
Journal of Machine Learning Research 25 (2024) 1-55 Submitted 8/23; Published 1/24

Trained Transformers Learn Linear Models In-Context

Ruiqi Zhang rqzhang@berkeley.edu
Department of Statistics
University of California, Berkeley
367 Evans Hall, Berkeley, CA 94720-3860, USA

Spencer Frei sfrei@ucdavis.edu
Department of Statistics
University of California, Davis
4118 Mathematical Sciences Building
399 Crocker Ave., Davis, CA 95616, USA

Peter L. Bartlett peter@berkeley.edu

Department of Statistics and Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

367 Evans Hall, Berkeley, CA 94720-3860, USA

Google DeepMind

1600 Amphitheatre Parkway

Mountain View, CA 94040, USA

Editor: Daniel Hsu

Abstract

Attention-based neural networks such as transformers have demonstrated a remarkable
ability to exhibit in-context learning (ICL): Given a short prompt sequence of tokens from
an unseen task, they can formulate relevant per-token and next-token predictions without
any parameter updates. By embedding a sequence of labeled training data and unlabeled
test data as a prompt, this allows for transformers to behave like supervised learning
algorithms. Indeed, recent work has shown that when training transformer architectures
over random instances of linear regression problems, these models’ predictions mimic those
of ordinary least squares.

Towards understanding the mechanisms underlying this phenomenon, we investigate
the dynamics of ICL in transformers with a single linear self-attention layer trained by
gradient flow on linear regression tasks. We show that despite non-convexity, gradient flow
with a suitable random initialization finds a global minimum of the objective function. At
this global minimum, when given a test prompt of labeled examples from a new prediction
task, the transformer achieves prediction error competitive with the best linear predictor
over the test prompt distribution. We additionally characterize the robustness of the trained
transformer to a variety of distribution shifts and show that although a number of shifts
are tolerated, shifts in the covariate distribution of the prompts are not. Motivated by
this, we consider a generalized ICL setting where the covariate distributions can vary across
prompts. We show that although gradient flow succeeds at finding a global minimum in this
setting, the trained transformer is still brittle under mild covariate shifts. We complement
this finding with experiments on large, nonlinear transformer architectures which we show
are more robust under covariate shifts.

c©2024 Ruiqi Zhang, Spencer Frei and Peter L. Bartlett.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-1042.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1042.html

Zhang, Frei, Bartlett

Keywords: in-context learning, transformers, neural networks, self-attention, generaliza-
tion

1. Introduction

Transformer-based neural networks have quickly become the default machine learning model
for problems in natural language processing, forming the basis of chatbots like Chat-
GPT (OpenAI, 2023), and are increasingly popular in computer vision (Dosovitskiy et al.,
2021). These models can take as input sequences of tokens and return relevant next-token
predictions. When trained on sufficiently large and diverse datasets, these models are often
able to perform in-context learning (ICL): when given a short sequence of input-output
pairs (called a prompt) from a particular task as input, the model can formulate predictions
on test examples without having to make any updates to the parameters in the model.

Recently, Garg et al. (2022) initiated the investigation of ICL from the perspective of
learning particular function classes. At a high-level, this refers to when the model has
access to instances of prompts of the form (x1, h(x1), . . . , xN , h(xN), xquery) where xi, xquery
are sampled i.i.d. from a distribution Dx and h is sampled independently from a distribution
over functions in a function classH. The transformer succeeds at in-context learning if when
given a new prompt (x′1, h

′(x′1), . . . , x′N , h
′(x′N), x′query) corresponding to an independently

sampled h′ it is able to formulate a prediction for x′query that is close to h′(x′query) given
a sufficiently large number of examples N . The authors showed that when transformer
models are trained on prompts corresponding to instances of training data from a particular
function class (e.g., linear models, neural networks, or decision trees), they succeed at in-
context learning, and moreover the behavior of the trained transformers can mimic those
of familiar learning algorithms like ordinary least squares.

Following this, a number of follow-up works provided constructions of transformer-
based neural network architectures which are capable of achieving small prediction error
for query examples when the prompt takes the form (x1, 〈w, x1〉, . . . , xN , 〈w, xN 〉, xquery)
where xi, xquery, w

i.i.d.∼ N(0, Id) (von Oswald et al., 2022; Akyürek et al., 2022). However,
this leaves open the question of how it is that gradient-based optimization algorithms over
transformer architectures produce models which are capable of in-context learning.1

In this work, we investigate the learning dynamics of gradient flow in a simplified trans-
former architecture when the training prompts consists of random instances of linear re-
gression datasets. Our main contributions are as follows.

• We establish that for a class of transformers with a single layer and with a linear self-
attention module (LSAs), gradient flow on the population loss with a suitable random
initialization converges to a global minimum of the population objective, despite the
non-convexity of the underlying objective function.

• We characterize the learning algorithm that is encoded by the transformer at conver-
gence, as well as the prediction error achieved when the model is given a test prompt
corresponding to a new (and possibly nonlinear) prediction task.

1. We note a concurrent work also explores the optimization question we consider here (Ahn et al., 2023);
we shall provide a more detailed comparison to this work in Section 2.

2

Trained Transformers Learn Linear Models In-Context

• We use this to conclude that transformers trained by gradient flow indeed in-context
learn the class of linear models. Moreover, we characterize the robustness of the
trained transformer to a variety of distribution shifts. We show that although a
number of shifts can be tolerated, shifts in the covariate distribution of the features
xi cannot.

• Motivated by this failure under covariate shift, we consider a generalized setting of in-
context learning where the covariate distribution can vary across prompts. We provide
global convergence guarantees for LSAs trained by gradient flow in this setting and
show that even when trained on a variety of covariate distributions, LSAs still fail
under covariate shift.

• We then empirically investigate the behavior of large, nonlinear transformers when
trained on linear regression prompts. We find that these more complex models are
able to generalize better under covariate shift, especially when trained on prompts
with varying covariate distributions.

2. Additional Related Work

The literature on transformers and non-convex optimization in machine learning is vast. In
this section, we will focus on those works most closely related to theoretical understanding
of in-context learning of function classes.

As mentioned previously, Garg et al. (2022) empirically investigated the ability for trans-
former architectures to in-context learn a variety of function classes. They showed that
when trained on random instances of linear regression, the models’ predictions are very
similar to those of ordinary least squares. Additionally, they showed that transformers
can in-context learn two-layer ReLU networks and decision trees, showing that by training
on differently-structured data, the transformers learn to implement distinct learning algo-
rithms. A number of works further investigated the types of algorithms implemented by
transformers trained on in-context examples of linear models (Ahuja et al., 2023; Ahuja and
Lopez-Paz, 2023).

Akyürek et al. (2022) and von Oswald et al. (2022) examined the behavior of trans-
formers when trained on random instances of linear regression, as we do in this work. They
considered the setting of isotropic Gaussian data with isotropic Gaussian weight vectors,
and showed that the trained transformer’s predictions mimic those of a single step of gradi-
ent descent. They also provided a construction of transformers which implement this single
step of gradient descent. By contrast, we explicitly show that gradient flow provably con-
verges to transformers which learn linear models in-context. Moreover, our analysis holds
when the covariates are anisotropic Gaussians, for which a single step of vanilla gradient
descent is unable to achieve small prediction error.2

Let us briefly mention a number of other works on understanding in-context learning in
transformers and other sequence-based models. Han et al. (2023) suggests that Bayesian in-
ference on prompts can be asymptotically interpreted as kernel regression. Dai et al. (2022)

2. To see this, suppose (xi, yi) are i.i.d. with x ∼ N(0,Λ) and y = 〈w, x〉. A single step of gradient
descent under the squared loss from a zero initialization yields the predictor x 7→ x>

(
1
n

∑n
i=1 yixi

)
=

x>
(
1
n

∑n
i=1 xix

>
i

)
w ≈ x>Λw. Clearly, this can differ from x>w when Λ 6= Id.

3

Zhang, Frei, Bartlett

interprets ICL as implicit fine-tuning, viewing large language models as meta-optimizers
performing gradient-based optimization. Xie et al. (2021) regards ICL as implicit Bayesian
inference, with transformers learning a shared latent concept between prompts and test
data, and they prove the ICL property when the training distribution is a mixture of
HMMs. Similarly, Wang et al. (2023) perceives ICL as a Bayesian selection process, im-
plicitly inferring information pertinent to the designated tasks. Li et al. (2023a) explores
the functional resemblance between a single layer of self-attention and gradient descent on
a softmax regression problem, offering upper bounds on their difference. Min et al. (2022)
notes that the alteration of label parts in prompts does not drastically impair the ICL abil-
ity. They contend that ICL is invoked when prompts reveal information about the label
space, input distribution, and sequence structure.

Another collection of works have sought to understand transformers from an approx-
imation theoretic perspective. Yun et al. (2019, 2020) established that transformers can
universally approximate any sequence-to-sequence function under some assumptions. Inves-
tigations by Edelman et al. (2022); Likhosherstov et al. (2021) indicate that a single-layer
self-attention can learn sparse functions of the input sequence, where sample complexity
and hidden size are only logarithmic relative to the sequence length. Further studies by
Pérez et al. (2019); Dehghani et al. (2019); Bhattamishra et al. (2020) indicate that the
vanilla transformer and its variants exhibit Turing completeness. Liu et al. (2023) showed
that transformers can approximate finite-state automata with few layers. Bai et al. (2023)
showed that transformers can implement a variety of statistical machine learning algorithms
as well as model selection procedures. Abernethy et al. (2023) showed that a pretrained
transformer can be used to define a transformer that segments a prompt into examples and
labels and learns to solve a sparse retrieval task. Zhang et al. (2023) interpreted in-context
learning via a Bayesian model averaging process.

A handful of recent works have developed provable guarantees for transformers trained
with gradient-based optimization. Jelassi et al. (2022) analyzed the dynamics of gradient
descent in vision transformers for data with spatial structure. Li et al. (2023c) demon-
strated that a single-layer transformer trained by a gradient method could learn a topic
model, treating learning semantic structure as detecting co-occurrence between words and
theoretically analyzing the two-stage dynamics during the training process.

Finally, we note a concurrent work by Ahn et al. (2023) on the optimization landscape of
single layer transformers with linear self-attention layers. They show that there exist global
minima of the population objective of the transformer that can achieve small prediction
error with anisotropic Gaussian data, and they characterize some critical points of deep
linear self-attention networks. In this work, we show that despite nonconvexity, gradient
flow with a suitable random initialization converges to a global minimum that achieves small
prediction error for anistropic Gaussian data. We also characterize the prediction error when
test prompts come from a new (possibly nonlinear) task, when there is distribution shift,
and when transformers are trained on prompts with possibly different covariate distributions
across prompts.

4

Trained Transformers Learn Linear Models In-Context

3. Preliminaries

Notation We first describe the notation we use in the paper. We write [n] = {1, 2, ..., n}.
We use ⊗ to denote the Kronecker product, and Vec the vectorization operator in column-

wise order. For example, Vec
(

1 2
3 4

)
= (1, 3, 2, 4)>. We write the inner product of two

matrices A,B ∈ Rm×n as 〈A,B〉 = tr(AB>). We use 0n and 0m×n to denote the zero vector
and zero matrix of size n and m × n, respectively. For a general matrix A, Ak: and A:k

denote the k-th row and k-th column, respectively. We denote the matrix operator norm
and Frobenius norm as ‖·‖op and ‖·‖F . We use Id to denote the d-dimensional identity
matrix and sometimes we also use I when the dimension is clear from the context. For a
positive semi-definite matrix A, we write ‖x‖2A := x>Ax. Unless otherwise defined, we use
lower case letters for scalars and vectors, and use upper case letters for matrices.

3.1 In-context learning

We begin by describing a framework for in-context learning of function classes, as initiated
by Garg et al. (2022). In-context learning refers to the behavior of models that operate on
sequences, called prompts, of input-output pairs (x1, y1, . . . , xN , yN , xquery), where yi = h(xi)
for some (unknown) function h and examples xi and query xquery. The goal for an in-
context learner is to use the prompt to form a prediction ŷ(xquery) for the query such that
ŷ(xquery) ≈ h(xquery).

From this high-level description, one can see that at a surface level, the behavior of
in-context learning is no different than that of a standard learning algorithm: the learner
takes as input a training dataset and returns predictions on test examples. For instance,
one can view ordinary least squares as an ‘in-context learner’ for linear models. However,
the rather unique feature of in-context learners is that these learning algorithms can be the
solutions to stochastic optimization problems defined over a distribution of prompts. We
formalize this notion in the following definition.

Definition 1 (Trained on in-context examples) Let Dx be a distribution over an input
space X , H ⊂ YX a set of functions X → Y, and DH a distribution over functions in H.
Let ` : Y ×Y → R be a loss function. Let S = ∪n∈N{(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈ Y} be
the set of finite-length sequences of (x, y) pairs and let

FΘ = {fθ : S × X → Y, θ ∈ Θ}

be a class of functions parameterized by θ in some set Θ. For N > 0, we say that a model
f : S × X → Y is trained on in-context examples of functions in H under loss ` w.r.t.
(DH,Dx) if f = fθ∗ where θ∗ ∈ Θ satisfies

θ∗ ∈ argminθ∈ΘEP=(x1,h(x1),...,xN ,h(xN),xquery) [` (fθ(P), h(xquery))] , (1)

where xi, xquery
i.i.d.∼ Dx and h ∼ DH are independent. We call N the length of the prompts

seen during training.

As mentioned above, this definition naturally leads to a method for learning a learning
algorithm from data: Sample independent prompts by sampling a random function h ∼ DH

5

Zhang, Frei, Bartlett

and feature vectors xi, xquery
i.i.d.∼ Dx, and then minimize the objective function appearing

in (1) using stochastic gradient descent or other stochastic optimization algorithms. This
procedure returns a model that is learned from in-context examples and can form predictions
for test (query) examples given a sequence of training data. This leads to the following
natural definition that quantifies how well such a model performs on in-context examples
corresponding to a particular hypothesis class.

Definition 2 (In-context learning of a hypothesis class) Let Dx be a distribution on
an input space X , H ⊂ YX a class of functions X → Y, and DH a distribution on functions
in H. Let ` : Y ×Y → R be a loss function. Let S = ∪n∈N{(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈
Y} be the set of finite-length sequences of (x, y) pairs. We say that a model f : S ×X → Y
defined on prompts of the form P = (x1, h(x1), . . . , xM , h(xM), xquery) in-context learns a
hypothesis class H under loss ` with respect to (DH,Dx) up to error η ∈ R if there exists a
function MDH,Dx(ε) : (0, 1) → N such that for every ε ∈ (0, 1), and for every prompt P of
length M ≥MDH,Dx(ε),

EP=(x1,h(x1),...,xM ,h(xM),xquery)

[
`
(
f(P), h (xquery)

)]
≤ η + ε, (2)

where the expectation is over the randomness in xi, xquery
i.i.d.∼ Dx and h ∼ DH.

The additive error term η in Definition 2 above allows for the possibility that the model
does not achieve arbitrarily small error. This error could come from using a model which
is not complex enough to learn functions in H or from considering a non-realizable setting
where it is not possible to achieve arbitrarily small error.

With these two definitions in hand, we can formulate the following questions: suppose
a function class FΘ is given and DH corresponds to random instances of hypotheses in
a hypothesis class H. Can a model from FΘ that is trained on in-context examples of
functions in H w.r.t. (DH,Dx) in-context learn the hypothesis class H w.r.t. (DH,Dx)
with small prediction error? Do standard gradient-based optimization algorithms suffice
for training the model from in-context examples? How long must the contexts be during
training and at test time to achieve small prediction error? In the remaining sections, we
shall answer these questions for the case of one-layer transformers with linear self-attention
modules when the hypothesis class is linear models, the loss of interest is the squared loss,
and the marginals are (possibly anisotropic) Gaussian marginals.

3.2 Linear self-attention networks

Before describing the particular transformer models we analyze in this work, we first recall
the definition of the softmax-based single-head self-attention module (Vaswani et al., 2017).
Let E ∈ Rde×dN be an embedding matrix formed using a prompt (x1, y1, . . . , xN , yN , xquery)
of length N . The user has the freedom to determine how this embedding matrix is formed
from the prompt. One natural way to form E is to stack (xi, yi)

> ∈ Rd+1 as the first N
columns of E and to let the final column be (xquery, 0)>; if xi ∈ Rd, yi ∈ R, we would
then have de = d + 1 and dN = N + 1. Let WK ,WQ ∈ Rdk×de and W V ∈ Rdv×de be
the key, query, and value weight matrices, WP ∈ Rde×dv the projection matrix, and ρ > 0

6

Trained Transformers Learn Linear Models In-Context

a normalization factor. The softmax self-attention module takes as input an embedding
matrix E of width dN and outputs a matrix of the same size,

fAttn(E;WK ,WQ,W V ,WP) = E +WPW VE · softmax

(
(WKE)>WQE

ρ

)
,

where softmax is applied column-wise and, given a vector input of v, the i-th entry of
softmax(v) is given by exp(vi)/

∑
s exp(vs). The dN × dN matrix appearing inside the

softmax is referred to as the self-attention matrix. Note that fAttn can take as its input a
sequence of arbitrary length.

In this work, we consider a simplified version of the single-layer self-attention module,
which is more amenable to theoretical analysis and yet is still capable of in-context learning
linear models. In particular, we consider a single-layer linear self-attention (LSA) model,
which is a modified version of fAttn where we remove the softmax nonlinearity, merge the
projection and value matrices into a single matrix WPV ∈ Rde×de , and merge the query
and key matrices into a single matrix WKQ ∈ Rde×de . We concatenate these matrices into
θ = (WKQ,WPV) and denote

fLSA(E; θ) = E +WPVE · E
>WKQE

ρ
. (3)

We note that recent theoretical works on understanding transformers looked at identical
models (von Oswald et al., 2022; Li et al., 2023b; Ahn et al., 2023). It is noteworthy
that recent empirical work has shown that state-of-the-art trained vision transformers with
standard softmax-based attention modules are such that (WK)>WQ and WPW V are nearly
multiples of the identity matrix (Trockman and Kolter, 2023), which can be represented
under the parameterization we consider.

The user has the flexibility to determine the method for constructing the embedding
matrix from a prompt P = (x1, y1, . . . , xN , yN , xquery). In this work, for a prompt of length
N, we shall use the following embedding, which stacks (xi, yi)

> ∈ Rd+1 into the first N
columns with (xquery, 0)> ∈ Rd+1 as the last column:

E = E(P) =

(
x1 x2 · · · xN xquery
y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (4)

We take the normalization factor ρ to be the width of embedding matrix E minus one, i.e.,
ρ = dN−1, since each element in E ·E> is a inner product of two vectors of length dN . Under
the above token embedding, we take ρ = N. We note that there are alternative ways to form
the embedding matrix with this data, e.g. by padding all inputs and labels into vectors
of equal length and arranging them into a matrix (Akyürek et al., 2022), or by stacking
columns that are linear transformations of the concatenation (xi, yi) (Garg et al., 2022),
although the dynamics of in-context learning will differ under alternative parameterizations.

The network’s prediction for the token xquery will be the bottom-right entry of matrix
output by fLSA, namely,

ŷquery = ŷquery(E; θ) = [fLSA(E; θ)](d+1),(N+1).

Here and after, we may occasionally suppress dependence on θ and write ŷquery(E; θ) as
ŷquery. Since the prediction takes only the right-bottom entry of the token matrix output

7

Zhang, Frei, Bartlett

by the LSA layer, actually only part of WPV and WKQ affect the prediction. To see how,
let us denote

WPV =

 WPV
11 wPV12

(wPV21)> wPV22

 ∈ R(d+1)×(d+1), WKQ =

 WKQ
11 wKQ12

(wKQ21)> wKQ22

 ∈ R(d+1)×(d+1),

(5)
where WPV

11 ∈ Rd×d;wPV12 , wPV21 ∈ Rd;wPV22 ∈ R; and WKQ
11 ∈ Rd×d;wKQ12 , wKQ21 ∈ Rd;wKQ22 ∈

R. Then, the prediction ŷquery is

ŷquery =
(

(wPV21)> wPV22

)
·
(
EE>

N

) WKQ
11

(wKQ21)>

xquery, (6)

since only the last row of WPV and the first d columns of WKQ affects the prediction, which
means we can simply take all other entries zero in the following sections.

3.3 Training procedure

In this work, we will consider the task of in-context learning linear predictors. We will
assume training prompts are sampled as follows. Let Λ be a positive definite covariance
matrix. Each training prompt, indexed by τ ∈ N, takes the form

Pτ = (xτ,1, hτ (xτ1), . . . , xτ,N , hτ (xτ,N), xτ,query),

where task weights wτ
i.i.d.∼ N(0, Id), inputs xτ,i, xτ,query

i.i.d.∼ N(0,Λ), and labels hτ (x) =
〈wτ , x〉.

Each prompt corresponds to an embedding matrix Eτ , formed using the transforma-
tion (4):

Eτ :=

(
xτ,1 xτ,2 · · · xτ,N xτ,query

〈wτ , xτ,1〉 〈wτ , xτ,2〉 · · · 〈wτ , xτ,N 〉 0

)
∈ R(d+1)×(N+1).

We denote the prediction of the LSA model on the query label in the task τ as ŷτ,query,
which is the bottom-right element of fLSA(Eτ), where fLSA is the linear self-attention model
defined in (3). The empirical risk over B independent prompts is defined as

L̂(θ) =
1

2B

B∑
τ=1

(
ŷτ,query − 〈wτ , xτ,query〉

)2

. (7)

We shall consider the behavior of gradient flow-trained networks over the population loss
induced by the limit of infinite training tasks/prompts B →∞:

L(θ) = lim
B→∞

L̂(θ) =
1

2
Ewτ ,xτ,1,··· ,xτ,N ,xτ,query

[
(ŷτ,query − 〈wτ , xτ,query〉)2

]
(8)

Above, the expectation is taken w.r.t. the covariates {xτ,i}Ni=1 ∪ {xquery} in the prompt

and the weight vector wτ , i.e. over xτ,i, xquery
i.i.d.∼ N(0,Λ) and wτ ∼ N(0, Id). Gradient

8

Trained Transformers Learn Linear Models In-Context

flow captures the behavior of gradient descent with infinitesimal step size and has dynamics
given by the following differential equation:

d

dt
θ = −∇L(θ). (9)

We will consider gradient flow with an initialization that satisfies the following.

Assumption 3 (Initialization) Let σ > 0 be a parameter, and let Θ ∈ Rd×d be any
matrix satisfying ‖ΘΘ>‖F = 1 and ΘΛ 6= 0d×d. We assume

WPV (0) = σ

(
0d×d 0d
0>d 1

)
, WKQ(0) = σ

(
ΘΘ> 0d
0>d 0

)
. (10)

This initialization is satisfied for a particular class of random initialization schemes: if M
has i.i.d. entries from a continuous distribution, then by setting ΘΘ> = MM>/‖MM>‖F ,
the assumption is satisfied almost surely. The reason we use this particular initialization
scheme will be made more clear in Section 5 when we describe the proof, but at a high-
level this is due to the fact that the predictions (6) can be viewed as the output of a
two-layer linear network, and initializations satisfying Assumption 3 allow for the layers to
be ‘balanced’ throughout the gradient flow trajectory. Random initializations that induce
this balancedness condition have been utilized in a number of theoretical works on deep
linear networks (Du et al., 2018; Arora et al., 2018, 2019; Azulay et al., 2021). We leave the
question of convergence under alternative random initialization schemes for future work.

4. Main results

In this section, we present the main results of this paper. First, in Section 4.1, we prove
the gradient flow on the population loss will converge to a specific global optimum. We
characterize the prediction error of the trained transformer at this global minimum when
given a prompt from a new prediction task. Our characterization allows for the possibility
that this new prompt comes from a nonlinear prediction task. We then instantiate our
results for well-specified linear regression prompts and characterize the number of samples
needed to achieve small prediction error, showing that transformers can in-context learn
linear models when trained on in-context examples of linear models.

Next, in Section 4.2, we analyze the behavior of the trained transformer under a variety
of distribution shifts. We show the transformer is robust to a number of distribution shifts,
including task shift (when the labels in the prompt are not deterministic linear functions
of their input) and query shift (when the query example xquery has a possibly different
distribution than the test prompt). On the other hand, we show that the transformer suffers
from covariate distribution shifts, i.e. when the training prompt covariate distribution differs
from the test prompt covariate distribution.

Finally, motivated by the failure of the trained transformer under covariate distribution
shift, we consider in Section 4.3 the setting of training on in-context examples with varying
covariate distributions across prompts. We prove that transformers with a single linear self-
attention layer trained by gradient flow converge to a global minimum of the population
objective, but that the trained transformer still fails to perform well on new prompts. We
complement our proof in the linear self-attention case with experiments on large, nonlinear
transformer architectures which we show are more robust under covariate shifts.

9

Zhang, Frei, Bartlett

4.1 Convergence of gradient flow and prediction error for new tasks

First, we prove that under suitable initialization, gradient flow will converge to a global
optimum.

Theorem 4 (Convergence and limits) Consider gradient flow of a linear self-attention
network fLSA defined in (3) over the population loss (8). Suppose the initialization satisfies
Assumption 3 with initialization scale σ > 0 satisfying σ2‖Γ‖op

√
d < 2 where we have

defined

Γ :=

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id ∈ Rd×d.

Then gradient flow converges to a global minimum of the population loss (8). Moreover,
WPV and WKQ converge to WPV

∗ and WKQ
∗ respectively, where

WKQ
∗ =

[
tr
(
Γ−2

)]− 1
4

Γ−1 0d

0>d 0

 , WPV
∗ =

[
tr
(
Γ−2

)] 1
4

0d×d 0d

0>d 1

 . (11)

The full proof of this theorem appears in Appendix A. We note that if we restrict our
setting to Λ = Id, then the limiting solution described found by gradient flow is quite similar
to the construction of von Oswald et al. (2022). Since the prediction of the transformer is
the same if we multiply WPV by a constant c 6= 0 and simultaneously multiply WKQ by
c−1, the only difference (up to scaling) is that the top-left entry of their WKQ matrix is Id
rather than the (1 + (d+ 1)/N)−1Id that we find for the case Λ = Id.

Next, we would like to characterize the prediction error of the trained network described
above when the network is given a new prompt. Let us consider a prompt of the form

(x1, 〈w, x1〉, . . . , xM , 〈w, xM 〉, xquery) where w ∈ Rd and xi, xquery
i.i.d.∼ N(0,Λ). A simple

calculation shows that the prediction ŷquery at the global optimum with parameters WKQ
∗

and WPV
∗ is given by

ŷquery =
(
0>d 1

)


1

M

M∑
i=1

xix
>
i +

1

M
xqueryx

>
query

1

M

M∑
i=1

xix
>
i w

1

M

M∑
i=1

w>xix
>
i

1

M

M∑
i=1

w>xix
>
i w


Γ−1 0d

0>d 0

xquery
0



= x>queryΓ
−1

(
1

M

M∑
i=1

xix
>
i

)
w. (12)

When the length of prompts seen during training N is large, Γ−1 ≈ Λ−1, and when the
test prompt length M is large, 1

M

∑M
i=1 xix

>
i ≈ Λ, so that ŷquery ≈ x>queryw. Thus, for

sufficiently large prompt lengths, the trained transformer indeed in-context learns the class
of linear predictors.

In fact, we can generalize the above calculation for test prompts which could take a
significantly different form than the training prompts. Consider prompts that are of the form
(x1, y1, . . . , xn, yn, xquery) where, for some joint distribution D over (x, y) pairs with marginal

10

Trained Transformers Learn Linear Models In-Context

distribution x ∼ N(0,Λ), we have (xi, yi)
i.i.d.∼ D and xquery ∼ N(0,Λ) independently. Note

that this allows for a label yi to be a nonlinear function of the input xi. The prediction of
the trained transformer for this prompt is then

ŷquery =
(

0>d 1
) 1

M

∑M
i=1 xix

>
i + 1

M xqueryx
>
query

1
M

∑M
i=1 xiyi

1
M

∑M
i=1 x

>
i yi

1
M

∑M
i=1 y

2
i

Γ−1 0d

0>d 0

xquery
0


= x>queryΓ

−1

(
1

M

M∑
i=1

yixi

)
. (13)

Just as before, when N is large we have Γ−1 ≈ Λ−1, and so when M is large as well this
implies

ŷquery ≈ x>queryΛ−1E(x,y)∼D[yx] = x>query

(
argmin
w∈Rd

E(x,y)∼D[(y − 〈w, x〉)2]

)
. (14)

This suggests that trained transformers in-context learn the best linear predictor over a
distribution when the test prompt consists of i.i.d. samples from a joint distribution over
feature-response pairs. In the following theorem, we formalize the above and characterize
the prediction error when prompts take this form.

Theorem 5 Let D be a distribution over (x, y) ∈ Rd × R, whose marginal distribution on
x is Dx = N(0,Λ). Assume ED[y],ED[xy],ED[y2xx>] exist and are finite. Assume the test

prompt is of the form P = (x1, y1, . . . , xM , yM , xquery), where (xi, yi), (xquery, yquery)
i.i.d.∼ D.

Let f∗LSA be the LSA model with parameters WPV
∗ and WKQ

∗ in (11), and ŷquery is the
prediction for xquery given the prompt. If we define

a := Λ−1E(x,y)∼D [xy] , Σ := E(x,y)∼D

[(
xy − E (xy)

)(
xy − E (xy)

)>]
, (15)

then, for Γ = Λ + 1
NΛ + 1

N tr(Λ)Id. we have,

E (ŷquery − yquery)2 = min
w∈Rd

E (〈w, xquery〉 − yquery)2︸ ︷︷ ︸
Error of best linear predictor

+
1

M
tr
[
ΣΓ−2Λ

]
+

1

N2

[
‖a‖2Γ−2Λ3 + 2 tr(Λ) ‖a‖2Γ−2Λ2 + tr(Λ)2 ‖a‖2Γ−2Λ

]
,

(16)

where the expectation is over (xi, yi), (xquery, yquery)
i.i.d.∼ D.

The full proof is deferred to Appendix B. Let us now make a few remarks on the above
theorem before considering particular instances of D where we may provide more explicit
bounds on the prediction error.

First, this theorem shows that, provided the length of prompts seen during training
(N) and the length of the test prompt (M) is large enough, a transformer trained by

11

Zhang, Frei, Bartlett

gradient flow from in-context examples achieves prediction error competitive with the best
linear model. Next, our bound shows that the length of prompts seen during training and
the length of prompts seen at test-time have different effects on the expected prediction
error: ignoring dimension and covariance-dependent factors, the prediction error is at most
O(1/M + 1/N2), decreasing more rapidly as a function of the training prompt length N
compared to the test prompt length M .

Let us now consider when D corresponds to noiseless linear models, so that for some
w ∈ Rd, we have (x, y) = (x, 〈w, x〉), in which case the prediction of the trained transformer
is given by (12). Moreover, a simple calculation shows that the Σ from Theorem 5 takes the
form Σ = ‖w‖2ΛΛ + Λww>Λ. Hence Theorem 5 implies the prediction error for the prompt
P = (x1, 〈w, x1〉, . . . , xM , 〈w, xM 〉, xquery) is

Ex1,...,xM ,xquery (ŷquery − 〈w, xquery〉)2

=
1

M

{
‖w‖2Γ−2Λ3 + tr(Γ−2Λ2) ‖w‖2Λ

}
+

1

N2

{
‖w‖2Γ−2Λ3 + 2 ‖w‖2Γ−2Λ2 tr(Λ) + ‖w‖2Γ−2Λ tr(Λ)2

}
≤ d+ 1

M
‖w‖2Λ +

1

N2

[
‖w‖2Λ + 2 ‖w‖22 tr(Λ) + ‖w‖2Λ−1 tr(Λ)2

]
.

The inequality above uses that Γ � Λ. Finally, if we assume that w ∼ N(0, Id) and denote
κ as the condition number of Λ, then by taking expectations over w we get the following:

Ex1,...,xM ,xquery,w (ŷquery − 〈w, xquery〉)2

≤ (d+ 1) tr(Λ)

M
+

1

N2

[
tr(Λ) + 2d tr(Λ) + tr(Λ−1) tr(Λ)2

]
≤ (d+ 1) tr(Λ)

M
+

(1 + 2d+ d2κ) tr(Λ)

N2
,

From the upper bound above, we can see the rate w.r.t M and N are still at most O(1/M)
and O(1/N2) respectively. Moreover, the generalization risk also scales with dimension d,
tr(Λ) and the condition number κ. This suggests that for in-context examples involving
covariates of greater variance, or a more ill-conditioned covariance matrix, the generalization
risk will be higher for the same lengths of training and testing prompts. Putting the above
together with Theorem 5, Definition 1 and Definition 2, we get the following corollary.

Corollary 6 The transformer fLSA trained on length-N prompts of in-context examples
of functions in {x 7→ 〈w, x〉} w.r.t. w ∼ N(0, Id) and Dx = N(0,Λ) by gradient flow on
the population loss (8) for initializations satisfying Assumption 3 converges to the model
fLSA(· ;WKQ

∗ ,WPV
∗). This model takes a prompt P = (x1, y1, . . . , xM , yM , xquery) and re-

turns a prediction ŷquery for xquery given by

ŷquery = [fLSA(P ;WKQ
∗ ,WPV

∗)]d+1,M+1 = x>query

(
Λ +

1

N
Λ +

tr(Λ)

N
Id

)−1
(

1

M

M∑
i=1

yixi

)
.

This model in-context learns the class of linear models {x 7→ 〈w, x〉} with respect to w ∼
N(0, Id) and Dx = N(0,Λ) up to error η := (1+2d+d2κ) tr(Λ)/N2 (where κ is the condition

12

Trained Transformers Learn Linear Models In-Context

number of Λ): provided M ≥ (d+ 1) tr(Λ)ε−1, the model achieves prediction error at most
η + ε.

It is worth emphasizing that the transformer fLSA(· ;WKQ
∗ ,WPV

∗) only learns the function
class up to error η = O(1/N2) in the sense of Definition 2. In particular, training on
finite-length prompts leads to prediction error bounded away from zero.

4.2 Behavior of trained transformer under distribution shifts

Using the identity (13), it is straightforward to characterize the behavior of the trained
transformer under a variety of distribution shifts. In this section, we shall examine a num-
ber of shifts that were first explored empirically for transformer architectures by Garg et al.
(2022). Although their experiments were for transformers trained by gradient descent, we
find that (in the case of linear models) many of the behaviors of the trained transformers un-
der distribution shift are identical to those predicted by our theoretical characterizations of
the performance of transformers with a single linear self-attention layer trained by gradient
flow on the population.

Following Garg et al. (2022), for prompts of the form (x1, h(x1), . . . , xN , h(xN), xquery),

let us assume for training prompts that xi, xquery
i.i.d.∼ Dtrain

x and h ∼ Dtrain
H , while for test

prompts xi
i.i.d.∼ Dtest

x , xquery ∼ Dtest
query, and h ∼ Dtest

H . We will consider the following distinct
categories of shifts:

• Task shifts: Dtrain
H 6= Dtest

H .

• Query shifts: Dtest
query 6= Dtest

x .

• Covariate shifts: Dtrain
x 6= Dtest

x .

In the following, we shall fix Dtrain
x = N(0,Λ) and vary the other distributions. Recall

from (13) that the prediction for a test prompt (x1, y1, . . . , xN , yN , xquery) is given by (for
N large),

ŷquery = x>queryΓ
−1

(
1

M

M∑
i=1

yixi

)
≈ x>queryΛ−1

(
1

M

M∑
i=1

yixi

)
. (17)

Task shifts. These shifts are tolerated easily by the trained transformer. As Theorem 5
shows, the trained transformer is competitive with the best linear model provided the
prompt length during training and at test time is large enough. In particular, even if the
prompt is such that the labels yi are not given by 〈w, xi〉 for some w ∼ N(0, Id), the trained
transformer will compute a prediction which has error competitive with the best linear
model that fits the test prompt.

For example, consider a prompt corresponding to a noisy linear model, so that the
prompt consists of a sequence of (xi, yi) pairs where yi = 〈w, xi〉 + εi for some arbitrary
vector w ∈ Rd and independent sub-Gaussian noise εi. Then from (17), the prediction of
the transformer on query examples is

ŷquery ≈ x>queryΛ−1

(
1

M

M∑
i=1

yixi

)
= x>queryΛ

−1

(
1

M

M∑
i=1

xix
>
i

)
w+x>queryΛ

−1

(
1

M

M∑
i=1

εixi

)
.

13

Zhang, Frei, Bartlett

Since εi is mean zero and independent of xi, this is approximately x>queryw when M is
large. And note that this calculation holds for an arbitrary vector w, not just those which
are sampled from an isotropic Gaussian or those with a particular norm. This behavior
coincides with that of the trained transformers observed by Garg et al. (2022).

Query shifts. Continuing from (17), since yi = 〈w, xi〉,

ŷquery ≈ x>queryΛ−1

(
1

M

M∑
i=1

xix
>
i

)
w.

From this we see that whether query shifts can be tolerated hinges upon the distribution
of the xi’s. Since Dtrain

x = Dtest
x , if M is large then

ŷquery ≈ x>queryΛ−1Λw = x>queryw. (18)

Thus, very general shifts in the query distribution can be tolerated. On the other hand, very
different behavior can be expected if M is not large and the query example depends on the
training data. For example, if the query example is orthogonal to the subspace spanned by
the xi’s, the prediction will be zero, as was observed with transformer architectures by Garg
et al. (2022).

Covariate shifts. In contrast to task and query shifts, covariate shifts cannot be fully
tolerated in the transformer. This can be easily seen due to the identity (13): when Dtrain

x 6=
Dtest
x , then the approximation in (18) does not hold as 1

M

∑M
i=1 xix

>
i will not cancel Γ−1

when M and N are large. For instance, if we consider test prompts where the covariates
are scaled by a constant c 6= 1, then

ŷquery ≈ x>queryΛ−1

(
1

M

M∑
i=1

xix
>
i

)
w ≈ x>queryΛ−1c2Λw = c2x>queryw 6= x>queryw.

This failure mode of the trained transformer with linear self-attention was also observed in
the trained transformer architectures by Garg et al. (2022). This suggests that although the
predictions of the transformer may look similar to those of ordinary least squares in some
settings, the algorithm implemented by the transformer is not the same since ordinary least
squares is robust to scaling of the features by a constant.

It may seem surprising that a transformer trained on linear regression tasks fails in
settings where ordinary least squares performs well. However, both the linear self-attention
transformer we consider and the transformers considered by Garg et al. (2022) were trained
on instances of linear regression when the covariate distribution Dx over the features was
fixed across instances. This leads to the natural question of what happens if the transformers
instead are trained on prompts where the covariate distribution varies across instances,
which we explore in the following section.

4.3 Transformers trained on prompts with random covariate distributions

In this section, we will consider a variant of training on in-context examples (in the sense of
Definition 1) where the distibution Dx is itself sampled randomly from a distribution, and

training prompts are of the form (x1, h(x1), . . . , xN , h(xN), xquery) where xi, xquery
i.i.d.∼ Dx

and h ∼ DH. More formally, we can generalize Definition 1 as follows.

14

Trained Transformers Learn Linear Models In-Context

Definition 7 (In-context training with random covariate distributions) Let ∆ be
a distribution over distributions Dx defined on an input space X , H ⊂ YX a set of functions
X → Y, and DH a distribution over functions in H. Let ` : Y × Y → R be a loss function.
Let S = ∪n∈N{(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈ Y} be the set of finite-length sequences of
(x, y) pairs and let

FΘ = {fθ : S × X → Y, θ ∈ Θ}

be a class of functions parameterized by some set Θ. We say that a model f : S × X → Y
is trained on in-context examples of functions in H under loss ` w.r.t. DH and distribution
over covariate distributions ∆ if f = fθ∗ where θ∗ ∈ Θ satisfies

θ∗ ∈ argminθ∈ΘEP=(x1,h(x1),...,xN ,h(xN),xquery) [` (fθ(P), h(xquery))] , (19)

where Dx ∼ ∆, xi, xquery
i.i.d.∼ Dx and h ∼ DH.

We recover the previous definition of training on in-context examples by taking ∆ to be
concentrated on a singleton, supp(∆) = {Dx}. The natural question is then, if a model f is
trained on in-context examples from a function class H w.r.t. DH and a distribution ∆ over
covariate distributions, and if one then samples some covariate distribution Dx ∼ ∆, does f
in-context learn H w.r.t. (DH,Dx) for that Dx (cf. Definition 2)? Since Dx is random, we
can hope that this may hold in expectation or with high probability over the sampling of
the covariate distribution. In the remainder of this section, we will explore this question for
transformers with a linear self-attention layer trained by gradient flow on the population
loss.

We shall again consider the case where the covariates have Gaussian marginals, xi ∼
N(0,Λ), but we shall now assume that within each prompt we first sample a random co-
variance matrix Λ. For simplicity, we will restrict our attention to the case where Λ is
diagonal. More formally, we shall assume training prompts are sampled as follows. For
each independent task indexed by τ ∈ [B], we first sample wτ ∼ N(0, Id). Then, for each
task τ and coordinate i ∈ [d], we sample λτ,i independently such that the distribution of
each λτ,i is fixed and has finite third moments and is strictly positive almost surely. We
then form a diagonal matrix

Λτ = diag(λτ,1, . . . , λτ,d).

Thus the diagonal entries of Λτ are independent but could have different distributions, and
Λτ is identically distributed for τ = 1, . . . , B. Then, conditional on Λτ , we sample indepen-
dent and identically distributed xτ,1, . . . , xτ,N , xτ,query ∼ N(0,Λτ). A training prompt is then
given by Pτ = (xτ,1, 〈wτ , xτ,1〉, . . . , xτ,N , 〈wτ , xτ,N 〉, xτ,query) Notice that here, xτ,i, xτ,query are
conditionally independent given the covariance matrix Λτ , but not independent in general.
We consider the same token embedding matrix as (4) and linear self-attention network,
which forms the prediction ŷquery,τ as in (6). The empirical risk is the same as before
(see (7)), and as in (8), we then take B → ∞ and consider the gradient flow on the pop-
ulation loss. The population loss now includes an expectation over the distribution of the
covariance matrices in addition to the task weight wτ and covariate distributions, and is
given by

L(θ) =
1

2
Ewτ ,Λτ ,xτ,1,··· ,xτ,N ,xτ,query

[
(ŷτ,query − 〈wτ , xτ,query〉)2

]
. (20)

15

Zhang, Frei, Bartlett

In the main result for this section, we show that gradient flow with a suitable initializa-
tion converges to a global minimum, and we characterize the limiting solution. The proof
will be deferred to Appendix C.

Theorem 8 (Global convergence with random covariance) Consider gradient flow
of the linear self-attention network fLSA defined in (3) over the population loss (20), where
Λτ are diagonal with independent diagonal entries which are strictly positive a.s. and have
finite third moments. Suppose the initialization satisfies Assumption 3, ‖EΛτΘ‖F 6= 0, with
initialization scale σ > 0 satisfying

σ2 <
2 ‖EΛτΘ‖2F√

d
[
E ‖Γτ‖op ‖Λτ‖

2
F

] . (21)

Then gradient flow converges to a global minimum of the population loss (20). Moreover,
WPV and WKQ converge to WPV

∗ and WKQ
∗ respectively, where

WKQ
∗ =

∥∥∥[EΓτΛ2
τ

]−1 E
[
Λ2
τ

]∥∥∥− 1
2

F
·

[EΓτΛ2
τ

]−1 [EΛ2
τ

]
0d

0>d 0

 ,

WPV
∗ =

∥∥∥[EΓτΛ2
τ

]−1 E
[
Λ2
τ

]∥∥∥ 1
2

F
·

0d×d 0d

0>d 1

 ,

(22)

where Γτ = N+1
N Λτ + 1

N tr(Λτ)Id ∈ Rd×d and the expectations above are over the distribution
of Λτ .

From this result, we can see why the trained transformer fails in the random co-
variance case. Suppose we have a new prompt corresponding to a weight matrix w ∈ Rd
and covariance matrix Λnew, sampled from the same distribution as the covariance matri-

ces for training prompts, so that conditionally on Λnew we have xi, xquery
i.i.d.∼ N(0,Λnew).

The ground-truth labels are given by yi = 〈w, xi〉, i ∈ [M] and yquery = 〈w, xquery〉. At
convergence, the prediction by the trained transformer on the new task will be

ŷquery

=
(
0>d 1

)


1

M

M∑
i=1

xix
>
i +

1

M
xqueryx

>
query

1

M

M∑
i=1

xiyi

1

M

M∑
i=1

x>i yi
1

M

M∑
i=1

y2
i


[EΓτΛ2

τ

]−1 EΛ2
τ 0d

0>d 0

(xquery
0

)

= x>query ·
[
EΛ2

τ

] [
EΓτΛ2

τ

]−1 ·

[
1

M

M∑
i=1

xix
>
i

]
w

→ x>query ·
[
EΛ2

τ

] [
EΓτΛ2

τ

]−1 · Λneww almost surely when M →∞. (23)

The last line comes from the strong law of large numbers. Thus, in order for the prediction on
the query example to be close to the ground-truth x>queryw, we need

[
EΛ2

τ

] [
EΓτΛ2

τ

]−1 ·Λnew

16

Trained Transformers Learn Linear Models In-Context

to be close to the identity. When Λτ ≡ Λnew is deterministic, this indeed is the case as we
know from Theorem 5. However, this clearly does not hold in general when Λτ is random.

To make things concrete, let us assume for simplicity that M,N →∞ so that Γτ → Λτ
and the identity (23) holds (conditionally on Λnew). Then, taking expectation over Λnew

in (23), we obtain

E [ŷquery|xquery, w]→ x>query ·
[
EΛ2

τ

] [
EΛ3

τ

]−1 · [EΛτ]w.

If we consider the case λτ,i
i.i.d.∼ Exponential(1), so that E[Λτ] = Id, E[Λ2

τ] = 2Id, and
E[Λ3

τ] = 6Id, we get

Eŷquery →
1

3
〈w, xquery〉.

This shows that for transformers with a single linear self-attention layer, training on in-
context examples with random covariate distributions does not allow for in-context learning
of a hypothesis class with varying covariate distributions.

Experiments with large, nonlinear transformers. We have shown that even when
trained on prompts with random covariance matrices, transformers with a single linear self-
attention layer fail to in-context learn linear models with random covariance matrices. We
now investigate the behavior of more complex transformer architectures that are trained on
in-context examples of linear models, both in the fixed-covariance case and in the random-
covariance case.

We examine the performance of transformers with a GPT2 architecture (Radford et al.,
2019) that are trained on linear regression tasks with mean-zero Gaussian features with
either a fixed covariance matrix or random covariance matrices. For the fixed covariance
case, the covariance matrix is fixed to the identity matrix across prompts. For the random

covariance case, covariates are drawn from x ∼ N(0, cΛ) where Λ is diagonal with λi
i.i.d.∼

Exponential(1) and c > 0 is a scaling factor. We set c = 1 during training and vary this
value at test time. The transformer is trained using the procedure of Garg et al. (2022)
(see Appendix E for more details). We consider linear models in d = 20 dimensions and we
train on prompt lengths of N = 40, 70, 100 with either fixed or random covariance matrices.
The performance of these trained models, when tested on new data with fixed covariance or
random covariance matrices (c = 1, 4, 9), is represented in six curves in Figure 1. Using the
calculation (23), we can compare the prediction error for the linear self-attention networks
in the M → ∞, N → ∞ limit (the black dash line) to those of GPT2 architectures. We
additionally compare these models to the ordinary least-squares solution which is optimal
for this task.

From the figure, we can see that the GPT2 model trained on fixed covariance succeeds
in the random covariance setting if the variance is not too large, which shows that the
larger nonlinear model is able to generalize better than the model with a single linear
self-attention layer. However, when the variance is large (c = 4, 9 for the bottom two
figures), the GPT2 model trained with fixed covariance is unsuccessful. When trained
on random covariance, the model performs better for test prompts from higher-variance
random covariance matrices, but still fails to match least squares when the scaling is largest
(c = 9).

17

Zhang, Frei, Bartlett

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
d

er
ro

r

Test on Fixed Covariance

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
d

er
ro

r

Test on Random Covariance, Scale = 1.0

0 20 40 60 80 100
in-context examples

0

1

2

3

4

sq
ua

re
d

er
ro

r

Test on Random Covariance, Scale = 4.0

0 20 40 60 80 100
in-context examples

0

2

4

6

8

sq
ua

re
d

er
ro

r

Test on Random Covariance, Scale = 9.0

Zero Estimator
LSA Limit
fixedcov_N40
fixedcov_N70
fixedcov_N100
randomcov_N40
randomcov_N70
randomcov_N100
Least Squares

Figure 1: Normalized prediction error for transformers with GPT2 architectures as a func-
tion of the number of in-context test examples M when trained on in-context
examples of linear models in d = 20 dimensions. Colored lines correspond to
different training context lengths (N ∈ {40, 70, 100}) and different training pro-
cedures (either a fixed identity covariance matrix or random diagonal covariance
matrices with each diagonal element sampled i.i.d. from the standard exponential
distribution). The four figures correspond to evaluating on either fixed covariance
or random covariance matrices of different scales. The gray dashed line shows the
prediction error of zero estimator and the black dashed line the prediction error
of LSA model when M,N → ∞. The GPT2 models achieve smaller error when
they are trained on random covariance matrices with larger contexts, but their
prediction error spikes when evaluated on contexts larger than those they were
trained on.

Furthermore, we notice some surprising behaviors when the test prompt length exceeds
the training prompt length (i.e., M > N): there is an evident spike in prediction error, re-
gardless of whether training and testing were performed on fixed or random covariance, and
the spike appears to decrease when evaluated on prompts with higher variance. Although
we are unsure of why the spike should decrease with higher-variance prompts, the failure of
large language models to generalize to larger contexts than they were trained on is a well-
known problem (Dai et al., 2019; Anil et al., 2022). In our setting, we conjecture that this
spike in error comes from the absolute positional encodings in the GPT2 architecture. The

18

Trained Transformers Learn Linear Models In-Context

positional encodings are randomly-initialized and are learnable parameters but the encoding
for position i is only updated if the transformer encounters a prompt which has a context
of length i. Thus, when evaluating on prompts of length M > N , the model is relying
upon random positional encodings for M −N samples. We note that a concurrent work has
explored the performance of transformers with GPT2 architectures for in-context learning
of linear models and found that removing positional encoders improves performance when
evaluating on larger contexts (Ahuja et al., 2023). We leave further investigation of this
behavior for future work.

5. Proof ideas

In this section, we briefly outline the proof sketch of Theorem 4. The full proof of this
theorem is left for Appendix A.

5.1 Equivalence to a quadratic optimization problem

We recall each task τ corresponds to a weight vector wτ ∼ N(0, Id). The prompt inputs

for this task are xτ,j
i.i.d.∼ N(0,Λ), which are also independent of wτ . The corresponding

labels are yτ,j = 〈wτ , xτ,j〉. For each task τ, we can form the prompt into a token matrix
Eτ ∈ R(d+1)×(N+1) as in (4), with the right-bottom entry being zero.

The first key step in our proof is to recognize that the prediction ŷquery(Eτ ; θ) in the
linear self-attention model can be written as the output of a quadratic function u>Hτu
for some matrix Hτ depending on the token embedding matrix Eτ and for some vector u
depending on θ = (WKQ,WPV). This is shown in the following lemma, the proof of which
is provided in Appendix A.1.

Lemma 9 Let Eτ ∈ R(d+1)×(N+1) be an embedding matrix corresponding to a prompt of
length N and weight wτ . Then the prediction ŷquery(Eτ ; θ) for the query covariate can be
written as the output of a quadratic function,

ŷquery(Eτ ; θ) = u>Hτu,

where the matrix Hτ is defined as,

Hτ =
1

2
Xτ ⊗

(
EτE

>
τ

N

)
∈ R(d+1)2×(d+1)2 , Xτ =

 0d×d xτ,query

(xτ,query)
> 0

 ∈ R(d+1)×(d+1)

(24)
and

u = Vec(U) ∈ R(d+1)2 , U =

 U11 u12

(u21)> u−1

 ∈ R(d+1)×(d+1),

where U11 = WKQ
11 ∈ Rd×d, u12 = wPV21 ∈ Rd×1, u21 = wKQ21 ∈ Rd×1, u−1 = wPV22 ∈ R

correspond to particular components of WPV and WKQ, defined in (5).

19

Zhang, Frei, Bartlett

This implies that we can write the original loss function (7) as

L̂ =
1

2B

B∑
τ=1

(
u>Hτu− w>τ xτ,query

)2
. (25)

Thus, our problem is reduced to understanding the dynamics of an optimization algo-
rithm defined in terms of a quadratic function. We also note that this quadratic optimization
problem is an instance of a rank-one matrix factorization problem, a problem well-studied
in the deep learning theory literature (Gunasekar et al., 2017; Arora et al., 2019; Li et al.,
2018; Chi et al., 2019; Belabbas, 2020; Li et al., 2020; Jin et al., 2023; Soltanolkotabi et al.,
2023).

Note, however, this quadratic function is non-convex. To see this, we will show that Hτ

has negative eigenvalues. By standard properties of the Kronecker product, the eigenvalues

of Hτ = 1
2Xτ ⊗

(
EτE>τ
N

)
are the products of the eigenvalues of 1

2Xτ and the eigenvalues

of EτE>τ
N . Since EτE

>
τ is symmetric and positive semi-definite, all of its eigenvalues are

nonnegative. Since EτE
>
τ is nonzero almost surely, it thus has at least one strictly positive

eigenvalue. Thus, if Xτ has any negative eigenvalues, Hτ does as well. The characteristic
polynomial of Xτ is given by,

det(µI −Xτ) = det

 µId −xτ,query

−x>τ,query µ

 = µd−1
(
µ2 − ‖xτ,query‖22

)
.

Therefore, we know almost surely, Xτ has one negative eigenvalue. Thus Hτ has at least
d+ 1 negative eigenvalues, and hence the quadratic form u>Hτu is non-convex.

5.2 Dynamical system of gradient flow

We now describe the dynamical system for the coordinates of u above. We prove the
following lemma in Appendix A.2.

Lemma 10 Let u = Vec (U) := Vec

 U11 u12

(u21)> u−1

 as in Lemma 9. Consider gradient

flow over

L :=
1

2
E
(
u>Hτu− w>τ xτ,query

)2
(26)

with respect to u starting from an initial value satisfying Assumption 3. Then the dynamics
of U follows

d

dt
U11(t) = −u2

−1ΓΛU11Λ + u−1Λ2

d

dt
u−1(t) = − tr

[
u−1ΓΛU11Λ(U11)> − Λ2(U11)>

]
,

(27)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0, where Γ =
(
1 + 1

N

)
Λ + 1

N tr(Λ)Id ∈ Rd×d.

20

Trained Transformers Learn Linear Models In-Context

We see that the dynamics are governed by a complex system of d2+1 coupled differential
equations. Moreover, basic calculus (for details, see Lemma 15) shows that these dynamics
are the same as those of gradient flow on the following objective function:

˜̀ : Rd×d × R→ R, ˜̀(U11, u−1) = tr

[
1

2
u2
−1ΓΛU11Λ(U11)> − u−1Λ2(U11)>

]
. (28)

Actually, the loss function ˜̀ is simply the loss function L in (26) plus some constants that do
not depend on the parameter u. Therefore our problem is reduced to studying the dynamics
of gradient flow on the above objective function.

Our next key observation is that the set of global minima for ˜̀ satisfies the condition
u−1U11 = Γ−1. Thus, if we can establish global convergence of gradient flow over the above
objective function ˜̀, then we have that u−1(t)U11(t)→ Γ−1 ≈N→∞ Λ−1.

Lemma 11 For any global minimum of ˜̀, we have

u−1U11 = Γ−1. (29)

Putting this together with Lemma 10, we see that at those global minima of the pop-
ulation objective satisfying U11 = (cΓ)−1, u−1 = c and u12 = u21 = 0d, the transformer’s
predictions for a new linear regression task prompt are given by

ŷquery(E; θ) =
1

M

M∑
i=1

yix
>
i Γ−1xquery = w>

(
1

M

M∑
i=1

xix
>
i

)
Γ−1xquery ≈ w>xquery.

Thus, the only remaining task is to show global convergence when gradient flow has an
initialization satisfying Assumption 3.

5.3 PL inequality and global convergence

We now show that although the optimization problem is non-convex, a Polyak- Lojasiewicz
(PL) inequality holds, which implies that gradient flow converges to a global minimum.
Moreover, we can exactly calculate the limiting value of U11 and u−1.

Lemma 12 Suppose the initialization of gradient flow satisfies Assumption 3 with initial-
ization scale satisfying σ2 < 2√

d‖Γ‖op
for Γ = (1 + 1

N)Λ + tr(Λ)
N Id. If we define

µ :=
σ2

√
d ‖Λ‖2op tr (Γ−1Λ−1) tr (Λ−1)

‖ΛΘ‖2F
[
2−
√
dσ2 ‖Γ‖op

]
> 0, (30)

then gradient flow on ˜̀ with respect to U11 and u−1 satisfies, for any t ≥ 0,

∥∥∥∇˜̀(U11(t), u−1(t))
∥∥∥2

2
:=

∥∥∥∥∥ ∂ ˜̀

∂U11

∥∥∥∥∥
2

F

+

∣∣∣∣∣ ∂ ˜̀

∂u−1

∣∣∣∣∣
2

≥ µ
(

˜̀(U11(t), u−1(t))− min
U11∈Rd×d,u−1∈R

˜̀(U11, u−1)

)
.

21

Zhang, Frei, Bartlett

Moreover, gradient flow converges to the global minimum of ˜̀, and U11 and u−1 satisfy

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1
2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1.

With these observations, proving Theorem 4 becomes a direct application of Lemma 9,
10, 11, and Lemma 12. It then only requires translating U11 and u−1 back to the original
parameterization using WPV and WKQ.

6. Conclusion and future work

In this work, we investigated the dynamics of in-context learning of transformers with a
single linear self-attention layer under gradient flow on the population loss. In particular, we
analyzed the dynamics of these transformers when trained on prompts consisting of random
instances of noiseless linear models over anisotropic Gaussian marginals. We showed that
despite non-convexity, gradient flow from a suitable random initialization converges to a
global minimum of the population objective. We characterized the prediction error of the
trained transformer when given a new prompt that consists of a training dataset where the
responses are a nonlinear function of the inputs. We showed how the trained transformer is
naturally robust to shifts in the task and query distributions but is brittle to distribution
shifts between the covariates seen during training and the covariates seen at test time,
matching the empirical observations on trained transformer models of Garg et al. (2022).

There are a number of natural directions for future research. First, our results hold for
gradient flow on the population loss with a particular class of random initialization schemes.
It is a natural question if similar results would hold for stochastic gradient descent with
finite step sizes and for more general initializations. Further, we restricted our attention
to transformers with a single linear self-attention layer. Although this model class is rich
enough to allow for in-context learning of linear predictors, we are particularly interested
in understanding the dynamics of in-context learning in nonlinear and deep transformers.

Finally, the framework of in-context learning introduced in prior work was restricted
to the setting where the marginal distribution over the covariates (Dx) was fixed across
prompts. This allows for guarantees akin to distribution-specific PAC learning, where the
trained transformer is able to achieve small prediction error when given a test prompt con-
sisting of linear regression data when the marginals over the covariates are fixed. However,
other learning algorithms (such as ordinary least squares) are able to achieve small predic-
tion error for prompts corresponding to well-specified linear regression tasks for very general
classes of distributions over the covariates. As we showed in Section 4.3, when transformers
with a single linear self-attention layer are trained on prompts where the covariate distribu-
tions are themselves sampled from a distribution, they do not succeed on test prompts with
covariate distributions sampled from the same distribution. By contrast, we demonstrated
with experiments that larger, nonlinear transformer architectures appear to be more suc-
cessful in this setting but are still sub-optimal. Developing a better understanding of the
dynamics of in-context learning when the covariate distribution varies across prompts is an
intriguing direction for future research.

22

Trained Transformers Learn Linear Models In-Context

Acknowledgments

We gratefully acknowledge the support of the NSF and the Simons Foundation for the
Collaboration on the Theoretical Foundations of Deep Learning through awards DMS-
2031883 and #814639, and of the NSF through grant DMS-2023505.

23

Zhang, Frei, Bartlett

Contents

1 Introduction 2

2 Additional Related Work 3

3 Preliminaries 5
3.1 In-context learning . 5
3.2 Linear self-attention networks . 6
3.3 Training procedure . 8

4 Main results 9
4.1 Convergence of gradient flow and prediction error for new tasks 10
4.2 Behavior of trained transformer under distribution shifts 13
4.3 Transformers trained on prompts with random covariate distributions . . . 14

5 Proof ideas 19
5.1 Equivalence to a quadratic optimization problem 19
5.2 Dynamical system of gradient flow . 20
5.3 PL inequality and global convergence . 21

6 Conclusion and future work 22

A Proof of Theorem 4 25
A.1 Proof of Lemma 9 . 25
A.2 Proof of Lemma 10 . 26
A.3 Proof of Lemma 11 . 32
A.4 Proof of Lemma 12 . 34

B Proof of Theorem 5 39

C Proof of Theorem 8 41
C.1 Dynamical system . 42
C.2 Loss function and global minima . 43
C.3 PL Inequality and global convergence . 44

D Technical lemmas 49

E Experiment details 51

24

Trained Transformers Learn Linear Models In-Context

Appendix A. Proof of Theorem 4

In this section, we prove Lemma 9, Lemma 10, Lemma 11 and Lemma 12. Theorem 4 is a
natural corollary of these four lemmas when we translate u−1 and U11 back to WPV and
WKQ.

A.1 Proof of Lemma 9

For the reader’s convenience, we restate the lemma below.

Lemma 13 Let Eτ ∈ R(d+1)×(N+1) be an embedding matrix corresponding to a prompt of
length N and weight wτ . Then the prediction ŷquery(Eτ ; θ) for the query covariate can be
written as the output of a quadratic function,

ŷquery(Eτ ; θ) = u>Hτu,

where the matrix Hτ is defined as,

Hτ =
1

2
Xτ ⊗

(
EτE

>
τ

N

)
∈ R(d+1)2×(d+1)2 , Xτ =

 0d×d xτ,query

(xτ,query)
> 0

 ∈ R(d+1)×(d+1)

(24)
and

u = Vec(U) ∈ R(d+1)2 , U =

 U11 u12

(u21)> u−1

 ∈ R(d+1)×(d+1),

where U11 = WKQ
11 ∈ Rd×d, u12 = wPV21 ∈ Rd×1, u21 = wKQ21 ∈ Rd×1, u−1 = wPV22 ∈ R

correspond to particular components of WPV and WKQ, defined in (5).

Proof First, we decompose WPV and WKQ in the way above. From the definition, we know
ŷτ,query is the right-bottom entry of fLSA(Eτ), which is

ŷτ,query =
(

(u12)> u−1

)(EτE>τ
N

) U11

(u21)>

xτ,query.

We denote ui ∈ Rd+1 as the i-th column of
(
U11

(u21)>
)

and xiτ,query as the i-th entry of xτ,query

for i ∈ [d]. Then, we have

ŷτ,query

=

d∑
i=1

xiτ,query

(
(u12)> u−1

)(EτE>τ
N

)
ui =

d∑
i=1

tr

[
ui

(
(u12)> u−1

)
· xiτ,query

(
EτE

>
τ

N

)]

= tr

Vec

 U11

(u21)>

((u12)> u−1

)
· x>τ,query ⊗

(
EτE

>
τ

N

)
25

Zhang, Frei, Bartlett

=
1

2
tr

Vec

 U11 u12

(u21)> u−1

Vec>

 U11 u12

(u21)> u−1


×

 0d(d+1)×d(d+1) xτ,query ⊗
(
EτE>τ
N

)
x>τ,query ⊗

(
EτE>τ
N

)
0(d+1)×(d+1)


=

1

2
tr

[
uu> ·Xτ ⊗

(
EτE

>
τ

N

)]
=
〈
Hτ , uu

>
〉
.

Here, we use some algebraic facts about matrix vectorization, Kronecker product and trace.
For reference, we refer to (Petersen and Pedersen, 2008).

A.2 Proof of Lemma 10

For the reader’s convenience, we restate the lemma below.

Lemma 14 Let u = Vec (U) := Vec

 U11 u12

(u21)> u−1

 as in Lemma 9. Consider gradient

flow over

L :=
1

2
E
(
u>Hτu− w>τ xτ,query

)2
(26)

with respect to u starting from an initial value satisfying Assumption 3. Then the dynamics
of U follows

d

dt
U11(t) = −u2

−1ΓΛU11Λ + u−1Λ2

d

dt
u−1(t) = − tr

[
u−1ΓΛU11Λ(U11)> − Λ2(U11)>

]
,

(27)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0, where Γ =
(
1 + 1

N

)
Λ + 1

N tr(Λ)Id ∈ Rd×d.

Proof From the definition of L in (26) and the dynamics of gradient flow, we calculate the
derivatives of u. Here, we use the chain rule and some facts about matrix derivatives. See
Lemma 29 for reference.

du

dt
= −E

(
〈Hτ , uu

>〉Hτ

)
u+ E

(
w>τ xτ,queryHτ

)
u. (31)

Step One: Calculate the Second Term We first calculate the second term. From the
definition of Hτ , we have

E
[
w>τ xτ,queryHτ

]
=

1

2

d∑
i=1

E
[(
xiτ,queryXτ

)
⊗
(
wiτ
EτE

>
τ

N

)]
.

26

Trained Transformers Learn Linear Models In-Context

For ease of notation, we denote

Λ̂τ :=
1

N

N∑
i=1

xτ,ix
>
τ,i. (32)

Then, from the definition of EτE>τ
N , we know

EτE
>
τ

N
=

Λ̂τ + 1
N xτ,query · x

>
τ,query Λ̂τwτ

wτ Λ̂τ w>τ Λ̂τwτ

 .

Since wτ ∼ N(0, Id) is independent of all prompt inputs and query input, we have

1

2

d∑
i=1

E
[(
xiτ,queryXτ

)
⊗
(
wiτ
N

(
xτ,query · x>τ,query 0

0 0

))]

=
1

2

d∑
i=1

E
[
E
[(
xiτ,queryXτ

)
⊗
(
wiτ
N

(
xτ,query · x>τ,query 0

0 0

))] ∣∣∣∣xτ,query]

=
1

2

d∑
i=1

E

[(
xiτ,queryXτ

)
⊗

(
E
[
wiτ | xτ,query

]
N

(
xτ,query · x>τ,query 0

0 0

))]
= 0.

Therefore, we have

E
[
w>τ xτ,queryHτ

]
=

1

2

d∑
i=1

E

(xiτ,queryXτ

)
⊗

wiτ
 Λ̂τ Λ̂τwτ

w>τ Λ̂τ w>τ Λ̂τwτ .

 .
Since Xτ only depends on xτ,query by definition, and xτ,query is independent of wτ and
xτ,i, i = 1, 2, ..., N, we have

E
[
w>τ xτ,queryHτ

]
=

1

2

d∑
i=1

E (xiτ,queryXτ

)
⊗ E

wiτ
 Λ̂τ Λ̂τwτ

w>τ Λ̂τ w>τ Λ̂τwτ .


=

1

2

d∑
i=1

0d×d Λi

Λ>i 0

⊗
 E(wiτ)Λ ΛE(wiτwτ)

E(wiτw
>
τ)Λ E

(
wiτw

>
τ Λwτ

)


=
1

2

d∑
i=1

0d×d Λi

Λ>i 0

⊗
0d×d Λi

Λ>i 0

 ,

where Λi denotes Λ:i. Here, the second line comes from the fact that EΛ̂τ = Λ, and that
wτ is independent of all prompt input and query input. The last line comes from the fact
that wτ ∼ N(0, Id). Therefore, simple computation shows that

E
[
w>τ xτ,queryHτ

]
u =

1

2

0d(d+1)×d(d+1) A

A> 0(d+1)×(d+1)

u, (33)

27

Zhang, Frei, Bartlett

where A ∈ Rd(d+1)×(d+1) and Vj ∈ R(d+1)×(d+1) are defined by

A =


V1 + V >1

V2 + V >2

...

Vd + V >d

 , Vj =

0d×d
∑d

i=1 ΛijΛi

0 0

 =

0d×d ΛΛj

0 0

 . (34)

Step Two: Calculate the First Term Next, we compute the first term in (31), namely

D := 2E
(
〈Hτ , uu

>〉Hτu
)
.

For simplicity, we denote Zτ := 1
NEτE

>
τ . Using the definition of Hτ in (24) and Lemma 29,

we have

D = 2E
(
〈Hτ , uu

>〉Hτu
)

(definition)

=
1

2
E
[
tr
(
Xτ ⊗ Zτ Vec (U) Vec (U)>

)
(Xτ ⊗ Zτ) Vec (U)

]
(definition of Hτ in (24) and u = Vec(U))

=
1

2
E
[
tr
(

Vec (ZτUXτ) Vec (U)>
)

Vec (ZτUXτ)
]

(Vec(AXB) = (B> ⊗A) Vec(X) in Lemma 29)

=
1

2
E
[
Vec (U)>Vec (ZτUXτ) ·Vec (ZτUXτ)

]
(property of trace operator)

=
1

2
E

 d+1∑
i,j=1

(
(ZτUXτ)ij Uij

)
Vec (ZτUXτ)

 .
Step Three: u12 and u21 Vanish We first prove that if u12 = u21 = 0d, then d

dtu12 = 0d
and d

dtu21 = 0d. If this is true, then these two blocks will be zero all the time since we
assume they are zero at initial time in Assumption 3. We denote Ak: and A:k as the k-th
row and k-th column of matrix A, respectively.

Under the assumption that u12 = u21 = 0d, we first compute

(ZτUXτ) =

 Λ̂τwτu−1x
>
τ,query

(
Λ̂τ + 1

N xτ,query · x
>
τ,query

)
U11xτ,query

w>τ

(
Λ̂τ

)
wτu−1x

>
τ,query w>τ

(
Λ̂τ

)
U11xτ,query

 .

Written in an entry-wise manner, it will be

(ZτUXτ)kl =



(
Λ̂τ

)
k:
wτu−1x

l
τ,query k, l ∈ [d](

Λ̂τ + 1
N xτ,query · x

>
τ,query

)
k:
U11xτ,query k ∈ [d], l = d+ 1

w>τ

(
Λ̂τ

)
wτu−1x

l
τ,query l ∈ [d], k = d+ 1

w>τ

(
Λ̂τ

)
U11xτ,query k = l = d+ 1

. (35)

28

Trained Transformers Learn Linear Models In-Context

We use Dij to denote the (i, j)-th entry of the (d + 1) × (d + 1) matrix D̄ such that
Vec(D̄) = D. Now we fix a k ∈ [d], then

Dk,d+1 =
1

2
E

 d+1∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)k,d+1


=

1

2
E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)k,d+1


+

1

2
E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)k,d+1

]
, (36)

since Ui,d+1 = Ud+1,i = 0 for any i ∈ [d]. For the first term in the right hand side of last
equation, we fix i, j ∈ [d] and have

E
(

(ZτUXτ)ij Uij

)
(ZτUXτ)k,d+1

=E
(
Uij

(
Λ̂τ

)
i:
wτu−1x

j
τ,query ·

(
Λ̂τ +

1

N
xτ,query · x>τ,query

)
k:

U11xτ,query

)
= 0,

since wτ is independent with all prompt input and query input, namely all xτ,i for i ∈ [query],
and wτ is mean zero. Similarly, for the second term of (36), we have

E
(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)k,d+1

=E
(
u−1w

>
τ

(
Λ̂τ

)
U11xτ,query ·

(
Λ̂τ +

1

N
xτ,query · xτ,query

)
k:

U11xτ,query

)
= 0

since E
(
w>τ
)

= 0 and wτ is independent of all xτ,i for i ∈ [query]. Therefore, we have
Dk,d+1 = 0 for k ∈ [d]. Similar calculation shows that Dd+1,k = 0 for k ∈ [d].

For k ∈ [d], to calculate the derivative of Uk,d+1, it suffices to further calculate the inner
product of the d(d+ 1) + k th row of E

[
w>τ xτ,queryHτ

]
and u. From (33), we know this is

1

2

d∑
j=1

Λ>k ΛjUd+1,j = 0

given that u12 = u21 = 0d. Therefore, we conclude that the derivative of Uk,d+1 will vanish
given u12 = u21 = 0d. Similarly, we conclude the same result for Ud+1,k for k ∈ [d]. Therefore,
we know u12 = 0d and u21 = 0d for all time t ≥ 0.

Step Four: Dynamics of U11 Next, we calculate the derivatives of U11 given u12 =
u21 = 0d. For a fixed pair of k, l ∈ [d], we have

Dkl =
1

2
E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)kl

+
1

2
E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)kl

]
.

29

Zhang, Frei, Bartlett

For fixed i, j ∈ [d], we have

E
[(

(ZτUXτ)ij Uij

)
(ZτUXτ)kl

]
= Uiju

2
−1E

[(
Λ̂τ

)
i:
wτx

j
τ,queryx

l
τ,queryw

>
τ

(
Λ̂τ

)
:k

]
= Uiju

2
−1E

[
xjτ,queryx

l
τ,query

]
· E
[(

Λ̂τ

)
i:

(
Λ̂τ

)
:k

]
= Uiju

2
−1Λτ,jlE

[(
Λ̂τ

)
i:

(
Λ̂τ

)
:k

]
.

Therefore, we sum over i, j ∈ [d] to get

1

2
E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)kl

 =
1

2
u2
−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl

For the last term, we have

1

2
E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)kl

]
=

1

2
u2
−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl.

So we have

Dkl = u2
−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl.

Additionally, we have

2
[
E
(
w>τ xτ,queryHτ

)
u
]

(l−1)(d+1)+k
=

0d(d+1)×d(d+1) A

A> 0(d+1)×(d+1)

 · u


(l−1)(d+1)+k

(definition)

=
(

0(d+1)×d(d+1) Vl + V >l

)
k:
· U
(definition of A in (34))

= Λ>k Λlu−1. (definition of Vi in (34))

Therefore, we have that for k, l ∈ [d], the dynamics of Ukl is

d

dt
Ukl = −u2

−1E
((

Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl + u−1Λ>k Λl,

which implies
d

dt
U11 = −u2

−1E
((

Λ̂τ

)2
)
U11Λ + u−1Λ2.

From the definition of Λ̂τ (equation (32)), the independence and Gaussianity of xτ,i and
Lemma 30, we compute

E
((

Λ̂τ

)2
)

= E

(1

N

N∑
i=1

xτ,ix
>
τ,i

)2
 (definition (32))

30

Trained Transformers Learn Linear Models In-Context

=
N − 1

N

[
E
(
xτ,1x

>
τ,1

)]2
+

1

N
E
(
xτ,1x

>
τ,1xτ,1x

>
τ,1

)
(independence between prompt input)

=
N + 1

N
Λ2 +

1

N
tr(Λ)Λ. (Lemma 30)

We define

Γ :=
N + 1

N
Λ +

1

N
tr(Λ)Id. (37)

Then, from (31), we know the dynamics of U11 is

d

dt
U11 = −u2

−1ΓΛU11Λ + u−1Λ2. (38)

Step Five: Dynamics of u−1 Finally, we compute the dynamics of u−1. We have

Dd+1,d+1 =
1

2
E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)d+1,d+1


+

1

2
E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)d+1,d+1

]
. (39)

For the first term above, we have

E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)d+1,d+1


=u−1

d∑
i,j=1

UijE
[(

Λ̂τ

)
i:
· wτw>τ ·

(
Λ̂τ

)
· U11xτ,queryx

j
τ,query

]
(from (35))

=u−1

d∑
i,j=1

UijE
[(

Λ̂τ

)
i:
·
(

Λ̂τ

)
· U11xτ,queryx

j
τ,query

]
(independence and distribution of wτ)

=u−1

d∑
i,j=1

UijE
[(

Λ̂τ

)
i:
·
(

Λ̂τ

)
· U11Λj

]
(independence between prompt covariates)

=u−1E tr

 d∑
i,j=1

ΛjUij

(
Λ̂τ

)
i:
·
(

Λ̂τ

)
U11

 = u−1E tr

[
Λ(U11)>

(
Λ̂τ

)2
U11

]

=u−1 tr

[
E
(

Λ̂τ

)2
U11Λ(U11)>

]
.

For the second term in (39), we have

E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)d+1,d+1

]
= u−1E

[
w>τ

(
Λ̂τ

)
U11xτ,queryx

>
τ,query(U11)>

(
Λ̂τ

)
wτ

]
(from (35))

= u−1E tr
[
wτw

>
τ

(
Λ̂τ

)
U11xτ,queryx

>
τ,query(U11)>

(
Λ̂τ

)]
31

Zhang, Frei, Bartlett

= u−1E tr
[(

Λ̂τ

)
U11Λ(U11)>

(
Λ̂τ

)]
= u−1 tr

[
E
(

Λ̂τ

)2
U11Λ(U11)>

]
.

Therefore, we know

Dd+1,d+1 = u−1 tr

[
E
(

Λ̂τ

)2
U11Λ(U11)>

]
.

Additionally, we have

2
[
E
(
w>τ xτ,queryHτ

)
u
]

(d+1)2
=

0d(d+1)×d(d+1) A

A> 0(d+1)×(d+1)

 · u


(d+1)2

(from (33))

=
(
V1 + V >1 ... Vd + V >d 0(d+1)×(d+1)

)
d+1:
· U

(definition of A in (34))

=

d∑
i,j=1

Λ>i ΛjUji = tr
(

Λ(U11)>Λ
)
.

Then, from (31), we have the dynamics of u−1 is

d

dt
u−1 = − tr

[
u−1ΓΛU11Λ(U11)> − Λ2(U11)>

]
. (40)

A.3 Proof of Lemma 11

Lemma 11 gives the form of global minima of an equivalent loss function. First, we prove
that gradient flow on L defined in (8) from the initial values satisfying Assumption 3 is
equivalent to gradient flow on another loss function ˜̀ defined below. Then, we derive an
expression for the global minima of this loss function.

First, from the dynamics of gradient flow, we can actually recover the loss function up
to a constant. We have the following lemma.

Lemma 15 (Loss Function) Consider gradient flow over L in (26) with respect to u
starting from an initial value satisfying Assumption 3. This is equivalent to doing gradient
flow with respect to U11 and u−1 on the loss function

˜̀(U11, u−1) = tr

[
1

2
u2
−1ΓΛU11Λ(U11)> − u−1Λ2(U11)>

]
. (41)

Proof The proof is simply by taking gradient of the loss function in (41). For techniques
in matrix derivatives, see Lemma 29. We take the gradient of ˜̀ on U11 to obtain

∂ ˜̀

∂U11
=

1

2
u2
−1Λ>Γ>U11Λ> +

1

2
u2
−1ΓΛU11Λ− u−1Λ2 = u2

−1ΓΛU11Λ− u−1Λ2,

32

Trained Transformers Learn Linear Models In-Context

since Γ and Λ are commutable. We take derivatives w.r.t. u−1 to get

∂ ˜̀

∂u−1
= tr

[
u−1ΓΛU11Λ(U11)> − Λ2(U11)>

]
.

Combining this with Lemma 10, we have

d

dt
U11(t) = − ∂ ˜̀

∂U11
,

d

dt
u−1(t) = − ∂ ˜̀

∂u−1
.

We remark that actually this is the loss function L up to some constant. This loss
function ˜̀ can be negative. But we can still compute its global minima as follows.

Corollary 16 (Minimum of Loss Function) The loss function ˜̀ in Lemma 15 satisfies

min
U11∈Rd×d,u−1∈R

˜̀(U11, u−1) = −1

2
tr
[
Λ2Γ−1

]
and

˜̀(U11, u−1)− min
U11∈Rd×d,u−1∈R

˜̀(U11, u−1) =
1

2

∥∥∥Γ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2

F
.

Proof First, we claim that

˜̀(U11, u−1) =
1

2
tr

[
Γ ·
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)>]
− 1

2
tr
[
Λ2Γ−1

]
.

To calculate this, we just need to expand the terms in the brackets and notice that Γ and
Λ commute:

tr

[
Γ ·
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)>]
− tr

[
Λ2Γ−1

]
(i)
= tr

[
Γ ·
(
u2
−1Λ

1
2U11Λ(U11)>Λ1/2 − u−1ΛΓ−1Λ

1
2U11Λ

1
2 − u−1Λ

1
2U11Λ

3
2 Γ−1 + Γ−2Λ2

)]
− tr[Λ2Γ−1]

= tr
[
Γ ·
(
u2
−1Λ

1
2U11Λ(U11)>Λ1/2 − u−1ΛΓ−1Λ

1
2U11Λ

1
2 − u−1Λ

1
2U11Λ

3
2 Γ−1

)]
= u2

−1 tr
[
ΓΛ

1
2U11Λ(U11)>Λ

1
2

]
− u−1 tr

[
ΓΛΓ−1Λ

1
2U11Λ

1
2 − ΓΛ

1
2U11Λ

3
2 Γ−1

]
(ii)
= u2

−1 tr
[
ΓΛU11Λ(U11)>

]
− 2u−1 tr

[
Λ2U11Λ

1
2

]
= 2˜̀(U11, u−1) .

Equations (i) and (ii) use that Γ and Λ commute.

33

Zhang, Frei, Bartlett

Since Γ � 0 and
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)>
� 0, we know from

Lemma 32 that

1

2
tr

[
Γ ·
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)>]
≥ 0,

which implies

˜̀(U11, u−1) ≥ −1

2
tr
[
Λ2Γ−1

]
.

Equality holds when
U11 = Γ−1, u−1 = 1,

so the minimum of ˜̀ is −1
2 tr

[
Λ2Γ−1

]
. The expression for ˜̀(U11, u−1) − min ˜̀(U11, u−1)

comes from the fact that tr(A>A) = ‖A‖2F for any matrix A.

Lemma 11 is an immediate consequence of Corollary16, since the loss will keep the same
when we replace (U11, u−1) by (cU11, c

−1u−1) for any non-zero constant c.

A.4 Proof of Lemma 12

In this section, we prove that the dynamical system in Lemma 10 satisfies a PL inequality.
Then, the PL inequality naturally leads to the global convergence of this dynamical system.
First, we prove a simple lemma, which says the parameters in the LSA model will keep
’balanced’ in the whole trajectory. From the proof of this lemma, we can understand why
we assume a balanced parameter at the initial time.

Lemma 17 (Balanced Parameters) Consider gradient flow over L in (26) with respect
to u starting from an initial value satisfying Assumption 3. For any t ≥ 0, it holds that

u2
−1 = tr

[
U11(U11)>

]
. (42)

Proof From Lemma 10, we multiply the first equation in (27) by (U11)> from the right to
get (

d

dt
U11(t)

)
(U11(t))> = −u2

−1ΓΛU11Λ(U11)> + u−1Λ2(U11)>.

Also we multiply the second equation in Lemma 10 by u−1 to obtain(
d

dt
u−1(t)

)
u−1(t) = tr

[
−u2
−1ΓΛU11Λ(U11)> + u−1Λ2(U11)>

]
.

Therefore, we have

tr

[(
d

dt
U11(t)

)
(U11(t))>

]
=

(
d

dt
u−1(t)

)
u−1(t).

Taking the transpose of the equation above and adding to itself gives

d

dt
tr
[
U11(t)(U11(t))>

]
=

d

dt

(
u−1(t)2

)
.

34

Trained Transformers Learn Linear Models In-Context

Notice that from Assumption 3, we know that at t = 0,

u−1(0)2 = σ2 = σ2 tr
[
ΘΘ>ΘΘ>

]
= tr

[
U11(0)(U11(0))>

]
.

So for any time t ≥ 0, the equation holds.

In order to prove the PL inequality, we first prove an important property which says
the trajectories of u−1(t) stay away from saddle point at origin. First, we prove that u−1(t)
will stay positive along the whole trajectory.

Lemma 18 Consider gradient flow over L in (26) with respect to u starting from an initial
value satisfying Assumption 3. If the initial scale satisfies

0 < σ <

√
2√

d ‖Γ‖op
, (43)

then, for any t ≥ 0, it holds that
u−1 > 0.

Proof From Lemma 15, we are actually doing gradient flow on the loss ˜̀. The loss function
is non-increasing, because

d˜̀

dt
=

〈
dU11

dt
,
∂ ˜̀

∂U11

〉
+

〈
du−1

dt
,
∂ ˜̀

∂u−1

〉
= −

∥∥∥∥dU11

dt

∥∥∥∥2

F

−
∥∥∥∥du−1

dt

∥∥∥∥2

F

≤ 0.

We notice that when u−1 = 0, ˜̀ = 0. Therefore, as long as ˜̀(U11(0), u−1(0)) < 0, then for
any time, u−1 will be non-zero. Further, since u−1(0) > 0 and the trajectory of u−1(t) must
be continuous, we know u−1(t) > 0 for any t ≥ 0.

Then, it suffices to prove when 0 < σ <
√

2√
d‖Γ‖op

, it holds that ˜̀(U11(0), u−1(0)) < 0.

From Assumption 3, we can calculate the loss function at the initial time:

˜̀(U11(0), u−1(0)) =
σ4

2
tr
[
ΓΛΘΘ>ΛΘΘ>

]
− σ2 tr

[
Λ2ΘΘ>

]
.

From the property of trace, we know

tr
[
Λ2ΘΘ>

]
= tr

[
ΛΘΘ>Λ>

]
= ‖ΛΘ‖2F .

From Von-Neumann’s trace inequality (Lemma 31) and the fact that
∥∥ΘΘ>

∥∥
F

= 1, we
know

tr
[
ΓΛΘΘ>ΛΘΘ>

]
≤
√
d
∥∥∥ΛΘΘ>ΛΘΘ>

∥∥∥
F
‖Γ‖op

≤
√
d ‖ΛΘ‖2F

∥∥∥ΘΘ>
∥∥∥
F
‖Γ‖op

=
√
d ‖ΛΘ‖2F ‖Γ‖op .

35

Zhang, Frei, Bartlett

Therefore, we have

˜̀(U11(0), u−1(0)) ≤
√
dσ4

2
‖ΛΘ‖2F ‖Γ‖op − σ

2 ‖ΛΘ‖2F

=
σ2

2
‖ΛΘ‖2F

[√
dσ2 ‖Γ‖op − 2

]
.

From Assumption 3, we know ‖ΛΘ‖F 6= 0. From (37), we know ‖Γ‖op > 0. Therefore, when

0 < σ <

√
2√

d ‖Γ‖op
,

we have
˜̀(U11(0), u−1(0)) < 0.

From the lemma above, we can actually further prove that the u−1(t) can be lower
bounded by a positive constant for any t ≥ 0. This will be a critical property to prove the
PL inequality. We have the following lemma.

Lemma 19 Consider gradient flow over L in (26) with respect to u starting from an initial

value satisfying Assumption 3 with initial scale 0 < σ <
√

2√
d‖Γ‖op

. For any t ≥ 0, it holds

that

u−1 ≥
√

σ2

2
√
d ‖Λ‖2op

‖ΛΘ‖2F
[
2−
√
dσ2 ‖Γ‖op

]
> 0. (44)

Proof We prove by contradiction. Suppose the claim does not hold. From Lemma 17, we
know u2

−1 = tr
[
U11(U11)>

]
= ‖U11‖2F . From Lemma 18, we know u−1 = ‖U11‖F . Recall

the definition of loss function:

˜̀(U11, u−1) = tr

[
1

2
u2
−1ΓΛU11Λ(U11)> − u−1Λ2(U11)>

]
.

Since Γ � 0,Λ � 0, and they commute, we know from Lemma 32 that ΓΛ � 0. Again, since

U11Λ(U11)> =
(
U11Λ

1
2

)(
U11Λ

1
2

)>
� 0, from Lemma 32 we have tr

[
1
2u

2
−1ΓΛU11Λ(U11)>

]
≥

0. So
˜̀(U11, u−1) ≥ − tr

[
u−1Λ2(U11)>

]
.

From Von-Neumann’s trace inequality, we know for any t ≥ 0,

− tr
[
u−1Λ2(U11)>

]
≥ −
√
du−1

∥∥Λ2
∥∥
op
‖U11‖F = −

√
du2
−1 ‖Λ‖

2
op .

Therefore, under our assumption that the claim does not hold, we have

˜̀(U11, u−1) ≥ −
√
du2
−1 ‖Λ‖

2
op > −

σ2

2
‖ΛΘ‖2F

[
2−
√
dσ2 ‖Γ‖op

]
≥ ˜̀(U11(0), u−1(0)).

36

Trained Transformers Learn Linear Models In-Context

Here, the last inequality comes from the proof of Lemma 18. This contradicts the non-
increasing property of the loss function in gradient flow.

Finally, let’s prove the PL inequality and further, the global convergence of gradent flow
on the loss function ˜̀. We recall the stated lemma from the main text.

Lemma 20 Suppose the initialization of gradient flow satisfies Assumption 3 with initial-
ization scale satisfying σ2 < 2√

d‖Γ‖op
for Γ = (1 + 1

N)Λ + tr(Λ)
N Id. If we define

µ :=
σ2

√
d ‖Λ‖2op tr (Γ−1Λ−1) tr (Λ−1)

‖ΛΘ‖2F
[
2−
√
dσ2 ‖Γ‖op

]
> 0, (30)

then gradient flow on ˜̀ with respect to U11 and u−1 satisfies, for any t ≥ 0,∥∥∥∇˜̀(U11(t), u−1(t))
∥∥∥2

2
:=

∥∥∥∥∥ ∂ ˜̀

∂U11

∥∥∥∥∥
2

F

+

∣∣∣∣∣ ∂ ˜̀

∂u−1

∣∣∣∣∣
2

≥ µ
(

˜̀(U11(t), u−1(t))− min
U11∈Rd×d,u−1∈R

˜̀(U11, u−1)

)
.

Moreover, gradient flow converges to the global minimum of ˜̀, and U11 and u−1 satisfy

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1
2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1.

Proof From the definition and Lemma 19, we have

‖∇`(U11, u−1)‖22

≥
∥∥∥∥ ∂`

∂U11

∥∥∥∥2

F

=
∥∥u2
−1ΓΛU11Λ− u−1Λ2

∥∥2

F

= u2
−1

∥∥∥ΓΛ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)
Λ

1
2

∥∥∥2

F

≥ σ2

2
√
d ‖Λ‖2op

‖ΛΘ‖2F
[
2−
√
dσ2 ‖Γ‖op

] ∥∥∥ΓΛ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)
Λ

1
2

∥∥∥2

F
. (45)

To see why the second line is true, recall that u−1 ∈ R and Γ and Λ commute. The last line
comes from the lower bound of u−1 in Lemma 19. From Corollary 16, we know

`− min
U11∈Rd×d,u−1∈R

`(U11, u−1) =
1

2
tr

[
Γ
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)>]
=

1

2

∥∥∥Γ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2

F
.

Therefore, we know that

`− min
U11∈Rd×d,u−1∈R

`(U11, u−1)

≤ 1

2

∥∥∥ΓΛ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)
Λ

1
2

∥∥∥2

F
·
∥∥∥Γ−

1
2 Λ−

1
2

∥∥∥2

F

∥∥∥Λ−
1
2

∥∥∥2

F

37

Zhang, Frei, Bartlett

=
1

2

∥∥∥ΓΛ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)
Λ

1
2

∥∥∥2

F
· tr
(
Γ−1Λ−1

)
tr
(
Λ−1

)
(46)

We compare (45) and (46) to obtain that in order to make the PL condition hold, one needs
to let

µ :=
σ2

√
d ‖Λ‖2op tr (Γ−1Λ−1) tr (Λ−1)

‖ΛΘ‖2F
[
2−
√
dσ2 ‖Γ‖op

]
> 0.

Once we set this µ, we get the PL inequality. The µ is positive due to the assumption for
σ in the lemma.

From the dynamics of gradient flow and the PL condition, we know

d

dt

(
˜̀− min

U11∈Rd×d,u−1∈R
˜̀(U11, u−1)

)
=

〈
dU11

dt
,
∂ ˜̀

∂U11

〉
+

〈
du−1

dt
,
∂ ˜̀

∂u−1

〉

= −
∥∥∥∥dU11

dt

∥∥∥∥2

F

−
∣∣∣∣du−1

dt

∣∣∣∣2
≤ −µ

(
˜̀− min

U11∈Rd×d,u−1∈R
˜̀(U11, u−1)

)
.

Therefore, we have when t→∞,

0 ≤ ˜̀− min
U11∈Rd×d,u−1∈R

˜̀(U11, u−1)

≤ exp (−µt)
[

˜̀(U11(0), u−1(0))− min
U11∈Rd×d,u−1∈R

˜̀(U11, u−1)

]
→ 0,

which implies

lim
t→∞

[
˜̀− min

U11∈Rd×d,u−1∈R
˜̀(U11, u−1)

]
= 0.

From Corollary 16, we know this is∥∥∥Γ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2

F
→ 0.

Since Γ and Λ are non-singular and positive definite, and they commute, we know∥∥u−1U11 − Γ−1
∥∥2

F
≤
∥∥∥Γ−

1
2 Λ−

1
2

∥∥∥2

F

∥∥∥Γ
1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2

F

∥∥∥Λ−
1
2

∥∥∥2

F
→ 0.

This implies u−1U11 − Γ−1 → 0d×d entry-wise. Since u−1 = ‖U11‖F , we know

u2
−1 = ‖u−1U11‖F →

∥∥Γ−1
∥∥
F
.

Therefore, we know

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1
2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1.

38

Trained Transformers Learn Linear Models In-Context

Appendix B. Proof of Theorem 5

In this section, we prove Theorem 5, which characterizes the excess risk of the prediction of
a trained LSA layer with respect to the risk of best linear predictor, on a new task which
is possibly non-linear. First, we restate the theorem.

Theorem 5 Let D be a distribution over (x, y) ∈ Rd × R, whose marginal distribution on
x is Dx = N(0,Λ). Assume ED[y],ED[xy],ED[y2xx>] exist and are finite. Assume the test

prompt is of the form P = (x1, y1, . . . , xM , yM , xquery), where (xi, yi), (xquery, yquery)
i.i.d.∼ D.

Let f∗LSA be the LSA model with parameters WPV
∗ and WKQ

∗ in (11), and ŷquery is the
prediction for xquery given the prompt. If we define

a := Λ−1E(x,y)∼D [xy] , Σ := E(x,y)∼D

[(
xy − E (xy)

)(
xy − E (xy)

)>]
, (15)

then, for Γ = Λ + 1
NΛ + 1

N tr(Λ)Id. we have,

E (ŷquery − yquery)2 = min
w∈Rd

E (〈w, xquery〉 − yquery)2︸ ︷︷ ︸
Error of best linear predictor

+
1

M
tr
[
ΣΓ−2Λ

]
+

1

N2

[
‖a‖2Γ−2Λ3 + 2 tr(Λ) ‖a‖2Γ−2Λ2 + tr(Λ)2 ‖a‖2Γ−2Λ

]
,

(16)

where the expectation is over (xi, yi), (xquery, yquery)
i.i.d.∼ D.

Proof Unless otherwise specified, we use E to denote the expectation over (xi, yi) and

(xquery, yquery)
i.i.d.∼ D. Since when (x, y) ∼ D, we assume E[x],E[y],E[xy],E[xx>],E[y2xx>]

exist, we know that E (〈w, xquery〉 − yquery)2 exists for each w ∈ Rd. We denote

a := arg min
w∈Rd

E (〈w, xquery〉 − yquery)2

as the weight of the best linear approximator. Actually, if we denote the function inside
the minimum above as R(w), we can write it as

R(w) = w>Λw − 2E
(
yquery · x>query

)
w + Ey2

query.

Since the Hessian matrix ∂2

∂w∂w>
R(w) is Λ, which is positive definitive, we know that this

function is strictly convex and hence, the global minimum can be achieved at the unique
first-order stationary point. This is

a = Λ−1E (yquery · xquery) . (47)

We also define a similar vector for ease of computation:

b = Γ−1E (yquery · xquery) . (48)

39

Zhang, Frei, Bartlett

Therefore, we can decompose the risk as

E (ŷquery − yquery)2 = E (〈a, xquery〉 − yquery)2︸ ︷︷ ︸
I

+E (ŷquery − 〈b, xquery〉)2︸ ︷︷ ︸
II

+ E (〈b, xquery〉 − 〈a, xquery〉)2︸ ︷︷ ︸
III

+ 2E (ŷquery − 〈b, xquery〉) (〈a, xquery〉 − yquery)︸ ︷︷ ︸
IV

+ 2E (ŷquery − 〈b, xquery〉) (〈b, xquery〉 − 〈a, xquery〉)︸ ︷︷ ︸
V

+ 2E (〈b, xquery〉 − 〈a, xquery〉) (〈a, xquery〉 − yquery)︸ ︷︷ ︸
VI

The term I is the first term on the right hand side of (16). So it suffices to calculate II to
VI.

First, from the tower property of conditional expectation, we have

V = 2E
[
E
(

(ŷquery − 〈b, xquery〉) (〈b, xquery〉 − 〈a, xquery〉)
∣∣∣∣xquery)]

= 2E
[
E
(
ŷquery − 〈b, xquery〉

∣∣∣∣xquery) (〈b, xquery〉 − 〈a, xquery〉)
]

= 0,

since

E
(
ŷquery − 〈b, xquery〉

∣∣∣∣xquery) =

(
E

1

M

M∑
i=1

yiΓ
−1xi − b

)>
xquery = 0.

Similarly, for IV, we have

IV = 2E (ŷquery − 〈b, xquery〉) (〈a, xquery〉 − yquery)

= 2E
[
E
(

(ŷquery − 〈b, xquery〉) (〈a, xquery〉 − yquery)
∣∣∣∣xquery, yquery)]

= 2E
[
E
(
ŷquery − 〈b, xquery〉

∣∣∣∣xquery, yquery) (〈a, xquery〉 − yquery)
]

= 0.

For VI, we have

VI = 2E tr
[
(b− a) (〈a, xquery〉 − yquery)x>query

]
= 2 tr

[
(b− a)a>Λ

]
− 2 tr

[
(b− a)E

(
yqueryx

>
query

)]
= 0,

where the last line comes from the definition of a. Therefore, all cross terms vanish and it
suffices to consider II and III.

40

Trained Transformers Learn Linear Models In-Context

From the definition II is equal to

E

(
1

M

M∑
i=1

yixi − E (yquery · xquery)

)>
Γ−1xqueryx

>
queryΓ

−1

(
1

M

M∑
i=1

yixi − E (yquery · xquery)

)

= E tr

(
1

M

M∑
i=1

yixi − E (yquery · xquery)

)(
1

M

M∑
i=1

yixi − E (yquery · xquery)

)>
Γ−2Λ

(property of trace and the fact that Γ and Λ commute)

=
1

M2

M∑
i,j=1

E tr
{

(yixi − E (yquery · xquery)) (yjxj − E (yquery · xquery))> Γ−2Λ
}

=
1

M
E tr

{
(y1x1 − E (yquery · xquery)) (y1x1 − E (yquery · xquery))> Γ−2Λ

}
(all cross terms vanish due to the independence of xi)

=
1

M
tr
[
ΣΓ−2Λ

]
.

The last line comes from the definition of Σ.

For III, we have

III = E(b− a)>xqueryx
>
query(b− a) = a>Λ(Γ−1 − Λ−1)Λ(Γ−1 − Λ−1)Λa

= tr
[(
I − ΓΛ−1

)2
Γ−2Λ3aa>

]
(property of trace and the fact that Γ and Λ commute)

=
1

N2
tr
[(
Id + tr(Λ)Λ−1

)2
Γ−2Λ3aa>

]
=

1

N2

[
tr(Γ−2Λ3aa>) + 2 tr(Λ) tr(Γ−2Λ2aa>) + tr(Λ)2 tr(Γ−2Λaa>)

]
.

Combining all terms above, we conclude.

Appendix C. Proof of Theorem 8

The proof of Theorem 8 is very similar to that of Theorem 4. The first step is to explicitly
write out the dynamical system. In order to do so, we notice that the Lemma 9 does not
depend on the training data and data-generaing distribution and hence, it still holds in the
case of a random covariance matrix. Therefore, we know when we input the embedding
matrix Eτ to the linear self-attention layer with parameter θ = (WKQ,WPV), the prediction
will be

ŷquery(Eτ ; θ) = u>Hτu,

where the matrix Hτ is defined as,

Hτ =
1

2
Xτ ⊗

(
EτE

>
τ

N

)
∈ R(d+1)2×(d+1)2 , Xτ =

 0d×d xτ,query

(xτ,query)
> 0

 ∈ R(d+1)×(d+1)

41

Zhang, Frei, Bartlett

and

u = Vec(U) ∈ R(d+1)2 , U =

 U11 u12

(u21)> u−1

 ∈ R(d+1)×(d+1),

where U11 = WKQ
11 ∈ Rd×d, u12 = wPV21 ∈ Rd×1, u21 = wKQ21 ∈ Rd×1, u−1 = wPV22 ∈ R

correspond to particular components of WPV and WKQ, defined in (5).

C.1 Dynamical system

The next lemma gives the dynamical system when the covariance matrices in the prompts
are i.i.d. sampled from some distribution. Notice that in the lemma below, we do not
assume Λτ are almost surely diagonal. The case when the covariance matrices are diagonal
can be viewed as a special case of the following lemma.

Lemma 21 Consider gradient flow on (20) with respect to u starting from an initial value
that satisfies Assumption 3. We assume the covariance matrices Λτ are sampled from some
distribution with finite third moment and Λτ are positive definite almost surely. We denote

u = Vec (U) := Vec

 U11 u12

(u21)> u−1

 and define

Γτ =

(
1 +

1

N

)
Λτ +

1

N
tr(Λτ)Id ∈ Rd×d.

Then the dynamics of U follows

d

dt
U11(t) = −u2

−1E [ΓτΛτU11Λτ] + u−1E
[
Λ2
τ

]
d

dt
u−1(t) = −u−1 trE

[
ΓτΛτU11Λτ (U11)>

]
+ tr

(
E
[
Λ2
τ

]
(U11)>

)
,

(49)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0.

Proof This lemma is a natural corollary of Lemma 10. Notice that Lemma 10 holds for
any fixed positive definite Λτ . So when Λτ is random, if we condition on Λτ , the dynamical
system will be

d

dt
U11(t) = −u2

−1 [ΓτΛτU11Λτ] + u−1

[
Λ2
τ

]
d

dt
u−1(t) = −u−1 tr

[
ΓτΛτU11Λτ (U11)>

]
+ tr

([
Λ2
τ

]
(U11)>

)
,

(50)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0. Then, we conclude by simply taking expectation
over Λτ .

The lemma above gives the dynamical system with general random covariance matrix.
When Λτ are diagonal almost surely, we can actually simplify the dynamical system above.
In this case, we have the following corollary.

42

Trained Transformers Learn Linear Models In-Context

Corollary 22 Under the assumptions of Lemma 21, we further assume the covariance
matrix Λτ to be diagonal almost surely. We denote uij(t) ∈ R as the (i, j)-th entry of
U11(t), and further denote

γi = E

N + 1

N
λ3
τ,i +

1

N
λ2
τ,i ·

d∑
j=1

λτ,j

 ,
ξi = E

[
λ2
τ,i

]
,

ζij = E

[
N + 1

N
λ2
τ,iλτ,j +

1

N
λτ,iλτ,j ·

d∑
k=1

λτ,k

] (51)

for i, j ∈ [d], where the expectation is over the distribution of Λτ . Then, the dynamical
system (49) is equivalent to

d

dt
uii(t) = −γiu2

−1uii + ξiu−1 ∀i ∈ [d],

d

dt
uij(t) = −ζiju2

−1uij ∀i 6= j ∈ [d],

d

dt
u−1(t) = −

d∑
i=1

[
γiu−1u

2
ii

]
−
∑
i 6=j

ζiju−1u
2
ij +

d∑
i=1

[ξiuii] .

(52)

Proof This is directly obtained by rewriting the equation for each entry of U11 and recalling
the assumption that Λτ (and hence Γτ) is diagonal almost surely.

C.2 Loss function and global minima

As in the proof of Theorem 4, we can actually recover the loss function in the random
covariance case, up to a constant.

Lemma 23 The differential equations in (52) are equivalent to gradient flow on the loss
function

`rdm(U11, u−1) = E tr

[
1

2
u2
−1ΓτΛτU11Λτ (U11)> − u−1Λ2

τ (U11)>
]

=
1

2

d∑
i=1

[
γiu

2
−1u

2
ii

]
+

1

2

∑
i 6=j

ζiju
2
−1u

2
ij −

d∑
i=1

[ξiuiiu−1]

(53)

with respect to uij∀i, j ∈ [d] and u−1, from an initial value that satisfies Assumption 3.

Proof This can be verified by simply taking gradient of `rdm to show that

d

dt
uii = −∂`rdm

∂uii
∀i ∈ [d],

d

dt
uij = −∂`rdm

∂uij
∀i 6= j ∈ [d],

d

dt
u−1 = −∂`rdm

∂u−1
.

43

Zhang, Frei, Bartlett

Next, we solve for the minimum of `rdm and give the expression for all global minima.

Lemma 24 Let `rdm be the loss function in (53). We denote

min `rdm := min
U11∈Rd×d,u−1∈R

`rdm (U11, u−1) .

Then, we have

min `rdm = −1

2

d∑
i=1

ξ2
i

γi
(54)

and

`rdm(U11, u−1)−min `rdm =
1

2

d∑
i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑
i 6=j

ζiju
2
−1u

2
ij . (55)

Moreover, denoting uij as the (i, j)-entry of U11, all global minima of `rdm satisfy

u−1 · uij = I(i = j) · ξi
γi
. (56)

Proof From the definition of `rdm, we have

`rdm =
1

2

d∑
i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑
i 6=j

ζiju
2
−1u

2
ij −

1

2

d∑
i=1

ξ2
i

γi
≥ −1

2

d∑
i=1

ξ2
i

γi
.

The equation holds when uij = 0 for i 6= j ∈ [d] and u−1uii = ξi
γi

for each i ∈ [d]. This

can be achieved by simply letting u−1 = 1 and uii = ξi
γi

for i ∈ [d]. Of course, when we

replace (u−1, uii) with (cu−1, c
−1uii) for any constant c 6= 0, we can also achieve this global

minimum.

C.3 PL Inequality and global convergence

Finally, to end the proof, we prove a Polyak- Lojasiewicz Inequality on the loss function `rdm,
and then prove global convergence. Before that, let’s first prove the balanced condition of
parameters will hold during the whole trajectory.

Lemma 25 (Balanced condition) Under the assumptions of Lemma 21, for any t ≥ 0,
it holds that

u2
−1 = tr

[
U11(U11)>

]
. (57)

Proof The proof is similar to the proof of Lemma 17. From Lemma 10, we multiply the
first equation in (49) by (U11)> from the right to get[

d

dt
U11(t)

]
(U11)> = −u2

−1E
[
ΓτΛτU11Λτ (U11)>

]
+ u−1E

[
Λ2
τ (U11)>

]
.

44

Trained Transformers Learn Linear Models In-Context

Also we multiply the second equation in Lemma 49 by u−1 to obtain(
d

dt
u−1(t)

)
u−1(t) = −u2

−1 trE
[
ΓτΛτU11Λτ (U11)>

]
+ u−1 tr

(
E
[
Λ2
τ

]
(U11)>

)
,

Therefore, we have

tr

[(
d

dt
U11(t)

)
(U11(t))>

]
=

(
d

dt
u−1(t)

)
u−1(t).

Taking the transpose of the equation above and adding to itself gives

d

dt
tr
[
U11(t)(U11(t))>

]
=

d

dt

(
u−1(t)2

)
.

Notice that from Assumption 3, we know that

u−1(0)2 = σ2 = σ2 tr
[
ΘΘ>ΘΘ>

]
= tr

[
U11(0)(U11(0))>

]
.

So for any time t ≥ 0, the equation holds.

Next, similar to the proof of Theorem 4, we prove that, as long as the initial scale is
small enough, u−1 will be positive along the whole trajectory and can be lower bounded by
a positive constant, which implies that the trajectories will be away from the saddle point
at the origin.

Lemma 26 We do gradient flow on `rdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose
the initialization satisfies Assumption 3 with initial scale

0 < σ <

√√√√ 2 ‖EΛτΘ‖2F√
d
[
E ‖Γτ‖op ‖Λτ‖

2
F

] , (58)

then for any t ≥ 0, it holds that
u−1(t) > 0. (59)

Proof From the dynamics of gradient flow, we know the loss function `rdm is non-increasing:

d`rdm
dt

=

d∑
i,j=1

∂`rdm
∂uij

· duij
dt

+
∂`rdm
∂u−1

· du−1

dt
= −

d∑
i,j=1

[
∂`rdm
∂uij

]2

−
[
∂`rdm
∂u−1

]2

≤ 0.

Since we assume U11(0) = ΘΘ>, we know the loss function at t = 0 is

`rdm(U11(0), u−1(0)) = E tr

[
σ4

2
ΓτΛτΘΘ>ΛτΘΘ> − σ2Λ2

τΘΘ>
]
.

From the property of trace, we know

E tr
[
σ2Λ2

τΘΘ>
]

= σ2 ‖EΛτΘ‖2F .

45

Zhang, Frei, Bartlett

From Von-Neumann’s trace inequality and the assumption that
∥∥ΘΘ>

∥∥
F

= 1, we know

E tr

[
σ4

2
ΓτΛτΘΘ>ΛτΘΘ>

]
≤ σ4

√
d

2
E ‖Γτ‖op

∥∥∥ΛτΘΘ>ΛτΘΘ>
∥∥∥
F

≤
σ4
√
d
∥∥ΘΘ>

∥∥2

F

2

[
E ‖Γτ‖op ‖Λτ‖

2
F

]
=
σ4
√
d

2

[
E ‖Γτ‖op ‖Λτ‖

2
F

]
.

From the assumptions on Θ and Λτ we know EΛτΘ 6= 0d×d and E ‖Γτ‖op ‖Λτ‖
2
F > 0.

Therefore, comparing the two displays above, we know when (58) holds, we must have
`rdm(0) < 0. So from the non-increasing property of the loss function, we know `rdm(t) < 0
for any time t ≥ 0. Notice that when u−1 = 0, the loss function is also zero, which suggests
that u−1(t) 6= 0 for any time t ≥ 0. Since u−1(0) > 0 and the trajectory of u−1 must be
continuous, we know that it stays positive at all times.

Lemma 27 We do gradient flow on `rdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose
the initialization satisfies Assumption 3 and the initial scale satisfies (58). Then, for any
t ≥ 0, it holds that

u−1(t) ≥
√

σ2

2
√
d ‖EΛ2

τ‖op

[
2 ‖EΛτΘ‖2F −

√
dσ2

[
E ‖Γτ‖op ‖Λτ‖

2
F

]]
> 0. (60)

Proof From the dynamics of gradient flow, we know `rdm is non-increasing (see the proof
of Lemma 26). Recall the definition of the loss function:

`rdm(U11, u−1) = E tr

[
1

2
u2
−1ΓτΛτU11Λτ (U11)> − u−1Λ2

τ (U11)>
]
.

Since Λτ commutes with Γτ and they are both positive definite almost surely, we know
that ΓτΛτ � 0d×d almost surely from Lemma 29. Again, since U11Λτ (U11)> � 0d×d almost
surely, from Lemma 29 we have tr

[
1
2u

2
−1ΓτΛτU11Λτ (U11)>

]
≥ 0 almost surely. Therefore,

we have

`rdm(U11, u−1) ≥ −E tr
[
u−1Λ2

τ (U11)>
]

= − tr
[
u−1

(
EΛ2

τ

)
(U11)>

]
.

From Von Neumann’s trace inequality (Lemma 31) and the fact that u−1(t) > 0 for any
t ≥ 0 (Lemma 26), we know `rdm(U11(t), u−1(t)) ≥ −

√
du−1

∥∥EΛ2
τ

∥∥
op
‖U11‖F . From Lemma

25, we know u2
−1 = tr(U11(U11)>) = ‖U11‖2F . Since u−1(t) > 0 for any time, we know

actually u−1(t) = ‖U11(t)‖F . So we have

`rdm(U11(t), u−1(t)) ≥ −
√
du−1(t)2

∥∥EΛ2
τ

∥∥
op
.

46

Trained Transformers Learn Linear Models In-Context

From the proof of Lemma 26, we know

`rdm(U11(t), u−1(t)) ≤ `rdm(U11(0), u−1(0)) ≤ σ4
√
d

2

[
E ‖Γτ‖op ‖Λτ‖

2
F

]
− σ2 ‖EΛτΘ‖2F .

Combine the two preceding displays above, we have

u−1(t) ≥
√

σ2

2
√
d ‖EΛ2

τ‖op

[
2 ‖EΛτΘ‖2F −

√
dσ2

[
E ‖Γτ‖op ‖Λτ‖

2
F

]]
> 0.

The last inequality comes from Lemma 26.

Finally, we prove the PL Inequality, which naturally leads to the global convergence.

Lemma 28 We do gradient flow on `rdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose
the initialization satisfies Assumption 3 and the initial scale satisfies (58). If we denote

η = min {γi, i ∈ [d]; ζij , i 6= j ∈ [d]}

and

ν :=
η · σ2

2
√
d ‖EΛ2

τ‖op

[
2 ‖EΛτΘ‖2F −

√
dσ2

[
E ‖Γτ‖op ‖Λτ‖

2
F

]]
> 0, (61)

then for any t ≥ 0, it holds that

‖∇`rdm(U11, u−1)‖22 :=
d∑

i,j=1

∣∣∣∣∂`rdm∂uij

∣∣∣∣2 +

∣∣∣∣∂`rdm∂u−1

∣∣∣∣2 ≥ ν (`rdm −min `rdm) . (62)

Additionally, `rdm converges to the global minimal value, uij and u−1 converge to the fol-
lowing limits,

lim
t→∞

uij(t) = I(i = j) ·

[
d∑
i=1

ξ2
i

γ2
i

]− 1
4

· ξi
γi
∀i ∈ [d], lim

t→∞
u−1(t) =

[
d∑
i=1

ξi
γi

] 1
4

. (63)

Translating back to the original parameterization, we have this is equivalent to

lim
t→∞

WKQ(t) =


∥∥∥[EΓτΛ2

τ

]−1 E
[
Λ2
τ

]∥∥∥− 1
2

F
·
[
EΓτΛ2

τ

]−1 E
[
Λ2
τ

]
0d

0>d 0

 ,

lim
t→∞

WPV (t) =

0d×d 0d

0>d

∥∥∥[EΓτΛ2
τ

]−1 E
[
Λ2
τ

]∥∥∥ 1
2

F

 ,

where Γτ = N+1
N Λτ + 1

N tr(Λτ)Id ∈ Rd×d and E is over Λτ .

47

Zhang, Frei, Bartlett

Proof First, we prove the PL Inequality. From Lemma 24, we know

`rdm(U11, u−1)−min `rdm =
1

2

d∑
i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑
i 6=j

ζiju
2
−1u

2
ij ,

where ξi, ζij , γi are defined in (51). Meanwhile, we calculate the square norm of the gradient
of `rdm:

‖∇`rdm(U11, u−1)‖22 :=
d∑

i,j=1

∣∣∣∣∂`rdm∂uij

∣∣∣∣2 +

∣∣∣∣∂`rdm∂u−1

∣∣∣∣2 ≥ d∑
i,j=1

∣∣∣∣∂`rdm∂uij

∣∣∣∣2

=

d∑
i=1

γ2
i u

2
−1

(
uiiu−1 −

ξi
γi

)2

+
∑
i 6=j

ζ2
iju

4
−1u

2
ij .

Comparing the two displays above, we know that in order to ensure that ‖∇`rdm‖22 ≥
ν (`rdm −min `rdm) , it suffices to make

γiu−1(t)2 ≥ ν

2
∀i ∈ [d],

ζiju−1(t)2 ≥ ν

2
∀i 6= j ∈ [d].

We define η := min {γi, ζij , i 6= j ∈ [d]} , then it is sufficient to make

ηu−1(t)2 ≥ ν

2
.

From Lemma 27, we know that we can actually lower bound u−1 from below by a positive
constant. Then, the inequality holds if we take

ν :=
η · σ2

2
√
d ‖EΛ2

τ‖op

[
2 ‖EΛτΘ‖2F −

√
dσ2

[
E ‖Γτ‖op ‖Λτ‖

2
F

]]
> 0.

Therefore, as long as we take ν as above, a PL inequality holds for `rdm.

With an abuse of notation, let us write `rdm(t) = `rdm(U11(t), u−1(t)). Then, from the
dynamics of gradient flow and the PL Inequality ((62)), we know

d

dt
[`rdm(t)−min `rdm] = −‖∇`rdm(t)‖22 ≤ −ν (`rdm(t)−min `rdm) ,

which by Grönwall’s inequality implies

0 ≤ `rdm(t)−min `rdm ≤ exp(−νt) [`rdm(0)−min `rdm]→ 0

when t→∞. From Lemma 24, we know

d∑
i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
∑
i 6=j

ζiju
2
−1u

2
ij → 0 when t→∞.

48

Trained Transformers Learn Linear Models In-Context

This implies

uiiu−1 →
ξi
γi
∀i ∈ [d],

uiju−1 → 0 ∀i 6= j ∈ [d].

(64)

We take square of uii(t)u−1(t) and uij(t)u−1(t), then sum over all i, j ∈ [d]. Then, we

get u2
−1

∑d
i,j=1 u

2
ij →

∑d
i=1

ξ2i
γ2i
. From Lemma 25, we know for any t ≥ 0, u−1(t)2 =

tr
(
U11(U11)>

)
=
∑d

i,j=1 u
2
ij . So we have

u−1(t)4 = u2
−1

d∑
i,j=1

u2
ij →

d∑
i=1

ξ2
i

γ2
i

,

which implies

u−1(t)→

[
d∑
i=1

ξ2
i

γ2
i

] 1
4

(65)

when t→∞. Combining (64) and (65), we conclude

uij(t)→ 0 ∀i 6= j ∈ [d], uii(t)→

[
d∑
i=1

ξ2
i

γ2
i

]− 1
4

· ξi
γi
∀i ∈ [d].

Appendix D. Technical lemmas

Lemma 29 (Petersen and Pedersen, 2008) We denote A,B,X as matrices and x as vec-
tors. Then, we have

• ∂x>Bx
∂x =

(
B + B>

)
x.

• Vec(AXB) =
(
B> ⊗A

)
Vec(X).

• tr
(
A>B

)
= Vec(A)>Vec(B).

• ∂
∂X tr

(
XBX>

)
= XB> + XB.

• ∂
∂X tr

(
AX>

)
= A.

• ∂
∂X tr

(
AXBX>C

)
= A>C>XB> + CAXB.

Lemma 30 If X is Gaussian random vector of d dimension, mean zero and covariance
matrix Λ, and A ∈ Rd×d is a fixed matrix. Then

E
[
XX>AXX>

]
= Λ

(
A+A>

)
Λ + tr(AΛ)Λ.

49

Zhang, Frei, Bartlett

Proof We denote X = (X1, ..., Xd)
>. Then,

XX>AXX> = X(X>AX)X> =

 d∑
i,j=1

AijXiXj

XX>.

So we know (XX>AXX>)k,l =
(∑d

i,j=1AijXiXj

)
XkXl. From Isserlis’ Theorem in proba-

bility theory (Theorem 1.1 in Michalowicz et al. (2009), originally proposed in Wick (1950)),
we know for any i, j, k, l ∈ [d], it holds that

E
[
XiXjXkXl

]
= ΛijΛkl + ΛikΛjl + ΛilΛjk.

Then, we have for any fixed k, l ∈ [d],

E(XX>AXX>)k,l =
d∑

i,j=1

AijΛijΛkl +AijΛikΛjl +AijΛilΛjk

= tr(AΛ)Λkl + Λ>k (A+A>)Λl.

Therefore, we know

E(XX>AXX>) = Λ
(
A+A>

)
Λ + tr(AΛ)Λ.

Lemma 31 (Von-Neumann’s Trace Inequality) Let U, V ∈ Rd×n with d ≤ n. We
have

tr
(
U>V

)
≤

d∑
i=1

σi(U)σi(V) ≤ ‖U‖op ×
d∑
i=1

σi(V) ≤
√
d · ‖U‖op‖V ‖F

where σ1(X) ≥ σ2(X) ≥ · · · ≥ σd(X) are the ordered singular values of X ∈ Rd×n.

Lemma 32 ((Meenakshi and Rajian, 1999)) For any two positive semi-definitive ma-
trices A,B ∈ Rd×d, we have

• tr[AB] ≥ 0.

• AB � 0 if and only if A and B commute.

50

Trained Transformers Learn Linear Models In-Context

Appendix E. Experiment details

In this section, we provide more details for the experiment in Figure 1. Our experimental
setup is based on the codebase provided by Garg et al. (2022), with a modification that
allows for the possibility that the covariate distribution changes across prompts. We use
the standard GPT2 architecture with embedding size 256, 12 layers and 8 heads (Radford
et al., 2018) as implemented by HuggingFace (Wolf et al., 2020). For the GPT2 models, we
use the embedding method proposed by Garg et al. (2022), where instead of concatenating
x and y into a single token, they are treated as separate tokens. It is also worth noting that
the training objective function for the GPT2 model is different than those we consider for
the linear self-attention network: for the GPT2 model, the objective function is the average
over the full length of the context sequence (predictions for each xi using (xk, yk)k<i), while
in our setting the objective function is only for the final query point. However, in the figure,
for both GPT2 and the linear self-attention model the error plotted corresponds to the error
for predicting the final query point.

In all experiments, covariates are sampled from a mean-zero Gaussian in d = 20 di-
mensions with either fixed or random covariance matrix. For the fixed covariance case,
we fix the covariance matrix to be identity; for the random case, the covariance matrices
are restricted to be diagonal and all diagonal entries are i.i.d. sampled from the standard
exponential distribution. The linear weights in all tasks are i.i.d. sampled from standard
Gaussian distribution and also independently from all covariates. We trained the model for
500000 steps using Adam (Kingma and Ba, 2014) with a batch size of 64 and learning rate
of 0.0001. We use the same curriculum strategy of Garg et al. (2022) for acceleration.

For testing the trained model, we used ordinary least squares as a baseline which is
optimal for noiseless linear regression tasks. For prompts at test time, covariates are sam-
pled i.i.d. from a mean-zero Gaussian distribution. For the fixed-covariance evaluation, the
covariance is the identity matrix. In the random-covariance evaluation, the covariance is a
random diagonal matrix with diagonal entries sampled from the standard exponential dis-
tribution, multiplied by a scaling coefficient c ∈ {1, 4, 9}, i.e. for each task τ, the covariance
matrix in the ranxdom case is

Λτ = c · diag (λτ,1, ..., λτ,d)

where λτ,i
i.i.d.∼ Exponential(1) for any τ and i ∈ [d]. The plots in Figure 1 show the error

averaged over 642 prompts, where we sample 64 covariance matrices for each curve and
64 prompts for each covariance matrix. We compute 90% confidence intervals over 1000
bootstrap trials for each test.

References

Jacob Abernethy, Alekh Agarwal, Teodor V. Marinov, and Manfred K. Warmuth. A
mechanism for sample-efficient in-context learning for sparse retrieval tasks. Preprint,
arXiv:2305.17040, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers
learn to implement preconditioned gradient descent for in-context learning. Preprint,
arXiv:2306.00297, 2023.

51

Zhang, Frei, Bartlett

Kabir Ahuja, Madhur Panwar, and Navin Goyal. In-context learning through the Bayesian
prism. arXiv preprint arXiv:2306.04891, 2023.

Kartik Ahuja and David Lopez-Paz. A closer look at in-context learning under distribution
shifts. Preprint, arXiv:2305.16704, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learn-
ing algorithm is in-context learning? Investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra,
Vinay Venkatesh Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam
Neyshabur. Exploring length generalization in large language models. In Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks:
Implicit acceleration by overparameterization. In International Conference on Machine
Learning, pages 244–253, 2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep
matrix factorization. Advances in Neural Information Processing Systems, 32, 2019.

Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Sre-
bro, Amir Globerson, and Daniel Soudry. On the implicit bias of initialization shape:
Beyond infinitesimal mirror descent. In International Conference on Machine Learning,
pages 468–477, 2021.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statis-
ticians: Provable in-context learning with in-context algorithm selection. Preprint,
arXiv:2306.04637, 2023.

Mohamed Ali Belabbas. On implicit regularization: Morse functions and applications to
matrix factorization. arXiv preprint arXiv:2001.04264, 2020.

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of trans-
formers and its implications in sequence modeling. arXiv preprint arXiv:2006.09286,
2020.

Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix
factorization: An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269,
2019.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can GPT
learn in-context? Language models secretly perform gradient descent as meta optimizers.
arXiv preprint arXiv:2212.10559, 2022.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-XL: Attentive language models beyond a fixed-length context. In
Association for Computational Linguistics (ACL), 2019.

52

Trained Transformers Learn Linear Models In-Context

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser.
Universal transformers. arXiv preprint arXiv:1807.03819, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations
(ICLR), 2021.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep ho-
mogeneous models: Layers are automatically balanced. Advances in Neural Information
Processing Systems, 31, 2018.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and
variable creation in self-attention mechanisms. In International Conference on Machine
Learning, 2022.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can trans-
formers learn in-context? A case study of simple function classes. arXiv preprint
arXiv:2208.01066, 2022.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and
Nati Srebro. Implicit regularization in matrix factorization. Advances in Neural Infor-
mation Processing Systems, 30, 2017.

Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. In-context learning of large language models
explained as kernel regression, 2023.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial
structure. Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon S Du, and Jason D Lee. Understanding incre-
mental learning of gradient descent: A fine-grained analysis of matrix sensing. arXiv
preprint arXiv:2301.11500, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context
learning and weight shifting for softmax regression. arXiv preprint arXiv:2304.13276,
2023a.

Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transform-
ers as algorithms: Generalization and stability in in-context learning. arXiv preprint
arXiv:2301.07067, 2023b.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-
parameterized matrix sensing and neural networks with quadratic activations. In Con-
ference On Learning Theory, pages 2–47, 2018.

53

Zhang, Frei, Bartlett

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure:
Towards a mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023c.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of
gradient descent for matrix factorization: Greedy low-rank learning. arXiv preprint
arXiv:2012.09839, 2020.

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power
of self-attention matrices. arXiv preprint arXiv:2106.03764, 2021.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Trans-
formers learn shortcuts to automata. In International Conference on Learning Represen-
tations (ICLR), 2023.

AR Meenakshi and C Rajian. On a product of positive semidefinite matrices. Linear algebra
and its applications, 295(1-3):3–6, 1999.

JV Michalowicz, JM Nichols, F Bucholtz, and CC Olson. An Isserlis’ theorem for mixed
Gaussian variables: Application to the auto-bispectral density. Journal of Statistical
Physics, 136:89–102, 2009.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi,
and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context
learning work? arXiv preprint arXiv:2202.12837, 2022.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the Turing completeness of modern
neural network architectures. arXiv preprint arXiv:1901.03429, 2019.

Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improv-
ing language understanding by generative pre-training. Technical report, OpenAI,
2018. URL https://cdn.openai.com/research-covers/language-unsupervised/

language_understanding_paper.pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. Technical report, OpenAI,
2019. URL https://cdn.openai.com/better-language-models/language_models_

are_unsupervised_multitask_learners.pdf.

Mahdi Soltanolkotabi, Dominik Stöger, and Changzhi Xie. Implicit balancing and regu-
larization: Generalization and convergence guarantees for overparameterized asymmetric
matrix sensing. arXiv preprint arXiv:2303.14244, 2023.

Asher Trockman and J Zico Kolter. Mimetic initialization of self-attention layers. arXiv
preprint arXiv:2305.09828, 2023.

54

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Trained Transformers Learn Linear Models In-Context

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
Neural Information Processing Systems, 30, 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context
by gradient descent. arXiv preprint arXiv:2212.07677, 2022.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly
topic models: Explaining and finding good demonstrations for in-context learning. arXiv
preprint arXiv:2301.11916, 2023.

Gian-Carlo Wick. The evaluation of the collision matrix. Physical review, 80(2):268, 1950.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, and Morgan Funtowicz. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 conference on
empirical methods in natural language processing: system demonstrations, pages 38–45,
2020.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of
in-context learning as implicit Bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv
Kumar. Are transformers universal approximators of sequence-to-sequence functions?
arXiv preprint arXiv:1912.10077, 2019.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi,
and Sanjiv Kumar. O(n) connections are expressive enough: Universal approximability
of sparse transformers. Advances in Neural Information Processing Systems, 33:13783–
13794, 2020.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-
context learning learn? Bayesian model averaging, parameterization, and generalization.
Preprint, arXiv:2305.19420, 2023.

55

	Introduction
	Additional Related Work
	Preliminaries
	In-context learning
	Linear self-attention networks
	Training procedure

	Main results
	Convergence of gradient flow and prediction error for new tasks
	Behavior of trained transformer under distribution shifts
	Transformers trained on prompts with random covariate distributions

	Proof ideas
	Equivalence to a quadratic optimization problem
	Dynamical system of gradient flow
	PL inequality and global convergence

	Conclusion and future work
	Proof of Theorem 4
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12

	Proof of Theorem 5
	Proof of Theorem 8
	Dynamical system
	Loss function and global minima
	PL Inequality and global convergence

	Technical lemmas
	Experiment details

