs+1, . . . , Xp is denoted by
f(x|X−s).

3. Smooth SVMs

Let X be a p-dimensional random vector, and Y a binary random variable with values in
{−1, 1}. The linear SVM population optimisation problem solves minθ∈Rp+1 L(θ), where
L(θ) , E{1−Y X̊T θ}+ is the population hinge loss, with expectation taken with respect to
the joint distribution of X and Y , and θ = (w, b), w ∈ Rp, b ∈ R.

Given a sample (yi, xi)
n
i=1, the linear SVM minimises a penalised empirical analogue of L,

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

(
1− yix̊Ti θ

)
+

+
λ

2
‖w‖22, (1)

where here, and throughout this section, we do not distinguish notationally between esti-
mators and their realisations.

3.1 Existing Approaches

To obtain a smooth objective function, Suykens and Vandewalle (1999) replace the non-
differentiable hinge loss by a squared loss. The resulting estimator is equivalent to fitting
a ridge regression with a binary response variable. Lee and Mangasarian (2001) proposed
replacing the hinge loss with a smooth approximation. In particular, the sub-gradient of
the hinge loss is approximated by a cumulative distribution function of a logistic random
variable. The empirical hinge loss is thus replaced by an integral of the sigmoid function.
The resulting (unpenalised) loss takes the form,

L̂lmα (θ) ,
1

n

n∑
i=1

s(εi(θ), α), s(x, α) , x+
1

α
log(1 + e−αx), (2)

where εi(θ) = 1 − x̊Ti θ and α is a smoothing constant. As we will see, this method of
smoothing is equivalent to convolution-smoothing with a particular choice of kernel. To
obtain a strongly convex loss function, Lee and Mangasarian (2001) further modify the
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objective function to obtain

min
θ

1

n

n∑
i=1

s(εi(θ), α)2 +
λ

2
‖θ‖22. (3)

Unlike the hinge loss, (3) imposes a quadratic penalty on misclassified samples. The solution
of (3) no longer converges to the SVM solution as n→∞.

Adopting the smoothing technique of Horowitz (1998) from the quantile regression lit-
erature, Wang et al. (2019) consider smoothing the hinge loss, (ε)+ = ε1{ε ≥ 0}, by
replacing the indicator function by a smooth alternative. Specifically, consider a function
H : R→ (0, 1), such that,

H(x) =


0 if x ≤ −1

(0, 1) if x ∈ (−1, 1)

1 if x ≥ 1.

The smoothed loss takes the form

Lw(ε, h) , εH

(
ε

h

)
,

where h is a smoothing constant. As h → ∞, the smoothed loss approaches the original
hinge loss. In practice, H(·) is usually chosen as the integral of a kernel density estimator.
Wang et al. (2019) provide a detailed non-asymptotic analysis of the resulting estimator.
In particular, as n→∞, the smoothed estimator converges to the SVM estimator.

3.2 Convolution-smoothed SVM

In the absence of regularisation term (λ = 0), we can rewrite the sample SVM loss function
as

L̂(θ) =
1

n

n∑
i=1

εi(θ)1 {εi(θ) ≥ 0} =

∫ ∞
0

u dF̂ (u, θ),

where εi(θ) , 1− yix̊Ti θ and F̂ (u, θ) = (1/n)
∑n

i=1 1{εi(θ) ≤ u} denotes the empirical CDF
of {εi(θ)}ni=1. This motivates a smoothing approach in which the discontinuous empirical
distribution function F̂ is replaced by a continuous alternative. For this, introduce a kernel
density function K : R → [0,∞), symmetric around zero, and define a kernel distribution
function estimator

F̂h(u, θ) =
1

nh

n∑
i=1

∫ u

−∞
K

(
t− 1 + yix̊

T
i θ

h

)
dt,

with bandwidth h > 0 to be chosen. This leads to an empirical smoothed hinge loss,

L̂h(θ) =

∫ ∞
0

u dF̂h(u, θ) =
1

nh

n∑
i=1

∫ ∞
0

uK

(
u+ yix̊

T
i θ − 1

h

)
du.
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Figure 1 illustrates the smoothed loss for different choices of h. To see why this can be
interpreted as convolution-type smoothing, write the convolution operation as ∗ and define
ϕ(u) , u1(u ≥ 0), u ∈ R and

lh(u) = (ϕ ∗Kh)(u) =

∫ ∞
−∞

ϕ(t)
1

h
K

(
u− t
h

)
dt.

Hence the smoothed loss function is L̂h(θ) = (1/n)
∑n

i=1 lh(1 − yix̊Ti θ). The gradient and
Hessian of the sample smoothed loss function are

∇L̂h(θ) = − 1

n

n∑
i=1

yix̊iK̄

(
1− yix̊Ti θ

h

)
; ∇2L̂h(θ) =

1

nh

n∑
i=1

K

(
1− yix̊Ti θ

h

)
x̊ix̊

T
i , (4)

where K̄(u) =
∫ u
−∞K(t)dt. As long as K(·) is non-negative, the sample smoothed loss

function is convex. We thus obtain a twice-differentiable, convex surrogate to the hinge
loss. The main difference between the convolution-smoothed loss and the smooth loss of
Wang et al. (2019) is that the former is globally convex, while the latter is not, as illustrated
in Figure 1.

Lastly, write the estimator obtained by minimising the convolution-smoothed loss as

θ̂h , argmin
θ∈Rp+1

L̂h(θ),

and let ∆̂ , θ̂h− θ∗, i.e. the difference between the θ̂h and the minimiser of the population
hinge loss. We write the population version of L̂h as Lh, i.e.

Lh(θ) , E[L̂h(θ)] =
1

h
E

[∫ ∞
0

uK

(
u+ Y X̊T θ − 1

h

)
du

]
. (5)

The gradient and Hessian of the convolution-smoothed population loss will be denoted by
∇Lh(θ) and ∇2Lh(θ) respectively.

The following lemma establishes that the convolution-smoothed SVM can be written in
terms of an indefinite integral of the cdf of K(·).

Lemma 1 Let Kh : R → [0,∞) be a kernel density symmetric around zero with band-
width h, and L̂h the corresponding convolution-smoothed hinge loss. Let K̄h be an indefinite
integral of the cumulative distribution function of Kh. Then,

argmin
θ

L̂h(θ) = argmin
θ

1

n

n∑
i=1

K̄h(1− yixTi θ).

Convolution-smoothing thus approximates the sub-gradient of the hinge loss by a cumulative
distribution function of a zero-mean random variable with symmetric density. If the kernel
function is a logistic density function with zero mean and scale parameter one, that is,
K(u) = e−u/(1 + e−u)2, then,

K̄h(x) =
1

h

{
x+ h log(1 + e−x/h)

}
and we obtain, L̂h(θ) = (1/h)L̂lm1/h(θ), i.e., convolution-smoothing is equivalent to the

smoothing of Lee and Mangasarian (2001) in equation (2).
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Figure 1: Hinge loss and its smooth approximations, for different choice of bandwidth (h).
Convolution-smoothed loss (plot a) using Gaussian kernel and Horowitz-type
smoothing of Wang et al. (2019) using Epanechnikov kernel (plot b).

4. Finite-sample Theoretical Guarantees

In this section we obtain finite-sample bounds on the error of the convolutional smoothed
estimator of θ∗, and derive a Bahadur representation for θ̂h. This leads to a distributional
approximation for the convolution-smoothed estimator θ̂h.

Koo et al. (2008) showed that, under mild conditions, the population minimiser of the
SVM hinge loss, θ∗, is unique and non-zero. Assumptions A1—A4 in Koo et al. (2008) are
assumed throughout, resulting in Assumptions 2 and 8 below. Additionally, we impose mild
assumptions on the kernel density (Assumptions 4 and 7) and on the conditional densities
of X (Assumption 5), both of which are satisfied by commonly used density functions.
Lastly, the feature vector X is assumed to be sub-Gaussian (Assumption 3). Analogous
assumptions are employed by Wang et al. (2019).

Assumption 2 The minimiser θ∗ = (b∗, (w∗)T )T of the SVM population loss function is
unique. For some constants C,C ′ > 0, and for some s ∈ {1, . . . , p}, (θ∗s)

−1 < C ′ and
‖w∗‖2 < C.

Uniqueness of θ∗ follows from Lemma 5 in Koo et al. (2008). Existence of an s ∈ {1, . . . , p}
such that θ∗s 6= 0 is established in Lemma 4 of Koo et al. (2008).

Assumption 3 The zero-mean random vector X = (X1, . . . , Xp)
T is sub-Gaussian with a

variance proxy ν2
1 , ν1 > 0. This implies that for any u ∈ Sp−1, P(|uTX| > tν1) ≤ 2e−t

2/2.

Let µk , supu∈Sp−1 E|uTX|k and let µ̊k denote the corresponding moments of X̊. Let also

µ̃k , supu∈Sp−1 E
∣∣(uTX)/ν1

∣∣k. Equivalently, for any u ∈ Sp−1, uTX is a sub-Gaussian
random variable with a variance proxy ν2

1 and for all λ ∈ R, E[exp(λuTX)] ≤ exp(λ2ν2
1)/2

(Wainwright, 2019). While µk is used throughout most of our derivations, in the proof of
Theorem 10 it is helpful to keep track of the variance proxy, which motivates the use of µ̃k.
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When the expectation is taken conditional on Y = 1, we write µf , whereas for Y = −1 we
write µg.

Assumption 4 The kernel density function, K, is symmetric around zero and uniformly
upper-bounded, i.e. for any u ∈ R, K(u) ≤ κu. Moreover, K has finite first and second
moments, that is, κq ,

∫
R |u|

qK(u)du <∞ for q = 1, 2.

In particular, Assumption 4 implies that, for a variable U with density function K(·), there
exists u′ > 0 such that for any u > u′ : P(U > u) ≤ Cu−α, α ≥ 1, i.e. beyond which the
decay in the tails of K is at least linear.

Assumption 5 Conditional densities f and g are continuous and have finite second mo-
ments. Moreover, supx∈R max{f(x|x−s), |x|f(x|x−s), x2f(x|x−s)} ≤ C for some constant

C > 0. Analogous assumptions are made for f ′(xs|x−s) , df(xs|x−s)
dx and for the density

function g(·).

Assumption 6 There exists x′ ∈ R, x′ > 0, such that for any x, |x| > x′, and any α,
|α| ≤ 1, exp(αx2/4ν2

1)f(x|x−s) ≤ C for some C > 0.

Assumption 6 is satisfied by most commonly used distributions and is closely related to
sub-Gaussian random variables. To see this, note that for a sub-Gaussian random variable
X with a variance proxy ν2

1 , P(X ≥ t) ≤ e
√

8P(Z ≥ t) for Z ∼ N(0, 2ν2
1) and any t ≥ 0.

Bahadur representation for the convolution-smoothed SVM relies on the strong convexity
of the smoothed loss. The following two assumptions are used to establish the result.

Assumption 7 There exists ε > 0 and C > 0 such that inf |u|≤εK(u) > C, i.e. the kernel
density function is strictly positive in a neighbourhood of zero.

Assumption 8 For an orthogonal transformation As, As ∈ Rp×p, that maps w∗/‖w∗‖2 to
the s-th unit vector es for some 1 ≤ s ≤ d, there exists ψ > 0 and rectangles

D+
∗ (ψ) =

{
x ∈ X : li ≤ (Asx)i ≤ vi with li < vi for i 6= s and (Asx)s ∈

1− b∗

‖w∗‖2
+ B(ψ)

}
,

D−∗ (ψ) =

{
x ∈ X : li ≤ (Asx)i ≤ vi with li < vi for i 6= s and (Asx)s ∈

−1− b∗

‖w∗‖2
+ B(ψ)

}
such that f(x) ≥ C1 > 0 on D+

∗ and g(x) ≥ C2 > 0 on D−∗ .

Assumption 8 requires that there exist two (rectangular) subsets of the margins on which
conditional densities are bounded away from zero, and is further discussed in Appendix A.
Assumption 8 is a direct consequence of Assumption A1 and Assumption A4 in Koo et al.
(2008) so Assumption 8 does not impose conditions more restrictive than those needed to
establish Bahadur representation of the hinge loss.

4.1 Estimation Error

The first result is an upper bound on ‖θ̂h − θ∗‖2. We henceforth refer to ‖θ̂h − θ∗‖2 as the
estimation error and omit the subscript from θh.
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Theorem 9 (Estimation error) Under Assumptions 2—5, 7 and 8, for any t > 0 and
1 & h &

√
(p+ t)/n, h ≤ min

{
h0,

R1
Cκ2(1+µ̊1)

}
, h0 , max

{
C‖w∗‖2/ε, 1

}
, and n & p + t +

log(2),

‖θ̂ − θ∗‖2 ≤ Ch2κ2(1 + µ̊1) + C

√
p+ t+ log(2 + 2 log(h−1))

n
, (6)

holds with probability at least 1− e−t, where ε is defined in Assumption 7.

The exact expression for R1 can be found in the proof of Proposition 14. Since h &√
(p+ t)/n, the leading order in (6) is

√
(p+ t)/n. The convergence rate of the θ̂h, the

estimator of θ∗ based on the smoothed hinge loss, thus coincides with the rate obtained for
the estimator based on the hinge loss (Zhang et al., 2016).

4.2 Wald-type Inference

The following theorem establishes a Bahadur representation for the smoothed estimator θ̂h.

Theorem 10 (Bahadur representation) Under Assumptions 2—8, for n & p+t+log(2)
and

√
(2p+ t)/n . h . 1, h ≤ min

{
h0, R1(Cκ2(1 + µ̊1))−1

}
, h0 , max {C‖w∗‖2/ε, 1}, we

obtain ∥∥∥−∇L̂h(θ∗)−∇2Lh(θ∗)(θ̂ − θ∗)
∥∥∥

2
≤ 6Crν2

1

√
2p+ t

nh
+ Cr2, (7)

with probability at least 1− 2e−t for any t > 0 and r � h2 +
√

(p+ t)/n.

More precisely, r is the upper-bound on the estimation error from Theorem 9. We can thus
restate Theorem 10 in the following more concise form.

Corollary 11 (Bahadur representation) Under Assumptions 2—8, for n & p + t +
log(2) for

√
(2p+ t)/n . h . 1, h ≤ min

{
h0, R1(Cκ2(1 + µ̊1))−1

}
, h0 , max {C‖w∗‖2/ε, 1},

we obtain ∥∥∥−∇L̂h(θ∗)−∇2Lh(θ∗)(θ̂ − θ∗)
∥∥∥

2
.

√
p+ t

n
h3/2 +

p+ t

n

1

h1/2
. (8)

with probability at least 1− 2e−t for any t > 0.

Since ∇L̂h(θ∗) is a sum of i.i.d terms (see equation 4) and ∇2Lh(θ∗) is non-random, the
Bahadur representation allows us to approximate θ̂h− θ∗ by a sum of i.i.d. terms with high
probability, thus enabling us to establish a limiting distribution of the estimator and its
functionals.

A key challenge in proving Theorem 9 was establishing that the local strong convexity
for the empirical convolution-smoothed loss function holds with high probability in the
neighbourhood of θ∗. Since the probability depends on the distribution of X, Assumption
3 is required for Theorems 9 and 10 to hold. A more detailed discussion of strong convexity
is provided in Appendix A.
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5. Simulations

The distributional approximations of both the SVM estimator derived in Koo et al. (2008)
and the smooth SVM estimator presented here hinge on Bahadur representation. The
convergence of the distributional approximation is thus governed by the convergence of
the Bahadur remainder. We can thus use the non-asymptotic behaviour of the Bahadur
remainder to compare the distributional approximation of SVM and smooth SVM in non-
asymptotic settings. Since the non-asymptotic bound for the Bahadur remainder has not
been derived for SVMs, we resort to simulations. This approach is taken in Section 5.1.

An alternative, used by Koo et al. (2008) for indicating the limitations of SVM in large-p
settings, is to compare Type 1 errors as the ratio n/p increases. We pursue this approach
in Section 5.2. In Section 5.3, we compare coverage ratios of confidence intervals for the
convolution-smoothed estimator and SVM estimator.

As in Koo et al. (2008), we consider Gaussian class-conditional densities with a common co-
variance matrix throughout all simulations, i.e. f(X) = N(µf ,Σ0) and g(X) = N(µg,Σ0),
with equal class probabilities. This setting is convenient since θ∗ and the Hessian of the
population SVM, written H(θ∗), can be derived analytically (Koo et al., 2008).

5.1 Bahadur Remainder

Since our distributional results, as well as those of Koo et al. (2008), are based on a Bahadur
representation, we compare distributional approximations by comparing the L2 norms of
Bahadur remainders of the two methods under a range of n, p settings.

The Bahadur representation of the unpenalised SVM takes the form (Theorem 1 in Koo
et al., 2008)

√
nD(θ∗)T (θ̂ − θ∗) = − 1√

n

n∑
i=1

1{1− yix̊Ti θ∗ ≥ 0}yix̊i + rsvm, (9)

where D(θ∗) is the Hessian matrix of the population hinge loss. Since all population quan-
tities in (9) are known, we can easily calculate the Bahadur remainder rsvm for any given n
and p. This is not the case for a Bahadur remainder of the smooth SVM (8), as the Hessian
depends on a chosen bandwidth and kernel. However, by a triangle inequality, we have an
upper bound

‖rssvm‖2 ≤ ‖ −
√
nD(θ∗)T (θ̂ − θ∗)−

√
n∇L̂h(θ∗)‖2. (10)

Although this bound may be loose for small n/p, it suffices for current purposes. Equations
(9) and (10) enable us to compare the L2 norms of Bahadur remainders of both SVM and
smooth SVM for any n and p.

The usual specification (and implementation) of SVM takes the following form:

L̂SVM(θ) = C

n∑
i=1

(1− yix̊Ti θ)+ + ‖w‖22. (11)

10
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The theory of Koo et al. (2008) relates to the SVM without regularisation,

L̂SVM(θ) =
1

n

n∑
i=1

(1− yix̊Ti θ)+, (12)

solvable by linear programming methods. To this end, introduce slack variables ξ1, . . . , ξn
and solve

min
n∑
i=1

ξi subject to ξi ≥ 0, ξi ≥ 1− yix̊Ti θ, i = 1, . . . , n.

We set Σ0 = cpIp, where Ip denotes a p-dimensional identity matrix, µ1 = (1, . . . , 1)T , a
p-dimensional unit vector and µg = −µf . The bandwidth is set to the optimal rate from the
Bahadur-remainder perspective h = (p/n)1/4. The term cp ensures that as p increases, ‖θ∗‖2
remains unchanged. This ensures that simulation results are not driven by the dependency
of Bahadur remainder on ‖θ∗‖2.

Koo et al. (2008) derive the following solutions for population coefficient vector θ∗ = (b∗, w∗),

b∗ = −
(µf − µg)TΣ−1(µf + µg)

2a∗dΣ(µf , µg) + dΣ(µf , µg)2
, (13)

w∗ =
2Σ−1(µf − µg)

2a∗dΣ(µf , µg) + dΣ(µf , µg)2
, (14)

where dΣ(µf , µg) denotes the Mahalanobis distance between the means, i.e., dΣ(µf , µg) ,
[(µf − µg)TΣ−1(µf − µg)]1/2, γ(x) , φ(x)/Φ(x) and a∗ , γ−1(dΣ(µf , µg)/2).

From (13) and (14) it follows that cp is a root of√
cp
p
γ

(
2a∗ + dΣ0(µf , µg)−

√
pdΣ0(µf , µg)

2
√
cp

)
−
dΣ0(µf , µg)

2
, (15)

which we solve by Newton-Raphson’s method.

Results for a fixed n/p ratio are presented in Figure 2. The L2 norm of the Bahadur
remainder for the smoothed SVM is significantly smaller in both settings, especially for
large values of p.

5.2 Type 1 Error Rates

Simulations in Koo et al. (2008) suggest that for large-p settings, the probability of rejecting
a hypothesis H0 : wi = 0 for feature i which has no impact on the response Y exceeds the
pre-specified significance level.

We consider the same setting as Koo et al. (2008). Consider p-dimensional mean vectors
µf = (1p/2, 0p/2), where 1p/2, 0p/2 denote p/2-dimensional vectors of ones and zeros respec-
tively, and µg = 0. Then, equation (14) implies that the last p/2 coordinates of w∗ are zero.
For each combination of p and n, we use the asymptotic covariance matrix of the SVM-
estimators to calculate Wald statistics, and perform a test of H0 at the 5% level taking

11
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Figure 2: The L2 norm of the Bahadur remainder based on 100 simulations with n/p = 50
for SVM (plot a) and Convolution-smoothed SVM (plot b).
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Figure 3: Median value of Type 1 error for testing the significance of a noise variable. Based
on 100 simulations for each n, p combination.

Φ−1(0.975) as the critical value. Over 100 replications we calculate the frequency of false
positives for the p/2 insignificant variables. A median value of the frequencies is reported
for each combination of p and n in Figure 3. The results suggest that Type 1 errors for
smooth SVM are substantially closer to the nominal significance level for large-p settings.

5.3 Coverage Ratios

As before, consider p-dimensional mean vectors µf = (1p/2, 0p/2) and µg = 0. We construct
confidence intervals for both zero and non-zero coefficients using a population Hessian de-
rived by Koo et al. (2008). The sample variance of SVM and convolution-smoothed scores

12
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Figure 4: Median and standard deviation of coverage ratios for SVM (plot a) and
convolution-smoothed SVM (plot b). Based on 100 simulations with n = 500.
The dotted line depicts the target coverage.

are estimated, respectively, by

V̂ (θ) ,
1

n

n∑
i=1

1{1− yixTi θ ≥ 0}xixTi ,

V̂h(θ) ,
1

n

n∑
i=1

K̄2

(
1− yixTi θ

h

)
xix

T
i .

The median and standard deviation of coverage ratios for different choices of p are plotted
in Figure 4.

Throughout this section we use Gaussian kernel and set the bandwidth to h = (p/n)1/4.
Other choices of kernel and bandwidth do not have a significant impact on the results
presented in this section, as illustrated in Figure 7 of the Appendix.

6. Comparison to Horowitz-type Smoothing

Using Horowitz-type smoothing of the hinge loss, Wang et al. (2019) establish that as long
as the regularisation term is chosen such that λ �

√
p/n, the estimation error converges at

rate
√
p/n, the same rate as the original hinge loss. As already mentioned, the same rate

of convergence is obtained for the convolution-smoothed loss.

To compare the distributional approximations for the two estimators, consider
√
n(θ̂ − θ∗).

As long as the Bahadur remainder is asymptotically negligible, the limiting distribution of
the estimator coincides with the approximation term in (8). Corollary 11 establishes that
the remainder is of order p1/2h3/2 + pn−1/2h−1/2. Minimising this expression over h yields
the convergence rate of p7/8/n3/8. The distributional approximation is thus valid for p7/3 =
o(n). In comparison, following an analogous derivation, the optimal rate of convergence of
the Bahadur remainder for Horowitz-type smoothing is of order p3/4n−1/4(log n)1/2 (Wang
et al., 2019). Hence the distributional approximation holds for p3 = o(n(log n)−2). The
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Figure 5: Median value of Type 1 error for testing the significance of a noise variable. Based
on 100 simulations for each n, p combination.

distributional approximation for the convolution-smoothed estimator is thus valid under a
weaker condition on p, making it more suitable in large-p settings.

To illustrate this, we compare Type 1 errors of Horowitz-smoothed and convolution-smoothed
SVM, with the same setup as in Figure 3. Results are presented in Figure 5.

7. Score-based Inference

The Bahadur representation leads naturally to Wald-type tests and the associated confi-
dence intervals. However, the set of parameters consistent with the data need not form an
interval, as exemplified by Fieller’s problem (Fieller, 1954). An alternative, which does not
suffer from this drawback, is a score-type test.

Score-based confidence sets are obtained by evaluating the gradient of the smoothed loss
function at the hypothesised parameter values. Let θ0 , (θ0

0, . . . , θ
0
p), i.e. the vector of

parameters under the null hypothesis. Let Ŝ(θ0) denote the gradient of the convolution-
smoothed loss function evaluated at θ0, that is,

Ŝ(θ0) = (Ŝ0(θ0), . . . , Ŝp(θ
0))T , n∇L̂h(θ0) = −

n∑
i=1

yix̊iK̄

(
1− yix̊Ti θ0

h

)
. (16)

For a single coordinate k ∈ {0, . . . , p}, Ŝk = −
∑n

i=1 yix̊i,kξi, where ξi , K̄(1−yix̊Ti θ0/h) and

xi,k denotes kth coordinate of vector xi. Note that Ŝk is a sum of i.i.d. terms whose mean,

the kth element of E[∇L̂h(θ0)], converges to zero at rate h2 by Lemma 18. Thus, n−1/2Ŝk
is expected to be approximately normally distributed. Moreover, as long as

√
nh2 → 0, the

14
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score-based t-statistic, defined as n−1/2Ŝk divided by an estimate of the standard deviation,

T̂k ,
Ŝk

σ̂(Sk)
,

−n−1/2
∑n

i=1 yix̊i,kξi√
(n− 1)−1

∑n
i=1 (−yix̊i,kξi + n−1

∑n
i=1 yix̊i,kξi)

2
(17)

is asymptotically standard normal. Following Efron (1969), we can rewrite the t-statistics
in terms of a self-normalised sum,

T̂k =
Ŝk/V̂k√

{n− (Ŝk/V̂k)2}/(n− 1)
, (18)

where V̂ 2
k ,

∑n
i=1(̊xi,kξi)

2. Thus, by the asymptotic theory of self-normalised processes
(de la Peña et al., 2009) we can define the α-level confidence set as

{θ0 : Φ−1/2(α/2) ≤ T̂k(θ0) ≤ Φ−1/2(1− α/2)}. (19)

The construction of score-type confidence sets requires considerably more computation than
the Wald construction, as T̂ (θ0) needs to be evaluated over a grid of points θ0.

8. Non-linear Extension

We now turn briefly to prediction. In large-p settings the feature space is often sufficiently
rich that the restriction to linear models is justifiable on the grounds of prediction accuracy
(Hsieh et al., 2008). For data sets with fewer explanatory variables, however, non-linear
classifiers such as kernel SVMs, often perform better. We thus extend the convolution-
smoothed SVM so that the resulting decision boundary is permitted to be non-linear. This
comes at the expense of interpretation emphasised elsewhere in the paper. To this end,
consider two matrices A ∈ Rm×k and B ∈ Rk×l. Given the kernel function κ(A,B) ∈ Rm×l,
Mangasarian (2000) introduce the following quadratic program,

min
1

n

n∑
i=1

(1− yi(κ(xi,X
T )yω − γ))+ +

1

2
λuTQu,

where Q ∈ Rn×n is a symmetric, positive-definite matrix, u ∈ Rn, X is n × p with sample
xi in the ith row, and y , diag(y1, . . . , yn). The standard support vector machine is recov-
ered by setting Q = yκ(X,XT )y and assuming that κ(X,XT ) is symmetric and positive
semidefinite. If Q = I, the assumption of symmetry and positive semidefiniteness of κ(·) is
no longer required for the problem to possess a solution (Mangasarian, 2000).

We can introduce kernel feature space to convolution-smoothed SVM along similar lines,
namely by solving

min L̂h(θ) =
1

nh

n∑
i=1

∫ ∞
0

uK

(
u+ yi(κ(xi,X

T )yω + γ)− 1

h

)
du. (20)

The linear convolution-smoothed SVM can be recovered by setting κ(X,XT ) = XXT and
w = XTyω.
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The modified objective (20) is twice continuously differentiable and convex, with gradient

∇L̂h(θ) = − 1

n

n∑
i=1

yigiK̄

(
1− yi(κ(xi,X

T )yω + γ)

h

)
, (21)

where gi =
(
κ(xi,X

T )y, 1
)
.

9. Interpretation of Parameters in the Linear SVM

Although the support vector machine was conceived with classification as the objective, the
decision boundary is described by parameters for which the paper sought to provide reliable
inference. This raises questions of whether the parameters have an interpretation.

For a classification rule ψ : Rp → R, the SVM population optimisation problem is

min
ψ:Rp→R

E{1− Y ψ(x)}+, (22)

where the expectation is with respect to the conditional distribution of Y given X = x. Let
π(x) , P(Y = 1|X = x). It can be shown that the SVM population classification rule is

ψSVM(x) = sgn (π(x)− 1/2) , (23)

which is precisely the Bayes classifier. Thus the general form of the SVM aims to estimate
the Bayes rule directly, without necessarily assigning an interpretable form to the conditional
class probabilities. Once the so-called hypothesis space of decision functions is specified,
however, the implicit form of π(x) is recovered. In particular, the linear SVM takes ψ(x) ∈
Ψ(x) = {sgn(̊xT θ) : θ ∈ Rp+1}. Thus, with θ∗ the minimiser of the SVM population loss
function (22) over Ψ(x), ψSVM(x) = sgn(̊xT θ∗) so that (23) gives the implicit model

P(Y = y|X = x) = 1
2 + αyx̊T θ∗, y ∈ {−1, 1}, (24)

for some α > 0. The linear in probability model, discussed by Cox and Wermuth (1992)
and particularly by Battey et al. (2019), is

P(Y = y|X = x) = 1
2(1 + yx̊T θLPM), y ∈ {−1, 1}. (25)

From (24) we see that the implicit probability model of the linear SVM is the linear in
probability model with θ∗ = θLPM/2α. The ratios of coefficients thus coincide, θ∗j/θ

∗
k =

θLPM
j /θLPM

k , and so do the corresponding population-level decision boundaries. The ratio
θ∗j/θ

∗
k has a substantive interpretation as the increase in probability of Y = 1 resulting from

a unit increase in xj relative to a unit increase in xk. In other words, the ratio specifies
by how much xj needs to change to have the same effect on the probability of a positive
outcome as a unit increase in xk.

This representation also provides insight into the connection to the logistic model. While
the coefficients of different models are not directly comparable, their relative values can be
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compared. Consider the logistic model g(π) = xTβ where g(π) = log
(
π(x)/(1− π(x))

)
. On

differentiating both sides with respect to the relevant entry of x,

βj
βk

=
(d/dπ)g(π) · (∂π(x)/∂xj)

(d/dπ)g(π) · (∂π(x)/∂xk)
=
∂π(x)/∂xj
∂π(x)/∂xk

,

and the right hand side is θLPM
j /θLPM

k = θ∗j/θ
∗
k under the assumption of a linear in probability

model. The logistic and linear models cannot hold simultaneously, so the ratios of their
coefficients do not coincide exactly. Nevertheless, ratios of estimated coefficients under the
two models estimate the same quantity, as described above.
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Appendix A. Strong Convexity

To establish strong convexity of the sample smoothed loss function (with high probability)
we proceed as follows. Lemma 12 shows that the smoothed loss function is Lipschitz contin-
uous. Proposition 13 then establishes that the smoothed population hinge loss is strongly
convex at θ∗, with Proposition 14 extending this to a neighbourhood of θ∗. The remaining
step is to show that a sample smoothed loss function inherits the strong convexity of its
population counterpart with high probability, which leads to Proposition 15. Proposition
15 is further revised for the case when X is a sub-Gaussian random vector by Proposition
16. The final result is summarised by Proposition 17.

Recall that the empirical hinge loss can be written as L̂(θ) = (1/n)
∑n

i=1 ϕ(1 − yix̊
T
i θ),

where ϕ(u) = u1(u ≥ 0) is 1-Lipschitz. Hence, ϕ(1− yix̊Ti θ) is 1-Lipschitz in x̊Ti θ, i.e. for
each sample (̊xi, yi) and any θ, θ′ ∈ R,

|ϕ(1− yix̊Ti θ)− ϕ(1− yix̊Ti θ′)| ≤ |̊xTi θ − x̊Ti θ′|.

The following lemma establishes that the smoothed hinge loss inherits this Lipschitz prop-
erty.

Lemma 12 Under Assumption 4 the smoothed hinge loss, lh(1 − yix̊Ti θ) = (ϕ ∗ Kh)(1 −
yix̊

T
i θ), is (1/2)-Lipschitz in x̊Ti θ.

To show that the sample smoothed loss function inherits, with high probability, the strong
convexity of its population counterpart in a neighbourhood of θ∗, we first show that the
population smoothed loss function is strongly convex at θ∗, a property inherited from the
hinge loss. Two additional assumptions, Assumption 7 and 8, are used to establish strong
convexity of the smoothed hinge loss.

To gain further insight into Assumption 8 and to simplify the notation later on, let D denote
a rectangle along all coordinates except s, i.e.

D(ψ) = {x−s ∈ X−s : li ≤ (Asx)i ≤ vi with li < vi for i 6= s} .

Note that, for ψ = 0, we can rewrite rectangles as

D+
∗ (0) =

{
x ∈M+ : li ≤ (Asx)i ≤ vi with li < vi for i 6= s

}
,

D−∗ (0) =
{
x ∈M− : li ≤ (Asx)i ≤ vi with li < vi for i 6= s

}
where M+ and M− are the margins of the SVM, that is

M+ =
{
x ∈ X |b∗ + xTw∗ = 1

}
, M− =

{
x ∈ X |b∗ + xTw∗ = −1

}
.

This corresponds to Assumption A4 in Koo et al. (2008). In other words, this assumption
requires that there exist two (rectangular) subsets of the margins on which conditional
densities are bounded away from zero. Assumption 8 is a direct consequence of Assumption
A1 and Assumption A4 in Koo et al. (2008) so Assumption 8 does not impose conditions
more restrictive than those needed for the strong convexity of the population hinge loss.

The region for (Asx)s in Assumption 8 comes from the following derivation. Let z =
(As/‖w∗‖2)x, so z becomes the new coordinate system in which w∗ becomes es. Since w∗
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is orthogonal to the separating hyperplane and the margins, the margins lie in a (p − 1)-
dimensional space defined by coordinates z−s.

On the margin, b∗ + w∗Tx = 1. On substituting in the expression for z we obtain b∗ +
w∗T ‖w∗‖2ATs z = 1. Using the definition of the transformation As, this implies that the
margin corresponds to a (p − 1)-dimensional hyperplane that intersects zs axis at (1 −
b∗)/‖w∗‖22.

Figure 6 illustrates Assumption 8 for p = 3 and s = 1.

(A) (B)

Figure 6: Illustration of transformation represented by Assumption 8 for s = 1 and p = 3.
(A) In the case when p = 3, the margin is a 2−dimensional hyperplane. Vector
w∗ is orthogonal to the margin. (B) Transformation A1 changes the coordinate
system such that the margin corresponds to a hyperplane spanned by z2 and
z3 and the direction along the z1 axis (corresponding to e1) is orthogonal to
the transformed margin. For ψ = 0, the density is assumed to be non-zero
for a rectangular subset D+

∗ (0) = [l2, v2] × [l3, v3] of the transformed margin,
represented by the dark shaded area.

Proposition 13 Under Assumptions 2, 7 and 8, there exist constants C,C ′, C ′′ > 0 such
that for any α̊ ∈ Rp+1 and for 0 < h ≤ max{ψ‖w∗‖2/ε, 1}

α̊T∇2Lh(θ∗)α̊ ≥ C
(
‖α̊‖22 + C ′(Asα)2

sh
2

)
. (26)
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For h ≥ ψ‖w∗‖2/ε,

α̊T∇2Lh(θ∗)α̊ ≥ C ′′
(
‖α̊‖22
h2

+ C ′(Asα)2
s

)
. (27)

Proposition 13 shows that the population smoothed hinge loss has strictly positive definite
Hessian at θ∗.

Note that, for (Asα)s = 0 we recover an inequality for SVM derived in Koo et al. (2008),
with identical constant. By the orthogonality of As and since Asw

∗/‖w∗‖2 = es, the s-th
row of As is equal to w∗/‖w∗‖2. Hence Proposition 13 establishes a higher lower bound
for the curvature of the smooth SVM than that of SVM in all directions, except for the
parameter vectors orthogonal to w∗. To bound the approximation error, strong convexity
at θ∗ is not sufficient, as the estimation error is unlikely to be zero. We thus require strong
convexity on the neighbourhood of θ∗ instead. Proposition 13 suggests that along directions
not orthogonal to θ∗ strong convexity holds with a slack, and hence by the continuity of
partial derivatives we could argue that along these directions it holds in the neighbourhood
of θ∗. Along the directions orthogonal to θ∗, however, the condition for strong convexity
might be tight. Proposition 14 shows that despite this, strong convexity in a neighbourhood
of θ∗ holds.

Proposition 14 Under Assumptions 2, 7 and 8, there exists R1 > 0 such that Lh(θ∗+ ∆)
is strongly convex for any 0 < h ≤ max{ψ‖w∗‖2/ε, 1} and ∆ ∈ B(hR1). Specifically,
inequalities (26) and (27) hold for any α̊ ∈ Rp+1.

Now, we show that in a neighbourhood of θ∗ the sample smoothed loss function inherits
the strong convexity of the population smoothed loss with high probability. For this, an
equivalent characterisation of strong convexity through a first-order Taylor remainder is
used.

Let E(∆) be the first-order Taylor series remainder of the sample smoothed loss function,

E(∆) = L̂h(θ∗ + ∆)− L̂h(θ∗)− 〈∇L̂h(θ∗),∆〉, ∆ ∈ Rp+1,

and let Ē(∆) = E E(∆) be its population counterpart.

Proposition 15 Under Assumption 4, for any given r > 0 and δ > 0,

sup
∆∈B(r)

|E(∆)− Ē(∆)| ≤ 4rδ (28)

with probability at least 1− infλ>0 E[eλ(‖X̄n‖2−δ)], where X̄n , (1/n)
∑n

i=1 X̊i. Also, for any
given ru > rl > 0,

|E(∆)− Ē(∆)| ≤ 4e1/2‖∆‖2δ for all ∆ ∈ B(rl, ru), (29)

with probability at least 1− 2dlog(ru/rl)e infλ>0 E[eλ(‖X̄n‖2−δ)].

Proposition 14 shows that on B(hR1), the population loss function is strongly convex,
i.e. Ē(∆) ≥ κ‖∆‖22 for some constant κ > 0. Proposition 15 then shows that, with high
probability, the strong convexity also holds for the sample loss function. Since the proba-
bility depends on the distribution of X, we now turn to implications of these lemmas for
sub-Gaussian variables.
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Proposition 16 Under Assumptions 3 and 4, for any given r > 0 and t > 0,

sup
∆∈B(r)

|E(∆)− Ē(∆)| ≤ Cr
√
p+ t

n

with probability at least 1− e−t. Also, for any rl, ru such that 0 < rl < ru, for any t > 0,

|E(∆)− Ē(∆)| ≤ C‖∆‖2
√
p+ t

n
for all ∆ ∈ B(rl, ru) (30)

with probability at least 1− 2 dlog(ru/rl)e e−t.

Finally, for sub-Gaussian random vectors, the following lemma provides a lower-bound on
first-order Taylor error.

Proposition 17 (Strong convexity) Suppose Assumptions 2—4, 7 and 8 hold and h ≤
max {ψ‖w∗‖2/ε, 1}. Then, there exists R1 > 0 such that, for any r, hR1 > r > 0, it holds
with probability at least 1− e−t that

[∇Lh(θ∗ + ∆)−∇Lh(θ∗)]T∆ ≥ C‖∆‖22 − C ′r
√
p+ t

n
, for all ∆ ∈ B(r),

for any t > 0. Also, for any 0 < rl < ru < hR1, and t > 0,

[∇Lh(θ∗ + ∆)−∇Lh(θ∗)]T∆ ≥ C‖∆‖22 − C ′‖∆‖2
√
p+ t

n
, for all ∆ ∈ B(rl, ru)

with probability at least 1− 2 dlog(ru/rl)e e−t.

The exact expression for R1 can be found in the proof of Proposition 14.

Appendix B. Proofs of Main Results

Proof of Lemma 1

The SVM loss can be written as

L̂(θ) = Eε∼F̂ (θ)[ε1{ε ≥ 0}],

where the random variable ε has distribution function F̂ (ε, θ). Similarly, convolution-
smoothed SVM takes the form

L̂h(θ) = Eε∼F̂h(θ)[ε1{ε ≥ 0}].

The integrated tail probability expectation formula (see e.g. Lo, 2018) yields

Eε∼F̂h(ε,θ)[ε1{ε ≥ 0}] =

∫ ∞
0

(1− F̂h(t))dt.
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Using the definition of F̂h(u) and using a repeated substitution of variables (v = w−1+yxθ,
u = t− 1 + yxθ),

Eε∼F̂h(ε,θ)[ε1{ε ≥ 0}] =

∫ ∞
0

[
1

nh

n∑
i=1

∫ ∞
t

K

(
w − 1 + yix

T
i θ

h

)
dw

]
dt

=

∫ ∞
0

[
1

nh

n∑
i=1

∫ ∞
t−1+yxθ

K
(v
h

)
dv

]
dt

=
1

nh

n∑
i=1

∫ ∞
−1+yixiθ

[∫ ∞
u

K
(v
h

)
dv

]
du

=
1

nh

n∑
i=1

∫ 1−yixiθ

−∞

[∫ z

−∞
K
(v
h

)
dv

]
dz

=
1

n

n∑
i=1

∫ 1−yixTi θ

−∞
K̄h(z)dz

=
1

n

n∑
i=1

K̄h(1− yixTi θ),

where

K̄h(z) ,
∫ z

−∞
K

(
t

h

)
dt

is the corresponding cumulative distribution function and K̄h denotes its indefinite integral.

B.1 Proof of Theorem 9 (Estimation error)

Let B(t) = {u ∈ Rp : ‖u‖2 ≤ t}. For some r0 > 0 let

η = sup
λ

{
λ ∈ [0, 1] : λ

(
θ̂h − θ∗

)
∈ B(r0)

}
,

θ̃ = θ∗ + η
(
θ̂h − θ∗

)
.

By the definition of η, θ̃ ∈ θ∗ + B(r0). Thus, η is the largest number from [0, 1] such
that a linear combination of θ̂h and θ∗, with weights η and 1 − η respectively, falls into a
neighbourhood of θ∗.

From above it is clear that if θ̂h ∈ θ∗ + B(r0), η = 1 and θ̃ ∈ θ∗ + B(r0), whereas if
θ̂h /∈ θ∗ + B(r0), η < 1 and θ̃ ∈ θ∗ + ∂B(r0).

As in Tan et al. (2022), we first derive an upper bound for ‖θ̃ − θ∗‖2 and then, by an
appropriate selection of constants argue that this bound is smaller than r0, i.e. that θ̃ lies
in the interior of θ∗ + B(r0). From the discussion above this implies that η = 1, so, by
the definition of θ̃, θ̃ = θ̂h. We thus have an upper bound for ‖θ̂h − θ∗‖2. To simplify the
notation, we omit the subscript h from θ̂ from now onwards.
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Define Bregman divergence for a (convex) function ψ : Rk → R as:

Dψ(w,w′) = ψ(w′)− ψ(w)− 〈∇ψ(w), w′ − w〉

and the symmetrised divergence as

DS
ψ(w,w′) = Dψ(w,w′) +Dψ(w′, w) = 〈∇ψ(w′)−∇ψ(w), w′ − w〉. (31)

By Lemma 2 (in section C.1) of Sun et al. (2020), for ψ = L̂h,

DS
L̂h

(θ̃, θ∗) ≤ ηDS
L̂h

(θ̂, θ∗). (32)

From equation (32) and the definition of symmetrised divergence (31),

〈∇L̂h(θ̃)−∇L̂h(θ∗), θ̃ − θ∗〉 ≤ η〈∇L̂h(θ̂)−∇L̂h(θ∗), θ̂ − θ∗〉. (33)

By the definition of θ̂ we have

DS
L̂h

(θ̂, θ∗) = 〈∇L̂h(θ̂)−∇L̂h(θ∗), θ̂ − θ∗〉 = −〈∇L̂h(θ∗), θ̂ − θ∗〉. (34)

Combining equations (33) and (34) and using the Cauchy-Schwartz inequality,

‖θ̃ − θ∗‖22
DS
L̂h

(θ̃, θ∗)

‖θ̃ − θ∗‖22
≤ −η〈∇L̂h(θ∗), θ̂ − θ∗〉 ≤

∥∥∇L̂h(θ∗)
∥∥

2

∥∥θ̃ − θ∗∥∥
2
. (35)

Thus,

‖θ̃ − θ∗‖2 ≤
‖∇L̂h(θ∗)‖2

infθ∈θ∗+B(r0)D
S
L̂h

(θ, θ∗)/‖θ − θ∗‖22
. (36)

By the triangle inequality,

‖∇L̂h(θ∗)‖2 ≤
∥∥∇L̂h(θ∗)− E

[
∇L̂h(θ∗)

]∥∥
2

+
∥∥E[∇L̂h(θ∗)

]∥∥
2
,

which upper bounds the numerator.

Lemma 18 (Smoothing bias term) Under Assumptions 2, 4 and-5 for bandwidth h >
0, ∥∥E[∇L̂h(θ∗)

]∥∥
2
≤ Ch2κ2(1 + µ̊1)

2θ∗2s
.

In other words, as bandwidth goes to zero, the smoothed loss better approximates the hinge
loss, and hence the population gradient of smoothed loss at θ∗ goes to zero.

Lemma 19 (Centred score function) Under Assumptions 2-5 for any t > 0, and 1 &
h & p+t

n , n & p+ t,

P
[∥∥∇L̂h(θ∗)− E

[
∇L̂h(θ∗)

]∥∥
2
≤ C

√
p+ t

n

]
≥ 1− 2e−t.
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Thus, using Lemmas 18 and 19, for any t > 0,

‖∇L̂h(θ∗)‖2 ≤ Ch2κ2(1 + µ̊1) + C

√
p+ t

n
(37)

with probability at least 1− 2e−t.

From the definition of the symmetrised divergence (31) it is clear that the denominator
in (36) is closely related to the convexity of the sample smoothed loss function. Strong
convexity on a neighbourhood θ∗ + B(r0) requires that, for some κ > 0,

∀θ1, θ2 ∈ θ∗ + B(r0) : 〈∇L̂h(θ1)−∇L̂h(θ2), θ1 − θ2〉 ≥ κ‖θ1 − θ2‖22. (38)

Establishing strong convexity over the neighbourhood of θ∗ thus amounts to providing a
lower-bound for the denominator on the right-hand side of (36).

To this end, let E(∆) be a first order Taylor error of the sample smoothed loss function,

E(∆) , L̂h(θ∗ + ∆)− L̂h(θ∗)− 〈∇L̂h(θ∗),∆〉

and Ē be a Taylor error of the population smoothed loss. Koo et al. (2008) established
strong convexity of the population hinge loss function at θ∗. Establishing strong convexity
of a sample smoothed hinge loss in the neigborhood of θ∗ consists of three steps. Firstly,
we show that the smoothed hinge loss is also strongly convex at θ∗. Secondly, we show
that this also holds for the neighbourhood of θ∗. Lastly, using Lipschitz continuity of the
loss function we show that, with high probability, this property is inherited by the sample
smoothed hinge loss. This results in Proposition 17, which we re-state below for ease of
reference.

Proposition 20 Suppose Assumptions 2, 3, 4, 7 and 8 hold and h ≤ max {ψ‖w∗‖2/ε, 1}.
Then, there exists R1 > 0 such that, for any r, hR1 > r > 0, it holds with probability at
least 1− e−t that

[∇Lh(θ∗ + ∆)−∇Lh(θ∗)]T∆ ≥ C‖∆‖22 − C ′r
√
p+ t

n
, for all ∆ ∈ B(r),

for any t > 0. Also, for any 0 < rl < ru < hR1, and t > 0,

[∇Lh(θ∗ + ∆)−∇Lh(θ∗)]T∆ ≥ C‖∆‖22 − C ′‖∆‖2
√
p+ t

n
, for all ∆ ∈ B(rl, ru)

with probability at least 1− 2 dlog(ru/rl)e e−t.

The exact expression for R1 can be found in the proof of Proposition 14. The restriction to
the neighbourhood of R1 arises since only on the ball with this radius, the sample smoothed
loss function is (locally) strongly convex.

Let r0 = C ′hκ2(1 + µ̊1), and assume that r0 ≤ hR1. Let rl = Chr0, rl < r0. Then
∆̃ , θ̃ − θ∗ ∈ B(rl), ‖θ̃ − θ∗‖2 < r0, implying θ̂ = θ̃ and the claimed bound follows. On the
other hand, for ∆̃ ∈ B(rl, r0) we have, by Proposition 17,

inf
∆∈B(rl,r0)

DS(θ∗ + ∆, θ∗)

‖∆‖22
= inf

∆∈B(rl,r0)

〈∇L̂h(θ∗ + ∆)−∇L̂h(θ∗),∆〉
‖∆‖22

≥ C − C 1

‖∆̃‖2

√
p+ t

n
,
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with probability at least 1 − 2
⌈
log(h−1)

⌉
e−t. Combining this bound with (35) and (37),

we obtain,

‖∆̃‖2 ≤ Ch2κ2(1 + µ̊1) + C

√
p+ t

n
,

with probability at least 1−2
⌈
log(h−1)

⌉
e−t−2e−t for any t > 0. Now, we choose bandwidth

h such that θ̃ falls to an interior of B(r0), i.e. ‖∆̃‖2 < r0. For this to hold we require

Ch2κ2(1 + µ̊1) + C

√
p+ t

n
< C ′hκ2(1 + µ̊1),

which holds for 1 & h &
√

(p+ t)/n. Then, ∆̃ falls into the interior of B(r0) and θ̃ = θ̂.

We thus obtain,

‖∆̂‖2 ≤ Ch2κ2(1 + µ̊1) + C

√
p+ t

n
,

with probability at least 1 − 2
⌈
log(h−1)

⌉
e−t − 2e−t for any t > 0. The result follows by

setting t = t′ + log 2(1 + log(h−1)) for t′ > 0.

B.2 Proof of Theorem 10 (Bahadur representation)

Consider r � h2 +
√

p+t
n . Then by Theorem 9, θ̂ ∈ θ∗ + B(r) with probability at least

1−e−t for any t > 0. Conditioning on such an event leads us to consider ∆̂ = θ̂−θ∗ ∈ B(r).
Consider

Λ(∆̂) , ∇L̂h(θ∗ + ∆̂)−∇L̂h(θ∗)−∇2Lh(θ∗)∆̂. (39)

By the optimality of θ̂ the first term is zero. As θ̂ belongs to a neighbourhood B(r) of θ∗

with high probability, it suffices to bound sup∆∈B(r) ‖Λ(∆)‖2. By the triangle inequality,

sup
∆∈B(r)

‖Λ(∆)‖2 ≤ sup
∆∈B(r)

‖EΛ(∆)‖2 + sup
∆∈B(r)

‖Λ(∆)− EΛ(∆)‖2.

The first term, sup∆∈B(r) ‖EΛ(∆)‖2, can be upper-bounded using the Taylor remainder from

expansion of ∇L̂h(θ∗ + ∆) around ∇L̂h(θ∗). Specifically,

E [Λ(∆)] =

∫ 1

0
∇2Lh(θ∗ + v∆)∆−∇2Lh(θ∗)∆dv.

Hence

‖E [Λ(∆)] ‖2 ≤
∫ 1

0
‖∇2Lh(θ∗ + v∆)−∇2Lh(θ∗)‖2 ‖∆‖2dv,

for any ∆ in the local neighbourhood of zero. The following lemma provides an upper-bound
for sup∆∈B(r) ‖∇2Lh(θ∗ + ∆)−∇2Lh(θ∗)‖2.
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Lemma 21 Under Assumptions 2-5 and 7-8 for any t > 0, for 1 & h &
√

(p+ t)/n,
h ≤ min

{
h0, R1(Cκ2(1 + µ̊1))−1

}
, h0 , max {C‖w∗‖2/ε, 1} and n & p + t + log(2), and

∆ ∈ B(r),

‖∇2Lh(θ∗ + ∆)−∇2Lh(θ∗)‖2 ≤ Cr,

where C depends on the moments of X, κ1 and ‖θ∗‖2.

Using Lemma 21,

sup
∆∈B(r)

‖EΛ(∆)‖2 ≤ Cr2.

Consider now the term sup∆∈B(r) ‖Λ(∆)−EΛ(∆)‖2. Introduce a zero-mean gradient process

G(θ) , ∇L̂h(θ)−∇Lh(θ) and observe that

Λ(∆)− EΛ(∆) =
[
∇L̂h(θ∗ + ∆)−∇Lh(θ∗ + ∆)

]
−
[
∇L̂h(θ∗)−∇Lh(θ∗)

]
= G(θ∗ + ∆)−G(θ∗).

Hence

sup
∆∈B(r)

‖Λ(∆)− EΛ(∆)‖2 = sup
∆∈B(r)

‖G(θ∗ + ∆)−G(θ∗)‖2 , sup
∆∈B(r)

‖Λ0(∆)‖2.

We now use Theorem 3.2 in Spokoiny (2013) to bound the term above.

Taking the gradient

∇Λ0(∆) = ∇2L̂h(θ∗ + ∆)−∇2Lh(θ∗ + ∆)

=

n∑
i=1

1

nh
X̊iX̊

T
i K

(
1− YiX̊T

i (θ∗ + ∆)

h

)
− E

[
1

h
X̊X̊TK

(
1− Y X̊T θ∗ − Y X̊T∆

h

)]

,
n∑
i=1

Λi0(∆). (40)

In order to verify condition (A.4) in Spokoiny (2013), we need, for any α, α′ ∈ Sp, an upper
bound

sup
∆∈B(r)

logE exp
[
λαT∇Λ0(∆)α′

]
≤ ν2

0λ
2

2
, λ2 ≤ 2g2.

Hence consider

E exp
[
n1/2λαT∇Λ0(∆)α′/ν2

1

]
=

n∏
i=1

E exp
[
n1/2λαT∇Λi0(∆)α′/ν2

1

]
, (41)

where the equality follows since ∆ ∈ B(r) and does not depend on X. Since eu ≤ 1+u+u2e|u|

2
we obtain,

E exp
[
n1/2λαT∇Λi0(∆)α′/ν2

1

]
≤ E

{
1 + λ[n1/2αT∇Λi0(∆)α′/ν2

1 ] +
λ2

2ν4
1

[n1/2αT∇Λi0(∆)α′]2 exp

(
|λ|
ν2

1

∣∣n1/2αT∇Λi0(∆)α′
∣∣)},
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where the second term is zero by the definition of Λ(∆). Hence,

E exp
[
λn1/2αT∇Λi0(∆)α/ν2

1

]
≤ E

{
1 +

λ2

ν4
1

1

2

[
n1/2αT∇Λi0(∆)α

]2
exp

(∣∣∣∣ λν2
1

n1/2αT∇Λi0(∆)α

∣∣∣∣)}
≤ 1 +

λ2

2nν4
1h

2
E
(
αT X̊iα

′T X̊iKi − E
[
αT X̊α′T X̊K

])2
e

|λ|
hn1/2ν2

1

(|αT X̊iα′T X̊iKi|+|E(αT X̊α′T X̊K)|

where we used the notationKi , K
(

(1− YiX̊T
i (θ∗ + ∆))/h

)
andK , K

(
(1− Y X̊T (θ∗ + ∆))/h

)
.

The last term can be simplified using a uniform upper-bound on the kernel density (As-
sumption 4),

expE

[
|λ|

n1/2ν2
1

1

h
αT X̊α′T X̊K

(
1− Y X̊T θ∗ − X̊T∆

h

)]
≤ exp

(
|λ|κu
hn1/2ν2

1

E
[
αT X̊α′T X̊

])
.

(42)

By the Cauchy-Schwartz inequality,

E

[
αT X̊α′T X̊

ν2
1

]
≤
{
E
[(
αT X̊

)2
/ν2

1

]
E
[(
α′T X̊

)2
/ν2

1

]}1/2

≤ µ̃2, (43)

we obtain

expE

[
|λ|

ν2
1n

1/2

1

h
αT X̊α′T X̊K

(
1− Y X̊T θ∗ − X̊T∆

h

)]
≤ exp

(
|λ|κu
hn1/2

µ̃2

)
.

On letting |λ| ≤ h
√
n/κu, we obtain

expE

[
|λ|

ν2
1n

1/2

1

h
αT X̊α′T X̊K

(
1− Y X̊T θ∗ − X̊T∆

h

)]
≤ eµ̃2 . (44)

Hence, using −2ab ≤ a2 + b2,

E exp
[
λn1/2αT∇Λi0(∆)α/ν2

1

]
≤ 1 +

λ2

nν4
1

eµ̃2E

[(
1

h
αT X̊iα

′T X̊iKi

)2

exp

(
|λ|

n1/2ν2
1

∣∣∣∣1hαT X̊iα
′T X̊iKi

∣∣∣∣)
]

+
λ2

nν4
1

eµ̃2

(
E
[

1

h
αT X̊α′T X̊K

])2

E
[
exp

(
|λ|

n1/2ν2
1

∣∣∣∣1hαT X̊iα
′T X̊iKi

∣∣∣∣)] . (45)

Note that for any u ∈ Sp, E[exp(〈u, X̊〉2)/(8ν2
1)] ≤ E[exp(u2

0/(4ν
2
1) + 〈u, x〉2/(4ν2

1))]. Let
Z , 〈u, x〉2/4ν2

1 . Then P(Z ≥ t) ≤ 2e−2t for any t > 0 and E(eZ) ≤ 3 and E(Z2eZ) ≤ 8.
Thus,

E
[
exp(〈u, X̊〉2/(8ν2

1))
]
≤ 3 exp(1/(4ν2

1)).
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Consider now the third term on the right-hand side of (45). By the Cauchy-Schwartz

inequality and by letting |λ| ≤ 1
8
h
√
n

κu
,

E exp

(
κu|λ|
h
√
n

8

8ν2
1

|αT X̊α′T X̊|
)
≤

(
E
[
e

(αT X̊)2

8ν2
1

]
E
[
e

(α′T X̊)2

8ν2
1

])1/2

≤ 3e1/(4ν2
1 ). (46)

On the other hand using Assumptions 2 - 5, we can easily obtain,

E
[

1

hν2
1

K|〈α, X̊〉〈α′, X̊〉|
]
≤ C

ν2
1

[1 + 2µ̄1 + µ̄2] , (47)

where µ̄k , max{µfk , µ
g
k}.

Combining (46) and (47), for |λ| ≤ 1
8
h
√
n

κu
,(

E
[

1

ν2
1h
αT X̊α′T X̊K

])2

E exp

(
|λ|

n1/2ν2
1

∣∣∣∣1hαT X̊iα
′T X̊iKi

∣∣∣∣) ≤ 3e1/(4ν2
1 ) C

ν4
1

[1 + 2µ̄1 + µ̄2]2 .

(48)

Turning now to the second term in (45), note that for any z ≥ 0, and any t > 0, m ≥ 0,
zm ≤ (m/(te))m etz. Thus (use t = 1/16, m = 2),(

〈α, X̊i〉〈α′, X̊i〉
ν2

1

)2

≤ (32/e)2 exp

(
|〈α, X̊i〉〈α′, X̊i〉|

16ν2
1

)
. (49)

For |λ| ≤ 1
16

√
nh
κu

, using Assumption 4 (first inequality), equation (49) and Assumption 4

(second inequality), ab ≤ a2/2 + b2/2 (third inequality), the Cauchy-Schwartz inequality
(penultimate inequality), and Assumptions 3, 4 and 6 (last inequality) we obtain,

E
[(

1

hν2
1

〈α, X̊i〉〈α′, X̊i〉Ki

)2

exp

(
|λ|

n1/2ν2
1

1

h

∣∣∣〈α, X̊i〉〈α′, X̊i〉Ki

∣∣∣)]
≤ E

[(
1

hν2
1

〈α, X̊i〉〈α′, X̊i〉Ki

)2

exp

(
1

16ν2
1

∣∣∣〈α, X̊i〉〈α′, X̊i〉
∣∣∣)]

≤ κu
h2

(
32

e

)2

E
[
Ki exp

(
1

8ν2
1

∣∣∣〈α, X̊i〉〈α′, X̊i〉
∣∣∣)]

≤
(

32

e

)2 κu
h2

E
[
Ki exp

(
1

16ν2
1

(
〈α, X̊i〉2 + 〈α′, X̊i〉2

))]
≤
(

32

e

)2 κu
h2

E
[
Ki exp

(
1

8ν2
1

〈α, X̊i〉2
)]1/2

E
[
Ki exp

(
1

8ν2
1

〈α′, X̊i〉2
)]1/2

≤ Ch−1. (50)

Combining (45), (48) and (50), and using h . 1,

E exp
[
λn1/2αT∇Λi0(∆)α/ν2

1

]
≤ 1 +

C2λ2

2nh
≤ exp

(
C2λ2

2nh

)
.
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Substituting into equation (41) yields

E exp
[
n1/2λαT∇Λ0(∆)α′/ν2

1

]
≤ exp

(
C2λ2

2h

)
,

which verifies the condition (A.4) in Spokoiny (2013), with ν0 = C
h1/2 and λ ≤ 1

16
h
√
n

κu
. Let

g = h
κu

√
n
2 . By the requirement 4p+ 2t ≤ g2 in Spokoiny (2013), we obtain the restriction

h ≥ 2κu

√
2p+t
n . Hence,

P

{
sup

∆∈B(r)
‖Λ(∆)− EΛ(∆)‖2 ≥ 6Crν2

1

√
2p+ t

nh

}
≤ e−t.

Overall we obtain,

sup
∆∈B(r)

‖Λ(∆)‖2 ≤ 6Crν2
1

√
2p+ t

nh
+ Cr2,

with probability at least 1− 2e−t.

B.3 Proof of Strong convexity

B.3.1 Proof of Lemma 12

For any y ∈ {±1}, x̊ ∈ Rp+1 and θ, θ′ ∈ Rp+1,

|lh(1− yx̊T θ)− lh(1− yx̊T θ′)|

=
1

h

∣∣∣∣∫ ∞
0

uK

(
u+ y〈̊x, θ〉 − 1

h

)
du−

∫ ∞
0

uK

(
u+ y〈̊x, θ′〉 − 1

h

)
du

∣∣∣∣
=

∣∣∣∣∫ ∞
0

(wh+ 1− y〈̊x, θ〉)K(w)dw −
∫ ∞

0
(w′h+ 1− y〈̊x, θ′〉)K(w′)du

∣∣∣∣
=

∣∣∣∣∫ ∞
0

y〈̊x, θ − θ′〉K(w)dw

∣∣∣∣
≤ |̊xT (θ − θ′)|

∫ ∞
0

K(w) dw

=
1

2
|̊xT (θ − θ′)|,

where the last equality uses the fact that K(·) is symmetric around zero and integrates to
one.

B.3.2 Proof of Proposition 13

This proof is based on a similar argument to that of Lemma 5 in Koo et al. (2008), with
modifications to account for the form of the smoothed loss.
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Without loss of generality we can assume that s = 1. Let α̊ = (α0, α
T )T ∈ Rp+1 with

α ∈ Rp and θ∗ = (b∗, w∗T )T ∈ Rp+1. Then,

α̊T∇2Lh(θ∗)α̊ = α̊T E

[
1

h
K

(
1− Y 〈X̊, θ∗〉

h

)
X̊X̊T

]
α̊

= π̄+

∫
X

1

h
K

(
1− 〈̊x, θ∗〉

h

)
〈α̊, x̊〉2f(x)dx

+ π̄−

∫
X

1

h
K

(
1 + 〈̊x, θ∗〉

h

)
〈α̊, x̊〉2g(x)dx.

Let Z = A1X/‖w∗‖2 and introduce a , A1α ∈ Rp. Then X = ‖w∗‖2AT1 Z,

α̊T X̊ = α0 + ‖w∗‖2ZTA1α = α0 + ‖w∗‖2ZTa

and

1− X̊T θ∗ = 1− b∗ − ‖w∗‖2ZTA1w
∗ = 1− b∗ − ZT e1‖w∗‖22.

The Jacobian of the transformation x 7→ z = A1x/‖w∗‖2 is ‖w∗‖p2. Hence,

∫
X

1

h
K

(
1− x̊T θ∗

h

)
〈α̊, x̊〉2f(x)dx

=

∫
Z

1

h
K

(
1− b∗ − ‖w∗‖22z1

h

)(
α0 + ‖w∗‖2zTa

)2

f(‖w∗‖2AT1 z)‖w∗‖
p
2dz

= ‖w∗‖p−2
2

∫
Rp−1

∫
R
K(q)

(
α0 + ‖w∗‖2a1

1− b∗ + qh

‖w∗‖22
+ ‖w∗‖2aT−1z−1

)2

f

(
‖w∗‖2AT1

(
1− b∗ + qh

‖w∗‖22
, zT−1

)T)
dqdz−1

=
1

‖w∗‖2

∫
Rp−1

∫
R
K(q)

(
α0 + a1

1− b∗ + qh

‖w∗‖2
+

p∑
j=2

ujaj

)2

f

(
AT1

(
1− b∗ + qh

‖w∗‖2
, uT

)T)
dqdu.

The second equality follows from a change of variables, q = −(1− b∗ − ‖w∗‖22z1)/h, which
implies z1 = (1 − b∗ + qh)/‖w∗‖22 and dz1 = (h/‖w∗‖22)dq. The third equality uses an-
other change of variables, namely uj = ‖w∗‖2zj , for j = 2, . . . , p. The Jacobian of this

transformation is ‖w∗‖−(p−1)
2 .

For any ψ > 0 let D+
u =

{
u : AT1

(1−b∗+qh
‖w∗‖2 , uT

)T ∈ D+
∗ (ψ)

}
. By the orthogonality of A1

this is just an inverse transformation back to the original coordinate system x. Using
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Assumptions 7 and 8,∫
X

1

h
K

(
1− x̊T θ∗

h

)
〈α̊, x〉2f(x)dx

≥ 1

‖w∗‖2
C

∫
D+
u

∫ ψ‖w∗‖2
h

−ψ‖w
∗‖2
h

K(q)

α0 + a1
1− b∗ + qh

‖w∗‖2
+

p∑
j=2

ujaj

2

dq du

≥ 1

‖w∗‖2
C

∫
D+
u

∫ ε̄

−ε̄

α0 + a1
1− b∗ + qh

‖w∗‖2
+

p∑
j=2

ujaj

2

dq du,

where ε̄ = min {ψ‖w∗‖2/h, ε}. Note that ε̄ depends on h. This dependence disappears
for h ≤ ψ‖w∗‖2/ε, as this implies ε̄ = ε and for h ≤ 1, in which case we can take ε̄ =
min {ψ‖w∗‖2, ε}. Consider h ≤ max {ψ‖w∗‖2/ε, 1}. We return to the case of large h later
on.

Introduce independent uniform random variables U2, . . . , Up and Q, where Uj
d
= Unif(lj , vj),

j = 2, . . . , p, i.e. (U2, . . . , Up)
T ∈ D+

u , and Q
d
= Unif(−ε̄, ε̄). Then,∫

X

1

h
K

(
1− x̊T θ∗

h

)
〈α̊, x̊〉2f(x)dx ≥ Cvol(D+

u )2ε̄

‖w∗‖2
E
Q,U

[
α0 + a1

1− b∗ +Qh

‖w∗‖2
+

p∑
j=2

Ujaj

]2

=
2Cε̄vol(D+

u )

‖w∗‖2

{[
α0 + a1

1− b∗

‖w∗‖2
+ E
Q,U

(
a1

Qh

‖w∗‖2
+

p∑
j=2

Ujaj

)]2

+Var

[ p∑
j=2

Ujaj +
a1Qh

‖w∗‖2

]}
,

where the equality follows since E(X2) = E(X)2 + Var(X).

Letting mj =
lj+vj

2 , for j = 2, . . . p, we get E [Uj ] = mj and

Var

( p∑
j=2

ajUj + a1
Qh

‖w∗‖2

)
≥ min

2≤j≤p
Var(Uj)

p∑
j=2

a2
j +

a2
1h

2

‖w∗‖2
Var(Q)

= min
2≤j≤p

Var(Uj)

p∑
j=2

a2
j +

ε̄2a2
1h

2

3‖w∗‖2
.

Hence,

π̄+

∫
X

1

h
K

(
1− x̊T θ∗

h

)
〈α̊, x̊〉2f(x)dx

≥ Cπ̄+vol(D+
u )2ε̄

‖w∗‖2

{[
α0 + a1

1− b∗

‖w∗‖2
+

p∑
j=2

ajmj

]2

+ min
2≤j≤p

Var(Uj)

p∑
j=2

a2
j +

ε̄2a2
1h

2

3‖w∗‖2

}

π̄−

∫
X

1

h
K

(
1 + x̊T θ∗

h

)
〈α̊, x̊〉2f(x)dx

≥ Cπ̄−vol(D−u )2ε̄

‖w∗‖2

{[
α0 − a1

1 + b∗

‖w∗‖2
+

p∑
j=2

ajmj

]2

+ min
2≤j≤p

Var(Uj)

p∑
j=2

a2
j +

ε̄2a2
1h

2

3‖w∗‖2

}
.
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Then,

α̊T∇2Lh(θ∗)α̊ ≥ C
(
α0 − a1

1 + b∗

‖w∗‖2
+

p∑
j=2

ajmj

)2

+ C

(
α0 + a1

1− b∗

‖w∗‖2
+

p∑
j=2

ajmj

)2

+ 2C min
2≤j≤p

Var(Uj)

p∑
j=2

a2
j + 2C

ε̄2a2
1h

2

3‖w∗‖2

≥ C
(
α0 − a1

1 + b∗

‖w∗‖2
+

p∑
j=2

ajmj

)2

+ C

(
α0 + a1

1− b∗

‖w∗‖2
+

p∑
j=2

ajmj

)2

+ 2C

p∑
j=2

a2
j + 2C

ε̄2a2
1h

2

3‖w∗‖2
.

Following the argument in Lemma 5 of Koo et al. (2008), the first three terms represent a
positive-definite quadratic form Q = Q(b∗, a1, . . . , ap). Let υ1 > 0 be the smallest eigenvalue
of the matrix corresponding to Q. Then,

α̊T∇2Lh(θ∗)α̊ ≥ C
(
υ1‖α̊‖22 + C ′a2

1h
2

)
= C

(
υ1‖α̊‖22 + C ′(A1α)2

1h
2

)
,

where

C ′ , 2
ε̄2

3‖w∗‖2
,

from which the result follows.

Now consider the case of h ≥ ψ‖w∗‖2
ε . For any such h, ε̄ = ψ‖w∗‖2

h . Following an analogous
derivation to the one above, we obtain,

α̊T∇2 E [Lh(θ∗)] α̊ ≥ C
(
υ1‖α̊‖22
h2

+ C ′(A1α)2
1

)
.

B.3.3 Proof of Proposition 14

Let ∆ ∈ Rp+1 and assume that s = 1. We write

∆ , (∆b,∆w), ∆b ∈ R, ∆w ∈ Rp,

in line with our notation θ∗ = (b∗, w∗). For any α̊ ∈ Rp+1, α̊ , (α0, α),

α̊T∇2 E[L̂h(θ∗ + ∆)]α̊ =

∫
X

1

h
K

(
1− x̊T θ∗ − x̊T∆

h

)
〈α̊, x̊〉2f(x)dx.

Since ∆ appears only inside the kernel, we can use derivation analogous to those in the
proof of Proposition 13, as long as K

(
(1 − x̊T θ∗ − x̊T∆)/h

)
can be lower-bounded by a

constant.

To derive the lower bound in Proposition 13, Assumptions 7 and 8 were imposed, which
require a non-zero conditional density of X and non-zero kernel density over a subset of the
(true) margin. This region can be described by the following three conditions.
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Condition 22 (Assumption 8) Let z , A1x
‖w∗‖2 . For the first coordinate,

(A1x)1 ∈
1− b∗

‖w∗‖2
+ B(ψ).

Let z∗1 , (1− b∗)/‖w∗‖22. Then, z1 ∈ z∗1 + B
(
ψ/‖w∗‖2

)
.

Condition 23 (Assumption 8) For i ∈ {2, . . . p}: li ≤ (A1x)i ≤ vi, and hence

li
‖w∗‖2

≤ zi ≤
vi
‖w∗‖2

.

To simplify the notation, let z∗ ∈ Rp, z∗i = li+vi
2‖w∗‖2 , i.e. the center of the subset of the margin

over which density is assumed to be positive. Let Rz , mini∈{2,...,p} {(vi − li)/2‖w∗‖2}.
Then z∗ + B(Rz) ⊂ D+

∗ and conditional density of X is thus strictly positive over this ball.

Condition 24 (Assumption 7) The kernel density is bounded from below on B(ε), i.e.
K(x) > C for x ∈ B(ε).

Since z = A1x
‖w∗‖2 ,

1− x̊T θ∗ − x̊T∆

h
=

1− ‖w∗‖2〈w∗, AT1 z〉 − b∗ − ‖w∗‖2〈∆w, A
T
1 z〉 −∆b

h

= q − ‖w
∗‖2〈A1∆w, z〉+ ∆b

h
,

where q =
1−b∗−‖w∗‖22z1

h . Note that A1∆w is a transformation of the error ∆w into the
coordinate system z. We can separate error in the direction of w∗ and direction orthogonal
to θ∗ by considering (A1∆w)1 and (A1∆w)−1 separately. The goal is to understand for
which ∆ is Condition 24 satisfied subject to conditions 22 and 23 above. This is equivalent
to saying that the estimation error ∆ must small enough for the margin based on θ̂ to
intersect the region within the support of conditional densities and the kernel.

Hence we must have, ∣∣∣∣∆b + ‖w∗‖2〈A1∆w, z〉
h

∣∣∣∣ ≤ ε.
Then,∣∣∣∣‖w∗‖2〈(A1∆w), z〉

h

∣∣∣∣ =
1

h
‖w∗‖2

∣∣〈A1∆w,
(
z1 − z∗1 + z∗1 , z

∗
−1 + (z−1 − z∗−1)

)〉∣∣
≤ 1

h
‖w∗‖2 ‖A1∆w‖2

(
|z∗1 |+ |z1 − z∗1 |+

∥∥z∗−1

∥∥
2

+
∥∥z−1 − z∗−1

∥∥
2

)
≤ 1

h
‖w∗‖2 ‖∆w‖2

(
|z∗1 |+

∥∥z∗−1

∥∥
2

+Rz +
ψ

‖w∗‖2

)
,

where z−1 denotes vector (z2, . . . , zp), the second inequality follows from the Cauchy-
Schwartz inequality and the last inequality uses the definition of z∗−1 and orthogonality
of A1. Overall, Condition 24 holds for any ∆ satisfying

|∆b|+ ‖w∗‖2 ‖∆w‖2
(
|z∗1 |+

∥∥z∗−1

∥∥
2

+Rz +
ψ

‖w∗‖2

)
≤ hε.
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Thus, for any ∆ ∈ B(hR1)

R1 ,
ε

1 +
(
‖w∗‖2

∥∥z∗−1

∥∥
2

+ ‖w∗‖2Rz + ψ + |1− b∗|/‖w∗‖2
) , (51)

the result analogous to that of Proposition 13 can be obtained using the same argument.

B.3.4 Proof of Proposition 15

Before proving Proposition 15, recall that a function ϕ : R → R is called a contraction if,
for all s, t ∈ R, |ϕ(s)− ϕ(t)| ≤ |s− t|. If, in addition, ϕ(0) = 0, we say that ϕ is a centred
contraction.

The proof of Proposition 15 uses the following contraction inequality for Rademacher com-
plexity.

Lemma 25 (Ledoux and Talagrand, 2013) Let f : R+ → R+ be convex and increas-
ing, and let ϕi : R → R, i ≤ n be centred contractions. Then, for any bounded subset
T ⊂ Rn,

E
[
f

(
sup
t∈T

∣∣∣∣ n∑
i=1

εiϕi(ti)

∣∣∣∣)] ≤ E
[
f

(
2 sup
t∈T

∣∣∣∣ n∑
i=1

εiti

∣∣∣∣)],
where ε1, . . . , εn are independent Rademacher variables.

We first re-write E(∆) as E(∆) = (1/n)
∑n

i=1 Ei(∆), where

Ei(∆) = lh(1− YiX̊T
i (θ∗ + ∆))− lh(1− YiX̊T

i θ
∗) + l′h(1− YiX̊T

i θ
∗)YiX̊

T
i ∆

satisfies Ei(0) = 0. Lemma 12 implies that Ei(∆) is 1-Lipschitz in x̊Ti ∆. Define the random
quantity

A =
1

4r
sup

∆∈B(r)
|E(∆)− Ē(∆)|.

We aim to control the probability of A ≥ δ for a given δ > 0 and do so by controlling its
moment generating function. Let ε1, . . . εn be independent Rademacher variables. Using the
Rademacher symmetrisation (see, e.g. Proposition 4.11 in Wainwright, 2019) and convexity
of the exponential function, we can work with a symmetrised version of A instead. For any
λ ∈ R,

E[exp(λA)] ≤ E
[
exp

(
λ

2r
sup

∆∈B(r)

∣∣∣∣ 1n
n∑
i=1

εiEi(∆)

∣∣∣∣)]

≤ E
[
exp

(
λ

r
sup

∆∈B(r)

∣∣∣∣ 1n
n∑
i=1

εi〈∆, X̊i〉
∣∣∣∣)],

where the second inequality follows from Lemma 25 combined with the Lipschitz continuity
of Ei(∆). By Hölder’s inequality we see that for any ∆ ∈ B(r),∣∣∣∣ 1n

n∑
i=1

εi〈∆, X̊i〉
∣∣∣∣ =

∣∣∣∣∆T

(
1

n

n∑
i=1

εiX̊i

)∣∣∣∣ ≤ ‖∆‖2∥∥∥∥ 1

n

n∑
i=1

εiX̊i

∥∥∥∥
2

≤ r
∥∥∥∥ 1

n

n∑
i=1

εiX̊i

∥∥∥∥
2

.
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Hence,

E
[
eλ(A−δ)] ≤ E

[
exp

(
λ

∥∥∥∥ 1

n

n∑
i=1

εiX̊i

∥∥∥∥
2

− λδ
)]
, λ ∈ R.

By Markov’s inequality, it holds for any δ > 0 that

P
[
A ≥ δ

]
≤ inf

λ>0
E
[
eλ(A−δ)] ≤ inf

λ>0
E
[

exp

(
λ

∥∥∥∥ 1

n

n∑
i=1

X̊i

∥∥∥∥
2

− λδ
)]
.

This establishes inequality (28). Now we turn to proving the uniform bound that holds for
all ∆ ∈ Θ

(
rl, ru

)
for 0 < rl < ru. For m ∈ N, define the sets

Sm ,
{

∆ ∈ Rp : γm−1rl ≤ ‖∆‖2 ≤ γmrl
}
,

for some γ > 1. Then Θ(rl, ru) ⊆ ∪i=Ni=1 Si, where N =
⌈ log(ru/rl)

log γ

⌉
. It follows that

P
{
∃∆ ∈ Θ(rl, ru) : |E(∆)− Ē(∆)| > 4‖∆‖2γδ

}
≤ P

{
∃∆ ∈ ∪i=Ni=1 Si : |E(∆)− Ē(∆)| > 4‖∆‖2γδ

}
≤

N∑
i=1

P
{
∃∆ ∈ Si : |E(∆)− Ē(∆)| > 4‖∆‖2γδ

}
≤

N∑
i=1

P
{
∃∆ ∈ Si : |E(∆)− Ē(∆)| > 4γi−1γrlδ

}
≤

N∑
i=1

P
{

sup
∆∈B(γirl)

|E(∆)− Ē(∆)| > 4γirlδ

}

≤
N∑
i=1

inf
λ>0

E
[
eλ(‖X̄n‖2−δ)] =

⌈
log(ru/rl)

log γ

⌉
inf
λ>0

E
[
eλ(‖X̄n‖2−δ)],

where the second inequality follows from the union bound and the third inequality uses
equation (28). Setting γ = e1/2, we obtain inequality (29).

B.3.5 Proof of Proposition 16

Note that,

E
[
exp(λ‖X̄n‖2)

]
= E

[
exp(λ sup

v∈Sp
vT X̄n)

]
= E

[
max
v∈Sp

exp(λvT X̄n)

]
.

By Assumption 3, (Xi)
n
i=1 are independent sub-Gaussian random vectors, thus (vTXi)

n
i=1

are independent sub-Gaussian random variables and vT X̄n, being an average of such, sat-
isfies for v ∈ Sp,

E
[
exp(λvT X̄n)

]
=

n∏
i=1

E
[
exp

(
1

n
vT X̊i

)]
≤ exp

(
1 +

λ2ν2
1

2n

)
.
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For any γ ∈ (0, 1) there exists a γ-net Nγ of the unit sphere, such that

|Nγ | ≤
(

2

γ
+ 1

)p+1

.

Let N be a γ−net of a unit ball B , Bp+1(1). Then for any u ∈ Bp+1(1), there exists v ∈ N
and w ∈ Rp+1, such that ‖w‖2 ≤ γ and u = v + w. Then, for any sub-Gaussian random
variable X with variance proxy ν1,

max
u∈B

uTX ≤ max
v∈N

vTX + max
w∈γB

wTX.

As a result,

max
u∈B

uTX ≤ 1

1− γ
max
v∈N

vTX.

For any λ > 0 and taking X = X̄n we thus have

E[exp(max
u∈B

λuT X̄n)] ≤ E
[
exp

(
1

1− γ
max
v∈N

λvT X̄n

)]
≤ E

|N |∑
i=1

[
exp

(
λ

1− γ
vTi X̄n

)]

≤ |N | exp

(
λ2ν2

1

2(1− γ)2n
+ 1

)
≤
(

2

δ′
+ 1

)p+1

exp

(
λ2ν2

1

2(1− γ)2n
+ 1

)
.

Let γ = 2
e−1 to obtain

inf
λ>0

E[exp(max
u∈B

λuT X̄n)− λδ] ≤ inf
λ>0

exp

(
20
λ2ν2

1

n
+ p+ 2− λδ

)
.

The expression is minimised by λ = δn
40ν2

1
. Hence, for any δ > 0,

inf
λ>0

E[exp(max
u∈B

λuT X̄n)− λδ] ≤ exp

(
p+ 2− δ2n

80ν2
1

)
.

Take δ =

√
80ν2

1
n (p+ 2 + τ), τ > 0. Then, by Proposition 15, for any given r > 0 and any

τ > 0, using equation (28),

sup
∆∈B(r)

|E(∆)− Ē(∆)| ≤ Cr
√
p+ 2 + τ

n

with probability at least 1− e−τ . Moreover, from inequality (29), we have, for any given rl,
ru such that 0 < rl < ru, for any τ > 0,

|E(∆)− Ē(∆)| ≤ C‖∆‖2

√
p+ 2 + τ

n
for all ∆ ∈ B(rl, ru) (52)

with probability at least 1− 2 dlog(ru/rl)e e−τ .
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B.3.6 Proof of Proposition 17

By Proposition 14 for any α̊ ∈ Rp+1, α̊ , (α0, α), and for h ≤ max
{
ψ‖w∗‖2

ε , 1
}

,

α̊T∇2 E
[
L̂h(θ∗)

]
α̊ ≥ C

(
‖α̊‖22 + C ′(A1α)2

1h
2

)
,

for any ∆ ∈ B(hR1). Hence, for any such ∆,

Ē(∆) , E[L̂h(θ∗ + ∆)]− E[L̂h(θ∗)]− 〈∇E[L̂h(θ∗)],∆〉 ≥ ‖∆‖22.

For r ∈ (0, hR1), we thus have, by Proposition 16, with probability at least 1− e−t,

E(∆) ≥ C‖∆‖22 − C ′r
√
p+ t

n
, (53)

for all ∆ ∈ B(r). Similarly, for 0 < rl < ru < hR1, with probability at least 1 −
2 dlog(ru/rl)e e−t, for all ∆ ∈ B(rl, ru)

E(∆) ≥ C‖∆‖22 − C ′‖∆‖2
√
p+ t

n
. (54)

Note that the equations (53) and (54) can be respectively written as

〈∇Lh(θ∗ + ∆)−∇Lh(θ∗),∆〉 ≥ C‖∆‖22 − C ′r
√
p+ t

n
, for all ∆ ∈ B(r)

〈∇Lh(θ∗ + ∆)−∇Lh(θ∗),∆〉 ≥ C‖∆‖22 − C ′‖∆‖2
√
p+ t

n
, for all ∆ ∈ B(rl, ru).

Appendix C. Proofs of Auxiliary Results

C.1 Proof of Lemma 18 (Smoothing Bias)

Let v̊ ∈ Sp. We use the notation v̊ = (v0, v), where v0 ∈ R and v ∈ Rp. Then,

vT E
[
∇L̂h(θ∗)

]
= E

[
Y v̊T X̊K̄

(
1− Y X̊T θ∗

h

)]

= π̄+

∫
X
v̊T x̊K̄

(
1− x̊T θ∗

h

)
f(x)dx− π̄−

∫
X
v̊T x̊K̄

(
1 + x̊T θ∗

h

)
g(x)dx.

We focus on the conditional expectation given Y = 1, i.e.

π̄+

∫
X
v̊T x̊K̄

(
1− x̊T θ∗

h

)
f(x)dx

= π̄+

∫
Rp−1

∫
R
v̊T x̊K̄

(
1− x̊T θ∗

h

)
f(xs|x−s)f(x−s)dxsdx−s.
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Analogous derivations hold for Y = −1.

Since under Assumption 2, θ∗s 6= 0 for some s ∈ {1, . . . , p}, let u = 1−x̊T θ∗
h , so xs =

1−x̊T−sθ∗−s−hu
θ∗s

. By a change of variables,∫
Rp−1

∫
R
v̊T x̊K̄

(
1− x̊T θ∗

h

)
f(xs|x−s)f(x−s)dxsdx−s

= − h

θ∗s

∫
Rp−1

∫
R

(
vs(1− x̊T−sθ∗−s − hu)

θ∗s

)
K̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)f(x−s)dudx−s

− h

θ∗s

∫
Rp−1

∫
R

(
v0 + vT−sx−s

)
K̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)f(x−s)dudx−s

Let

I1 , − h

θ∗s

∫
Rp−1

∫
R
vs

1− x̊T−sθ∗−s − hu
θ∗s

K̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)f(x−s)dudx−s (55)

I−1 , − h

θ∗s

∫
Rp−1

∫
R
v̊T−sx̊−sK̄

(
u
)
f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)f(x−s)dudx−s. (56)

Lemma 26 Under Assumptions 2, 4 and 5,

− h

θ∗s

∫
Rp−s

∫
R
vs

1− x̊T−sθ∗−s − hu
θ∗s

K̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)f(x−s)dudx−s

= −vsEX|Y=1

[
Y X̊s 1

{
1− Y X̊T θ∗ ≥ 0

}]
+ Ĩ1,

where |Ĩ1| ≤ κ2|vs|C h2

2θ∗2s
.

Lemma 27 Under Assumptions 2, 4 and 5,

− h

θ∗s

∫
R
v̊T−sx̊−sK̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)du
= −v̊T−sEX|Y=1

[
Y X̊−s 1

{
1− Y X̊T θ∗ ≥ 0

}]
+ Ĩ−1,

where |Ĩ−1| ≤ C h2κ2
2θ∗2s

µ̊1.

By Lemma 26,

I1 = −vsEX|Y=1

[
Y X̊s 1

{
1− Y X̊T θ∗ ≥ 0

}]
+ Ĩ1 (57)

and by Lemma 27

I−1 = −v̊T−sEX|Y=1

[
Y X̊−s 1

{
1− Y X̊T θ∗ ≥ 0

}]
+ Ĩ−1. (58)

Thus,

I1 + I−1 = −v̊TEX|Y=1

[
Y X̊ 1

{
1− Y X̊T θ∗ ≥ 0

}]
+ Ĩ1 + Ĩ−1.
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Using the triangle inequality,∣∣∣∣∫
Rp
v̊T x̊K̄

(
1− x̊T θ∗

h

)
f(x)dx+ v̊TEX|Y=1

[
Y X̊ 1

{
1− Y X̊T θ∗ ≥ 0

}]∣∣∣∣ ≤ |Ĩ1|+ |Ĩ−1|.

(59)
Thus, using the bounds for Ĩ1 and Ĩ−1 in Lemmas 26 and 27,∣∣∣∣∫

Rp
v̊T x̊K̄

(
1− x̊T θ∗

h

)
f(x)dx+ v̊TEX|Y=1

[
Y X̊ 1

{
1− Y X̊T θ∗ ≥ 0

}]∣∣∣∣ ≤ Ch2κ2

2θ∗2s
(1 + µ̊1).

By analogous derivations for Y = −1 and since E
[
Y X̊ 1

{
1− Y X̊T θ∗ ≥ 0

}]
= 0, we obtain,

for any v̊ ∈ Sp, ∣∣∣̊vT E
[
∇L̂h(θ∗)

]∣∣∣ ≤ Ch2κ2

2θ∗2s
(1 + µ̊1).

C.1.1 Proof of Lemma 26

Write

I1 , − h

θ∗s

∫
Rp−1

∫
R
vs

1− x̊T−sθ∗−s − hu
θ∗s

K̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)f(x−s)dudx−s. (60)

Let G(t) =
∫ t
−∞ xsf(xs|x−s)dxs. By the Leibnitz rule,

dG(t) = tf(t|x−s) (61)

and

dG

(
1− x̊T−sθ∗−s − hu

θ∗s

)
,

∂

∂u
G

(
1− x̊T−sθ∗−s − hu

θ∗s

)
= − h

θ∗s

(
1− x̊T−sθ∗−s − hu

θ∗s

)
f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s).
On substituting into the expression for I1,

− h

θ∗

∫
R

(
1− x̊T−sθ∗−s − hu

θ∗s

)
K̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)du
=

∫
R
K̄(u)dG

(
1− x̊T−sθ∗−s − hu

θ∗s

)
du

= −
∫
R
K(u)G

(
1− x̊T−sθ∗−s − hu

θ∗s

)
du,

where the last equality was obtained using integration by parts and from Assumptions 3
and 5. By a first-order Taylor expansion around (1− x̊T−sθ∗−s)/θ∗s ,

G

(
1− x̊T−sθ∗−s − hu

θ∗s

)
= G

(
1− x̊T−sθ∗−s

θ∗s

)
+ dG

(
1− x̊T−sθ∗−s

θ∗s

)(
−hu
θ∗s

)
+R, (62)
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where the remainder, R, has the following form

R =

∫ 1

0

[
dG

(
1− θ∗−sx̊−s

θ∗s
+ t
−hu
θ∗s

)
− dG

(
1− θ∗−sx̊−s

θ∗s

)](
−hu
θ∗s

)
dt.

By a change of variables (w , thu),

R = − 1

θ∗s

∫ hu

0

[
dG

(
1− θ∗−sx̊−s

θ∗s
− w

θ∗s

)
− dG

(
1− θ∗−sx̊−s

θ∗s

)]
dw.

Under Assumption 5, for any a, b ∈ R, |af(a|x−s)− bf(b|x−s)| ≤ C|a− b|. Hence,

|R| ≤ 1

θ∗s

∫ hu

0

∣∣∣∣dG(1− θ∗−sx̊−s
θ∗s

− w

θ∗s

)
− dG

(
1− θ∗−sx̊−s

θ∗s

)∣∣∣∣ dw
≤ C

∫ hu

0

|w|
θ∗2s

dw ≤ C (hu)2

2θ∗2s
. (63)

Using (62),

I1 = −vs
∫
Rp−1

∫
R
G

(
1− x̊T−sθ∗−s

θ∗s

)
K(u)f(x−s)dudx−s

+ vs

∫
Rp−1

∫
R
dG

(
1− x̊T−sθ∗−s

θ∗s

)
hu

θ∗s
K(u)f(x−s)dudx−s

− vs
∫
Rp−1

∫
R
RK(u)f(x−s)dudx−s

, IA1 + IB1 + IC1 ,

where integrals IA1 , IB1 , IC1 correspond to the respective terms in the expression.

We can further simplify IA1 by noting that,∫
R
G

(
1− x̊T−sθ∗−s

θ∗s

)
K(u)du = G

(
1− x̊T−sθ∗−s

θ∗s

)
and ∫

Rp−1

G

(
1− x̊T−sθ∗−s − hu

θ∗s

)
f(x−s)dx−s

=

∫
Rp−1

∫ 1−x̊T−sθ
∗
−s

θ∗s

−∞
xsf(xs|x−s)f(x−s)dxsdx−s

=

∫
Rp
1

{
1− x̊T−sθ∗−s

θ∗s
≥ xs

}
xsf(xs|x−s)f(x−s)dx

= EX|Y=1

[
Y Xs 1

{
1− Y X̊T θ∗ ≥ 0

}]
.

Hence,

IA1 = −vsEX|Y=1

[
Y X̊s 1

{
1− Y X̊T θ∗ ≥ 0

}]
. (64)
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Using the expression (61) for dG, we can write IB1 as,

IB1 = vs

∫
Rp−1

∫
R

hu

θ∗s

(
1− x̊T−sθ∗−s

θ∗s

)
f

(
1− x̊T−sθ∗−s

θ∗s

∣∣∣∣x−s)K(u)f(x−s)dudx−s. (65)

By the symmetry of kernel density
∫
R uK(u)du = 0. Hence IB1 = 0.

Finally, by Assumption 4 and equation (63),

|IC1 | ≤
∫
Rp−1

∫
R
|vsRK(u)f(x−s)| dudx−s

≤ |vs|C
h2

2θ∗2s

∫
Rp−1

[∫
R
u2K(u)du

]
f(x−s)dx−s

≤ κ2C
h2

2θ∗2s
. (66)

C.1.2 Proof of Lemma 27

On integrating by parts,

− h

θ∗s

∫
R
vT−sx̊−sK̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)du
= −

∫
R
vT−sx̊−sK(u)F

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)du.
By a Taylor expansion of F

(
1−x̊T−sθ∗−s−hu

θ∗s

∣∣∣∣x−s) around
1−x̊T−sθ∗−s

θ∗s
(i.e. around u = 0),

F

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s) = F

(
1− x̊T−sθ∗−s

θ∗s

∣∣∣∣x−s)+ f

(
1− x̊T−sθ∗−s

θ∗s

∣∣∣∣x−s)(−uhθ∗s
)

+

∫ 1

0

[
f

(
1− x̊T−sθ∗−s

θ∗s
− tuh

θ∗s

∣∣∣∣x−s)− f(1− x̊T−sθ∗−s
θ∗s

∣∣∣∣x−s)](−uhθ∗s
)
dt,

where again, by a change of variables (z = tuh),

R2 ,
∫ 1

0

[
f

(
1− x̊T−sθ∗−s

θ∗s
− tuh

θ∗s

∣∣∣∣x−s)− f(1− x̊T−sθ∗−s
θ∗s

∣∣∣∣x−s)](−uhθ∗s
)
dt

= − 1

θ∗s

∫ uh

0
f

(
1− x̊T−sθ∗−s

θ∗s
− z

θ∗s

∣∣∣∣x−s)− f(1− x̊T−sθ∗−s
θ∗s

∣∣∣∣x−s)dz.
By Assumption 5, f(xs|x−s) is Lipschitz-continuous with constant, say, C, which implies∣∣∣∣ 1

θ∗s

∫ uh

0
f

(
1− x̊T−sθ∗−s

θ∗s
− z

θ∗s

∣∣∣∣x−s)− f(1− x̊T−sθ∗−s
θ∗s

∣∣∣∣x−s)dz∣∣∣∣ ≤ 1

θ∗2s

∫ uh

0
Czdz

= C
(uh)2

2θ∗2s
. (67)
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Hence we have

I−1 , − h

θ∗s

∫
Rp−1

∫
R
v̊T−sx̊−sK̄(u)f

(
1− x̊T−sθ∗−s − hu

θ∗s

∣∣∣∣x−s)f(x−s)dudx−s

= −
∫
Rp−1

v̊T−sx̊−s

∫
R
F

(
1− x̊T−sθ∗−s

θ∗s

∣∣∣∣x−s)K(u)duf(x−s)dx−s+

−
∫
Rp−1

v̊T−sx̊−s

∫
R
f

(
1− x̊T−sθ∗−s

θ∗s

∣∣∣∣x−s)(−huθ∗s
)
K(u)duf(x−s)dx−s+

−
∫
Rp−1

v̊T−sx̊−s

∫
R
R2K(u)duf(x−s)dx−s

= IA−1 + IB−1 + IC−1. (68)

Since the kernel density is symmetric around zero, IB−1 = 0, and since the density K(·)
integrates to 1,

IA−1 = −
∫
Rp−1

v̊T−sx̊−sF

(
1− x̊T−sθ∗−s

θ∗s

∣∣∣∣x−s)f(x−s)dx−s

= −
∫
Rp−1

v̊T−sx̊−s

∫ 1−x̊T−sθ
∗
−s

θ∗s

−∞
f(xs|x−s)dxsf(x−s)dx−s

= −
∫
Rp
v̊T−sx̊−s 1

{
1− x̊T−sθ∗−s

θ∗s
≥ xs

}
f(x)dx

= −v̊T−sEX|Y=1

[
Y X̊−s 1

{
1− Y X̊T θ∗ ≥ 0

}]
. (69)

Also, by (67),

|IC−1| =
∣∣∣∣∫

Rp−1

v̊T−sx̊−s

∫
R
R2K(u)duf(x−s)dx−s

∣∣∣∣
≤
∫
Rp−1

∣∣̊vT−sx̊−s∣∣ ∫
R
|R2|K(u)duf(x−s)dx−s

≤ C h2

2θ∗2s

∫
Rp−1

∣∣̊vT−sx̊−s∣∣ [∫
R
u2K(u)du

]
f(x−s)dx−s

≤ Ch
2κ2

2θ∗2s

∫
Rp−1

∣∣̊vT−sx̊−s∣∣ f(x−s)dx−s

≤ Ch
2κ2

2θ∗2s
µ̊1,

where the last two inequalities use Assumption 4 and the notation introduced in the As-
sumption 3.

C.2 Proof of Lemma 19 (Centred Score Function)

The proof uses the following result, due to Cai and Liu (2011).
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Lemma 28 (Cai and Liu, 2011) Let Z1, . . . , Zn be independent random variables with zero
mean. Suppose that there exists some t > 0 and Γn such that

∑n
i=1 EZ2

i e
t|Zi| ≤ Γ2

n. Then
for 0 ≤ η ≤ Γn,

P

[
n∑
i=1

Zi ≥ CtΓnη

]
≤ exp(−η2),

where Ct = t+ t−1.

By the triangle inequality∥∥∇L̂h(θ∗)− E
[
∇L̂h(θ∗)

]∥∥
2
≤
∥∥∇L̂h(θ∗)−∇L̂(θ∗)− E

[
∇L̂h(θ∗)

]∥∥
2

+
∥∥∇L̂(θ∗)

∥∥
2
. (70)

We use Lemma 28 to bound both terms on the right-hand side. The bounds are provided
by the following auxiliary lemmas.

Lemma 29 Under Assumption 3, for some constant C > 0 and for any t and n & p+ t,

P

[∥∥∇L̂(θ∗)
∥∥

2
≤ C

√
p+ t

n

]
≥ 1− e−t,

for any t > 0.

Lemma 30 Under Assumptions 2, 3, 4 and 5, for some constant C > 0, for any t > 0, as
long as 1 & h & p+t

n ,

P
[∥∥∥∇L̂h(θ∗)− E

[
∇L̂h(θ∗)

]∥∥∥
2
≤ C

√
h(p+ t)

n

]
≥ 1− e−t.

Hence, using Lemmas 29 and 30,

P
[∥∥∇L̂h(θ∗)− E

[
∇L̂h(θ∗)

]∥∥
2
≤ C (1 +

√
h)√

n

√
p+ t

]
≥ 1− 2e−τ ,

for any t > 0, such that t < min{Cnh− p, Cn− p}.

C.2.1 Proof of Lemma 29

For any δ ∈ (0, 1) there exists a δ-net Nδ of the unit sphere, such that

|Nδ| ≤
(

2

δ
+ 1

)p+1

.

Let vs, . . . , vNδ be unit vectors constituting the δ-net. Then,∥∥∥∇L̂(θ∗)
∥∥∥

2
≤
(

1

1− δ

)
sup

j∈{1,...,Nδ}
vTj ∇L̂(θ∗).
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Let v ∈ Nδ and note that

vT∇L̂(θ∗) = vT
(
∇L̂(θ∗)− E

[
∇L̂(θ∗)

])
,

We use the Lemma 28 to bound this term. First note that for any non-negative random
variable X, any t > 0 and m ≥ 0,

Xm ≤
(
m

te

)m
etX . (71)

Then, the condition required by Lemma 28 can be easily verified since for any t0 > 0 we
have

E
(
Y v̊T X̊ 1

{
1− Y X̊T θ∗ ≥ 0

})2

exp

(
t0
2

∣∣∣Y v̊T X̊ 1
{

1− Y X̊T
i θ
∗ ≥ 0

}∣∣∣)
≤ E(̊vT X̊)2 exp

(
t0
2

∣∣∣̊vT X̊∣∣∣) ≤ C E exp
(
t0
∣∣̊vT X̊∣∣) .

Note that, by Assumption 3, E exp
(
t0
∣∣̊vT X̊∣∣) ≤ C exp(t20ν

2
1/2). Thus, taking Z

′
i = Yi̊v

T X̊i 1
{

1−
YiX̊

T
i θ
∗ ≥ 0

}
we have

∑n
i=1 EZ

′2
i e

t0|Z
′
i |/2 ≤ nC exp(t20ν

2
1/2).

Let Γn =
√
nC and η =

√
γp log n. By definition, E

[
∇L̂(θ∗)

]
= 0, and using Lemma 28 we

get, for any γ such that C n
p logn > γ > 0,

P
[̊
vT∇L̂(θ∗) ≥

√
Cγp log n

n

]
≤ exp(−γp log n) = n−γp. (72)

Finally, applying a union bound over all vectors v in the net Nδ, |Nδ| ≤ (1 + 2/δ)p, from
equation (72) we obtain,

P

[∥∥∇L̂(θ∗)
∥∥

2
≤
√
Cγp log n

n

]
≥ 1−

(
1 +

2

δ

)p
n−γp = 1− exp

[
p log

(
1 +

2

δ

)
− γp log n

]
.

Taking δ = 2/(e− 1) yields probability 1− exp [p− γp log n].Taking t = γp log n,

P

[∥∥∇L̂(θ∗)
∥∥

2
≤
√
Ct

n

]
≥ 1− exp [p− t] .

Setting t = p+ t′, t′ > 0 we obtain, for any t′ > 0,

P

[∥∥∇L̂(θ∗)
∥∥

2
≤
√
C(p+ t′)

n

]
≥ 1− e−t′ .

Lastly, conditions of the Lemma 28 require γp log n < Cn and hence n & p+ t′.
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C.2.2 Proof of Lemma 30

Let E(θ∗) , 1− Y X̊T θ∗. To use Lemma 28 again, consider, for some t > 0,

E
[
Y v̊T X̊K̄

(
E(θ∗)

h

)
− Y v̊T X̊ 1{E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊Y |

∣∣∣∣K̄(E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

∣∣∣∣]
= E(̊vT X̊)2

[
K̄

(
E(θ∗)

h

)
− 1 {E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊|

∣∣∣∣K̄(E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

∣∣∣∣]
≤ 2E(vsX̊s)

2

[
K̄

(
E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊|

∣∣∣∣K̄(E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

∣∣∣∣]
+ 2E(̊vT−sX̊−s)

2

[
K̄

(
E(θ∗)

h

)
− 1 {E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊|

∣∣∣∣K̄(E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

∣∣∣∣],
(73)

where the inequality uses a2+b2 ≥ −2ab. As before, we condition on Y and take expectation
with respect to X first. Similarly, we use the law of iterated expectation to condition on
X−s.

We start by considering the first term in the sum in (73) and conditioning on Y = 1. Using

a change of variables u = 1−xT θ∗
h and Assumption 5 (first inequality), triangle inequality

and the fact that K̄(u) ≤ 1 for any u ∈ R (second inequality) and the assumption K(·) is
symmetric around zero (last equality), we obtain, letting e , 1− x̊T θ∗,∫

R
(vsx̊s)

2

[
K̄

(
e

h

)
− 1{e ≥ 0}

]2

exp

[
t(|vsx̊s|+ |vT−sx̊−s|)

∣∣∣∣K̄(eh
)
− 1{e ≥ 0}

∣∣∣∣]f(xs|x−s)dxs

≤ −hC
θ∗s
v2
s

∫
R

(K̄(u)− 1(u))2 exp

[
t

(∣∣∣∣vs 1− θ∗T−sx̊−s − hu
θ∗s

∣∣∣∣+ t|vT−sx̊−s|
)

(1(u)− K̄(u))

]
du

≤ −hC
θ∗s
v2
s exp

(
t|vT−sx̊−s|+ |vs|

∣∣∣∣1− θ∗T−sx̊−sθ∗s

∣∣∣∣)∫ ∞
0

(1− K̄(u))2 exp

[
t|vs|hu
θ∗s

(1− K̄(u))

]
du

− hC

θ∗s
v2
s exp

(
t|vT−sx̊−s|+ |vs|

∣∣∣∣1− θ∗T−sx̊−sθ∗s

∣∣∣∣) ∫ 0

−∞
K̄(u)2 exp

[
t

(
|vs|

h

θ∗s
(−u)

)
K̄(u)

]
du

= −v
2
shC

θ∗s
exp

(
t|vT−sx̊−s|+ |vs|

∣∣∣∣1− θ∗T−sx̊−sθ∗s

∣∣∣∣)∫ ∞
0

(1− K̄(u))2 exp

[
t|vs|hu
θ∗s

(1− K̄(u))

]
du.

(74)

We start by upper-bounding the integral in (74). By definition 1 − K̄(u) = P(U ≥ u),
where random variable U has density K. Hence the behaviour of the integral in equation
(74) is governed by the tail behaviour of the kernel density. By the discussion following
Assumption 4,∫ ∞

0
(1− K̄(u))2 exp

[
t

(
|vs|

hu

θ∗s

)
(1− K̄(u))

]
du

=

∫ ∞
0

P(U ≥ u)2 exp

[
t

(
|vs|

hu

θ∗s

)
P(U ≥ u)

]
du

≤ u′ exp

[
t |vs|

hu′

θ∗s

]
+

∫ ∞
u′

Cu−2α exp

[
t

(
|vs|

hu

θ∗s

)
Cu−α

]
du. (75)
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Since α ≥ 1, exp(·) is a decreasing function of u and hence, for u ≥ u′,

exp

[
t

(
|vs|

hu

θ∗s

)
Cu−α

]
≤ exp

[
t |vs|

h

θ∗s
Cu′1−α

]
,

which is a constant. Hence∫ ∞
0

(1− K̄(u))2 exp

[
t

(
|vs|

hu

θ∗s

)
(1− K̄(u))

]
du

≤ u′ exp

[
t |vs|

hu′

θ∗s

]
+ C exp

[
t |vs|

h

θ∗s
Cu′1−α

]
1

2α− 1
u′1−2α. (76)

Noting that the right hand side is independent of U or X−s we can now turn to the term
outside of integral in equation (74). By Assumption 3,

EX|Y=1 exp

(
t|̊v−sX̊−s|+ t|vs|

∣∣∣∣1− θ∗−sX̊−sθ∗s

∣∣∣∣) ≤ C exp

[
ν2

1 t
2

2

(
1 +
‖θ∗−s‖2
θ∗s

)2]
. (77)

Overall, using (74), (76) and (77), we have shown that, for any t > 0,

EX|Y=1(vsXs)
2

[
K̄

(
E(θ∗)

h

)
− 1 {E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊|

∣∣∣∣K̄(E(θ∗)

h

)
− 1 {E(θ∗) ≥ 0}

∣∣∣∣]
≤ hC

θ∗s
v2
s exp

[
tCh

θ∗s
+
ν2

1 t
2

2

(
1 +
‖θ∗−s‖2
θ∗s

)2]
. (78)

Note that, theoretically the right-hand side of the inequality is unbounded for h → ∞.
However, as we are interested in h→ 0 we can take, say, h ≤ C ′ and define C appropriately
to simplify the expression to

EX|Y=1(vsxs)
2

[
K̄

(
E(θ∗)

h

)
− 1 {E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊|

∣∣∣∣K̄(E(θ∗)

h

)
− 1 {E(θ∗) ≥ 0}

∣∣∣∣]
≤ C h

θ∗s
exp

[
tC

θ∗s
+
ν2

1 t
2

2

(
1 +
‖θ∗−s‖2
θ∗s

)2]
= C

h

θ∗s
exp
[
Ct(t+ 1)

]
.

We now address the second term in the equation (73). Again, condition on Y = 1 and X−s
first. Using equations (71) and (76), and Assumptions 5 and 3, we obtain, for any t > 0
and t′ > 0,

EX|Y=1(̊vT−sX̊−s)
2

[
K̄

(
E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊|

∣∣∣∣K̄(E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

∣∣∣∣]
≤ C h

θ∗s

(
2

t′e

)2

E exp

[
t′ |̊vT−sX̊−s|+ t|̊vT−sX̊−s|+ t|vs|

|1− X̊T
−sθ
∗
−s|

θ∗s

]

≤ C h

θ∗s
exp

(
1

2
ν2

1

[
t′ + t

(
1 +
‖θ∗−s‖2
θ∗s

)]2
)
.
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Letting t′ = t,

EX|Y=1(̊vT−sX̊−s)
2

[
K̄

(
E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊|

∣∣∣∣K̄(E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

∣∣∣∣]
≤ C h

θ∗s
exp [Ct(1 + t)] . (79)

Overall, from equations (78) and (79) we have, for any t > 0, conditional on Y = 1,

EX|Y=1(̊vT X̊)2

[
K̄

(
E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊Y |

∣∣∣∣K̄(E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

∣∣∣∣]
≤ Ch exp[Ct(t+ 1)].

Analogous derivations hold for Y = −1, which leads us to the following result. There exists
a constant C > 0 such that for any t > 0,

E(Y v̊T X̊)2

[
K̄

(
E(θ∗)

h

)
− 1 {E(θ∗) ≥ 0}

]2

exp

[
t|̊vT X̊Y |

∣∣∣∣K̄(E(θ∗)

h

)
− 1{E(θ∗) ≥ 0}

∣∣∣∣]
≤ Ch exp[Ct(t+ 1)]. (80)

Let

Zi = Yi̊v
T X̊iK̄

(
1− YiX̊T

i θ
∗

h

)
− Yi̊vT X̊i 1

{
1− X̊T

i θ
∗Yi ≥ 0

}
.

Then equation (80) for t = 1 implies that, for some constant C > 0,

n∑
i=1

EZ2
i e
|Zi| ≤ Chn. (81)

Setting Γn =
√
Cnh and η =

√
γp log n we obtain, using Lemma 28,

P

[
1

n

n∑
i=1

Zi ≥
√
Chγp log n

n

]
≤ exp(−γp log n) = n−γp, (82)

as long as γ < Cnh
p logn .

Finally, applying a union bound over all vectors v in the net Nδ, |Nδ| ≤ (1 + 2/δ)p, with
δ = 2/(e− 1),

P
[∥∥∥∇L̂h(θ∗)− E

[
∇L̂h(θ∗)

]∥∥∥
2
≤ C

√
γhp log n

n

]
≥ 1− exp(p− γp log n).

Let t′′ = γp log n. Then,

P
[∥∥∥∇L̂h(θ∗)− E

[
∇L̂h(θ∗)

]∥∥∥
2
≤ C

√
ht′′

n

]
≥ 1− ep−t′′ .

47



Rybak, Battey and Zhou

We can thus let t′′ = p+ t̃, t̃ > 0 to obtain the final bound,

P
[∥∥∥∇L̂h(θ∗)− E

[
∇L̂h(θ∗)

]∥∥∥
2
≤ C

√
h(t̃+ p)

n

]
≥ 1− e−t̃.

Lastly, conditions of the Lemma 28 require γp log n < Cnh and hence t̃ < Cnh − p. The

result thus holds for bandwidth h & p+t̃
n .

C.3 Proof of Lemma 21

Firstly, recall that θ∗s > C for some C > 0 by Assumption 2. Thus, by Theorem 9, θ̂s > C ′

for some C ′ > 0. By definition,

‖∇2Lh(θ∗ + ∆)−∇2Lh(θ∗)‖2

=

∥∥∥∥E[X̊X̊T

h
K

(
1− Y X̊T θ∗ − X̊T∆

h

)]
− E

[
X̊X̊T

h
K

(
1− Y X̊T θ∗

h

)]∥∥∥∥
2

.

Let v̊ ∈ Sp. Considering the first term and conditioning on Y = 1,

∫
X

(̊vT x̊)2

h
K

(
1− x̊T θ∗ − x̊T∆

h

)
f(x)dx

=

∫
X−s

∫
R

(̊vT x̊)2

h
K

(
1− x̊T θ̂

h

)
f(xs|x−s)f(x−s)dxsdx−s.

Using substitution u = 1−x̊T θ∗−x̊T∆
h , i.e. xs =

1−θ̂T−sx̊−s−uh
θ̂s

,

1

h

∫
R
K

(
1− x̊T θ∗ − x̊T∆

h

)
(̊vT x̊)2f(xs|x−s)dxs

= − 1

θ̂s

∫
R
K (u)

(
v0 + vT−sx−s + vs

1− θ̂T−sx̊−s − uh
θ̂s

)2

f

(
1− θ̂T−sx̊−s − uh

θ̂s

∣∣∣∣x−s)du
= − 1

θ̂s

∫
R
K (u) v2

s

(
1− θ̂T−sx̊−s − uh

θ̂s

)2

f

(
1− θ̂T−sx̊−s − uh

θ̂s

∣∣∣∣x−s)du
− 1

θ̂s

∫
R
K (u)

(
v0 + vT−sx−s

)2
f

(
1− θ̂T−sx̊−s − uh

θ̂s

∣∣∣∣x−s)du
− 2

θ̂s

∫
R
K (u) (v0 + vT−sx−s)vs

(
1− θ̂T−sx̊−s − uh

θ̂s

)
f

(
1− θ̂T−sx̊−s − uh

θ̂s

∣∣∣∣x−s)du (83)
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The first term in (83) can be bounded using Taylor expansion (of x2f(x|x−s)) around
1−x̊T−sθ∗−s−uh

h . Specifically,

v2
sK (u)

(
1− θ∗T−sx̊−s −∆T x̊− uh

θ̂s

)2

f

(
1− θ∗T−sx̊−s −∆T x̊− hu

θ∗s

∣∣∣∣x−s)
= v2

sK (u)

(
1− θ∗T−sx̊−s − uh

θ∗s

)2

f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)
+ v2

sK(u)

∫ 1

0

[
2

(
1− θ∗T−sx̊−s − uh

θ∗s
+ t∆̃

)
f

(
1− θ∗T−sx̊−s − uh

θ∗s
+ t∆̃

∣∣∣∣x−s)] ∆̃dt

+ v2
sK(u)

∫ 1

0

[(
1− θ∗T−sx̊−s − uh

θ∗s
+ t∆̃

)2

f ′
(

1− θ∗T−sx̊−s − uh
θ∗s

+ t∆̃

∣∣∣∣x−s)
]

∆̃dt

≤ v2
sK (u)

(
1− θ∗T−sx̊−s − uh

θ∗s

)2

f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)+ v2
sCK(u)∆̃, (84)

where we used Assumption 5 and the notation

∆̃ ,
1− θ∗T−sx̊−s − uh

θ∗s
−

1− θ̂T−sx̊−s − uh
θ̂s

.

Note that ∆̃ is a function of u.

By Taylor expansion of the conditional density around (1−θ∗T−sX̊−s−uh)/θ∗s and Assumption
5,

f

(
1− θ̂T−sx̊−s − uh

θ̂s

∣∣∣∣x−s)
= f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)+

∫ 1

0
f ′
(

1− θ∗T−sx̊−s − uh
θ∗s

+ t∆̃

∣∣∣∣x−s)∆̃dt

≤ f
(

1− θ∗T−sx̊−s − uh
θ∗s

∣∣∣∣x−s)+ C∆̃.

Thus, for the second term in (83) we have,

− 1

θ̂s

∫
R
K (u)

(
v0 + vT−sx−s

)2
f

(
1− θ̂T−sx̊−s − uh

θ̂s

∣∣∣∣x−s)du
≤ −

∫
R

K(u)

θ̂s
(v0 + vT−sx−s)

2f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)du
−
∫
R

CK(u)

θ̂s
(v0 + vT−sx−s)

2∆̃du. (85)
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Using a Taylor expansion of

(
1−x̊T−sθ̂−s−hu

θ̂s

)
f

(
1−θ̂T−sx̊−s−uh

θ̂s

∣∣∣∣x−s), the last term in (83) can

be written as,

− 1

θ̂s

∫
R
K (u) vs

(
v0 + vT−sx−s

)(1− x̊T−sθ̂−s − hu
θ̂s

)
f

(
1− θ̂T−sx̊−s − uh

θ̂s

∣∣∣∣x−s)du
= − 1

θ̂s

∫
R
K (u) vs

(
v0 + vT−sx−s

) ∫ 1

0
f

(
1− θ∗T−sx̊−s − uh

θ∗s
+ t∆̃

∣∣∣∣x−s)∆̃dtdu

− vsv0

θ̂s

∫
R
K (u)

∫ 1

0

(
1− x̊T−sθ∗−s − uh

θ∗s
+ t∆̃

)
f ′
(

1− θ∗T−sx̊−s − uh
θ∗s

+ t∆̃

∣∣∣∣x−s)∆̃dtdu

−
vsv

T
−sx−s

θ̂s

∫
R
K(u)

∫ 1

0

1− x̊T−sθ∗−s − uh+ t∆̃θ∗s
θ∗s

f ′
(

1− θ∗T−sx̊−s − uh+ t∆̃θ∗s
θ∗s

∣∣∣∣x−s)∆̃dtdu.

Thus, using Assumption 5,

− 1

θ̂s

∫
R
K (u) vs

(
v0 + vT−sx−s

)(1− x̊T−sθ̂−s − hu
θ̂s

)
f

(
1− θ̂T−sx̊−s − uh

θ̂s

∣∣∣∣x−s)du
≤ − 1

θ̂s

∫
R
K (u) vs

(
v0 + vT−sx−s

)(1− x̊T−sθ∗−s − uh
θ∗s

)
f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)du
− 2

θ̂s

∫
R
K (u) vs

(
v0 + vT−sx−s

)
C∆̃du. (86)

Equations (84), (85) and (86), combined with (83), imply that

1

h

∫
R
K

(
1− x̊T θ∗ − x̊T∆

h

)
(vTx)2f(xs|x−s)dxs

≤ −v
2
s

θ̂s

∫
R
K (u)

(
1− θ∗T−sx̊−s − uh

θ∗s

)2

f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s) du
− v2

s

θ̂s
C

∫
R
K(u)∆̃du

− 1

θ̂s

∫
R
K(u)(v0 + vT−sx−s)

2f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)du
− C

θ̂s

∫
R
K(u)(v0 + vT−sx−s)

2∆̃du

− 2

θ̂s

∫
R
K (u) vs

(
v0 + vT−sx−s

)(1− x̊T−sθ∗−s − uh
θ∗s

)
f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)du
− C

θ̂s

∫
R
K (u) vs

(
v0 + vT−sx−s

)
∆̃du,
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which can be further simplified to obtain,

1

h

∫
R
K

(
1− x̊T θ∗ − x̊T∆

h

)
(vTx)2f(xs|x−s)dxs

≤ − 1

θ̂s

∫
R

(
v0 + vs

1− θ∗T−sx̊−s − uh
θ∗s

+ vT−sx−s

)2

f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)K(u)du

− 1

θ̂s
C
(
v0 + vs + vT−sx−s

)2 ∫
R
K(u)∆̃du. (87)

Using − 1
θ̂s

= θ̂s−θ∗s
θ̂sθ∗s

− 1
θ∗s

we can further rewrite equation (87) to obtain

1

h

∫
R
K

(
1− x̊T θ∗ − x̊T∆

h

)
(̊vT x̊)2f(xs|x−s)dxs

≤ − 1

θ∗s

∫
R

(
v0 + vs

1− θ∗T−sx̊−s − uh
θ∗s

+ vT−sx−s

)2

f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)K(u)du

+
θ̂s − θ∗s
θ̂sθ∗s

∫
R

(
v0 + vs

1− θ∗T−sx̊−s − uh
θ∗s

+ vT−sx−s

)2

f

(
1− θ∗T−sx̊−s − uh

θ∗s

∣∣∣∣x−s)K(u)du

− 1

θ̂s
C
(
v0 + vs + vT−sx−s

)2 ∫
R
K(u)∆̃du.

Observe that,

∆̃ =
1

θ∗s θ̂s

[(
1− xT−sw∗−s − b∗

)
(θ̂s − θ∗s) + θ∗s(ŵ−s − w∗−s)Tx−s

]
+

1

θ∗s θ̂s

[
θ∗s(θ̂0 − θ∗0) + hu(θ∗s − θ̂s)

]

=
1

θ∗s θ̂s

θ∗s
 1

1−x̊T−sθ∗−s
θ∗s
x−s


T  ∆0

∆s

∆−s

+ hu(θ∗s − θ̂s)

 .

By Assumption 4,

∫
R
K(u)∆̃du ≤ 1

θ∗s θ̂s

θ∗s
 1

1−x̊T−sθ∗−s
θ∗s
x−s


T  ∆0

∆s

∆−s


 .
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Figure 7: Mean and standard deviation bounds for coverage ratios for different choices of
kernel (plot a) and bandwidth (plot b). Based on 500 simulations with n = 500.
The red line depicts the target coverage.

Taking expectation over x−s, using Assumptions 3 and 4, and a change of variables, we
obtain,∫

X−s

1

h

∫
R
K

(
1− x̊T θ∗ − x̊T∆

h

)
(̊vT x̊)2f(xs|x−s)f(x−s)dxsdx−s

≤ EX|Y=1

[
(̊vT X̊)2

h
K

(
1− Y X̊T θ∗

h

)
+
|θ̂s − θ∗s |

θ̂s

(̊vT X̊)2

h
K

(
1− Y X̊T θ∗

h

)]
+

Cr

θ∗s θ̂
2
s

≤ EX|Y=1

[
1

h
K

(
1− Y X̊T θ∗

h

)
(̊vT X̊)2

]
+
|θ̂s − θ∗s |
θ̂sθ∗s

C
[
1 + 2µf1 + µf2

]
+

Cr

θ∗s θ̂
2
s

.

Finally,

E

[
1

h
K

(
1− Y X̊T θ∗ − X̊T∆

h

)
〈̊v, X̊〉2

]
− E

[
1

h
K

(
1− Y X̊T θ∗

h

)
〈̊v, X̊〉2

]
≤ Cr.

C.4 Simulations

Throughout the paper, simulations were carried out using a Gaussian kernel and bandwidth
h = (p/n)1/4. To assess the robustness of the reported results to different choices of kernel
and h, we calculate the median and standard deviation of coverage ratios for different values
of p, as in Section 5.3. The results are reported in Figure 7.
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