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Abstract

The acceleration of gradient-based optimization methods is a subject of significant practical and
theoretical importance, particularly within machine learning applications. While much attention
has been directed towards optimizing within Euclidean space, the need to optimize over spaces of
probability measures in machine learning motivates the exploration of accelerated gradient meth-
ods in this context, too. To this end, we introduce a Hamiltonian-flow approach analogous to
momentum-based approaches in Euclidean space. We demonstrate that, in the continuous-time
setting, algorithms based on this approach can achieve convergence rates of arbitrarily high order.
We complement our findings with numerical examples.

Keywords: Acceleration methods, Momentum-based methods, Hamiltonian flows, Wasserstein
gradient flows, Heavy-ball method.

1. Introduction

The search for a probability measure that minimizes an objective functional plays a significant role
across many machine learning problems, encompassing areas such as generative modeling (Kingma
and Welling, 2014; Goodfellow et al., 2014; Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021; Bengio et al., 2000), Bayesian inference (Jordan et al., 1999; Wainwright et al., 2008; Hoffman
et al., 2013; Blei et al., 2017; Rezende and Mohamed, 2015; Lambert et al., 2022; Geffner and Domke,
2023) and reinforcement learning (Ziebart et al., 2008; Toussaint, 2009; Peters et al., 2010; Levine,
2018). These problems are stated as

ρ˚ “ argmin
ρPPpΩq

Erρs, and E˚ :“ Erρ˚s, (1)

where PpΩq is the collection of all probability measures supported on Ω Ă Rd and E : PpΩq Ñ R
maps probability measures to R. Throughout the paper, we use r¨s to denote the dependence of a
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Property Convex m-Strongly Convex

Objective fpxq Erρs fpxq Erρs

Gradient Flow Op1{tq Ope´2mtq

Heavy-ball Method op1{tq Ope´
?
mtq

Variational Acceleration Ope´βtq -

Table 1: Convergence rates of three momentum-based methods. All three methods share the same
convergence rate to optimize a finite-dimensional function fpxq and a functional Erρs.

functional on a function/probability measure. With a slight abuse of notation, we do not distinguish
probability measures from their Lebesgue densities.

In this article, we focus on the continuous-time setting for solving (1). Analogous to the gradient
flow in Euclidean space, a gradient flow on the space of probability measures can be used to find
the minimizer. We define a gradient flow in PpΩq by making ρ depend on a “time” variable t ě 0
(notation: ρt) and writing

Btρt “ ´∇DErρts , (GF)

where ∇D is an appropriately chosen metric on the space of probability measures. A commonly
employed metric in the literature is the Wasserstein metric (Otto, 2001). The gradient flow deter-
mined by the Wasserstein gradient exhibits the same convergence rate as that of gradient flow in
Euclidean spaces; see Table 1.

Given the numerous strategies developed to accelerate first-order (gradient-based) optimization
methods in Euclidean space, it is natural to seek counterparts of these methods to optimization
over the space of probability measures. Specifically, we are curious as to whether momentum-based
acceleration methods on Euclidean space can be adapted to optimization problems of the form (1).
Our focus lies on the convergence properties in continuous time, prompting the following questions:

• Is there a “heavy-ball” method applicable to (1), and is it provably faster than gradient flow
(GF), akin to its superior performance for convex objective functions in Euclidean space?

• Is there a “Nesterov acceleration” method applicable to (1), does it exhibit provable speedup
over gradient flow?

• What is the optimal convergence rate achievable by a first-order algorithm for (1) when
employing a momentum strategy?

In addressing these questions, we design algorithms for minimizing over the space probability
measures, resembling heavy-ball methods, variational acceleration methods (with Nesterov acceler-
ation being one instance), and, more generally, Hamiltonian flows. These new algorithms demon-
strate provable acceleration over regular gradient flow, mirroring their counterparts in Euclidean
space. By careful design of the Hamiltonian, we achieve convergence of e´βt for almost all choices
of βt, including βt “ t and log tp for any power p ą 0; see Table 1.

These developments hinge on two observations:

• In Euclidean space, many momentum-based acceleration methods rely on a carefully crafted
Hamiltonian term ht : RdˆRd Ñ R. It is shown, for various methods, that as long as particles
follow trajectories defined by

9x “ ∇vhtpx, vq , 9v “ ´∇xhtpx, vq , (2)
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these particles can descend to the global minimum faster than the classical gradient flow. To
obtain the acceleration effect in the space of probability measures, we need to conjure up the
“Hamiltonian” concept for these spaces.

• The second observation is that a probability measure can be approximated by its samples:

ρ «
1

N

N
ÿ

i“1

δxi P PpRdq N P N .

The evolution of ρ in the space of probability measures can be fully translated to the motion
of its representative samples tx1, x2, . . . , xNu. In the current context, methods such as heavy-
ball and Nesterov prescribe the motion of particles by assigning dynamics to pxi, viq. By
deploying the relation between the motion of the particle sample and the evolution of its
corresponding probability measure, we can lift these methods to define an evolution for ρ.

With these two observations in hand, and noting that each particle can be fully described by
pxi, viq P Rd ˆ Rd, we define the empirical measure

µ “
1

N

N
ÿ

i“1

δpxi,viq P PpRd ˆ Rdq , N P N , (3)

over this extended space—henceforth called the phase space. Deploying the relationship between
the motion of particles and the empirical measure µ, and utilizing (2), we arrive at the Hamiltonian
flow equation:

Btµt `∇x ¨
ˆ

µt∇v
δHt

δµ
rµts

˙

´∇v ¨
ˆ

µt∇x
δHt

δµ
rµts

˙

“ 0 , (4)

where Ht is the counterpart of ht lifted to the space of probability measures defined by

Htrµs “

ż

R2d

htpx, vqdµpx, vq ,

and with δHt
δµ rµts being its variational (Fréchet) derivative evaluated at µt

1.
The formulation (4) serves as the foundation of our algorithm design. In particular, it is devised

under the assumption that Ht and ht are connected via a linear form, yet it remains valid for a
general form of Ht. More precisely, it holds when

Htrµs “ Ktrµs ` Ptrµs , (5)

with Kt and Pt representing the kinetic and potential energy functionals, respectively. The core of
our strategy lies in carefully crafting the form of these functionals and connecting them to Erρs to
achieve acceleration.

1. The Fréchet derivative is the counterpart of Euclidean derivatives in a function space. The Euclidean derivative
of a function ∇fpxq measures the first-order differentiation of this function at a point x: fpx ` ∆xq ´ fpxq «
x∇fpxq ,∆xy, with the bracket notation denoting the inner product defined on Euclidean space. Since x P Rd, we
have ∇fpxq P Rd. Similarly, the Fréchet derivative quantifies the first-order differentiation of a functional over
the change in a function:

Hrµ` δµs ´Hrµs «

B

δH

δµ
rµs, δµ

F

:“

ż

δH

δµ
rµspzq δµpzq dz ,

with the bracket notation denoting the inner product or duality pairing on the function space. In the following,
we use δ

δρ
and δ

δµ
to denote the Fréchet derivatives of functionals that take in probability measures over Rd and

Rd ˆ Rd, respectively.
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As in the Euclidean setting, the design of Hamiltonian induces a variety of convergence be-
haviors. By tailoring Ht to be consistent with the Hamiltonian term ht crafted for the heavy-ball
and Nesterov acceleration in Euclidean space, we can replicate these acceleration techniques over
spaces of probability measures and establish the equivalence of convergence rates in these settings.
Formal statements of our main results are given below.

Heavy-ball flow. The heavy-ball method was introduced by Polyak in 1960 (Polyak, 1964). In
the continuous-time setting, the particle moves along the trajectory defined by

9x “ v , 9v “ ´av ´∇fpxq , (6)

where a ą 0 is a user-defined parameter, independent of t. The method has op1{tq convergence
for convex objective functions, and has faster convergence than gradient flow for strongly convex
objectives, changing the rate from modulus of convexity m for gradient flow to

?
m for heavy ball,

whenever m P p0, 1q is small.
As we discuss below in Section 4, analogous dynamics in the space of probability measures are

captured by the following heavy-ball flow equation

Btµt `∇x ¨ pvµtq ´∇v ¨
ˆˆ

av `∇x
δE

δρ
rµXt s

˙

µt

˙

“ 0 , (HBF)

where µXt denotes the x-marginal of µt. Note the similarity between the coefficients of (6) and
(HBF). The theoretical guarantee is also the same.

Formal Theorem A Let E : PpRdq Ñ R be convex along 2-Wasserstein geodesics (see Defini-
tion 2) and let µt be a solution to the heavy-ball flow equation (HBF). Then its x-marginal µXt
satisfies

ErµXt s ´ E˚ ď o

ˆ

1

t

˙

. (7)

Furthermore, if E : PpRdq Ñ R is m-strongly convex along 2-Wasserstein geodesics (see Defini-
tion 2) and we set a “ 2

?
m, we have

ErµXt s ´ E˚ ď Ope´
?
mtq . (8)

Note that the convergence rates in (7)-(8) exactly match those of the heavy-ball method (Attouch
and Cabot, 2017; Wilson et al., 2016). The rigorous statement of this result is Theorem 7.

Variational acceleration flow. Variational acceleration methods (Wibisono et al., 2016) include
Nesterov acceleration (Nesterov, 1983) as a special case. Each member of the class is defined by
a triplet pαt , βt , γtq that satisfies certain requirements and follows the trajectory defined by the
associated Hamiltonian:

9x “ v , 9v “ ´p 9γt ´ 9αtqv ´ e
2αt`βt∇fpxq . (9)

The method is known to converge with the rate e´βt for convex objective functions f . Essentially,
this means the method can converge at an arbitrary rate, given that βt can be chosen to be any
rapidly increasing function of t.

In Section 5, we analyze the counterpart of this approach in the space of probability measures,
which we term as the variational acceleration flow equation:

Btµt `∇x ¨ pvµtq ´∇v ¨
ˆˆ

p 9γt ´ 9αtqv ` e
2αt`βt∇x

δE

δρ
rµXt s

˙

µt

˙

“ 0 . (VAF)
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Note once again the similarity between the coefficients of (VAF) and (9). We establish the following
convergence result.

Formal Theorem B Let E : PpRdq Ñ R be convex along 2-Wasserstein geodesics (see Defini-
tion 2) and let µt be a solution to the Hamiltonian flow (VAF). If the optimal scaling conditions
(44) hold, then the x-marginal µXt satisfies

ErµXt s ´ E˚ ď Ope´βtq . (10)

As before, the rate of convergence in (10) exactly matches that of the corresponding class of methods
in the Euclidean space (Wibisono et al., 2016). The rigorous statement can be found in Theorem 9.

1.1 Summary of Related Work

We identify two types of research results most relevant to the current paper: (1) Acceleration opti-
mization methods (first-order momentum-based methods) on Euclidean space, and (2) accelerated
methods on manifolds and for Bayesian sampling, a problem that shares many characteristics with
ours.

Momentum-based type methods achieve acceleration by including an artificial momentum or ve-
locity variable. Notable examples include the heavy-ball method (Polyak, 1964) and the Nesterov’s
accelerated method (Nesterov, 1983), which has the optimal convergence rate for convex functions
(Nesterov, 2003) and strongly convex functions (Nemirovskij and Yudin, 1983). Traditionally stud-
ied in the discrete-in-time setting, recent years have seen investigations of their continuous-time
counterparts (Attouch and Alvarez, 2000; Cabot et al., 2009; Attouch and Cabot, 2017; Attouch
et al., 2018; Su et al., 2014; Shi et al., 2021; Krichene et al., 2015; Wibisono and Wilson, 2015;
Wilson et al., 2016; Betancourt et al., 2018; Muehlebach and Jordan, 2019; Diakonikolas and Jor-
dan, 2021; Scieur et al., 2017; Moucer et al., 2023; Polyak and Shcherbakov, 2017; Allen-Zhu and
Orecchia, 2017; Zhang et al., 2018; d’Aspremont et al., 2021; Maddison et al., 2018; França et al.,
2020). Continuous-time analysis typically employ a Lyapunov function (Polyak and Shcherbakov,
2017). In Wibisono et al. (2016), the authors found that the introduction of the momentum variable
allows one to achieve an arbitrarily high order of convergence, either through a special design of
the Hamiltonian or through the time-dilation technique.

Accelerating convergence of first-order methods over the space of probability measures has yet
to attract considerable interest, despite the evident importance of this optimization problem in
machine learning applications. Topics related to this issue are discussed in Dwivedi et al. (2018);
Cheng et al. (2018); Shen and Lee (2019); Lu et al. (2019); Garćıa Trillos and Morales (2022);
Chow et al. (2020); Liu et al. (2019); Ma et al. (2021); Taghvaei and Mehta (2019); Wang and
Li (2022); Zhang et al. (2023). Liu et al. (2019) proposes a framework for a class of accelerated
Riemannian optimization algorithms over the probability manifold PpRdq. Momentum-based ac-
celeration methods are formulated as optimal control problems in Taghvaei and Mehta (2019), and
a Lyapunov function is derived by drawing upon the analogy to classical methods. In the context
of Bayesian sampling, Ma et al. (2021) adopts the perspective of extending probability measures
to having support on the phase space and formulates the underdamped Langevin dynamics as a
flow over the extended space. Convergence of the flows is proved under an assumption that the
log-Sobolev inequality holds.

Among the papers referenced, we identify Chow et al. (2020) and Wang and Li (2022) as the
ones related most closely to our work. Both papers leverage the second-order differential structure
over the manifold of probability measures. Chow et al. (2020) directly formulate the second-order

5



Chen, Li, Tse, and Wright

differential equation, and Wang and Li (2022) adopt a strategy involving the introduction of a
Hamiltonian flow across the tangent bundle of the probability measure space.

Both these works build on the definition of “Hamiltonian flow,” so on the surface, they are quite
similar to ours. However, there are important differences with our work. Specifically, both studies
develop their flow on the physical space, focusing on the quantity ρpt, xq. In contrast, our approach
introduces a distribution over the phase space, with the PDE spanning the entirety of µpt, x, vq.
This shift in perspective results in two major consequences:

• There is no immediate well-posedness theory for the PDEs developed in Chow et al. (2020)
and Wang and Li (2022): their PDEs may not have unique solutions. Stringent regularity
assumptions were imposed in a different work by one of the authors of our article Carrillo
et al. (2019a) to ensure the existence of a unique solution. On the contrary, the Hamiltonian
flow PDE of our present paper is guaranteed to have a unique solution Ambrosio and Gangbo
(2008). Similarly, while Wang and Li (2022) do provide a Lyapunov analysis of their flow,
their proof relies on a smooth optimal transport map: It assumes that both the target dis-
tribution and the flow solution have Lebesgue densities. In comparison, we work directly on
the transport plan and thus can circumvent the regularity assumption.

We believe these improvements to have mathematical depth and to resonate with the com-
parison between the compressible Euler equation and the Boltzmann equation. The Euler
equation serves as the counterpart of the Boltzmann equation on the fluid dynamics side.
While Euler develops blow-up singularities, the Boltzmann equation is well-posed DiPerna
and Lions (1989). By adding velocity to the unknowns, PDE solutions can span out the
singularities to form a regular solution.

• Another important consequence of this difference in formulations lies in the particle repre-
sentation. In deriving the equations for ρpt, xq, Chow et al. (2020) and Wang and Li (2022)
relied on the so-called mono-kinetic ansatz, implying that the velocity vpt, xq “ ∇φpt, xq
lives on the tangent bundle, and is a function of the space variable x. Our approach does
not make this assumption, since v is an independent variable, allowing different particles at
the same location x to have different velocities. Essentially, while Chow et al. (2020) and
Wang and Li (2022) track only the bulk velocity, we allow particles the freedom to roam
with individual velocities. Such a conceptual difference resonates with the improvement by
the Underdamped Langevin Monte Carlo (ULMC) (Cao et al., 2023; Ma et al., 2021) over
the overdamped Langevin Monte Carlo (LMC), where ULMC allows particles to adjust the
velocity according to the Hamiltonian, and the PDE is formulated on phase space.

Tanaka (2023) explores an extension of Nesterov’s accelerated method over the space of prob-
ability measures. The results in that paper are based on a notion of convexity called transport
convexity, which differs from geodesic convexity considered in our work. This notion can be difficult
to verify for several commonly used geodesically convex functionals, including the KL divergence.
Additionally, Tanaka (2023) does not provide a convergence rate for the heavy-ball method.

1.2 Organization of the paper

There are two main technical components of the paper. The first is the Wasserstein metric and
its induced flow and convexity, while the second concerns Hamiltonian flow methods developed
for accelerating optimization in Euclidean space. We review these techniques in Section 2. Sec-
tion 3 presents our major contributions; We present the Hamiltonian flow PDE in its most general
form, and describe the two examples: the heavy-ball method and the variational acceleration flow.
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The convergence rates of these methods are discussed in Theorem 7 and Theorem 9, respectively.
Section 4 and Section 5 are dedicated to the proof of the two theorems.

2. Background knowledge

This section outlines notions relevant to this paper from our two fundamental building blocks:
the Wasserstein metric for quantifying distances between probability measures and its induced
convexity, and the Hamiltonian flow that guides the dynamics of particles to achieve acceleration.
(Readers familiar with these topics can skip this section.)

2.1 Hamiltonian flows

The idea of accelerating convergence in the space of probability measures arises from the fact that
Hamiltonian flows accelerate classical optimization methods in the Euclidean space. For the latter,
we consider the minimization problem

x˚ P argmin
xPRd

fpxq, (11)

where f : Rd Ñ R is a sufficiently smooth convex objective function. We denote the optimal value
by f˚ “ fpx˚q.

A function f : Rd Ñ R is m-strongly convex if

fpyq ě fpxq ` x∇fpxq, y ´ xy ` m

2
}y ´ x}2 , for all x, y P Rd . (12)

The parameter m ě 0 is called the modulus of convexity. When m “ 0, we recover the standard
convexity condition. An equivalent definition is that for all x, y P Rd, we have

fptx` p1´ tqyq ď tfpxq ` p1´ tqfpyq ´
m

2
tp1´ tq}x´ y}2, @t P r0, 1s . (13)

The most basic first-order strategy for finding the optimal point is the gradient descent method,
from which Gradient Flow equation is derived:

9x “ ´∇fpxq . (GF)

It is well known (see for example Polyak and Shcherbakov, 2017) that (GF) converges with the rate

#

fpxptqq ´ f˚ ď O
`

t´1
˘

for convex f ,

fpxptqq ´ f˚ ď O
`

e´2mt
˘

for m-strongly convex f .
(14)

There are many ways to speed up these convergence rates, and Hamiltonian flows provide a path
to do so. This approach adds to the position x a velocity v and evolves px, vq according to a
Hamiltonian trajectory. Defining the Hamiltonian ht : Rd ˆ Rd Ñ R so that

htpx, vq “ ktpvq ` ptpxq , (15)

with kt and pt termed the kinetic and potential energy, respectively, the Hamiltonian trajectory is
defined by (2), restated here:

9x “ ∇vhtpx, vq , 9v “ ´∇xhtpx, vq . (16)

By selecting carefully ht—specifically kt and pt—one can show that the sample following (16)
converges to x˚ with accelerated speed. We define the two most famous examples of methods in
this class.
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Example 1 (Heavy-ball ODE (Polyak, 1964)) When we set

ktpvq “
e´at

2
}v}2 , ptpxq “ eatfpxq , (17)

the Hamiltonian flow (16) becomes

9x “ e´atv , 9v “ ´eat∇fpxq . (18)

Via a change of variable and definition of the scaled velocity u “ e´atv, we obtain

9x “ u , 9u “ ´au´∇fpxq. (19)

Compared to (14), the heavy-ball method speeds up the convergence of the gradient flow (GF) in both
convex and m-strongly convex cases. Specifically, we have (see Attouch and Cabot, 2017; Wilson
et al., 2016) that

#

fpxptqq ´ f˚ ď o
`

t´1
˘

for convex f , when we set a ą 0 ,

fpxptqq ´ f˚ ď O
`

e´
?
mt
˘

for m-strongly convex f , when we set a “ 2
?
m.

(20)

Example 2 (Variational acceleration (Wibisono et al., 2016)) Variational acceleration meth-
ods give rise to a large class of algorithms proposed in Wibisono et al. (2016) that deploy the
following kinetic and potential energy:

ktpvq “
eαt´γt

2
}v}2 , ptpxq “ eαt`βt`γtfpxq , (21)

where αt, βt, γt are time-dependent user-defined parameters. For this definition of the Hamiltonian,
the flow is

9x “ eαt´γtv , 9v “ ´eαt`βt`γt∇fpxq . (22)

Defining the scaled velocity u “ eαt´γtv, these equations become

9x “ u , 9u “ p 9αt ´ 9γtqu´ e
2αt`βt∇fpxq . (23)

Under mild assumptions, it was proved in Wibisono et al. (2016) that the dynamics speed up the
convergence of (GF) when f is convex, the new rate being

fpxptqq ´ f˚ ď O
`

e´βt
˘

. (24)

One special example within this framework is the Nesterov acceleration method, which chooses
αt “ logp2{tq, βt “ logpt2{4q, and γt “ 2 logptq and yields

9x “ u , 9u “ ´
3

t
u´∇fpxq . (25)

For this approach, we obtain

fpxptqq ´ f˚ ď O
`

t´2
˘

.
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2.2 Wasserstein metrics and induced convexity

The set of probability measures forms a nonlinear manifold. To quantify the distance between two
distributions, the standard L2 norm inherited from the Hilbert space is insufficient. Instead, we use
techniques developed for Riemannian metrics (Otto, 2001). We present the main concepts here,
omitting details.

Denoting by P2pRdq the collection of all probability measures supported on Rd that have finite
second moment, we have the following definition of the 2-Wasserstein distance.

Definition 1 Given two probability measures ρ1, ρ2 P P2pRdq, the 2-Wasserstein distance W2 be-
tween them is defined by

W 2
2 pρ1, ρ2q “ inf

#

ż

RdˆRd
}x´ y}2 γpdxdyq : γ P Γpρ1, ρ2q

+

, (26)

where

Γpρ1, ρ2q “

!

γ P P2pRd ˆ Rdq : pπ1q7γ “ ρ1, pπ
2q7γ “ ρ2

)

denotes the collection of all couplings between ρ1 and ρ2. Here, pπiq7γ, i “ 1, 2 denotes the i-th
marginal of the coupling measure γ. We denote by Γopρ1, ρ2q Ă Γpρ1, ρ2q the collection of optimal
couplings that attain the minimum in (26).

Note that Γo is always non-empty (Villani et al., 2009). According to Brenier’s theorem (Brenier,
1991), when the marginal measure ρ1 (or ρ2) has Lebesgue density, the optimal coupling γo is
unique and is induced by a unique transport map T : Rd Ñ Rd, that is, γo “ pidˆ T q#ρ1.

The 2-Wasserstein distance induces a (formal) Riemannian structure (Otto, 2001) onto P2pRdq.
On a Riemannian manifold, the notion of a gradient can be defined through the underlying metric,
giving rise in our case to the 2-Wasserstein gradient: For any functional E : P2pRdq Ñ R,

∇W2Erρs “ ´∇x ¨
ˆ

ρ∇x
δE

δρ

˙

.

This notion of gradient allows us to define Wasserstein gradient flows in P2pRdq, resembling gradient
flows in the Euclidean space. By guiding the evolution of a probability measure along the steepest
descent direction, we define the Wasserstein gradient flow by

Btρ “ ´∇W2Erρs “ ∇x ¨
ˆ

ρ∇x
δE

δρ

˙

. (WGF)

With Definition 1 of the distance between probability measures, the concept of convexity needs
to be rephrased accordingly.

Definition 2 For m ě 0, a functional E : P2pRdq Ñ R is called m-strongly convex if for every
ρ1, ρ2 P P2pRdq and γo P Γopρ1, ρ2q, we have

Erρ2s ě Erρ1s `

ĳ

RdˆRd

B

∇x
δE

δρ
rρ1spxq, y ´ x

F

dγopx, yq `
m

2
W 2

2 pρ1, ρ2q , (27)

When E satisfies (27) with m “ 0, we say that E is (geodesically) convex.
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Note the resemblance between Definition 2 and strong convexity in Euclidean space (12). Sim-
ilarly, extending from the equivalent formulation of strong convexity in (13), we should also expect
that E evaluated at a point on an interpolation between ρ1 and ρ2 should satisfy similar conditions.
Indeed, considering the geodesic curve

ρ1Ñ2
t “ pp1´ tqπ1 ` tπ2q7γo , γo P Γopρ1, ρ2q, (28)

that connects ρ1 and ρ2, with ρ1Ñ2
0 “ ρ1 and ρ1Ñ2

1 “ ρ2, Definition 2 can be equivalently seen as
requiring

Erρ1Ñ2
t s ď p1´ tqErρ1s ` tErρ2s ´

m

2
tp1´ tqW 2

2 pρ1, ρ2q, for all t P r0, 1s. (29)

One interesting class of convex functionals is obtained by extending convex potentials. Given a
potential function V that is (m-strongly) convex on Euclidean space, its associated potential energy
V : P2pRdq Ñ R defined by

Vrρs “
ż

Rd
V pxq ρpdxq , (30)

is m-strongly convex on P2pRdq. Another class of convex functionals comes from measuring the KL
divergence against a log-concave reference probability measure ρ˚, that is,

Erρs “ KLpρ || ρ˚q “

ż

Rd
ρpxq log

ρpxq

ρ˚pxq
dx , (31)

If ρ˚ is (m-strongly) log-concave, then E is (m-strongly) convex on P2pRdq. That is, if the reference
measure takes the form ρ˚9e

´g for some function g : Rd Ñ R, then the (m-strong) log-concavity
of ρ˚ is equivalent to the (m-strong) convexity of g (Ambrosio et al., 2005).

In Euclidean space, the gradient flow finds a minimizer of a convex function. An analogous
property holds for the Wasserstein gradient flow (WGF) whenever E is a (m-strongly) convex
functional. The convergence behavior of (WGF), as shown by Ambrosio et al. (2005) and Cheng
and Bartlett (2018), is as follows:

#

Erρts ´ E˚ ď O
`

t´1
˘

for convexE ,

Erρts ´ E˚ ď O
`

e´2mt
˘

for m-strongly convex E .
(32)

We note the exact match of the convergence rates in comparison to the gradient flow (GF) in
Euclidean space (14).

3. Hamiltonian flows for optimizing in the space of probability measures

Building on the tools of the previous section, we are ready to define the Hamiltonian flow over the
space of probability measures. We first collect all probability measures over the phase space that
have finite second moment:

P2pRd ˆ Rdq “
"

µ :

ż

|x|2 ` |v|2 dµpx, vq ă 8

*

.

For all µ P P2pRd ˆRdq, denote by µV and µX the marginal distributions of x and v, respectively:

µV p¨q “

ż

Rd
µpdx, ¨q , µXp¨q “

ż

Rd
µp¨, dvq .

10
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In the proofs, we use notation µt,x for the conditional distribution of µt P P2pRd ˆ Rdq, following
Ambrosio et al. (2005, Theorem 5.3.1):

µt,xpvq :“ µtpv|xq .

Extending the Hamiltonian defined in (15), we define the Hamiltonian in the probability measure
space Ht : P2pRd ˆ Rdq Ñ R, having the form

Htrµs “ Ktrµ
V s ` Ptrµ

Xs , (33)

where Ktrµ
V s and Ptrµ

Xs represent the kinetic and potential energy, respectively.

Remark 3 We note that the definition of the Hamiltonian separates kinetic and potential energy,
each of which depends on just one of the v-marginal and the x-marginal of the distribution. It is
also possible to define a Hamiltonian that depends on the joint distribution. One such possibility
was deployed in the underdamped Langevin dynamics (Ma et al., 2021), where the Hamiltonian
is the KL divergence between µ and the distribution ρ˚ b ν˚. Here ρ˚ is the target distribution
and ν˚9 expp´|v|2{2q represents the standard Gaussian distribution over the velocity space. As
elaborated in Ma et al. (2021), the underdamped Langevin dynamics can be viewed as a damped
version of our Hamiltonian flow.

We define the Hamiltonian flow on the space of probability measure as follows.

Definition 4 (Hamiltonian flow over probability measures) Let t ÞÑ Ht be the time-dependent
Hamiltonian over P2pRdˆRdq. A Hamiltonian flow with respect to Ht is a curve t ÞÑ µt that satisfies

Btµt `∇x ¨
ˆ

µt∇v
δHt

δµ
rµts

˙

´∇v ¨
ˆ

µt∇x
δHt

δµ
rµts

˙

“ 0 in the distributional sense, (34)

with initial condition µt“0 “ µ0 P P2pRd ˆ Rdq.

This definition provides the evolution of measures t ÞÑ µt. Well-posedness and absolute conti-
nuity of (34) with geodesically convex Hamiltonian and general initial data for this equation have
been studied in Ambrosio and Gangbo (2008). We note that our definition of Hamiltonian flow is
different from the conventional one; see Chow et al. (2020). Specifically, our formulation expands
µX to the phase space µ and allows each sample to take on different velocities. We argue that this
flow is physically meaningful, intuitive, and gives a meaningful reason to deploy the Hamiltonian
flow (34) to evolve the probability to minimize E as shown in the following result.

Proposition 5 The motion of δpxptq,vptqq, viewed as a probability measure to optimize E, agrees
with that of pxptq, vptqq, viewed as a sample to optimize f , if E and f , Ht and ht are related as
follows:

Erρs “

ż

Rd
f dρ , Htrµs “

ż

R2d

ht dµ . (35)

More precisely, we have the following.

(1) If t ÞÑ pxptq, vptqq solves the Hamiltonian ODE in (16), then the curve of Dirac measure
t ÞÑ µt :“ δpxptq,vptqq solves the Hamiltonian PDE (34).

(2) If t ÞÑ xptq in (16) converges to x˚ P argminx f , then the Hamiltonian PDE (34) drives the
x-marginal of µt towards δx˚, a minimizer of E.

11
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Proof To prove p1q, we take an arbitrary φ P C8c pRd ˆ Rdq and test it on (34), showing that the
result is zero. Test φ on the Btµt term with µt “ δpxptq,vptqq, we obtain

d

dt

ż

φ dµt “
d

dt
φpxptq, vptqq “ ∇xφ ¨ 9x`∇vφ ¨ 9v

“ ∇xφ ¨∇vhtpxptq, vptqq ´∇vφ ¨∇xhtpxptq, vptqq ,
(36)

where we used chain rule and applied (16) in the last equation. Testing φ on the other two terms
in (34), we obtain

ż

∇x ¨
ˆ

µt∇v
δHt

δµ

˙

φ dxdv ´

ż

∇v ¨
ˆ

µt∇x
δHt

δµ

˙

φ dxdv

“ ´

ż

µt

ˆ

∇v
δHt

δµ
¨∇xφ´∇x

δHt

δµ
¨∇vφ

˙

dxdv

“ ´∇xφ ¨∇v
δHt

δµ
pxptq, vptqq `∇vφ ¨∇x

δHt

δµ
pxptq, vptqq .

(37)

The relation (35) implies that

Htrδpxptq,vptqqs “ htpxptq, vptqq ,
δHt

δµ
“ ht .

Substituting into (37) and summing (36) and (37), we verify that the result is zero. Since φ is
arbitrary, we conclude that t ÞÑ δpxptq,vptqq solves (34) in the distributional sense.

To show item p2q, we need only note that the relation (35) guarantees

ErδXpxptq,vptqqs “ Erδxptqs “ fpxptqq , E˚ “ Erδx˚s “ fpx˚q “ f˚ ,

thereby concluding the proof.

Building on the Hamiltonian flow of Definition 4, we provide two examples in the next two
subsections. Both show an improvement in the convergence rate for the problem of finding an
optimal ρ. Some other examples are collected in Appendix A.

3.1 Heavy-Ball Flow

The heavy-ball method is known to converge as Ope´
?
mtq in Euclidean space, for m-strongly convex

objectives and op1{tq for convex objectives. We find the corresponding rates for this algorithm in
the probability measure space here.

By analogy to Example 1, we define the following Hamiltonian for any µ P P2pRd ˆ Rdq:

Htrµs “ Ktrµ
V s ` Ptrµ

Xs “
e´at

2

ż

Rd
}v}2dµV ` eatErµXs, (38)

where a ą 0 is a user-defined parameter. The Fréchet derivative is

δHt

δµ
rµs “

e´at

2
}v}2 ` eat

δE

δρ
rµXs , (39)

so the Hamiltonian PDE (34) becomes

Btµt `∇x ¨
`

µte
´atv

˘

´∇v ¨
ˆ

µte
at∇x

δE

δρ
rµXt s

˙

“ 0 . (40)

12
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In (19) we introduced a change of variables. Correspondingly, we define u “ e´atv and denote by rµ
the probability measure over this new variable. Under this change of variable, (40) becomes (HBF).
We spell out this claim in the following proposition.

Proposition 6 Let µt solve the heavy-ball equation (40). Define the map Ttpx, vq “ px, e
´atvq and

set rµt :“ pTtq7µt to be the pushforward of µt under Tt. Then rµt solves the equation

Btrµt `∇x ¨ prµtuq ´∇u ¨
ˆ

rµt

ˆ

au`∇x
δE

δρ
rrµXt s

˙˙

“ 0 , (41)

Proof To show that rµt satisfies (41), we take an arbitrary φ P C8c pRd ˆ Rdq, test it on rµt, and
compute its time derivative to obtain

d

dt

ż

φpx, uqdrµtpx, uq “
d

dt

ż

φpx, e´atvq dµtpx, vq

“

ż

d

ds
φpx, e´asvq

ˇ

ˇ

ˇ

ˇ

s“t

dµtpx, vq
loooooooooooooooooomoooooooooooooooooon

Term I

`

ż

φpx, e´atvqdBtµtpx, vq
loooooooooooooomoooooooooooooon

Term II

,

where in the first equality we use the definition of pushforward map. Term I can be written as an
integral in rµt by direct computation, that is,

Term I “ ´a

ż

e´atv ¨∇vφpx, e´atvqdµtpx, vq “ ´a

ż

u ¨∇uφpx, uqdrµtpx, uq ,

where we use the pushforward definition again in the second equality. For Term II, we use the fact
that µt solves (40) to obtain

Term II “ ´

ż

φpx, e´atvq dp∇x ¨ pµte´atvqq `
ż

φpx, e´atvq d

ˆ

∇v ¨
ˆ

µte
at∇x

δE

δρ
rµXt s

˙˙

“

ż

e´atv ¨∇xφpx, e´atvqdµtpx, vq ´

ż

eat∇x
δE

δρ
rµXt s ¨ e

´at∇vφpx, e´atvqdµtpx, vq

“

ż

u ¨∇xφpx, uq drµtpx, uq ´

ż

∇x
δE

δρ
rrµXt s ¨∇uφpx, uq drµtpx, uq .

In the last equality, we use rµXt “ µXt . By combining both terms, we arrive at (41).

The heavy-ball gradient-flow PDE (40) speeds up the convergence of (WGF) in the same way as
the heavy-ball ODE (18) speeds up (GF). We state the result here and leave the proof to Section 4.
In the following, we denote by ACpr0,8q,P2pRd ˆ Rdqq the space of absolutely continuous curves
over P2pRd ˆ Rdq (Ambrosio et al., 2005).

Theorem 7 Let µ P ACpr0,8q,P2pRd ˆ Rdqq solve the heavy-ball flow (40) for E : P2pRdq Ñ R.
(Equivalently, let µ̃ solve (HBF).) If E and µt are sufficiently smooth, then the marginal distribution
µXt converges as follows:

ErµXt s ´ E˚ ď o

ˆ

1

t

˙

for convex E, when we set a ą 0, (42a)

ErµXt s ´ E˚ ď O
´

e´
?
mt
¯

for m-strongly convex E, when we set a “ 2
?
m. (42b)

Note that convexity and m-strong convexity adopt the new geodesic convexity concept.
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3.2 Variational Acceleration Flow

The second example generalizes the variational formulation method in Example 2, where the Hamil-
tonian is chosen to be

Htrµs “ Ktrµ
V s ` Ptrµ

Xs “
eαt´γt

2

ż

Rd
}v}2dµV ` eαt`βt`γtErµXs. (43)

Here, the functions αt, βt, γt are user-defined parameters that satisfy the optimal scaling conditions

9βt ď eαt , 9γt “ eαt (44)

By differentiating (43), we obtain

δHt

δµ
rµs “

eαt´γt

2
}v}2 ` eαt`βt`γt

δE

δρ
rµXs , (45)

so the associated Hamiltonian PDE is

Btµt `∇x ¨
`

µte
αt´γtv

˘

´∇v ¨
ˆ

µte
αt`βt`γt∇x

δE

δρ
rµXt s

˙

“ 0 . (46)

Similar to the change of variables performed in (23), we set u “ eαt´γtv and denote rµ as the
measure defined over the new variables px, uq. Then, (46) becomes (VAF). We formalize this claim
in the following proposition.

Proposition 8 Let µt solve the variational acceleration flow equation (46). Define the map Ttpx, vq “
px, eαt´γtvq and set rµt :“ pTtq7µt to be the pushforward of µt under Tt. Then rµt solves the equation

Btrµt `∇x ¨ prµtuq ´∇v ¨
ˆ

rµt

ˆ

p 9γt ´ 9αtqu` e
2αt`βt∇x

δE

δρ
rrµXt s

˙˙

“ 0. (47)

Proof The derivation of (47) from (46) involves a computation similar to that of Proposition 6.
We omit the details.

The following set of parameter choice satisfy (44):

αt “ logp2{tq, βt “ logpt2{4q, γt “ 2 logptq , (48)

leading to the Nesterov flow:

Btrµt `∇x ¨ prµtuq ´∇v ¨
ˆ

rµt

ˆ

3

t
u`∇x

δE

δρ
rrµXt s

˙˙

“ 0 . (49)

As for heavy-ball, we observe the speedup of this variational Hamiltonian flow (46) compared to
the Wasserstein gradient-flow (WGF), with the improvement exactly matching that of variational
acceleration method (22) over (GF). (The proof of this result is the subject of Section 5.)

Theorem 9 Let the objective functional E : P2pRdq Ñ R be convex along 2-Wasserstein geodesics.
Let µ P ACpr0,8q,P2pRd ˆ Rdqq solve the Hamiltonian flow (46) for E. (Equivalently, let µ̃
solve (VAF).) If E and µt are sufficiently smooth and the optimal scaling conditions (44) holds,
then the marginal µXt satisfies

ErµXt s ´ E˚ ď Ope´βtq . (50)

Moreover, with coefficients configured as in (48), we have

ErµXt s ´ E˚ ď O

ˆ

1

t2

˙

. (51)
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4. The Heavy-Ball Flow

This section describes the convergence of the heavy-ball flow. Following some preliminary results,
we treat the general convex case followed by the strongly convex case.

4.1 Preliminary Results

First, we consider ν P ACpr0,8q,P2pRdqq that solves

Btν `∇ ¨ pνξq “ 0 , (52)

for a given bounded and sufficiently smooth vector field ξpt, xq. Then for any σ P P2pRdq, we have

1

2

d

dt
W 2

2 pνt, σq “

ż

RdˆRd
xx´ y, ξtpxqy dγtpx, yq , (53)

where γt P Γopνt, σq is an optimal coupling between νt and σ.
Let µ P ACpr0,8q,P2pRd ˆ Rdqq solve

Btµt `∇x ¨ pµtF pt, vqq ´∇v ¨ pµtGpt, µt, xqq “ 0 . (54)

Then under some smoothness requirement on F and G, we have

1

2

d`

dt

d

dt
W 2

2 pµ
X
t , σq ď

ż

R2d

}F pt, vq}2 dµt

`

ż

R3d

xx´ y, BtF pt, vq ´∇vF pt, vqGpt, µt, xqy dµt,xpvq dγtpx, yq ,

(55)

where d`{dt denotes the upper derivative at almost every t ě 0, ∇vF “ pBvjF
iqij denotes the

Jacobian, and µt,x is the conditional distribution of µt. The rigorous version of these statements
and the smoothness requirements are presented in Appendix B.

For the heavy-ball flow (40), we obtain the following result.

Lemma 10 Let µ P ACpr0,8q,P2pRd ˆ Rdqq be a solution of the heavy-ball flow (40) and σ P
P2pRdq be an arbitrary measure. If E and µXt are sufficiently smooth, we obtain

1

2

d

dt
W 2

2 pµ
X
t , σq “

ż

R3d

@

e´atv, x´ y
D

dµt,xpvq dγtpx, yq , (56)

and
1

2

d`

dt

d

dt
W 2

2 pµ
X
t , σq ď

ż

R2d

}e´atv}2dµtpx, vq

´

ż

R3d

B

x´ y, ae´atv `∇δE
δρ
rµXt spxq

F

dµt,xpvqdγtpx, yq .

(57)

where tµt,xuxPRd Ă P2pRdq is the conditional distribution of µt with respect to its x-marginal dis-
tribution µXt , and γt P Γopµ

X
t , σq is an optimal coupling between µXt and σ.

Proof To prove (56), we apply (53). We first derive the continuity equation for µXt analogously
to (52) by integrating (40) over v P Rd, which gives

0 “ Btµ
X
t `∇x ¨

ˆ
ż

Rd
e´atvµtp¨,dvq

˙

“ Btµ
X
t `∇x ¨

`

e´atvtpxqµ
X
t

˘

, (58)
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where vtpxq “
ş

Rd v dµt,xpvq. Applying (53) to (58) with ξpt, xq “ e´atv̄tpxq then gives (56).

To derive (57), we apply (55) to (40) with F pt, vq “ e´atv and Gpt, µXt , xq “ eat∇ δE
δρ rµ

X
t spxq.

Furthermore, noting that d
dtErµ

X
t s “

ş

δE
δµXt

dBtµ
X
t , we see that the evolution of ErµXt s depends

on the evolution of µXt . Using (58), we then obtain

d

dt
ErµXt s “

ż

δE

δµXt

dµXt
dt

“

ż

Rd

B

∇δE
δρ
rµXt spxq, e

´atv̄tpxq

F

dµXt pxq

“

ż

R2d

B

∇δE
δρ
rµXt spxq, e

´atv

F

dµtpx, vq .

(59)

The proofs below call for repeated use of (56), (57), and (59).

4.2 Convex case

We show here the convergence rate for the general convex case, stated in (42a). As for the Euclidean
space analysis, we define a Lyapunov function as follows:

Et :“
1

2

ż

R2d

}e´atv}2dµtpx, vq ` Erµ
X
t s ´ E˚ . (60)

It can be shown that Et decays in time. By differentiating (60), we obtain

d

dt
Et “ ´a

ż

R2d

}e´atv}2dµt `
1

2

ż

R2d

}e´atv}2
dµt
dt

looooooooooomooooooooooon

Term II

`
d

dt
ErµXt s

loooomoooon

Term III

.
(61)

Noting that Term III is already expanded (59), we show that Term II cancels it. To see this, we
recall (40) and use integration by parts in v to obtain

1

2

ż

R2d

}e´atv}2
dµt
dt

“ ´

ż

R2d

B

e´2atv, eat∇δE
δρ
rµXt spxq

F

dµt . (62)

Thus (61) simplifies to
d

dt
Et “ ´a

ż

R2d

}e´atv}2dµt ď 0 , (63)

showing monotonic decrease of Et. This feature implies that
ż t

t
2

Es ds ě
t

2
Et , @t ě 0 ùñ ErµXt s ´ E˚ ď Et ď

2

t

ż t

t
2

Esds . (64)

Therefore, to show that ErµXt s ´ E˚ ď opt´1q requires showing that
şt
t{2 Es ds Ñ 0 as t Ñ 8. In

the current case, we can show further that Et P L1pr0,8qq, that is
ş8

0 Et dt ă 8, implying that

lim
tÑ8

ż t

t{2
Esds ď lim

tÑ8

ż 8

t{2
Esds “ 0 .

To show
ş8

0 Et dt ă 8, we note that

ż 8

0
Etdt “

ż 8

0

1

2

ż

R2d

}e´atv}2dµt dt
looooooooooooooomooooooooooooooon

Term 1

`

ż 8

0
ErµXt s ´ E˚ dt

loooooooooomoooooooooon

Term 2

. (65)
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For Term 1, we integrate (63) over time to obtain

2ˆ Term 1 “

ż 8

0

ż

R2d

}e´atv}2 dµt dt “ lim
sÑ8

ż s

0

ż

R2d

}e´atv}2 dµt dt “ lim
sÑ8

E0 ´ Es
a

ď
E0

a
, (66)

proving finiteness of this term. For Term 2, we show below that

Term 2 “

ż 8

0
ErµXt s ´ E˚ dt ď aL0 . (67)

From (65), we thus have boundedness of
ş8

0 Et dt and thus the convergence of ErµXt s ´ E˚ with a
rate of opt´1q.

To show (67), we define the following Lyapunov function inspired by the proof of the regular
heavy-ball method (Attouch and Cabot, 2017):

Lt “
ż

R3d

1

2

›

›

›

›

x`
e´at

a
v ´ y

›

›

›

›

2

dµt,xpvqdγtpx, yq `
1

a2

`

ErµXt s ´ E˚
˘

, (68)

where, as above, tµt,xuxPRd Ă P2pRdq is the conditional distribution of µt at x and γt P Γopµ
X
t , ρ˚q

is an optimal transport plan. By expanding the quadratic term, we obtain

Lt “
ż

R2d

1

2
}x´ y}2 dγt

loooooooooomoooooooooon

term A

`

ż

R3d

B

e´at

a
v, x´ y

F

dµt,xdγt
loooooooooooooooooomoooooooooooooooooon

term B

`

ż

R2d

1

2

›

›

›

›

e´at

a
v

›

›

›

›

2

dµt
looooooooooomooooooooooon

term C

`
1

a2

`

ErµXt s ´ E˚
˘

loooooooooomoooooooooon

term D

.

(69)
We now take the time derivative of each term to finally show that

d`

dt
Lt ď ´

1

a
pErµXt s ´ E˚q . (70)

Term A. Noticing that Term A is equivalent to 1
2W

2
2 pµ

X
t , ρ˚q, we utilize (56) to obtain

d

dt
Term A “

ż

R3d

@

e´atv, x´ y
D

dµt,xpvqdγtpx, yq . (71)

Term B. From (56) with σ “ ρ˚, we note that Term B can be written as

Term B “
1

a

ż

R3d

@

e´atv, x´ y
D

dµt,xpvqdγtpx, yq “
1

2a

d

dt
W 2

2 pµ
X
t , ρ˚q .

Thus, we have

d`

dt
Term B ď

1

a

ż

R2d

}e´atv}2dµt ´

ż

R3d

B

x´ y, e´atv `
1

a
∇δE
δρ
rµXt spxq

F

dµt,xdγt .

Term C. Differentiating this term in time gives

d

dt
Term C “ ´

1

a

ż

R2d

}e´atv}2dµt ´

ż

R2d

B

e´2at

a2
v, eat∇δE

δρ
rµXt spxq

F

dµt , (72)

where the two terms in this expression come from differentiating }e´atv} and µt.
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Term D. By differentiating in time and following (59), we obtain

d

dt
Term D “

1

a2

ż

R2d

B

e´2atv, eat∇δE
δρ
rµXt spxq

F

dµt .

By summing Terms A, B, C, and D, we obtain

d`

dt
Lt ď´

1

a

ż

R3d

B

x´ y,∇δE
δρ
rµXt spxq

F

dµt,xdγt ď ´
1

a
pErµXt s ´ E˚q , (73)

where we used the convexity of E in the last inequality, concluding our proof of the claim (70).
By integrating (73) in time, we obtain

ż 8

0

`

ErµXt s ´ E˚
˘

dt “ lim
sÑ8

ż s

0

`

ErµXt s ´ E˚
˘

dt ď a lim
sÑ8

pL0 ´ Lsq ď aL0 . (74)

showing (67) and concluding the proof.

4.3 Strongly Convex Case

This section is dedicated to showing the convergence rate (42b) for a strongly convex function f
with modulus of convexity m ą 0.

We define a Lyapunov function inspired by the one in Wilson et al. (2016):

Lt “

¨

˝

ż

R3d

m

2

›

›

›

›

›

x`
e´2

?
mt

?
m

v ´ y

›

›

›

›

›

2

dµt,xpvqdγtpx, yq ` Erµ
X
t s ´ E˚

˛

‚e
?
mt . (75)

By expanding the quadratic term, using the same expansion as in (69), we can write

Lt “ e
?
mt

¨

˚

˚

˝

m

2
W 2

2 pµ
X
t , ρ˚q

looooooomooooooon

Term A

`

?
m

2

d

dt
W 2

2 pµ
X
t , ρ˚q

looooooooooomooooooooooon

Term B

`
1

2

ż

R2d

}e´2
?
mtv}2dµt

loooooooooooomoooooooooooon

Term C

`ErµXt s ´ E˚
loooooomoooooon

Term D

˛

‹

‹

‚

. (76)

We show below that d`

dt Lt ď 0 by analyzing the contributions of the four terms in turn.

Term A. Using the same strategy as for Term A in Section 4.2 and applying (53), we have

d

dt
Term A “

m

2

d

dt
W 2

2 pµ
X
t , ρ˚q “ mˆ (56), (77)

for γt P Γopµ
X
t , ρ˚q.

Term B. By applying (55) to the heavy-ball flow PDE (40) with a “ 2
?
m, we obtain an upper bound

for the second-order derivative, as follows:

d`

dt
Term B ď

?
m

2

d`

dt

d

dt
W 2

2 pµ
X
t , ρ˚q “

?
mˆ (57) .

Term C. By differentiating Term C with respect to t, we obtain

d

dt
Term C “ ´2

?
m

ż

R2d

}e´2
?
mtv}2dµt ´

ż

R2d

B

e´2
?
mtv,∇δE

δρ
rµXt spxq

F

dµt .
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Term D. Here we recall (59).

By assembling Terms A, B, C, and D, and substituting into (76), we obtain

d`

dt
Lt “

?
me

?
mt

ˆ

m

2
W 2

2 pµ
X
t , ρ˚q ` Erµ

X
t s ´ E˚ ´

ż

R2d

B

x´ y,∇δE
δρ
rµXt spxq

F

dγt

˙

´

?
me

?
mt

2

ż

R2d

}e´2
?
mtv}2dµt

ď
?
me

?
mt

ˆ

m

2
W 2

2 pµ
X
t , ρ˚q ` Erµ

X
t s ´ E˚ ´

ż

R3d

B

x´ y,∇δE
δρ
rµXt spxq

F

dγt

˙

loooooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooooon

ď0

ď 0 .

(78)

The last inequality follows from the strong convexity of E (Definition 2).

Recalling (75), we obtain that

e
?
mtpErµXt s ´ E˚q ď Lt ď Lt“0 ñ ErµXt s ´ E˚ ď Ope´

?
mtq , (79)

concluding the proof.

5. Variational Acceleration Flow

Here we study the convergence rate of variational acceleration flow.

To prepare, we integrate (46) in v to obtain the evolution of the x-marginal µXt :

0 “ Btµ
X
t `∇x ¨

ˆ
ż

Rd
eαt´γtvµtp¨,dvq

˙

“ Btµ
X
t `∇x ¨

`

eαt´γtvtpxqµ
X
t

˘

, (80)

where vtpxq “
ş

Rd vdµt,xpvq and tµt,xuxPRd Ă P2pRdq is the conditional distribution, given µXt .

5.1 Proof of Theorem 9

First, deploying the strategy of the previous section, we define a Lyapunov function

Lt :“
1

2

ż

R3d

}x` e´γtv ´ y}2dµt,xpvqdγ̄tpx, yq ` e
βtpErµXt s ´ E˚q , (81)

where γ̄t P Γopµ
X
t , ρ˚q is the optimal transport plan between µXt and ρ˚. We show below that

d`

dt Lt ď 0, which implies that

eβtpErµXt s ´ E˚q ď Lt ď Lt“0 , @t ě 0, (82)

from which it follows that ErµXt s ´ E˚ ď Ope´βtq.

By expanding (81), we obtain

Lt “
1

2
W 2

2 pµ
X
t , ρ˚q

loooooomoooooon

Term A

`e´αt
1

2

d

dt
W 2

2 pµ
X
t , ρ˚q

looooooooomooooooooon

Term B

`
1

2
e´2γt

ż

R2d

}v}2dµt
loooooomoooooon

Term C

`eβt pErµXt s ´ E˚q
looooooomooooooon

Term D

. (83)

Following a familiar strategy, we analyze the derivatives of the four terms in turn.
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Term A. Deploying (53) in the context of (46), we have

d

dt
Term A “

1

2

d

dt
W 2

2 pµ
X
t , ρ˚q

“
1

2

ż

R2d

@

eαt´γtvtpxq, x´ y
D

dγ̄tpx, yq

“
1

2

ż

R3d

@

eαt´γtv, x´ y
D

dµt,xpvqdγ̄tpx, yq .

(84)

Term B. By deploying (55) in the context of (46), we have

d`

dt
Term B “

1

2

d`

dt

d

dt
W 2

2 pµ
X
t , σq

ď

ż

R2d

}eαt´γtv}2dµt

´

ż

R2d

B

eαt´γtpx´ yq, peαt ´ 9αtqvtpxq ` e
αt`βt`γt∇δE

δρ
rµXt spxq

F

dγ̄tpx, yq .

(85)

Term C. By differentiating Term C with respect to time and utilizing (46), we have

d

dt
Term C “

ż

}v}2
dµ

dt
“ 2eαt`βt`γt

ż
B

v,∇x
δE

δρ
rµXt s

F

dµt .

Term D. By differentiating Term D with respect to time and utilizing (80), we obtain

d

dt
Term D “

d

dt
ErµXt s “

ż

δE

δµXt

dµXt
dt

“

ż
B

eαt´γtvtpxq,∇
δE

δρ
rµXt s

F

dµXt .

By assembling all terms and substituting into the limiting time derivative of (83), we obtain

d`

dt
Lt ď 9βte

βtpErµXt s ´ E˚q ´ e
αt`βt

ż

R2d

B

x´ y,∇δE
δρ
rµXt spxq

F

dγ̄tpx, yq . (86)

From the optimal scaling condition 9βt ď eαt , and using convexity of E, we obtain that

d`

dt
Lt ď eαt`βt

»

—

—

—

–

ErµXt s ´ E˚ ´

ż

R2d

B

x´ y,∇δE
δρ
rµXt spxq

F

dγ̄tpx, yq
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

ď0

fi

ffi

ffi

ffi

fl

ď 0 . (87)

This completes the proof.

5.2 Time Dilation

We can show, using similar analysis to that of Wibisono et al. (2016), that the family of Hamiltoni-
ans defined by (43) is closed under time dilation. Given a smooth increasing function τ : R` Ñ R`
and a phase probability distribution µtpx, vq, we consider the reparameterized curve rµt “ µτptq. For
clarity in the analysis of this section, we change the notation for the Hamiltonian of (43), denoting
it by Hα,β,γ to emphasize its dependence on the time-dependent parameters α, β, and γ. We have
the following result.
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Theorem 11 If µt satisfies the Hamiltonian flow equation (46) for the Hamiltonian Hα,β,γ of (43),
then the reparameterized curve rµt “ µτptq satisfies the Hamiltonian flow equation for the rescaled
Hamiltonian H

rα,rβ,rγ
, with the modified parameters defined as follows:

rαt “ ατptq ` log 9τptq, rβt “ βτptq, rγt “ γτptq . (88a)

Furthermore, α, β, and γ satisfy the optimal scaling conditions (44) if and only if rα, rβ, and rγ
satisfy these conditions, respectively.

Proof Note that the time derivative of the reparameterized curve is given by Btrµt “ 9τptqBτµτ |τ“τptq.
Thus, following (46), the following equation is satisfied by rµt:

Btrµt “ ´∇x ¨
`

µτptq 9τptqeατptq´γτptq
˘

`∇v ¨
ˆ

µτptq 9τptqeατptq`βτptq`γτptq∇δE
δρ

”

µXτptq

ı

˙

. (89)

With the definition (88) of the modified parameters rα, rβ, and rγ, we can write this equation as

Btrµt “ ´∇x ¨
´

rµte
rαt´rγt

¯

`∇v ¨
ˆ

rµte
rαt`rβt`rγt∇δE

δρ

“

rµXt
‰

˙

, (90)

which is the Hamiltonian flow equation (46) for the rescaled Hamiltonian H
rα,rβ,rγ

.

The previous theorem is the analog of (Wibisono et al., 2016, Theorem 2.2). As observed
in Wibisono et al. (2016), a major appeal of this theorem is that it links up a class of methods
through time-dilation. In particular, set

αt “ logp2{tq, βt “ logpt2{4q, γt “ 2 logptq

as the parameters for Nesterov acceleration, which achieves convergence of Erµts ´ E˚ “ Op1{t2q.
Then for any p ě 2, setting τptq “ tp{2, we have the accelerated rate Erµ̃ts ´ E˚ “ Op1{tpq.

We note that in general, when we reparameterize time by a time-dilation function τptq, the
Hamiltonian functional transforms to rHtrµs “ 9τptqHτptqrµs. Thus, the result of Theorem 11 can be
written as

H
rα,rβ,rγ

ptq “ 9τptqHα,β,γpτptqq ,

which can be verified by the definition of Hamiltonian (43) and the modified parameters (88).

6. Algorithms and Numerical Experiments

In this section, we report on numerical experiments with the Hamiltonian flows introduced above.
In Section 6.1 we lay out the algorithms for running (HBF) and (VAF) using representative parti-
cles, while in Section 6.2, we showcase the application of the algorithms in two specific examples:
potential energy and Bayesian sampling. We consider only continuous-time models in this section,
deferring the development of discrete-in-time algorithms to future research.

6.1 Implementation of (HBF) and (VAF)

To study Hamiltonian flows, we find numerical solutions µ P ACpr0,8q,P2pRdˆRdqq of the equation

Btµt `∇x ¨
ˆ

µt∇v
δHt

δµ
rµts

˙

´∇v ¨
ˆ

µt∇x
δHt

δµ
rµts

˙

“ 0 . (91)
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Given that px, vq P Rd ˆRd, the classical numerical approach for computing this equation requires
discretization over the domain RdˆRd, which is computationally prohibitive for nontrivial dimen-
sions d. In this context, a Monte Carlo solver based on particle approximation can be more robust
for higher values of d. We define an empirical distribution based on N particles pXi, V iq, as follows:

µt « µt “
1

N

N
ÿ

i“1

δpXiptq,V iptqq .

We denote by µXt “ 1
N

řN
j“1 δXjptq the x-marginal of the empirical measure. By substituting µt

into (91) and testing it on φ P C8c pRd ˆ Rdq, we obtain that

N
ÿ

i“1

∇xφpXi, V iq

ˆ

9Xi ´∇v
δHt

δµ
rµtspX

i, V iq

˙

`∇vφpXi, V iq

ˆ

9V i `∇x
δHt

δµ
rµtspX

i, V iq

˙

“ 0 , (92)

which suggests the following equations for evolution of the particles:

9Xi “ ∇v
δHt

δµ
rµtspX

i, V iq , 9V i “ ´∇x
δHt

δµ
rµtspX

i, V iq , i “ 1, . . . , N . (93)

By substituting the various definitions of Ht considered so far, we arrive at the following flows:

• Heavy-ball flow (HBF):

9Xi “ V i , 9V i “ ´aV i ´∇x
δE

δρ
rµXt spX

iq , i “ 1, . . . , N . (94)

• Variational-acceleration-flow (VAF) in its general form:

9Xi “ V i , 9V i “ ´p 9γt ´ 9αtqV
i ´ e2αt`βt∇x

δE

δρ
rµXt spX

iq , i “ 1, . . . , N . (95)

• Nesterov flow as an example of (VAF) using the coefficients (48):

9Xi “ V i , 9V i “ ´
3

t
V i ´∇x

δE

δρ
rµXt spX

iq , i “ 1, . . . , N . (96)

• Exponential convergence as an example of (VAF) using coefficients rαt, βt, γts “ r0, t, ts:

9Xi “ V i , 9V i “ ´V i ´ et∇x
δE

δρ
rµXt spX

iq , i “ 1, . . . , N . (97)

Note the similarity to deploying the particle method for solving the Wasserstein gradient
flow (WGF). It is a standard technique to adopt the particle presentation:

ρt « ρt “
1

N

N
ÿ

i“1

δXiptq . (98)

When this form is substituted into (WGF), we arrive at:

9Xi “ ´∇x
δE

δρ
rρtspX

iq , i “ 1, . . . , N . (99)
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Remark 12 The current paper focuses only on the convergence of the continuous-time dynamics.
To make these approaches practical, we need to investigate the errors that arise in their numerical
implementations. Our implementations make use of an adaptive solver (Section 6.2). We do not
attempt an error analysis that is customized to the specific form of these differential equations. We
next discuss the two sources of numerical error: time discretization and particle representation.

• Time discretization: When the time-step size h is small, the discrete solution should capture
the fast decay rate of the continuous solution. In particular, the discretization error has to
be compatible with the convergence rates of the PDE. This property is termed “rate-matching
discretization” in Wibisono et al. (2016) in the Euclidean setting. Various techniques have
been proposed, among which the symplectic integrator (Muehlebach and Jordan, 2021) appears
to produce higher order accuracy. This observation is in line with the proposal presented
in Ambrosio and Gangbo (2008), which does not discuss details. It would be interesting to
adapt these techniques to the setting of probability measure space. However, we note that the
nonlinear geometry (compared to Wibisono et al. (2016); Betancourt et al. (2018); Muehlebach
and Jordan (2021) in Euclidean distance) makes the analysis significantly harder.

• Particle representation: It is widely known that Monte Carlo particle approximation suffers
from the curse of dimensionality (Singh and Póczos, 2018; Niles-Weed and Berthet, 2022),
since the number of particles needed to represent the underlying distribution scales exponen-
tially in the dimension of the problem. However, the ultimate task is to find the minimizer of
the energy functional. This is a “weak-sense” evaluation of the convergence, and there may
still be a chance to achieve convergence without experiencing the curse of dimensionality. This
intriguing possibility merits further investigation.

6.2 Numerical Results

Here, we apply heavy-ball flow (94), Nesterov flow (96), and exponentially convergent variational
acceleration flow (97) to three tasks. Example 1 involves minimization of a potential energy func-
tional. Example 2 minimizes a KL divergence against a given target distribution, a problem from
Bayesian sampling. Example 3 is the training of an infinitely-wide, single-layer neural network with
ReLU activation.

In all these examples, the numerical integration over time is performed using the Diffrax
library (Kidger, 2021). We use the Dormand-Prince 5/4 method with the default adaptive step
size controller, setting both relative and absolute tolerances to 10´6. The initial conditions of the

particles are independently sampled from the standard Gaussian distribution: Xip0q, V ip0q
i.i.d.
„

N p0, Idq.
For strongly convex functions, the choice a “ 2

?
m used in the analysis is too small to produce

optimal computational performance. Thus in all examples, heavy-ball flow is executed with a “ 0.5.

Example 1: Potential Energy. We consider potential energy

Erρs “ V`rρs “
ż

Rd
V`pxq dρ , ` “ 1, 2,

with two different forms of the potential functions:

V1pxq “
1

2
xx´ b, Apx´ bqy , V2pxq “ h log

˜

M
ÿ

i“1

exp

ˆ

xwi, xy ´ qi
h

˙

¸

. (100)
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For the potential V1, we set spatial dimension to be d “ 500, with A P R500ˆ500 a random symmetric
positive definite matrix and b is a random vector. The symmetric matrix is formed by setting
A “ UJDU with D being a diagonal matrix and U being an orthogonal matrix. The diagonal
elements in D are log-uniformly distributed between 10´5 and 1, and U is uniformly sampled from
the Haar measure over the orthogonal group Opdq. The vector b is drawn from N p0, 100 ¨ Idq. This
design ensures the objective functional V1 to be m-strongly convex with m « 10´5. For potential
V2, we take d “ 200 and choose M “ 1000 and h “ 20. Each wi P R200 is drawn from N p0, I200q

and q “ pqiq P R1000 is from N p0, I1000q. Depending on the choice of wi, V2 can be strongly convex,
but its eigenvalues can be as small as one wishes. We use N “ 100 particles for both V1 and V2.

In both examples, Erρts is estimated empirically from (98). To estimate the optimal E˚ for V2,
we run all four methods for a long time and designate E˚ the best value achieved over these four
runs.

Figure 1 shows the decrease in optimality gap Erρts ´ E˚ over time for heavy-ball flow, Nes-
terov flow, exponentially convergent variational acceleration flow, and Wasserstein gradient flow.
All three solvers demonstrate faster continuous-time convergence than the standard Wasserstein
gradient flow, with exponentially convergent VAF being the fastest.0 5 10 15 20
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Figure 1: Optimality gap vs time for Wasserstein gradient flow (WGF), Heavy-Ball flow (HB),
Nesterov flow (Nes) and exponentially convergent Hamiltonian flow (Exp), for the functionals V1

(left) and V2 (right). The functionals are evaluated at empirical measures; see (98).

In Figure 2 we show the total number of steps for the four methods, for different tolerance
of the optimality gap. As the convergence tolerance is tightened (moving toward the right of the
plot), the number of steps required grows. For any given problem, the total number of steps
is an effective proxy for the actual computational cost, as it is proportional to the number of
gradient evaluations. By comparing the two plots, we see that the Nesterov and Hamiltonian flows
outperform the Wasserstein gradient flow for small tolerance.

Example 2: Bayesian Sampling. Next, we tackle the more challenging task of minimizing KL
divergence between ρ and a target distribution ρ˚, defined by

Erρs “ KLpρ||ρ˚q “

ż

Rd
ρpxq ln

ρpxq

ρ˚pxq
dx “

ż

Rd
ln ρpxqdρ`

ż

Rd
gpxq dρ´ logC ,

where the target measure has density ρ˚pxq “ Ce´gpxq, with C ą 0 being the normalizing constant.
With a slight abuse of notation, we do not distinguish a probability measure from its Lebesgue
density. We cannot apply the particle approximation directly to the KL divergence because the
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Figure 2: Total number of steps vs optimality gap (Tol) for Wasserstein gradient flow (WGF),
Heavy-Ball flow (HB), Nesterov flow (Nes) and exponentially convergent Hamiltonian flow (Exp),
for the functionals V1 (left) and V2 (right). The functionals are evaluated at empirical measures;
see (98). The total number of steps includes those accepted and rejected in the adaptive step size
controller.

empirical measure lacks a Lebesgue density. By analogy with the blob method for the Fokker-Planck
equation (Carrillo et al., 2019b), we consider a regularized KL divergence

Eεrρs “ KLεpρ||ρ˚q “

ż

Rd
lnKε ˚ ρdρ`

ż

Rd
g dρ´ logC , (101)

with the Gaussian convolution kernel Kεpxq “ p 1
2πε2

qd{2e´|x|
2{2ε2 for some parameter ε ą 0. This

convolution allows Eε being well-defined even for empirical measures. We note that Eε, like E, is
lower-bounded and is convex assuming an m-strongly convex gpxq, with m being sufficiently large,
as outlined in Carrillo et al. (2019b).

We choose two different target measures ρ˚ by specifying the log-density g in the same manner
as the potential functions in (100), that is,

g1pxq “
1

2
xx´ b, Apx´ bqy , g2pxq “ h log

˜

M
ÿ

i“1

exp

ˆ

xwi, xy ´ qi
h

˙

¸

. (102)

For g1, we take d “ 20 so that A P R20ˆ20 is a random positive definite symmetric matrix, and b is
a random vector drawn from N p0, 10 ¨I20q. The symmetric matrix is formed by setting A “ UJDU
with D being a diagonal matrix and U being an orthogonal matrix. The diagonal elements in
D are log-uniformly distributed between 10´4 and 1, and U is uniformly sampled from the Haar
measure over the orthogonal group Opdq. For g2, we set d “ 10, M “ 200, and h “ 10. Each
wi P R10 is drawn from N p0, I10q, while q “ pqiq P R200 is drawn from N p0, I200q. In the numerical
results below, we use N “ 1600 particles. We choose ε “ 1 (deferring the issue of choosing ε more
optimally to future work).

To estimate the optimal Eε˚, we run all four methods for a long time and designate Eε˚ the best
value achieved over these four runs.

Figure 3 shows optimality gap as a function of t for heavy-ball flow, Nesterov flow, exponentially
convergent variational acceleration flow, and Wasserstein gradient flow. In both examples, the
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exponentially convergent Hamiltonian flow achieves the fastest convergence rate. It is noticeable
that the Wasserstein gradient flow displays relatively lower errors during the initial stages, while the
Hamiltonian flows exhibit slower decay due to oscillations. For larger t, the error of WGF saturates
while the oscillations seen in the Hamiltonian flows taper off. Figure 4 shows the total number of
steps as a function of the optimality gap. In both examples, the Nesterov and Hamiltonian flows
outperforms the Wasserstein gradient flow for small tolerance. The performance of the Hamiltonian
flows could be potentially enhanced by mitigating the oscillation through the incorporation of
restarting strategies (O’donoghue and Candes, 2015; Su et al., 2014).0 5 10 15 20

t

102

E
(ρ
t)

GF

HB

Nes

Exp

0 5 10 15 20

t

10−5

10−4

10−3

10−2

10−1

100

101

102

E
(ρ
t)
−
E
∗

GF

HB

Nes

Exp

0 5 10 15 20

t

3.25× 101

3.3× 101

3.35× 101

3.4× 101

3.45× 101

3.5× 101

3.55× 101

E
(ρ
t)

GF

HB

Nes

Exp

0 5 10 15 20

t

10−5

10−4

10−3

10−2

10−1

100

E
(ρ
t)
−
E
∗

GF

HB

Nes

Exp

Figure 3: Optimality gap for minimization of regularized KL divergence with target g1 (left) and
g2 (right) for four methods: Wasserstein gradient flow (WGF), Heavy-Ball flow (HB), Nesterov
flow (Nes), and exponentially convergent Hamiltonian flow (Exp). The functionals are evaluated
at empirical measures; see (98).
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Figure 4: Total number of steps vs optimality gap (Tol) for minimization of regularized KL di-
vergence with target g1 (left) and g2 (right) for four methods: Wasserstein gradient flow (WGF),
Heavy-Ball flow (HB), Nesterov flow (Nes), and exponentially convergent Hamiltonian flow (Exp).
The functionals are evaluated at empirical measures; see (98). The total number of steps includes
those accepted and rejected in the adaptive step size controller.
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Example 3: Neural network training. Our final example is related to the training of infinitely
wide neural networks (Chizat and Bach, 2018; Mei et al., 2018; Sirignano and Spiliopoulos, 2020;
Ding et al., 2021, 2022), where we have

Erρs “
1

2

ż

Rd
|fpxq ´ gpx, ρq|2 dπpxq, (103)

where π is a given distribution over the sampled data and f : Rd Ñ R is the target function. We
take the function g to be a two-layer neural network: for every x P Rd and ρ P PpRd`3q

gpx, ρq :“

ż

Rd`3

V px, zqdρpzq, with V px, pα, β, w, bqq “ ασpw ¨ x` bq ` β ,

with σ being the ReLU function, which is positively 1-homogeneous, and z “ pα, β, w, bq P
Rˆ Rˆ Rdˆ R. The functional Erρs cannot be shown to be globally geodesic convex, but is
locally geodesic convex, see Appendix C. We nevertheless tested the training with four methods
(Wasserstein gradient flow (WGF), Heavy-Ball flow (HB), Nesterov flow (Nes), and exponentially
convergent Hamiltonian flow (Exp)).

We set the spatial dimension to be d “ 1 with the target function being fpxq “ sinpπxq.
We choose the data distribution to be the uniform distribution over r´1, 1s and 500 data points
are sampled to evaluate the integration in π. In the numerical results below, we use N “ 200
particles (neurons). The numerical results are presented in Figure 5. Note that the Nesterov and
Hamiltonian flows outperform the Wasserstein gradient flow for small tolerances.
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Figure 5: Left: Mean square errors for neural network training with target fpxq “ sinpπxq for
four methods: Wasserstein gradient flow (WGF), Heavy-Ball flow (HB), Nesterov flow (Nes), and
exponentially convergent Hamiltonian flow (Exp). Middle: The target fpxq “ sinpπxq and its
neural network approximations obtained by running the four methods for T “ 14. Right: The
number of total steps as a function of the mean square error (Tol). The number of total steps
includes those accepted and rejected in the adaptive step size controller.
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Appendix A. Examples of Hamiltonian flows

We present several further examples of the Hamiltonian PDE.

Example 4: Kalman-Hamiltonian flow (Garbuno-Inigo et al., 2020; Wang and Li, 2022;
Liu et al., 2022). Consider the Hamiltonian with weighted kinetic energy

Htrµs “ e´at
1

2

ż

R2d

xv, CλrµXsvydµ` eatErµXs , (104)

where a ą 0 and Cλrνs P Rdˆd is the covariance matrix defined by

Cλrνs “

ż

Rd
px´ EνrXsq b px´ EνrXsqdν ` λI, λ ě 0. (105)

The Kalman-Hamiltonian flow is then

Btµt `∇x ¨
´

µte
´atCλrµtsv

¯

´∇v ¨
ˆ

µt

ˆ

e´atEµVt rV V
Jspx´ EµXt rXsq ` e

at∇x
δE

δρ
rµXt s

˙˙

“ 0 .

(106)
Particle dynamics are defined by

$

&

%

9Xt “ e´atCλrµXt sVt

9Vt “ ´e´atEµV rVtV Jt spXt ´ EµX rXtsq ´ e
at∇x

δE

δρ
rµXt spXtq.

(107)

Example 5: Stein-Hamiltonian flow (Duncan et al., 2023; Liu, 2017; Wang and Li,
2022). Consider the Hamiltonian with a kernel-weighted kinetic energy

Htpµq “ e´at
ż

R4d

1

2
wJKpx, yqv dµpx, vqdµpy, wq ` eatErµXs , (108)

where Kpx, yq P Rdˆd is a symmetric positive kernel function. The Stein-Hamiltonian flow is then

Btµt `∇x ¨
ˆ

µte
´at

ż

R2d

Kpx, yqwdρtpy, wq

˙

´∇v ¨
ˆ

µt

ˆ

e´at
ż

R2d

∇xrvJKpx, yqwsdµtpy, wq ` eat∇x
δE

δρ
rµXt s

˙˙

“ 0 .

(109)

Particle dynamics are defined by

$

’

’

&

’

’

%

9Xt “ e´at
ż

R2d

KpXt, yqwdµtpy, wq

9Vt “ ´e´at
ż

R2d

∇xrV Jt KpXt, yqwsdµtpy, wq ´ e
at∇x

δE

δρ
rµXt spXtq.

(110)

Example 6: Bregman-Hamiltonian flow (Wibisono et al., 2016; Wilson et al., 2016).
The Bregman-Hamiltonian is defined by

Htpρq “ eαt`γt
ˆ
ż

R2d

Dψ˚p∇ψpxq ` e´γtv,∇ψpxqqdµpx, vq ` eβtErµXs
˙

, (111)
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where ψ : Rd Ñ R is a convex function of Legendre type (Rockafellar, 1997; Borwein and Lewis,
2006), and ψ˚ : Rd Ñ R denotes the convex conjugate of ψ. (The Bregman divergence of a convex
function ψ is defined by Dψpy, xq :“ ψpyq ´ ψpxq ´ x∇ψpxq, y ´ xy, where x¨, ¨y is the Euclidean
inner product on Rd.) The Bregman-Hamiltonian flow is then

Btµt `∇x ¨
`

µte
αt
`

∇ψ˚p∇ψpxq ` e´γtvq ´ x
˘˘

´∇v ¨
ˆ

µte
αt`γt

„

∇2ψpxq
`

∇ψ˚
`

∇ψpxq ` e´γtv
˘

´ x
˘

´ e´γtv ` eβt∇x
δE

δρ
rµXt s

˙

“ 0.

(112)
Particle dynamics for this flow are defined by

9Xt “ eαt
`

∇ψ˚p∇ψpXtq ` e
´γtVtq ´Xt

˘

9Vt “ ´e
αt`γt

„

∇2ψpXtq
`

∇ψ˚
`

∇ψpXtq ` e
´γtVt

˘

´Xt

˘

` e´γtVt ´ e
βt∇x

δE

δρ
rµXt spXtq



.
(113)

We can define the mirror transform Mtpx, vq “ px, zq “ px,∇ψpxq ` e´γtvq and the pushforward
measure νt “ pMtq7µt P P2pR2dq. Then νXt “ µXt and νt solves the equation

Btνt `∇x ¨ pνteαt p∇ψ˚pzq ´ xqq ´∇z ¨
ˆ

νte
αt`βt∇x

δE

δρ
rνXt s

˙

“ 0 , (114)

where we have used 9γt “ eαt in the derivation. Under these transformations, the associated particle
dynamics becomes

9Xt “ eαt p∇ψ˚pZtq ´Xtq

9Zt “ ´e
αt`βt∇x

δE

δρ
rνXt spXtq.

(115)

By choosing αt “ logpr{tq, βt “ 2 logpt{rq with r ą 0, this method generalizes the accelerated
mirror descent method (Krichene et al., 2015).

Appendix B. Rigorous statements and proofs for two properties in Section 4

Here we present rigorous statements regarding the time derivatives of the Wasserstein distance.
The following theorem characterizes the first-order derivative of the Wasserstein distance.

Theorem 13 (Theorem 8.4.7 and Proposition 8.5.4 in Ambrosio et al. (2005)) Let σ be
a probability measure in P2pRdq and ν P Cpr0,8q,P2pRdqq be a solution to the continuity equation

Btνt `∇ ¨ pνtξtq “ 0 in distribution , (116)

for locally Lipschitz vector fields ξ satisfying

ż 8

0

ż

Rd
}ξt}

2dνtdt ă 8 , (117)

then ν P ACpr0,8q,P2pRdqq and for almost every t P p0,8q, we have

1

2

d

dt
W 2

2 pνt, σq “

ż

R2d

xx´ y, ξtpxqy dγtpx, yq , (118)

where γt P Γopνt, σq.
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Before proceeding to characterize the second-order derivative of the Wasserstein distance, it is
necessary to define the disintegration of the phase space probability measure µ P PpRd ˆRdq with
respect to its x-marginal.

Theorem 14 (Theorem 5.3.1 in Ambrosio et al. (2005)) Let µ P PpRd ˆ Rdq, and denote
by µX P PpRdq the x-marginal distribution of µ. Then there exists a µX-a.e. uniquely determined
family of Borel probability measure tµxuxPRd P PpRdq such that

ż

R2d

fpx, vq dµpx, vq “

ż

Rd

ˆ
ż

Rd
fpx, vq dµxpvq

˙

dµXpxq ,

for every Borel map f : Rd ˆ Rd Ñ r0,`8s.

The second-order derivative of the W2-distance can be computed by the following theorem.

Theorem 15 (Modification of Theorem 1 in Carrillo et al. (2019a)) Let σ P P2pRdq and
µ P ACpr0,8q,P2pRd ˆ Rdqq be a solution to the Hamiltonian flow

Btµt `∇x ¨ pµtF pt, vqq ´∇v ¨ pµtGpt, µt, xqq “ 0 , @t P r0, T s (119)

with locally-in-t and globally-in-px, vq Lipschitz vector fields pt, x, vq ÞÑ F pt, vq, Gpt, µt, xq satisfying

t ÞÑ }F pt, vq}L2pµtq
, }BtF pt, vq}L2pµtq

, }∇vF pt, vq}L2pµtq
, }Gpt, µt, xq}L2pµtq

P Cpr0,8qqXL2pr0,8qq .
(120)

then for any T ą 0, the following inequality holds:

1

2

d`

dt

d

dt
W 2

2 pµ
X
t , σq ď

ż

R2d

}F pt, vq}2dµtpx, vq

`

ż

R3d

xx´ y, BtF pt, vq ´∇vF pt, vqGpt, µt, xqy dµt,xpvqdγtpx, yq ,

(121)

where d`{dt denotes the upper derivative in almost every t ą 0 and the Jacobian ∇vF “ pBvjF iqij.
Here µt,x is the disintegration of µt with respect to its x-marginal µXt .

Proof We start by defining the following flow: For fixed t P p0,8q, let Φτ “ pΦ
X
τ ,Φ

V
τ q satisfy the

following equations:

BτΦX
τ px, vq “ F pt` τ,ΦV

τ px, vqq ,

BτΦV
τ px, vq “ ´Gpt` τ, µt`τ ,Φ

X
τ px, vqq ,

pΦX
0 ,Φ

V
0 q “ px, vq , for µt-a.e. px, vq . (122)

These formulas define the corresponding Lipschitz flow for τ P p´t,8q. Set

µt˘h “ pΦ˘hq7µt . (123)

By defining Jpt, µ, x, vq :“ BtF pt, vq ´∇vF pt, vqGpt, µ, xq, one can compute

B2
τΦX

τ px, vq “ Jpt` τ, µt`τ ,Φτ px, vqq . (124)

Let γt P Γopµ
X
t , σq be an optimal transport plan between µXt and σ P P2pRdq. To prove (121),

we use an approximation argument based on finite differences. To this end, we evolve γt in time,
using the map Φτ , such that it remains a transport plan between the x-marginal µXt`τ and the
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measure σ. However, to execute the flow (122), both the initial coordinate x and the velocity v
are required, whereas the velocity information is absent in γt. To address this issue, we define
an extended coupling plan over R3d by appending the velocity information into γt. Specifically,
we define the extended coupling plan γE

t as the probability measure over PpR3dq that satisfies the
equation:

ż

φpx, v, yq dγE
t px, v, yq “

ż

φpx, v, yqdµt,xpvqdγtpx, yq , @φ P CbpR3dq .

To evolve the coupling plan γE
t , we define the map Qτ : R3d Ñ R2d as follows:

Qτ px, v, yq “ pΦ
X
τ px, vq, yq , τ P p´t,8q .

The evolved transport plan is then defined as the pushforward measure: γτt :“ pQτ q7γ
E
t P PpR2dq.

We observe that γτt defines a transport plan between µXt`τ and σ. Indeed, for any φX P CbpRdq,
we integrate it against the plan γτt and obtain

ż

φXpxq dγτt px, v, yq “

ż

φXpΦX
τ px, vqqdµt,xpvqdγtpx, yq

“

ż

φXpΦX
τ px, vqqdµtpx, vq

“

ż

φXpxq dµXt`τ pxq ,

where in the first equality, we use the definition of γτt , and in the second equality we employ the
definition of the transport plan γt and the disintegration µt,x. Similarly, for any φY P CbpRdq, we
integrate it against the plan γτt and obtain

ż

φY pyq dγτt px, v, yq “

ż

φY pyqdµt,xpvqdγtpx, yq “

ż

φY pyq dσpyq .

Thus, γτt is a transport plan between µXt`τ and σ for any τ P p´t,8q.

The rest of the proof follows the same strategy as that of Carrillo et al. (2019a, Theorem 5.3.1).
We outline it here for completeness.

For some fixed t P p0,8q and h P p0, tq, consider the finite difference

∆hKpµXt , σq :“ pD2
h{2W

2
2 qpµ

X
t , σq “

1

h2
pW 2

2 pµt`h, σq ´ 2W 2
2 pµt, σq `W

2
2 pµt´h, σqq , (125)

where Dτ denotes the symmetric difference operator with step τ ą 0, that is,

pDτW
2
2 qpµ

X
t , σq :“

1

2τ
pW 2

2 pµ
X
t`τ , σq ´W

2
2 pµ

X
t´τ , σqq . (126)

Recalling that γτt is a coupling plan between µXt`τ and σ for any τ P r´h, hs, we obtain

W 2
2 pµ

X
t˘τ , σq ď

ż

R2d

}x´ y}2dγ˘τt px, yq “

ż

R3d

}ΦX
˘τ px, vq ´ y}

2dµt,xpvqdγtpx, yq . (127)
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By making use of (127), for any h P p0, tq, we have

∆hKpµXt , σq ď
1

h2

ż

R3d

}ΦX
τ px, vq ´ y}

2 ´ 2}x´ y}2 ` }ΦX
´τ px, vq ´ y}

2dµt,xpvqdγtpx, yq

ď
1

h

ż h

´h

ż

R2d

}BτΦX
τ px, vq}

2dµtpx, vqdτ

`
1

h2

ż h

0

ż

R3d

ph´ τq
@

x´ y, B2
τΦX

τ px, vq
D

dµt,xpvqdγtpx, yqdτ

`
1

h2

ż 0

´h

ż

R3d

ph` τq
@

x´ y, B2
τΦX

τ px, vq
D

dµt,xpvqdγtpx, yqdτ

“

ż 1

´1

ż

R2d

}F pt` sh,ΦV
shpx, vqq}

2dµt`shds

`

ż 1

0
p1´ sq

ż

R3d

xx´ y, Jpt` sh, µt`sh,Φshpx, vqy dµt,xpvqdγtpx, yqds

`

ż 0

´1
p1` sq

ż

R3d

xx´ y, Jpt` sh, µt`sh,Φshpx, vqy dµt,xpvqdγtpx, yqds ,

(128)

where in the second inequality we use the fundamental theorem of calculus and Jensen’s inequality,
and in the last equality, we use (124).

For a fixed T ą 0, we choose an integer N ą 0 such that h “ T {N . Let tµnhu
N
n“0 be recursively

defined by µpn`1qh “ pΦ
n
hq7µnh for n “ 0, . . . , N where Φn

h “ pΦ
n,X
h ,Φn,V

h q satisfies
#

BτΦn,X
τ px, vq “ F pnh` τ,Φn,V

τ px, vqq ,

BτΦn,V
τ px, vq “ ´Gpnh` τ, µnh`τ ,Φ

n,X
τ px, vqq ,

Φn
0 px, vq “ px, vq for µnh-a.e. px, vq , (129)

with initial condition pΦn,X
0 ,Φn,V

0 q “ px, vq and τ P p´h, hq. Then, for n “ 0, . . . , N , (128) provides
the inequality

∆hKpµXnh, σq ď
ż 1

´1

ż

R2d

›

›F ppn` sqh,ΦV
shpx, vqq

›

›

2
dµpn`sqhds

`

ż 1

0
p1´ sq

ż

R3d

@

x´ y, Jppn` sqh, µpn`sqh,Φshpx, vq
D

dµnh,xpvqdγnhpx, yqds

`

ż 0

´1
p1` sq

ż

R3d

@

x´ y, Jppn` sqh, µpn`sqh,Φshpx, vq
D

dµnh,xpvqdγnhpx, yqds

“: pAq ` pBq ` pCq .
(130)

Multiplying the inequality with h and summing over n “ 1, . . . , N ´ 1 yields for the LHS

N´1
ÿ

n“1

h∆hKpµnh, σq “ pDh{2W
2
2 qpµpN´1{2qh, σq ´ pDh{2W

2
2 qpµh{2, σq

“
1

h

˜

ż Nh

pN´1qh
´

ż h

0

¸

d

dτ
W 2

2 pµ
X
τ , σqdτ

“ 2

ż 1

0

ż

R3d

xF ppN ´ 1` sqh, vq, x´ yy dµpN´1`sqh,xdγpN´1`sqhpx, yqds

´ 2

ż 1

0

ż

R3d

xF psh, vq, x´ yydµsh,xdγshpx, yqds .

(131)
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Passing to the limit hÑ 0 with Nh “ T gives

lim
hÑ0

N´1
ÿ

n“1

h∆hKpµnh, σq “ 2

ż

R3d

xF pT, vq, x´ yy dµT,xdγT px, yq

´ 2

ż

R3d

xF p0, vq, x´ yydµ0,xdγ0px, yq

“
d

dt
W 2

2 pµ
X
T , σq ´

d

dt
W 2

2 pµ
X
0 , σq ,

(132)

which holds due to the dominated convergence theorem. On the other hand, the following conver-
gences hold for the terms on the RHS of (130):

N´1
ÿ

n“1

hA ÝÑ 2

ż T

0

ż

R2d

}F pt, vq}2dµtdt

N´1
ÿ

n“1

hB ÝÑ
1

2

ż T

0

ż

R3d

xx´ y, Jpt, µt, x, vqy dµt,xpvqdγtpx, yqdt

N´1
ÿ

n“1

hC ÝÑ
3

2

ż T

0

ż

R3d

xx´ y, Jpt, µt, x, vqy dµt,xpvqdγtpx, yqdt

(133)

by the definition of Riemann integrable functions and the assumed regularity (120).

Appendix C. Local convexity of neural network training

For the neural network architecture proposed above, the loss functional (103) is not geodesically
convex over PpRdq, but we claim it is locally convex along geodesics satisfying certain conditions
(cf. (134) below). We discuss the argument explicitly in this section.

Consider the training of an infinitely wide 2-layer neural network with the loss functional

Erρs “
1

2

ĳ

R̂ Rd

|y ´ gpx, ρq|2 dπpx, yq ,

where π is a given distribution over the sampled data and the function g is a two-layer neural
network defined according to:

gpx, ρq :“

ż

RˆRd
V px, zq dρpzq, with V px, pα,wqq “ ασpw ¨ xq ,

for all px, ρq P Rd ˆ PpRˆ Rdq. Here x is the input to the neural network, ρ is the probability
measure according to which the neuron weights are drawn, and σ is the positively 1-homogeneous
ReLU function. We slightly modify the representation of V . Noting that for α P R, α “ α1tαą0u ´

|α|1tαă0u, so we rewrite:

V px, pα,wqq “ σpα1tαą0uw ¨ xq ´ σp|α|1tαă0uw ¨ xq

“: σpω1 ¨ xq ´ σpω2 ¨ xq “: pV px, ωq ,

where we defined ω1 “ α1tαą0uw and ω2 “ |α|1tαă0uw. This relation forms the definition:

Rd ˆ Rd Q ω “ rpα,wq “ pω1, ω2q ,
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and correspondingly, we define: pρ “ r#ρ P PpRd ˆ Rdq. We thus obtain

gpx, ρq “

ĳ

RˆRd

V px, pα,wqqdρpα,wq “

ĳ

RˆRd

“

σpr1pα,wq ¨ xq ´ σpr2pα,wq ¨ xq
‰

dρpα,wq

“

ż

R2d

“

σpω1 ¨ xq ´ σpω2 ¨ xq
‰

dpρpωq “

ż

R2d

pV px, ωq dpρpωq “:
pgpx, pρq .

Consequently, we relax the training of ρ using Erρs into a different problem: training ρ̂ using the
following functional:

Erρs “
1

2

ĳ

RˆRd

|y ´ pgpx, pρq|2 dπpx, yq “: pErpρs .

We now show that pE is locally geodesically convex when σ is the ReLU function. To show
geodesically convexity at a probability measure ρ̂ amounts to show the objective functional is
convex along any geodesics whose origin is at ρ̂. To do so, we set η̂ to be any probability measure
in PpRd ˆ Rdq, and denote by T the optimal transport map between pρ and pη. Then, along the
geodesics with a constant speed (McCann, 1997), pγt :“ rp1´ tqid` tTs#pρ, for t P r0, 1s, we have

pgpx, pγtq “

ż

R2d

pV px, ωqdpγtpωq “

ż

R2d

pV px, p1´ tqω ` tTpωqqdpρpωq .

If we can successfully rewrite as

pgpx, pγtq “ p1´ tq

ż

R2d

pV px, ωq dρpωq ` t

ż

R2d

pV px,Tpωqqdpρpωq (134)

“ p1´ tq

ż

R2d

pV px, ωq dρpωq ` t

ż

R2d

pV px, ω1qdηpω1q

“ p1´ tqpgpx, pρq ` tpgpx, pηq,

we are showing pρ ÞÑ pgpx, pρq is geodesically linear for every x P Rd. Owing to the convexity of
r ÞÑ |r|2, we obtain

pErpγts “
1

2

ĳ

RˆRd

|y ´ pgpx, pγtq|
2 dπpx, yq “

1

2

ĳ

RˆRd

|p1´ tqpy ´ pgpx, pρqq ` tpy ´ pgpx, pηqq|2 dπpx, yq

ď p1´ tq
1

2

ĳ

RˆRd

|y ´ pgpx, pρq|2 dπpx, yq ` t
1

2

ĳ

RˆRd

|y ´ pgpx, pηq|2 dπpx, yq “ p1´ tq pErpρs ` t pErpηs,

thus implying the (local) geodesic convexity of pE when (134) holds.
Generally speaking, however, (134) does not hold for any given pη. It would hold if the optimal

transport map T between pρ and pη were to satisfy

signpωi ¨ xq “ signpTipωq ¨ xq, for pρ-almost every ω ,

with the convention that signp0q “ 0. When this happens, we would have

signppp1´ tqωi ¨ x` tTipωq ¨ xq “ signpωi ¨ xq “ signpTipωq ¨ xq, for every t P r0, 1s ,

and noticing σpα` βq “ σpαq ` σpβq for αβ ě 0, we can split

pV px, ωq “ pV px, p1´ tqω ` tTpωqq “ p1´ tqpV px, ωq ` tpV px,Tpωqq ,

ensuring (134).
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