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Abstract

In this work we consider the problem of numerical integration, i.e., approximating integrals
with respect to a target probability measure using only pointwise evaluations of the inte-
grand. We focus on the setting in which the target distribution is only accessible through
a set of n i.i.d. observations, and the integrand belongs to a reproducing kernel Hilbert
space. We propose an efficient procedure which exploits a small i.i.d. random subset of
m < n samples drawn either uniformly or using approximate leverage scores from the ini-
tial observations. Our main result is an upper bound on the approximation error of this
procedure for both sampling strategies. It yields sufficient conditions on the subsample
size to recover the standard (optimal) n−1/2 rate while reducing drastically the number
of functions evaluations—and thus the overall computational cost. Moreover, we obtain
rates with respect to the number m of evaluations of the integrand which adapt to its
smoothness, and match known optimal rates for instance for Sobolev spaces. We illus-
trate our theoretical findings with numerical experiments on real datasets, which highlight
the attractive efficiency-accuracy tradeoff of our method compared to existing randomized
and greedy quadrature methods. We note that, the problem of numerical integration in
RKHS amounts to designing a discrete approximation of the kernel mean embedding of
the target distribution. As a consequence, direct applications of our results also include
the efficient computation of maximum mean discrepancies between distributions and the
design of efficient kernel-based tests.
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1. Introduction

Numerical integration is a key tool in applied mathematics and physics (Davis and Rabi-
nowitz, 2007). It is particularly useful for approximating integrals that cannot be com-
puted in closed form—for instance when the integrand depends on some data and does not
have a simple analytical expression. It is used extensively in Bayesian inference (Gelman
et al., 1995) as well as for the resolution of PDEs (Quarteroni and Valli, 2008), e.g. for
the computation of the entries of the stiffness matrix used in finite elements methods, or
in deep-learning-based approaches to estimate the loss function which is typically derived
from a variational formulation of the problem (Rivera et al., 2022). Quadrature techniques
are also commonly used in statistical physics for the computation of free energies, where
one typically needs to integrate over large state spaces (Newman and Barkema, 1999).

Now we provide a formal definition of the problem. Let (X ,B, ρ) be a measurable
space, and let (H, ‖·‖) be a normed vector space of functions defined over X . We consider
the problem of designing quadrature rules for functions in H with respect to a probability
measure ρ. More precisely, we search for points X̃ := (X̃1, . . . , X̃m) ∈ Xm (called the nodes
or landmark points) and weights w = [w1, . . . , wm]T ∈ Rm such that, for any function f in
the unit ball of H, the integral

I(f) :=

∫
f(x) dρ(x) (1)

is well approximated by the quadrature rule defined by the weighted sum of pointwise
evaluations

IX̃,w(f) :=

m∑
j=1

wif(X̃i). (2)

Importantly, the weights (wi)1≤i≤m can depend on the nodes X̃, but not on the integrand
f ∈ H. Moreover, we will consider the general setting in which the weights w are not
required to be positive nor to sum to one, albeit some methods in the literature have
been developed in order to satisfy such additional constraints, see for instance the work by
Hayakawa et al. (2022). To quantify the performance of a given quadrature rule IX̃,w, we
define its approximation error as the worst-case error over the unit ball in H,

E(H, IX̃,w) := sup
f∈H:‖f‖≤1

∣∣∣I(f)− IX̃,w(f)
∣∣∣ . (3)

We use the shorter notation E(H) when the quadrature rule IX̃,w is clear from the context.

Quadratures from empirical data We assume to have at our disposal a dataset of n
i.i.d. samples X = {X1, . . . , Xn}. A natural estimator of I(f) is the Monte-Carlo estimator

Î(f) :=
1

n

n∑
i=1

f(Xi), (4)

which estimates I(f) uniformly over the unit ball of L2(ρ) at the rate O(1/
√
n) with high

probability. The complexity for computing this estimator grows linearly with the number
n of samples in the dataset. We will be interested by applications in which one can easily
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obtain i.i.d. samples from a target probability distribution, but pointwise evaluation of the
integrand can be expensive. The need for approximating integrals of functions that are
expensive to evaluate is a common problem which appears across many application fields,
we refer for instance the reader to Oates et al. (2017) for an application to a computational
cardiac model where each integrand evaluation takes about 100 CPU hours. It should be
noted however that sampling from the target probability distribution may sometimes also
be a major hurdle, in which case strategies such as Markov chain Monte Carlo (MCMC) or
density estimation may be used (Oates et al., 2017; Delyon and Portier, 2016).

Objective Given a dataset X of n i.i.d. samples, our goal is to design a quadrature rule
of the form (2) that (i) is computed using the knowledge of the n samples X and yet (ii)
is supported on only m < n nodes, while (iii) achieving the same finite-sample rate as the
Monte-Carlo estimator Î. We will show that these requirements are not incompatible, and
that computational efficiency can be improved without sacrificing statistical accuracy.

We consider in particular the setting in which we first sample the nodes (X̃j)1≤j≤m from
the dataset X (so that the approximation bounds must hold with high probability on the
draw of these points), and then set the weights w = (wj)1≤j≤m deterministically.

1.1 Quadratures in Reproducing Kernel Hilbert Spaces

In this paper, we consider the setting in which H is a reproducing kernel Hilbert space
(RKHS) of functions over X with reproducing kernel κ (Aronszajn, 1950). Such spaces
encompass many typical smoothness spaces considered in the learning literature. For in-
stance, Sobolev spaces of high enough smoothness are RKHS, as reminded in the following
example.

Example 1 (Sobolev). Let s ∈ N. If X = Rd, denoting f̂ the Fourier transform of f , the
Sobolev space Hs(Rd) is defined as

Hs(Rd) :=

{
f ∈ L2(Rd)

∣∣∣∣∣
(∫
X

(1 + |ξ|2)s|f̂(ξ)|2 dξ

)1/2

=: ‖f‖ <∞

}
.

When the smoothness parameter is high enough, namely s > d/2, Hs(Rd) is an RKHS. For
any non-empty domain Ω ⊆ Rd, we define Hs(Ω) as the RKHS induced by the restriction
of the reproducing kernel of Hs(Rd) to Ω× Ω.

When Ω has Lipschitz boundary, the above definition is known to be norm-equivalent
to the alternative definition of Sobolev spaces involving weak derivatives (Wendland, 2004,
Corollary 10.48). When s > d/2, it has been shown by Novak (1988, Section 1.3.12
Proposition 3) that the optimal rate for a deterministic quadrature rule of the form (2)
on the unit hypercube is infX̃,w E(Hs([0, 1]d), IX̃,w) = Θ(m−s/d), which suggests that the
Monte-Carlo estimator (with m = n) might not be optimal in this setting as it gives the
rate m−1/2; see also Novak and Triebel (2006) for similar results on more general domains
and the Lebesgue measure. The optimal rate can be reached in practice (see for instance
the work by Briol et al. (2019) for quadrature rules based on Markov chain Monte-Carlo, by
Santin et al. (2022) for greedy methods), and our goal is indeed to design quadrature rules
that have this adaptivity to the smoothness of the considered RKHS in order to reduce the
cost of numerical integration.
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While the parameter s provides a direct control on the smoothness in the Sobolev
setting, in this paper we develop a more generic analysis which depends on the decay of
the spectrum of the integral operator associated to the reproducing kernel κ and the target
distribution ρ.

Existing approaches Although we postpone to Section 3.3 the presentation of related
works, we provide here a preliminary overview of the different approaches which have been
proposed to design quadrature rules in reproducing kernel Hilbert spaces. Our method
belongs to the family of random designs, obtained by sampling randomly and simultaneously
the quadrature nodes; this includes i.i.d. uniform and importance sampling (Bach, 2017),
as well as non-i.i.d. sampling strategies (Belhadji et al., 2019). Multiple greedy methods
exist to iteratively select the nodes, typically by minimizing some notion of residual, or by
filling the space as uniformly as possible (Briol et al., 2019). In the literature on core-sets,
multiple algorithms have been proposed to compress the set of n samples down to m points
using e.g. recursive halving approaches (Dwivedi and Mackey, 2022). Note that some of
the methods can be declined in both deterministic and randomized variants, which makes
it difficult to provide a clear classification of the literature.

Although formulated in the context of numerical integration in RKHS, our bounds can
also be interpreted as approximation bounds for the computation of mean embeddings in
reproducing kernel Hilbert spaces.

Remark 1 (Kernel Mean Embedding and Maximum Mean Discrepancy). Any quadrature
rule in a RKHS can be interpreted as a way to approximate the so-called kernel mean
embedding µ :=

∫
κ(x, ·) dρ(x) ∈ H of the probability distribution ρ. Indeed, when H is

an RKHS it holds f(x) = 〈f, κ(x, ·)〉 for any f ∈ H, x ∈ X , and thus I(f) = 〈f, µ〉.
This connection will be introduced and discussed in Section 4. It implies in particular
that our work directly translates to algorithms and bounds for the efficient approximation
of the maximum mean discrepancy, a standard metric between probability distributions in
the context of kernel methods. The maximum mean discrepancy between two distributions
indeed corresponds to the distance between their kernel mean embeddings.

1.2 Summary of Contributions

This paper builds on the results by Chatalic et al. (2022b), that study kernel mean embed-
dings (see Remark 1) obtained by uniformly sampling the nodes. Our main contributions
are the following:

• We introduce a quadrature rule whose nodes are randomly subsampled from the
dataset X either uniformly or using leverage scores, and whose weights are opti-
mally chosen by solving a least-square problem. This extends in particular the setting
considered in (Chatalic et al., 2022b), which covers only uniform sampling.

• We provide high-probability bounds on the worst-case error of this quadrature rule,
and obtain quantization rates (i.e. w.r.t. the number of nodesm) which are faster than
the Monte-Carlo rate. For leverage score sampling, we obtain in particular asymptotic
rates that match known optimal rates for Sobolev spaces (Novak, 1988).
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• We show that our method adapts to the smoothness of the integrand by showing
that faster rates can be derived for fractional subspaces of H, i.e. assuming a source
condition on the integrand (Engl et al., 2000).

• We compare empirically our method to other randomized and greedy approaches
from the literature on real datasets, and show that our approach has a particularly
interesting efficiency-accuracy tradeoff.

Layout The rest of the paper is organized as follows. We introduce our algorithm in
Section 2. In Section 3, we summarize our main hypotheses and theoretical results, and put
them in perspective by reviewing the state of the art. Leveraging tools from kernel methods,
in Section 4 we detail how our bounds on the worst-case error are derived for both uniform
and leverage scores sampling. We then compare experimentally our method with other
quadrature approaches in Section 5. A table of notations is provided in Section A.

2. Two Algorithms Based on Subsampling

In this section, we describe the method we will analyze in the rest of the paper. It cor-
responds to a quadrature rule of the type (2) with randomly sampled nodes (X̃j)1≤j≤m
(Section 2.1) and weights w obtained by solving an unconstrained least-squares problem
(Section 2.2).

2.1 Choice of the Nodes

We consider in the following two strategies for sampling the nodes X̃ from the empirical
data X: uniform sampling and (ridge) leverage score sampling.

Uniform sampling The nodes X̃ = {X̃1, . . . , X̃m} are sampled uniformly from the set of
all subsets of cardinality m of {X1, . . . , Xn}. This is the most intuitive sampling strategy
and arguably the easiest to implement. It will serve as a baseline against leverage scores
sampling.

Approximate Ridge Leverage Score sampling (ARLS) Ridge leverage scores have
been introduced by Alaoui and Mahoney (2015) in the setting of kernel ridge regression.
They are related to the more general notion of statistical leverage score (Mahoney and
Drineas, 2009). We now provide a formal definition.

Definition 2 (Ridge leverage scores). Given n ≥ 1 data points X1, . . . , Xn, let Kn ∈ Rn×n
denote the kernel matrix with entries (Kn)i,j = κ(Xi, Xj) for all i, j ∈ [n]. Let λ > 0. For
any i ∈ [n], the ridge leverage score of the datapoint Xi is defined as

`λ(i) :=
(
Kn(Kn + λnI)−1

)
ii
. (5)

Such scores can be interpreted as a measure of the relative importance of each point in
the dataset. They are directly related to Christoffel functions (Fanuel et al., 2022; Pauwels
et al., 2018). The cost of exactly computing leverage scores quickly becomes prohibitive as
the sample size grows due to the matrix inversion. Since the purpose of our approach is to
reduce computational cost, we will rely on a approximate notion that has been studied in
the literature.
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Definition 3 (ARLS). Let δ ∈ (0, 1], λ0 > 0 and z ∈ [1,∞). A set (ˆ̀
λ(i))i∈[n] is said to

be (z, λ0, δ)-approximate ridge leverage scores (ARLS) of X if it satisfies with probability at
least 1− δ,

1

z
`λ(i) ≤ ˆ̀

λ(i) ≤ z `λ(i), ∀λ ≥ λ0,∀i ∈ [n]. (6)

Different algorithms have been proposed in the literature to obtain approximate ridge lever-
age scores. In this work we use BLESS (Rudi et al., 2018). It is based on a coarse-to-fine
strategy with a computational cost of order O(deff(λ)2/λ), where deff(λ) denotes the effec-
tive dimension defined in the next section. After computing the values ˆ̀

λ(i), the landmarks
X̃ are drawn with replacement from X proportionally to ˆ̀

λ(i). We refer in the following to
this method as ARLS sampling.

2.2 Choice of the Weights

Once the landmarks X̃ are selected, the weights are chosen as

w∗ = min
w∈Rm

sup
f∈H:‖f‖≤1

|̂I(f)− IX̃,w(f)|. (7)

This problem is a least squares problem and our estimator can be computed using the
closed form w = 1

nK
+
mKmn1n where A+ denotes the Moore-Penrose pseudo-inverse of A,

Km ∈ Rm×m and Kmn ∈ Rm×n denote the kernel matrices with entries (Km)ij = κ(X̃i, X̃j)
for any 1 ≤ i, j ≤ m and (Kmn)ij = κ(X̃i, xj) for any 1 ≤ i ≤ m and 1 ≤ j ≤ n, and
1n denotes a n-dimensional vector of ones. We refer the reader to Section C for a precise
derivation of this expression.

We will see in Section 4 that the quadrature rule built using subsampling and optimal
weights (7) is closely related to the so-called Nyström approximation. The latter is a
standard way to approximate kernel matrices by rows/columns subsampling in the machine
learning literature (Williams and Seeger, 2001), but actually takes its name from the work
by Nyström (1930) to discretize linear integral equations, see also (Kress, 2014, Sec. 12.2).
In this work, we thus use this designation in a broad sense: the subsampling procedure for
the selection of nodes follows the literature on low-rank approximations of kernel matrices,
however what we care about is the approximation of a linear operator, and thus the bounds
we derive differ from what is usually done in the machine learning literature (see also
Remark 12 in this regard).

Complexity The space complexity of the method (excluding the sampling phase) is
Θ(m2 + md) for storing Km and the nodes. Note that Kmn does not need to be stored as
Kmn1n can be computed sequentially in Θ(m) space. The time complexity (still exclud-
ing sampling) is Θ(nmcκ + m3) where cκ corresponds to the cost of a kernel evaluation.
The first term corresponds to the computation of Kmn1n while the second correspond to
computing the pseudo-inverse of Km (numerically stable algorithms can be used instead,
but the complexity will be of this order regardless). When X ⊆ Rd, many standard kernel
functions come with an evaluation cost which is of the order of the dimension, i.e. cκ = d.
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3. Main Results

We detail our technical assumptions in Section 3.1, and give an overview of our main results
in Section 3.2. We then put our results in perspective by reviewing the state of the art in
Section 3.3.

3.1 Assumptions

We recall that (X ,B, ρ) is a probability space, where ρ is the data probability distribution.

Assumption 4 (Independent and identically distributed samples). We have access to n
data points X1, . . . , Xn, drawn i.i.d. from the probability distribution ρ.

The first assumption we make concerns the boundedness of the kernel.

Assumption 5 (Bounded kernel). H is a separable RKHS of functions on X with reproduc-
ing kernel κ. The canonical feature map φ : X → H, defined as φ(x) := κ(x, ·), is measurable
for any x ∈ X . There exists a positive constant K <∞ such that supx∈X ‖φ(x)‖ ≤ K.

Here and in the following, we denote 〈·, ·〉 and ‖·‖ the RKHS inner-product and the
associated norm. Assumption 5 is satisfied for feature maps derived from a large class of
standard kernels such as, e.g., Gaussian and Laplacian kernels on the Euclidean space Rd.
It is also satisfied for polynomial kernels on a bounded domain X .

We define the (uncentered) covariance operator of H for the target distribution ρ as

C =

∫
φ(x)⊗ φ(x) dρ(x) : H → H.

where (φ(x) ⊗ φ(x))(f) := 〈f, φ(x)〉φ(x). Under Assumption 5 it holds tr(φ(x) ⊗ φ(x)) =
‖φ(x)‖2 ≤ K2, and thus the operator C is a self-adjoint trace class operator on H, which
allows us to leverage tools from spectral theory. It is moreover a positive operator since
φ(x)⊗ φ(x) is positive for any x (cf. Section B).

We now define, for any λ > 0 the function

deff(λ) := Ex∼ρ‖C−1/2
λ φ(x)‖2 = tr(CC−1

λ ), (8)

where Cλ := C + λI. Under Assumption 5, it always holds that deff(λ) ≤ K2/λ < ∞ for
any λ > 0. The quantity deff(λ) is known as the effective dimension, and is a measure of
the interaction between the kernel (or feature map) and the data probability distribution.
It is tightly linked to the notion of leverage scores and has been shown to constitute a
proper measure of hardness for kernel ridge regression problems (Caponnetto and De Vito,
2007). It is a quantity of paramount importance in our analysis, and its decay w.r.t. λ
essentially depends on the decay of the eigenvalues (σi)i∈N of the covariance operator C,
which characterizes the smoothness of the functions in H. In this paper, we will assume that
this decay is either polynomial or exponential, as formalized in the next two assumptions.

Assumption 6 (Polynomial Decay). There exist γ ∈]0, 1] and aγ > 0 such that σi ≤
aγi
−1/γ.
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Given that C is trace class, Assumption 6 always holds at least for γ = 1, however we
are obviously interested in settings γ < 1 where better rates can be derived. We stress that
assuming a polynomial decay of the spectrum of C is equivalent to assuming a polynomial
decay of the effective dimension deff(λ), see for instance Fischer and Steinwart (2020, Lemma
11).

Assumption 7 (Exponential Decay). There exists β > 0 and aβ > 0 such that σi ≤ aβe−βi.

This assumption implies a bound on the effective dimension which is logarithmic in 1/λ,
as recalled in Section F.1.

The spectral decay of the covariance operator has been studied by Widom (1963, 1964),
and it is known that Sobolev spaces on bounded domains correspond to a polynomial decay.

Remark 8 (Sobolev Decay). For a bounded domain Ω ⊆ Rd, the Sobolev space Hs(Ω) from
Example 1 satisfies the polynomial decay assumption with γ = d/(2s) < 1 as shown by
Widom (1963).

In dimension d = 1, the Gaussian kernel associated to a gaussian density or a density
supported on a compact domain yields an exponential decay, see Rasmussen and Williams
(2006, Section 4.3.1) and Hayakawa et al. (2022, Section B.3). These results can be gen-
eralized to higher dimensions for product measures (Bach, 2017, Appendix A), yielding a

decay of the form σi ≤ aβe−βi
1/d

. The same decay has been derived for the Gaussian kernel
and a density with Gaussian tails in Harchaoui et al. (2008, Lemma 27) by combining the
result of Widom (1964) with a perturbation argument.

3.2 Main Rates

We now provide an informal version of Theorem 19, which provides rates for our quadrature
rule based on leverage scores sampling. We provide in Section 4 additional variants of
this result for uniform sampling (yielding weaker rates) as well as for smoother fractional
subspaces of H (yielding faster rates).

Theorem 9 (Main result, informal). Let assumptions 4 and 5 hold. Let the nodes X̃1, . . . , X̃m

be drawn according to approximate leverage scores (6) from the dataset {X1 . . . , Xn}, and
w be the optimal weights (7). For n large enough it holds:

• under Assumption 6 (polynomial decay), choosing m = Ω(nγ log(n)1−γ), with high
probability

E(H, IX̃,w) = O

(
log(m)1/(2γ)

m1/(2γ)

)
= O

(
log(n)1/2

n1/2

)
;

• under Assumption 7 (exponential decay), choosing m = Ω(log(n)2), with high proba-
bility

E(H, IX̃,w) = O

(
m1/4

exp(
√
m/c)

)
= O

(
log(n)1/2

n1/2

)
.

for some constant c which does not depend on the dimension.
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Our analysis uses some tools developed by Rudi et al. (2015) in the context of kernel
ridge regression, as well as ideas developed by Chatalic et al. (2022a,b) for the approximation
of kernel mean embeddings. Note that contrarily to methods which try to fill the domain as
uniformly as possible, our analysis is not restricted to a bounded domain, and the constants
in the O(·) and Ω(·) notations of Theorem 9 do not depend on the dimension.

According to Remark 8, the polynomial decay hypothesis covers as a special case the
Sobolev setting taking γ = d/(2s).

Corollary 10 (Sobolev space). Under the hypotheses of Theorem 9, for H = Hs(X ) it
holds

E(Hs(X ), IX̃,w) = O

(
log(m)s/d

ms/d

)
.

Optimality and smoothness adaptivity We stress that in all our results, the number
of nodes m is directly chosen as a function of the number n of samples, and thus all rates
can be interpreted w.r.t. to both variables. On one side, it is known from a statistical
perspective that the minimax estimation rate when building the quadrature from n i.i.d.
samples is O(n−1/2) for continuous translation-invariant kernels on Rd and discrete measure,
or measures with infinitely differentiable densities (e.g., Gaussian) (Tolstikhin et al., 2017);
a similar rate has also been obtained in a non-iid setting (Chérief-Abdellatif and Alquier,
2022). Since we do not make extra assumptions on the probability distribution ρ in this
paper, the bound in Theorem 9 is thus optimal (up to the log term) in the sense that no
other estimator could reach a better rate with respect to n under the same assumptions.
Quantization rates, on the other side, correspond to rates with respect to the number m
of nodes on which the quadrature is supported, and lower bounds are known to be faster
than O(m−1/2) in this case, such as shown in Corollary 10 where we obtain a rate which
adapts to the smoothness of the underlying space. This result turns out to match (up to
log terms) the optimal rate in this setting (Novak, 1988, 1.3.12 Proposition 3).

For instance, Theorem 9 shows that in the case of polynomial decay our estimator
achieves the quantization rate O(m−1/(2γ)) (up to log terms) provided that one has access
to n = Ω(m1/γ) i.i.d. samples in the first place. Alternatively, we recover the rate O(n−1/2)
(up to logarithmic terms) at the reduced cost of manipulating an estimator built using only
m = Ω(nγ) samples. In the following, we will formulate the rates in this first manner (i.e.
as a function of m) and always compare estimators built using the same number of samples:
although the complexity of the algorithms used to pick these m points and weights may
differ, the complexity of afterwards evaluating the quadrature rule for a new function is
directly driven by m.

3.3 Related Work

Numerical approximation of integrals is a very broad topic and has a long history. Our
focus here is on worst-case quadrature methods in reproducing kernel Hilbert spaces when
one targets a non-uniform probability distribution known via i.i.d. samples. We provide
below an overview of existing methods in the literature with a focus on available rates
and associated computational complexities. One can roughly categorize these methods in
a few categories: random designs (where the m nodes are sampled, either independently or
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Method Weights Time complexity Guarantees

Random selection of the nodes

Monte-Carlo (Uniform) Uniform O(m) O(m−1/2) (Novak, 1988, 2.1.3)

MCMC targeting ρ (Briol et al., 2019) Optimized Not found E(Hs([0, 1]d), IX̃,w) = O(n−s/d+ε) for any ε > 0

Projection DPP (Belhadji et al., 2019)
(Requires eigendecomposition of C)

Optimized Rejection sampling + O(m3) (E E2)1/2 . r
1/2
m+1 (Belhadji, 2021, Theorem 4)

Ermakov-Zolotukhin (Belhadji, 2021) Non-optimal Rejection sampling + O(m3) (E E2)1/2 . r
1/2
m+1 (Belhadji, 2021, Theorem 3)

Continuous volume sampling
(Belhadji et al., 2020)

Optimized O(m5) for MCMC mixing guarantees (E E2)1/2 . σ
1/2
m+1

(True) Leverage scores sampling (Bach, 2017) By regularized LS 7 No algorithm E ≤ 4λ provided m & deff(λ) log(λ−1)

This work, Corollary 16 (Uniform) Optimized Θ(m3 + nmd) Under Assumption 6: E . m−(1−γ/2) log(m)

in particular E(Hs(X )) = O
(
m−(1−d/4s) log(m)

)
Under Assumption 7 E = O(m−1 log(m))

This work, Theorem 19 ((A)RLS) Optimized Θ(m3 + nmd+ n1+2γ) Under Assumption 6: E = O(m−1/(2γ) log(m))

in particular E(Hs(X )) . m−s/d polylog(m)

Θ(m3 + nmd+ log(n)2n) Under Assumption 7: E = O(m1/4 exp(−
√
m/
√
cst))

Greedy methods focusing on the residual

f/P -greedy on X (Müller, 2009) /
SBQ (Huszár and Duvenaud, 2012)

Optimized O(m3) + m nonconvex subproblems
O(dn+m2)/objective evaluation

E = O(m−1/2) (X bounded)
(Santin et al., 2022, Theorem 5.1)

f/P -greedy on X Optimized O(n2 + nm(d+m)) 7 Not found.

Herding (Chen et al., 2010) Uniform

m non-convex subproblems with
O(nd)/objective evaluation

E = O(m−1) in finite dimension (Chen et al., 2010)

E = O(m−1/2) otherwise

Frank-Wolfe (FW) with line search In the simplex Exponential in finite dimension (Bach et al., 2012)

E = O(m−1/2) otherwise

Fully-corrective FW (Jaggi, 2013) /
Continuous OMP / f -greedy

Optimized Exponential in finite dimension (Bach et al., 2012)

E = O(m−1/2) otherwise

OMP (a.k.a. f -greedy) on X Optimized O(n2 + nm(d+m)) E = O(m−1/2) (DeVore and Temlyakov, 1996)

Continuous OMP w/ global steps
+ Nyström or RF approximation
(Chatalic et al., 2022a; Keriven et al., 2017)

Optimized For RF: O(nmd log(d))
+ m non-convex subproblems
O(m2d log(d))/objective eval.

7 Not found.

Other approaches

Recombination Mercer (Hayakawa et al., 2022)
(Requires eigendecomposition of C)

Opt. in simplex O(nm2 +m3) in average (EX E2)1/2 . r
1/2
m + n−1/2

(Hayakawa et al., 2022, Cor. 2)

Recombination Nyström (Hayakawa et al., 2022) Opt. in simplex O(nm2 +m3 log(n/m)) Under Assumption 7:

E[E ] = O(r
1/2
m+1 + polylog(m)/m+ n−1/2)

(Hayakawa et al., 2023, Th. 6 + Rem. 1)

Thinning (Dwivedi and Mackey, 2022, 2021) Uniform O(n2cκ) For m =
√
n, subexponential/compactly supported distrib.:

analytic kernel: E . polylog(m)m−1

Matérn kernel: E . polylog(m)m−(1−d/bsc)
Thinning (Shetty et al., 2022) Uniform O(n log(n)3)

Space-filling methods

P -greedy Optimized m non-convex subproblems,
O(m2 +md) / objective evaluation

E(Hs(X )) = O(m−s/d)
(X bounded w/ cone condition, TI kernel)
(Santin et al., 2022, Th. 3.2/Rem. 4.1)

P -greedy on X Optimized O(nm(d+m)) 7 Not found.

Table 1: Summary of main quadrature methods. We denote E := E(H, IX̃,w) for conciseness
for a generic RKHS H, and rm =

∑
j≥m σj . Complexities are given assuming

that the kernel evaluation costs O(d). For greedy algorithms, complexities are
intended w.r.t. the empirical problem, so that the nonconvex subproblems have
complexities depending on n. SBQ = sequential Bayesian quadrature; OMP =
orthogonal matching pursuit; RF = random features; DPP = determinantal point
process; TI = translation-invariant. Note that under Assumption 6, for γ < 1 it
holds rm ≤ γ aγ

1−γ (m− 1)1−1/γ , and under Assumption 7 it holds rm ≤
aβ

1−e−β e
−βm.
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jointly), coreset methods (which reduce, often recursively, the initial set of n samples while
maintaining some key properties), methods which try to fill the space, and greedy methods
which pick the nodes iteratively. Table 1 provides a summary of the different approaches.
We refer the reader to Novak and Wozniakowski (2010) for a broader coverage of the topic,
and in particular of existing lower bounds in terms of information complexity.

Random designs Our method belongs to the family of random designs, in the sense that
the locations of the nodes are randomly drawn - in our case subsampled among the i.i.d.
samples X, but this could be relaxed. The simplest way to produce a random design is the
Monte-Carlo method, which achieves a O(m−1/2) rate (Novak, 1988, 2.1.3). This rate is op-
timal in many settings when having access to m i.i.d. samples, e.g. for translation-invariant
kernels and discrete measures or measures with infinitely differentiable densities (Tolstikhin
et al., 2017), however we consider here quadrature rules built starting from n > m i.i.d.
samples and that can thus have better rates with respect to m.

Our method is closely related to the work of Bach (2017), who considers i.i.d. sampling
of the nodes according to (continuous) leverage scores and slightly different weights. For a
particular choice of the random features, the bound in Bach (2017, Proposition 1) translates
to a bound on the worst-case error. However, in general the method cannot be implemented
as it involves multiple quantities that cannot be computed.

Briol et al. (2017) have also introduced a heuristic distribution with heavy tails as well
as a sequential Monte-Carlo procedure to sample from it, and reported empirically better
stability.

Joint sampling of the nodes has been considered, for instance using determinantal point
processes (Belhadji, 2021), which is also related to the Ermakov-Zolotukhin quadrature
rule (Belhadji, 2021). Defining rm =

∑
i≥m σi, theoretical convergence rates of order

E[E(H)2] = O(rm+1) have been proven for both methods. Belhadji et al. (2020) also con-
sidered continuous volume sampling, which consists in jointly sampling the nodes following
a probability density det(Km) with respect to the base measure ρ⊗m. This method yields
a faster theoretical rate E[E(H)2] = O(σm+1). Empirically, DPP sampling has also been
reported to converge at this faster rate.

Random sampling from data streams, i.e. in one pass over the data without knowing
beforehand the size n of the dataset, has been investigated by Paige et al. (2016); no
convergence rates have however been reported in this setting. Note that our quadrature
rule can be interpreted as a kind of Nyström approximation (Williams and Seeger, 2001),
and many other sampling rules have been studied in this context (Fanuel et al., 2022; Kumar
et al., 2012).

Space-filling methods In the setting where X is a compact set, multiple methods have
been proposed to fill the space with more regularity than what a Monte-Carlo sample
would typically produce. Such methods have been studied for decades in the literature on
model-free design of experiments, see for instance Garud et al. (2017). Quasi Monte-Carlo
(QMC) methods is a well-known way to generate low-discrepancy sequences, but is usually
restricted to very particular domain and distributions - such as the uniform distribution on
the hypercube, or the Gaussian distribution on the sphere. Dick and Pillichshammer (2010,
Theorem 15.21) for instance derived rates that are arbitrary close to the optimal one for
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QMC and Sobolev spaces of dominating mixed smoothness on [0, 1]d, see also Briol et al.
(2019). We refer the reader to Dick et al. (2022) for a broader coverage of these methods.

In the context of kernel interpolation, Fekete points are defined as the nodes X̃ max-
imizing det(Km), by analogy with polynomial interpolation in 1d where one is interested
in the points maximizing the determinant of the Vandermonde matrix (Bos et al., 2010).
Maximizing directly det(Km) is most often untractable or expensive, but kernel approxi-
mations can naturally be used (Karvonen et al., 2021). Note that this objective is related
to the density used in the continuous volume sampling method mentioned above (Belhadji
et al., 2020), however there is here no dependence in the probability measure ρ (or ρ is
assumed to be uniform).

Greedy maximization of det(Km) as been introduced as the P -greedy method in the
kernel interpolation literature (De Marchi et al., 2005, Section 4) (cf. Section H.2 for more
details), and used in multiple contexts (Chen et al., 2018; Carratino et al., 2021).

Other randomized methods Recently, Hayakawa et al. (2022, 2023) used recombination
algorithms to compute a discrete measure ρm supported on m points such that for a set of m
test functions (ϕi)1≤i≤m it holds exactly

∫
ϕi dρm =

∫
ϕi dρ̂n. The test functions are built

either using the Mercer decomposition or using a Nyström approximation with truncation,
and both randomized and deterministic algorithms are known to compute the reduction
from ρ̂n to ρm. Assuming an exponential decay of the covariance’s spectrum, the authors
obtain a bound on the expected worst case error in E[E(H)] = O(

√
rm+1 + polylog(m)/m+

n−1/2) (Hayakawa et al., 2022, Theorem 6, Remark 1).

Quadrature rules which are supported on a subset of the initial n samples (as we do)
can also be interpreted as (weighted) coresets. For instance, the simple greedy algorithm
of Karnin and Liberty (2019, Section 3.1) covers the case of kernel density estimation as a
special case, however it only induces a O(n−1/2) rate. Thinning methods have been proposed
to build a coreset of size m =

√
n by recursively reducing by half the initial dataset. The

initial O(n2) complexity of kernel thinning (Dwivedi and Mackey, 2021) has been reduced
to O(n log(n)3) by Shetty et al. (2022), and the error of the coreset has been studied under
various hypotheses but goes down to O(polylog(m)/m) for e.g. a Gaussian kernel with a
sub-exponential data distribution (Dwivedi and Mackey, 2022).

Greedy methods An alternative to random design (where the m nodes are sampled,
either i.i.d. or jointly) and coreset methods (which often recursively reduce the initial set of
n samples), is to iteratively select the nodes by minimizing some notion of residual.

Kernel herding (Chen et al., 2010) falls in this category, and has originally been intro-
duced with uniform quadrature weights. It can be interpreted as a particular case of the
Frank-Wolfe algorithm (Bach et al., 2012) and has been extended in multiple directions
(Jaggi, 2013; Lacoste-Julien et al., 2015; Briol et al., 2015). These algorithms are also
known to be closely related to matching pursuit and its variants (Locatello et al., 2017).
Fast rates in O(1/m) and even exponential rates have been obtained for such methods, but
depend on geometric quantities that cannot always be controlled easily and thus essentially
cover finite-dimensional spaces. Khanna et al. (2021) derived rates that hold in infinite
dimension, but rely on the hypothesis that the target distribution is sparse. Tsuji et al.
(2022) introduced blended pairwise conditional gradients as a variant of Frank-Wolfe more
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amenable to analysis in the infinite-dimensional setting, however theoretical rates remain
of order O(m−1/2).

In order to limit the impact of local minimas, global optimization steps can be added
after each selection of a new node. This leads to the compressive clustering algorithm, which
additionally relies on random features or Nyström approximations of the kernel (Keriven
et al., 2017; Chatalic et al., 2022a) and is closely related to the sliding Frank-Wolfe al-
gorithm (Denoyelle et al., 2019). Although theoretical guarantees in this context rather
focus on the recovery of sparse measures, the considered objective function corresponds to
a tractable approximation of the quadrature worst-case error and the algorithms proposed
in this context are thus highly relevant for our goal.

Interestingly, greedy minimization of the quadrature worst-case error infw E(H, IX̃,w)
actually does not lead to orthogonal matching pursuit, but to the f/P -greedy method from
the kernel interpolation literature (Müller, 2009), which is also known as sequential Bayesian
quadrature (Huszár and Duvenaud, 2012). Rates of order O(m−1/2) have been obtained
both for f -greedy and f/P -greedy methods (Santin et al., 2022, Corollary 20), however
faster rates are typically observed in practice.

Bayesian Quadratures In the Bayesian literature, one is typically interested in comput-
ing not only the integral I(f), but also a probability distribution encoding the belief in this
estimation. To achieve this goal, a prior distribution over the integrand f is assumed. When
this prior is chosen to be a Gaussian process whose covariance function is a kernel κ, the
maximum a posteriori estimator corresponds to the optimally-weighted quadrature rule in
the RKHS associated to κ. Moreover, the variance of I(g) when g follows the posterior dis-
tribution corresponds exactly to the worst-case error of the optimally-weighted quadrature
supported on the m nodes, Var[I(g)] = infw∈Rm E(H, IX̃,w), see e.g. (Huszár and Duvenaud,
2012, Section 3.2). This gives another interpretation to our target objective, and justifies for
instance that the sequential Bayesian quadrature is equivalent to the greedy minimization
of the worst-case error (cf. section H.2).

In this Bayesian context, Briol et al. (2019) derived optimal convergence rates for MCMC
sampling in Sobolev spaces on [0, 1]d using bounds based of the fill distance, and Quasi
Monte-Carlo sampling in Sobolev spaces of dominating mixed smoothness using a result
from Dick and Pillichshammer (2010).

Rates for adaptive bayesian quadrature methods, for which the choice of the nodes
is allowed to depend on the integrand, have also been studied assuming that the target
function can be modeled as a transformation of a Gaussian process (Kanagawa and Hennig,
2019).

Other contributions A few other methods exist beyond the main families of algorithms
presented above, such as particle methods which start directly from a pool of m nodes whose
locations are jointly updated by gradient descent (Arbel et al., 2019), but no rates have
been reported in this setting. Muandet et al. (2014) introduced shrinkage estimators and
showed that they perform better than Monte-Carlo approaches under mild assumptions on
the probability distribution of interest. Such shrinkage strategies are complementary to our
approach, in the sense that they can be combined with any existing estimator. In another
context, Kanagawa et al. (2020) proposed a theoretical analysis in the misspecified setting
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(i.e. when the integrand in (1) does not belong to the RKHS used to design the quadrature
rule), and showed that adaptivity to the smoothness of the integrand can still be achieved.

Summary Overall, our approach has the merit of achieving optimal rates while being
efficiently implementable, which complements nicely the state of the art. For instance,
greedy methods obtain very good empirical results, but the observed rates are not matched
by existing theoretical guarantees. Other existing random designs do not always yield
optimal rates, and are often costly to implement, when not intractable. Methods trying
to fill uniformly the domain are restricted by definition to bounded domains, and perform
poorly in practice (see Section 5) despite optimal rates being known in some settings (Santin
et al., 2022); this can likely be explained by high multiplicative constants, and the fact that
such methods do not adapt to the target distribution.

4. Theoretical Analysis

We show in Section 4.1 that the problem of designing quadrature rules can be recast as
the approximation of the so-called kernel mean embedding, and then provide bounds on the
worst-case error for uniform sampling (Section 4.2), ARLS sampling (Section 4.3), as well as
improved rates for ARLS sampling under an additional smoothness condition (Section 4.4).

4.1 RKHS Quadratures and Kernel Mean Embeddings

When considering H to be a reproducing kernel Hilbert space associated to a kernel κ
satisfying Assumption 5, the quadrature error is connected to the approximation of the
so-called kernel mean embedding of the considered probability measure ρ,

µ := µ(ρ) :=

∫
φ(x) dρ(x). (9)

Indeed φ is integrable with respect to any probability distribution over X under Assump-
tion 5, and thus the kernel mean embedding (9) is well defined, interpreting the inte-
gral as a Bochner integral (Diestel and Uhl, 1977, Chapter 2). It should be noted that
for any y the linear functional h 7→ 〈φ(y), h〉 is bounded under Assumption 5, and thus
closed (Kreyszig, 1989, 4.13.5 (a)). Hence by Hille’s theorem (Diestel and Uhl, 1977, Theo-
rem 6) it holds 〈φ(y),

∫
φ(x) dρ(x)〉 =

∫
〈φ(y), φ(x)〉 dρ(x) =

∫
κ(y, x) dρ(x). Moreover, the

operator Iρ : f 7→
∫
f(x) dρ(x) is a continuous linear functional under Assumption 5 given

that |Iρf | ≤
∫
|〈f, φ(x)〉|dρ(x) ≤ K‖f‖, and thus admits a Riesz representation mρ, i.e.

Iρ(f) = 〈f,mρ〉 holds for any f ∈ H (Reed and Simon, 1981). Considering f = φ(y) we
get mρ(y) =

∫
κ(y, x) dρ(x) for any y, i.e., the kernel mean embedding is also the Riesz

representant of Iρ.
Initially introduced by Smola et al. (2007), kernel mean embeddings (KME) conveniently

allow to represent a probability distribution via a mean vector in a Hilbert spaces (Muandet
et al., 2017). They have found applications in various areas such as anomaly detection (Zou
et al., 2014), approximate Bayesian computation (Park et al., 2016), domain adaptation
(Zhang et al., 2013), imitation learning (Kim and Park, 2018), nonparametric inference in
graphical models (Song et al., 2013), functional data analysis (Hayati et al., 2020), discrim-
inative learning for probability measures (Muandet et al., 2012) and differential privacy
(Balog et al., 2018; Chatalic et al., 2021).
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In the following lemma, we show how the error of a quadrature rule can be related to the
error of a kernel mean embedding estimation problem. This result is common knowledge,
but included for completeness.

Lemma 11. For any set of points X̃ = (X̃i)1≤j≤m and any weights (wi)1≤i≤m, it holds

E(H, IX̃,w) =

∥∥∥∥∥∥µ −
m∑
j=1

wjφ(X̃j)

∥∥∥∥∥∥ .

Proof For any h ∈ H such that ‖h‖ ≤ 1, it holds that∣∣∣∣∣∣
∫
h(x) dρ(x)−

m∑
j=1

wjh(X̃j)

∣∣∣∣∣∣ (i)
=

∣∣∣∣∣∣
∫
〈h, φ(x)〉dρ(x)−

m∑
j=1

wi〈h, φ(X̃j)〉

∣∣∣∣∣∣
(ii)
=

∣∣∣∣∣∣
〈
h,

∫
φ(x) dρ(x)−

m∑
j=1

wjφ(X̃j)

〉∣∣∣∣∣∣
(iii)

≤

∥∥∥∥∥∥µ −
m∑
j=1

wjφ(X̃j)

∥∥∥∥∥∥ ,

where we used the reproducing property of the RKHS H for (i) and the Cauchy-Schwarz
inequality for (iii). Equality (ii) follows from Hille’s theorem (Diestel and Uhl, 1977, The-
orem 6) applied to the linear functional f 7→ 〈h, f〉, which is bounded given that ‖h‖ ≤ 1
and thus closed (Kreyszig, 1989, 4.13.5 (a)).

The proof is concluded by observing that

h =

∥∥∥∥∥∥µ −
m∑
j=1

wjφ(X̃j)

∥∥∥∥∥∥
−1µ − m∑

j=1

wjφ(X̃j)

 ,

is on the unit sphere in H and gives the equality.

Discrete estimators Denoting ρ̂n = 1
n

∑
1≤i≤n δ(Xi) the empirical distribution of X,

where δ(·) denotes the Dirac delta function, one can define

µ̂n := µ(ρ̂n) =
1

n

n∑
i=1

φ(Xi). (10)

By Lemma 11, the error of the empirical estimator (4) is E(H, Î) = ‖µ̂n−µ‖. This quantity
decreases at the rate O(1/

√
n) for any ρ as a consequence of Bernstein inequality in Hilbert

spaces (Yurinsky, 1995, Th. 3.3.4). More generally, any quadrature rule IX̃,w can be
associated to a sparse estimator of the kernel mean embedding

µ̃m :=

m∑
j=1

wjφ(X̃j) (11)

and the discrete approximation (2) can be computed as IX̃,w(f) = 〈µ̃m, f〉 for any f ∈ H.
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A randomized Nyström estimator Our quadrature rule, obtained by sampling the
landmarks X̃ from the data X and choosing the weights according to (7), has a simple
expression in terms of kernel mean embeddings. Let

Hm := span
{
φ(X̃1), . . . , φ(X̃m)

}
⊆ H

be the finite dimensional subspace spanned by the features of the landmarks, and Pm the
orthogonal projection on this subspace, one can easily check (see Section C) that

µ̃m := Pmµ̂n. (12)

One can in particular think of µ̃m as an interpolator of µ̂n at the location of the nodes,
given that for any j ∈ {1, . . . ,m}, as φ(X̃j) ∈ ran(Pm) it holds µ̃m(X̃j) = 〈Pmµ̂n, φ(X̃j)〉 =
〈µ̂n, φ(X̃j)〉 = µ̂n(X̃j).

As a consequence of (12) and Lemma 11, our main goal from a theoretical perspective
is to bound the quantity

E(H, IX̃,w) = ‖µ − Pmµ̂n‖

both for uniform and ARLS sampling.

Remark 12 (Kernel matrix). It can easily be checked that

‖µ̂n − µ̃m‖2 = ‖P⊥m µ̂n‖2 ≤ 1
n‖Kn − K̃n‖op

where Kn and K̃n respectively denote the n × n kernel matrices of the data X with and
without Nyström approximation. Hence, existing results on the Nyström approximation of
the kernel matrix in operator norm induce bounds on the worst-case quadrature error, using
the error decomposition E(H, IX̃,w) ≤ ‖µ− µ̂n‖+‖µ̂n−Pmµ̂n‖. Such bounds would however
be sub-optimal, and we thus rely for our analysis on a different decomposition.

Remark 13 (Power function). In another context, Hayakawa et al. (2023) obtained quadra-
ture guarantees by studying the integral w.r.t. the probability distribution ρ of the quantity
‖P⊥mφ(x)‖, which is known in the kernel interpolation literature as the power function and
has been well studied (Wendland, 2004). This still differs from our analysis, which rather
relies on bounds on ‖P⊥m(C + λI)1/2‖.

Remark 14 (Maximum Mean Discrepancy). Mean embeddings naturally induce a semi-
metric on the space of probability distributions P(X ) known as the maximum mean discrep-
ancy (Smola et al., 2007). It is defined, for any two probability distributions ρ1 and ρ2,
as

MMD(ρ1, ρ2) := ‖µ(ρ1)− µ(ρ2)‖ .

It satisfies all the properties of a metric except, in general, the definiteness, depending on
whether the mean embedding ρ 7→ µ(ρ) is injective or not (we refer the interested reader
to Sriperumbudur et al. (2010) for more details). Such metrics have found applications in
many contexts such as, to cite a few, two-sample testing (Gretton et al., 2012; Borgwardt
et al., 2006), neural networks optimization (Borgwardt et al., 2006), generative models
(Li et al., 2017; Sutherland et al., 2017). Given their wide applicability, maximum mean
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discrepancies are also an important motivation for better approximating mean embeddings.
An interesting property of the MMD is that it is an integral probability metric (Müller,
1997), a class of metrics which uses test functions to compare distributions. More precisely,
we have

MMD(ρ1, ρ2)= sup
f∈H:‖f‖≤1

|EX1∼ρ1f(X1)−EX2∼ρ2f(X2)|

where H denotes the reproducing kernel Hilbert space associated to the chosen kernel. These
two representations of the MMD allow to leverage the wide set of tools from both kernel
methods and integral probability metric theories (see Sriperumbudur et al. (2012, 2009) for
examples of the latter). Although we focus on the problem of designing quadratures, it should
be noted that the algorithms and bounds discussed in this paper directly translate to results
on the MMD, see for instance the discussion in Chatalic et al. (2022b, Section 5).

4.2 Rates for Uniform Sampling

We now state our general result for uniform sampling. We then specialize it using additional
knowledge on the spectral properties of the covariance operator. This result was initially
presented in Chatalic et al. (2022b). We restate it for completeness and for comparison
with ARLS sampling. In the following, we denote L(H) the set of bounded linear operators
from H to itself, and ‖·‖L(H) the operator norm on L(H).

Theorem 15. Let Assumptions 4 and 5 hold. Let 12 ≤ m ≤ n and let δ ∈ (0, 1). When
the m sub-samples X̃1, . . . , X̃m are drawn uniformly without replacement from the dataset
{X1 . . . , Xn} and w is chosen as in (7), it holds with probability at least 1− δ that

E(H, IX̃,w) ≤ c1√
n

+
c2

m
+
c3

√
log(m/δ)

m

√
deff

(
12K2 log(m/δ)

m

)
, (13)

provided that

m ≥ max(67, 12K2‖C‖−1
L(H)) log

(
m

δ

)
,

where c1, c2, c3 are constants of order K log(1/δ).

The constants c1, c2, c3 are made explicit in the proof. A few remarks regarding The-
orem 15 are in order. First, denoting by W the smallest branch of the Lambert’s W
function on ] − e−1, 0[ (Weisstein, 2002), the condition on the sub-sample size m can also
be expressed as m ≥ −W (−δ/c)c with c = max(67, 12K2‖C‖−1

L(H)) and can thus easily be
checked numerically.

Then, the bound on the error is split in three parts: the first part corresponds to the usual
rate one gets estimating the kernel mean embedding by its standard empirical counterpart,
while the second part and the third part result from the approximation. Note that the
first two terms already illustrate the trade-off between computational cost and statistical
performance of our estimator: a small value ofm (i.em <

√
n) will reduce the computational

burden, but yield a rate worse than O(1/
√
n); alternatively, taking m >

√
n would not

improve the overall error rate, but would require more computational and storage resources.
The precise trade-off can be settled by the third term, which depends simultaneously on
the subsample size m and on the effective dimension deff(λ). Extra assumptions about the
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effective dimension – which depends both on the kernel and the probability distribution – are
needed to obtain a more explicit bound. We thus specialize our result under Assumption 6
and Assumption 7, and present in both cases sufficient conditions on m and n to guarantee
a O(n−1/2) rate, and quantization rates w.r.t. m that are faster than the Monte-Carlo
O(m−1/2) rate.

Corollary 16 (Polynomial decay). Under the assumptions of Theorem 15, if the RKHS H
and ρ satisfy Assumption 6, taking m := n1/(2−γ) log(n/δ) it holds

E(H, IX̃,w) = O

(
log(m)1−γ/2

m1−γ/2

)
.

According to Remark 8, we get the following result for Sobolev spaces.

Corollary 17 (Sobolev space). When s > d/2, under the assumptions of Theorem 15,
taking m := n1/(2−γ) log(n/δ) it holds

E(Hs(X ), IX̃,w) = O

(
log(m)1−d/(4s)

m1−d/(4s)

)
.

The polynomial decay assumption always holds with γ = 1, but no compression is
achieved in this setting. However as soon as γ < 1, we obtain rates that, despite not being
optimal (the rate from Corollary 17 should be compared to the optimal rate O(m−s/d) for
Sobolevs that will be achieved with ARLS sampling below), are already faster-than-i.i.d. and
obtained at a really contained computational cost. The rate goes up to order O(log(m)/m)
when γ goes to zero, which corresponds to what we get when the spectrum of the covariance
C decays exponentially, as formalized in the next corollary.

Corollary 18 (Exponential decay). Under the assumptions of Theorem 15 and Assump-
tion 7, taking m :=

√
n log(

√
nc4) where c4 is a constant, it holds

E(H, IX̃,w) = O

(
log(m)

m

)
.

The expresion of c4 is provided in the proof, and this corollary holds for instance for the
Gaussian kernel with a subgaussian probability distribution. Although not being optimal,
these rates are nonetheless interesting because they still adapt to the spectral decay of the
covariance operator, and thus outperform the standardO(m−1/2) Monte-Carlo rate. We also
stress that uniform sampling is, obviously, computationally extremely efficient - the overall
complexity becoming then dominated by the cost of computing the quadrature weights. We
will now show that improved rates can be obtained with leverage scores sampling.

4.3 Rates for Ridge Leverage Scores Sampling

In this section, we present quantization rates for ARLS sampling (as defined in Section 2.1).
This result relies on a slightly different error decomposition w.r.t. to uniform sampling as
detailed in Section D.
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Theorem 19. Let Assumptions 4 and 5 hold. Let the sub-samples X̃1, . . . , X̃m be drawn
with replacement proportionally to (z, λ0, δ/6)-approximate leverage scores from the dataset
{X1 . . . , Xn}, for some z ≥ 1, λ0 > 0, and w chosen as in (7). Assume n ≥ (1655 +

233 log(12K2/δ))K2 and λ0 ≤
19K2 log( 8n

δ
)

n . Then, we have the two following results, de-
pending on the assumption on the eigenvalue decay.

• Under Assumption 6 (polynomial decay), choosing m = nγ(log 32n
δ )1−γ 78cz2

(19K2)γ
guar-

antees that, with probability at least 1− δ,

E(H, IX̃,w) = O

(
log(m)1/(2γ)

m1/(2γ)

)
,

provided that n is large enough, i.e.,
19K2(log 32n

δ )
n ≤ min

(
‖C‖L(H),

(
cγz2

5

)1/γ
)

where

cγ := aγ/(1− γ) when γ < 1 and cγ := K2 when γ = 1.

• Under Assumption 7 (exponential decay), choosing

m = max(334, 78z2β−1) log
(

max(
2aβ

19K2 ,
48
δ )n

)2

guarantees that, with probability at least 1− δ,

E(H, IX̃,w) = O

(
m1/4

exp(
√
m/c)

)
,

where c is a constant, provided that n is large enough:
19K2 log( 8n

δ
)

n ≤ min(aβ, ‖C‖L(H)).

We stress that the constant c appearing in the rate for the exponential decay setting
is independent on the dimension. As one can see from the rates, ARLS sampling allows
us to reach better rates both for polynomial and exponential decay. Again, the Sobolev
case corresponds to a polynomial decay of the eigenvalues with γ = d/(2s) < 1, and we
thus obtain the rate E(Hs(X ), IX̃,w) = O(log(m)s/dm−s/d) in this setting, which up to the
logarithmic term matches the known optimal rates mentioned in Section 3.3.

Note that the condition on λ0 can be satisfied by directly feeding the desired value to the
algorithm used to estimate the approximate empirical leverage scores, and should therefore
not be seen as a limitation.

4.4 Faster Rates Under a Source Condition

While previous rates were uniform over the RKHS H, it is possible to obtain improved
quadrature rates when considering fractional subspaces, i.e. nested subspaces of H of in-
creasing smoothness. To our knowledge, this setting has never been studied in the literature
so far.

Definition 20 (Fractional Subspaces). If H is an RKHS with covariance operator C, the
fractional subspace of smoothness s of H for the data distribution ρ is defined as Hsρ = CsH,
and is endowed with the norm ‖f‖s = ‖g‖ where g is the unique function satisfying g ∈
(kerC)⊥ and Csg = f .

19



Chatalic, Schreuder, De Vito and Rosasco

Note that this definition depends on both H and ρ, i.e. not only on the properties of
the base RKHS but also on its interaction with the data distribution. It is connected to the
source condition hypothesis made in the inverse problem literature (Engl et al., 2000); the
difference in our setting is that we are not interested in one single function, but rather in
bounding the quadrature error uniformly over such fractional subspaces.

The fractional subspaces are themselves reproducing kernel Hilbert spaces and one could
apply the previous result directly to them and define their associated kernels. However,
in practice the smoothness is often unknown, and we obtain in this section improved rates
without the need to estimate this smoothness: in particular the leverage scores are computed
with respect to the base kernel κ.

Such improved rates are also reminiscent of the so-called superconvergence results in
kernel interpolation, see e.g. Schaback (2018) and Wendland (2004, Sec. 11.5).

Theorem 21. Let s ∈ [0, 1/2]. Let Assumption 5 hold. Furthermore, assume that the
data points X1, . . . , Xn are drawn i.i.d. from the distribution ρ and that m ≤ n sub-samples
X̃1, . . . , X̃m are drawn using (z, λ0, δ/4)-approximate leverage scores sampling with replace-
ment (for some z ≥ 1, λ0 > 0) from the dataset {X1 . . . , Xn}. Let w chosen as in (7).
Assume that:

n ≥ (1655 + 233 log(8K2/δ))K2

λ2s+1
0 ≤ 19K2 log(32n/δ)

n
≤ min(1, ‖C‖2s+1

L(H)).

• Under Assumption 6 (polynomial decay), taking m = Θ
(
nγ/(2s+1) log(32n/δ)1−γ/(2s+1)

)
,

we get with probability 1− δ the rate

E(Hsρ, IX̃,w) = O(m−(2s+1)/(2γ))

provided that n is large enough to additionally ensure n ≥ 19K2
(

334
78z2cγ

)(2s+1)/γ
log
(

32n/δ
)
.

• Under Assumption 7 (exponential decay), taking

m := max

(
cm

2s+ 1
log
(
c′mn

)
, 334

)
log
(
c′mn

)
= O(log(n)2)

where cm := 78z2β−1, c′m := max

(
(2aβ)2s+1

19K2 , 32
δ

)
it holds with probability 1− δ

E(Hsρ, IX̃,w) = O

(
m1/4 exp

(
− 2s+1

2
√
cm

√
m
))

,

provided that n is large enough to additionally ensure n ≥ 19K2a
−(2s+1)
β log(32n/δ).

Note that depending on the constants, the conditions on n might always be satisfied, or
reduce to lower bounds on n, but can always be satisfied for n large enough.

We observe under the polynomial decay assumption an improved rate ofO(m−(2s+1)/(2γ)),
which should be compared to the rate O(m−1/(2γ)) that we obtained (up to log terms) in
Section 4.3. In the exponential decay setting, we still obtain an exponential dependence in√
m, however the constant appearing inside the exponential is reduced due to the factor

2s+ 1 and faster convergence can hence be obtained.
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5. Numerical Experiments

In this section, we evaluate empirically the performance of our proposed method in two
different setting. In Section 5.1, we consider periodic Sobolev spaces on [0, 1] and a uniform
target distribution, a setting which has been extensively used to benchmark quadrature
methods, and in Section 5.2 we use real datasets on Rd and consider spaces generated by
Gaussian and Laplacian kernels.

Error computation Note that the (squared) error of a quadrature rule IX̃,w for the
reproducing kernel Hilbert space H can be computed using Lemma 11 as follows:

E(H, IX̃,w)2 =

∥∥∥∥∥∥
∫
φ(x) dρ(x)−

m∑
j=1

wjφ(X̃j)

∥∥∥∥∥∥
2

=

∫∫
κ(x, y) dρ(x) dρ(y)− 2

∑
1≤j≤m

wj

∫
κ(x, X̃j) dρ(x) + wTKmw (14)

where we recall that Km denotes the kernel matrix at the landmarks X̃. Hence, to compute
the kernel mean embedding one only needs a closed form of the kernel κ and the Nyström
landmarks, but to compute the error via (14) one needs a closed form for

∫
κ(x, X̃i) dρ(x)

and
∫∫

κ(x, y) dρ(x) dρ(y). If ρ has a discrete support of size n, then evaluating the error
requires only kernel evaluations and scales in Θ(n2). For this reason, we restrict ourselves
in Section 5.2 to datasets of moderate size, although the quadrature methods themselves
do not suffer from this quadratic dependency in the dimension and could scale to larger
datasets.

Optimal weights are always used in this section, for all landmark selection strategies.

5.1 Periodic Sobolev Spaces

We consider X = [0, 1] and the translation-invariant kernel

κs(x, y) := 1 + 2
∑
n∈N∗

1
n2s cos(2πn(x− y)) = 1 +

(−1)s−1(2π)2s

(2s)!
B2s({x− y})

where B2s denotes the Bernoulli polynomial of order 2s and {·} the fractorial part. The
expression involving Bernoulli polynomials is for instance mentioned in (Wahba, 1990, p.22).
The associated reproducing kernel Hilbert space corresponds to the Sobolev space of periodic
functions of order s satisfying the boundary conditions f (i)(0) = f (i)(1) for i = 0, . . . , s− 1,
and we choose for ρ the uniform distribution on X .

It holds
∫ 1

0 κ(x, x̃) dx =
∫∫ 1

0 κ(x, y) dx dy = 1 so the error can easily be computed using
Equation (14). This RKHS has been used by multiple authors to benchmark quadrature
methods because the eigendecomposition of the covariance operator is computable exactly,
and we thus include this setting for completeness. However, we stress that the kernel mean
embedding is the constant function µ(x) =

∫ 1
0 κ(x, y) dy = 1 (using the definition of the

kernel as sum of cosines), and the continuous ridge leverage scores (of which the the leverage
scores defined in (5) can be seen as a tractable approximation based on the empirical data)
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are uniform in this setting as observed by Bach (2017, Sec. 4.4). As a consequence, no
improvement over uniform sampling should be expected in this setting when using ARLS.

For X = [0, 1]d with d > 1, we consider the product kernel κds(x, y) = Πd
i=1κs(xi, yi).

This kernel does not induce a Sobolev space but rather consists in functions having square
integrable mixed partial derivatives of order up to s in each variable. The eigenvalues
of the associated integral operator for the uniform distribution are known to decay in
(log i)2s(d−1)i−2s, see e.g. Bach (2017).

We compare our approach to the method of (Belhadji et al., 2019) based on determinan-
tal point processes sampling, as well as the method of (Hayakawa et al., 2022) which relies
like us on a Nyström approximation but uses a recombination algorithm. We also include
for comparison three greedy deterministic methods: greedy minimization of the norm of the
residual ‖P⊥m µ̂n‖, orthogonal matching pursuit, and greedy maximization of det(Km). Note
that these three methods correspond in the kernel interpolation literature respectively to
the so-called f/P -greedy, f -greedy and P -greedy methods applied on the function µ̂n. For
these methods, the non-convex optimization steps to select the new atoms are approximated
by an exhaustive search over the empirical data. We provide additional details regarding
these methods in Section H.2.

We implemented our approach as well as the three greedy methods in Julia1, and rely
on the Python authors’ implementations of the other two methods. All implementations
however use OpenBLAS as BLAS implementation with the same number of threads, see
Section H.1 for technical details.

Results are reported in Figure 1 for d = 1, s = 1 and d = 2, s = 3. We observe that
all methods seem to roughly follow the optimal O(m−s) rate in dimension d = 1. This is
expected for our method by Theorem 9 even though we are sampling uniformly, given that
leverage scores are uniform in this setting. For d = 2, all methods appear to be slightly
sub-optimal compared to the optimal theoretical rate, which is still O(m−s) in this setting
as discussed above. Although our method seems to suffer from a slightly larger error with
respect to other methods for a fixed support size m , it outperforms all of them when looking
at the tradeoff between approximation error and runtime. In particular, the three greedy
methods suffer a lot from the linear search which is done at each iteration. The method from
(Belhadji et al., 2019) is competitive with our approach in terms of accuracy-runtime tradeoff
for d = 1, s = 1, but requires the knowledge of the covariance’s eigendecomposition which
is highly limiting for applications beyond this setting. Greedy maximization of det(Km)
seems to yield a better convergence rate than our method at a moderate computational
cost, however this method is not adaptive to the target distribution and we will show in the
following experiment that it performs poorly for a non-uniform distribution.

5.2 OpenML Datasets with Gaussian and Laplacian Kernels

We consider in this section multiple machine learning datasets from the OpenML database2.
To better see the rates of the different methods, we do not use data splitting and report

1. See https://gitlab.com/achatali/efficient-numerical-integration-in-rkhs-via-ls-sampling,
code released under the AGPL3 license.

2. https://www.openml.org/
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the error computed using (14) taking ρ to be the discrete measure corresponding to the full
dataset ρ := 1

n

∑n
i=1 φ(xi).

We report here the error as a function of both the number of nodes m and running
times, for the Gaussian (Figure 2) and Laplacian (Figure 3) kernels and for two datasets,
but additional results on a wider selection of datasets are provided in Section H.3. The
kernel scale is fixed by computing the median inter-point euclidean distance on a random
subset of the data, and its value is reported on the figures for each dataset. We compare
our methods to the algorithms mentioned in Section 5.1, at the exception of the methods
which rely on the Mercer decomposition, as the latter is unknown in this setting. We also
include the thinning method of (Shetty et al., 2022), for which we take as oversampling
parameter g = 4, which corresponds to the author’s choice in their experimentations, and
start building the coreset from m2 ≤ n samples drawn iid and uniformly from the dataset.
Additional technical details are provided in Section H.1.

In Figure 2, we plot in dotted line the theoretical rates predicted by Theorem 9 under
Assumption 7, picking for the exponential rate a constant matching the observations. We
observe that on these two datasets uniform sampling indeed yields a fast O(m−1) rate.
Leverage scores sampling improves the converge rate as predicted by theory, however this
is observed in practice only when m ≥ 100; it should be noted however in this setting that
(i) the tails of the target distribution might be too heavy to satisfy the hypotheses and (ii)
the exponential decay is conditioned in Theorem 19 to having n = exp(m1/2), which is not
satisfied for the larger values of m used in the plot as computing the error exactly would
become prohibitive on very large datasets.

Here again, when looking at the error as a function of runtime, we see that our approach
outperforms all the others algorithms. It is clear that the method which greedily fills the
space in a uniform manner, which seemed to be competitive in the Sobolev setting, yields
here a really poor accuracy; this should be expected as this method is not adaptive to the
target distribution.

With a Laplacian kernel κ(x, y) = exp(−λ‖x − y‖), we do not observe any different
between uniform and ARLS sampling, which matches our theoretical guarantees. Indeed
due to the lack of smoothness of the Laplacian kernel, we expected to observe the rates for
exponential decay with the weakest hypotheses (Assumption 6 with γ → 1), which yields
a rate of order O(m−1/2) (i.e. no better than Monte-Carlo) for both uniform and ARLS
sampling. All methods achieve the same rate, with slightly smaller constants for greedy
methods - still at the price of a much larger computational cost.

6. Conclusion

In this article, we introduced an efficient quadrature method based on random subsam-
pling, which is related to the Nyström approximation used for the discretization of linear
integral equations and to build low-rank approximations of kernel matrices. We derived
worst-case error bounds for RKHS for both uniform and approximate ridge leverage scores
sampling, and showed that optimal rates can be obtained for Sobolev spaces in the latter
case. Empirically, we showed that our method outperforms the state of the art in terms of
accuracy-runtime tradeoff. Studying the performance of our approach in the misspecified
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setting, i.e. when the integrand do not belong to the considered RKHS, would be of interest
for future works.
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Structure of the Appendix

We begin by introducing additional notations in Section B. Then, we prove in Section C the
expression of optimal weights. A deterministic error decomposition is derived in Section D,
and then used in Section E to prove our main results. Section G contains the concentration
results that our proof of Theorem 15 rely on, and we also recall in Section F some key
results on the effective dimensions and the Nyström approximation. Eventually we provide
additional details regarding numerical experiments in Section H.

Appendix A. Table of Notations

X Input space
H Generic RKHS
Hs(X ) Sobolev space (see Example 1)
Hsρ Subspace of H corresponding to a source condition

ρ Target/data distribution

X̃ Quadrature nodes (= Nyström landmarks in our case)
w Quadrature weights
IX̃,w Quadrature rule

C : H → H (Uncentered) covariance operator
(σi)i∈N Eigenvalues of C
γ, aγ Parameter and constant for polynomial decay (Assumption 6)
β, aβ Parameter and constant for exponential decay (Assumption 7)

E(H, IX̃,w) Worst-case quadrature error on the unit ball of F (cf. (3))

Appendix B. Additional Notations

We define the operator Φ : L2(ρ)→ H for any f ∈ L2(ρ) as

Φf =

∫
X
f(x)φ(x) dρ(x).

Its adjoint Φ∗ is defined by Φ∗h = 〈h, φ(·)〉 for any h ∈ H and corresponds to the inclusion
operator from H into L2(ρ).

We define the (uncentered) covariance operator C : H → H as

C :=

∫
φ(x)⊗ φ(x)dρ(x)

where (φ(x) ⊗ φ(x))(f) := 〈f, φ(x)〉φ(x). One can easily check that C = ΦΦ∗. Moreover,
Assumption 5 implies that the operator C is a positive trace class operator on H and allows
to leverage tools from spectral theory. Positivy derives from the fact that φ(x) ⊗ φ(x) is
positive for any x. Indeed, for any f ∈ H, by applying twice Hille’s theorem (Diestel and
Uhl, 1977, Theorem 6) on the linear bounded (and thus closed (Kreyszig, 1989, 4.13.5 (a)))
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operators M 7→Mf and v 7→ 〈v, f〉

〈Cf, f〉 =

〈(∫
φ(x)⊗ φ(x) dρ(x)

)
f, f

〉

=

〈∫
φ(x)f(x) dρ(x), f

〉
=

∫
f(x)2 dρ(x) ≥ 0.

(15)

(16)

(17)

The empirical covariance operator is defined as

Ĉn =

n∑
i=1

φ(Xi)⊗ φ(Xi).

For any operator Q : H :→ H and any real number λ > 0, we denote by Qλ : H → H
the regularized operator Qλ = Q + λI. We denote the (Moore-Penrose) pseudo-inverse of
an operator A by A+.

Given a random variable X, we write ess supX to denote its essential supremum.
We write 1n ∈ Rn for the n-dimensional vector of ones.
We recall the definition of the effective dimension, and also introduce the notation d∞(λ):

deff(λ) := Ex∼ρ‖C−1/2
λ φ(x)‖2 = tr(CC−1

λ ),

d∞(λ) := ess sup
x∼ρ

‖C−1/2
λ φ(x)‖2.

(18a)

(18b)

It holds for any λ > 0 that deff(λ) ≤ d∞(λ) ≤ K2/λ <∞.

Appendix C. Derivation of the Weights

This section provides a proof for the expression of the optimal weights claimed in Equa-
tion (7). For ease of exposition, let us introduce the operators

Φm : Rm → Hm, w 7→
m∑
j=1

wjφ(X̃j),

Φn : Rn → H, w 7→
n∑
i=1

wiφ(Xi).

Since, by definition, µ̃m is the orthogonal projection of µ̂n onto the space Hm, it can
be expressed as µ̃m = Φmw

∗ where the weights w∗ ∈ Rm minimize the mapping w 7→
‖µ̂n −Φmw‖2. Setting the gradient of this mapping to zero, we obtain that w must satisfy

Φ∗mΦmw = Φ∗mµ̂n.

The minimum norm solution of the above equation is given by w = (Φ∗mΦm)+Φ∗mµ̂n (Laub,
2004). Noting that the empirical kernel mean embedding µ̂n can be expressed as µ̂n =
1
nΦn1n and using the fact that Φ∗mΦm = Km, Φ∗mΦn = Kmn, we obtain the claimed equality

w = K+
mΦ∗m(n−1Φn1n) =

1

n
K+
mKmn1n.
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Appendix D. Deterministic Error Bound

In order to break down the approximation error, we introduce the quantity

µ̂m =
1

m

m∑
j=1

φ(X̃j) ∈ Hm,

which is an unbiased estimate of the empirical kernel mean embedding µ̂n when sampling
uniformly the landmarks.

Our main results rely on the following deterministic error decompositions.

Lemma 22 (Error decomposition). For any λ > 0, it holds (almost surely)

‖µ − µ̃m‖ ≤ ‖µ − µ̂n‖+ ‖P⊥mC
1/2
λ ‖L(H)‖C

−1/2
λ (µ̂n − µ̂m)‖

‖µ − µ̃m‖ ≤ ‖µ − µ̂n‖+ ‖P⊥mC
1/2
λ ‖L(H).

(19)

(20)

While the decomposition (19) is convenient, it is not well suited for the analysis when
sampling proportionally to leverage scores as described in Section 2.1, and we will see that
the decomposition (20) is easier to work with in this setting.
Proof We rely for both inequalities on the decomposition

‖µ − µ̃m‖ ≤ ‖µ − µ̂n‖+ ‖µ̂n − µ̃m‖

First bound (19) Note that

‖µ̂n − µ̃m‖ = ‖P⊥m µ̂n‖ = ‖P⊥m(µ̂n − µ̂m)‖

where the last inequality follows from P⊥m µ̂m = 0. Hence we get

‖µ − µ̃m‖ ≤ ‖µ − µ̂n‖+ ‖P⊥m(µ̂n − µ̂m)‖

≤ ‖µ − µ̂n‖+ ‖P⊥mC
1/2
λ ‖L(H)‖C

−1/2
λ (µ̂n − µ̂m)‖.

Second bound (20) We use the alternative decomposition

‖µ − µ̃m‖ = ‖µ − Pmµ̂n‖
≤ ‖µ − Pmµ‖+ ‖Pm(µ − µ̂n)‖

≤ ‖P⊥mC
1/2
λ ‖L(H)‖C

−1/2
λ µ‖+ ‖µ − µ̂n‖

Note that because µ is a mean embedding, it can be written µ = Φ1 where 1 ∈ L2(ρ)
denotes the constant function, and Φ admits a polar decomposition of the form Φ = C1/2U
where U is a partial isometry from L2(ρ) to H. Hence we have

‖C−1/2
λ µ‖ = ‖C−1/2

λ C1/2U1‖ ≤ ‖C−1/2
λ C1/2‖L(H)‖1‖L2(ρ) ≤ 1.
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Appendix E. Proofs of the Main Results

E.1 Proofs for Uniform Sampling (Section 4.2)

Theorem 15 is a consequence of a more general result which we state now.

Theorem 23. Let Assumption 5 hold. Furthermore, assume that the data points X1, . . . , Xn

are drawn i.i.d. from the distribution ρ and that m ≤ n sub-samples X̃1, . . . , X̃m are drawn
uniformly with replacement from the dataset {X1 . . . , Xn}. Then, for any λ ∈]0, ‖C‖L(H)]
and δ ∈]0, 1[, with probability at least 1− δ

‖µ− µ̃m‖ ≤
2K
√

2 log(6/δ)√
n

+
√
λ

(
4
√

3d∞(λ) log(12/δ)

m
+ 6

√
deff(λ) log(12/δ)

m

)
,

provided that

• m ≥ max(67, 5d∞(λ)) log
(

12K2

λδ

)
,

• λn ≥ 12K2 log(12/δ).

Proof Let δ ∈ (0, 1) be the desired confidence level. Let λ > 0, m ∈ N and n ∈ N satisfy
the conditions of the theorem. Using the error decomposition of Lemma 22, we get

‖µ− µ̃m‖ ≤ ‖µ− µ̂n‖+ ‖P⊥mC
1/2
λ ‖L(H)‖C

−1/2
λ (µ̂n − µ̂m)‖.

Controlling the first term amounts to measuring the concentration of an empirical mean
around its true mean in a Hilbert space. Multiple variants of such results can be found in
the literature (see, e.g., (Pinelis, 1994)). We apply here Lemma 31 on the random variables
ηi := φ(Xi)−µ, 1 ≤ i ≤ n. Note that they are indeed bounded since, for any index 1 ≤ i ≤ n,
‖ηi‖ ≤ 2 supx∈X ‖φ(x)‖ = 2K. Thus, it holds with probability at least 1 − δ/3 on the draw
of the the dataset X1, . . . , Xn that

‖µ− µ̂n‖ ≤
2K
√

2 log(6/δ)√
n

.

Next, we rely on Lemma 28 to bound the term ‖P⊥mC
1/2
λ ‖L(H) with high probability.

Since the Nyström landmarks are uniformly drawn and m ≥ max(67, 5d∞(λ)) log 12K2

λδ ,
we have, for any λ > 0, with probability at least 1 − δ/3 on the draw of the landmarks
X̃1, . . . , X̃m,

‖P⊥mC
1/2
λ ‖L(H) ≤

√
3λ.

Finally, the last term can be bounded using Lemma 35 which implies that, since λ
satisfies 0 < λ ≤ ‖C‖L(H) and λn ≥ 12K2 log(4/δ), it holds with probability at least 1− δ/3∥∥∥C−1/2

λ (µ̂n − µ̂m)
∥∥∥ ≤ 4

√
d∞(λ) log(12/δ)

m
+

√
12deff(λ) log(12/δ)

m
.

Taking the union bound over the three events yields the desired result: with probability at
least 1− δ (over all sources of randomness), it holds that

‖µ− µ̃m‖ ≤
2K
√

2 log(6/δ)√
n

+
√

3λ

(
4
√
d∞(λ) log(12/δ)

m
+

√
12deff(λ) log(12/δ)

m

)
.
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Proof Assuming that our choice of m and λ satisfies the constraints
m ≥ max(67, 5d∞(λ)) log 12K2

λδ
λn ≥ 12K2 log(12/δ)
0 < λ ≤ ‖C‖L(H)

, (21)

we can apply Theorem 23 and use the fact that d∞(λ) ≤ K2/λ to get

‖µ− µ̃m‖ ≤
2K
√

2 log(6/δ)√
n

+
4
√

3K log(12/δ)

m
+ 6
√

log(12/δ)

√
λdeff(λ)

m
.

Setting λ = 12K2 log(m/δ)
m we obtain by Lemma 11 the claimed result with constants c1 =

2K
√

2 log(6/δ), c2 = 4
√

3K log(12/δ), and c3 = 12
√

3 log(12/δ)K.
Let us now check that our choices are consistent with the constraints. We will also

obtain a more user-friendly expression for the constraints and express the sub-sample size
m as a function of the sample size n. Using the fact that d∞(λ) ≤ K2/λ, one can easily
check that a sufficient set of conditions to satisfy (21) is given by

m ≥ 67 log
(

1
δ

m
log(m/δ)

)
m ≥ 5m

12 log(mδ )
log
(

1
δ

m
log(m/δ)

)
log(12/δ)

n ≤ log(m/δ)
m

12K2 log(m/δ)
m ≤ ‖C‖L(H)

.

As m ≤ n, the third condition is satisfied as soon as m ≥ 12. Moreover, with this choice of
m, we have log(m/δ) > 1, hence the second constraint always holds and it is sufficient to
show that

m ≥ max(67, 12K2‖C‖−1
L(H)) log

(
m

δ

)
.

Proof Under Assumption 6, by Lemma 26 it holds deff(λ) ≤ cγλ−γ . Under the assumptions
of Theorem 15, setting m := n1/(2−γ) log(n/δ), we get

E(H, IX̃,w) = ‖µ− µ̃m‖ ≤
c1√
n

+
c2

m
+
c3

√
log(m/δ)

m

√
deff

(
12K2 log(m/δ)

m

)

≤ c1√
n

+
c2

m
+ c3
√
cγ(12K2)−γ/2

log(m/δ)
1−γ
2

m
2−γ
2

= O

(
log(m/δ)1− γ

2

m1− γ
2

)
(22)

(23)

(24)
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Proof Under Assumption 7, it holds by Lemma 27 deff(λ) ≤ log(1 + aβ/λ)/β. We apply

Theorem 15. Taking m ≥ 12K2 log(m/δ)
aβ

, and using the fact that log(1 + x) ≤ log(2x) for

x > 1, the last term of (13) can be bounded by√
log(m/δ)√
βm

√
log

(
1 +

aβm

12K2 log(m/δ)

)
≤ 1√

βm

√
log(m/δ) log

(
aβm

6K2 log(m/δ)

)
≤ 1√

βm
log(mmax(1/δ, aβ/(6K

2)))

which is bounded by 1√
βn

by taking m :=
√
n log(

√
nc4) with c4 := max(1/δ, aβ/(6K

2)).

Plugging the latter bound in (13), we obtain

E(H, IX̃,w) ≤ c1√
n

+
c2√

n log(
√
nmax(1/δ, aβ/(6K2))

+
c3√
βn

= O

(
1√
n

)
.

The claimed quantization rate follows

1√
n
≤ log(c4

√
n log(c4

√
n)))√

n log(c4
√
n)

= O

(
log(m)

m

)
.

E.2 Proofs for Leverage Scores Sampling (Section 4.3)

Theorem 24. Let Assumptions 4 and 5 hold. Let δ ∈ (0, 1). Let the m sub-samples
X̃1, . . . , X̃m be drawn according to (z, λ0, δ/4)-approximate leverage scores from the dataset

{X1 . . . , Xn} for some z ≥ 1 and λ0 > 0. Then, for any λ ∈ (λ0 ∨ 19K2

n log(8n
δ ), ‖C‖L(H)],

it holds, with probability at least 1− δ,

‖µ− µ̃m‖ ≤
2K
√

2 log(4/δ)√
n

+
√

3λ ,

provided that

• n ≥ (1655 + 233 log(8K2/δ))K2;

• m ≥ max
(
334, 78z2deff(λ)

)
log 32n

δ .

Proof Let the assumptions of the theorem hold. Let δ ∈ (0, 1) be the desired confidence
level. Let the integers m ∈ N and n ∈ N satisfy the conditions of the theorem and let
λ ∈ (λ0 ∨ 19K2

n log(8n
δ ), ‖C‖L(H)]. Recall the error decomposition from Equation (20),

‖µ − µ̃m‖ ≤ ‖µ − µ̂n‖+ ‖P⊥mC
1/2
λ ‖L(H).

We apply here Lemma 31 on the random variables ηi := φ(Xi) − µ, 1 ≤ i ≤ n. Note
that they are indeed bounded since, for any index 1 ≤ i ≤ n, ‖ηi‖ ≤ 2 supx∈X ‖φ(x)‖ = 2K.
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Thus, it holds with probability at least 1− δ/2 on the draw of the the dataset X1, . . . , Xn

that

‖µ − µ̂n‖ ≤
2K
√

2 log(4/δ)√
n

.

Next, we rely on Lemma 29 to bound the term ‖P⊥mC
1/2
λ ‖L(H) with high probability.

Since the sub-samples are drawn according to (z, λ0, δ/4)-approximate leverage scores from
the full dataset {X1, . . . , Xn}, we have, with probability at least 1− δ/2 on the draw of the
sub-samples X̃1, . . . , X̃m,

‖P⊥mC
1/2
λ ‖L(H) ≤

√
3λ .

Taking the union bound over the two events yields the claimed result.

We now justify how the parameters λ,m are chosen to yield the result claimed in The-
orem 19.

Proof We apply Theorem 24, use the fact that deff(λ) ≤ d∞(λ) ≤ K2/λ to get (without
hypotheses on the eigenvalues decay)

‖µ− µ̃m‖ ≤
2K
√

2 log(4/δ)√
n

+
√

3λ (25)

We now need to pick m and λ that ensure



λ0 < λ ≤ ‖C‖L(H)

λ ≥ 19K2

n log(8n
δ )

m ≥ 334 log
(

32n
δ

)
m ≥ 78z2deff(λ) log

(
32n
δ

)

(26a)

(26b)

(26c)

(26d)

Polynomial decay Under Assumption 6, by Lemma 26 it holds deff(λ) ≤ cγλ−γ for some
constant cγ > 0. In this setting, a sufficient condition to satisfy (26d) is to take

λ :=

(
78cγz

2 log 32n
δ

m

)1/γ

. (27)

One can easily check that choosing additionally

m := nγ
78cγz

2(log 32n
δ )1−γ

(19K2)γ
, (28)

we get

λ =
19K2 log 32n

δ

n
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and the sufficient conditions (26) are satisfied as long as n is large enough and λ0 is small
enough, i.e., 

λ0 ≤
19K2

(
log 32n

δ

)
n

≤ ‖C‖L(H)

nγ(log
32n

δ
)−γ ≥ 334(19K2)γ

78cγz2

(29a)

(29b)

In this regime, the error (25) follows the rate O

(
log(n)1/2

n1/2

)
. From (28), one can observe

that log(n) ≤ log(n log(32n/δ)(1−γ)/γ) = cst + log(m1/γ) so that the error (25) also follows

a quantization rate of order O(
√
λ) = O

(
log(m)1/(2γ)

m1/(2γ)

)
with respect to m.

Exponential decay Under Assumption 7, by Lemma 27 it holds deff(λ) ≤ β−1 log(1+
aβ
λ ).

Given that log(1 + x) ≤ log(2x) whenever x ≥ 1, the following conditions are sufficient to
enforce (26): 

λ0 ≤ λ ≤ min(aβ, ‖C‖L(H))

λ ≥ 19K2

n log
(

8n
δ

)
m ≥ 334 log

(
32n
δ

)
m ≥ 78z2β−1 log(2

aβ
λ ) log 32n

δ

(30)

One can easily check that the choice

λ :=
19K2

n
log

(
8n

δ

)
, m := max(334, 78z2β−1 log

(
2aβ

19K2n
)

) log

(
32n

δ

)
satisfies (30) as long as

max(a−1
β , ‖C‖−1

L(H)) ≤
n

19K2 log( 8n
δ

)
≤ λ−1

0 . (31)

With these choices of parameters, we get a rate of order O(
√
λ) = O(log(n)1/2n−1/2).

Moreover, if we assume for simplicity m := cm log(n)2, this yields the quantization rate
O(
√
λ) = O(m1/4 exp(−

√
m/c) with c = 2

√
cm.

E.3 Proofs With Source Condition (Section 4.4)

Lemma 25 (Faster rate with source condition). Let Assumptions 4 and 5 hold. Let the
sub-samples X̃1, . . . , X̃m be drawn according to (z, λ0, δ/4)-approximate leverage scores from

the dataset {X1 . . . , Xn}, for some z ≥ 1. The for any λ ∈ [max(λ0,
19K2 log( 8n

δ
)

n ); ‖C‖L(H)],
δ ∈ (0, 1), s ∈ [0, 1/2], it holds with probability at least 1− δ,

E(Hsρ, IX̃,w) ≤
2K1+2s

√
2 log(6/δ)√
n

+ (3λ)s+1/2
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provided that
n ≥ (1655 + 233 log(8K2/δ))K2

m ≥ max
(

334, 78z2deff(λ)
)

log
(

32n/δ
)
.

Proof Let g ∈ H such that ‖g‖ ≤ 1 and let f = Csg. Using the reproducing property of
the RKHS H, the fact that the operator Cs is self-adjoint and Cauchy-Schwarz inequality,
we have∣∣∣∣∣∣

∫
f dρ−

m∑
j=1

f(X̃j)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
〈
Csg,

∫
φ dρ−

m∑
j=1

wjφ(X̃j)

〉∣∣∣∣∣∣ ≤ ∥∥Cs(µ − µ̃m)
∥∥ .

Using the same decomposition as in the proof of Lemma 22 for (20), we have∥∥Cs(µ − µ̃m)
∥∥ ≤ ∥∥∥CsP⊥m∥∥∥L(H)

∥∥∥P⊥mC1/2
λ

∥∥∥
L(H)

+K2s ‖µ − µ̂n‖ (32)

Since P⊥m and C1/2 are positive bounded operators (respectively as a projection, and as the
square root of a positive operator, cf. Section B), it holds by Cordes inequality (Theorem 30)∥∥∥CsP⊥m∥∥∥L(H)

=
∥∥∥(P⊥m)2s(C1/2)2s

∥∥∥
L(H)

≤
∥∥∥P⊥mC1/2

∥∥∥2s

L(H)
.

so that ∥∥Cs(µ − µ̃m)
∥∥ ≤ ∥∥∥P⊥mC1/2

λ

∥∥∥2s+1

L(H)
+K2s ‖µ − µ̂n‖ . (33)

To control the second term, we apply Lemma 31 on the random variables ηi := φ(Xi)−
µ, 1 ≤ i ≤ n. For any index 1 ≤ i ≤ n, it holds ‖ηi‖ ≤ 2 supx∈X ‖φ(x)‖ = 2K. Thus, with
probability at least 1− δ/2 on the draw of the the dataset X1, . . . , Xn,

‖µ− µ̂n‖ ≤
2K
√

2 log(4/δ)√
n

.

Next, we rely on Lemma 29 to bound the term ‖P⊥mC
1/2
λ ‖L(H) with high probability.

Under the hypothesis of the Lemma, we have, for any λ ∈]0, ‖C‖L(H)], with probability at

least 1− δ/2 on the draw of the landmarks X̃1, . . . , X̃m,

‖P⊥mC
1/2
λ ‖L(H) ≤

√
3λ.

The proof is concluded by taking the union bound over the two high-probability events
on which we control the first and the second term of (33).

We now prove the quantization rates claimed with a source condition.
Proof By Lemma 25, we have

‖µ − µ̃m‖ ≤
2K1+2s

√
2 log(4/δ)√
n

+ (3λ)s+1/2.
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We now need to pick λ,m ensuring
m ≥ max

(
334, 78z2deff(λ)

)
log

(
32n

δ

)
λ ≥ 19K2 log( 8n

δ
)

n

λ0 ≤ λ ≤ ‖C‖L(H).

(34a)

(34b)

(34c)

We pick λ =

(
19K2 log(32n/δ)

n

)1/(2s+1)

, which is the largest choice for λ allowing to

get (up to log term) a global rate of order Θ(n−1/2) while satisfying (34b) (by assumption

it holds 19K2 log(32n/δ)
n < 1). Note that as soon as s > 0, the logarithmic term in n can be

avoided provided n is large enough and one recovers exactly the optimal rate O(n−1/2). We
opt here for a unified analysis with simplified constraints at the cost of achieving only the
rate O(log(n)n−1/2).

Condition (34c) holds as soon as

λ2s+1
0 ≤ 19K2 log(32n/δ)

n
≤ ‖C‖2s+1

L(H).

We now consider the settings of polynomial and exponential decay of the spectrum, and
detail how to choose m in order to satisfy the remaining constraints (34a), which we rewrite
as: 

m ≥ 334 log
32n

δ

m ≥ 78z2deff(λ) log
32n

δ

(35a)

(35b)

Polynomial decay Under Assumption 6, by Lemma 26 it holds deff(λ) ≤ cγλ
−γ . We

choose

m := cm log
(

32n/δ
)1−γ/(2s+1)

nγ/(2s+1) where cm := 78z2cγ(19K2)−γ/(2s+1)

which satisfies (35b). Condition (35a) is satisfied whenever

n ≥
(

334
cm

)(2s+1)/γ
log
(

32n/δ
)
.

The quantization rate can be derived by noting that

m−(2s+1)/(2γ) = Θ

((
log
(

32n/δ
)1−γ/(2s+1)

nγ/(2s+1)
)−(2s+1)/(2γ)

)
= Θ

(
n−1/2 log

(
32n/δ

)1/2− 2s+1
2γ

)
with 2s+1

2γ ≥ 1/2. Thus get the rate

E(Hsρ, IX̃,w) = Θ(λ(2s+1)/2) = Θ

(
log(n)1/2

n1/2

)
= O(m−(2s+1)/(2γ)).
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Exponential decay Under Assumption 7 holds, by Lemma 27 it holds deff(λ) ≤ β−1 log(1+
aβ
λ ). Using that log(2x) ≥ log(1+x) whenever x ≥ 1, the constraint (35) is satisfied as soon

as 
m ≥ 78z2

β(2s+ 1)
log

(
(2aβ)2s+1 n

19K2 log(32n/δ)

)
log
(

32n/δ
)

n ≥ 19K2a
−(2s+1)
β log(32n/δ)

m ≥ 334 log
(

32n/δ
)

(36a)

(36b)

(36c)

We choose

m := max

(
cm

2s+ 1
log
(
c′mn

)
, 334

)
log
(
c′mn

)
where cm := 78z2β−1, c′m := max

(
(2aβ)2s+1

19K2 , 32
δ

)
in order to enforce both (36a) and (36c), while (36b) is satisfied by assumption. Note that
with this definition, there exists N ∈ N such that for any n ≥ N , it holds

m =
cm

2s+ 1
log
(
c′mn

)2
so that asymptotically n = exp(

√
(2s+ 1)m/cm)/c′m, and the quantization rate can be

expressed as

E(Hsρ, IX̃,w) = Θ(λ(2s+1)/2) = Θ

(
log(n)1/2

n1/2

)
= O

(
m1/4 exp

(
−
√

2s+1
2
√
cm

√
m
))

.

Appendix F. Auxiliary Results

F.1 Bounds on the Effective Dimension

We now recall how the effective dimension can be bounded under any of Assumption 6 or
Assumption 7.

Lemma 26 (Effective dimension, polynomial decay). Under Assumptions 5 and 6 it holds

deff(λ) ≤ cγλ−γ where cγ :=


aγ

1− γ
, if γ < 1

K2, if γ = 1
. (37)

It is well known, see e.g. Fischer and Steinwart (2020, Lemma 11), that the existence
of a constant cγ such that the first part of (37) holds implies in return a polynomial decay
of the spectrum, i.e. σi . i−1/γ .
Proof The case γ < 1 is covered in (Caponnetto and De Vito, 2007, Proposition 3 with
b → 1/γ and γ → c). The case γ = 1 follows from the observation deff(λ) ≤ d∞(λ) =
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ess supx∼ρ‖C
−1/2
λ φ(x)‖2 ≤ ‖C−1/2

λ ‖2 ess supx∼ρ‖φ(x)‖2 ≤ K2/λ.

For the exponential decay setting (Assumption 7), we use the following result of Della Vec-
chia et al. (2021, Proposition 5).

Lemma 27 (Effective dimension, exponential decay). Under Assumption 7 it holds

deff(λ) ≤ log(1 + aβ/λ)/β (38)

F.2 Nyström Approximation Result

To control the term involving P⊥m , we rely on the following lemma from Rudi et. al (Rudi
et al., 2015, Lemma 6).

Lemma 28 (Uniform Nyström approximation). When the set of m landmarks is drawn
uniformly from all partitions of cardinality m, for any λ ∈]0, ‖C‖L(H)] we have

‖P⊥m(C + λI)1/2‖2L(H) ≤ 3λ

with probability at least 1− δ provided

m ≥ max(67, 5d∞(λ)) log
4K2

λδ
.

The next lemma is a restatement of (Rudi et al., 2015, Lemma 7).

Lemma 29 (ALS Nyström approximation). Let z ≥ 1, λ0 > 0 and δ ∈]0, 1[. Let (ˆ̀
t(i))1≤i≤n

be a collection of (z, λ0, δ/2)-approximate leverage scores. Let λ < ‖C‖L(H), and pλ be a

probability distribution on the set of indexes {1, . . . , n} defined as pλ(i) := ˆ̀
λ(i)/(

∑n
i=1

ˆ̀
λ(i)).

Let {i1, . . . , im} be a collection of indices sampled independently with replacement from pλ,
and Pm the orthogonal projection on Hm = span

{
φ(xi1), . . . , φ(xim)

}
. We have with prob-

ability at least 1− δ
‖P⊥m(C + λI)1/2‖L(H) ≤

√
3λ ,

provided that

• m ≥ max
(
334, 78z2deff(λ)

)
log 16n

δ ;

• n ≥ (1655 + 233 log(4K2/δ))K2;

• 19K2 log(4n
δ ) ≤ λn;

• λ0 ≤ λ.

F.3 Misc. Results

Theorem 30 (Cordes Inequality (Cordes, 1987, Lemma 5.1)). Let A,B be two positive
bounded linear operators on a Hilbert space H. Then for any s ∈ [0, 1], it holds

‖AsBs‖ ≤ ‖AB‖s
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Appendix G. Concentration Inequalities

This section contains concentration results that we rely on to prove our main result. These
results are standard, and we include proofs for completeness.

The first lemma provides a high-probability control on the norm of the average of
bounded random variables taking values in a separable Hilbert space.

Lemma 31. Let X1, . . . , Xn be i.i.d. random variables on a separable Hilbert space (X , ‖·‖)
such that supi=1,...,n‖Xi‖ ≤ A almost surely, for some real number A > 0. Then, for any
δ ∈ (0, 1), it holds with probability at least 1− δ that∥∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥∥ ≤ A
√

2 log(2/δ)√
n

.

The proof of Lemma 31 relies on (Pinelis, 1994, Theorem 3.5) which we recall now for
clarity of exposition.

Lemma 32. Let M = (Mi)i∈N be a martingale on a (2, D)-smooth separable Banach space
(X , ‖·‖). Define

∑∞
j=1 ess sup‖Mj −Mj−1‖2 ≤ b2∗, for some real number b∗ > 0. Then, for

all r ≥ 0,

Pr

[
sup
j∈N
‖Mj‖ ≥ r

]
≤ 2 exp

(
− r2

2D2b2∗

)
.

We now prove Lemma 31.
Proof Since X is a Hilbert space, it is 2-smooth with 2-smoothness constant D = 1. We
define the martingale (Mn)n∈N as M0 = 0, Mk =

∑
1≤i≤kXk for 1 ≤ k ≤ n and Mk = Mn

for k ≥ n, so that

dk := Mk −Mk−1 =

{
Xk, if 1 ≤ k ≤ n
0, otherwise

.

As a consequence, we have
∑∞

j=1 ess sup‖dj‖2 =
∑n

j=1 ess sup‖Xj‖2 ≤ nA2. Applying

Pinelis’ inequality (Lemma 32) with b2∗ = nA2 yields

Pr

∥∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥∥ > ε

 = Pr
[
‖Mn‖ > nε

]
≤ Pr

[
sup

1≤j≤n

∥∥Mj

∥∥ > nε

]
≤ 2 exp

(
− nε

2

2A2

)
.

We get the desired result by choosing ε = A
√

2 log(2/δ)n−1/2.

The next result is a Bernstein-type inequality for random vectors defined in a Hilbert
space.

Lemma 33 (Bernstein inequality for Hilbert space-valued random vectors). Let X1, . . . , Xn

be i.i.d. random variables in a Hilbert space (H, ‖·‖) such that

• ∀i ∈ [n],EXi = µ,

• ∃σ > 0, ∃H > 0,∀i ∈ [n], ∀p ≥ 2, E‖Xi − µ‖p ≤ 1/2p!σ2Hp−2.

38



Efficient Numerical Integration in RKHS via Leverage Scores Sampling

Then, for any δ ∈]0, 1[, we have with probability at least 1− δ,∥∥∥∥∥∥ 1

n

n∑
i=1

Xi − µ

∥∥∥∥∥∥ ≤ 2H log(2/δ)

n
+

√
2σ2 log(2/δ)

n
.

Proof Fix a confidence level δ ∈ (0, 1). Applying (Yurinsky, 1995, Theorem 3.3.4) on the
i.i.d. centered random variables ξi = Xi − µ with B2 = σ2n, we get

Pr

∥∥∥∥∥∥ 1

n

n∑
j=1

ξj − µ

∥∥∥∥∥∥ ≥ t
 ≤ Pr

 max
1≤k≤n

k

∥∥∥∥∥∥1

k

k∑
j=1

ξj − µ

∥∥∥∥∥∥ ≥
(
tn

B

)
B


≤ 2 exp

(
−1/2

(tn)2

B2

(
1 +

tHn

B2

)−1
)
.

The RHS of the above is smaller than δ if and only if

t2n2 − t(2Hn log(2/δ))− 2B2 log(2/δ) ≥ 0.

Denoting ∆ = 4H2n2 log(2/δ)2 + 8n2B2 log(2/δ) > 0, this holds in particular if t ≥
H log(2/δ)

n +
√

∆
2n2 , and thus a fortiori (using

√
∆ ≤

√
4H2n2 log(2/δ)2 +

√
8n2B2 log(2/δ))

when

t ≥ 2H log(2/δ)

n
+

√
2σ2 log(2/δ)

n
.

The following lemma provides a Bernstein-type bound for the empirical mean of Hilbert
space-valued centered random variables ’whitened” by regularized linear operator.

Lemma 34. Let X1, . . . , Xn be i.i.d. random variables taking values in a separable Hilbert
space (H, 〈·, ·〉) with associated norm ‖·‖. We denote their mean by µX := EX1 and their
covariance by C := E[X1 ⊗X1].

Let Q : H → H be a linear operator. For any λ > 0 and δ ∈]0, 1[, it holds with probability
at least 1− δ that∥∥∥∥∥∥∥Q−1/2

λ

 1

n

n∑
i=1

Xi − µX


∥∥∥∥∥∥∥ ≤

4 ess sup
∥∥∥Q−1/2

λ X1

∥∥∥ log(2/δ)

n
+

√
4 tr(Q−1

λ C) log(2/δ)

n
.

Proof To prove the stated result we will apply Lemma 33 on the random variables (ζi)1≤i≤n

defined by ζi = Q
−1/2
λ Xi. Let NQ(λ) = tr(Q−1

λ C) and NQ,∞(λ) := ess sup
∥∥∥Q−1/2

λ X1

∥∥∥.

For any index 1 ≤ i ≤ n, we have Eζ1 = Q
−1/2
λ µX ,

ess sup‖ζi −E[ζi]‖ ≤ 2 ess sup‖ζi‖ = 2N∞(λ)1/2,
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and,
E‖ζi −E[ζi]‖2 = tr(E〈ζi −E[ζi], ζi −E[ζi]〉)

= tr(E
[
(ζi −E[ζi])⊗ (ζi −E[ζi])

]
)

= tr(E[ζi ⊗ ζi]−Eζi ⊗Eζi)

≤ tr(E[ζi ⊗ ζi])

= tr(Q
−1/2
λ CQ

−1/2
λ )

= NQ(λ).

Moreover, for any p ≥ 2,

‖ζi −E[ζi]‖p ≤ (E‖ζi −E[ζi]‖2)(ess sup‖ζi −E[ζi]‖p−2)

≤ 1/2(2NQ(λ))(2NQ,∞(λ)1/2)p−2

≤ 1/2p!(2NQ(λ))(2NQ,∞(λ)1/2)p−2.

The result follows from Lemma 33 with constants σ2 = 2NQ(λ) and H = 2NQ,∞(λ)1/2.

Lemma 35 is a specialization of Lemma 34 to bound the last term appearing in Lemma 22
in our setting of Nyström uniform sampling.

Lemma 35. Assume that the m ≥ 1 Nyström landmarks are sampled uniformly with re-
placement from the dataset X1, . . . , Xn. If 0 < λ ≤ ‖C‖L(H) and λn ≥ 12K2 log(4/δ), it
holds with probability at least 1− δ,∥∥∥C−1/2

λ (µ̂n − µ̂m)
∥∥∥ ≤ 4

√
d∞(λ) log(4/δ)

m
+

√
12deff(λ) log(4/δ)

m
.

Proof Fix the desired confidence level δ ∈ (0, 1). Let us begin by conditioning w.r.t. to
the dataset X1, . . . , Xn. As the landmarks are assumed to be drawn i.i.d., we can apply
Lemma 34 with Q = C on the i.i.d. random variables hj := φ(X̃j), 1 ≤ j ≤ m, satisfying

E[h1] = µ̂n, E[h1 ⊗ h1] = Ĉn and ess sup‖C−1/2
λ h1‖2 ≤ d∞(λ): it holds with probability at

least 1− δ/2 (over the drawing of the landmarks) that

∥∥∥Q−1/2
λ (µX − µ̂X)

∥∥∥ ≤ 4
√
d∞(λ) log(4/δ)

m
+

√
4 tr(C−1

λ Ĉn) log(4/δ)

m
.

Then, since we assumed λ ≤ ‖C‖L(H) and λn ≥ 12K2 log(4/δ), Lemma 36 ensures that

tr(C−1
λ Ĉn) ≤ 3deff(λ) with probability at least 1− δ/2 w.r.t. the dataset X1, . . . , Xn.

Finally, since the drawing of dataset and that of the indexes of the landmark are inde-
pendent, the claimed bound holds with probability at least (1− δ/2)(1− δ/2) ≥ 1− δ.

The next lemma bounds the trace term involving the empirical covariance appearing in
Lemma 35 by the effective dimension.

Lemma 36. Let δ > 0, λ > 0 and n ∈ N be such that λ ≤ ‖C‖L(H) and n ≥ 12d∞(λ) log(2/δ).
Then it holds with probability at least 1− δ that

tr(C−1
λ Ĉn) ≤ 3deff(λ).

40



Efficient Numerical Integration in RKHS via Leverage Scores Sampling

Proof Let us control the deviation of tr(C−1
λ Ĉn) from its expectation deff(λ). We have

tr(C−1
λ Ĉn)− deff(λ) = tr(C−1

λ (Ĉn − C)) =
1

n

n∑
i=1

ξi −E[ξi],

where we define ξi := tr(C−1
λ φ(Xi)⊗ φ(Xi)), i = 1, . . . , n. The random variables ξi, 1 ≤ i ≤

n, satisfy

|ξi −E[ξi]| =
∣∣∣tr(C−1

λ (φ(Xi)⊗ φ(Xi)− C))
∣∣∣ ≤ ∥∥∥C−1/2

λ φ(Xi)
∥∥∥2

+ deff(λ) ≤ 2d∞(λ)

and

E[(ξi −E[ξi])
2] = E[ξ2

i ]− (Eξi)
2 ≤ ess sup |ξi|E[ξi] ≤ 2d∞(λ)deff(λ).

Lemma 33 with H = 2d∞(λ) and σ2 = 2d∞(λ)deff(λ) ensures that with probability at least
1− δ,

| tr(C−1
λ Ĉn)− deff(λ)| ≤ 4d∞(λ) log(2/δ)

n
+

√
4d∞(λ)deff(λ) log(2/δ)

n
.

Since λ ≤ ‖C‖L(H), we have deff(λ) = tr(CC−1
λ ) ≥

∥∥∥CC−1
λ

∥∥∥
L(H)

=
‖C‖L(H)

‖C‖L(H)+λ
≥ 1/2.

Furthermore, using the assumption n ≥ 12d∞(λ) log(2/δ), it holds with probability at least
1− δ,

tr(C−1
λ Ĉn) ≤ deff(λ)

1 +
1

3deff(λ)
+

√
1

3deff(λ)

 ≤ deff(λ)

(
1 +

2

3
+

√
2

3

)
≤ 2.5N (λ).

Appendix H. Experiments

H.1 Implementation Details

Experiments in Section 5.1 have been run on a Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz (4 cores, 8 threads) with 4 BLAS threads. Experiments in Section 5.2 have been
run on a AMD EPYC 7301 16-Core Processor @ 2.20GHz (32 cores, 64 threads) with 32
BLAS threads. We did not use GPUs to make it easier to fairly compare the different
methods and measure runtimes. Note however that some methods, such as the BLESS
algorithm that we use to compute approximate leverage scores, have a GPU implementation
and could be accelerated in this way.

The datasets can be freely downloaded from https://www.openml.org/, however to
ensure reproducibility we provide the CuratedDataset3 Julia package which takes care of
downloading, preprocessing and loading the data. All datasets have been centered and
reduced.

The method of Belhadji et al. (2019) is reported in Section 5.1 only in dimension d = 1
because the code for the setting d > 1 is not publicly available.

3. https://gitlab.com/dzla/CuratedDatasets.jl
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H.2 Implementation of the Greedy Methods

In Section 5 we considered three kernel-based greedy methods to compute quadratures rules.
We provide here a few details on how such methods can be implemented. Note that we
do not solve the (usually non-convex) optimization problem to select the new atom on X ,
but rather do an approximate exhaustive search over the data samples. For generality,
we denote f ∈ H the function to approximate, although in our context we always use
these methods on f = µ̂n. In the following, we denote Pt the orthogonal projection on
the space span{φ(X̃1), . . . , φ(X̃t)} spanned by the features of the so-far selected landmarks,
Φt = [φ(X̃1), . . . , φ(X̃t)] the operator induced by their features and Kt their kernel matrix.
The three considered methods are the following:

• Greedy minimization of the residual P⊥t f , also known as the f -greedy method:

X̃t+1 := arg min
x∈X

|(P⊥t f)(x)|.

Note that as we are optimizing over the dataset here (and not e.g. over X ), this
algorithm can be seen as orthogonal matching pursuit with the finite dictionary
{φ(x1), . . . , φ(xn)}, assuming the latter is normalized for the chosen kernel (which
holds for instance for translation-invariant kernels).

• Greedily maximization of det(Km). This method is also known as the P-greedy
method in the kernel interpolation literature as it consists in maximizing the so-called
power function:

X̃t+1 := arg max
x∈X

∥∥∥P⊥t φ(x)
∥∥∥

Note however that using the formula for the determinant of block matrices,∥∥∥P⊥t φ(x)
∥∥∥2

= 〈φ(x), (I − ΦtK
−1
t Φ∗t )φ(x)〉

= κ(x, x)− κ(x, X̃t)κ(X̃t, X̃t)
−1κ(X̃t, x)

=
det
(
Kt∪{x}

)
det(Kt)

where Kt∪{x} :=

[
Kt Φ∗tφ(x)

φ(x)∗Φt κ(x, x)

] (39)

so that this indeed corresponds to greedily maximizing the determinant of selected
points. This method has also been proposed in (De Marchi et al., 2005) and used in
multiple works such as (Chen et al., 2018). It is the only of the 3 mentioned methods
that does not depend on the function f to approximate.

• Greedy minimization of ‖P⊥mf‖:

X̃t+1 ∈ arg min
x∈X

∥∥∥P⊥t,xf∥∥∥ where Pt,x is the othogonal projection on span(φ(X̃1), . . . , φ(X̃t), φ(x)).

This method is also known as f/P greedy interpolation, as the new landmark
chosen at each iteration is the one minimizing the residual over power function ratio.
A rewriting of Pt,x indeed yields the following relation:

∥∥∥P⊥t,xf∥∥∥2
=
∥∥∥P⊥t f∥∥∥2

−

(
(P⊥t f)(x)

‖P⊥t φ(x)‖

)2

.
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Algorithm These three methods can be implemented as shown in Algorithm H.1, and
we implemented this algorithm in Julia4.

Algorithm H.1: Greedy algorithms (f -greedy,P -greedy,f/P -greedy) for kernel
interpolation

Input: Kernel κ, number of landmarks l, function evaluations f|X ∈ Rn, data

X ∈ Rd×n
Output: Quadrature points X[:, S]

1 C ← zeros(l, n) ; // Size l × n
2 powfun2 ← [κ(X[:, i], X[:, i]) for i in 1:n] ; // (‖P⊥t φ(Xi)‖2)1≤i≤n, O(ncκ) time

3 r ← f|X ; // Residual, size n. O(n2) time when f = µ̂n.

4 cf ← zeros(l) ; // Coefficients of f in U , size l

5 S ← [] ; // Support (set of indexes in {1, . . . , n})
6 k ← 0;
7 while k < l do
8 newatom criterion← if P-greedy then
9 powfun2 ;

10 else if f-greedy then
11 r ;
12 else
13 r.2/powfun2 ;

14 j ← arg maxi∈{1,...,n}\S newatom criterion ;

15 S ← S ∪ {j} ;
16 k ← k + 1;
17 Kj ← kernelmatrix(κ, xj , X) ; // Size 1× n, O(ncκ) time

18 idxs← powfun2. > 1e-10 ; // For stability, update only points which are not already in

the subspace

19 C[k, idxs]← (Kj [idxs]− vec(C[:, j]′ ∗ C[:, idxs]))/sqrt(powfun2[j]) ; // O(nl) time

20 cf [k]← r[j]/sqrt(powfun2[j]) ; // Update coefficients of f

21 r ← r .− cf [k] ∗ C[k, :] ; // Update the residual

22 powfun2 ← powfun2 − (C[k, :]T ).2 ; // Update power function, O(n) time

23 return X[:, S]

Computational cost The algorithm has a cost of O(nm(m+cκ)) time complexity, where
cκ denotes the kernel evaluation time and is typically of order cκ = O(d). Note that this
cost does not include the computation of weights. Although we write the three algorithms
together for conciseness, note that the method consisting in greedily maximizing det(Km)
does not require to compute the residual (the method being then independent of the function
to approximate). In particular in our setting f = µ̂n and this would avoid the O(n2) cost
of initializing the residual. The cost for computing the weights is O(nm + m3) and is the
same for all methods (we use the same expression as for all other quadratures methods in

4. https://gitlab.com/achatali/greedykernelmethods.jl
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the paper). With a small modification, the algorithm above can maintain an estimation of
the weights, however the overall complexity of the algorithm remains unchanged.

Implementation We define the following quantities for any 1 ≤ t ≤ m, which match the
notations in Algorithm H.1 when relevant:

• Φ̃t := [φ(X̃1), . . . , φ(X̃t)] : Rt → H.

• Ut = [u1, . . . , ut] : Rt → H is the Gram-Schmidt basis obtained from Φ̃t, i.e. for any t
it holds

ut+1 :=
P⊥t φ(X̃t+1)

‖P⊥t φ(X̃t+1)‖
(40)

• C ∈ Rm×n whose columns contain at step t the coefficients in Ut of the projected
data features (Ptφ(Xi))1≤i≤n, i.e. the block of the first t columns of C is C1:t,: =
U∗t [φ(x1), . . . , φ(xn)].

• S is a set containing the indexes of the so-far selected landmarks.

The algorithm then derives from the following observations.

• Line 19 derives from (40), indeed for any i ∈ {1, . . . , n}:

〈ut+1, φ(Xi)〉 =
〈(I − Pt)φ(X̃t+1), φ(Xi)〉

‖P⊥t φ(X̃t+1)‖

=
κ(X̃t+1, Xi)− 〈Ptφ(X̃t+1), Ptφ(Xi)〉

‖P⊥t φ(X̃t+1)‖

and using the fact that at any iteration the index j is updated such that X̃t+1 = xj .

• Line 20 follows from

〈f, ut+1〉 =
(P⊥t φ(X̃t+1))∗f

‖P⊥t φ(X̃t+1)‖
=

(P⊥t f)(X̃t+1)

‖P⊥t φ(X̃t+1)‖

Not in particular that no evaluations of f are required for this operation.

• Eventually Line 22 corresponds to the joint update for all i ∈ {1, . . . , n} of the power
function:

‖P⊥t+1φ(Xi)‖2 = ‖(P⊥t − ut+1u
∗
t+1)φ(Xi)‖2

= ‖P⊥t φ(Xi)− ut+1u
∗
t+1φ(Xi)‖2

= ‖P⊥t φ(Xi)‖2 + ‖ut+1u
∗
t+1φ(Xi)‖2 − 2〈(I − Pt)φ(Xi), ut+1u

∗
t+1φ(Xi)〉

= ‖P⊥t φ(Xi)‖2 − 〈ut+1, φ(Xi)〉2

where we used the fact that Ptut+1 = 0 and ‖ut+1‖ = 1.

H.3 Additional Experimental Results

We here provide empirical results for the setting of Section 5.2, but on more datasets.
Results are reported in Figure 4 for the Gaussian kernel and Figure 5 for the Laplacian
kernel.
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Figure 4: Empirical results for OpenML datasets, Gaussian kernel. Each point is a median
over 40 trials.

45



Chatalic, Schreuder, De Vito and Rosasco

m
101 102 103

E
rr

or

10-2.0

10-1.5

10-1.0

10-0.5

n=53940, d=26, σ=6.89
diamonds (OpenML dataset)

Time
10-2 100 102

m
101 102 103

E
rr

or

10-1.5

10-1.0

10-0.5

n=16599, d=18, σ=4.994
elevators (OpenML dataset)

Time
10-210-1 100 101 102

m
101 102 103

E
rr

or

10-1.5

10-1.0

10-0.5

n=40768, d=10, σ=4.4
fried (OpenML dataset)

Time
10-210-1 100 101 102

m
101 102 103

E
rr

or

10-2.0

10-1.5

10-1.0

10-0.5

n=22784, d=8, σ=4.15
house_8L (OpenML dataset)

Time
10-210-1 100 101 102

m
101 102 103

E
rr

or

10-2.0

10-1.5

10-1.0

10-0.5

n=44484, d=21, σ=6.063
sarcos (OpenML dataset)

Time
10-2 10-1 100 101 102

m
101 102 103

E
rr

or

10-2.0

10-1.5

10-1.0

10-0.5

n=10081, d=6, σ=3.14
sulfur (OpenML dataset)

Time
10-2 100 102

Random designs
Ours, ARLS sampling
Ours, uniform sampling

Greedy methods

Greedy min. of ‖Pm
⟂ 𝜇n‖

Greedy max. of det(Km)
OMP / f-greedy

Other coresets
Recombination Nyström
Thinning (Compress++)

Theoretical rates

O(m − 1/2)

Figure 5: Empirical results for OpenML datasets, Laplacian kernel. Each point is a median
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