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Abstract

Nonparametric estimation of the mean and covariance functions is ubiquitous in functional
data analysis and local linear smoothing techniques are most frequently used. Zhang and
Wang (2016) explored different types of asymptotic properties of the estimation, which
reveal interesting phase transition phenomena based on the relative order of the average
sampling frequency per subject T to the number of subjects n, partitioning the data into
three categories: “sparse”, “semi-dense”, and “ultra-dense”. In an increasingly available
high-dimensional scenario, where the number of functional variables p is large in relation
to n, we revisit this open problem from a non-asymptotic perspective by deriving compre-
hensive concentration inequalities for the local linear smoothers. Besides being of interest
by themselves, our non-asymptotic results lead to elementwise maximum rates of L2 con-
vergence and uniform convergence serving as a fundamentally important tool for further
convergence analysis when p grows exponentially with n and possibly T . With the pres-
ence of extra log p terms to account for the high-dimensional effect, we then investigate the
scaled phase transitions and the corresponding elementwise maximum rates from sparse to
semi-dense to ultra-dense functional data in high dimensions. We also discuss a couple of
applications of our theoretical results. Finally, numerical studies are carried out to confirm
the established theoretical properties.
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1. Introduction

A fundamental issue in functional data analysis is the nonparametric estimation of the mean
and covariance functions based on discretely sampled and noisy curves. Despite being of
interest by themselves, the estimated quantities serve as building blocks for dimension re-
duction and subsequent modeling of functional data, such as functional principal component
analysis (FPCA) (Yao et al., 2005a; Li and Hsing, 2010) and functional linear regression
(Yao et al., 2005b; Chen et al., 2022). Among candidate nonparametric smoothers, we
focus on the most commonly-adopted local linear smoothing method due to its simplicity
and attractive local and boundary correction properties.

In a typical functional data setting, we have n random curves, representing n subjects,
observed with errors, at Ti randomly sampled time points for the ith subject. The sam-
pling frequency Ti plays a pivotal role in the estimation, as it may affect the choice of the
estimation procedure. The literature can be loosely divided into two categories. The first
category corresponds to dense functional data, where Ti’s are larger than some order of n.
A conventional approach to handle such data implements nonparametric smoothing to the
observations from each subject to eliminate the noise, thus reconstructing each individual
curve before subsequent analysis (Zhang and Chen, 2007). The second category referred
to as sparse functional data, accords with bounded Ti’s. Under such a scenario, the pre-
smoothing step is no longer applicable, an alternative pooling strategy considers pooling
the data from all subjects to build strength across all observations (Yao et al., 2005a; Li and
Hsing, 2010). More recently, Zhang and Wang (2016) provided a comprehensive analysis
of phase transitions and the associated rates of convergence for three types of asymptotic
properties: local asymptotic normality, L2 convergence, and uniform convergence. They
proposed to further partition dense functional data into new categories: “semi-dense” and
“ultra-dense”, depending on whether the root-n rate is achieved with negligible asymptotic
bias or not. However, these aforementioned asymptotic results are only suitable for handling
univariate or low-dimensional multivariate functional data.

With recent advances in data collection technology, high-dimensional functional data
sets become increasingly available. Examples include time-course gene expression data,
and electroencephalography and functional magnetic resonance imaging data, where signals
are measured over time at a large number of regions of interest (Zhu et al., 2016; Li and
Solea, 2018; Zapata et al., 2022; Fang et al., 2024). Those data can be represented as a
p-vector of random functions Xip¨q “ tXi1p¨q, . . . , Xipp¨quT for i “ 1, . . . , n defined on a
compact set U , with the p-vector of mean functions µp¨q “ tµ1p¨q, . . . , µpp¨quT “ EtXp¨qu
and the pp ˆ pq-matrix of marginal- and cross-covariance functions

Σpu, vq “ tΣjkpu, vqupˆp, Σjkpu, vq “ covtXijpuq, Xikpvqu. (1)

In a high-dimensional regime, the dimension p can be diverging with, or even larger than,
the number of subjects n. In practice, each Xijp¨q is observed subject to error contamination
at Tij random time points. See (4) below.
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The estimation of mean and covariance functions for high-dimensional functional data is
not only interesting at its own right but also plays a foundational role as a critical starting
point for subsequent analysis. Due to the infinite-dimensionality of functional data, it is
common practice to truncate the basis expansion of each function Xijp¨q at a finite level,
using either data-driven basis expansion via FPCA or pre-fixed basis expansion. This al-
lows for the subsequent development of regularized methods for the sparse estimation to
address the high-dimensionality based on estimated FPC scores or estimated basis coeffi-
cients. Importantly, the estimation of mean and covariance functions are implicitly involved
in this procedure. Applications of this type of approach to estimate sparse high-dimensional
functional models include functional graphical models (Qiao et al., 2019; Zhao et al., 2022;
Solea and Li, 2022; Zapata et al., 2022; Lee et al., 2023), functional additive regressions
(Fan et al., 2014, 2015; Kong et al., 2016; Luo and Qi, 2017; Xue and Yao, 2021), sparse
FPCA (Hu and Yao, 2022) and functional linear discriminant analysis (Xue et al., 2024).
Another line of applications considers the sparsity-induced estimation of the covariance ma-
trix function without any basis expansion, such as Fang et al. (2024); Li et al. (2023) and
Leng et al. (2024). Both types of applications call for the investigation of non-asymptotic
properties of the componentwise mean and covariance estimators, which serves as the mo-
tivation of our paper when dealing with the practical scenario of partially observed curves
in high dimensions. See Section 4 for details of some applications.

Within the high-dimensional statistical learning framework, it is essential to conduct
non-asymptotic analysis of the estimators by developing concentration inequalities under
a given performance metric, which can lead to probabilistic error bounds in the elemen-
twise maximum norm as a function of n, p, and possibly Tij ’s (depending whether they
are diverging or bounded) under our setup. Existing literature has mainly focused on fully
observed functional data, based on which concentration inequalities for the estimated covari-
ance functions were established in Qiao et al. (2019) and Zapata et al. (2022). In practical
scenarios where curves are partially observed with errors, addressing dense functional data
is achievable by applying the pre-smoothing technique to observations from each i, j (Kong
et al., 2016). Alternatively, a unified pooling-type local linear smoothing approach can be
employed for estimating the mean functions µjp¨q’s and marginal- and (or) cross-covariance
functions Σjkp¨, ¨q’s across j, k to handle both sparsely and densely observed functional data
(Qiao et al., 2020; Lee et al., 2023; Fang et al., 2024). Although such nonparametric smooth-
ing approach suffers from high computational cost when p is large, it can be substantially
accelerated in a common practical scenario where each Xijp¨q is observed at the same set of
points across j P rps especially with the aid of linear binning (Fan and Marron, 1994), result-
ing in an efficient estimation procedure. Moreover, those commonly-adopted FPCA-based
methods only necessitate the estimation of marginal- instead of cross-covariance functions
across j P rps (Qiao et al., 2019; Solea and Li, 2022), and can be easily paralleled for fast
computation. See Remark 1.

On the theory side, this approach entails dealing with the second-order U -statistics
with complex dependence structures, posing a technically challenging task. Qiao et al.
(2020) made the first attempt to derive some sub-optimal concentration inequalities for
local linear smoothers of marginal-covariance functions pΣjjp¨, ¨q’s, albeit under a restrictive
finite-dimensional setting. Lee et al. (2023) established the convergence of their proposed
estimation of conditional functional graphical models under the assumption of elementwise

3



Guo, Li, Qiao, and Wang

maximum rate for the covariance smoothers:

max
1ďj,kďp

}pΣjk ´ Σjk}S “ OP plog pn´τ q, (2)

where } ¨ }S denotes the Hilbert–Schmidt norm, and the parameter τ P p0, 1{2s reflects
the average sampling frequency, with larger values yielding denser observational points.
Fang et al. (2024) developed the functional covariance estimation with theoretical guaran-
tees by assuming generalized sub-Gaussian-type concentration inequalities for local linear
smoothers pΣjkp¨, ¨q’s, resulting in an improved elementwise maximum rate:

max
1ďj,kďp

}pΣjk ´ Σjk}S “ OP tplog pq1{2n´τ ` h2u, (3)

where h ą 0 is the bandwidth parameter. However, it remains of theoretical interest to ask:

• What are the exact forms of such rates as functions of n, p, Tij ’s, and associated
bandwidth parameters under cases with different sampling frequencies?

• Are these rates well-established in the sense of specifying the largest values of τ and,
compared to Zhang and Wang (2016), exhibiting any corresponding phase transition
phenomena in the high-dimensional setting?

This paper aims to fill crucial theoretical gaps related to local linear smoothers fre-
quently adopted in existing literature. Specifically, we present a systematic and unified
non-asymptotic analysis of local linear smoothers for the mean and covariance functions
to accommodate both sparsely and densely observed functional data in high dimensions.
While our focus is not to introduce new methodologies for handling high-dimensional par-
tially observed functional data, we make three new contributions as follows.

• First, we develop generalized sub-Gaussian-type concentration inequalities for each
functional element of the mean and covariance estimators in both L2 norm and supre-
mum norm. Compared to the asymptotic results in Zhang and Wang (2016), our
non-asymptotic error bounds lead to the same rates of L2 convergence and uniform
convergence, and reveal the same phase transition phenomena depending on the rela-
tive order of the average sampling frequency per subject to n1{4 for dense functional
data. See Remarks 4 and 5.

• Second, we derive elementwise maximum rates of both L2 and uniform convergence for
the mean and covariance estimators. Notably, we fundamentally improve the rates (2)
and (3) assumed in existing literature in the sense of precisely specifying the largest
values of τ under cases with different sampling frequencies. These established rates
in Theorems 6 and 7 serve as a foundational tool to provide theoretical guarantees
for a set of aforementioned sparse high-dimensional functional models in the existing
literature when dealing with the practical scenario of partially observed functional
data in high dimensions.

• Third, with the presence of additional log p terms to account for the high-dimensional
effect in our established elementwise maximum rates, the scaled phase transitions
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for high-dimensional dense functional data occur based on the ratios of the average
sampling frequency per subject to n1{4plog pq´1{4. This leads to a further partition of
dense functional data into categories of “semi-dense” and “ultra-dense”, depending
on whether the parametric rate plog pq1{2n´1{2 can be attained or not. With suitable
choices of optimal bandwidths, we also present the optimal elementwise maximum
rates from sparse to semi-dense to ultra-dense functional data, which correspondingly
extend the optimal rates in Zhang and Wang (2016) to the high-dimensional setting.
See Remarks 8 and 9.

Outline of the paper. Section 2 presents the nonparametric smoothing approach to
estimate the mean and covariance functions. In Section 3, we investigate the non-asymptotic
properties of the proposed local linear smoothers and discuss the associated phase transition
phenomena. In Section 4, we outline a couple of applications of the non-asymptotic theory
for the local linear smoothers. The established theoretical results are validated through
simulations in Section 5. All technical proofs are relegated to the appendix.

Notation. We summarize here some notation to be used throughout the paper. For a
positive integer q, we write rqs “ t1, . . . , qu. For x, y P R, we write x _ y “ maxpx, yq and
x^y “ minpx, yq. We use Ip¨q to denote an indicator function. We use Ip to denote the pˆp
identity matrix. Let L2pUq be a Hilbert space of square-integrable functions on a compact
interval U equipped with the inner product xf, gy “

ş

fpuqgpuqdu for fp¨q, gp¨q P L2pUq and
the induced L2 norm } ¨ }2 “ x¨, ¨y1{2. For any bivariate function Φp¨, ¨q in L2pU ˆ Uq, we
also use Φ to denote the linear operator induced from the kernel function Φp¨, ¨q, that is,
for any fp¨q P L2pUq, Φpfqp¨q “

ş

Φp¨, vqfpvqdv P L2pUq, and denote its Hilbert–Schmidt
norm by t

ş ş

Φpu, vq2dudvu1{2. For two positive sequences tanu and tbnu, we write an À bn
or bn Á an if there exist a positive constant c such that lim supnÑ8 an{bn ď c. We write
an — bn if and only if an À bn and bn À an hold simultaneously.

2. Methodology

Let Xip¨q “ tXi1p¨q, . . . , Xipp¨quT for i P rns be independently and identically distributed
copies of Xp¨q defined on U with mean µp¨q and covariance Σp¨, ¨q. For any i P rns and
j P rps, Xijp¨q is not directly observable in practice. Instead it is observed, with random
errors, at Tij random time points, Uij1, . . . , UijTij P U . Let Yijt be the observed value of
XijpUijtq satisfying

Yijt “ XijpUijtq ` εijt, (4)

where the errors εijt’s, independent of Xij ’s, are independently and identically distributed
copies of εj with Epεjq “ 0 and varpεjq “ σ2

j ă 8.

Based on the observed data tpUijt, Yijtq : i P rns, j P rps, t P rTijsu, we present a unified
procedure to estimate the mean functions µjp¨q’s and the marginal- and cross-covariance
functions Σjkp¨, ¨q’s for both sparsely and densely observed functional data. In what follows,
denote Khp¨q “ h´1Kp¨{hq for a univariate kernel K with bandwidth h ą 0. For each j,
a local linear smoother is firstly applied to tpUijt, Yijtq : i P rns, t P rTijsu, and hence the
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estimated mean function is attained via µ̂jpuq “ b̂0, where

pb̂0, b̂1q “ argmin
b0,b1

n
ÿ

i“1

vij

Tij
ÿ

t“1

!

Yijt ´ b0 ´ b1pUijt ´ uq
)2

Khµ,j
pUijt ´ uq.

The weight vij is attached to each observation for the ith subject and the jth functional
variable such that

řn
i“1 Tijvij “ 1 (Zhang and Wang, 2016).

For each i P rns, j, k P rps, t P rTijs and s P rTiks, once the mean functions are estimated,
let Θijkts “ tYijt ´ µ̂jpUijtqutYiks ´ µ̂kpUiksqu be the “raw covariance” between Yijt and
Yiks. Notice that covpYijt, Yiksq “ ΣjkpUijt, Uiksq ` σ2

j Ipj “ kqIpt “ sq. To estimate the
marginal-covariance function Σjjp¨, ¨q for each j or the cross-covariance function Σjkp¨, ¨q
for each j ‰ k, we employ local linear surface smoothers to the off-diagonals of the raw
marginal-covariances pΘijjtsq1ďt‰sďTij or to the raw cross-covariances pΘijktsqtPrTijs,sPrTiks.
Specifically, we minimize

n
ÿ

i“1

wijk

ÿ

pt,sqPT

!

Θijkts ´ β0 ´ β1pUijt ´ uq ´ β2pUiks ´ vq
)2

KhΣ,jk
pUijt ´ uqKhΣ,jk

pUiks ´ vq

with respect to pβ0,β1,β2q, where the set T equals to tpt, sq : t P rTijs, s P rTijs, t ‰ su
if j “ k or tpt, sq : t P rTijs, s P rTiksu if j ‰ k, and the weight wijk is assigned to
each triplet pi, j, kq such that

řn
i“1 TijtTik ´ Ipj “ kquwijk “ 1. See the weights to estimate

marginal-covariance functions in Zhang and Wang (2016). The resulting marginal- or cross-
covariance estimator is pΣjkpu, vq “ β̂0. For ease of presentation, we assume that the mean
functions µjp¨q’s are known in advance when discussing the concentration and convergence

results related to the covariance estimators pΣjkpu, vq’s in Section 3 below. However, it is
noteworthy that all our discussions remain valid even when µjp¨q’s are unknown as long as
a few additional technical assumptions are imposed.

Our estimation procedure allows general weighting schemes for tviuiPrns, twijkuiPrns,j,kPrps

such that two types of frequently-used schemes in existing literature are special cases of
them. One type assigns the same weights to each observation (Yao et al., 2005a) with
vij “ p

řn
i“1 Tijq´1 and wijk “ r

řn
i“1 TijtTik ´ Ipj “ kqus´1, so a subject with a larger

number of observations receives more weights in total. The other type assigns the same
weights to each subject (Li and Hsing, 2010), thus leading to vij “ pnTijq´1 and wijk “
rnTijtTik ´ Ipj “ kqus´1.

Remark 1 (i) Suppose that the estimated mean and covariance functions are evaluated at
a grid of R ˆ R locations over U2. Under high-dimensional settings, it is apparent that our
nonparametric smoothing approach suffers from high computational cost in kernel evalua-
tions, particularly when estimating ppp` 1q{2 marginal- and cross-covariance functions. In
a common practical scenario, where each Xijp¨q is observed at the same set of time points
U1, . . . , UTi P U across j P rps, model (4) simplifies to

Yijt “ XijpUitq ` εijt, t “ 1, . . . , Ti,

which reduces the number of kernel evaluations from Op
řn

i“1

řp
j“1 TijRq to Op

řn
i“1 TiRq,

substantially accelerating the computation in high-dimensional settings. To further speed up
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the computation, we can use the linear binning technique (Fan and Marron, 1994) to approx-
imate the mean and covariance estimation. This would largely reduce the number of kernel
evaluations to OpRq, and the number of operations (i.e. additions and multiplications) to
Opnp2R2 ` p2R4 ` p

řn
i“1 Tiq, from Opp2R2

řn
i“1 T

2
i q. See the detailed implementation of

binning and the associated computational complexity analysis in Fang et al. (2024). Our
conducted numerical experiments show that such binned implementation offers significantly
improved computational efficiency without sacrificing any estimation accuracy.

(ii) In a general scenario when Xijp¨q’s are observed at different sets of time points,
parallel estimation for j, k P rps can be employed, resulting in a more efficient procedure. In
contrast, under certain lower-dimensional structural assumptions, the possible development
of a nonparametric smoothing method for the joint estimation of components in Σp¨, ¨q
becomes challenging in this general scenario, and is thus left for future research.

(iii) Due to the infinite-dimensional nature of functional data, it is standard prac-
tice to employ FPCA as a first dimension reduction step before subsequent modeling in
the commonly-adopted multi-step estimation when dealing with high-dimensional functional
models. See the detailed discussion of this application in Section 4.1. Specifically, im-
plementing FPCA necessitates the nonparametric estimation of only marginal-covariance
functions Σjjp¨, ¨q across j P rps, which can be easily paralleled for fast computation.

3. Theory

Before presenting the concentration and convergence results, we impose the following reg-
ularity assumptions.

Assumption 1 For each i P rns and j P rps, Xijp¨q is a sub-Gaussian random process and
εij is a sub-Gaussian random variable, that is, there exists some positive constant c such
that Etexppxx,Xij ´µjyqu ď expt2´1c2xx,Σjjpxqyu for all xp¨q P L2pUq and Etexppεijzqu ď
exppc2σ2

j z
2{2q for all z P R.

Assumption 2 For each i P rns and j P rps, under the sparse design, Tij ď T0 ă 8,
and, under the dense design, Tij Ñ 8 and there exists some positive constant c̄ such that
maxi,j Tijpmini,j Tijq´1 ď c̄.

Assumption 3 Under the dense design, there exists some positive constant c0 such that
maxi,j vijpmini,j vijq´1 ď c0 and maxi,j,k wijkpmini,j,k wijkq´1 ď c0.

Assumption 4 (i) Let
󲷤

Uijt : i P rns, j P rps, t P rTijs
(

be independently and identically
distributed copies of a random variable U defined on U . The density fU p¨q of U satisfies
0 ă mf ď infUfU puq ď supUfU puq ď Mf ă 8 for some positive constants mf and Mf ; (ii)
Xp¨q, U and tεjujPrps are mutually independent.

Assumption 5 Let Bjk “ rpk ´ 1q rT´1
j , k rT´1

j s for k P r rTjs with rTj “ maxi Tij , there exists

some constant C ą 0 such that the cardinality #
󲷤

Uijt : Uijt P Bjk, t P rTijs
(

ď C for each

i P rns, j P rps and k P r rTjs.
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Assumption 6 (i) Kp¨q is a symmetric probability density function defined on r´1, 1s with
ş

u2Kpuqdu ă 8 and
ş

Kpuq2du ă 8. (ii) Kp¨q is Lipschitz continuous: there exists some
positive constant L such that |Kpuq ´ Kpvq| ď L|u ´ v| for any u, v P r´1, 1s.

Assumption 7 (i) B2µjpuq{Bu2 is uniformly bounded over u P U and j P rps; (ii) B2Σjkpu, vq
{Bu2, B2Σjkpu, vq{BuBv, and B2Σjkpu, vq{Bv2 are uniformly bounded over pu, vq P U2 and
pj, kq P rps2.

The sub-Gaussianities in Assumption 1 for both Hilbert space-valued random elements
Xijp¨q’s and random errors εij ’s together imply that the observations Yijt’s in (4) are sub-
Gaussian, which plays a crucial role in deriving our subsequent concentration inequalities.
The dense case in Assumption 2 corresponds to a common practical scenario, where the
sampling frequencies Tij ’s are of the same order across i P rns and j P rps. Under such a
scenario, Assumption 3 is automatically satisfied by two frequently-used weighting schemes
including “equal weight per observation” and “equal weight per subject”. Assumption 5
means that all observational time points are distributed in the sense of “uniformly on U”.
This prevents the occurrence of an extreme case where a large number of time points are
concentrated in some small areas while leaving too few points in other regions. Assump-
tions 4, 6 and 7 are standard in the literature of local linear smoothing for functional data
(Yao et al., 2005a; Zhang and Wang, 2016) adaptable to the multivariate setting.

Theorem 2 Suppose that Assumptions 1-6 hold. For each j P rps, let γn,T,h,j “ np1 ^
sTµ,jhµ,jq with the corresponding average sampling frequency per subject sTµ,j “ n´1

řn
i“1 Tij ,

then there exist some positive constants c1, c2 (independent of n, p, sTµ,j’s) and arbitrarily
small 󰂃1 ą 0 such that for any δ P p0, 1s,

P
`

}µ̂j ´ µ̃j}2 ě δ
˘

ď c2 exp
`

´ c1γn,T,h,jδ
2
˘

, (5)

P
!

sup
uPU

ˇ

ˇµ̂jpuq ´ µ̃jpuq
ˇ

ˇ ě δ
)

ď
c2pn󰂃1γn,T,h,jq1{2

h2µ,j
exp

`

´ c1γn,T,h,jδ
2
˘

, (6)

where µ̃jpuq is a deterministic univariate function that converges to µjpuq as hµ,j Ñ 0. See
(A.1) in Appendix A for the exact form of µ̃jpuq.

Theorem 3 Suppose that Assumptions 1-6 hold. For each j, k P rps, let νn,T,h,jk “ np1 ^
sT 2
Σ,jkh

2
Σ,jkq with the corresponding average sampling frequency per subject being sTΣ,jk “

rn´1
řn

i“1 TijtTik´Ipj “ kqus1{2, then there exist some positive constants c3, c4 (independent
of n, p, sTΣ,jk’s) and arbitrarily small 󰂃2 ą 0 such that for any δ P p0, 1s,

P
´

}pΣjk ´ rΣjk}S ě δ
¯

ď c4 exp
`

´ c3νn,T,h,jkδ
2
˘

, (7)

P
!

sup
pu,vqPU2

ˇ

ˇpΣjkpu, vq ´ rΣjkpu, vq
ˇ

ˇ ě δ
)

ď
c4n

󰂃2νn,T,h,jk
h6Σ,jk

exp
`

´ c3νn,T,h,jkδ
2
˘

, (8)

where rΣjkpu, vq is a deterministic bivariate function that converges to Σjkpu, vq as hΣ,jk Ñ 0.

See (A.19) in Appendix A for the exact form of rΣjkpu, vq.
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Remark 4 The concentration inequalities in Theorems 2 and 3 imply that µ̂j and pΣjk are

nicely concentrated around µ̃j and rΣjk, respectively, in both L2 norm and supremum norm
with generalized sub-Gaussian-type tail behaviors. It is worth mentioning that such L2 and
uniform concentration results are derived based on the local concentration inequalities of
µ̂jpuq and pΣj,kpu, vq for fixed interior points u, v P U , which enjoy the same tail behaviors
as (5) and (7). Besides being fundamental to derive elementwise maximum error bounds
that are essential for further convergence analysis under high-dimensional settings, these
non-asymptotic results lead to the same rates of L2 convergence and uniform convergence
compared to those in Zhang and Wang (2016). Specifically, under extra Assumption 7, it
holds that

}µ̂j ´ µj}2 “ OP

󲷤

n´1{2 ` pn sTµ,jhµ,jq
´1{2 ` h2µ,j

(

,

sup
uPU

ˇ

ˇµ̂jpuq ´ µjpuq
ˇ

ˇ “ OP

“

plog nq1{2n´1{2t1 ` p sTµ,jhµ,jq
´1{2u ` h2µ,j

‰

,

}pΣjk ´ Σjk}S “ OP

󲷤

n´1{2 ` pn sT 2
Σ,jkh

2
Σ,jkq´1{2 ` h2Σ,jk

(

,

sup
pu,vqPU2

ˇ

ˇpΣjkpu, vq ´ Σjkpu, vq
ˇ

ˇ “ OP

“

plog nq1{2n´1{2t1 ` p sT 2
Σ,jkh

2
Σ,jkq´1{2u ` h2Σ,jk

‰

.

Remark 5 The above rates of convergence reveal interesting phase transition phenomena
depending on the ratio of the average sampling frequency per subject sTµ,j (or sTΣ,jk) to n1{4.

In the following, we use different rates of L2 convergence for µ̂j and pΣjk to illustrate a
systematic partition of partially observed functional data into three categories:

1. Under the sparse design, when hµ,j — n´1{5,

}µ̂j ´ µj}2 “ OP pn´1{2h
´1{2
µ,j ` h2µ,jq “ OP pn´2{5q;

when hΣ,jk — n´1{6,

}pΣjk ´ Σjk}S “ OP pn´1{2h´1
Σ,jk ` h2Σ,jkq “ OP pn´1{3q.

2. Under the dense design, when sTµ,jn
´1{4 Ñ 0 with hµ,j — pn sTµ,jq´1{5,

}µ̂j ´ µj}2 “ OP pn´1{2
sT

´1{2
µ,j h

´1{2
µ,j ` h2µ,jq “ OP tpn sTµ,jq

´2{5u;

when sTΣ,jkn
´1{4 Ñ 0 with hΣ,j — pn sT 2

Σ,jkq´1{6,

}pΣjk ´ Σjk}S “ OP pn´1{2
sT´1
Σ,jkh

´1
Σ,jk ` h2Σ,jkq “ OP tpn sT 2

Σ,jkq´1{3u.

3. Under the dense design, when sTµ,jn
´1{4 Ñ c̃ (some positive constant) with hµ,j —

n´1{4 or sTµ,jn
´1{4 Ñ 8 with hµ,j “ opn´1{4q and sTµ,jhµ,j Ñ 8,

}µ̂j ´ µj}2 “ OP pn´1{2q;

when sTΣ,jkn
´1{4 Ñ c̃ with hΣ,jk — n´1{4 or sTΣ,jkn

´1{4 Ñ 8 with hΣ,jk “ opn´1{4q and
sTΣ,jkhΣ,jk Ñ 8,

}pΣjk ´ Σjk}S “ OP pn´1{2q.

9
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As sTµ,j and sTΣ,jk grow very fast, case 3 results in the root-n rate complying with the para-
metric rate for fully observed functional data. As sTµ,j and sTΣ,jk grow moderately fast, case 2
corresponds to the optimal minimax rates (Zhang and Wang, 2016), which are slower than
root-n but faster than the counterparts for sparsely observed functional data. Our estab-
lished convergence rates in cases 1, 2 and 3 allow free choices of pj, kq, and are respectively
consistent to those of the mean and covariance estimators under categories of “sparse”,
“semi-dense” and “ultra-dense” univariate functional data introduced in Zhang and Wang
(2016).

Theorem 6 Suppose that the assumptions in Theorem 2 and Assumption 7(i) hold, and
pminj γn,T,h,jq´1 log p Ñ 0, maxj hµ,j Ñ 0 as n, p Ñ 8. It then holds that

max
jPrps

}µ̂j ´ µj}2 “ OP

"

´ log p

minj γn,T,h,j

¯1{2
` max

j
h2µ,j

*

, (9)

and, if minj hµ,j — tlogpp _ nq{nuκ1 for some κ1 P p0, 1{2s,

max
jPrps

sup
uPU

ˇ

ˇµ̂jpuq ´ µjpuq
ˇ

ˇ “ OP

„

! logpp _ nq
minj γn,T,h,j

)1{2
` max

j
h2µ,j

ȷ

. (10)

Theorem 7 Suppose that the assumptions in Theorem 3 and Assumption 7(ii) hold, and
pminj,k νn,T,h,jkq´1 log p Ñ 0, maxj,k hΣ,jk Ñ 0 as n, p Ñ 8. It then holds that

max
j,kPrps

}pΣjk ´ Σjk}S “ OP

"

´ log p

minj,k νn,T,h,jk

¯1{2
` max

j,k
h2Σ,jk

*

, (11)

and, if minj,k hΣ,jk — tlogpp _ nq{nuκ2 for some κ2 P p0, 1{2s,

max
j,kPrps

sup
pu,vqPU2

ˇ

ˇpΣjkpu, vq ´ Σjkpu, vq
ˇ

ˇ “ OP

„

! logpp _ nq
minj,k νn,T,h,jk

)1{2
` max

j,k
h2Σ,jk

ȷ

. (12)

We observe that the elementwise maximum rates of L2 convergence and uniform con-
vergence are governed by both dimensionality parameters (n, p, t sTµ,jujPrps, t sTΣ,jkuj,kPrps) and
internal parameters (thµ,jujPrps, thΣ,jkuj,kPrps). Each convergence rate is composed of two
terms reflecting our familiar variance-bias tradeoff in nonparametric statistics. It is easy to
see that the variance terms are determined by the least frequently sampled and smoothed
components, that is the smallest sTµ,j (or sTΣ,jk) and hµ,j (or hΣ,jk) across j, k, whereas the
highest level of smoothness with the largest hµ,j (or hΣ,jk) controls the bias terms.

Remark 8 To facilitate further discussion, we consider the simplified setting where sTµ,j —
sTµ, hµ,j — hµ and sTΣ,jk — sTΣ, hΣ,jk — hΣ for each j, k. Compared to cases 1–3 above,

the corresponding elementwise maximum rates of convergence for tµ̂jujPrps (or tpΣjkuj,kPrps)
in Theorem 6 (or Theorem 7) reveal scaled phase transitions for dense functional data
depending on the relative order of sTµ (or sTΣ) to n1{4plog pq´1{4 instead of n1{4. In the
following, we use elementwise maximum rates of L2 convergence to illustrate the phase
transition phenomena and the optimal estimation from sparse to dense functional data in
high dimensions. In terms of uniform convergence, the same phenomena occur as long as
p Á n.

10
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(i) Under the sparse design, when hµ — plog pq1{5n´1{5,

max
j

}µ̂j ´ µj}2 “ OP

"

´ log p

nhµ

¯1{2
` h2µ

*

“ OP

"

´ log p

n

¯2{5
*

;

when hΣ — plog pq1{6n´1{6,

max
j,k

}pΣjk ´ Σjk}S “ OP

"

´ log p

nh2Σ

¯1{2
` h2Σ

*

“ OP

"

´ log p

n

¯1{3
*

.

(ii) Under the dense design, when sTµplog pq1{4n´1{4 Ñ 0 with hµ — plog pq1{5pn sTµq´1{5,

max
j

}µ̂j ´ µj}2 “ OP

"

´ log p

n sTµhµ

¯1{2
` h2µ

*

“ OP

"

´ log p

n sTµ

¯2{5
*

; (13)

when sTΣplog pq1{4n´1{4 Ñ 0 with hΣ — plog pq1{6pn sT 2
Σq´1{6,

max
j,k

}pΣjk ´ Σjk}S “ OP

"

´ log p

n sT 2
Σh

2
Σ

¯1{2
` h2Σ

*

“ OP

"

´ log p

n sT 2
Σ

¯1{3
*

. (14)

(iii) Under the dense design, when sTµplog pq1{4n´1{4 Ñ c̃ with hµ — plog pq1{4n´1{4 or
sTµplog pq1{4n´1{4 Ñ 8 with hµ “ otplog pq1{4n´1{4u and sTµhµ Ñ 8,

max
j

}µ̂j ´ µj}2 “ OP

"

´ log p

n

¯1{2
*

;

when sTΣplog pq1{4n´1{4 Ñ c̃ with hΣ — plog pq1{4n´1{4 or sTΣplog pq1{4n´1{4 Ñ 8 with
hΣ “ otplog pq1{4n´1{4u and sTΣhΣ Ñ 8,

max
j,k

}pΣjk ´ Σjk}S “ OP

"

´ log p

n

¯1{2
*

.

Remark 9 In a similar spirit to the partitioned three categories for univariate functional
data (see cases 1, 2 and 3 above), we can also term the high-dimensional partially observed
functional data in cases (i), (ii), and (iii) as “sparse”, “semi-dense”, and “ultra-dense”,
respectively. The main difference lies in the presence of additional log p terms to account
for the high-dimensional effect.

• As sTµ and sTΣ grow at least in the order of n1{4plog pq´1{4, the attained optimal rate
plog pq1{2n´1{2 is identical to that for the fully observed functional data (Zapata et al.,
2022), presenting that the theory for high-dimensional ultra-dense functional data falls
in the parametric paradigm.

• As sTµ and sTΣ diverge slower than n1{4plog pq´1{4, if we let hµ — plog pq1{5pn sTµq´1{5

and hΣ — plog pq1{6pn sT 2
Σq´1{6 to balance the corresponding variance and bias terms, the

optimal rates for high-dimensional semi-dense functional data are respectively achieved
in (13) and (14). These rates degenerate to the minimax rates in case 2 when p

11
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is fixed. With the choice of elementwise optimal bandwidths hµ — pn sTµq´1{5 and
hΣ — pn sT 2

Σq´1{6, we obtain

max
j

}µ̂j´µj}2 “ OP tplog pq1{2pn sTµq´2{5u, max
j,k

}pΣjk´Σjk} “ OP tplog pq1{2pn sTΣq´1{3u,

which are respectively slower than the optimal rates in (13) and (14). Such discussion
applies analogously to the sparse functional setting. See cases 1 and (i).

• Compared to the asymptotic results for cases 1, 2 and 3 under a fixed p scenario, the
high-dimensionality in cases (i), (ii) and (iii) leads to the scaled phase transitions,
optimal selected bandwidths, and corresponding optimal rates, each of which is up to
a factor of log p at some polynomial order.

4. Applications

In this section, we outline three applications of our established non-asymptotic results for
the local linear smoothers under high dimensional settings.

4.1 Estimation Under the FPCA Framework

A standard procedure towards the estimation of models involving high-dimensional func-
tional data consists of two or three steps. Due to the infinite-dimensionality of functional
data, the first step performs dimension reduction via, e.g., FPCA, to approximate each
Xijp¨q by the dj-dimensional truncation. This effectively transforms the problem of model-
ing the p-vector of functional variables into that of modeling the p

řp
j“1 djq-vector of FPC

scores. To overcome the difficulties caused by high-dimensionality, some functional sparsity
assumptions are commonly imposed, which results in the estimation under block sparsity
constraints in the second step. Examples include the group-lasso penalized least squares
estimation in regression setups (Fan et al., 2015; Kong et al., 2016; Wang et al., 2022), the
group graphical lasso in functional graphical model estimation (Qiao et al., 2019; Solea and
Li, 2022; Zapata et al., 2022) and other related applications mentioned in Section 1. Finally,
the third step re-transforms block sparse estimates obtained in the second step to functional
sparse estimates via estimated principal component functions obtained in the first step. In
functional graphical model estimation, the third step is no longer required. Building upon
established theoretical results, this section presents some non-asymptotic results within the
FPCA framework, which are crucial not only in their own right but also in providing the
theoretical support for such multi-step estimation procedure.

For each j P rps, the standard dimension reduction method performs Karhunen-Loève
expansion of each target trajectory Xijp¨q and truncates the expansion to the first dj terms,
which serves as the foundation of FPCA:

Xijp¨q “ µjp¨q `
8
ÿ

l“1

ξijlφjlp¨q « µjp¨q `
dj
ÿ

l“1

ξijlφjlp¨q, (15)

where the coefficients ξijl “ xXtj ´ µj ,φjly for l ě 1, namely FPC scores, correspond
to a sequence of random variables with Epξijlq “ λjl and covpξijl, ξijl1q “ λjlIpl ‰ l1q

12
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and λj1 ě λj2 ě ¨ ¨ ¨ ą 0 are the eigenvalues of Σjjpu, vq and φj1p¨q,φj2p¨q, . . . are the
corresponding eigenfunctions. To implement FPCA based on partially observed functional
data, we carry out an eigenanalysis of the local linear smoothers pΣjjpu, vq that leads to

estimated eigenvalue/eigenfunction pairs pλ̂jl, pφjlp¨qq for j P rps and l P rdjs. Based on
Theorem 7, we can establish the elementwise maximum rates for estimated eigenvalues and
eigenfunctions in the following proposition.

Proposition 10 Suppose that the assumptions in Theorem 7 hold and λj1 ą λj2 ą ¨ ¨ ¨ ą 0
for each j P rps. Let δjl “ minkPrlstλjk ´ λjpk`1qu for j P rps and l P rdjs . Then we have

max
jPrps,lPrdjs

!

ˇ

ˇλ̂jl ´ λjl

ˇ

ˇ ` δjl
›

›pφjl ´ φjl

›

›

2

)

“ OP

"

´ log p

minj,k νn,T,h,jk

¯1{2
` max

j,k
h2Σ,jk

*

.

Proposition 10 can be used to provide the theoretical guarantees for the first and third
steps under high-dimensional settings. In the second step, the main target is to implement
the block regularized estimation based on the estimated FPC scores. Under the dense
design with Tij Ñ 8, the estimated FPC scores xXij ´ µ̂j , φ̂jly can be well approximated

by the numerical integration based on tUijt, Yijt, pφjlpUijtqu for t P rTijs. To be specific, we
can employ a Trapezoid rule-based numerical integration to estimate FPC scores

pξ
p1q
ijl “

Tij
ÿ

t“2

󲷤

Yijpt´1q ´ µ̂jpUijpt´1qq
(

pφjlpUijpt´1qq `
󲷤

Yijt ´ µ̂jpUijtq
(

pφjlpUijtq

2

ˇ

ˇUijt ´ Uijpt´1q

ˇ

ˇ.

(16)
However, such numerical integration approach fails under the sparse design with Tij ď

T0 ă 8. We instead employ the principal components analysis through conditional expec-
tation (PACE) method (Yao et al., 2005a) to estimate FPC scores. For each j P rps, under
the assumption that ξijl and εijt in (4) are jointly Gaussian, the PACE estimation of the
FPC scores for the ith subject given the data from the individual reduces to the estimated
conditional expectation

pξ
p2q
ijl “ pEpξijl| rYijq “ λ̂jl

pφ
T

ijl
pΣ

´1

Yij
p rYij ´ pµijq, (17)

where we write rYij “ pYij1, . . . , YijTij qT, pΣYij is a Tij ˆ Tij matrix with its pt, t1q-th entry

p pΣYij qt,t1 “ pΣjjpUijt, Uijt1q ` σ̂2
j Ipt “ t1q, pφijl “ tφ̂jlpUij1q, . . . , φ̂jlpUijTij quT, and pµij “

pµ̂jpUij1q, . . . , µ̂jpUijTij qqT. See Yao et al. (2005a) for details on the estimate σ̂2
j of σj .

For each j, k P rps, l P rdjs and m P rdks, let σphq
jklm “ Epξphq

ijl ξ
phq
ikmq and its sample estimator

be pσ
phq
jklm “ n´1

řn
i“1

pξ
phq
ijl

pξ
phq
ikm for h “ 1 (dense case) and 2 (sparse case). To theoretically

support the second step, it is essential to establish the elementwise maximum rates for

tpσ
phq
jklmu with h “ 1, 2, i.e. the convergence rate of

max
j,kPrps,lPrdjs,mPrdks

ˇ

ˇ

ˇ
pσ

phq
jklm ´ σ

phq
jklm

ˇ

ˇ

ˇ

Λ
phq
jklm

,

where Λ
phq
jklm represents some normalization term that may depend on δjl and δkm. Our

established elementwise maximum rate in Theorem 7 may still be applicable in this context.
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However, this topic is beyond the scope of the current paper and is thus left for future
research.

In addition, building upon the expansion in (15) and estimated FPC scores in (16) or
(17), we can estimate the target trajectories for prediction or subsequent modeling

pX
phq
ij p¨q “ pµjp¨q `

dj
ÿ

l“1

pξ
phq
ijl

pφjlp¨q, i P rns, j P rps, h “ 1, 2. (18)

We leave the development of non-asymptotic results for (18) as future research. Such results
could possibly be useful for the application of nonparametric functional graphical model
estimation (Li and Solea, 2018) when handling the practical partially observed functional
scenario in high dimensions.

4.2 Sparse FPCA

While componentwise FPCA in Section 4.1 may fail to model the correlation between com-
ponents in Xi1p¨q, . . . , Xijp¨q, more effective dimension reduction can be achieved by lever-
aging the correlation information across different components, such as multivariate FPCA
(Happ and Greven, 2018) (for fixed p) and sparse FPCA (Hu and Yao, 2022), which incorpo-
rates the notation of sparsity in multivariate statistics into the functional setting to accom-
modate high-dimensional functional data. The sparsity structure motivates a thresholding
rule that is easy to compute by exploiting the relationship between the univariate orthonor-
mal basis representation for infinite-dimensional processes and multivariate Karhunen-Loève
expansion in the form of

Xip¨q “ µp¨q `
8
ÿ

k“1

ζikψkp¨q,

where ζik “
řp

j“1xXij ´ µj ,ψkjy, λ̃k and ψkp¨q “ tψk1p¨q, . . . ,ψkpp¨quT for k “ 1, . . . ,8
are the eigenvalues and the corresponding eigenfunctions of Σpu, vq, respectively, satisfying
ş

U Σpu, vqψkpvqdv “ λ̃kψkpuq. Specifically, provided with a complete and orthonormal basis
tblp¨q : l “ 1, . . . ,8u, each random process is represented as Xijp¨q “ µjp¨q `

ř8
l“1 θijlblp¨q,

where the basis coefficients θijl “ xXij ´ µj , bly. Denote ψkjp¨q “
ř8

l“1 ηkjlblp¨q, where
ηkjl “ xψkj , bly. According to Proposition 1 in Hu and Yao (2022), we have

p
ÿ

j1“1

8
ÿ

l1“1

covpθijl, θij1l1qηkjl “ λ̃kηkjl, i P rns, j P rps, k, l “ 1, 2, . . . .

Under the practical scenario (4) with Tij Ñ 8 (dense case), Hu and Yao (2022) proposed

to estimate θijl by pθijl “ T´1
ij

řTij

t“1tYijt ´ pµjpUijtqublpUijtq and computed the sample vari-

ances of pθijl, base on which performing the thresholding selection to encourage the sparsity.
However, this approach is not applicable to sparsely observed functional data with bounded
Tij , as θijl can not be accurately estimated. We consider bridging the gap under the sparse
case by applying the local linear smoothers to estimate the covariance functions Σjj1pu, vq di-
rectly. Note that covpθijl, θij1l1q “

ş

blpuqΣjj1pu, vqbl1pvqdudv. Instead of estimating θijl’s, we

propose to directly estimate covpθijl, θij1l1q by ycovpθijl, θij1l1q “
ş

U blpuqpΣjj1pu, vqbl1pvqdudv.
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In the special case with j “ j1 and l “ l1, this estimate degenerates to the estimated vari-
ance of θijl, and hence the thresholding idea proposed in Hu and Yao (2022) can still be
employed. To establish the convergence properties under high-dimensional settings, it is
essential to develop concentration results for tycovpθjl, θj1l1qu. By the fact that

|ycovpθijl, θij1l1q ´ covpθijl, θij1l1q| ď }pΣjj1 ´ Σjj1}S , (19)

our derived rate (11) in Theorem 7 becomes applicable. Specially, when j “ j1 and l “ l1,
(19), we can obtain the the elementwise maximum rate for xvarpθijlq. It is noteworthy that
Hu and Yao (2022) relied on existing concentration inequalities for χ2

n to establish the
concentration bound on the sample variance of pθijt under the dense design by assuming that
θijl and εijt are jointly Gaussian. By comparison, our proposal can handle both sparsely
and densely observed functional data without requiring the Gaussianity assumption.

It is also worth mentioning that the above discussion also applies to other pre-fixed basis
expansion methods when fitting functional additive regression models (Fan et al., 2014,
2015; Xue and Yao, 2021) or implementing functional linear discriminant analysis (Xue
et al., 2024). Specifically, our proposed tycovpθijl, θij1l1qu are also involved in the estimation,
making Theorem 7 useful in this context.

4.3 Functional Thresholding

Our third application involves estimating the covariance matrix function Σp¨, ¨q in (1). Un-
der the functional sparsity assumption that Σ belongs to a class of “approximately sparse”
covariance matrix functions, Fang et al. (2024) proposed to perform adaptive functional
thresholding on the local linear smoothers t pΣjkp¨, ¨quj,kPrps using entry-dependent functional

thresholds that automatically adapt to the variability of pΣjkp¨, ¨q’s. Specifically, their adap-
tive functional thresholding estimator is defined as

rΣ “
󲷤

rΣjkp¨, ¨q
(

pˆp
with rΣij “ Ψ

1{2
jk ˆ sλ

´

pΣjk

Ψjk

¯

,

where, for any thresholding parameter λ ě 0, sλp¨q is the functional thresholding operator
to enforce the functional sparsity with the aid of Hilbert–Schmidt norm, and Ψjkp¨, ¨q is a

surrogate estimator for the asymptotic variance of pΣjkp¨, ¨q (Fang et al., 2024). Alternatively,
one can achieve a universal functional thresholding estimator

qΣ “
󲷤

qΣjkp¨, ¨q
(

pˆp
with qΣjk “ sλppΣjkq,

where a universal threshold level is used for all entries. To investigate the theoretical prop-
erties of both functional thresholding estimators rΣ and qΣ under high-dimension settings,
it is crucial to make use of the elementwise maximum rate of maxj,kPrps }pΣjk ´ Σjk}S , as
presented in Theorem 7. In contrast, Fang et al. (2024) assumed a rough rate (3) instead
of providing a proof to facilitate their technical analysis.

Such functional sparsity assumption is restrictive for many data sets, especially in fi-
nance and economics, where the functional variables exhibit high correlations. To address
this issue, Li et al. (2023) and Leng et al. (2024) employed the functional factor models
framework for Xip¨q, which is decomposed as the sum of a common component driven by
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low-dimensional latent factors and an idiosyncratic component eip¨q. Instead of imposing
the functional sparsity assumption on Σ, they imposed it on the covariance matrix function
of eip¨q, and proposed different estimators for Σ by performing the associated eigenanalysis
to estimate the common covariance and then applying (adaptive) functional thresholding
to the residual covariance. To develop the convergence rates of their proposed estimators,
our elementwise maximum rate in Theorem 7 becomes applicable.

5. Simulations

In this section, we examine the finite-sample performance of the local linear smoothers for
the mean and covariance function estimation in high dimensions.

We generalize the simulated example for univariate functional data in Zhang and Wang
(2016) to the multivariate setting by generating

Xijpuq “ µjpuq ` φpuqTθij , i P rns, j P rps, u P U “ r0, 1s,

where the true mean function µjpuq “ 1.5 sint3πpu` 0.5qu ` 2u3, the basis function φpuq “
󲷤?

2 cosp2πuq,
?
2 sinp2πuq,

?
2 cosp4πuq,

?
2 sinp4πuq

(T
and the basis coefficient vector θi “

`

θT
i1, . . . ,θ

T
ip

˘T
P R4p is sampled independently from a mean zero multivariate Gaussian

distribution with block covariance matrix Λ P R4pˆ4p whose pj, kqth block is given by
Λjk “ ρ|j´k|diagt2´2, . . . , 5´2u P R4ˆ4 for j, k P rps. Hence the pj, kqth entry of the true
covariance functions Σp¨, ¨q “ tΣjkp¨, ¨qupˆp is Σjkpu, vq “ φpuqTΛjkφpvq. We then generate
the observed values Yijt “ XijpUijtq`εijt for t “ 1, . . . , Tij “ T, where the time points Uijt’s
and errors εijt’s are sampled independently from Uniformr0, 1s and N p0, 0.52q, respectively.

We use the Epanechnikov kernel with bandwidth values varying on a dense grid. To
evaluate the performance of pµjp¨q for j P rps and pΣjkp¨, ¨q for pj, kq P rps2 given specific band-
width hµ,j and hΣ,jk, we define the corresponding mean integrated squared errors (MISE)
as

MISEppµj , hµ,jq “
ż

tpµjpuq´µjpuqu2du, MISEppΣjk, hΣ,jkq “
ż ż

tpΣjkpu, vq´Σjkpu, vqu2dudv.

We first calculate the elementwise minimal MISEs for the mean and covariance estimators
over the grids of candidate bandwidths in prespecified sets Hµ and HΣ, respectively. We
then compute their averages and maximums over j P rps for the mean functions, that is,

AveMISEpµq “
1

p

ÿ

j

min
hµ,j

MISEppµj , hµ,jq,

MaxMISEpµq “ max
j

min
hµ,j

MISEppµj , hµ,jq,

and over pj, kq P rps2 for the covariance functions, that is,

AveMISEpΣq “
1

p2

ÿ

j

ÿ

k

min
hΣ,jk

MISEppΣjk, hΣ,jkq,

MaxMISEpΣq “ max
j,k

min
hΣ,jk

MISEppΣjk, hΣ,jkq.
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We next use the example of estimating the mean functions to illustrate the rationale of
the above measures. While AveMISE(µ) presents the averaged elementwise minimal MISEs
across j P rps, some simple calculations in Appendix B show that the attainable quantity of
the minimal elementwise maximum of MISEs, minphµ,1,...,hµ,pqPHp

µ
maxjPrps MISEppµj , hµ,jq, is

equal to MaxMISE(µ). It is worth noting that the optimal selection of bandwidths by mini-
mizing, e.g., for mean functions, each MISEppµj , hµ,jq over hµ,j P Hµ or maxj MISEppµj , hµ,jq
over phµ,1, . . . , hµ,pq P Hp

µ serves to validate our established theoretical results, assuming that
µjp¨q’s are known. In practical scenarios with unknown mean and covariance functions, one
can employ the commonly-adopted cross-validation method to estimate the specific MISE
as a function of bandwidths, whose minimizer produces the optimal bandwidth selection.
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Figure 1: Plots of average MaxMISE (black) and AveMISE (red) against T with p “ 50
(solid), 100 (dashed) and 150 (dotted) for mean estimators (left) and covariance
estimators (right).

We firstly consider settings of n “ 100, p “ 50, 100, 150, and T “ 5, 10, 20, 40, 60,
80, 100, 120, 140, 160, 180. We ran each simulation 100 times. Figure 1 plots the average
AveMISE and MaxMISE as functions of T for the estimated mean and covariance functions.
We observe that both MaxMISE and AveMISE display a similar trend as T increases with a
steep decline followed by a slight decrease and then a period of stability. Such trend roughly
corresponds to the three categories of “sparse”, “semi-dense”, and “ultra-dense”, respec-
tively. In addition, while AveMISE reflects the performance for univariate functional data,
MaxMISE gradually enlarges as p increases from 50 to 150, providing empirical evidence to
support that the associated log p-based convergence rates in high-dimensional settings.

As suggested by one referee, to further validate the established rates discussed in Re-
marks 5 and 8, we plot the average log(AveMISE) against log n and the average log(MaxMISE)
against logpn{ log pq across different values of n, p and T for estimated mean and covariance
functions in Figure 2. Note that our theory indicates that log(AveMISE) and log n, as well
as log(MaxMISE) and logpn{ log pq, both exhibit linear relationships, e.g., for sparse func-
tional data, with a slope of -2/5 for mean estimators and -1/3 for covariance estimators.
Furthermore, when the phase transitions from “semi-dense” to “ultra-dense” occur, they
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Figure 2: Plots of average logpAveMISEq against log n (left) and average logpMaxMISEq
against logpn{ log pq (right) for mean estimators (top) and covariance estimators
(bottom) with p “ 50, 100, 150 and n “ 50, 100, 150, 200, 250. The colored dashed
lines correspond to different values of T ranging from 3 to 140, and the estimated
slopes of the corresponding linear fits based on five points for log n or fifteen points
for logpn{ log pq are also displayed. The slope of the black solid line presents the
theoretical value -1/2 (with the intercept being irrelevant here).

all admit linear relationships with a common slope of -1/2. Several apparent patterns are
observable from Figure 2. First, both plots of log(AveMISE) against five values of log n and
log(MaxMISE) against fifteen values logpn{ log pq show clear linear patterns across different
values of T. This also demonstrates the log p-based high-dimensional effect in elementwise
maximum rates. Second, for sparse functional data (i.e., T “ 3, 5), the estimated slopes
of the linear fits are between -0.41 and -0.37 for mean estimators and between -0.37 and
-0.32 for covariance estimators, which nicely align with the theoretical slope values of -2/5
and -1/3, respectively. Third, as T grows from 10 to 140, the estimated slopes under all
scenarios gradually increase to some values close to the theoretical slope value of -1/2, and
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then stabilize, especially when measuring MaxMISE. This suggests that the phase transi-
tions from “semi-dense” to “ultra-dense” may occur during the increase of T. For example,
the slope for MaxMISE tends to be stable for T “ 40, 60, 100, 140, indicating that the
phase transition may occur around T “ 40 (earlier than the corresponding occurrence of
phase transition for AveMISE). All of the above observations nicely validate our established
theoretical results in Section 3.
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Appendix A. Technical Proofs

The appendix contains proofs of all theorems. Throughout, we use c, c1, c2, . . . to denote
generic positive finite constants that may be different in different uses.

A.1 Proof of Theorem 2

We organize the proof in four steps. First, we will define pµp¨q, rµp¨q and obtain the decom-
position of pµp¨q ´ rµp¨q. Second, we will prove the local concentration inequality for fixed
interior point u P U . Third, we will prove the concentration inequality in L2 norm. Finally,
we will prove the concentration inequality in supremum norm.

A.1.1 Definition and Decomposition

Without loss of generality, we let hµ,j “ h for j P rps and denote e0 “ p1, 0qT, rUijt “
󲷤

1, pUijt ´ uq{h
(T

,

pSjpuq “
n

ÿ

i“1

vij

Tij
ÿ

t“1

rUijt
rUT
ijtKhpUijt ´ uq,

pRjpuq “
n

ÿ

i“1

vij

Tij
ÿ

t“1

rUijtKhpUijt ´ uqYijk.

A simple calculation yields that pµjpuq “ eT
0 tpSjpuqu´1

pRjpuq. Let

rµjpuq “ eT
0

“

EtpSjpuqu
‰´1Et pRjpuqu. (A.1)

We can decompose pµjpuq ´ rµjpuq as

pµjpuq ´ rµjpuq “eT
0 rEtpSjpuqus´1r pRjpuq ´ Et pRjpuqus

´ eT
0 tpSjpuqu´1rpSjpuq ´ EtpSjpuqusrEtpSjpuqus´1

pRjpuq,
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which then implies that

|pµjpuq ´ rµjpuq| ď }EtpSjpuqu}´1
min} pRjpuq ´ Et pRjpuqu}

` }pSjpuq}´1
min}EtpSjpuqu}´1

min} pRjpuq}}pSjpuq ´ EtpSjpuqu}F,
(A.2)

where, for any vector b “ pb1, . . . , bpqT, we denote its Euclidean norm by }b} “ p
ř

i b
2
i q1{2

and, for any matrix B “ pBijqpˆq, we write }B}min “ tλminpBTBqu1{2 and }B}F “
p
ř

i,j B
2
ijq

1{2 to denote its Frobenius norm.

A.1.2 Local Concentration Inequality

We will firstly show that there exists some positive constant c (independent of u) such that
for any δ ą 0 and u P U ,

P
!

›

›pSjpuq ´ EtpSjpuqu
›

›

F
ě δ

)

ď 8 exp
´

´
cn sTµ,jhδ

2

1 ` δ

¯

. (A.3)

For k, l “ 1, 2, let pSjklpuq be the pk, lqth entry of pSjpuq. Under Assumptions 4 and 6, we
obtain that for any integer q “ 2, 3, . . . and s “ 0, 1, 2,

E
"

ˇ

ˇ

ˇ

´Uijt ´ u

h

¯s
KhpUijt ´ uq

ˇ

ˇ

ˇ

q
*

ď
ż

h´qKq
´ t ´ u

h

¯ˇ

ˇ

ˇ

t ´ u

h

ˇ

ˇ

ˇ

sq
fU ptqdt ď ch1´q. (A.4)

Note that Assumption 3 implies that the weights vij ’s are of the same order vij — pn sTµ,jq´1.
By (A.4), it holds that

n
ÿ

i“1

Tij
ÿ

t“1

E
"

ˇ

ˇ

ˇ

´Uijt ´ u

h

¯s
KhpUijt ´ uq

ˇ

ˇ

ˇ

2
*

ď cn sTµ,jh
´1,

n
ÿ

i“1

Tij
ÿ

t“1

E
"

ˇ

ˇ

ˇ

´Uijt ´ u

h

¯s
KhpUijt ´ uq

ˇ

ˇ

ˇ

q
*

ď 2´1q!cn sTµ,jh
´1h2´q for q ě 3.

By the Bernstein inequality (see Theorem 2.10 and Corollary 2.11 of Boucheron et al., 2013),
we obtain that there exists some positive constant c (independent of u) such that for any
δ ą 0 and u P U ,

P
!

ˇ

ˇ pSjklpuq ´ Et pSjklpuqu
ˇ

ˇ ě δ
)

ď 2 exp
´

´
cn sTµ,jhδ

2

1 ` δ

¯

,

for k, l “ 1, 2, which, by the union bound of probability, implies that (A.3) holds.

For k “ 1, 2, let pRjkpuq be the kth element of pRjpuq. We will next show that there
exists some positive constant c (independent of u) such that for any δ ą 0 and u P U ,

P
!

ˇ

ˇ pRjkpuq ´ Et pRjkpuqu
ˇ

ˇ ě δ
)

ď c exp
´

´
cγn,T,h,jδ

2

1 ` δ

¯

, (A.5)
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where γn,T,h,j “ np1^ sTµ,jhq. We only need to consider the case k “ 1, while the case k “ 2
can be demonstrated in a similar manner. Denote that

ξijt “ Yijt ´ µjpUijtq,

pRj3puq “
n

ÿ

i“1

vij

Tij
ÿ

t“1

KhpUijt ´ uqµjpUijtq,

pRj4puq “
n

ÿ

i“1

vij

Tij
ÿ

t“1

KhpUijt ´ uqξijt.

Then pRj1puq ´ Et pRj1puqu can be rewritten as

pRj1puq ´ Et pRj1puqu “ pRj3puq ´ Et pRj3puqu ` pRj4puq. (A.6)

Following the same procedure to prove (A.3) and using the Bernstein inequality, we can
obtain that there exists some positive constant c such that for any δ ą 0 and u P U ,

P
!

ˇ

ˇ pRj3puq ´ Et pRj3puqu
ˇ

ˇ ě δ
)

ď 2 exp
´

´
cn sTµ,jhδ

2

1 ` δ

¯

. (A.7)

Now we consider the tail behavior of pRj4puq. Define the event Vj “
󲷤

Uijt, t P rTijs, i P

rns
(

. Rewrite pRj4puq “
řn

i“1 vijψij1puq with ψij1puq “
řTij

t“1KhpUijt´uqξijt. If
řTij

t“1KhpUijt´
uq ą 0, by Jensen’s inequality, we have

E
”

exptλvijψij1puqu
ˇ

ˇ

ˇ
Vj

ı

“E
´

exp
”

λvij
t
řTij

t“1KhpUijt ´ uqξijtut
řTij

t“1KhpUijt ´ uqu
řTij

t“1KhpUijt ´ uq

ıˇ

ˇ

ˇ
Vj

¯

ď
1

řTij

t“1KhpUijt ´ uq

Tij
ÿ

t“1

KhpUijt ´ uqE
”

exp
!

λvijξijt

Tij
ÿ

t1“1

KhpUijt1 ´ uq
)ˇ

ˇ

ˇ
Vj

ı

ď exp
”

λ2c2pn sTµ,jq
´2

!

Tij
ÿ

t“1

KhpUijt ´ uq
)2ı

.

Note that the last line comes from the fact that Etexppλξijtq
ˇ

ˇVj

(

ď exppλ2c2q for any λ P R,
which is implied from the sub-Gaussianities in Assumption 1 and (4). Clearly, the above

inequality still holds even if
řTij

t“1KhpUijt ´ uq “ 0. Assumption 5 implies that the number

of nonzero terms in
řTij

t“1KhpUijt ´ uq has an upper bound cp1 _ sTµ,jhq, which yields that
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řTij

t“1KhpUijt ´ uq ď ch´1p1 _ sTµ,jhq. Therefore, for any λ P R, we obtain that

E

«

exp
!

λ
n

ÿ

i“1

vijψij1puq
)ˇ

ˇ

ˇ
Vj

ff

“
n

ź

i“1

E
”

exp
!

λvijψij1puq
)ˇ

ˇ

ˇ
Vj

ı

ď exp

»

–λ2c2
n

ÿ

i“1

v2ij

!

Tij
ÿ

t“1

KhpUijt ´ uq
)2

fi

fl

ď exp
!

λ2c2pn sTµ,jhq´2hp1 _ sTµ,jhq
n

ÿ

i“1

Tij
ÿ

t“1

KhpUijt ´ uq
)

.

For any δ ą 0, define the event Ωj,1pδq “
󲷤

řn
i“1

řTij

t“1KhpUijt ´ uq ď cp1 ` δqn sTµ,j

(

. We
have

E

«

exp
!

λ
n

ÿ

i“1

vijψij1puq
)ˇ

ˇ

ˇ
Ωj,1pδq

ff

ď exp
!

λ2c2p1 ` δqpn sTµ,jhq´2n sTµ,jhp1 _ sTµ,jhq
)

“ exp
!

p1 ` δqλ2c2pn sTµ,jhq´1p1 _ sTµ,jhq
)

.

As a consequence, we obtain that

P
!

n
ÿ

i“1

vijψij1puq ě δ
ˇ

ˇ

ˇ
Ωj,1pδq

)

ď exp
!

´ λδ ` p1 ` δqλ2c2pn sTµ,jhq´1p1 _ sTµ,jhq
)

. (A.8)

With the choice of λ “ n sTµ,jhδ{t2p1 ` δqc2p1 _ sTµ,jhqu, (A.8) degenerates to

P
!

n
ÿ

i“1

vijψij1puq ě δ
ˇ

ˇ

ˇ
Ωj,1pδq

)

ď exp
!

´
cnp1 ^ sTµ,jhqδ2

1 ` δ

)

. (A.9)

Note that
řn

i“1

řTij

t“1 EtKhpUijt ´uqu ď cn sTµ,j . By the Bernstein inequality, we obtain that
there exists some positive constant c such that for any δ ą 0,

P

¨

˝

n
ÿ

i“1

Tij
ÿ

t“1

”

KhpUijt ´ uq ´ E
󲷤

KhpUijt ´ uq
(

ı

ě n sTµ,jδ

˛

‚ď exp

ˆ

´
cn sTµ,jhδ

2

1 ` δ

˙

,

which implies that

1 ´ PtΩj,1pδqu ď exp
´

´
cn sTµ,jhδ

2

1 ` δ

¯

. (A.10)

Combining (A.9) and (A.10), we obtain that there exists some constant c ą 0 such that for
any δ ą 0,

P
!

pRj4puq ě δ
)

ď P
!

pRj4puq ě δ
ˇ

ˇ

ˇ
Ωj,1pδq

)

` P
!

Ωj,1pδqc
)

ď 2 exp
!

´
cnp1 ^ sTµ,jhqδ2

1 ` δ

)

,
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and, consequently,

P
!

ˇ

ˇ pRj4puq
ˇ

ˇ ě δ
)

ď 4 exp
!

´
cnp1 ^ sTµ,jhqδ2

1 ` δ

)

.

This together with (A.6) and (A.7) yields that, there exists some constant c such that

P
!

ˇ

ˇ pRj1puq ´ Et pRj1puqu
ˇ

ˇ ě δ
)

ď 6 exp
!

´
cnp1 ^ sTµ,jhqδ2

1 ` δ

)

.

Define the event Ωj,2pδq “ t}pSjpuq ´ EtpSjpuqu}F ď δ{2u. Note that EtpSjpuqu is positive
definite. On the event Ωj,2pδq with δ P p0, 1s, we obtain that

}pSjpuq}min ě cp1 ´ δ{2q. (A.11)

By (A.3), we have

1 ´ P
󲷤

Ωj,2pδq
(

ď 8 exp
´

´
cn sTµ,jhδ

2

1 ` δ

¯

. (A.12)

Define the event Ωj,3pδq “
󲷤›

› pRjpuq ´Et pRjpuqu
›

› ď δ
(

. Note that, under Assumption 3 with

vij — pn sTµ,jq´1,
řn

i“1 vij
řTij

t“1 EtKhpUijt ´ uqu ď c and µjp¨q is uniformly bounded over U ,
hence }Et pRjpuqu} is uniformly bounded over U . On the event Ωj,3pδq, we have

›

› pRjpuq
›

› ď cp1 ` δq. (A.13)

On the event Ωj,2pδq XΩj,3pδq with δ P p0, 1s, it follows from (A.2), (A.11) and (A.13) that

|pµjpuq ´ rµjpuq| ď cδ ` cp1 ´ δ{2q´1p1 ` δqδ ď c3δ.

This together with concentration inequalities in (A.5) and (A.12) implies that there exist
some positive universal constants c1 and c2 such that for any δ P p0, 1s and u P U ,

P
!

|pµjpuq ´ rµjpuq| ě δ
)

ď c2 exp
`

´c1γn,T,h,jδ
2
˘

,

which completes the proof of local concentration inequality for the mean estimator.

A.1.3 Concentration Inequality in L2 Norm

In the proof, we need the following lemma.

Lemma 11 Let X be a random variable. If for some constants c1, c2 ą 0, Pp|X| ą δq ď
c1 expt´c´1

2 minpδ2, δqu for any δ ą 0, then for any integer q ě 1,

EpX2qq ď q!c1p4c2qq ` p2qq!c1p4c2q2q.

Conversely, if for some positive constants a1, a2, EpX2qq ď q!a1a
q
2 ` p2qq!a1a

2q
2 for any

integer q ě 1, then by letting c˚
1 “ a1 and c˚

2 “ 32pa2 ` a22q, we have that

Pp|X| ą δq ď c˚
1 expt´c˚´1

2 minpδ2, δqu

for any δ ą 0.
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Proof This lemma can be proved in a similar way to Theorem 2.3 of Boucheron et al.
(2013) and hence the proof is omitted here. In the proof, the following two inequalities are
used, i.e., for any c, δ ą 0,

1

2
minpδ2, δq ď

δ2

1 ` δ
ď minpδ2, δq

and
c

cδ

2
`

cδ

2
ď

cpδ `
a

δ2 ` 4δ{cq
2

ď
?
cδ ` cδ.

We are now ready to derive the L2 concentration inequality of }pµj ´ rµj}2. Let

rSjpuq “ pn sTµ,jq
´1

n
ÿ

i“1

Tij
ÿ

t“1

rUijt
rUT
ijtKhpUijt ´ uq. (A.14)

Then we have that }pSjpuq}min ě c}rSjpuq}min. We now give a lower bound on }rSjpuq}min.

Denote W “ supuPU
›

›rSjpuq´EtrSjpuqu
›

›

F
. Let rSjklpuq be the pk, lqth entry of rSjpuq for k, l “

1, 2. Note that Et|pUijt´uqah´aKhpUijt´uq|u ď c and EpW q ď 4maxk,l EtsupuPU | rSjklpuq|u
for a “ 0, 1, 2. In an analogy to Lemma 13.5 of Boucheron et al. (2013), we can show that
EpW q ď cpn sTµ,jq´1{2. Note that Lemma 13.5 of Boucheron et al. (2013) relies on the re-
sults presented in Lemma 13.1 of Boucheron et al. (2013). Consequently, Lemma 13.5
assumes that the corresponding index set is countable in order to apply Lemma 13.1, as
the supremums of the summation of indicator functions may not be measurable. However,
in our specific case, each component of rSjpuq ´ EtrSjpuqu is the sum of continuous func-
tions, for which the supremums over U are measurable. Therefore, when we extend the
index set from countable to the uncountable set U , this lemma, as well as Theorems 11.10
and 12.5 of Boucheron et al. (2013), still hold true and can be applicable to our situa-
tion. Moreover, it follows from the facts varpW q ď EpW 2q ď 4maxk,l vartsupuPU rSjklpuqu,
|pUijt ´uqah´aKhpUijt ´uq| ď ch´1, EtpUijt ´uq2ah´2aK2

hpUijt ´uqu ď ch´1 for a “ 0, 1, 2,
and Theorem 11.10 of Boucheron et al. (2013) that varpn sTµ,jhW q ď 2Epn sTµ,jhW q `
řn

i“1

řTij

t“1 ch
´1h2 ď cpn sTµ,jq1{2h`cn sTµ,jh, which implies that the variance ofW is bounded

by cpn sTµ,jhq´1 ď cγ´1
n,T,h,j . Applying Theorem 12.5 of Boucheron et al. (2013) yields that

there exists some positive constant c such that, for any δ ą 0,

P
󲷤

W ´ EpW q ą δ
(

ď exp
´

´
cγn,T,h,jδ

2

1 ` δ

¯

. (A.15)

Define the event Ωj,4pδq “
󲷤

supuPU
›

›rSjpuq ´ EtrSjpuqu
›

›

F
ď δ{2

(

with δ P p0, 1s. By (A.15),
we obtain that there exists some constant c ą 0 such that, for any δ P p0, 1s,

1 ´ P tΩj,4pδqu ď 2 exp
`

´cγn,T,h,jδ
2
˘

. (A.16)

On the event Ωj,4 “ Ωj,4pδ1q with cγ
´1{2
n,T,h,j ă δ1 ď 1, }pSjpuq}min ě c}rSjpuq}min ě cp1 ´

δ1{2q ě c{2. Note that EtpSjpuqu is positive definite and }Et pRjpuqu} is uniformly bounded
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over U . On the event Ωj,4, it thus follows from (A.2) and } pRjpuq} ď } pRjpuq ´Et pRjpuqu} `
}Et pRjpuqu} that

|pµjpuq ´ rµjpuq| ď c} pRjpuq ´ Et pRjpuqu} ` c}pSjpuq ´ EtpSjpuqu}F, (A.17)

where the positive constant c does not depend on u P U .
Combining (A.17) with (A.3), (A.5) and applying the first part of Lemma 11 yields that,

for any u P U and integer q ě 1,

E
!

|pµjpuq ´ rµjpuq|2q
ˇ

ˇ

ˇ
Ωj,4

)

ď q!c
´ 4

cγn,T,h,j

¯q
` p2qq!c

´ 4

cγn,T,h,j

¯2q
.

Applying the second part of Lemma 11 and (A.16), we can show that, for each δ P p0, 1s,

P
`

}µ̂j ´ µ̃j}2 ě δ
˘

ď P
`

}µ̂j ´ µ̃j}2 ě δ
ˇ

ˇΩj,4

˘

` P
`

Ωc
j,4

˘

ď c2 exp
`

´ c1γn,T,h,jδ
2
˘

,

which means that (5) in Theorem 2 holds and completes the proof of concentration inequality
for the mean estimator in L2 norm.

A.1.4 Concentration Inequality in Supremum Norm

We will derive the uniform concentration bound of supuPU |pµjpuq ´ rµjpuq|. We partition the
interval U “ r0, 1s into N subintervals Is for s P rN s of equal length. Let us be the center
of Is, then we have

sup
uPU

ˇ

ˇ

pµjpuq ´ rµjpuq
ˇ

ˇ ď max
sPrNs

”

ˇ

ˇ

pµjpusq ´ rµjpusq
ˇ

ˇ `
ˇ

ˇtpµjpusq ´ pµjpuqu ´ trµjpusq ´ rµjpuqu
ˇ

ˇ

ı

.

We need to bound the second term. By some calculations, it suffices to bound
ˇ

ˇ

ˇ
t pRjkpuq ´

pRjkpusqu´
“

Et pRjkpuqu´Et pRjkpusqu
‰

ˇ

ˇ

ˇ
and

ˇ

ˇ

ˇ
t pSjklpuq´ pSjklpusqu´

“

Et pSjklpuqu´Et pSjklpusqu
‰

ˇ

ˇ

ˇ

for k, l “ 1, 2, which means that we need to bound
ˇ

ˇ pRjkpuq ´ pRjkpusq
ˇ

ˇ and
ˇ

ˇ pSjklpuq ´
pSjklpusq

ˇ

ˇ. Let u P Is and consider | pRj1puq ´ pRj1pusq| first. Define the event ΩR,j1 “
󲷤

řn
i“1 vij

řTij

t“1 |Yijt| ď Ep
řn

i“1 vij
řTij

t“1 |Yijt|q ` 1
(

. On this event, it follows from Assump-
tion 6(ii) that

ˇ

ˇ pRj1puq ´ pRj1pusq
ˇ

ˇ ď
ˇ

ˇ

ˇ

n
ÿ

i“1

vij

Tij
ÿ

t“1

Yijt
󲷤

KhpUijt ´ uq ´ KhpUijt ´ usq
(

ˇ

ˇ

ˇ

ď
c|u ´ us|

h2

n
ÿ

i“1

vij

Tij
ÿ

t“1

ˇ

ˇ

ˇ
Yijt

ˇ

ˇ

ˇ
ď

c

Nh2

$

&

%

E
´

n
ÿ

i“1

vij

Tij
ÿ

t“1

ˇ

ˇ

ˇ
Yijt

ˇ

ˇ

ˇ

¯

` 1

,

.

-

ď
c

Nh2
.

Applying similar techniques as above, we can define events ΩR,jk and ΩS,jkl for k, l “ 1, 2.

On the intersection of these events, we can obtain that | pRjkpuq ´ pRjkpusq| ď cpNh2q´1 and

| pSjklpuq ´ pSjklpusq| ď cpNh2q´1. Combing the above results, we have

sup
uPU

ˇ

ˇ

pµjpuq ´ rµjpuq
ˇ

ˇ ď max
sPrNs

ˇ

ˇ

pµjpusq ´ rµjpusq
ˇ

ˇ `
c

Nh2
.
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Applying Hoeffding’s inequality, we obtain that PpΩc
R,jkq ď expt´p2

řn
i“1 c

2v2ijT
2
ijq

´1u “
expp´cnq ď expp´cγn,T,h,jq and PpΩc

S,jklq ď expt´p2
řn

i“1 c
2v2ijT

2
ijq

´1u “ expp´cnq ď
expp´cγn,T,h,jq for k, l “ 1, 2. It follows from the above results and the union bound of
probability with the choice of N “ tcph2δq´1u that there exist some positive constants c1
and c2 such that, for any δ P p0, 1s,

P
!

sup
uPU

|pµjpuq ´ rµjpuq| ě δ
)

ď
c2
h2δ

expp´c1γn,T,h,jδ
2q. (A.18)

Take arbitrarily small 󰂃1 ą 0. If n󰂃1γn,T,h,jδ
2 ě 1, then the right side of (A.18) reduces to

c2tn󰂃1γn,T,h,ju1{2h´2 expp´c1γn,T,h,jδ
2q. If n󰂃1γn,T,h,jδ

2 ď 1, we can choose c2 and n󰂃1 ą c
such that c2 expp´c1c

´1q ě 1 and the same bound c1tn󰂃1γn,T,h,ju1{2h´2 expp´c1γn,T,h,jδ
2q

can still be used. Hence (6) in Theorem 2 holds, which completes the proof of concentration
inequality for the mean estimator in supremum norm. 󰃈

A.2 Proof of Theorem 3

We organize the proof in four steps. First, we will define pΣp¨, ¨q, rΣp¨, ¨q and obtain the
decomposition of pΣp¨, ¨q ´ rΣp¨, ¨q. Second, we will prove the local concentration inequality
for fixed pu, vq P U2. Third, we will prove the concentration inequality in Hilbert–Schmidt
norm. Finally, we will prove the concentration inequality in supremum norm.

A.2.1 Definition and Decomposition

Without loss of generality, let hΣ,jk “ h for pj, kq P rps2 and denote ẽ0 “ p1, 0, 0qT, rUijkts “
󲷤

1, pUijt ´ uq{h, pUiks ´ vq{h
(T

. For j “ k, let

pΞjjpu, vq “
n

ÿ

i“1

wijj

ÿ

1ďt‰sďTij

rUijjts
rUT
ijjtsKhpUijt ´ uqKhpUijs ´ vq,

pZjjpu, vq “
n

ÿ

i“1

wijj

ÿ

1ďt‰sďTij

rUijjtsΘijjtsKhpUijt ´ uqKhpUijs ´ vq.

For j ‰ k, let

pΞjkpu, vq “
n

ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

s“1

rUijkts
rUT
ijktsKhpUijt ´ uqKhpUiks ´ vq,

pZjkpu, vq “
n

ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

s“1

rUijktsΘijktsKhpUijt ´ uqKhpUiks ´ vq.

A simple calculation yields that pΣjkpu, vq “ ẽT
0 tpΞjkpu, vqu´1

pZjkpu, vq. Let

rΣjkpu, vq “ ẽT
0

“

EtpΞjkpu, vqu
‰´1EtpZjkpu, vqu. (A.19)

We can decompose pΣjkpu, vq ´ rΣjkpu, vq as

pΣjkpu, vq ´ rΣjkpu, vq “ẽT
0 ptpΞjkpu, vqu´1 ´ rEtpΞjkpu, vqus´1qpZjkpu, vq

` ẽT
0 rEtpΞjkpu, vqus´1rpZjkpu, vq ´ EtpZjkpu, vqus,
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which further implies that

ˇ

ˇpΣjkpu, vq ´ rΣjkpu, vq
ˇ

ˇ

ď}EtpΞjkpu, vqu}´1
min}pZjkpu, vq ´ EtpZjkpu, vqu}

` }EtpΞjkpu, vqu}´1
min}pΞjkpu, vq}´1

min}}pZjkpu, vq}}pΞjkpu, vq ´ EtpΞjkpu, vqu}F.

(A.20)

In the following, we will prove the concentration results for case j ‰ k, and the results for
the case j “ k can be proved in a similar manner.

A.2.2 Local Concentration Inequality

We will firstly show that there exists some positive constant c (independent of u, v) such
that for any δ ą 0 and pu, vq P U2,

P
!

›

›pΞjkpu, vq ´ EtpΞjkpu, vqu
›

›

F
ě δ

)

ď 18 exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

. (A.21)

For m, l “ 1, 2, 3, let pΞjkmlpu, vq be the pm, lqth entry of pΞjkpu, vq. It follows from
Assumptions 4 and 6 that for any integer q “ 2, 3, . . . and s, s1 “ 0, 1, 2,

E
"

ˇ

ˇ

ˇ

´Uijt ´ u

h

¯s´Uikt1 ´ v

h

¯s1

KhpUijt ´ uqKhpUikt1 ´ vq
ˇ

ˇ

ˇ

q
*

ď
ż

h´2qKq
´ t ´ u

h

¯

Kq
´ t1 ´ v

h

¯ˇ

ˇ

ˇ

t ´ u

h

ˇ

ˇ

ˇ

sqˇ

ˇ

ˇ

t1 ´ v

h

ˇ

ˇ

ˇ

sq
fU ptqfU pt1qdtdt1 ď ch2´2q.

(A.22)

Note that Assumption 3 implies that the weights are of the same order wijk — pn sT 2
Σ,jkq´1.

By (A.22),

n
ÿ

i“1

Tij
ÿ

t“1

Tik
ÿ

t1“1

E
"

|p
Uijt ´ u

h
qsp

Uikt1 ´ v

h
qs

1
KhpUijt ´ uqKhpUikt1 ´ vq|2

*

ď cn sT 2
Σ,jkh

´2,

n
ÿ

i“1

Tij
ÿ

t“1

Tik
ÿ

t1“1

E
"

|p
Uijt ´ u

h
qsp

Uikt1 ´ v

h
qs

1
KhpUijt ´ uqKhpUikt1 ´ vq|q

*

ď 2´1q!cn sT 2
Σ,jkh

2´2q

for q ě 3. Applying the Bernstein inequality yields that there exists some positive constant
c (independent of u, v) such that for any δ ą 0 and pu, vq P U2,

P
!

ˇ

ˇpΞjkmlpu, vq ´ EtpΞjkmlpu, vqu
ˇ

ˇ ě δ
)

ď 2 exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

,

for m, l “ 1, 2, 3, which, by the union bound of probability, implies that (A.21) holds.
For m “ 1, 2, 3, let pZjkmpu, vq be the mth element of pZjkpu, vq. We will next show

that, there exits some positive constant c (independent of u, v) such that for any δ ą 0 and
pu, vq P U2,

P
!

ˇ

ˇ pZjkmpu, vq ´ Et pZjkmpu, vqu
ˇ

ˇ ě δ
)

ď c exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

, (A.23)
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where νn,T,h,jk “ np1^ sT 2
Σ,jkh

2q. We only need to consider the case m “ 1, while the results
for cases m “ 2, 3 can be proved similarly. Denote that

ζijkts “ tYijt ´ µjpUijtqutYiks ´ µkpUiksqu ´ ΣjkpUijt, Uiksq,

pZjk4pu, vq “
n

ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

s“1

KhpUijt ´ uqKhpUiks ´ vqΣjkpUijt, Uiksq,

pZjk5pu, vq “
n

ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

s“1

KhpUijt ´ uqKhpUiks ´ vqζijkts.

Then we rewrite pZjk1pu, vq ´ Et pZjk1pu, vqu as

pZjk1pu, vq ´ Et pZjk1pu, vqu “ pZjk4pu, vq ´ Et pZjk4pu, vqu ` pZjk5pu, vq. (A.24)

Following the same procedure to prove (A.21) with the aid of the Bernstein inequality,
we can obtain that there exists some positive constant c such that for any δ ą 0 and
pu, vq P U2,

P
!

ˇ

ˇ pZjk4pu, vq ´ Et pZjk4pu, vqu
ˇ

ˇ ě δ
)

ď 2 exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

. (A.25)

Now we consider the tail behavior of pZjk5pu, vq. Define the event rVjk “ tpUijt, Uiksq, t P
rTijs, s P rTiks, i P rnsu. Note a random variable X is sub-exponential if there exist positive
constants c1 and c2 such that EpexprλtX ´ EpXqusq ď exppc21λ

2{2q for all |λ| ă c´1
2 . The

sub-Gaussianities under Assumption 1 implies that, conditional on the event rVjk, Yijt ´
µjpUijtq and Yiks´µkpUiksq are sub-Gaussian random variables, then tYijt´µjpUijtqutYiks´
µkpUiksqu is a sub-exponential random variable, and hence we can obtain the Bernstein-type
bound Etexppλζijktsq

ˇ

ˇrVjk

(

ď exp
󲷤

p1´ cλq´1cλ2
(

for any λ P p0, c´1q. Rewrite pZjk5pu, vq “
řn

i“1wijkφijk1pu, vq with φijk1pu, vq “
řTij

t“1

řTik
s“1KhpUijt ´uqKhpUiks ´vqζijkts. Note that,

for each i, Assumption 3 implies that wijk — pn sT 2
Σ,jkq´1. If

řTij

t“1

řTik
s“1KhpUijt´uqKhpUiks´

vq ą 0 holds, it follows from Jensen’s inequality and the above result that

E
”

exptλwijkφijk1pu, vqu
ˇ

ˇ

ˇ

rVjk

ı

ď
1

řTij

t“1

řTik
s“1KhpUijt ´ uqKhpUiks ´ vq

Tij
ÿ

t“1

Tik
ÿ

s“1

´

KhpUijt ´ uqKhpUiks ´ vq

ˆ E
”

exp
!

λwijkζijkts

Tij
ÿ

t1“1

Tik
ÿ

s1“1

KhpUijt1 ´ uqKhpUiks1 ´ vq
)ˇ

ˇ

ˇ

rVjk

ı¯

ď exp

»

—

–

cλ2pn sT 2
Σ,jkq´2

!

ř

t,sKhpUijt ´ uqKhpUiks ´ vq
)2

1 ´ cλpn sT 2
Σ,jkq´1

ř

t,sKhpUijt ´ uqKhpUiks ´ vq

fi

ffi

fl

.

where 0 ă λpn sT 2
Σ,jkq´1

řTij

t“1

řTik
s“1KhpUijt ´ uqKhpUiks ´ vq ă c´1. It is obvious that the

above inequality still holds even if
řTij

t“1

řTik
s“1KhpUijt ´ uqKhpUiks ´ vq “ 0. Assumption 5
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implies that the number of nonzero terms in
řTij

t“1

řTik
s“1KhpUijt ´ uqKhpUiks ´ vq has an

upper bound cp1_ sT 2
Σ,jkh

2q, which yields that
řTij

t“1

řTik
s“1KhpUijt´uqKhpUiks´vq ď ch´2p1_

sT 2
Σ,jkh

2q. Therefore, for any λ satisfying 0 ă λpn sT 2
Σ,jkh

2q´1p1 _ sT 2
Σ,jkh

2q ă c´1 for some
constant c ą 0, we obtain that

E

«

exp
!

λ
n

ÿ

i“1

wijkφijk1pu, vq
)ˇ

ˇ

ˇ

rVjk

ff

ď exp

#

cλ2pn sT 2
Σ,jkq´2h´2p1 _ sT 2

Σ,jkh
2q

řn
i“1

řTij

t“1

řTik
s“1KhpUijt ´ uqKhpUiks ´ vq

1 ´ cλpn sT 2
Σ,jkh2q´1p1 _ sT 2

Σ,jkh2q

+

.

For any δ ą 0, define the event

Λjk,1pδq “

$

&

%

n
ÿ

i“1

Tij
ÿ

t“1

Tik
ÿ

s“1

KhpUijt ´ uqKhpUiks ´ vq ď cp1 ` δqn sT 2
Σ,jk

,

.

-

.

We have

E

«

exp
!

λ
n

ÿ

i“1

wijkφijk1pu, vq
)ˇ

ˇ

ˇ
Λjk,1pδq

ff

ď exp

#

cλ2p1 ` δqpn sT 2
Σ,jkh

2q´1p1 _ sT 2
Σ,jkh

2q

1 ´ cλpn sT 2
Σ,jkh2q´1p1 _ sT 2

Σ,jkh2q

+

.

Consequently, we obtain that

P
!

n
ÿ

i“1

wijkφijk1puq ě δ
ˇ

ˇ

ˇ
Λjk,1pδq

)

ď exp

#

´λδ `
cλ2p1 ` δqpn sT 2

Σ,jkh
2q´1p1 _ sT 2

Σ,jkh
2q

1 ´ cλpn sT 2
Σ,jkh2q´1p1 _ sT 2

Σ,jkh2q

+

.

(A.26)

With the choice of λ “ n sT 2
Σ,jkh

2δ
󲷤

2cp1` δqp1_ sT 2
Σ,jkh

2q ` cδp1_ sT 2
Σ,jkh

2q
(´1

, (A.26) reduces
to

P
!

n
ÿ

i“1

wijkφijk1pu, vq ě δ
ˇ

ˇ

ˇ
Λjk,1pδq

)

ď exp
!

´
cνn,T,h,jkδ

2

1 ` δ

)

, (A.27)

where the constant c is chosen to satisfy cλpn sT 2
Σ,jkh

2q´1p1 _ sT 2
Σ,jkh

2q ď 1{2. Note that

n
ÿ

i“1

Tij
ÿ

t“1

Tik
ÿ

s“1

E
󲷤

KhpUijt ´ uqKhpUiks ´ vq
(

ď cn sT 2
Σ,jk.

By the Bernstein inequality, we obtain that there exists some positive constant c such that
for any δ ą 0

P

¨

˝

n
ÿ

i“1

Tij
ÿ

t“1

Tik
ÿ

s“1

”

KhpUijt ´ uqKhpUiks ´ vq ´ E
󲷤

KhpUijt ´ uqKhpUiks ´ vq
(

ı

ě n sT 2
Σ,jkδ

˛

‚

ď exp

ˆ

´cνn,T,h,jkδ
2

1 ` δ

˙

,
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which implies that

1 ´ PtΛjk,1pδqu ď exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

. (A.28)

Combining (A.27) and (A.28), we obtain that there exists some constant c ą 0 such that
for any δ ą 0,

P
!

pZjk5pu, vq ě δ
)

ď P
!

pZjk5pu, vq ě δ
ˇ

ˇ

ˇ
Λjk,1pδq

)

` P
!

Λjk,1pδqc
)

ď 2 exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

,

which leads to

P
!

ˇ

ˇ pZjk5pu, vq
ˇ

ˇ ě δ
)

ď 4 exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

.

It follows from the above, (A.24) and (A.25) that for each δ ą 0 and pu, vq P U2, there exists
some positive constant c such that

P
!

ˇ

ˇ pZjk1pu, vq ´ Et pZjk1pu, vqu
ˇ

ˇ ě δ
)

ď 6 exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

.

Define the event Λjk,2pδq “
󲷤

}pΞjkpu, vq ´ EtpΞjkpu, vqu}F ď δ{2
(

. Note that EtpΞjkpu, vqu is
positive definite. On the event Λjk,2pδq with δ P p0, 1s, we obtain that

}pΞjkpu, vq}min ě cp1 ´ δ{2q. (A.29)

By (A.21), we have

1 ´ P
󲷤

Λjk,2pδq
(

ď 18 exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

. (A.30)

Define the event Λjk,3pδq “
󲷤›

›pZjkpu, vq ´ EtpZjkpu, vqu
›

› ď δ
(

. Note that, under Assump-

tion 3 with wijk — pn sT 2
Σ,jkq´1,

řn
i“1wijk

řTij

t“1

řTik
s“1 EtKhpUijt ´uqKhpUiks ´ vqu ď c, hence

}EtpZjkpu, vqu} is uniformly bounded over U2. On the event Ωjk,3pδq, we have

›

›pZjkpu, vq
›

› ď cp1 ` δq. (A.31)

On the event Λjk,2pδq X Λjk,3pδq with δ P p0, 1s, it follows from (A.20), (A.29) and (A.31)
that

ˇ

ˇpΣjkpu, vq ´ rΣjkpu, vq
ˇ

ˇ ď cδ ` cp1 ´ δ{2q´1p1 ` δqδ ď c3δ.

This together with concentration inequalities in (A.23) and (A.30) implies that there exist
some positive universal constants c1 and c2 such that for any δ P p0, 1s and pu, vq P U2,

P
!

ˇ

ˇpΣjkpu, vq ´ rΣjkpu, vq
ˇ

ˇ ě δ
)

ď c2 exp
`

´c1νn,T,h,jkδ
2
˘

,

which completes the proof of local concentration inequality for the covariance estimator.
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A.2.3 Concentration Inequality in Hilbert–Schmidt Norm

We will derive the L2 concentration inequality of }pΣjk ´ rΣjk}S . Let

rΞjkpu, vq “ pn sT 2
Σ,jkq´1

n
ÿ

i“1

Tij
ÿ

t“1

Tik
ÿ

s“1

rUijkts
rUT
ijktsKhpUijt ´ uqKhpUiks ´ vq.

Then we have that }pΞjkpu, vq}min ě c}rΞjkpu, vq}min. Similar to Appendix A.1.3, we will

give a lower bound on }rΞjkpu, vq}min. Denote ĂW “ suppu,vqPU2

›

›rΞjkpu, vq ´ EtrΞjkpu, vqu
›

›

F
.

For t, s “ 1, 2, 3, let rΞjktspu, vq be the pt, sqth entry of rΞjkpu, vq. Note that Et|pUijt ´
uqah´apUiks ´ vqbh´bKhpUijt ´ uqKhpUiks ´ vq|u ď c for a, b “ 0, 1, 2, and, moreover,

EpĂW q ď 6maxt,s Etsuppu,vqPU2 |rΞjktspu, vq|u. In an analogy to Lemma 13.5 of Boucheron
et al. (2013) and by the similar arguments below (A.14) in Appendix A.1.3, we can show

that EpĂW q ď cpn sT 2
Σ,jkq´1{2. In addition, it follows from the facts varpW q ď EpW 2q ď

9maxt,s vartsuppu,vqPU2
rΞjktspu, vqu, |pUijt´uqah´apUiks´vqbh´bKhpUijt´uqKhpUiks´vq| ď

ch´2, EtpUijt ´uq2ah´2apUiks ´ vq2bh´2bK2
hpUijt ´uqK2

hpUiks ´ vqu ď ch´2 for a, b “ 0, 1, 2,

and Theorem 11.10 of Boucheron et al. (2013) that varpn sT 2
Σ,jkh

2
ĂW q ď 2Epn sT 2

Σ,jkh
2
ĂW q `

řn
i“1

řTij

t“1

řTik
s“1 ch

´2h4 ď cpn sT 2
Σ,jkq1{2h2 ` cn sT 2

Σ,jkh
2, which implies that the variance of ĂW

is bounded by cpn sT 2
Σ,jkh

2q´1 ď cpνn,T,h,jkq´1. Noting the similar arguments below (A.14)
and applying Theorem 12.5 of Boucheron et al. (2013), we obtain that there exists some
positive constant c such that, for any δ ą 0,

P
!

ĂW ´ EpĂW q ą δ
)

ď exp
´

´
cνn,T,h,jkδ

2

1 ` δ

¯

. (A.32)

Define the event Λjk,4pδq “
󲷤

suppu,vqPU2

›

›rΞjkpu, vq ´ EtrΞjkpu, vqu
›

›

F
ď δ{2

(

with δ P p0, 1s.
By (A.32), we obtain that there exists some constant c ą 0 such that, for any δ P p0, 1s,

1 ´ P tΛjk,4pδqu ď 2 exp
`

´cνn,T,h,jkδ
2
˘

.

On the event Λjk,4 “ Λjk,4pδ̃1q with cpνn,T,h,jkq´1{2 ă δ̃1 ď 1, we have }pΞjkpu, vq}min ě
c}rΞjkpu, vq}min ě cp1 ´ δ̃1{2q ě c{2. Notice that EtpΞjkpu, vqu is positive definite and

}EtpZjkpu, vqu} is uniformly bounded over U2. On the event Λjk,4, it thus follows from

(A.20) and }pZjkpu, vq} ď }pZjkpu, vq ´ EtpZjkpu, vqu} ` }EtpZjkpu, vqu} that

|pΣjkpu, vq ´ rΣjkpu, vq| ď c}pZjkpu, vq ´EtpZjkpu, vqu} ` c}pΞjkpu, vq ´EtpΞjkpu, vqu}F (A.33)

and the positive constant c does not depend on pu, vq P U2.
Combining (A.33) with (A.21), (A.23) and applying the first part of Lemma 11 yields

that, for any pu, vq P U2 and integer q ě 1,

E
!

|pΣjkpu, vq ´ rΣjkpu, vq|2q
ˇ

ˇ

ˇ
Λjk,4

)

ď q!c
´ 4

cνn,T,h,jk

¯q
` p2qq!c

´ 4

cνn,T,h,jk

¯2q
.

Applying the second part of Lemma 11, we can show that, for each δ P p0, 1s,

P
´

}pΣjk ´ rΣjk}S ě δ
¯

ď P
´

}pΣjk ´ rΣjk}S ě δ
ˇ

ˇΛjk,4

¯

` P
`

Λc
jk,4

˘

ď c4 exp
`

´ c3νn,T,h,jkδ
2
˘

,

which means that (7) in Theorem 3 holds and completes the proof of concentration inequality
for the covariance estimator in Hilbert–Schmidt norm.
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A.2.4 Concentration Inequality in Supremum Norm

We will derive the uniform concentration bound of suppu,vqPU2 |pΣjkpu, vq ´ rΣjkpu, vq|. We
partition the interval U “ r0, 1s into N subintervals Is for s P rN s of equal length. Let us
and vs1 be the centers of Is and Is1 , respectively, then we have

sup
pu,vqPU2

|pΣjkpu, vq ´ rΣjkpu, vq| ď max
s,s1PrNs

”

ˇ

ˇpΣjkpus, vs1q ´ rΣjkpus, vs1q
ˇ

ˇ

`
ˇ

ˇtpΣjkpu, vq ´ pΣjkpus, vs1qu ´ trΣjkpu, vq ´ rΣjkpus, vs1qu
ˇ

ˇ

ı

.

We need to bound the second term. By some calculations, it suffices to bound
ˇ

ˇ

ˇ
t pZjkmpu, vq´

pZjkmpus, vs1qu ´
“

Et pZjkmpu, vqu ´ Et pZjkmpus, vs1qu
‰

ˇ

ˇ

ˇ
and

ˇ

ˇ

ˇ
tpΞjkmlpu, vq ´ pΞjkmlpus, vs1qu ´

“

EtpΞjkmlpu, vqu ´ EtpΞjkmlpus, vs1qu
‰

ˇ

ˇ

ˇ
for m, l “ 1, 2, 3, which means that we need to bound

ˇ

ˇ pZjkmpu, vq´ pZjkmpus, vs1q
ˇ

ˇ and
ˇ

ˇpΞjkmlpu, vq´pΞjkmlpus, vs1q
ˇ

ˇ. Let pu, vq P IsˆIs1 and consider

| pZjk1pu, vq ´ pZjk1pus, vs1q| for the case of j ‰ k first. The results for the case of j “ k can

be proved in a similar fashion. Define the event ΛZ,jk1 “
󲷤

řn
i“1wijk

řTij

t“1

řTik
t1“1 |Θijktt1 | ď

Ep
řn

i“1wijk
řTij

t“1

řTik
t1“1 |Θijktt1 |q ` 1

(

. On this event, it follows from Assumption 6(ii) that

ˇ

ˇ

ˇ

pZjk1pu, vq ´ pZjk1pus, vs1q
ˇ

ˇ

ˇ

ď
ˇ

ˇ

ˇ

n
ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

t1“1

Θijktt1

”

tKhpUijt ´ uq ´ KhpUijt ´ usquKhpUikt1 ´ vq

`
󲷤

KhpUikt1 ´ vq ´ KhpUikt1 ´ vs1q
(

KhpUijt ´ usq
ıˇ

ˇ

ˇ

ď
cp|u ´ us| _ |v ´ vs1 |q

h2

n
ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

t1“1

ˇ

ˇ

ˇ
Θijktt1

ˇ

ˇ

ˇ

󲷤

KhpUikt1 ´ vq ` KhpUijt ´ usq
(

ď
c

Nh3

$

&

%

E
´

n
ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

t1“1

ˇ

ˇ

ˇ
Θijktt1

ˇ

ˇ

ˇ

¯

` 1

,

.

-

ď
c

Nh3
.

Applying similar techniques as above, we can define events ΛZ,jkm and ΛΞ,jkml for m, l “
1, 2, 3. On the intersection of these events, we can obtain that | pZjkmpu, vq ´ pZjkmpus, vs1q| ď
cpNh3q´1 and |pΞjkmlpu, vq ´ pΞjkmlpus, vs1q| ď cpNh3q´1. Combing the above results, we
have

sup
pu,vqPU2

|pΣjkpu, vq ´ rΣjkpu, vq| ď max
s,s1PrNs

ˇ

ˇpΣjkpus, vs1q ´ rΣjkpus, vs1q
ˇ

ˇ `
c

Nh3
.

By the Bernstein inequality, we have PpΛc
Z,jkmq ď expt´λ ` c21λ

2pn ´ c2λq´1u for λ P
p0, nc´1s. With λ “ np2c21 ` c2q´1, the right-side reduces to expp´cnq ď expp´cνn,T,h,jkq
for m, l “ 1, 2, 3. Similarly, PpΛc

Ξ,jkmlq ď expp´cnq ď expp´cνn,T,h,jkq for m, l “ 1, 2, 3.
It follows from the above results and the union bound of probability with the choice of

32



Phase Transitions for Functional Data in High Dimensions

N “ tcph3δq´1u that there exist some positive constants c3 and c4 such that, for any
δ P p0, 1s,

P
!

sup
pu,vqPU2

|pΣjkpu, vq ´ rΣjkpu, vq| ě δ
)

ď
c4

h6δ2
expp´c3νn,T,h,jkδ

2q. (A.34)

Take arbitrarily small 󰂃2 ą 0. If n󰂃2νn,T,h,jkδ
2 ě 1, the right side of (A.34) reduces to

c4n
󰂃2νn,T,h,jkh

´6 expp´c3νn,T,h,jkδ
2q. If n󰂃2νn,T,h,jkδ

2 ď 1, we can choose c4 and n󰂃2 ą c such
that c4 expp´c3c

´1q ě 1 and hence the same bound c4n
󰂃2νn,T,h,jkh

´6 expp´c3νn,T,h,jkδ
2q can

still be used. We complete the proof of (8) in Theorem 3, the concentration inequality for
the covariance estimator in supremum norm. 󰃈

A.3 Proof of Theorem 6

Note that }pµj ´ µj}2 ď }pµj ´ rµj}2 ` }rµj ´ µj}2, it suffices to bound }rµj ´ µj}2. By (A.1),
for any u P U ,

rµjpuq ´ µjpuq “ eT
0

”

E
󲷤

pSjpuq
(

ı´1
E

”

pRjpuq ´ pSjpuq
󲷤

µjpuq, 0
(T

ı

.

By the Taylor expansion, we have

Eε

”

pRjpuq´pSjpuqtµjpuq, 0uT

ˇ

ˇ

ˇ
Vj

ı

“
n

ÿ

i“1

vij

Tij
ÿ

t“1

rUijtKhµ,j
pUijt´uq

󲷤

µjpUijtq´µjpuq
(

:“ J1`J2,

with

J1 “
n

ÿ

i“1

vij

Tij
ÿ

t“1

rUijtKhµ,j
pUijt ´ uq

Uijt ´ u

hµ,j
hµ,j

Bµjpuq
Bu

,

J2 “
1

2

n
ÿ

i“1

vij

Tij
ÿ

t“1

rUijtKhµ,j
pUijt ´ uq

´Uijt ´ u

hµ,j

¯2
h2µ,j

Bµ2
j pδijtq

Bu2
,

where δijt P ru´hµ,j , u`hµ,js and Eε denotes the expectation over tYijtu in (4) conditional
on the event Vj “ tUijt, t P rTijs, i P rnsu. First consider J1, which equals to the second

column of pSjpuq multiplied by hµ,jBµjpuq{Bu, hence

EU

“

eT
0 rEtpSjpuqus´1J1

‰

“ hµ,j
Bµjpuq

Bu
eT
0 rEtpSjpuqus´1EtpSjpuqup0, 1qT “ 0,

where EU denotes the expectation over Vj . Consider J2 next. Under Assumption 7, we have
K1 “ supjPrps,ξPU |Bµ2

j pξq{Bu2| ă 8. Each entry of |J2| is bounded by the p1, 1qth entry of
pSjpuq multiplied by K1h

2
µ,j{2, and by EtKhpUijt ´ uqu ď 1 we have that the p1, 1qth entry

of EtpSjpuqu is bounded by 1. Note that EtpSjpuqu is positive definite. These results together
yield that

ˇ

ˇEU peT
0 rEtpSjpuqus´1J2q

ˇ

ˇ ď }EtpSjpuqu}´1
min}EU p|J2|q} ď cK1h

2
µ,j ,
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which implies that |rµjpuq ´ µjpuq| ď cK1h
2
µ,j for any u P U . Hence

sup
uPU

ˇ

ˇ

rµjpuq ´ µjpuq
ˇ

ˇ “ Oph2µ,jq and
›

›

rµj ´ µj}2 “ Oph2µ,jq. (A.35)

For M ą 0 with the choice of δ “ plog pq1{2pminj γn,T,h,jq´1{2M ď 1, it follows from the
union bound of probability and (5) in Theorem 2 that

P
! maxjPrps }pµj ´ rµj}2

plog pq1{2pminj γn,T,h,jq´1{2
ě M

)

ď
p

ÿ

j“1

P
!

}pµj ´ rµj}2 ě Mplog pq1{2pmin
j

γn,T,h,jq
´1{2

)

ď
p

ÿ

j“1

c exp
´

´ cγn,T,h,jM
2 log p

minj γn,T,h,j

¯

ď c exptp1 ´ cM2q log pu. (A.36)

We can choose a large M such that 1´ cM2 ă 0, the right-side of (A.36) tends to 0. Hence
maxjPrps }pµj´rµj}2 “ OP tplog pq1{2pminj γn,T,h,jq´1{2u. Combing this with (A.35) yields that

max
jPrps

}µ̂j ´ µj}2 “ OP

"

´ log p

minj γn,T,h,j

¯1{2
` max

j
h2µ,j

*

,

which completes the proof of (9).
The rate of convergence in (10) can be proved following a similar procedure. Let hµ,min “

minj hµ,j , we assume that hµ,min — tlogpp _ nq{nuκ1 where κ1 P p0, 1{2s. Consider hµ,min

with some κ˚
1 ą 1{2, the corresponding rate is not faster than that with κ1 P p0, 1{2s. To

be specific, under the sparse design, the rate of maxjPrps supuPU |µ̂jpuq ´ µjpuq| is tlogpp _

nq{nu1{2´κ˚
1 {2, which is slower than tlogpp _ nq{nu2{5 with κ1 “ 1{5. Under the dense

design with sTµtlogpp _ nq{nuκ
˚
1 Ñ 0 and sTµtlogpp _ nq{nu3{2 Ñ 0, the rate is tlogpp _

nq{nu1{2´κ˚
1 {2

sT
´1{2
µ , which is slower than tlogpp_nq{nu2{5

sT
´2{5
µ with κ1 P p1{5, 1{2s. Under

the dense design with sTµtlogpp _ nq{nuκ
˚
1 Ñ 0 and sTµtlogpp _ nq{nu3{2 Ñ c̃ or 8, the rate

is tlogpp_nq{nu1{2´κ˚
1 {2

sT
´1{2
µ , which is slower than tlogpp_nq{nu1{2 with κ1 “ 1{4. Under

the dense design with sTµtlogpp _ nq{nuκ
˚
1 Ñ c̃ or 8, the rate is tlogpp _ nq{nu1{2, which is

the same as tlogpp _ nq{nu1{2 with κ1 “ 1{4. Based on the above four cases, if κ˚
1 ą 1{2,

the corresponding rate is not faster than that with some κ1 P p0, 1{2s and hence the κ1 that
corresponds with the optimal bandwidth under sparse or dense design is in p0, 1{2s. For
M ą 0 with the choice of δ “ tlogpp _ nqu1{2pminj γn,T,h,jq´1{2M ď 1, by the union bound
of probability and (6) in Theorem 2, we have

P
! maxjPrps supuPU |pµjpuq ´ rµjpuq|

tlogpp _ nqu1{2pminj γn,T,h,jq´1{2
ě M

)

ď
p

ÿ

j“1

P
!

sup
uPU

|pµjpuq ´ rµjpuq| ě Mtlogpp _ nqu1{2pmin
j

γn,T,h,jq
´1{2

)

ď
p

ÿ

j“1

cpn󰂃1γn,T,h,jq1{2

h2µ,min

exp
!

´ cγn,T,h,jM
2 logpp _ nq
minj γn,T,h,j

)

ď c exp
!´3 ` 󰂃1

2
` 2κ1 ´ cM2

¯

logpp _ nq
)

. (A.37)
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We can choose a large M such that 3 ` 󰂃1 ` 4κ1 ´ 2cM2 ă 0, the right-side of (A.37) tends
to 0. Hence

max
jPrps

sup
uPU

ˇ

ˇµ̂jpuq ´ rµjpuq
ˇ

ˇ “ OP

„

! logpp _ nq
minj γn,T,h,j

)1{2
ȷ

.

Combing this with (A.35) yields that

max
jPrps

sup
uPU

ˇ

ˇµ̂jpuq ´ µjpuq
ˇ

ˇ “ OP

„

! logpp _ nq
minj γn,T,h,j

)1{2
` max

j
h2µ,j

ȷ

,

which completes the proof of (10). 󰃈

A.4 Proof of Theorem 7

Note }pΣjk ´ Σjk}S ď }pΣjk ´ rΣjk}S ` }rΣjk ´ Σjk}S , it suffices to bound }rΣjk ´ Σjk}S . By
(A.19), for any pu, vq P U2,

rΣjkpu, vq ´ Σjkpu, vq “ ẽT
0

”

E
󲷤

pΞjkpu, vq
(

ı´1
E

”

pZjkpu, vq ´ pΞjkpu, vq
󲷤

Σjkpu, vq, 0, 0
(T

ı

.

By the Taylor expansion, we have

Eε

”

pZjkpu, vq ´ pΞjkpu, vq
󲷤

Σjkpu, vq, 0, 0
(T

|rVjk

ı

“
n

ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

s“1

rUijktsKhΣ,jk
pUijt ´ uqKhΣ,jk

pUiks ´ vq
󲷤

ΣjkpUijt, Uiksq ´ Σjkpu, vq
(

:“ L1 ` L2 ` L3,

where

L1 “
n

ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

s“1

rUijktsKhΣ,jk
pUijt ´ uqKhΣ,jk

pUiks ´ vq
Uijt ´ u

hΣ,jk

hΣ,jk

BΣjk

Bu
pu, vq,

L2 “
n

ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

s“1

rUijktsKhΣ,jk
pUijt ´ uqKhΣ,jk

pUiks ´ vq
Uiks ´ v

hΣ,jk

hΣ,jk

BΣjk

Bv
pu, vq,

L3 “
n

ÿ

i“1

wijk

Tij
ÿ

t“1

Tik
ÿ

s“1

rUijktsKhΣ,jk
pUijt ´ uqKhΣ,jk

pUiks ´ vqrLijk,

rLijk “
1

2
h2Σ,jk

´Uijt ´ u

hΣ,jk

¯2 B2Σjk

Bu2
pδijkts1, δijkts2q `

1

2
h2Σ,jk

´Uiks ´ v

hΣ,jk

¯2 B2Σjk

Bv2
pδijkts1, δijkts2q

` h2Σ,jk

Uijt ´ u

hΣ,jk

Uiks ´ v

hΣ,jk

B2Σjk

BuBv
pδijkts1, δijkts2q,

pδijkts1, δijkts2q P ru´hΣ,jk, u`hΣ,jksˆrv´hΣ,jk, v`hΣ,jks and the event rVjk “ tpUijt, Uiksq, t P
rTijs, s P rTiks, i P rnsu. First consider L1, which equals to the second column of pΞjkpu, vq
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multiplied by hΣ,jkBΣjkpu, vq{Bu, hence EU

´

ẽT
0

”

E
󲷤

pΞjkpu, vq
(

ı´1
L1

¯

equals to

hΣ,jk

BΣjk

Bu
pu, vqẽT

0

”

E
󲷤

pΞjkpu, vq
(

ı´1
E

!

pΞjkpu, vq
)

p0, 1, 0qT “ 0,

where EU denotes the expectation over rVjk. Following the similar procedure, we can show
that

EU

´

ẽT
0

”

E
󲷤

pΞjkpu, vq
(

ı´1
L2

¯

“ 0.

Then consider L3. By Assumption 7, we have

K2 “ sup
pj,kqPrps2,pu,vqPU2

tB2Σjkpu, vq{Bv2, B2Σjkpu, vq{Bu2, B2Σjkpu, vq{BuBvu ă 8.

Each entry of |L3| is bounded by the p1, 1qth entry of pΞjkpu, vq multiplied by 2K2h
2
Σ,jk, and

by EtKhpUijt ´ uqKhpUiks ´ vqu ď 1, the p1, 1qth entry of EtpΞjkpu, vqu is bounded by 1.

Note that EtpΞjkpu, vqu is positive definite. Combining these results, we have

ˇ

ˇ

ˇ
EU

´

ẽT
0

”

E
󲷤

pΞjkpu, vq
(

ı´1
L3

¯ˇ

ˇ

ˇ
ď }EtpΞjkpu, vqu}´1

min}EU p|L3|q} ď cK2h
2
Σ,jk,

which implies that |rΣjkpu, vq ´ Σjkpu, vq| ď cK2h
2
Σ,jk for any pu, vq P U2. Hence

sup
pu,vqPU2

ˇ

ˇrΣjkpu, vq ´ Σjkpu, vq
ˇ

ˇ “ Oph2Σ,jkq and
›

›rΣjk ´ Σjk}S “ Oph2Σ,jkq. (A.38)

For M ą 0 with the choice of δ “ plog pq1{2pminj,k νn,T,h,jkq´1{2M ď 1, it follows from the
union bound of probability and (7) in Theorem 3 that

P
! maxj,kPrps }pΣjk ´ rΣjk}S

plog pq1{2pminj,k νn,T,h,jkq´1{2
ě M

)

ď
p

ÿ

j“1

p
ÿ

k“1

P
!

}pΣjk ´ rΣjk}S ě Mplog pq1{2pmin
j,k

νn,T,h,jkq´1{2
)

ď
p

ÿ

j“1

p
ÿ

k“1

c exp
´

´ cνn,T,h,jkM
2 log p

minj,k νn,T,h,jk

¯

ď c exptp2 ´ cM2q log pu.

(A.39)

We can choose a large M such that 2´ cM2 ă 0, the right-side of (A.39) tends to 0. Hence
maxj,kPrps }pΣjk ´ rΣjk}S “ OP tplog pq1{2pminj,k νn,T,h,jkq´1{2u. Combing this with (A.38)
yields that

max
j,kPrps

}pΣjk ´ Σjk}S “ OP

"

´ log p

minj,k νn,T,h,jk

¯1{2
` max

j,k
h2Σ,jk

*

,

which completes the proof of (11).
The rate of convergence in (12) can be proved following a similar procedure. Let hΣ,min “

minj,k hΣ,jk, we can assume that hΣ,min — tlogpp_nq{nuκ2 where κ2 P p0, 1{2s. Consider hΣ,min
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with some κ˚
2 ą 1{2, the corresponding rate is not faster than that with some κ2 P p0, 1{2s.

Specifically, under the sparse design, the rate of maxj,kPrps suppu,vqPU2 |pΣjkpu, vq ´Σjkpu, vq|

is tlogpp _ nq{nu1{2´κ˚
2 , which is slower than tlogpp _ nq{nu1{3 with κ2 “ 1{6. Under the

dense design with sTΣtlogpp _ nq{nuκ
˚
2 Ñ 0 and sTΣtlogpp _ nq{nu Ñ 0, the rate is tlogpp _

nq{nu1{2´κ˚
2 sT´1

Σ , which is slower than tlogpp _ nq{nu1{3
sT

´2{3
Σ with κ2 P p1{6, 1{2s. Under

the dense design with sTΣtlogpp _ nq{nuκ
˚
2 Ñ 0 and sTΣtlogpp _ nq{nu Ñ rc or 8, the rate

is tlogpp _ nq{nu1{2´κ˚
2 sT´1

Σ , which is slower than tlogpp _ nq{nu1{2 with κ2 “ 1{4. Under
the dense design with sTΣtlogpp _ nq{nuκ

˚
2 Ñ rc or 8, the rate is tlogpp _ nq{nu1{2, which is

the same as tlogpp _ nq{nu1{2 with κ2 “ 1{4. Based on the above four cases, if κ˚
2 ą 1{2,

the corresponding rate is not faster than that with some κ2 P p0, 1{2s and hence κ2 that
corresponds with the optimal bandwidth under sparse or dense design is in p0, 1{2s. For
M ą 0 with the choice of δ “ tlogpp _ nqu1{2pminj γn,T,h,jq´1{2M ď 1, by the union bound
of probability and (8) in Theorem 3, we have

P
!maxj,kPrps suppu,vqPU2 |pΣjkpu, vq ´ rΣjkpu, vq|

logpp _ nq1{2pminj,k νn,T,h,jkq´1{2
ě M

)

ď
p

ÿ

j“1

p
ÿ

k“1

P
!

sup
pu,vqPU2

|pΣjkpu, vq ´ rΣjkpu, vq| ě Mtlogpp _ nqu1{2pmin
j,k

νn,T,h,jkq´1{2
)

ď
p

ÿ

j“1

p
ÿ

k“1

cn󰂃2νn,T,h,jk
h6Σ,min

exp
!

´ cνn,T,h,jkM
2 logpp _ nq
minj,k νn,T,h,jk

)

ď c exptp3 ` 󰂃2 ` 6κ2 ´ cM2q logpp _ nqu.

We can choose a large M such that 3 ` 󰂃2 ` 6κ2 ´ cM2 ă 0, the right-side of the above
inequality tends to 0. Hence

max
j,kPrps

sup
pu,vqPU2

|pΣjkpu, vq ´ rΣjkpu, vq| “ OP

„

! logpp _ nq
minj,k νn,T,h,jk

)1{2
ȷ

.

Combing this with (A.38) yields that

max
j,kPrps

sup
pu,vqPU2

ˇ

ˇpΣjkpu, vq ´ Σjkpu, vq
ˇ

ˇ “ OP

„

! logpp _ nq
minj,k νn,T,h,jk

)1{2
` max

j,k
h2Σ,jk

ȷ

,

which completes the proof of (12). 󰃈

A.5 Proof of Proposition 10

It follows from (4.43) and Lemma 4.3 of Bosq (2000) that

sup
lPrdjs

|pλjl ´ λjl| ď }pΣjj ´ Σjj}S and sup
lPrdjs

δjl}pφjl ´ φjl}2 ď 2
?
2}pΣjj ´ Σjj}S .

Combining the above with Theorem 7 yields the result in Proposition 10. 󰃈
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Appendix B. Verification of the Claim in Section 5

For the mean estimator, define the set of r candidate bandwidths Hµ “ thp1q
µ , . . . , h

prq
µ u. In

our simulations, the bandwidth for each dimension can be chosen from Hµ freely, and
hence there are rp possible outcomes. The targeted evaluation metric is globalopt “

minpm1,...,mpqPrrsp maxjPrps MISEppµj , h
pmjq
µ q. We will show that globalopt “ MaxMISEpµq,

the right side of which is much easier to calculate as it only takes into account pr cases.
On one hand, it is obvious that globalopt ď MaxMISEpµq. On the other hand, for fixed

pj,mjq P rps ˆ rrs, MISEppµj , h
pmjq
µ q ě minmPrrs MISEppµj , h

pmq
µ q, and hence globalopt ě

min
pm1,...,mpqPrrsp

max
jPrps

min
mPrrs

MISEppµj , h
pmq
µ q “ max

jPrps
min
mPrrs

MISEppµj , h
pmq
µ q “ MaxMISEpµq.

Combining the above results yields globalopt “ MaxMISEpµq. The corresponding claim for
the covariance estimator can be verified in the same way.
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