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Abstract

Nonparametric estimation of the mean and covariance functions is ubiquitous in functional
data analysis and local linear smoothing techniques are most frequently used. Zhang and
Wang (2016) explored different types of asymptotic properties of the estimation, which
reveal interesting phase transition phenomena based on the relative order of the average
sampling frequency per subject T' to the number of subjects n, partitioning the data into
three categories: “sparse”, “semi-dense”, and “ultra-dense”. In an increasingly available
high-dimensional scenario, where the number of functional variables p is large in relation
to n, we revisit this open problem from a non-asymptotic perspective by deriving compre-
hensive concentration inequalities for the local linear smoothers. Besides being of interest
by themselves, our non-asymptotic results lead to elementwise maximum rates of Lo con-
vergence and uniform convergence serving as a fundamentally important tool for further
convergence analysis when p grows exponentially with n and possibly 7. With the pres-
ence of extra log p terms to account for the high-dimensional effect, we then investigate the
scaled phase transitions and the corresponding elementwise maximum rates from sparse to
semi-dense to ultra-dense functional data in high dimensions. We also discuss a couple of
applications of our theoretical results. Finally, numerical studies are carried out to confirm
the established theoretical properties.
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1. Introduction

A fundamental issue in functional data analysis is the nonparametric estimation of the mean
and covariance functions based on discretely sampled and noisy curves. Despite being of
interest by themselves, the estimated quantities serve as building blocks for dimension re-
duction and subsequent modeling of functional data, such as functional principal component
analysis (FPCA) (Yao et al., 2005a; Li and Hsing, 2010) and functional linear regression
(Yao et al., 2005b; Chen et al., 2022). Among candidate nonparametric smoothers, we
focus on the most commonly-adopted local linear smoothing method due to its simplicity
and attractive local and boundary correction properties.

In a typical functional data setting, we have n random curves, representing n subjects,
observed with errors, at T; randomly sampled time points for the ith subject. The sam-
pling frequency T; plays a pivotal role in the estimation, as it may affect the choice of the
estimation procedure. The literature can be loosely divided into two categories. The first
category corresponds to dense functional data, where T;’s are larger than some order of n.
A conventional approach to handle such data implements nonparametric smoothing to the
observations from each subject to eliminate the noise, thus reconstructing each individual
curve before subsequent analysis (Zhang and Chen, 2007). The second category referred
to as sparse functional data, accords with bounded 7;’s. Under such a scenario, the pre-
smoothing step is no longer applicable, an alternative pooling strategy considers pooling
the data from all subjects to build strength across all observations (Yao et al., 2005a; Li and
Hsing, 2010). More recently, Zhang and Wang (2016) provided a comprehensive analysis
of phase transitions and the associated rates of convergence for three types of asymptotic
properties: local asymptotic normality, Lo convergence, and uniform convergence. They
proposed to further partition dense functional data into new categories: “semi-dense” and
“ultra-dense”, depending on whether the root-n rate is achieved with negligible asymptotic
bias or not. However, these aforementioned asymptotic results are only suitable for handling
univariate or low-dimensional multivariate functional data.

With recent advances in data collection technology, high-dimensional functional data
sets become increasingly available. Examples include time-course gene expression data,
and electroencephalography and functional magnetic resonance imaging data, where signals
are measured over time at a large number of regions of interest (Zhu et al., 2016; Li and
Solea, 2018; Zapata et al., 2022; Fang et al., 2024). Those data can be represented as a
p-vector of random functions X;(-) = {X;1(-),..., Xip(-)}" for i = 1,...,n defined on a
compact set U, with the p-vector of mean functions p(-) = {pi(:),...,pp(-)}" = E{X()}
and the (p x p)-matrix of marginal- and cross-covariance functions

3(u,v) = {Zk(u, v) }pxp, Bjr(u,v) = cov{X;;(u), Xir(v)}. (1)
In a high-dimensional regime, the dimension p can be diverging with, or even larger than,

the number of subjects n. In practice, each X;;(-) is observed subject to error contamination
at Tj; random time points. See (4) below.
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The estimation of mean and covariance functions for high-dimensional functional data is
not only interesting at its own right but also plays a foundational role as a critical starting
point for subsequent analysis. Due to the infinite-dimensionality of functional data, it is
common practice to truncate the basis expansion of each function Xj;(-) at a finite level,
using either data-driven basis expansion via FPCA or pre-fixed basis expansion. This al-
lows for the subsequent development of regularized methods for the sparse estimation to
address the high-dimensionality based on estimated FPC scores or estimated basis coeffi-
cients. Importantly, the estimation of mean and covariance functions are implicitly involved
in this procedure. Applications of this type of approach to estimate sparse high-dimensional
functional models include functional graphical models (Qiao et al., 2019; Zhao et al., 2022;
Solea and Li, 2022; Zapata et al., 2022; Lee et al., 2023), functional additive regressions
(Fan et al., 2014, 2015; Kong et al., 2016; Luo and Qi, 2017; Xue and Yao, 2021), sparse
FPCA (Hu and Yao, 2022) and functional linear discriminant analysis (Xue et al., 2024).
Another line of applications considers the sparsity-induced estimation of the covariance ma-
trix function without any basis expansion, such as Fang et al. (2024); Li et al. (2023) and
Leng et al. (2024). Both types of applications call for the investigation of non-asymptotic
properties of the componentwise mean and covariance estimators, which serves as the mo-
tivation of our paper when dealing with the practical scenario of partially observed curves
in high dimensions. See Section 4 for details of some applications.

Within the high-dimensional statistical learning framework, it is essential to conduct
non-asymptotic analysis of the estimators by developing concentration inequalities under
a given performance metric, which can lead to probabilistic error bounds in the elemen-
twise maximum norm as a function of n, p, and possibly T;;’s (depending whether they
are diverging or bounded) under our setup. Existing literature has mainly focused on fully
observed functional data, based on which concentration inequalities for the estimated covari-
ance functions were established in Qiao et al. (2019) and Zapata et al. (2022). In practical
scenarios where curves are partially observed with errors, addressing dense functional data
is achievable by applying the pre-smoothing technique to observations from each i, j (Kong
et al., 2016). Alternatively, a unified pooling-type local linear smoothing approach can be
employed for estimating the mean functions f;(-)’s and marginal- and (or) cross-covariance
functions ¥;(-, -)’s across j, k to handle both sparsely and densely observed functional data
(Qiao et al., 2020; Lee et al., 2023; Fang et al., 2024). Although such nonparametric smooth-
ing approach suffers from high computational cost when p is large, it can be substantially
accelerated in a common practical scenario where each Xj;(-) is observed at the same set of
points across j € [p] especially with the aid of linear binning (Fan and Marron, 1994), result-
ing in an efficient estimation procedure. Moreover, those commonly-adopted FPCA-based
methods only necessitate the estimation of marginal- instead of cross-covariance functions
across j € [p] (Qiao et al., 2019; Solea and Li, 2022), and can be easily paralleled for fast
computation. See Remark 1.

On the theory side, this approach entails dealing with the second-order U-statistics
with complex dependence structures, posing a technically challenging task. Qiao et al.
(2020) made the first attempt to derive some sub-optimal concentration inequalities for
local linear smoothers of marginal-covariance functions f]jj(-, -)’s, albeit under a restrictive
finite-dimensional setting. Lee et al. (2023) established the convergence of their proposed
estimation of conditional functional graphical models under the assumption of elementwise
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maximum rate for the covariance smoothers:

max [$56 = Sls = Op(logpn ™) @
where | - ||s denotes the Hilbert-Schmidt norm, and the parameter 7 € (0,1/2] reflects
the average sampling frequency, with larger values yielding denser observational points.
Fang et al. (2024) developed the functional covariance estimation with theoretical guaran-
tees by assuming generalized sub-Gaussian-type concentration inequalities for local linear
smoothers fljk(-, -)’s, resulting in an improved elementwise maximum rate:

max %5 — Zjkls = Op{(logp)/*n™" + h?}, (3)
1<j,k<p

where h > 0 is the bandwidth parameter. However, it remains of theoretical interest to ask:

e What are the exact forms of such rates as functions of n, p, Tj;’s, and associated
bandwidth parameters under cases with different sampling frequencies?

e Are these rates well-established in the sense of specifying the largest values of T and,
compared to Zhang and Wang (2016), exhibiting any corresponding phase transition
phenomena in the high-dimensional setting?

This paper aims to fill crucial theoretical gaps related to local linear smoothers fre-
quently adopted in existing literature. Specifically, we present a systematic and unified
non-asymptotic analysis of local linear smoothers for the mean and covariance functions
to accommodate both sparsely and densely observed functional data in high dimensions.
While our focus is not to introduce new methodologies for handling high-dimensional par-
tially observed functional data, we make three new contributions as follows.

e First, we develop generalized sub-Gaussian-type concentration inequalities for each
functional element of the mean and covariance estimators in both Lo norm and supre-
mum norm. Compared to the asymptotic results in Zhang and Wang (2016), our
non-asymptotic error bounds lead to the same rates of Lo convergence and uniform
convergence, and reveal the same phase transition phenomena depending on the rela-
tive order of the average sampling frequency per subject to n'/* for dense functional
data. See Remarks 4 and 5.

e Second, we derive elementwise maximum rates of both Le and uniform convergence for
the mean and covariance estimators. Notably, we fundamentally improve the rates (2)
and (3) assumed in existing literature in the sense of precisely specifying the largest
values of 7 under cases with different sampling frequencies. These established rates
in Theorems 6 and 7 serve as a foundational tool to provide theoretical guarantees
for a set of aforementioned sparse high-dimensional functional models in the existing
literature when dealing with the practical scenario of partially observed functional
data in high dimensions.

e Third, with the presence of additional log p terms to account for the high-dimensional
effect in our established elementwise maximum rates, the scaled phase transitions
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for high-dimensional dense functional data occur based on the ratios of the average
sampling frequency per subject to n'/4 (log p)*l/ 4. This leads to a further partition of
dense functional data into categories of “semi-dense” and “ultra-dense”, depending
on whether the parametric rate (logp)'/?n=1/2 can be attained or not. With suitable
choices of optimal bandwidths, we also present the optimal elementwise maximum
rates from sparse to semi-dense to ultra-dense functional data, which correspondingly
extend the optimal rates in Zhang and Wang (2016) to the high-dimensional setting.
See Remarks 8 and 9.

Outline of the paper. Section 2 presents the nonparametric smoothing approach to
estimate the mean and covariance functions. In Section 3, we investigate the non-asymptotic
properties of the proposed local linear smoothers and discuss the associated phase transition
phenomena. In Section 4, we outline a couple of applications of the non-asymptotic theory
for the local linear smoothers. The established theoretical results are validated through
simulations in Section 5. All technical proofs are relegated to the appendix.

Notation. We summarize here some notation to be used throughout the paper. For a
positive integer ¢, we write [¢] = {1,...,q}. For z,y € R, we write v y = max(z,y) and
x Ay = min(z,y). We use I(-) to denote an indicator function. We use I, to denote the pxp
identity matrix. Let Lo(U) be a Hilbert space of square-integrable functions on a compact
interval U equipped with the inner product (f,g) = § f(w)g(u)du for f(-), g(-) € Lo(U) and
the induced Ly norm | - ||z = {-,-Y"/2. For any bivariate function ®(-,-) in Lo(U x U), we
also use ® to denote the linear operator induced from the kernel function ®(-,-), that is,
for any f(-) € Lo(U), ©(f)(-) = §@(-,v)f(v)dv € Lo(U), and denote its Hilbert—Schmidt
norm by {{ §®(u,v)?dudv}'/2. For two positive sequences {a,} and {b,}, we write a,, < by,
or b, 2 ay if there exist a positive constant ¢ such that limsup,,_,., a,/b, < c. We write
an = by, if and only if a,, < b, and b, < a, hold simultaneously.

2. Methodology

Let X;(-) = {Xi(-),..., Xip(-)}" for i € [n] be independently and identically distributed
copies of X(-) defined on U with mean p(-) and covariance X(-,-). For any i € [n] and
J € [p], Xi;(-) is not directly observable in practice. Instead it is observed, with random
errors, at 7;; random time points, Ujj1,. .., Uijt,; € U. Let Yij be the observed value of
X; '(Uijt) satisfying

Yije = Xij(Uijt) + €ijts (4)

where the errors €;;;’s, independent of X;;’s, are independently and identically distributed
copies of €; with E(e;) = 0 and var(e;) = O'JZ- < 0.

Based on the observed data {(Uyjt, Yij¢) : i € [n],j € [p],t € [Ti;]}, we present a unified
procedure to estimate the mean functions p;(-)’s and the marginal- and cross-covariance
functions ¥ (-, -)’s for both sparsely and densely observed functional data. In what follows,
denote K () = h~'K(-/h) for a univariate kernel K with bandwidth h > 0. For each j,

a local linear smoother is firstly applied to {(Uij¢,Yij¢) : @ € [n],t € [T3;]}, and hence the
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estimated mean function is attained via fi;(u) = by, where

(bo, b1 = arg mln Z Vij Z { it —bo — b1 (Uije — u)}thw (Uijt — u).

The weight v;; is attached to each observation for the ith subject and the jth functional
variable such that ", Tj;v;; = 1 (Zhang and Wang, 2016).

For each i € [n], j, k € [p],t € [T};] and s € [Tjx], once the mean functions are estimated,
let Ojjnts = {Yije — fj(Usje) }{Yiks — it (Uirs)} be the “raw covariance” between Yj;; and
Yirs. Notice that cov(Yij¢, Yiks) = 3k (Uije, Uirs) + O'?-I(j = k)I(t = s). To estimate the
marginal-covariance function X;;(-,-) for each j or the cross-covariance function (-, -)
for each j # k, we employ local linear surface smoothers to the off-diagonals of the raw
marginal-covariances (0;jjis)1<ts<1;; Or to the raw cross-covariances (Ojjkts)ie[T;;],se[Tir]-
Specifically, we minimize

Z Wijk Z { ijkts — Bo — B1(Uijt — u) — Bo(Uiks — v)}QKhz,jk(Uijt — ) Ky, ;, (Uiks — v)

i=1 (t,s)eT

with respect to (8o, 51, 02), where the set T equals to {(t,s) : t € [Ti;],s € [T;],t # s}
if j = kor {(t,s) : t € [Ti;],s € [Ti]} if j # k, and the weight w;j is assigned to
each triplet (4, j, k) such that > | T;;{Tix — I(j = k)}w;jr = 1. See the weights to estimate
marginal-covariance functlons in Zhang and Wang (2016). The resulting marginal- or cross-
covariance estimator is Ejk(u v) = Bo. For ease of presentation, we assume that the mean
functions p;(-)’s are known in advance when discussing the concentration and convergence
results related to the covariance estimators f]jk(u,v)’s in Section 3 below. However, it is
noteworthy that all our discussions remain valid even when p;(-)’s are unknown as long as
a few additional technical assumptions are imposed.

Our estimation procedure allows general weighting schemes for {v; }ic[n], {Wijk bie[n],j ke[p]
such that two types of frequently-used schemes in existing literature are special cases of
them. One type assigns the same weights to each observation (Yao et al., 2005a) with
vij = (X i)~ and wije = [20, Tyi{Tw — I(j = k)}]7!, so a subject with a larger
number of observations receives more weights in total. The other type assigns the same
weights to each subject (Li and Hsing, 2010), thus leading to v;; = (nTj;)~" and w;j; =
[nTij{Tw — I1(j = k)}]

Remark 1 (i) Suppose that the estimated mean and covariance functions are evaluated at
a grid of R x R locations over U?. Under high-dimensional settings, it is apparent that our
nonparametric smoothing approach suffers from high computational cost in kernel evalua-
tions, particularly when estimating p(p + 1)/2 marginal- and cross-covariance functions. In
a common practical scenario, where each X;j(-) is observed at the same set of time points
Ui,...,Up €U across j € [p], model (4) simplifies to

Yiji = Xij(Uit) + e, t=1,...,T;

which reduces the number of kernel evaluations from O(3_, 3_) Ti;R) to O(X, TiR),
substantially accelerating the computation in high-dimensional settings. To further speed up
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the computation, we can use the linear binning technique (Fan and Marron, 1994) to approz-
imate the mean and covariance estimation. This would largely reduce the number of kernel
evaluations to O(R), and the number of operations (i.e. additions and multiplications) to
O(np*R% + p?R* + pX.I' | Ty), from O(P?R2Y"_ | T?). See the detailed implementation of
binning and the associated computational complexity analysis in Fang et al. (2024). Our
conducted numerical experiments show that such binned implementation offers significantly
improved computational efficiency without sacrificing any estimation accuracy.

(i1) In a general scenario when X;j(-)’s are observed at different sets of time points,
parallel estimation for j, k € [p] can be employed, resulting in a more efficient procedure. In
contrast, under certain lower-dimensional structural assumptions, the possible development
of a nonparametric smoothing method for the joint estimation of components in X(-,-)
becomes challenging in this general scenario, and is thus left for future research.

(iii) Due to the infinite-dimensional nature of functional data, it is standard prac-
tice to employ FPCA as a first dimension reduction step before subsequent modeling in
the commonly-adopted multi-step estimation when dealing with high-dimensional functional
models. See the detailed discussion of this application in Section 4.1. Specifically, im-
plementing FPCA necessitates the nonparametric estimation of only marginal-covariance
functions ¥;;(-,-) across j € [p], which can be easily paralleled for fast computation.

3. Theory

Before presenting the concentration and convergence results, we impose the following reg-
ularity assumptions.

Assumption 1 For each i € [n] and j € [p], Xi;(+) is a sub-Gaussian random process and
€ij 15 a sub-Gaussian random variable, that is, there exists some positive constant ¢ such
that E{exp({x, Xij — p;»)} < exp{271c*(x, 2;;(x))} for all z(-) € L*(U) and E{exp(eijz)} <
exp(c2032-22/2) for all z € R.

Assumption 2 For each i € [n] and j € [p], under the sparse design, T;; < Ty < ©,
and, under the dense design, T;; — o0 and there exists some positive constant ¢ such that
maxj j T; ~(mini,j T’ij)_l < C.

Assumption 3 Under the dense design, there exists some positive constant co such that
. -1 . -1
max; j vij(ming j v;;)~" < co and max; j p wyjk(Ming j , wijk) " < Co-

Assumption 4 (i) Let {Ujj; : i € [n],j € [p],t € [T;;]} be independently and identically
distributed copies of a random variable U defined on U. The density fu(-) of U satisfies
0 < my < infy fu(u) < supy fu(u) < My < o for some positive constants my and My; (i)
X(+), U and {&;} je[p are mutually independent.

Assumption 5 Let Bj;, = [(k — 1)7~”j_1, kffj_l] forke [TJ] with IN} = max; T;j, there exists
some constant C' > 0 such that the cardinality #{Uijt : Uijt € Bjg,t € [Tij]} < C for each
i€[n],je[p] and k€ [T}].
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Assumption 6 (i) K(-) is a symmetric probability density function defined on [—1, 1] with
§u?K (u)du < o0 and § K (u)?du < . (i) K(-) is Lipschitz continuous: there exists some
positive constant L such that |K(u) — K(v)| < Llu — v| for any u,v € [—-1,1].

Assumption 7 (i) 0*uj(u)/0u? is uniformly bounded overu € U and j € [pl; (ii) 0*S ik (u,v)
Jou?, 0*% ik (u,v)/0udv, and 0?Yjk(u,v)/0v? are uniformly bounded over (u,v) € U* and
(4,k) € [p]*.

The sub-Gaussianities in Assumption 1 for both Hilbert space-valued random elements
Xij(-)’s and random errors ¢;;’s together imply that the observations Yj;;’s in (4) are sub-
Gaussian, which plays a crucial role in deriving our subsequent concentration inequalities.
The dense case in Assumption 2 corresponds to a common practical scenario, where the
sampling frequencies Tj;’s are of the same order across i € [n] and j € [p]. Under such a
scenario, Assumption 3 is automatically satisfied by two frequently-used weighting schemes
including “equal weight per observation” and “equal weight per subject”. Assumption 5
means that all observational time points are distributed in the sense of “uniformly on U”.
This prevents the occurrence of an extreme case where a large number of time points are
concentrated in some small areas while leaving too few points in other regions. Assump-
tions 4, 6 and 7 are standard in the literature of local linear smoothing for functional data
(Yao et al., 2005a; Zhang and Wang, 2016) adaptable to the multivariate setting.

Theorem 2 Suppose that Assumptions 1-6 hold. For each j € [p], let yn1n; = n(l A
Tlhjhll,j) with the corresponding average sampling frequency per subject Tuyj =n"! i Tij,
then there exist some positive constants ci,co (independent of n,p,TM‘ ’s) and arbitrarily
small €1 > 0 such that for any d € (0,1],

P(|a; — fijll2 = 6) < coexp (= e1¥n,r,n,50%), (5)

co(nel \1/2
}< 2( ’Vn,T,h,])

IP’{ sup |ﬂj(u) — [ (u)‘ =) W2 exp ( - Cl’Yn,T,h,j52)7 (6)
14,

ueld
where fij(u) is a deterministic univariate function that converges to p;(u) as h,; — 0. See
(A.1) in Appendiz A for the exact form of fij(u).

Theorem 3 Suppose that Assumptions 1-6 hold. For each j,k € [p], let vn1p k= n(1 A
Tgyjkh;jk) with the corresponding average sampling frequency per subject being Ty ;. =
[n! Z?El Tii{Tir—1(j = k)}] 12 then there exist some positive constants cz,cy (independent

of n,p, Ts ;1 ’s) and arbitrarily small ea > 0 such that for any ¢ € (0,1],

P(Hijk — Sikls = 5) < caexp (— st jkd?), (7)

P{ sup ‘ijk(u,v) - ijk(u,v)] > 5} <
(u,v)elU?

CanVn T h,jk
# exp ( — C3Vn,h,jk0%), (8)

ik
where i]jk (u,v) is a deterministic bivariate function that converges to Xji(u,v) as hs j, — 0.
See (A.19) in Appendixz A for the exact form of ¥ (u,v).
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Remark 4 The concentration inequalities in Theorems 2 and 3 imply that fi; and f]jk are
nicely concentrated around [i; and f]jk, respectively, in both Lo morm and supremum morm
with generalized sub-Gaussian-type tail behaviors. It is worth mentioning that such Lo and
uniform concentration results are derived based on the local concentration inequalities of
fij(u) and ij,k(u,v) for fized interior points u,v € U, which enjoy the same tail behaviors
as (5) and (7). Besides being fundamental to derive elementwise maximum error bounds
that are essential for further convergence analysis under high-dimensional settings, these
non-asymptotic results lead to the same rates of Lo convergence and uniform convergence
compared to those in Zhang and Wang (2016). Specifically, under extra Assumption 7, it
holds that
Ij = il = OP{”_l/Q + (0T ghyg) "2 + B it

sup i1 (u) = pj ()| = Op[(logn)*n="2{1 + (T, ;hyuy) ™} + 1 5],
UE

IS5k — jklls = Op{n™V2 + (nT2,,02 )% + h2 .},

( Sl)lpu2 |§jk‘(uav) - ij(ua U)| = OP[(log n)1/2n_1/2{1 + ( Egkhgz gk) 1/2} + hz ]k]
u,)E

Remark 5 The above rates of convergence reveal interesting phase transition phenomena
depending on the ratio of the average sampling frequency per subject Tu,j (or Ty ;1.) to nl/4,
In the following, we use different rates of Lo convergence for fi; and EAij to illustrate a
systematic partition of partially observed functional data into three categories:

1. Under the sparse design, when h, ; = n=1/5,

7 —1/2,-1/2 _
I = pslls = Op (w21, 3 + b, 5) = Op(n ™)
when hy, j, =n~",

Hi?k — Zjkls = Op(n I/ZhEik + h2 i*) = OP(Tlil/g).
2. Under the dense design, when T, jn~Y* — 0 with hy, ; = (nT,;)~'/°,
A 1jom—1/2, —1/2 .

I = gle = Op (2T, 30, 2 + i j) = Op{(nTu5)~7);

when Tg’jkn_l/‘l — 0 with hy; = (nT2

2,5k

) 1/6
”ijk - EijS = OP( 1/2T2 th‘_ Tt hz ]k) = OP{(nTEzjk) 1/3}-

3. Under the dense design, when Tu’jn_l/‘l — ¢ (some positive constant) with h, ; =

n~Y4 or T, n~Y* — o with hy, ; = o(n=Y*) and T, jh,; — o,

| — w52 = Op(n="?);

when Ty on~ Y4 = & with hy ), = n~V* or Ty jn=Y* — o with hy , = o(n~Y*) and
T jihs ju — 0, N
1S5 = Sirls = Op(n~'/?).
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As THJ and Ts, ;,, grow very fast, case 3 results in the root-n rate complying with the para-
metric rate for fully observed functional data. As Tﬂ,j and Ts, ;. grow moderately fast, case 2
corresponds to the optimal minimaz rates (Zhang and Wang, 2016), which are slower than
root-n but faster than the counterparts for sparsely observed functional data. Our estab-
lished convergence rates in cases 1, 2 and 3 allow free choices of (j, k), and are respectively
consistent to those of the mean and covariance estimators under categories of “sparse”,
“semi-dense” and “ultra-dense” univariate functional data introduced in Zhang and Wang
(2016).

Theorem 6 Suppose that the assumptions in Theorem 2 and Assumption 7(i) hold, and
(min; v, 1h) ' logp — 0, max; hyj — 0 as n,p — o0. It then holds that

. log p 1/2 9
max || — pillo = Op (*) + maxh; . ¢, 9
jelp] I8 = 1] { min; v, 7., i ©)

and, if min; h,, ; = {log(p v n)/n}* for some k1 € (0,1/2],

- log(p v n) Y1/2 9 ]
max su (u) — pi(u)| =0 TS — +maxh? .| . 10
Jjelp] ueZB ’M]( ) MJ( )’ P [{ min; Yp,T,h,j } J 122 ( )

Theorem 7 Suppose that the assumptions in Theorem 3 and Assumption 7(ii) hold, and
(min g z/n7T’h,jk)_1 logp — 0, max; hs ;. — 0 as n,p — c0. It then holds that

A~ logp 1/2 9
Yk — Yjkls =0 (—) h% ot 11
31,22[};] H ik jk“S P { minj,k Vo hih + Hjlix ik ( )
and, if min;j hs ;. = {log(p v n)/n}* for some k2 € (0,1/2],
a log(p vn) 1/2 9
max sup |Xig(u,v)—Xik(u,v)| =0p [{—} +maxhi ., |. 12
dokelp] ()2 (0, 0) = By 1.0) ming . Vo, 7,k g (2

We observe that the elementwise maximum rates of Lo convergence and uniform con-
vergence are governed by both dimensionality parameters (1, p, {T}.,;} jefp)s {Ts.x }jkefp]) and
internal parameters ({f,;}jep)s 1Psjx}jke[p)). Each convergence rate is composed of two
terms reflecting our familiar variance-bias tradeoff in nonparametric statistics. It is easy to
see that the variance terms are determined by the least frequently sampled and smoothed
components, that is the smallest T}, ; (or T ;) and hy, j (or hy ;) across j, k, whereas the
highest level of smoothness with the largest h, ; (or hy ;) controls the bias terms.

Remark 8 To facilitate further discussion, we consider the simplified setting where T, g =
Tmhu,j = h, and Tg,jk = Tz,hz,jk = hy for each j, k. Compared to cases 1-3 above,
the corresponding elementwise maximum rates of convergence for {fi;};e(p) (or {ijk}j,ke[p])
in Theorem 6 (or Theorem 7) reveal scaled phase transitions for dense functional data
depending on the relative order of T, (or Ts) to n**(logp)~"* instead of n'/*. In the
following, we use elementwise mazximum rates of Lo convergence to illustrate the phase
transition phenomena and the optimal estimation from sparse to dense functional data in
high dimensions. In terms of uniform convergence, the same phenomena occur as long as
pRn.

10
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(i) Under the sparse design, when h,, = (log p)Y/on=1/3,
N . logp 1/2 2| logp 2/5 .
o= 00 {(52) ") - on{(222)")
when hy = (log p)'/n=1/6,

N B logp\1/2 5] log p\1/3
rr;%xuzjk—zjk\s_op{(n—}%) +n2b = op (n) .

i) Under the dense design, when T, (logp)Y*n=1* — 0 with h, = (logp)'/>(nT,)~ />,
I iz I

. logp \1/2 5 log p\ 2/5
m . . = ( ) — + h = ( ) — 5 1
]ax 1725 = #sla P{(nTuhu> K r <nT#> ’ (13)

when Tx(log p)'/*n=1/* — 0 with hy = (logp)Y/6(nT2)~1/5,

o B logp \1/2 2| logp\1/3
%Xuzjk—zjkns_op{(@) +r2t = 0p (n@) . (14)

(iii) Under the dense design, when T,(logp)Y4n=1/4 — ¢ with h, = (logp)Y*n=1/% or
T,,(log p)V/*n=Y* — o0 with h, = o{(logp)"/*n="*} and T,,h,, — oo,

N logp\ 1/2
max 1 — pj2 =0P{( ) };
J n

when Ty (logp)/4n=14 - ¢ with hy = (logp)4n=14 or Ty (log p)/*n="* — oo with
hs, = o{(log p)/*n="'*} and Tshy — o0,

~ log p 1/2
max €5 - Sl = 0p { (22)°).
Ik n

Remark 9 In a similar spirit to the partitioned three categories for univariate functional
data (see cases 1, 2 and 3 above), we can also term the high-dimensional partially observed
functional data in cases (i), (ii), and (iii) as “sparse”, “semi-dense”, and “ultra-dense”,
respectively. The main difference lies in the presence of additional logp terms to account
for the high-dimensional effect.

o As Tu and Ty, grow at least in the order of n1/4(logp)_1/4, the attained optimal rate
(log p)Y/2n=12 is identical to that for the fully observed functional data (Zapata et al.,
2022), presenting that the theory for high-dimensional ultra-dense functional data falls
in the parametric paradigm.

o As T, and Ty diverge slower than n'/*(logp) =4, if we let h, = (logp)*>(nT),)~1/°
and hy, = (log p)Y/8(nT2)~1/% to balance the corresponding variance and bias terms, the
optimal rates for high-dimensional semi-dense functional data are respectively achieved
in (18) and (14). These rates degenerate to the minimax rates in case 2 when p

11
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is fired.  With the choice of elementwise optimal bandwidths h, = (nTu)_1/5 and
hy = (nT2)~1/8, we obtain

mjax =2 = OP{(IOgP)l/z(”Tu)ﬁﬁ}a H;Z}CX ||§3jk—2jk|| — Op{(logp)"/?(nTx) "3},

which are respectively slower than the optimal rates in (13) and (14). Such discussion
applies analogously to the sparse functional setting. See cases 1 and (1).

e Compared to the asymptotic results for cases 1, 2 and 3 under a fized p scenario, the
high-dimensionality in cases (i), (ii) and (iii) leads to the scaled phase transitions,
optimal selected bandwidths, and corresponding optimal rates, each of which is up to
a factor of logp at some polynomial order.

4. Applications

In this section, we outline three applications of our established non-asymptotic results for
the local linear smoothers under high dimensional settings.

4.1 Estimation Under the FPCA Framework

A standard procedure towards the estimation of models involving high-dimensional func-
tional data consists of two or three steps. Due to the infinite-dimensionality of functional
data, the first step performs dimension reduction via, e.g., FPCA, to approximate each
Xi;(+) by the dj-dimensional truncation. This effectively transforms the problem of model-
ing the p-vector of functional variables into that of modeling the ( 7;:1 dj)-vector of FPC
scores. To overcome the difficulties caused by high-dimensionality, some functional sparsity
assumptions are commonly imposed, which results in the estimation under block sparsity
constraints in the second step. Examples include the group-lasso penalized least squares
estimation in regression setups (Fan et al., 2015; Kong et al., 2016; Wang et al., 2022), the
group graphical lasso in functional graphical model estimation (Qiao et al., 2019; Solea and
Li, 2022; Zapata et al., 2022) and other related applications mentioned in Section 1. Finally,
the third step re-transforms block sparse estimates obtained in the second step to functional
sparse estimates via estimated principal component functions obtained in the first step. In
functional graphical model estimation, the third step is no longer required. Building upon
established theoretical results, this section presents some non-asymptotic results within the
FPCA framework, which are crucial not only in their own right but also in providing the
theoretical support for such multi-step estimation procedure.

For each j € [p], the standard dimension reduction method performs Karhunen-Loeve
expansion of each target trajectory X;;(-) and truncates the expansion to the first d; terms,
which serves as the foundation of FPCA:

o d;
Xij(+) = w5 () + Z Gindn(-) = pi () + Z S (0, (15)
=1 =1
where the coefficients &j; = (Xyj — pj, ¢ for I = 1, namely FPC scores, correspond

to a sequence of random variables with E(&;) = Aj and cov(&ji, &) = Nl (1 # 1)

12
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and Aj1 = Xja = --- > 0 are the eigenvalues of X;;(u,v) and ¢;i(-), ¢j2(:),... are the
corresponding eigenfunctions. To implement FPCA based on partially observed functional
data, we carry out an eigenanalysis of the local linear smoothers ijj (u,v) that leads to
estimated eigenvalue/eigenfunction pairs (le,(gjl()) for j € [p] and | € [d;]. Based on
Theorem 7, we can establish the elementwise maximum rates for estimated eigenvalues and
eigenfunctions in the following proposition.

Proposition 10 Suppose that the assumptions in Theorem 7 hold and Xj; > Nja > --- >0
for each j € [p]. Let 6;; = minge{\jk — Nje+1)} for j € [p] and L € [d;] . Then we have

- ] 1/2
max {P\ﬂ At + 851 éq1 — ¢jl”2} =Op {<#> + max hgjk}

Jjelplleld; NGk Vn, T, h,jk 5

Proposition 10 can be used to provide the theoretical guarantees for the first and third
steps under high-dimensional settings. In the second step, the main target is to implement
the block regularized estimation based on the estimated FPC scores. Under the dense
design with T;; — oo, the estimated FPC scores <XU fijs g5ﬂ> can be well approximated
by the numerical integration based on {Ujj, Yijt, qb]l( Uiji)} for t € [Tj;]. To be specific, we
can employ a Trapezoid rule-based numerical integration to estimate FPC scores

’\(1) {}/;j(t 1) — N](Uz]t 1) }¢]l ij(t—1) +{}/z]t ,u] z]t }‘b]l zyt
z]l _tZ; 9

|Uijt = Usje-1y)-

(16)

However, such numerical integration approach fails under the sparse design with T;; <
Ty < 0. We instead employ the principal components analysis through conditional expec-
tation (PACE) method (Yao et al., 2005a) to estimate FPC scores. For each j € [p], under
the assumption that & and €;;; in (4) are jointly Gaussian, the PACE estimation of the
FPC scores for the ith subject given the data from the individual reduces to the estimated
conditional expectation

~ & AT a1~ ~
fzjl =E(&lYy) = AjtPiiXy,, (Yij — Hij), (17)
where we write {Qj = (Yij1, -, Yig,)", ﬁy ;s a T” x T;; matrix with its (¢,¢')-th entry

(2Yij)t,t’ = Ejj(Uijt’ Uijt’) + &?I(t ) ¢zgl - {¢jl( 1]1) . 7¢]l( l]T,J)}Tv and ﬁ‘ij =
[i(Uii1)s - - 15 (Uii. )T See Yao et al. (2005a) for details on the estimate 62 of 0.
J\Hj J\F 1 Ti; J J

For each j, k € [p], l € [d] and m € [dy], let A ]E({Ul £ka) and its sample estimator

Jklm
be U](ng =n 1Y Zﬂ zkm for h = 1 (dense case) and 2 (sparse case). To theoretically

support the second step, it is essential to establish the elementwise maximum rates for
{8](.],3”1} with A = 1,2, i.e. the convergence rate of

~(h) (h)
Oiklm — 9jkim
' max SRS
J:ke[pl le[d;],me[dk] Ajklm

where A;ng represents some normalization term that may depend on ¢; and 0. Our
established elementwise maximum rate in Theorem 7 may still be applicable in this context.

13
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However, this topic is beyond the scope of the current paper and is thus left for future
research.

In addition, building upon the expansion in (15) and estimated FPC scores in (16) or
(17), we can estimate the target trajectories for prediction or subsequent modeling

d;
X(h) Z Az(;hz)%l ie[n], je[p], h=1,2. (18)

We leave the development of non-asymptotic results for (18) as future research. Such results
could possibly be useful for the application of nonparametric functional graphical model
estimation (Li and Solea, 2018) when handling the practical partially observed functional
scenario in high dimensions.

4.2 Sparse FPCA

While componentwise FPCA in Section 4.1 may fail to model the correlation between com-
ponents in X;1(-),...,X;;(-), more effective dimension reduction can be achieved by lever-
aging the correlation information across different components, such as multivariate FPCA
(Happ and Greven, 2018) (for fixed p) and sparse FPCA (Hu and Yao, 2022), which incorpo-
rates the notation of sparsity in multivariate statistics into the functional setting to accom-
modate high-dimensional functional data. The sparsity structure motivates a thresholding
rule that is easy to compute by exploiting the relationship between the univariate orthonor-
mal basis representation for infinite-dimensional processes and multivariate Karhunen-Loeve
expansion in the form of

Xi(+) =p(-) + Z Cirr(0),
k=1

where Czk = Z§:1<Xij — /Lj,l/)kj>, >\k and ’l,bk() = {wkl()v c. ,¢kp(-)}T for k = 1, ..., 00
are the eigenvalues and the corresponding eigenfunctions of X (u, v), respectively, satisfying
§y Z(u,v)¢(v)dv = Aitby (u). Specifically, provided with a complete and orthonormal basis
{bi(-) : L =1,..., 00}, each random process is represented as X;;(-) = p;(-) + 2372, isbi(*),
where the basis coefficients 6;;; = (Xi; — pj,b). Denote ¥r;(-) = 21 Mkjibi(+), where
Miji = {Yrj, br). According to Proposition 1 in Hu and Yao (2022), we have

p 0

Z Z Cov(eijlaeij’l/)nkjl = S\knkjla i€ [TL], ] € [p]a kal = 1727 cee
J=1lU=1

Under the practical scenario (4) with Tij — 0 (dense case), Hu and Yao (2022) proposed
to estimate 6,5 by éijl = Tgl ZtT;Jl {Yijt — 8j(Uij¢) Yo (Uije) and computed the sample vari-
ances of @-ﬂ, base on which performing the thresholding selection to encourage the sparsity.
However, this approach is not applicable to sparsely observed functional data with bounded
T;j, as 05 can not be accurately estimated. We consider bridging the gap under the sparse
case by applying the local linear smoothers to estimate the covariance functions X;;/ (u, v) di-
rectly. Note that cov(6;ji, 0;51) = §bi(w) ;5 (u,v)by (v)dudv. Instead of estimating Oij1’s, we
propose to directly estimate cov(6;;i, Hljrl/) by cov (i1, i) = Su b ( ) ;3 (u, v)by (v)dudo.

14
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In the special case with 7 = j’ and [ = I, this estimate degenerates to the estimated vari-
ance of 6,5, and hence the thresholding idea proposed in Hu and Yao (2022) can still be
employed. To establish the convergence properties under high-dimensional settings, it is
essential to develop concentration results for {cov(0;;,6;,)}. By the fact that

[COV (351, O50r) — cov(8i1, i) | < |5 — Spls (19)

our derived rate (11) in Theorem 7 becomes applicable. Specially, when j = j' and [ = I,
(19), we can obtain the the elementwise maximum rate for var(6;;;). It is noteworthy that
Hu and Yao (2022) relied on existing concentration inequalities for x2 to establish the
concentration bound on the sample variance of éijt under the dense design by assuming that
0;j1 and €;;; are jointly Gaussian. By comparison, our proposal can handle both sparsely
and densely observed functional data without requiring the Gaussianity assumption.

It is also worth mentioning that the above discussion also applies to other pre-fixed basis
expansion methods when fitting functional additive regression models (Fan et al., 2014,
2015; Xue and Yao, 2021) or implementing functional linear discriminant analysis (Xue
et al., 2024). Specifically, our proposed {cov(f;j;,0;;)} are also involved in the estimation,
making Theorem 7 useful in this context.

4.3 Functional Thresholding

Our third application involves estimating the covariance matrix function ¥(-,-) in (1). Un-
der the functional sparsity assumption that 3 belongs to a class of “approximately sparse”
covariance matrix functions, Fang et al. (2924) proposed to perform adaptive functional
thresholding on the local linear smoothers {3 (-, -)}; re[p using entry-dependent functional

thresholds that automatically adapt to the variability of > jk(+,-)’s. Specifically, their adap-
tive functional thresholding estimator is defined as

= (S}, with 8=l sx(%»
ik
where, for any thresholding parameter A > 0, s)(+) is the functional thresholding operator
to enforce the functional sparsity with the aid of Hilbert-Schmidt norm, and W;(-,-) is a
surrogate estimator for the asymptotic variance of f]jk.(-, -) (Fang et al., 2024). Alternatively,
one can achieve a universal functional thresholding estimator

i = {i]’k(', .)}pxp With ijk = S)\(ijk),

where a universal threshold level is used for all entries. To investigate the theoretical prop-
erties of both functional thresholding estimators ¥ and ¥ under high-dimension settings,
it is crucial to make use of the elementwise maximum rate of max; yc(y] Hijk — Yjkls, as
presented in Theorem 7. In contrast, Fang et al. (2024) assumed a rough rate (3) instead
of providing a proof to facilitate their technical analysis.

Such functional sparsity assumption is restrictive for many data sets, especially in fi-
nance and economics, where the functional variables exhibit high correlations. To address
this issue, Li et al. (2023) and Leng et al. (2024) employed the functional factor models
framework for X;(-), which is decomposed as the sum of a common component driven by
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low-dimensional latent factors and an idiosyncratic component e;(-). Instead of imposing
the functional sparsity assumption on 3, they imposed it on the covariance matrix function
of e;(+), and proposed different estimators for ¥ by performing the associated eigenanalysis
to estimate the common covariance and then applying (adaptive) functional thresholding
to the residual covariance. To develop the convergence rates of their proposed estimators,
our elementwise maximum rate in Theorem 7 becomes applicable.

5. Simulations

In this section, we examine the finite-sample performance of the local linear smoothers for
the mean and covariance function estimation in high dimensions.

We generalize the simulated example for univariate functional data in Zhang and Wang
(2016) to the multivariate setting by generating

Xij(w) = pj(w) + ()" 0ij, i€ [n],jepl,ueld =10,1],

where the true mean function p;(u) = 1.5sin{3m(u + 0.5)} + 2u3, the basis function ¢(u) =
{V/2cos(2mu), v2sin(27u), V2 cos(4mu), ﬁsin(47ru)}T and the basis coefficient vector 6; =
(67, .,BiTp)T e R% is sampled independently from a mean zero multivariate Gaussian
distribution with block covariance matrix A € R¥*% whose (j,k)th block is given by
Aji = piFldiag{272,...,572} € R*** for j,k € [p]. Hence the (j,k)th entry of the true
covariance functions X (-, ) = {Z (-, ) }pxp 18 Ljr(u,v) = ¢(u)"Ajp@(v). We then generate
the observed values Yjj; = X;;(Ujjt) +€ije for t = 1,...,T;; = T, where the time points U;j;’s
and errors €;5;'s are sampled independently from Uniform[0, 1] and (0, 0.5%), respectively.

We use the Epanechnikov kernel with bandwidth values varying on a dense grid. To
evaluate the performance of j1;(-) for j € [p] and fljk(-, ) for (4, k) € [p]? given specific band-
width Ay, ; and hy j,, we define the corresponding mean integrated squared errors (MISE)
as

MISE(s . byg) = [ 73505 (0) dt, MISE(S 1) = | [1E50(00)- 5000, 0)Pdudo,

We first calculate the elementwise minimal MISEs for the mean and covariance estimators
over the grids of candidate bandwidths in prespecified sets H, and Hy, respectively. We
then compute their averages and maximums over j € [p] for the mean functions, that is,

1 , .
AveMISE(p) = 5 ; min MISE(7j, hy.,j),

yJ

MaxMISE(x) = max min MISE(fi5, by, ),

J huy

and over (j,k) € [p]? for the covariance functions, that is,
hs ik

1 . &
AveMISE(Y) = = ; ; min MISE(2;y, his 1),

MaxMISE(S) = max min MISE(E 1, hx. ;i)
3k hs jk
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We next use the example of estimating the mean functions to illustrate the rationale of
the above measures. While AveMISE() presents the averaged elementwise minimal MISEs
across j € [p], some simple calculations in Appendix B show that the attainable quantity of
the minimal elementwise maximum of MISEs, min,, s, )jenr maxjep) MISE(i;, by ), is
equal to MaxMISE(u). It is worth noting that the optimal selection of bandwidths by mini-
mizing, e.g., for mean functions, each MISE(fi;, h, ;) over h, ;j € H,, or max; MISE(fi;, by ;)
over (hu1,... hup) € HL, serves to validate our established theoretical results, assuming that
5 (+)’s are known. In practical scenarios with unknown mean and covariance functions, one
can employ the commonly-adopted cross-validation method to estimate the specific MISE

as a function of bandwidths, whose minimizer produces the optimal bandwidth selection.

Mean function Covariance function
g - o
o =
IS ©
o S
w w
o) o)
S e =
o
<
e | IS
o
g,
(IJ 2|0 4|0 6|0 8|0 1(IJO 150 14|10 1E|30 1E|30 (IJ 2|O 4|0 6|0 SIO 1(|)0 1é0 14|10 1€|30 1E|30
T T

Figure 1: Plots of average MaxMISE (black) and AveMISE (red) against T' with p = 50
(solid), 100 (dashed) and 150 (dotted) for mean estimators (left) and covariance
estimators (right).

We firstly consider settings of n = 100, p = 50,100,150, and T = 5, 10, 20, 40, 60,
80, 100, 120, 140, 160, 180. We ran each simulation 100 times. Figure 1 plots the average
AveMISE and MaxMISE as functions of T" for the estimated mean and covariance functions.
We observe that both MaxMISE and AveMISE display a similar trend as T increases with a
steep decline followed by a slight decrease and then a period of stability. Such trend roughly
corresponds to the three categories of “sparse”, “semi-dense”, and “ultra-dense”, respec-
tively. In addition, while AveMISE reflects the performance for univariate functional data,
MaxMISE gradually enlarges as p increases from 50 to 150, providing empirical evidence to
support that the associated log p-based convergence rates in high-dimensional settings.

As suggested by one referee, to further validate the established rates discussed in Re-
marks 5 and 8, we plot the average log(AveMISE) against log n and the average log(MaxMISE)
against log(n/logp) across different values of n, p and T for estimated mean and covariance
functions in Figure 2. Note that our theory indicates that log(AveMISE) and logn, as well
as log(MaxMISE) and log(n/logp), both exhibit linear relationships, e.g., for sparse func-
tional data, with a slope of -2/5 for mean estimators and -1/3 for covariance estimators.
Furthermore, when the phase transitions from “semi-dense” to “ultra-dense” occur, they
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Plots of average log(AveMISE) against logn (left) and average log(MaxMISE)

against log(n/logp) (right) for mean estimators (top) and covariance estimators
(bottom) with p = 50,100, 150 and n = 50, 100, 150, 200, 250. The colored dashed
lines correspond to different values of T' ranging from 3 to 140, and the estimated
slopes of the corresponding linear fits based on five points for log n or fifteen points
for log(n/logp) are also displayed. The slope of the black solid line presents the
theoretical value -1/2 (with the intercept being irrelevant here).

all admit linear relationships with a common slope of -1/2. Several apparent patterns are
observable from Figure 2. First, both plots of log(AveMISE) against five values of logn and
log(MaxMISE) against fifteen values log(n/logp) show clear linear patterns across different
values of T. This also demonstrates the log p-based high-dimensional effect in elementwise
maximum rates. Second, for sparse functional data (i.e., T' = 3,5), the estimated slopes
of the linear fits are between -0.41 and -0.37 for mean estimators and between -0.37 and
-0.32 for covariance estimators, which nicely align with the theoretical slope values of -2/5
and -1/3, respectively. Third, as T" grows from 10 to 140, the estimated slopes under all
scenarios gradually increase to some values close to the theoretical slope value of -1/2, and
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then stabilize, especially when measuring MaxMISE. This suggests that the phase transi-
tions from “semi-dense” to “ultra-dense” may occur during the increase of T. For example,
the slope for MaxMISE tends to be stable for T' = 40,60, 100,140, indicating that the
phase transition may occur around 7" = 40 (earlier than the corresponding occurrence of
phase transition for AveMISE). All of the above observations nicely validate our established
theoretical results in Section 3.
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Appendix A. Technical Proofs

The appendix contains proofs of all theorems. Throughout, we use ¢, c1,co,... to denote
generic positive finite constants that may be different in different uses.

A.1 Proof of Theorem 2

We organize the proof in four steps. First, we will define fi(-), fi(-) and obtain the decom-
position of fi(-) — fi(+). Second, we will prove the local concentration inequality for fixed
interior point u € Y. Third, we will prove the concentration inequality in Ly norm. Finally,
we will prove the concentration inequality in supremum norm.

A.1.1 DEFINITION AND DECOMPOSITION

Without loss of generality, we let h,; = h for j € [p] and denote ey = (1,0)", Uz =
{1, (Uijt — u)/h}T,

z'jtf]T Ky (Uije — u),

ijt

w
S
[
=
s
o
N
ch

n TJ
Rj(w) = > vij ) UijeKn(Usje — w)Yign.

A simple calculation yields that fi;(u) = eg{gj (u)}_lﬁj(u) Let

~ & 1B

fij(u) = eg [E{S; (u)}] E{R;(u)}. (A.1)
We can decompose ji;(u) — fij(u) as

fij (w) — ij (w) =eS [E{S;(u) 7 [R;(u) — E{R;(u)}]
— €3 {S;(w)} 1 [S; (u) — E{S; (u) H[E{S; (u)}] 'R (u),
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which then implies that

12 () = Fij ()] < [B(S; ()} IRy (w) — E(R;(w)}]

o . R (A.2)
+ 1185 (1) [t EAS ()}t | R () [[S(w) — E{S; ()} e,

where, for any vector b = (bl, ..., bp)T, we denote its Euclidean norm by |b| = (32, b?)'/?
and, for any matrix B = (Bjj)pxq, we write |Blmin = {Amin(B™B)}2 and |Bp =
(2 B )1/ 2 to denote its Frobenius norm.

A.1.2 LocAL CONCENTRATION INEQUALITY

We will firstly show that there exists some positive constant ¢ (independent of u) such that
for any § > 0 and u e U,

N
enT), jhé ) (A.3)

2{[8)(w) — B8 ()} > 6} < sexp (- T2

For k,1 = 1,2, let §jkl(u) be the (k,1)th entry of §j (u). Under Assumptions 4 and 6, we
obtain that for any integer ¢ = 2,3,... and s =0, 1,2,

e {|() Rt - | < [roome ()|

Note that Assumption 3 implies that the weights v;;’s are of the same order v;; = (T}, ;) !
By (A.4), it holds that

59

fut)dt < ch'™1.  (A.4)

n Tij
Uijt —u\ 3 2 L
Z E{‘(#) Kh(Uijt—U)‘ }<chM-h L
i=1t=1
Tij U — un s .
Z Z E {‘ (%) Ky (Uijt — u)‘ } < 27'¢lenT,, jh *h*"7  for ¢ = 3.
i=1t=1

By the Bernstein inequality (see Theorem 2.10 and Corollary 2.11 of Boucheron et al., 2013),
we obtain that there exists some positive constant ¢ (independent of u) such that for any

0>0and uel,
g _E{S T, :hd?
P{|Sjkl(u) {Sjri(u)}| = 6} < 2exp ( — C”IM—J(S>

for k,1 = 1,2, which, by the union bound of probab1hty, implies that (A.3) holds.
For k = 1,2, let R]k( u) be the kth element of R, j(u). We will next show that there
exists some positive constant ¢ (independent of u) such that for any § > 0 and v € U,

. . 62
P{|Rjk(U) — E{Rj(u)}| = 5} < cexp ( - %), (A.5)
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where v, 75 = n(1 A Twh). We only need to consider the case k = 1, while the case k = 2
can be demonstrated in a similar manner. Denote that

&ijt = Yijt — 1 (Uije),

Rja(u) = > vij 3 Kn(Usje — w)nj (Uige),
=1 t=1

Z Z zgt )gz]t
Then fzﬂ(u) - E{Eﬂ(u)} can be rewritten as
Rji(u) — E{Rj ()} = Rjs(w) — E{Rja(u)} + Rja(u). (A.6)

Following the same procedure to prove (A.3) and using the Bernstein inequality, we can
obtain that there exists some positive constant ¢ such that for any 6 > 0 and u € U,

~ ~ enT), jho?
P{\Rjg(u) ~E{Rjs(u)}| = 5} < 2exp ( - ﬁ) (A7)
Now we consider the tail behavior of ]%4(11). Define the event V; = {Um,t € [Ti;].i €

n]} Rewrite §j4(u) = Z?:l vijwijl(u) With zl)l-jl(u) = ngl Kh( ijt— )gm If Zt ]1 Kh(Uijt_
u) > 0, by Jensen’s inequality, we have
]E[exp{)\vijwiﬂ u }‘V]

_ {Zt 1K( ijt — )f%]t}{Zt 1K ( gt — :
e S B =y

1 Z Kp(Uijt — u) [exp {)\'Uz'jfijt % Kn(Usjyr — U)HVJ]

SST
Zt:l h(Uzgt_u t=1 t'=1

< exp [)\2 2 nTM {Z Ky (Uije — }2]

Note that the last line comes from the fact that E{exp(A&;j¢)|V;} < exp(A%c?) for any A € R,
which is implied from the sub-Gaussianities in Assumption 1 and (4). Clearly, the above

inequality still holds even if ngl Ky (Uijy —u) = 0. Assumption 5 implies that the number
of nonzero terms in ZtT;Jl K1, (Uijt — u) has an upper bound ¢(1 v T}, jh), which yields that

21



Guo, L1, Qrao, AND WANG

ngl Ky (Uiji — u) < ch™Y(1 v T, jh). Therefore, for any A € R, we obtain that

[eXp{AZUwal }‘V HE[exp{)\’uwwm HV]

T;;

2
< exp )‘222 Z]{ZKh zgt_u}
i=1 t=1
n T’L_j
< exp {v ATy h) 2h(1 v Tygh) S Kn(Uyge —u }
1=1t=1

For any 6 > 0, define the event Q;1(6) = { >, ZtT;Jl Kp(Uije — u) < c(1 + 6)nT),;}. We
have

[exp {/\ Z v Yin (u }‘QJ ] < exp {)\262(1 +8)(nT, ;h) " *nT, ;h(1 v Tﬂ,jh)}
— exp {(1 +0)X2e2(nT,;h) 11 v Tw-h)}.

As a consequence, we obtain that

IP{ i Vit (u 5‘@, } < exp{ — A6+ (14 0N (nTh) " (1 v Tw-h)}. (A.8)

=1

With the choice of A = nT), ;h§/{2(1 + 6)c*(1 v T, ;h)}, (A.8) degenerates to

{ Z vijYij1 (u 5‘9], } < exp{ _ el ?f“éjh)(p } (A.9)

Note that >\, Zt 9 E{K},(Uijt —u)} < enT), ;. By the Bernstein inequality, we obtain that
there exists some positive constant ¢ such that for any § > 0,
1+0

) - T, ihd?
P Z [Kh(Uijt —u) — E{K},(Usje — u)}] >nT, ;0 | <exp (_M) 7

which implies that -
enT), jho? )
1+0

Combining (A.9) and (A.10), we obtain that there exists some constant ¢ > 0 such that for
any 6 > 0,

1 — P{Q;1(6)} < exp ( - (A.10)

en(1l A Twh)(SZ}

P{fiﬂ(u) > 5} < P{§j4(u) > 5‘91',1(5)} + P{Qj,l(d)c} < 2eXp{ B 1+6
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and, consequently,

en(1 A Tu,jh)52}
1+6 '

This together with (A.6) and (A.7) yields that, there exists some constant ¢ such that

P{’§j4(u)| > 5} < 4exp{ -

en(1 A Tw-h)62}

{0~ i 25} < s - 22

Define the event €2;5(8) = {|S;(u) — E{S;(u)}|r < 6/2}. Note that E{S;(u)} is positive
definite. On the event 2;2(0) with ¢ € (0, 1], we obtain that

185 (w) [min = (1 — §/2). (A.11)
By (A.3), we have

‘ C”T/uh52
1 — P{Q;5(6)} < 8exp ( L ) (A.12)
Define the event €2 3( {Hf{ ]E{R (u)}| < é}. Note that, under Assumption 3 with

vij = (nT, ;)78 S vy Zt A E{Kh( ijt —u)} < cand p;(-) is uniformly bounded over U,
hence |E{R;(u)}| is uniformly bounded over &. On the event §2;3(J), we have

IR; ()] < (1 +9). (A.13)
On the event ;2(5) N Q;3(0) with § € (0, 1], it follows from (A.2), (A.11) and (A.13) that
5 () — iy ()| < 8 + (1 — §/2) 7 (1 + )5 < cgo.

This together with concentration inequalities in (A.5) and (A.12) implies that there exist
some positive universal constants ¢; and ¢z such that for any 6 € (0,1] and u € U,

P{Wj(ﬂ) = fj(u)] = 5} < c2exp (—=C1Yn,1,n,0%) |
which completes the proof of local concentration inequality for the mean estimator.
A.1.3 CONCENTRATION INEQUALITY IN Ly NORM
In the proof, we need the following lemma.

Lemma 11 Let X be a random variable. If for some constants ci,ca > 0, P(|X| > ¢§) <
c1 exp{—cy ' min(62,6)} for any § > 0, then for any integer q = 1,

E(X?7) < gler(de2)? + (2q)ler (4e2) ™

Conversely, if for some positive constants a1,az, E(X??) < qlajad + (2q)!a1a§q for any
integer ¢ > 1, then by letting ¢i = a1 and ¢ = 32(az + a3), we have that

P(|X| > 6) < cf exp{—ci ! min(6?,6)}

for any 6 > 0.
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Proof This lemma can be proved in a similar way to Theorem 2.3 of Boucheron et al.
(2013) and hence the proof is omitted here. In the proof, the following two inequalities are
used, i.e., for any ¢, > 0,

1 62
5min((52,5) < 1535 < min(6?,6)
and
0 ¢ 0 0% + 44
¢, b 0+t do o s
2 2 2
|
We are now ready to derive the Ly concentration inequality of |fi; — fij]2. Let
Sj(’LL Z Z UtUzyt (Uijt — u) (A.14)

Then we have that ||§j(u)“min = c||§j(u)Hmin. We now give a lower bound on H§j(u) [l min -
Denote W = sup,,¢ ||§ i(u) —E{gj(u)}HF Let §jkl(u) be the (k,[)th entry of §J(u) for k,1 =
1,2. Note that E{|(Usj: —u)*h =Ky (Usje —u)|} < ¢ and E(W) < 4maxy, ; E{sup,ey |Sir(w)]}
for a = 0,1,2. In an analogy to Lemma 13.5 of Boucheron et al. (2013), we can show that
E(W) < ¢(nT),;)~"/?. Note that Lemma 13.5 of Boucheron et al. (2013) relies on the re-
sults presented in Lemma 13.1 of Boucheron et al. (2013). Consequently, Lemma 13.5
assumes that the corresponding index set is countable in order to apply Lemma 13.1, as
the supremums of the summation of indicator functions may not be measurable. However,
in our specific case, each component of §j (u) — E{gj(u)} is the sum of continuous func-
tions, for which the supremums over U are measurable. Therefore, when we extend the
index set from countable to the uncountable set U, this lemma, as well as Theorems 11.10
and 12.5 of Boucheron et al. (2013), still hold true and can be applicable to our situa-
tion. Moreover, it follows from the facts var(W) < E(W?) < 4maxy,; var{sup,,c gjkl(u)},
|(Uijt —U)ah_aKh(Uijt )| <ch ! E{( ijt — )2ah_2aK}2l(UZ‘jt —u)} < ch~! fora = 0,1,2,
and Theorem 11.10 of Boucheron et al. (2013) that var(nT),;hW) < 2E(nT, jhW) +
Dy Zt Y ch™ 1h2 (nil_’ Y2h+enT), ;h, which implies that the variance of W is bounded
by ¢(nT, jh)~t < C'ynT hoj Applying Theorem 12.5 of Boucheron et al. (2013) yields that
there exists some positive constant ¢ such that, for any ¢ > 0,

.52
P{W —E(W) > 8} < exp (- %’}’gé). (A.15)

Define the event ©;4(5) = { sup,ey ||§J(u) - E{gj(u)}HF < 6/2} with 6 € (0,1]. By (A.15),
we obtain that there exists some constant ¢ > 0 such that, for any ¢ € (0, 1],

1—P{Q4(6)} < 2exp (—cYn1n,;0°) - (A.16)

On the event Q4 = Q;4(61) with c'y;;/’i’j <8 <1, [Sj(u)min = ¢|S;(w)|min = (1 -
01/2) = ¢/2. Note that IE{S (u)} is positive definite and ||]E{1A13(u)}|\ is uniformly bounded
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~

over Y. On the event §2; 4, it thus follows from (A.2) and |R;(u)| < |R;(u) — E{R;(u)}| +
IE{R;(u)}| that

i (u) — Fij ()] < c|R;(w) — B{R; (u)}] + c|S;(u) — E{S;(u)}[. (A.17)

where the positive constant ¢ does not depend on u € U.
Combining (A.17) with (A.3), (A.5) and applying the first part of Lemma 11 yields that,
for any w € U and integer q > 1,

E{ s (w) = 7y ()] 2} < ale(

>q+ (2q)!c( 4 )2(1‘

C’Yn7T7h7j Cﬁyn7T7h7]

Applying the second part of Lemma 11 and (A.16), we can show that, for each ¢ € (0, 1],
P(lij — ijllz = 8) < P(|; — fzjlla = 6]Qa) + P(254) < czexp (= c17nrn,50%),

which means that (5) in Theorem 2 holds and completes the proof of concentration inequality
for the mean estimator in Lo norm.

A.1.4 CONCENTRATION INEQUALITY IN SUPREMUM NORM

We will derive the uniform concentration bound of sup,,, |/1;(v) — fi;(u)|. We partition the
interval U = [0,1] into N subintervals I, for s € [N] of equal length. Let us be the center
of I, then we have

sup 7 (1) — 71 ()] < ma [ ) = 7 )]+ | {7y 1) = ()} = {70 = oy )} ]

We need to bound the second term. By some calculations, it suffices to bound ‘{R]k(u) -

Ry ()} = [E{ Ryn ()}~ E{ R ()] and. |{Saa () = Sy ()} = [E{ S ()}~ E{Sja(11,)}]
for k,1 = 1,2, which means that we need to bound ‘Ejk(u) - ﬁjk(us)‘ and ‘gjkl(u)
§jkl(us)|. Let uw € I, and consider |]§11(u) — }Aijl(us)| first. Define the event Qg ;1 =
{ 20 vy ngl Yijel < B, vi Z:{;ﬂl Yij¢|) + 1}. On this event, it follows from Assump-
tion 6(ii) that

n T;j

|Rj1(u) — Rj1(us)| < ‘ Z Vij Z Yije{ Kn(Uije — u) — Kp(Uije — us)}‘
im1 =1

clu — us| < &

NN TR ILDY

=1 t=

C
Yijt Yiit NIz

n Tij
< ﬁ E(;UU;

)+1 <

Applying similar techniques as above, we can define events Qg ;. and Qg ;i for k,l = 1,2.
On the intersection of these events, we can obtain that |R;x(u) — Rjk(us)| < c(Nh%)~! and
|S;k1(u) — Sjr(us)| < ¢(Nh?)~1. Combing the above results, we have

~ c

0 — Ky < L s — [ij s ENIDR
igg’ﬂj(u) :“J(u)‘ ;Iel%‘/“‘](“) 1 (u )‘+Nh2
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Applying Hoeffding’s inequality, we obtain that P(Q2} ;) < exp{—(2 pI CQUZQJT%) =

exp(—cn) < exp(—cYn,rh,;) and P(QG ;) < exp{—(2X; ¢ 20ET2) ™) = exp(—cn)
exp(—cynrn,) for k1 = 1,2. It follows from the above results and the union bound of
probability with the choice of N = |c(h?§)~!| that there exist some positive constants c
and ¢z such that, for any ¢ € (0, 1],

~ ~ C
P{ sup|fi; (u) - fij ()| > 6] < -5 exp(—c17n 1,507 (A.18)
ueld h26

N

Take arbitrarily small €; > 0. If nflfyn7T,h’j62 > 1, then the right side of (A.18) reduces to
CQ{nsl’Yn,thVj}l/2h_2 exp(—clvn,T7h7j52). If n“%,T’hJé? < 1, we can choose co and n®t > ¢
such that czexp(—cic™) > 1 and the same bound c1{n vy, 5.;}?h =2 exp(—c1vn.1.4,0%)
can still be used. Hence (6) in Theorem 2 holds, which completes the proof of concentration
inequality for the mean estimator in supremum norm. |

A.2 Proof of Theorem 3

We organize the proof in four steps. First, we will define 3(-,-), 3(-,-) and obtain the
decomposition of EA](, ) = £(-,-). Second, we will prove the local concentration inequality
for fixed (u,v) € U?. Third, we will prove the concentration inequality in Hilbert-Schmidt
norm. Finally, we will prove the concentration inequality in supremum norm.

A.2.1 DEFINITION AND DECOMPOSITION

Without loss of generality, let hy, ;, = h for (j,k) € [p]? and denote & = (1,0,0)T, ﬁijkts _
{1 Uijt — w)/h; (Uiks — v)/h}T. For j =k, let

n
Eii(w,0) =Y wiy; Y Ui Ul Kn(Uije — 0) K (Uijs — v),
i 1<t#s<T};

n
o)=Y wig; Y, UigsOujs Kn (Uit — w)Kn(Uijs — v).
] ].St?éSSTij
For j # k, let

Tij Ty

Ejk( Z Wijk Z Z UZ]ktSUzjk;tsKh(UZ]t - U)Kh(Uzks - U)v
i=1 t=1s=1
T’LJ Tzk

Z Wijk Z Z Uzykts Z]ktSKh(Uth )Kh(Uzks - U)'
t=1s=1

A simple calculation yields that fljk(u, v) = ég{éjk(u, U)}_lijk(u, v). Let
~ ~ 2 -1 A~
Sk, 0) = 88 [BE ()} B Zya ()} (A.19)

~

We can decompose f]jk(u,v) — Yjk(u,v) as

Sk (u,v) — Zjp(u,v) =83 (B (u, v)} 1 — [E{E5(u, 0)}] ™) Zjk(u, v)
+ &5 [B{E i (u, v)}] 7 [ Zji(u, v) — B{Zy(u, v)}],
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which further implies that
‘ijk(uav) - ijk(u U)’
<IE{E 1 0)} k| (4, 0) — EZia(, )} (A.20)
+ E{Z (s 0) o E (aty 0) i 11 Z g (a, 0) 1 Eg (11, 0) = E{E e, 0)} |-

In the following, we will prove the concentration results for case j # k, and the results for
the case j = k can be proved in a similar manner.

A.2.2 LocAL CONCENTRATION INEQUALITY

We will firstly show that there exists some positive constant ¢ (independent of u,v) such
that for any § > 0 and (u,v) € U?,

. . B
]P’{HEjk(u,v) — B{Eu(u,0)}]p = 5} < 18exp ( . %) (A.21)

For m,l = 1,2,3, let éjkml(u,v) be the (m,l)th entry of .% k(u, ) It follows from
Assumptions 4 and 6 that for any integer ¢ = 2,3,... and s,s" = O 1,2

E {‘(Uijth_ U)'s(Uikt;l_ U)SlKh(Uijt - U)Kh(Uikt’ - U)‘q}

< [cenmn (S o (U [

Note that Assumption 3 implies that the weights are of the same order w;;, = (nTE2 y )L
By (A.22),

(A.22)

s5q 5q

fu @) fu)dtdt' < ch®=2.

n Tij Ty
: Ui'_usU"_US/ _
> ZE{K o) () Kh(Uz-jt—mKh(Uikt/—v)F} enTg b,

n Tz] Tik Uzjt_u s Uik‘t/ — v s q —1 | =92 2-2(]
Z Z 2 EJI( . )*( . ) Kn(Uijt — w)Kp(Uiger —0)| ¢ < 27 glenTy b

for ¢ > 3. Applying the Bernstein inequality yields that there exists some positive constant
¢ (independent of u,v) such that for any § > 0 and (u,v) € U?,

2
CUn, T h,jkO )
b

P{ |Z ot (1,0) = EAS a1, 0)}| > 6} < 2exp (- =L

for m,l = 1,2, 3, which, by the union bound of probability, implies that (A.21) holds.
For m = 1,2,3, let ijm(u v) be the mth element of ij(u v). We will next show

that, there exits some positive constant ¢ (independent of u,v) such that for any 6 > 0 and
(u,v) e U?,

2
CUn, T h,jk0 )
b

{0 U] 8 < conp - 2224

(A.23)

27



Guo, L1, Qrao, AND WANG

where vy, 75, j& = n(1 A T2, h?). We only need to consider the case m = 1, while the results
for cases m = 2,3 can be proved similarly. Denote that

Gijits = {Yije — 1 (Usje) HYiks — tr(Uirs)} — Bk (Uije, Uins) s

Tij Tix
Zjra(u,v) Z Wijk Z Z Kn(Uijt — w)Kn(Uiks — v)Z;k(Usjt, Uiks),
t=1s=1
TZJ Tk
]k5 u, 'U Z Wijk Z Z Kh ijt — U Kh(UlkS - U)Cijkts-
t=1s=1

Then we rewrite ijl(u,v) - E{ijl(u, v)} as
2jk1(u,v) - E{ijl(u,v)} = 2jk4(u,v) - E{éjk4(u, v)} + 2jk5(u, v). (A.24)

Following the same procedure to prove (A.21) with the aid of the Bernstein inequality,

we can obtain that there exists some positive constant ¢ such that for any 6 > 0 and
(u,v) € U2,

2
{| (1, 0) — B{ Zpa(u,0)}| > 5} < 2exp ( - %) (A.25)
Now we consider the tail behavior of éj%(u, v). Define the event 17]/.3 = {(Uijt, Uirs), t €
(T3], s € [Tix], i € [n]}. Note a random variable X is sub-exponential if there exist positive
constants ¢; and ¢y such that E(exp[MX — E(X)}]) < exp(cZ\?/2) for all || < ¢;'. The
sub-Gaussianities under Assumption 1 implies that, conditional on the event ij, Yijt —
15 (Uije) and Yigs — pr(Uigs) are sub-Gaussian random variables, then {Y3j¢ — 15 (Usje) H Yiks —
wk(Uiks)} is a sub- exponentlal random variable, and hence we can obtain the Bernsteln—type
bound E{exp(A(;jkts) |V]k.} exp{ (I—=cA)™ cAQ} for any A € (0,c™!). Rewrite Z]k5(u v) =
Z?:l wz]k¢mkl (ua U) with ¢zgk1 (u7 U) Zt ”1 Z ( ijt — )Kh(Uzks )Cz]kts~ Note that,
for each 7, Assumption 3 implies that w;j;, = (nTZQJk) LIf Zt 9 Z Ky (Uijt—u) Ky (Uigs —
v) > 0 holds, it follows from Jensen’s inequality and the above result that

E[exp{)\wijk¢ijk1 (u, U)}“N/jk]

1 Tij Tik
i Z Z <Kh ijt — U)Kh(Uzks — ’U)
Zt ]1 Zs 1 Kh( ijt — )Kh(UlkS - U t=1s=1

_ Tij Ty R
x El exp {)\wijkCz‘jkts Z Z Ky (Uijey — w) Ky (Ui — v)}‘ij]>
) t'=1s'=1

2
C)\z(nngk) 2{ 2ot.s Kn(Uije — w) Kp(Uiks — v)}
1 —eAnT2 )7t Y, Kn(Uijt — u) Kp(Uigs — )

< exp

where 0 < A(nT2,,)™" Zt 4 ST ( it — W) Kp(Uips —v) < ¢~L It is obvious that the
above inequality still holds even 1f thl Zs:l h(Uijt — w) Kp(Uiks — v) = 0. Assumption 5
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implies that the number of nonzero terms in Zt 9 Z L Kn(Uijt — u)Kp(Uigs — v) has an
upper bound ¢(1v T2, h?), which yields that Ztgl Z_s=1 (Um u) Ky, (Uips—v) < ch™2(1v

TZ ,.h?). Therefore, for any X satisfying 0 < A(nT2 ,h*)~*(1 v T2 ,h*) < ¢! for some
constant ¢ > 0, we obtain that

E [GXP {A > wigkdin (u, U)}“N/jk
i=1

<exp C)‘2(nT22Jk) 2h (1 Vv ngk )Zz 1 Zt ”1 Z Kn(U, ijt — u) Kp(Uigs — v)

b 1—cA(nT2,,h?)~1(1 v Tgyj,gh ) .

For any § > 0, define the event

n Tij Ty

Ajra(8) = S XX En(Uije — w) K (Uigs — v) < ¢(1 + 8)nTs ,

i=1t=1s=1

We have

] {c)\z(l +0)(nT2,,h?) (1 v ngkhQ)}
< exp : .

E [eXp {A Z wijk(bijkl(U,U)}‘Ajk,l(‘s) L= oA(nTZ, h2) (1 v TZ,.h2)
3] »J

i=1

Consequently, we obtain that

cN2(1+0)(nT2  h?)~1(1 v T2 . h?)
ik igra (1) > 6| <exp{ —AJ + s ——
{ Z Wighigh (U gt } P { 1= cA(nT2,,h?) (1 v T2, h?)
(A.26)
With the choice of A = nT2 , h?6{2c(1+0)(1 v T2 ,,h?)+c6(1 v ngkh2)}71, (A.26) reduces
to

]P’{ Zn: Wik Pijk1 (U, v) = 5’Ajk71(5)} < exp{ — %}, (A.27)
i=1

where the constant c is chosen to satisfy cA(nTg , h?)~'(1 v T2 h?) < 1/2. Note that

Z E{Kh(Uijt — U)Kh(Uiks — 'U)} CTLTEQ],c

By the Bernstein inequality, we obtain that there exists some positive constant ¢ such that
for any § > 0

n Tij Ty

Z Z Z [Kh(Uijt — U)Kh(Uiks — ’U) — E{Kh(UZ’jt — U)Kh(Uiks — ’U)}] nTEQJk(S
i=1t=1s=1

—cv, .02
< exp (—zihgk )
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which implies that

n ] 52
ozt (A28

1+6

Combining (A.27) and (A.28), we obtain that there exists some constant ¢ > 0 such that
for any § > 0,

1 — P{Aj1(6)} < exp ( —

2
CUn, T h,jkO )
9

P{Zjus(wv) > 6} < P{ Zyus(u,v) > 8[Ajua(8) } +P{Ajua(0)°} < 2exp (- L

which leads to

{| k5u11| 5}<4exp<—%).

It follows from the above, (A.24) and (A.25) that for each § > 0 and (u,v) € U?, there exists
some positive constant ¢ such that

{| k1 (4, 0) — B{ Zj11 (u, v)}| = 5} < 6Gexp ( - %171—_}]_1?62)

Define the event Ay 2(9) = {|Zjx(u,v) — E{Ejx(u, v)}|r < 6/2}. Note that E{Zx(u,v)} is
positive definite. On the event Ajj () with 6 € (0,1], we obtain that

125 (1, 0) [ min = ¢(1 = 6/2). (A.29)

y (A.21), we have

CVn T, j10°
1— IP’{Ajk 2(5)} < 18exp ( — —) (A.30)
’ 146
Define the event Ajj 3(d) = {Hijk (u,v) — E{ij (u,v }|| 6}. Note that, under Assump-

tion 3 with w;j; = (nTEQJk)_ ) Do Wik Zt 9 Z L E{K}(Uijt — u) Kp(Uiks —v)} < ¢, hence
|E{Z;x(u,v)}| is uniformly bounded over 24%. On the event €2 3(5), we have

|Zjk (u, )| < e(1 +6). (A.31)

On the event Aj;2(0) N Aji3(6) with 6 € (0,1], it follows from (A.20), (A.29) and (A.31)
that

|5 (u,0) — Sk (u,0)] < €8+ (1 —6/2) 711 + 8)d < e30.

This together with concentration inequalities in (A.23) and (A.30) implies that there exist
some positive universal constants ¢; and co such that for any d € (0,1] and (u,v) € U2,

]P’{‘Ejk(u,v) — ij(u,v)| = (5} < coexp (_CIVn,T,h,jk62) s
which completes the proof of local concentration inequality for the covariance estimator.

30



PHASE TRANSITIONS FOR FUNCTIONAL DATA IN HIGH DIMENSIONS

A.2.3 CONCENTRATION INEQUALITY IN HILBERT-SCHMIDT NORM
We will derive the Ly concentration inequality of Hijk — f]ijS. Let

n TU le

jk‘(u’7 U) nTZQJk Z Z Z UZ]ktSUzjktsKh(Uljt - U)Kh(Ulks - ’U)
=1 1s=1

[

Then we have that HEjk(u,v)Hmin > cHEjk(u,v)Hmin. Similar to Appendix A.1.3, we will
give a lower bound on Héjk(u, V)| min- Denote W = SUD (y,0)et2 “éjk (u,v) — E{éjk (u,v }HF
For t,s = 1,2,3, let éjkts(u,v) be the (t,s)th entry of éjk(u, v). Note that E{|(Usj: —
u)*h~(Usks — v)°h P Ky, (Uijt — u) K (Uiks — v)|} < ¢ for a,b = 0,1,2, and, moreover,
E(W) < 6 maxt s E{sup y,,)ere2 |§jkts(u,v)\}. In an analogy to Lemma 13.5 of Boucheron
et al. (2013) and by the similar arguments below (A.14) in Appendix A.1.3, we can show
that ]E(W) < o(nT2, )_1/2 In addition, it follows from the facts var(W) < E(W?) <
9 maxy s var{supy ,)e? ‘—‘jkts(u )}, [(Uije—u)*h ™4 (Usps—0)°h ™ K3, (Usje —u) K (Uigs —v) | <
ch™2, E{(Usjt — u)?*h =24 (Usps — v)°h= 2 K2 (Usje — u) K2 (Uigs —v)} < ch™2 for a,b = 0,1,2,
and Theorem 11.10 of Boucheron et al. (2013) that Var(nfg’jkhQWN/) < 2E(nT§’jkh2W) +
Dy ngl STk ch—2pt < c(nfg,jk)l/ 2h? + enT2 , h?, which implies that the variance of W
is bounded by c¢(nTZ ,h*)~* < c(vp,rnjk) "' Noting the similar arguments below (A.14)
and applying Theorem 12.5 of Boucheron et al. (2013), we obtain that there exists some
positive constant ¢ such that, for any § > 0,

52
Vn,Thugk0” ) (A.32)

1+4

Define the event Ajj4(8) = { sup(, ,)e2 Héjk(u,v) - E{.%]k(u,v)}HF < 6/2} with 6 € (0,1].

By (A.32), we obtain that there exists some constant ¢ > 0 such that, for any ¢ € (0,1],
1—P{Ajra(6)} <2exp (—CVn,T,h,jk52) .

—1/2

P{W - E(W) > (5} exp (

OIi the event Aj, 4 = Ajk~74(51) with c¢(vn,7h,jk) <§1 < 1, we have ”éjk(u,’U)Hmin =
c||Zjk(u, ) [min = (1 — 61/2) = ¢/2. Notice that E{Z;;(u,v)} is positive definite and
|E{Z;x(u,v)}| is uniformly bounded over 2. On the event Ajj 4, it thus follows from
(A.20) and | Zj (u, v)| < [Z;1(u, v) = BE{Zjk(u, v)}] + [E{Z;jk(u, v)}] that

15k (u,0) — S (u, )| < €| Zijk (u, v) — B{Zjpo(u, 0)} ]| + €| Ejr(u, v) — E{Ejp.(u, v)}|r (A.33)

and the positive constant ¢ does not depend on (u,v) € U?.
Combining (A.33) with (A.21), (A.23) and applying the first part of Lemma 11 yields
that, for any (u,v) € U? and integer q > 1,

~ 4 q 4 2q
E{|2jk(u,v) ij(u v ‘AJ;M} q‘c<7> + (2q)!c<7> .
CUn,T,h,jk Vn,T h,jk

Applying the second part of Lemma 11, we can show that, for each § € (0, 1],
IP’(HEA]jk — Bils = 5) < P(Hijk — Sjkls = 0| Ay, 4) +P(AS.4) < caexp (— c3vnrn,jnd’),

which means that (7) in Theorem 3 holds and completes the proof of concentration inequality
for the covariance estimator in Hilbert—Schmidt norm.
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A.2.4 CONCENTRATION INEQUALITY IN SUPREMUM NORM

We will derive the uniform concentration bound of sup, ;e @jk(u, v) — ijk(u, v)|. We
partition the interval & = [0, 1] into IV subintervals I for s € [N] of equal length. Let wus
and vy be the centers of I; and Iy, respectively, then we have

sup  |Xjk(u,v) — Xj(u,v)| < max [‘Z]k Us, Vg') — ijk(us,vsf)
(u,v)eU? s,5'€[N]

+ [1Sn(0,0) = Sgaus, v9)} = (Sl v) = e, v} |-

We need to bound the second term. By some calculations, it suffices to bound ‘{éjkm (u,v)—
Zitm (115, 00} = [E{Zjtom (4,0)} = E{ Zjn (115, 05)}]| @l (it (1, ) = S 115, v0)} =
[E{éjkml(u,v)} - E{éjkml(us,vsl)}]) for m,l = 1,2, 3, which means that we need to bound

‘ijm(u,v)—ijm(us,vS/) and ‘Ejkml(u, V) = Zjkmi (s, vy )|- (u,v) € Iy x Iy and consider
| Zjk1(u,v) — Zjg1(us, vs)| for the case of j # k first. The results for the case of j = k can
be proved in a similar fashion. Define the event Az jr = { D7 | wijk ZtT;Jl ZtTﬁ:’Vl 1Okt | <
E(X" wijk ngl ZZ}L |©ijkerr]) +1}. On this event, it follows from Assumption 6(ii) that

‘ kl Uu, U jkl(u57v8)
Ti] T’Lk
<‘ Z Wijk Z Z @z]ktt’[{Kh( it u) Kh(Uth )}Kh( ikt’ — U)
t=1t'=1
+{Kumw—wa—KumM~w@nKmmﬁ—ugH
c(|Ju— u5| v |v < Tk
< Z wijk Y, O Qe |{Kn(Uiky — v) + Kn(Uije — us) }
t=1t'=1
1] Tzk c
(szﬂc Z Z zgk:tt’) < Ni3
t=1t'=1

Applying similar techniques as above, we can define events Az i, and Az jrpy for m,l =
1,2,3. On the intersection of these events, we can obtain that |Z;m, (v, v) — Zjkm (us, vs)| <
c(NE3) ™1 and |Ejgmi(u,v) — Zjgmi(us, ve)| < ¢(Nh3)~1. Combing the above results, we
have

~ ~ ~ C
sup |ij(u,v) - Ejk(uvv)| < max |E]k Us, Vg ) - Ejk(umvs’)’ + Nh3
(u,v)el? s,s’e[N] h

By the Bernstein inequality, we have P(A7 ;) < exp{—A + AN2(n — co\) 71} for A e
(0,nc™t]. With A = n(2¢} + ¢2)7?, the right-side reduces to exp(—cn) < exp(—cvy 1,hjk)
for m,l = 1,2,3. Similarly, P(A:kal) < exp(—cn) < exp(—cvy, k) for m,l = 1,2,3.
It follows from the above results and the union bound of probability with the choice of
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= |c(h36)7!| that there exist some positive constants c3 and ¢4 such that, for any
(0, 1],

~ ~ c
}P’{( sup |Xjk(u,v) — Ejg(u,v)| = 5} < h6f52 exp(—caVn1.h.jk0%)- (A.34)

u,v)eU?

Take arbitrarily small e; > 0. If nEQVn,Tﬂh,ijQ > 1, the right side of (A.34) reduces to
c4n? I/n’T,thh_G exp(—031/n,T7h7jk52). If n¢2 I/an,h,jk(52 < 1, we can choose ¢4 and n®? > ¢ such
that ¢4 exp(—czc™!) = 1 and hence the same bound c4n*? Vn’T,h,jkh_fS exp(—031/n,T7h,jk52) can
still be used. We complete the proof of (8) in Theorem 3, the concentration inequality for
the covariance estimator in supremum norm. |

A.3 Proof of Theorem 6

Note that |fi; — pjll2 < [|; — Fjl2 + |75 — |2, it suffices to bound ||fi; — pjf2. By (A.1),
for any u € U,

B ) — 1y () = e [B(8; ()} | B[Ry () — ;) {1 (w). 0}

By the Taylor expansion, we have

n Tij
Ee [Rj(U)—Sj(U){M(ULO}T’Vj] = Y 0ij 2 Uije K, (Uije—uw) {11 (Uije) — 1 (u) } := J1+3,
i=1  t=1
with
n T;j
~ UZ" —Uu (3 i\u
Ji = szj Ui Kn, (Ujs — u) ;Lt —hy,; 'ua]i ),
i=1  t=1 (]
n T;j 2
1 I~ Uijt—u 2 2 a:uj((sijt)
Jo = 2 ; ; UzgtKh (Uijt - U)( By ) h;mw;

where §;5; € [u—hy j,u+ hy ;] and E. denotes the expectation over {Y;j:} in (4) conditional
on the event V; = {Ujji,t € [Ti5],i € [n]}. First consider J;, which equals to the second

column of §J( ) multiplied by h,, jop;(u)/du, hence

B[RS} 1] = s P GE B8, ()] BIS, () 0, 17 = 0,

where Ei; denotes the expectation over V;. Consider J2 next. Under Assumption 7, we have
K1 = supjep) ceu |8u§( €)/ou?| < oo. Each entry of |Jo| is bounded by the (1,1)th entry of
Sj( u) multiplied by th /2, and by E{K},(Ujjt — u)} < 1 we have that the (1,1)th entry
of E{S]( )} is bounded by 1. Note that E{Sj (u)} is positive definite. These results together

yield that
Eu (e [E{S;(w)}132)| < IELS; ()} 54 B (132])] < cKih2,
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which implies that |f;(u) — pj(u)| < CthZ,j for any u € Y. Hence
sup |7 (u) — py(u)| = O(hZ ;) and |fi; — psl2 = O(R ). (A.35)
UEL

For M > 0 with the choice of § = (log p)"/?(min; v, 1)~ /?M < 1, it follows from the
union bound of probability and (5) in Theorem 2 that

{ maxe(y) |15 — 2
(

> M}
log P)1/2 (minj ’Yn,T,h,j)_l/Z

< D P{IA; — Byl > M(log ) (min )

<.
I
—

2 log p

—=7 ) < cexp{(1 —cM?)logp}. A.36
i) S col(l—eMlogph - (A30)

P
< Z cexp ( — CYn,T,h M

<.
Il
—_

We can choose a large M such that 1 —cM? < 0, the right-side of (A.36) tends to 0. Hence
maxepy) |1 —Hjl2 = Op{(logp)l/Q(minj ’ymT’h,j)_l/Q}. Combing this with (A.35) yields that

. log p 1/2 9
sl sl =0 (G )+t
which completes the proof of (9).

The rate of convergence in (10) can be proved following a similar procedure. Let b, min =
min; hy, j, we assume that hymin = {log(p v n)/n}** where k1 € (0,1/2]. Consider hy min
with some ] > 1/2, the corresponding rate is not faster than that with x; € (0,1/2]. To

be specific, under the sparse design, the rate of max;e,) sup,ey |1 (v) — pj(u)] is {log(p v

n)/n}Y2=K1/2_ which is slower than {log(p v n)/n}*® with x; = 1/5. Under the dense
design with T, {log(p v n)/n}*f — 0 and T, {log(p v n)/n}*? — 0, the rate is {log(p v
n)/n}l/Q_”T/QTJI/Q, which is slower than {log(p v n)/n}2/5T,Z2/5 with k1 € (1/5,1/2]. Under
the dense design with T, {log(p v n)/n}* — 0 and T, {log(p v n)/n}*? — ¢ or w0, the rate
is {log(p v n)/n}1/2_”3k/2’1_’,:1/2, which is slower than {log(p v n)/n}"/? with x; = 1/4. Under
the dense design with T, {log(p v n)/n}" — & or oo, the rate is {log(p v n)/n}'/2, which is
the same as {log(p v n)/n}"? with x; = 1/4. Based on the above four cases, if k¥ > 1/2,
the corresponding rate is not faster than that with some x; € (0,1/2] and hence the k1 that
corresponds with the optimal bandwidth under sparse or dense design is in (0,1/2]. For
M > 0 with the choice of § = {log(p v n)}"/?(min; v, 7.4;)~*M < 1, by the union bound
of probability and (6) in Theorem 2, we have

{ MaXje[p] SUPyerq |1 (w) — fij(w)]

{log(p v n)}V/2(min; v, 1,p.5) /2

p
> B sup s () = 7ig(w)| > M{log(p v m)}' (minynr) 7
UuUEe

e,

>M}

N

p € \1/2
(N yn,1,1,5) log(p v n)
< 3 SR oxp { — e ML
j=1 ,min MIN; Yn,T,h,j

< cexp { (3 ;61 + 2Kk1 — cM2) log(p v n)} (A.37)
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We can choose a large M such that 3 + e + 4x; — 2cM? < 0, the right-side of (A.37) tends

to 0. Hence log( )y
~ og(pvmn) 1/2
max sup |71 (u) — fi;(u)| = Op {{—} ]
Jelp] uelt MIN; Y, T, h,j

Combing this with (A.35) yields that

log(p v n) Y1/2 9
max sup (uw)| = O0p [{7 +maxh, |,
ielp] ueu () = i) ming 7, 7,h,j i M
which completes the proof of (10). [

A.4 Proof of Theorem 7

Note [E% — Zjkls < 125 — Sjells + |25 — Zjells, it suffices to bound |Zj, — Zjuls. By
(A.19), for any (u,v) € U?,

~

~ 1 _ra ~
Yjk(u,v) — Bjk(u,v) = & []E{Ejk(u,v)}] E[ij(u, v) — Ejk(u,v){Ejk(u,v),O,O}T].
By the Taylor expansion, we have

Ee| Zju (. 0) — E5ln,0){S0(1,0), 0,0} Vi |

T’L] T’Lk
= Z Wijk Z Z Ujnes Ky 1. Uije — w) Ky, (Uiks — 0){Zx Uije, Uis) — Zj(u,v)}
t=1s=1
= L1 + Lo + Ls,
where
Tl] Tzk
Uit —u DI
L, = Z Wy Z Z Uijkts Kng i (Uijt — ) Kng, , (Uiks — v) Z;Lt Sk aj (u,v),
t=1s=1 s,k u
& Uirs — v 0k
Ly = Z Wijk Z Z Uz]ktsth ik Uzyt )Khz,jk (Uiks - U) zhs hs ik a] (u, U)a
t=1s=1 .5k v
1] Tzk N
L3 = Z Wijk Z Z Uijkts Kns, ik Uzgt )KhE,jk (Uiks — U)Lz'jk,
t=1s=1
T 1 Uijt —u QaQZ'k 1 Uiks — v 2822-k
ijk §h§,jk< z}th - ) é’ug (@'jktsl, 5ijkts2) + §h;jk( Zhs k ) av; (5z'jktslv 5z‘jkts2)
2.4 o
U; it — U Uk — v 622 ik
hZ = v LAG W
+ =,k hz,jk I " ENER ( ijktsls ijt82)7

(Bijhtss Oijhts2) € [u—Pu s, uths ] X [V=hs ;1 v+hs ;1] and the event Vi, = {(Uijt, Uirs), t €
(T3], s € [Tix],i € [n]}. First consider L, which equals to the second column of Zjj(u,v)
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multiplied by hs; ;.03 (u, v)/0u, hence Eyy (ég [E{éjk(u, v)}] Ll) equals to

OSj, afmge “1a
s =2 (1, )85 | E{E 0w 0)} | E{Zjn(w,v) }(0,1,0)" = 0,

where Eyy denotes the expectation over ij Following the similar procedure, we can show
that

~ -1
Ey <ég [E{Ejk(u,v)}] L2) —0.
Then consider Ls. By Assumption 7, we have

K2 = Sup {07k (u, v) /0v?, 028 ik (u, v) Jou?, 0* %1 (u, v)/Oudv} < 0.
(4:k)e[p]?, (u,v)el?

Each entry of |Ls| is bounded by the (1, 1)th entry of éjk (u,v) multiplied by 2K5h2 ,, and
by E{K}\(Uijt — u)Kp(Uixs — v)} < 1, the (1,1)th entry of E{E;x(u,v)} is bounded by 1.
Note that E{Z;;(u,v)} is positive definite. Combining these results, we have

~ -1 ~
[Eu (&5 [E{En(w, )} Ls)| < IEEk(u, 0) ik Bu (LsD] < Kok .
which implies that |§3jk(u,v) — Sjk(u,v)| < cKahi , for any (u,v) € U?. Hence

( Sl)lpu2 |§jk(uvv) — Yjp(u,v)| = O(hZ ) and Hijk — Sjkls = O(h% ). (A.38)
u,v)E

For M > 0 with the choice of § = (logp)1/2(minj7k un’T,hJ-k)_l/zM < 1, it follows from the
union bound of probability and (7) in Theorem 3 that

{ max; re(p] |25k — Zjkls - M}
(log p)Y/2(min; y vy, p k)~ /2

P{Hijk — Sikls = M(logp)w(lg,likn Vn,T,h,jk)_1/2} (A.39)

PP
<22
j=1k=1
PP
1
< Z Z cexp ( - cyn,th’jkM2,i) < cexp{(2 — cM?)log p}.
j=1k=1 MG g Vn T b, jk

We can choose a large M such that 2 — cM 2 <0, the right-side of (A.39) tends to 0. Hence
max; refp] 1%k — Bjkls = Op{(logp)l/z(minj,k Vn7T7h’jk)_1/2}. Combing this with (A.38)
yields that

& log p 1/2 2
max Z-k—z-kgzOp{<,—> + max hs. . ¢,
i ke[p] H 7 7 H min; j, vy 7.5 jk ik >.jk

)

which completes the proof of (11).
The rate of convergence in (12) can be proved following a similar procedure. Let hy i, =
min; i, by, j,, we can assume that hs, ., = {log(pvn)/n}"*? where kg € (0,1/2]. Consider Ay i
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with some k5 > 1/2, the corresponding rate is not faster than that with some 2 € (0,1/2].
Specifically, under the sparse design, the rate of max; e[, SUP(y, v)ers2 \f)jk(u, v) — i (u,v)|
is {log(p v n)/n}>7%3  which is slower than {log(p v n)/n}'/3 with k3 = 1/6. Under the
dense design with Tx{log(p v n)/n}"> — 0 and Tx-{log(p v n)/n} — 0, the rate is {log(p v
n)/n}/2=r 2 T-1 which is slower than {log(p v n)/n}l/?’TQZ/3 with ko € (1/6,1/2]. Under
the dense design with Ty{log(p v n)/n}*2 — 0 and Tx{log(p v n)/n} — ¢ or o, the rate
is {log(p v n)/n}Y2"2T1 which is slower than {log(p v n)/n}"2 with ks = 1/4. Under
the dense design with Ty {log(p v n)/n}*2 — & or o0, the rate is {log(p v n)/n}*2, which is
the same as {log(p v n)/n}"? with ky = 1/4. Based on the above four cases, if x§ > 1/2,
the corresponding rate is not faster than that with some ko € (0,1/2] and hence ko that
corresponds with the optimal bandwidth under sparse or dense design is in (0,1/2]. For
M > 0 with the choice of § = {log(p v n)}"/?(min; v, 7.4;)~2M < 1, by the union bound
of probability and (8) in Theorem 3, we have

~

{maxj,ke[p] SUDP (y, 0y |2k (U, v) — X (u, v)] N M}

log(p v n)1/2(minj,k Vn,T,h,jk) "2

{ sup (854, 0) — Sja ()| > M{log(p v m)} '/ (min v 50)

(u 'u)eu2

2Vn CN2Vn T,h,jk

M-:a I M*@

log(p v n) }

exp{ — CUn,T,h,jk M2 -
mln‘]7k Vn7T7h7jk

< 3
p
; =1 me

< cexp{(3 + €3 + 6Kg — CM2) log(p v n)}.

We can choose a large M such that 3 + ez + 6x2 — cM? < 0, the right-side of the above
inequality tends to 0. Hence

5 S 1 1/2
max  sup |3;i(u,v) — Xjk(u,v)| = Op [{M} ] .
Jkelp] (u,v)eu? I, 4 U Tk

Combing this with (A.38) yields that

log(p v n) }1/2

max  sup |E]kuv) Sik(u,v)| = Op { -
mlﬂj,k Vn7T7h7jk

h?
J:kelp] (u,v)eU? " makx ¥ ]k:|

]7
which completes the proof of (12). [ |

A.5 Proof of Proposition 10
It follows from (4.43) and Lemma 4.3 of Bosq (2000) that

sup |Aji — \ji| < |55 — Zjjlls and sup djlbi — dul2 < 2v2|55 — jjls-

le[d;] le[d;]

Combining the above with Theorem 7 yields the result in Proposition 10. |
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Appendix B. Verification of the Claim in Section 5

For the mean estimator, define the set of r candidate bandwidths H, = {h,(}), cee h,(f)}. In
our simulations, the bandwidth for each dimension can be chosen from #, freely, and

hence there are r? possible outcomes. The targeted evaluation metric is global,,, =

My )elr]r WX MISE(7, b)), We will show that global,,, = MaxMISE(u),
the right side of which is much easier to calculate as it only takes into account pr cases.
On one hand, it is obvious that global,,, < MaxMISE(xz). On the other hand, for fixed

j,m;) € [p] x [r], MISE ﬁ-,h(mj) = min,,cr,1 MISE ﬂ,h(m) , and hence global__; >
J Jo [r] YRR opt
min max min MISE(fi;, A"™) = max min MISE(fi;, h{"™) = MaxMISE(y).
(ma,.-mp)elr]? jelp] me[r] (s, 1) = e (s 1) (k)

Combining the above results yields global,, = MaxMISE(u). The corresponding claim for
the covariance estimator can be verified in the same way.

References

Denis Bosq. Linear Processes in Function Spaces: Theory and Applications. Springer, New
York, 2000.

Stphane Boucheron, Gbor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

Cheng Chen, Shaojun Guo, and Xinghao Qiao. Functional linear regression: Dependence
and error contamination. Journal of Business & Economic Statistics, 40:444-457, 2022.

Jianqing Fan and James S. Marron. Fast implementations of nonparametric curve estima-
tors. Journal of Computational and Graphical Statistics, 3:35—56, 1994.

Yingying Fan, Natasha Foutz, Gareth M. James, and Wolfgang Jank. Functional response
additive model estimation with online virtual stock markets. The Annals of Applied
Statistics, 8:2435-2460, 2014.

Yingying Fan, Gareth M. James, and Peter Radchenko. Functional additive regression. The
Annals of Statistics, 43:2296-2325, 2015.

Qin Fang, Shaojun Guo, and Xinghao Qiao. Adaptive functional thresholding for sparse
covariance function estimation in high dimensions. Journal of the American Statistical
Association, 119:1473-1485, 2024.

Clara Happ and Sonja Greven. Multivariate functional principal component analysis for
data observed on different (dimensional) domains. Journal of the American Statistical
Association, 113:649-659, 2018.

Xiaoyu Hu and Fang Yao. Sparse functional principal component analysis in high dimen-
sions. Statistica Sinica, 32:1939-1960, 2022.

Dehan Kong, Kaijie Xue, Fang Yao, and Hao Zhang. Partially functional linear regression
in high dimensions. Biometrika, 103:147-159, 2016.

38



PHASE TRANSITIONS FOR FUNCTIONAL DATA IN HIGH DIMENSIONS

Kuang-Yao Lee, Dingjue Ji, Lexin Li, Todd Constable, and Hongyu Zhao. Conditional
functional graphical models. Journal of the American Statistical Association, 118:257—
271, 2023.

Chenlei Leng, Degui Li, Hanlin Shang, and Yingcun Xia. Covariance function estimation
for high-dimensional functional time series with dual factor structures. arXiv:2401.05784,
2024.

Bing Li and Eftychia Solea. A nonparametric graphical model for functional data with appli-
cation to brain networks based on fMRI. Journal of the American Statistical Association,
113:1637-1655, 2018.

Dong Li, Xinghao Qiao, and Zihan Wang. Factor-guided estimation of large covariance
matrix function with conditional functional sparsity. arXiv:2311.02450, 2023.

Yehua Li and Tailen Hsing. Uniform convergence rates for nonparametric regression and
principal component analysis in functional/longitudinal data. The Annals of Statistics,
38:3321-3351, 2010.

Ruiyan Luo and Xin Qi. Function-on-function linear regression by signal compression.
Journal of the American Statistical Association, 112:690-705, 2017.

Xinghao Qiao, Shaojun Guo, and Gareth M. James. Functional graphical models. Journal
of the American Statistical Association, 114:211-222, 2019.

Xinghao Qiao, Cheng Qian, Gareth M. James, and Shaojun Guo. Doubly functional graph-
ical models in high dimensions. Biometrika, 107:415-431, 2020.

Eftychia Solea and Bing Li. Copula Gaussian graphical models for functional data. Journal
of the American Statistical Association, 117:781-793, 2022.

Daren Wang, Zifeng Zhao, Yi Yu, and Rebecca Willett. Functional linear regression with
mixed predictors. Journal of Machine Learning Research, 23(266):1-94, 2022.

Kaijie Xue and Fang Yao. Hypothesis testing in large-scale functional linear regression.
Statistica Sinica, 31:1101-1123, 2021.

Kaijie Xue, Jin Yang, and Fang Yao. Optimal linear discriminant analysis for high-
dimensional functional data. Journal of the American Statistical Association, 119:1055—
1064, 2024.

Fang Yao, Hans-Georg Mller, and Jane-Ling Wang. Functional data analysis for sparse
longitudinal data. Journal of the American Statistical Association, 100:577-590, 2005a.

Fang Yao, Hans-Georg Mller, and Jane-Ling Wang. Functional linear regression analysis
for longitudinal data. The Annals of Statistics, 33:2873—-2903, 2005b.

Javier Zapata, Sang-Yun Oh, and Alexander Petersen. Partial separability and functional
graphical models for multivariate gaussian processes. Biometrika, 109:665-681, 2022.

39



Guo, L1, Qrao, AND WANG

Jin-Ting Zhang and Jianwei Chen. Statistical inferences for functional data. The Annals
of Statistics, 35:1052-1079, 2007.

Xiaoke Zhang and Jane-Ling Wang. From sparse to dense functional data and beyond. The
Annals of Statistics, 44:2281-2321, 2016.

Boxin Zhao, Y. Samuel Wang, and Mladen Kolar. FuDGE: A method to estimate a func-
tional differential graph in a high-dimensional setting. Journal of Machine Learning
Research, 23(82):1-82, 2022.

Hongxiao Zhu, Nate Strawn, and David B. Dunson. Bayesian graphical models for multi-
variate functional data. Journal of Machine Learning Research, 17(204):1-27, 2016.

40



