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Abstract
We introduce a sufficient graphical model by applying the recently developed nonlinear suffi-
cient dimension reduction techniques to the evaluation of conditional independence. The graph-
ical model is nonparametric in nature, as it does not make distributional assumptions such as the
Gaussian or copula Gaussian assumptions. However, unlike a fully nonparametric graphical model,
which relies on the high-dimensional kernel to characterize conditional independence, our graphical
model is based on conditional independence given a set of sufficient predictors with a substantially
reduced dimension. In this way we avoid the curse of dimensionality that comes with a high-
dimensional kernel. We develop the population-level properties, convergence rate, and variable
selection consistency of our estimate. By simulation comparisons and an analysis of the DREAM
4 Challenge data set, we demonstrate that our method outperforms the existing methods when the
Gaussian or copula Gaussian assumptions are violated, and its performance remains excellent in
the high-dimensional setting.
Keywords: conjoined conditional covariance operator, generalized sliced inverse regression, non-
linear sufficient dimension reduction, reproducing kernel Hilbert space

1. Introduction

In this paper we propose a new nonparametric statistical graphical model, which we call the suf-
ficient graphical model, by incorporating the recently developed nonlinear sufficient dimension re-
duction techniques to the construction of the distribution-free graphical models.

Let G = (Γ, E) be an undirected graph consisting of a finite set of nodes Γ = {1, . . . , p}
and set of edges E ⊆ {(i, j) ∈ Γ× Γ : i 6= j}. Since (i, j) and (j, i) represent the same edge in an
undirected graph, we can assume without loss of generality that i > j. A statistical graphical model
links G with a random vector X = (X1, . . . , Xp) by the conditional independence:

(i, j) /∈ E ⇔ X
i

X
j|X−(i,j)

, (1)

where X−(i,j) = {X1, . . . , Xp} \ {X i, Xj}, and A B|C means conditional independence. Thus,
nodes i and j are connected if and only if X i and Xj are dependent given X−(i,j). Our goal is to
estimate the set E based on a sample X1, . . . , Xn of X . See Lauritzen (1996).

One of the most popular statistical graphical models is the Gaussian graphical model, which
assumes that X ∼ N(µ,Σ). Under the Gaussian assumption, conditional independence in (1) is
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encoded in the precision matrix Θ = Σ−1 in the following sense

X
i

X
j|X−(i,j) ⇔ θij = 0, (2)

where θij is the (i, j)th entry of the precision matrix Θ. By this equivalence, estimating E amounts to
identifying the positions of the zero entries of the precision matrix, which can be achieved by sparse
estimation methods such as the Tibshirani (1996), Fan and Li (2001), and Zou (2006). A variety
of methods have been developed for estimating the Gaussian graphical model, which include, for
example, Meinshausen and Bühlmann (2006), Yuan and Lin (2007), Bickel and Levina (2008), and
Peng et al. (2009). See also Friedman et al. (2008), Guo et al. (2010), and Lam and Fan (2009).

Since the Gaussian distribution assumption is restrictive, many recent advances have focused
on relaxing this assumption. A main challenge in doing so is to avoid the curse of dimensionality
(Bellman, 1961): a straightforward nonparametric extension would resort to a high-dimensional
kernel, which are known to be ineffective. One way to relax the Gaussian assumption without
evoking a high dimensional kernel is to use the copula Gaussian distribution, which is the approach
taken by Liu et al. (2009), Liu et al. (2012a), and Xue and Zou (2012), and is further extended to
the transelliptical model by Liu et al. (2012b).

However, the copula Gaussian assumption could still be restrictive: for example, if A and B are
random variables satisfying B = A2 + ε, where A and ε are i.i.d. N(0, 1), then (A,B) does not sat-
isfy the copula Gaussian assumption. To further relax the distributional assumption, Li et al. (2014)
proposed a new statistical relation called the additive conditional independence as an alternative
criterion for constructing the graphical model. This relation has the advantage of achieving non-
parametric model flexibility without using a high-dimensional kernel, while obeying the same set
of semi-graphoid axioms that govern the conditional independence (Dawid, 1979; Pearl and Verma,
1987). See also Lee et al. (2016b) and Li and Solea (2018a). Other approaches to nonparametric
graphical models include Fellinghauer et al. (2013) and Voorman et al. (2013).

In this paper, instead of relying on additivity to avoid the curse of dimensionality, we apply the
recently developed nonparametric sufficient dimension reduction (Lee et al., 2013; Li, 2018b) to
achieve this goal. The estimation proceeds in two steps: first, we use nonlinear sufficient dimension
reduction to reduce X−(i,j) to a low-dimensional random vector U ij; second, we use the kernel
method to construct a nonparametric graphical model based on (X i,Xj) and the dimension-reduced
random vectors U ij . The main differences between this approach and Li et al. (2014) are, first, we
are able to retain conditional independence as the criterion for constructing the network, which is a
widely accepted criterion with a more direct interpretation, and second, we are no longer restricted
by the additive structure in the graphical model. Another attractive feature of our method is due
to the “kernel trick”, which means its computational complexity depends on the sample size rather
than the size of the networks.

The rest of the paper is organized as follows. In Sections 2 and 3, we introduce the sufficient
graphical model and describe its estimation method at the population level. In Section 4 we lay out
the detailed algorithms to implement the method. In Section 5 we develop the asymptotic properties
such as estimation consistency, variable selection consistency, and convergence rates. In Section 6,
we conduct simulation studies to compare of our method with the existing methods. In Section 7,
we apply our method to the DREAM 4 Challenge gene network data set. Section 8 concludes the
paper with some further discussions. We put all proofs and some additional results in the Appendix.
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2. Sufficient graphical model

In classical sufficient dimension reduction, we seek the lowest dimensional subspace S of Rp, such
that, after projecting X ∈ Rp on to S, the information about the response Y is preserved; that is,
Y X|PSX , where PS is the projection onto S. This subspace is called the central subspace,
written as SY |X . See, for example, Li (1991), Cook (1994), and Li (2018b). Li et al. (2011) and
Lee et al. (2013) extended this framework to the nonlinear setting by considering the more general
problem: Y X|G, where G a sub-σ field of the σ-field generated by X . The class of functions in
a Hilbert space that are measurable with respect to G is called the central class, written as SY |X . Li
et al. (2011) introduced the Principal Support Vector Machine, and Lee et al. (2013) generalized the
Sliced Inverse Regression (Li, 1991) and the Sliced Average Variance Estimate (Cook and Weisberg,
1991) to estimate the central class. Precursors of this theory include Bach and Jordan (2002), Wu
(2008), and Wang (2008).

To link this up with the statistical graphical model, let (Ω,F , P ) be a probability space, (ΩX ,FX)
a Borel measurable space with ΩX ⊆ Rp, and X : Ω → ΩX a random vector with distribu-
tion PX . The ith component of X is denoted by X i and its range denoted by Ω

X
i . We assume

ΩX = Ω
X

1 × · · · × ΩX
p . Let X(i,j) = (X i, Xj) and X−(i,j) be as defined in the Introduction. Let

σ(X−(i,j)) be the σ-field generated by X−(i,j). We assume, for each (i, j) ∈ Γ×Γ, there is a proper
sub σ-field G−(i,j) of σ(X−(i,j)) such that

X
(i,j)

X
−(i,j)|G−(i,j)

. (3)

Without loss of generality, we assume G−(i,j) is the smallest sub σ-field of σ(X−(i,j)) that satisfies
the above relation; that is, G−(i,j) is the central σ-field for X(i,j) versus X−(i,j). There are plenty
examples of joint distributions of X for which the condition (3) holds for every pair (i, j): see
Appendix J. Using the properties of conditional independence developed in Dawid (1979) (with a
detailed proof given in Li (2018b)), we can show that (3) implies the following equivalence.

Theorem 1 If X(i,j) X−(i,j)|G−(i,j), then

X
i

X
j|X−(i,j) ⇔ X

i
X

j|G−(i,j)
.

This equivalence motivates us to use X i Xj|G−(i,j) as the criterion to construct the graph G
after performing nonlinear sufficient dimension reduction of X(i,j) versus X−(i,j) for each (i, j) ∈
Γ× Γ, i > j.

Definition 2 Under condition (3), the graph defined by

(i, j) /∈ E ⇔ X
i

X
j|G−(i,j)

is called the sufficient graphical model.

3. Estimation: population-level development

The estimation of the sufficient graphical model involves two steps: the first step is to use nonlinear
sufficient dimension reduction to estimate G−(i,j); the second is to construct a graph G based on
reduced data

{(X(i,j)
,G−(i,j)

) : (i, j) ∈ Γ× Γ, i > j}.
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In this section we describe the two steps at the population level. To do so, we need some preliminary
concepts such as the covariance operator between two reproducing kernel Hilbert spaces, the mean
element in an reproducing kernel Hilbert spaces, the inverse of an operator, as well as the centered
reproducing kernel Hilbert spaces. These concepts are defined in the Appendix A.2. A fuller de-
velopment of the related theory can be found in Li (2018b). The symbols ran(·) and ran(·) will be
used to denote the range and the closure of the range of a linear operator.

3.1 Step 1: Nonlinear dimension reduction

We use the generalized sliced inverse regression Lee et al. (2013), (Li, 2018b) to perform the non-
linear dimension reduction. For each pair (i, j) ∈ Γ× Γ, i > j, let Ω

X
−(i,j) be the range of X−(i,j),

which is the Cartesian product of Ω
X

1 , . . . ,ΩX
p with Ω

X
i and Ω

X
j removed. Let

κ
−(i,j)

X : Ω
X
−(i,j) × Ω

X
−(i,j) → R

be a positive semidefinite kernel. Let H −(i,j)

X be the centered reproducing kernel Hilbert space
generated by κ−(i,j)

X . Let Ω
X

(i,j) , κ(i,j)

X , and H (i,j)

X be the similar objects defined for X(i,j).

Assumption 1

E[κ
−(i,j)

X (X
−(i,j)

, X
−(i,j)

)] <∞, E[κ
(i,j)

X (X
(i,j)

, X
(i,j)

)] <∞.

This is a very mild assumption that is satisfied by most kernels. Under this assumption, the
following covariance operators are well defined:

Σ
X
−(i,j)

X
(i,j) : H

(i,j)

X →H
−(i,j)

X , Σ
X
−(i,j)

X
−(i,j) : H

−(i,j)

X →H
−(i,j)

X .

For the formal definition of the covariance operator, see SA.2. Next, we introduce the regression
operator from H (i,j)

X to H −(i,j)

X . For this purpose we need to make the following assumption.

Assumption 2 ran(Σ
X
−(i,j)

X
(i,j)) ⊆ ran(Σ

X
−(i,j)

X
−(i,j)).

As argued in Li (2018b), this assumption can be interpreted as a type of collective smoothness in
the relation between X(i,j) and X−(i,j): intuitively, it requires the operator Σ

X
−(i,j)

X
(i,j) sends all

the input functions to the low-frequency domain of the operator Σ
X
−(i,j)

X
−(i,j) . Under Assumption

2, the linear operator

R
X
−(i,j)

X
(i,j) = Σ

−1

X
−(i,j)

X
−(i,j)ΣX

−(i,j)
X

(i,j)

is defined, and we call it the regression operator from H (i,j)

X to H −(i,j)

X . The meaning of the inverse
Σ−1

X
−(i,j)

X
−(i,j) is defined in Appenix A.2. The regression operator in this form was formally defined

in Lee et al. (2016a), but earlier forms existed in Fukumizu et al. (2004); see also Li (2018a).

Assumption 3 R
X
−(i,j)

X
(i,j) is a finite-rank operator, with rank dij .

Intuitively, this assumption means that R
X
−(i,j)

X
(i,j) filters out the high frequency functions of

X(i,j), so that, for any f ∈ H (i,j), R
X
−(i,j)

X
(i,j)f is relatively smooth. It will be violated, for

example, if one can find an f ∈H (i,j) that makes R
X
−(i,j)

X
(i,j)f arbitrarily choppy. The regression
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operator plays a crucial role in nonlinear sufficient dimension reduction. Let L2(P
X
−(i,j)) be the

L2-space with respect to the distribution P
X
−(i,j) of X−(i,j). As shown in Lee et al. (2013), the

closure of the range of the regression operator is equal to the central subspace; that is,

ran(R
X
−(i,j)

X
(i,j)) = S

X
(i,j)|X−(i,j) (4)

under the following assumption.

Assumption 4

1. H −(i,j)

X is dense in L2(P
X
−(i,j)) modulo constants; that is, for any f ∈ L2(P

X
−(i,j)) and any

ε > 0, there is a g ∈H −(i,j)

X such that var[f(X−(i,j))− g(X−(i,j))] < ε;

2. S
X

(i,j)|X−(i,j) is a sufficient and complete.

The first condition essentially requires the kernel κ−(i,j)

X to be a universal kernel with respect to
the L2(P

X
−(i,j))-norm. It means H −(i,j) is rich enough to approximate any L2(P

X
−(i,j))-function

arbitrarily closely. For example, it is satisfied by the Gaussian radial basis function kernel, but not by
the polynomial kernel. For more information on universal kernels, see Sriperumbudur, Fukumizu,
and Lanckriet (2011). The completeness in the second condition means

E[g(X
−(i,j)

)|X(i,j)
] = 0 almost surely ⇒ g(X

−(i,j)
) = 0 almost surely.

This concept is defined in Lee, Li, and Chiaromonte (2013), and is similar to the classical definition
of completeness treating X−(i,j) as the parameter. Lee, Li, and Chiaromonte (2013) showed that
completeness is a mild condition, and is satisfied by most nonparametric models.

A basis of the central class S
X

(i,j)|X−(i,j) can be found by solving the generalized eigenvalue
problem: for k = 1, . . . , dij ,

maximize 〈f,Σ
X
−(i,j)

X
(i,j)AΣ

X
(i,j)

X
−(i,j)f〉−(i,j)

subject to

{
〈fk,Σ

X
−(i,j)

X
−(i,j)fk〉−(i,j) = 1

〈fk,Σ
X
−(i,j)

X
−(i,j)f`〉−(i,j) = 0, for ` = 1, . . . , k − 1

(5)

where A : H (i,j)

X → H (i,j)

X is any nonsingular and self adjoint operator, and 〈·, ·〉−(i,j) is the inner
product in H −(i,j)

X . That is, if f ij1 , . . . f
ij

dij
are the first dij eigenfunctions of this eigenvalue problem,

then they span the central class. This type of estimate of the central class is called generalized sliced
inverse regression. Convenient choices of A are the identity mapping I or the operator Σ−1

X
(i,j)

X
(i,j) .

If we use the latter, then we need the following assumption.

Assumption 5 ran(Σ
X

(i,j)
X
−(i,j)) ⊆ ran(Σ

X
(i,j)

X
(i,j)).

This assumption has the similar interpretation as Assumption 2; see Appendix K. At the popula-
tion level, choosing A to be Σ−1

X
−(i,j)

X
−(i,j) achieves better scaling because it down weights those

components of the output of Σ
X
−(i,j)

X
(i,j) with larger variances. However, if the sample size is not

sufficiently large, involving an estimate of Σ−1

X
−(i,j)

X
(i,j) in the procedure could incur extra varia-

tions that overwhelm the benefit brought by Σ−1

X
−(i,j)

X
(i,j) . In this case, a nonrandom operator such

as A = I is preferable. In this paper we use A = Σ−1

X
(i,j)

X
(i,j) . Let U ij denote the random vector

(f ij1 (X−(i,j)), . . . f ijdij (X
−(i,j))). The set of random vectors {U ij : (i, j) ∈ Γ × Γ, i > j} is the

output for the nonlinear sufficient dimension reduction step.
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3.2 Step 2:Estimation of sufficient graphical model

To estimate the edge set of the sufficient graphical model we need to find a way to determine whether
X i Xj|U ij is true. We use a linear operator introduced by Fukumizu et al. (2008) to perform
this task, which is briefly described as follows. Let U , V , W be random vectors taking values in
measurable spaces (ΩU ,FU), (ΩV ,FV ), and (ΩW ,FW ). Let ΩUW = ΩU ×ΩW , ΩVW = ΩV ×ΩW ,
FUW = FU ×FV , and FVW = FV ×FW . Let

κUW : ΩUW × ΩUW → R, κVW : ΩVW × ΩVW → R, κW : ΩW × ΩW → R

be positive kernels. For example, for (u1, w1), (u2, w2) ∈ ΩUW × ΩUW , κUW returns a real number
denoted by κUW [(u1, w1), (u2, w2)]. Let H UW , H VW , and HW be the centered reproducing kernel
Hilbert space’s generated by the kernels κUW , κVW , and κW . Define the covariance operators

Σ(UW )(VW ) : H VW →H UW , Σ(UW )W : HW →H UW ,

Σ(VW )W : HW →H VW , ΣWW : HW →HW

(6)

as before. The following definition is due to Fukumizu et al. (2008). Since it plays a special role in
this paper, we give it a name – “conjoined conditional covariance operator” that figuratively depicts
its form.

Definition 3 Suppose

1. If S is W , or (U,W ), or (V,W ), then E[κS(S, S)] <∞;

2. ran(ΣW (VW )) ⊆ ran(ΣWW ), ran(ΣW (UW )) ⊆ ran(ΣWW ).

Then the operator ΣÜV̈ |W = Σ(UW )(VW )−Σ(UW )WΣ−1

WWΣW (VW ) is called the conjoined conditional
covariance operator between U and V given W .

The word “conjoined” describes the peculiar way in which W appears in Σ(UW )W and ΣW (VW ),
which differs from an ordinary conditional covariance operator, where these operators are replaced
by ΣUW and ΣWV . The following proposition is due to Fukumizu et al. (2008), a proof of a special
case of which is given in Fukumizu et al. (2004).

Proposition 4 Suppose

1. H UW ⊗H VW is probability determining;

2. for each f ∈H UW , the function E[f(U,W )|W = ·] belongs to HW ;

3. for each g ∈H VW , the function E[g(V,W )|W = ·] belongs to HW ;

Then ΣÜV̈ |W = 0 if and only if U V |W .

The notion of probability determining in the context of reproducing kernel Hilbert space was de-
fined in Fukumizu et al. (2004). For a generic random vectorX , an reproducing kernel Hilbert space
H X based on a kernel κX is probability determining if and only if the mapping P 7→ EP [κX(·, X)]
is injective. Intuitively, this requires the family of expectations {EPf(X) : f ∈ HX} to be rich
enough to identify P . For example, the Gaussian radial basis function is probability determining, but

6
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a polynomial kernel is not. We apply the above proposition to X i, Xj, U ij for each (i, j) ∈ Γ× Γ,
i > j. Let

κ
i,ij

XU : (Ω
X
i × Ω

U
ij )× (Ω

X
i × Ω

U
ij )→ R

be a positive definite kernel, and H i,ij

XU the centered reproducing kernel Hilbert space generated by
κi,ijXU . Similarly, let κijU : Ω

U
ij × Ω

U
ij → R be a positive kernel, and H ij

U the centered reproducing
kernel Hilbert space generated by κijU .

Assumption 6 Conditions (1) and (2) of Definition 3 and conditions (1), (2), and (3) of Proposition
4 are satisfied with U , V , and W therein replaced by X i, Xj , and U ij , respectively, for each
(i, j) ∈ Γ× Γ and i > j.

Under this assumption, the conjoined conditional covariance operator Σ
Ẍ
i
Ẍ
j |Uij

is well defined and
has the following property.

Corollary 5 Under Assumption 6, we have (i, j) /∈ E ⇔ Σ
Ẍ
i
Ẍ
j |Uij

= 0.

This corollary motivates us to estimate the graph by thresholding the norm of the estimated
conjoined conditional covariance operator.

4. Estimation: sample-level implementation

4.1 Implementation of step 1

Let (X1, Y1), . . . , (Xn, Yn) be an i.i.d. sample of (X,Y ). At the sample level, the centered repro-
ducing kernel Hilbert space H −(i,j)

X is spanned by the functions

{κ−(i,j)

X (·, X−(i,j)

a )− En[κ
−(i,j)

X (·, X−(i,j)
)] : a = 1, . . . , n}, (7)

where κ−(i,j)

X (·, X−(i,j)) stands for the function u 7→ κ−(i,j)

X (u,X−(i,j)), and En[κ−(i,j)

X (·, X−(i,j))]
the function u 7→ En[κ−(i,j)

X (u,X−(i,j))].
We estimate the covariance operators Σ

X
−(i,j)

X
(i,j) and Σ

X
−(i,j)

X
−(i,j) by

Σ̂
X
−(i,j)

X
(i,j) =En{[κ

−(i,j)

X (·, X−(i,j)
)− Enκ

−(i,j)

X (·, X−(i,j)
)]

⊗ [κ
(i,j)

X (·, X(i,j)
)− Enκ

(i,j)

X (·, X(i,j)
)]}

Σ̂
X
−(i,j)

X
−(i,j) =En{[κ

−(i,j)

X (·, X−(i,j)
)− Enκ

−(i,j)

X (·, X−(i,j)
)]

⊗ [κ
−(i,j)

X (·, X−(i,j)
)− Enκ

−(i,j)

X (·, X−(i,j)
)]},

respectively. We estimate Σ−1

X
(i,j)

X
(i,j) by the Tychonoff-regularized inverse (Σ̂

X
(i,j)

X
(i,j)+ε

(i,j)

X I)−1,

where I : H (i,j)

X → H (i,j)

X is the identity operator. The regularized inverse is used to avoid over
fitting. It plays the same role as ridge regression (Hoerl and Kennard, 1970) that alleviates over
fitting by adding a multiple of the identity matrix to the sample covariance matrix before inverting
it.

7
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At the sample level, the generalized eigenvalue problem (5) takes the following form: at the kth
iteration,

maximize 〈f, Σ̂
X
−(i,j)

X
(i,j)(Σ̂

X
(i,j)

X
(i,j) + ε

(i,j)

X I)
−1

Σ̂
X

(i,j)
X
−(i,j)f〉−(i,j)

subject to

{
〈f, Σ̂

X
−(i,j)

X
−(i,j)f〉−(i,j) = 1,

〈f, Σ̂
X
−(i,j)

X
−(i,j)f`〉−(i,j) = 0, ` = 1, . . . , k − 1,

(8)

where f1, . . . , fk−1 are the maximizers in the previous steps. The first dij eigenfunctions are an
estimate of a basis in the central class S

X
(i,j)|X−(i,j) .

Let K
X
−(i,j) be the n × n matrix whose (a, b)th entry is κ−(i,j)

X (X−(i,j)

a , X−(i,j)

b ), Q = In −
1n1T

n/n, and G
X
−(i,j) = QK

X
−(i,j)Q. Let a1, . . . , adij be the first dij eigenvectors of the matrix

(G
X
−(i,j) + ε

−(i,j)

X In)
−1
G
X
−(i,j)G

X
(i,j)(G

X
(i,j) + ε

(i,j)

X In)
−1
G
X
−(i,j)(G

X
−(i,j) + ε

−(i,j)

X In)
−1
. (9)

In spite of its appearance, the above matrix is actually symmetric, because the matrices G
X

(i,j) and
(G

X
(i,j) + ε(i,j)X In)−1 commute. Let br = (G

X
−(i,j) + ε−(i,j)

X In)−1ar for r = 1, . . . , dij . As shown in
Section SL.2, the eigenfunctions f ij1 , . . . , f

ij

dij
are calculated by

f
ij

r =

n∑
a=1

b
r

a{κ
−(i,j)

X (·, X−(i,j)

a )− En[κ
−(i,j)

X (·, X−(i,j)
)]}.

The statistics Û ij

a = (f ij1 (X−(i,j)

a ), . . . , f ijdij (X
−(i,j)

a )), a = 1, . . . , n, will be used as the input for the
second step.

4.2 Implementation of step 2

This step consists of estimating the conjoined conditional covariance operator’s for each (i, j) and
thresholding their norms. At the sample level, the centered reproducing kernel Hilbert space’s
generated by the kernels κi,ijXU , κj,ijXU , and κijU are

H
i,ij

XU = span{κi,ijXU(·, (X i

a, U
ij

a ))− En[κ
i,ij

XU(·, (X i
, U

ij
))] : a = 1, . . . , n},

H
j,ij

XU = span{κj,ijXU(·, (Xj

a, U
ij

a ))− En[κ
j,ij

XU(·, (Xj
, U

ij
))] : a = 1, . . . , n},

H
ij

U = span{κijU (·, U ij

a )− En[κ
ij

U (·, U ij
)] : a = 1, . . . , n},

where, for example, κi,ijXU(·, (X i

a, U
ij

a )) denotes the function

Ω
X
i × Ω

U
ij → R, (x

i
, u

ij
) 7→ κ

i,ij

XU((x
i
, u

ij
), (X

i

a, U
ij

a ))

and En[κi,ijXU(·, (X i, U ij))] denotes the function

Ω
X
i × Ω

U
ij → R, (x

i
, u

ij
) 7→ En[κ

i,ij

XU((x
i
, u

ij
), (X

i
, U

ij
))].

8
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We estimate the covariance operators Σ
(X
i
U
ij

)(X
i
U
ij

)
, Σ

(X
i
U
ij

)U
ij , Σ

X
j
(X
j
U
ij

)
, and Σ

U
ij
U
ij by

Σ̂
(X
i
U
ij

)(X
j
U
ij

)
=En{[κ

i,ij

XU(·, (X i
, U

ij
))− Enκ

i,ij

XU(·, (X i
, U

ij
))]

⊗ [κ
j,ij

XU(·, (Xj
, U

ij
))− Enκ

j,ij

XU(·, (Xj
, U

ij
))]}

Σ̂
(X
i
U
ij

)U
ij =En{[κ

i,ij

XU(·, (X i
, U

ij
))− Enκ

i,ij

XU(·, (X i
, U

ij
))]

⊗ [κ
ij

U (·, U ij
)− Enκ

ij

U (·, U ij
)]}

Σ̂
U
ij

(X
j
U
ij

)
=En{[κ

ij

U (·, U ij
)− Enκ

ij

U (·, U ij
)]

⊗ [κ
j,ij

XU(·, (Xj
, U

ij
))− Enκ

j,ij

XU(·, (Xj
, U

ij
))]}

Σ̂
U
ij
U
ij =En{[κ

ij

U (·, U ij
)− Enκ

ij

U (·, U ij
)]

⊗ [κ
ij

U (·, U ij
)− Enκ

ij

U (·, U ij
)]},

(10)

respectively. We then estimate the conjoined conditional covariance operator by

Σ̂
Ẍ
i
Ẍ
j |Uij

= Σ̂
(X
i
U
ij

)(X
j
U
ij

)
− Σ̂

(X
i
U
ij

)U
ij (Σ̂

U
ij
U
ij + ε

(i,j)

U I)
−1

Σ̂
U
ij

(X
j
U
ij

)
,

where, again, we have used Tychonoff regularization to estimate the inverted covariance operator
Σ
U
ij
U
ij . Let K

U
ij , K

X
i
U
ij , and K

X
j
U
ij be the Gram matrices

K
U
ij = {κijU (U

ij

a , U
ij

b )}na,b=1,

K
X
i
U
ij = {κi,ijXU((X

i

a, U
ij

a ), (X
i

b, U
ij

b ))}na,b=1,

K
X
j
U
ij = {κj,ijXU((X

j

a, U
ij

a ), (X
j

b , U
ij

b ))}na,b=1,

and G
X
i
U
ij , G

X
j
U
ij , and G

U
ij their centered versions

G
X
i
U
ij = QK

X
i
U
ijQ, G

X
j
U
ij = QK

X
j
U
ijQ, G

U
ij = QK

U
ijQ.

As shown in Appendix L,

‖Σ̂
Ẍ
i
Ẍ
j |Uij
‖HS =

∥∥∥G1/2

X
i
U
ijG

1/2

X
j
U
ij −G1/2

X
i
U
ijGU

ij (G
U
ij + ε

(i,j)

U Q)
†
G

1/2

X
j
U
ij

∥∥∥
F

,

where ‖ · ‖F is the Frobenius norm. Estimation of the edge set is then based on thresholding this
norm; that is,

Ê = {(i, j) ∈ Γ× Γ : i > j, ‖Σ̂
Ẍ
i
Ẍ
j |Uij
‖HS > ρn}

for some chosen ρn > 0.

4.3 Tuning

We have three types of tuning constants: those for the kernels, those for Tychonoff regularization,
and the threshold ρn. For the Tychonoff regularization, we have ε(i,j)X and ε−(i,j)

X for step 1, and ε(i,j)U

for step 2. In this paper we use the Gaussian radial basis function as the kernel:

κ(u, v) = exp(−γ‖u− v‖2). (11)

9
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For each (i, j), we have five γ’s to determine: γ(i,j)

X for the kernel κ(i,j)

X , γ−(i,j)

X for κ−(i,j)

X , γi,ijXU for
κi,ijXU , γj,ijXU for κj,ijXU , and γijU for κijU , which are chosen by the following formula (see, for example, Li
(2018b))

1/
√
γ =

(
n

2

)−1∑
a<b

‖sa − sb‖, (12)

where s1, . . . , sn are the sample of random vectors corresponding to the mentioned five kernels. For
example, for the kernel κj,ijXU , sa = (Xj

a, U
ij

a ). For the tuning parameters in Tychonoff regularization,
we use the following generalized cross validation scheme (GCV; see Golub et al. (1979)):

GCV(ε) = argminε
∑
i<j

‖G1 −GT
2[G2 + ελmax(G2)]

−1G1‖F
1
n tr{In −GT

2[G2 + ελmax(G2)]
−1}

, (13)

where G1, G2 ∈ Rn×n are positive semidefinite matrices, and λmax(G2) is the largest eigenvalue of
G2. The matrices G1 and G2 are the following matrices for the three tuning parameters:

1. G1 = G
X
−(i,j) , G2 = G

X
(i,j) for ε(i,j)X ,

2. G1 = G
X

(i,j) , G2 = G
X
−(i,j) for ε−(i,j)

X ,

3. G1 = G
X

(i,j) , G2 = G
U
ij for ε(i,j)U ,

We minimize (13) over a grid to choose ε, as detailed in Section 6.
We also use generalized cross validation to determine the thresholding parameter ρn. Let Ê(ρ)

be the estimated edge set using a threshold ρ, and, for each i ∈ Γ, letCi(ρ) = {Xj : j ∈ Γ, (i, j) ∈
Ê(ρ)} be the subset of components of X at the neighborhood of the node i in the graph (Γ, Ê(ρ)).
The basic idea is to apply the generalized cross validation to the regression of the feature of X i on
the feature of Ci(ρ). The generalized cross validation for this regression takes the form

GCV(ρ) =

p∑
i=1

‖G
X
i −GT

C
i
(ρ)

[G
C
i
(ρ)

+ ελmax(GC
i
(ρ)

)In]−1G
X
i‖F

1
n tr{In −GT

C
i
(ρ)

[G
C
i
(ρ)

+ ελmax(GC
i
(ρ)

)In]−1}
, (14)

where G
C
i
(ρ)

= QK
C
i
(ρ)
Q, and K

C
i
(ρ)

is the n × n kernel matrix for the sample of Ci(ρ). We
minimize GCV(ρ) over the grid ρ ∈ {` × 10−2 : ` = 2, . . . , 7} to determine the optimal threshold
ρn.

Regarding the selection of the dimension of U ij , to our knowledge there has been no systematic
procedure available to determine the dimension of the central class for nonlinear sufficient dimen-
sion reduction. While some recently developed methods for order determination for linear sufficient
dimension reduction, such as the ladle estimate and predictor augmentation estimator (Luo and Li,
2016, 2020), may be generalizable to the nonlinear sufficient dimension reduction setting, we will
leave this topic to future research. Our experiences and intuitions indicate that a small dimension,
such as 1 or 2, for the central class would be sufficient in most cases. For example, in the classical
nonparametric regression problems Y = f(X) + ε with X ε, the dimension of the central class is
by definition equal to 1.

10
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4.4 Algorithm

We next provide a detailed algorithm of our two-step procedure.

Algorithm Sufficient graphical model

1: for i > j do
2: For each (i, j), standardize X(i,j) and X−(i,j) marginally.
3: Choose γ(i,j)

X , γ−(i,j)

X , ε(i,j)X and ε−(i,j)

X according to (12) and (13) in Section 4.3.
4: Extract the first dij eigenvectors from the matrix

(G
X
−(i,j) + ε

−(i,j)

X In)
−1
G
X
−(i,j)G

X
(i,j)(G

X
(i,j) + ε

(i,j)

X In)
−1
G
X
−(i,j)(G

X
−(i,j) + ε

−(i,j)

X In)
−1
.

Then, derive the sufficient predictor according to Section 4.1 and set this as U ij .
5: Choose γi,ijXU , γ

j,ij

XU , γ
ij

U , ε
(i,j)

U according to Section 4.3.
6: Calculate ‖Σ̂

Ẍ
i
Ẍ
j |Uij
‖HS =

∥∥∥G1/2

X
i
U
ijG

1/2

X
j
U
ij −G1/2

X
i
U
ijGU

ij (G
U
ij + ε(i,j)U Q)†G1/2

X
j
U
ij

∥∥∥
F

.

7: Determine the threshold, ρn, by minimizing (14) over the grid ρ ∈ {`×10−2 : ` = 2, . . . , 7}.
8: Estimate edges by

Ê = {(i, j) ∈ Γ× Γ : i > j, ‖Σ̂
Ẍ
i
Ẍ
j |Uij
‖HS > ρn}.

9: end for

5. Asymptotic theory

In this section we develop the consistency and convergence rates of our estimate and related oper-
ators. The challenge of this analysis is that our procedure involves two steps: we first extract the
sufficient predictor using one set of kernels, and then substitute it into another set of kernels to get
the final result. Thus we need to understand how the error propagates from the first step to the sec-
ond. We also develop the asymptotic theory allowing p to go to infinity with n, which is presented
in the Appendix.

5.1 Overview

Our goal is to derive the convergence rate of

∣∣∣‖Σ̂
Ẍ
i
Ẍ
j |Ûij
‖HS − ‖ΣẌ

i
Ẍ
j |Uij
‖HS

∣∣∣ ,
as ‖Σ̂

Ẍ
i
Ẍ
j |Ûij
‖HS is the quantity we threshold to determine the edge set. By the triangular inequality,

∣∣∣‖Σ̂
Ẍ
i
Ẍ
j |Ûij
‖HS − ‖ΣẌ

i
Ẍ
j |Uij
‖HS

∣∣∣ ≤ ‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS

≤ ‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ̂

Ẍ
i
Ẍ
j |Uij
‖HS + ‖Σ̂

Ẍ
i
Ẍ
j |Uij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS.

11
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So we need to derive the convergence rates of the following quantities:

(i) ‖Û ij − U ij‖
[H
−(i,j)

(X)]
dij
,

(ii) ‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ̂

Ẍ
i
Ẍ
j |Uij
‖HS,

(iii) ‖Σ̂
Ẍ
i
Ẍ
j |Uij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS,

(15)

where, to avoid overly crowded subscripts, we have used H −(i,j)(X) to denote H −(i,j)

X when it
occurs as a subscript.

The first and third convergence rates can be derived using the asymptotic tools for linear oper-
ators developed in Fukumizu et al. (2007), Li and Song (2017), Lee et al. (2016a), and Solea and
Li (2022). Theorems 10 and 11 below are concerned with these rates. At the sample level, the
linear operators involved in these rates are essentially sample averages of tensor products of ker-
nels, which can be dealt with by Chebychev’s inequality. A more delicate issue is to deal with the
inverses: since, at the population level, these are compact operators, their inverses are unbounded,
and cannot be estimated directly. To get around this, we employ Tychonoff regularization with a
tuning parameter converging to 0 at a certain rate. It is this aspect of the asymptotic analysis that
reflects the infinite-dimensional nature of the problem, which makes the convergence rate slower
than n−1/2. In fact, without these inverses, all moment estimators are convergent at the parametric
n−1/2 rate, and the problem is no different from a finite-dimensional problem. Once the convergence
rates of the linear operators are determined, the convergence of eigenvectors are then calculated by
perturbation theory. For further references for asymptotic analysis of linear operators and perturba-
tion theory, see Koltchinskii and Giné (2000), Blanchard et al. (2007), Fukumizu et al. (2009), Li
and Solea (2018b), and Li (2018b).

The second convergence rate in (15) is, however, a new problem specific to the current two-step
procedure. It reveals how the error produced in extracting the sufficient predictor Ûij in the first
step propagates into the estimation of the linear operator Σ

Ẍ
i
Ẍ
j |Uij

in the second step. Theorems 7
through 9 and Theorem 12 below are concerned with this rate. For developing this rate we appeal
to the reproducing property of the kernel to establish a uniform substitution error of Û ij for U ij .
This approach is novel and we expect it to be useful in other settings where one uses the sufficient
predictors produced by nonlinear sufficient dimension reduction to replace the original random vec-
tors conditioned upon. In some sense, this problem is akin to the post dimension reduction problem
considered in Kim et al. (2020).

Once the convergence rates are established, we can then optimize them by varying the conver-
gence rates of the tuning parameters in Tychonoff regularization. This is done in Theorem 14. The
technique used in the optimization is similar to that used in Li and Song (2017, Corollary 4) and Li
and Solea) and (2018b, Theorem 5).

In the following, if {an} and {bn} are sequences of positive numbers, then we write an ≺ bn if
an/bn → 0. We write an � bn if 0 < lim infn(bn/an) ≤ lim supn(bn/an) <∞. We write bn � an
if either bn ≺ an or bn � an. Because (i, j) is fixed in the asymptotic development, and also to
emphasize the dependence on n, in the rest of this section we denote ε(i,j)X , ε−(i,j)

X , and ε(i,j)U by εn,
ηn, and δn, respectively.
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5.2 Transparent kernel

We first develop what we call the “transparent kernel” that passes information from step 1 to step 2
efficiently. Let Ω be a nonempty set, and κ : Ω× Ω→ R a positive kernel.

Definition 6 We say that κ is a transparent kernel if, for each t ∈ Ω, the function s 7→ κ(s, t) is
twice differentiable and

1. ∂κ(s, t)/∂s|s=t = 0;

2. the matrix H(s, t) = ∂2κ(s, t)/∂s∂sT has a bounded operator norm; that is, there exist
−∞ < C1 ≤ C2 <∞ such that

C1 ≤ λmin(H(s, t)) ≤ λmax(H(s, t)) < C2

for all (s, t) ∈ Ω×Ω, where λmin(·) and λmax(·) indicate the largest and smallest eigenvalues.

For example, the Gaussian radial basis function kernel is transparent, but the exponential kernel
κ(u, v) = τ 2 exp(−γ‖u − v‖) is not. This condition implies a type of Lipschitz continuity in a
setting that involves two reproducing kernels κ0 and κ1, where the argument of κ1 is the evaluation
of a member of the reproducing kernel Hilbert space generated by κ0.

Theorem 7 Suppose H 0 is the reproducing kernel Hilbert space generated by κ0, H
d

0 is the d-fold
Cartesian product of H 0 with inner product defined by

〈U, V 〉
H

d
0

= 〈u1, v1〉H0
+ · · ·+ 〈ud, vd〉H0

where U = (u1, . . . , ud) and V = (v1, . . . , vd) are members of H d

0 , H 1 is the reproducing kernel
Hilbert space generated by κ1. Then:

(i) for any U, V ∈H d

0 , a ∈ Ω, we have

‖U(a)− V (a)‖
R d
≤ [κ0(a, a)]

1/2 ‖U − V ‖
H

d
0

;

(ii) if κ1(s, t) is a transparent kernel, then there exists a C > 0 such that, for each U, V ∈ H d

0

and a ∈ Ω,

‖κ1(·, U(a))− κ1(·, V (a))‖H1
≤ C [κ0(a, a)]

1/2 ‖U − V ‖
H

d
0
.

A direct consequence of this theorem is that, if Û is an estimate of some U , a member of H d

0,
with ‖Û − U‖

H0
d = OP (bn) for some 0 < bn → 0, Σ̂(Û) is a linear operator estimated from

the sample Û1, . . . , Ûn (and perhaps some other random vectors), and Σ̂(U) is a linear operator
estimated from the sample U1, . . . , Un, then,

‖Σ̂(Û)− Σ̂(U)‖HS = OP (bn). (16)

This result is somewhat surprising, because sample estimates such as Σ̂(Û) can be viewed as
EnG(X, Û), where Û is an estimate of a function U in a functional space with norm ‖ · ‖ and

13
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G is an operator-valued function. If ‖Û −U‖ = OP (bn) for some bn → 0, then it is not necessarily
true that

‖EnG(X, Û)− EnG(X,U)‖ = OP (bn),

particularly when U is an infinite dimensional object. Yet relation (16) states exactly this. The
reason behind this is that the reproducing kernel property separates the function Û and its argument
Xa (i.e. Û(x) = 〈Û , κ(·, x)〉), which implies a type of uniformity among Û(X1), . . . , Û(Xn). This
point will be made clear in the proof in the Appendix. Statement (16) is made precise by the next
theorem.

Theorem 8 Suppose conditions (1) and (2) of Definition 3 are satisfied with U , V , W therein
replaced by X i, Xj , and U ij . Suppose, furthermore:

(a) κijU , κi,ijXU , and κj,ijXU are transparent kernels;

(b) ‖Û ij − U ij‖
[H
−(i,j)

(X)]
dij

= OP (bn) for some 0 < bn → 0.

Then

(i) ‖Σ̂
Û
ij
Û
ij − Σ̂

U
ij
U
ij‖HS = OP (bn);

(ii) ‖Σ̂
(X
i
Û
ij

)Û
ij − Σ̂

(X
i
U
ij

)U
ij‖HS = OP (bn);

(iii) ‖Σ̂
(X
i
Û
ij

)(X
j
Û
ij

)
− Σ̂

(X
i
U
ij

)(X
j
U
ij

)
‖HS = OP (bn).

Using Theorem 8 we can derive the convergence rate of ‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ̂

Ẍ
i
Ẍ
j |Uij
‖HS.

Theorem 9 Suppose conditions in Theorem 8 are satisfied and, furthermore,

(a) Σ−1

U
ij
U
ijΣU

ij
(X
i
U
ij

)
and Σ−1

U
ij
U
ijΣU

ij
(X
j
U
ij

)
are bounded linear operators;

(b) bn � δn ≺ 1.

Then ‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ̂

Ẍ
i
Ẍ
j |Uij
‖HS = OP (bn).

Note that, unlike in Theorem 8, where our assumptions imply

Σ
−1

X
−(i,j)

X
−(i,j)ΣX

−(i,j)
X

(i,j)

is a finite-rank operator, here, we do not assume Σ−1

U
ij

(U
ij

)
Σ
U
ij

(X
j
U
ij

)
to be a finite-rank (or even

Hilbert-Schmidt) operator; instead, we assume it to be a bounded operator. This is because (Xj, U ij)
contains U ij , which makes it unreasonable to assume Σ−1

U
ij
U
ijΣU

ij
(X
j
U
ij

)
to be finite-rank or Hilbert

Schmidt. For example, whenXj is a constant, Σ
U
ij

(X
j
U
ij

)
is the same as Σ

U
ij
U
ij and Σ−1

U
ij
U
ijΣU

ij
U
ij

is not a Hilbert Schmidt operator, though it is bounded. Theorem 9 shows that convergence rate of
(ii) in (15) is the same as the convergence rate of (i) in (15); it now remains to derive the convergence
rate of (i) and (iii).
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5.3 Convergence rates of (i) and (iii) in (15)

We first present the convergence rate of Û ij to U ij . The proof is similar to that of Theorem 5 of Li
and Song (2017) but with two differences. First, Li and Song (2017) took A in (5) to be I , whereas
we take it to be ΣY Y . In particular, the generalized sliced inverse regression in Li and Song (2017)
only has one tuning parameter ηn, but we have two tuning parameters ηn and εn. Second, Li and
Song (2017) defined (in the current notation) f ijr to be the eigenfunctions of

Σ
−1

X
−(i,j)

X
−(i,j)ΣX

−(i,j)
X

(i,j)Σ
−1

X
(i,j)

X
(i,j)ΣX

(i,j)
X
−(i,j)Σ

−1

X
−(i,j)

X
−(i,j) ,

which is different from the generalized eigenvalue problem (5). For these reasons we need to re-
derive the convergence rate of Û ij .

Theorem 10 Suppose

(a) Assumption 1 is satisfied;

(b) Σ
X
−(i,j)

X
(i,j) is a finite-rank operator with

ran(Σ
X
−(i,j)

X
(i,j)) ⊆ ran(Σ

2

X
−(i,j)

X
−(i,j)),

ran(Σ
X

(i,j)
X
−(i,j)) ⊆ ran(Σ

X
(i,j)

X
(i,j));

(c) n−1/2 ≺ ηn ≺ 1, n−1/2 ≺ εn ≺ 1;

(d) for each r = 1, . . . , dij , λ
ij

1 > · · · > λijdij .

Then, ‖Û ij − U ij‖
[H
−(i,j)

(X)]
dij

= OP (η−3/2

n ε−1

n n
−1 + η−1

n n−1/2 + ηn + εn).

An immediate consequence is that, under the transparent kernel assumption, the bn in Theorem
9 is the same as this rate. We next derive the convergence rate in (iii) of (15). This rate depends on
the tuning parameter δn in the estimate of conjoined conditional covariance operator, and it reaches
bn for the optimal choice of δn.

Theorem 11 Suppose conditions (1) and (2) of Definition 3 are satisfied with U , V , W therein
replaced by X i, Xj , and U ij . Suppose, furthermore,

(a) Σ−1

U
ij
U
ijΣU

ij
(X
i
U
ij

)
and Σ−1

U
ij
U
ijΣU

ij
(X
j
U
ij

)
are bounded linear operators;

(b) bn � δn ≺ 1.

Then ‖Σ̂
Ẍ
i
Ẍ
j |Uij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS = OP (δn). Consequently, if δn � bn, then

‖Σ̂
Ẍ
i
Ẍ
j |Uij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS = OP (bn).

Finally, we combine Theorem 9 through Theorem 11 to come up with the convergence rate
of Σ̂

Ẍ
i
Ẍ
j |Ûij

. Since there are numerous cross references among the conditions in these theorems,
to make a clear presentation we list all the original conditions in the next theorem, even if they
already appeared. These conditions are of two categories: those for the step 1 that involves sufficient
dimension reduction of X(i,j) versus X−(i,j), and those for the step 2 that involves the estimation of
the conjoined conditional covariance operator. We refer to them as the first-level and second-level
conditions, respectively.
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Theorem 12 Suppose the following conditions hold:

(a) (First-level kernel) E[κ(S, S)] <∞ for κ = κ(i,j)

X and κ = κ−(i,j)

X ;

(b) (First-level operator) Σ
X
−(i,j)

X
(i,j) is a finite-rank operator with rank dij and

ran(Σ
X
−(i,j)

X
(i,j)) ⊆ ran(Σ

2

X
−(i,j)

X
−(i,j)),

ran(Σ
X

(i,j)
X
−(i,j)) ⊆ ran(Σ

X
(i,j)

X
(i,j));

all the nonzero eigenvalues of Σ
X

(i,j)
X
−(i,j)Σ

−1

X
−(i,j)

X
−(i,j)ΣX

−(i,j)
X

(i,j) are distinct;

(c) (First-level tuning parameters) n−1/2 ≺ ηn ≺ 1, n−1/2 ≺ εn ≺ 1, η−3/2

n ε−1

n n
−1 + η−1

n n−1/2 +
η1/2

n + εn ≺ 1;

(d) (Second-level kernel) E[κ(S, S)] < ∞ is satisfied for κ = κijU , κi,ijXU , and κj,ijXU ; furthermore,
they are transparent kernels;

(e) (Second-level operators) Σ−1

U
ij
U
ijΣU

ij
(X
i
U
ij

)
and Σ−1

U
ij
U
ijΣU

ij
(X
j
U
ij

)
are bounded linear oper-

ators;

(f) (Second-level tuning parameter) δn � η−3/2

n ε−1

n n
−1 + η−1

n n−1/2 + ηn + εn.

Then

‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS = OP (η

−3/2

n ε
−1

n n
−1

+ η
−1

n n
−1/2

+ ηn + εn). (17)

Using this result we immediately arrive at the variable selection consistency of the Sufficient
Graphical Model.

Corollary 13 Under the conditions in Theorem 12, if

η
−3/2

n ε
−1

n n
−1

+ η
−1

n n
−1/2

+ ηn + εn ≺ ρn ≺ 1, and

Ê = {(i, j) ∈ Γ× Γ : i > j, ‖Σ̂
Ẍ
i
Ẍ
j |Ûij
‖HS < ρn}

then limn→∞ P (Ê = E)→ 1.

5.4 Optimal rates of tuning parameters

The convergence rate in Theorem 12 depends on εn and ηn explicitly, and δn implicitly (in the sense
that δn � η−3/2

n ε−1

n n
−1 +η−1

n n−1/2 +ηn+ εn is optimal for fixed εn and ηn). Intuitively, when εn, ηn,
and δn increase, the biases increase and variances decrease; when they decrease, the biases decrease
and the variances increase. Thus there should be critical rates for them that balance the bias and
variance, which are the optimal rates.

Theorem 14 Under the conditions in Theorem 12, if εn, ηn, and δn are of the form na, nb, and nc

for some a > 0, b > 0, and c > 0, then

(i) the optimal rates the tuning parameters are

n
−3/8 � εn � n

−1/4
, ηn � n

−1/4
, δn � n

−1/4
;
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(ii) the optimal convergence rate of the estimated conjoined conditional covariance operator is

‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS = OP (n

−1/4
).

Note that there is a range of εn are optimal, this is because the convergence rate does not have a
unique minimizer. This also means the result is not very sensitive to this tuning parameter.

In the above asymptotic analysis, we have treated p as fixed when n → ∞. We have also
developed the consistency and convergence rate in the scenario where the dimension of pn of X
goes to infinity with n, which is placed in the Appendix I.

6. Simulation

In this section we compare the performance of our sufficient graphical model with previous meth-
ods such as Yuan and Lin (2007), Liu et al. (2009), Voorman et al. (2013), Fellinghauer et al.
(2013), Lee et al. (2016b), and a Naı̈ve method which is based on the conjoined conditional co-
variance operator without the dimension reduction step. The code is publicly available on Github:
https://github.com/kyongwonkim/Sufficient-Graphical-Model.git.

By design, the sufficient graphical model has advantages over these existing methods under the
following circumstances. First, since the sufficient graphical model does not make any distributional
assumption, it should outperform Yuan and Lin (2007) and Liu et al. (2009) when the Gaussian or
copula Gaussian assumptions are violated; second, due to the sufficient dimension reduction in
sufficient graphical model, it avoids the curse of dimensionality and should outperform Voorman
et al. (2013), Fellinghauer et al. (2013), and a Naı̈ve method in the high-dimensional setting; third,
since sufficient graphical model does not require additive structure, it should outperform Lee et al.
(2016b) when there is severe nonadditivity in the model. Our simulation comparisons will reflect
these aspects.

For the sufficient graphical model, Lee et al. (2016b), and the Naı̈ve method, we use the
Gaussian radial basis function as the kernel. The regularization constants ε(i,j)X , ε−(i,j)

X , and ε(i,j)U

are chosen by the generalized cross validation criterion described in Section 4.3 with the grid
{10−` : ` = −1, 0, 1, 2, 3, 4}. The kernel parameters γ(i,j)

X , γ−(i,j)

X , γi,ijXU , γj,ijXU , and γijU are cho-
sen according to (12). Because the outcomes of tuning parameters are stable, for each model, we
compute the generalized cross validation for the first five samples and use their average value for
the rest of the simulation.

The performance of each estimate is accessed using the averaged receiver operating characteris-
tic (ROC) curve, which is a convenient visual representation of the accuracy of a classifier. Suppose
that we have a set of subjects whose binary labels (say 0 and 1) are known, and a classifier that
depends on a turning parameter ρ. For each value of ρ, the classifier gives two percentages: the per-
centage of true positive (i.e. classifying 1 as 1) and the percentage of false positive (i.e. classifying
0 as 1). Denoting the two percentages as a(ρ) and b(ρ), then the ROC curve is the set of points
{(a(ρ), b(ρ)) : ρ ∈ I}, where I is an interval. Obviously, for any ρ, we prefer a(ρ) to be large
and b(ρ) small, which means the area under the curve (AUC) measures the accuracy of a classifier
across all tuning parameter values. In our setting, the set of subjects is the edge set, the labels 0 and
1 correspond to absence and presence of an edge, the classifier is the decision rule for an edge, and
the turning parameter is the threshold ρn.

To isolate the factors that affect accuracy, we first consider two models with relatively small
dimensions and large sample sizes, which are
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Model I : X
1

= ε1, X
2

= ε2, X
3

= sin(2X
1
) + ε3

X
4

= (X
1
)
2

+ (X
2
)
2

+ ε4, X
5

= ε5,

Model II : X
1

= ε1, X
2

= X
1

+ ε2, X
3

= ε3, X
4

= (X
1

+X
3
)
2

+ ε4,

X
5

= cos(2X2
X

3
) + ε5, X

6
= X

4
+ ε6,

where εi, i = 1, . . . , p are from independent and identically distributed standard normal distri-
bution. The edge sets of the two models are

Model I : E = {(1, 3), (1, 4), (2, 4), (1, 2)}
Model II : E = {(1, 2), (1, 4), (3, 4), (1, 3), (2, 5), (3, 5), (2, 3), (4, 6)}.

We use n = 100, 1000 for each model, and for each n, we generate 50 samples to compute the
averaged ROC curves. The dimension dij for sufficient graphical model is taken to be 2 for all cases
(we have also used dij = 1 and the results are very similar to those presented here). The plots in
the Figures 1 to 6 show the averaged ROC curves for the seven methods, with the following plotting
symbol assignment:

Sufficient graphical model: red solid line Voorman et al. (2013): red dotted line
Lee et al. (2016b): black solid line Fellinghauer et al. (2013): black dotted line
Yuan and Lin (2007): red dashed line Naı̈ve: blue dotted line
Liu et al. (2009): black dashed line

From these figures we see that the two top performers are clearly sufficient graphical model
and Lee et al. (2016b), and their performances are very similar. Note that none of the two mod-
els satisfies the Gaussian or copula Gaussian assumption, which explains why sufficient graphical
model and Lee et al. (2016b) outperform Yuan and Lin (2007) and Liu et al. (2009). Sufficient
graphical model and Lee et al. (2016b) also outperform Voorman et al. (2013), Fellinghauer et al.
(2013), and Naı̈ve method, indicating that curse of dimensionality already takes effect on the fully
nonparametric methods. The three nonparametric estimators have similar performances. Also note
that Model I has an additive structure, which explains the slight advantage of Lee et al. (2016b)
over sufficient graphical model in Figure 1; Model II is not additive, and the advantage of Lee et al.
(2016b) disappears in Figure 2.

We next consider two models with relatively high dimensions and small sample sizes. A conve-
nient systematic way to generate larger networks is via the hub structure. We choose p = 200, and
randomly generate ten hubs h1, . . . , h10 from the 200 vertices. For each hk, we randomly select a
set Hk of 19 vertices to form the neighborhood of hk. With the network structures thus specified,
our two probabilistic models are

Model III : X
i

= 1 + |Xhk |2 + εi, where i ∈ Hk \ hk,
Model IV : X

i
= sin((X

hk)
3
)εi, where i ∈ Hk \ hk,

and εi’s are the same as in Models I and II. Note that, in Model III, the dependence of Xi on
Xhk

is through the conditional mean E(Xi|Xhk
), whereas in Model IV, the dependence is through
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Figure 1: Averaged ROC curves for Model I. Left panel: n = 100; right panel: n = 1000.

Figure 2: Averaged ROC curves for Model II. Left panel: n = 100; right panel: n = 1000.
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Figure 3: Averaged ROC curves for Model III with p = 200 case. Left panel: n = 50; right panel:
n = 100.

Figure 4: Averaged ROC curves for Model IV. Left panel: n = 50; right panel: n = 100.
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Figure 5: Averaged ROC curves for Model III with p = 300 case. Left panel: n = 300; right panel:
n = 500.

the conditional variance var(Xi|Xhk
). For each model, we choose two sample sizes n = 50 and

n = 100. The corresponding averaged ROC curves (averaged over 50 samples) are displayed in
Figures 3 and 4. In particular, in the context of high-dimensional scenarios where p > n, the
graphical model with sufficient dimension reduction consistently outperforms alternative methods.
This observation underscores the advantages of dimension reduction in the construction of graphical
models.

In Figure 5, we further increased the sample size and dimension in Model III to include p = 300
and n = 300, 500, respectively, while maintaining a hub count of 10. As we can see from this figure,
as both the dimension and sample size increase, our method remains competitive, outperforming the
alternative approaches.

We now consider a Gaussian graphical model to investigate any efficiency loss incurred by
sufficient graphical model. Following the similar structure used in Li et al. (2014), we choose
p = 20, n = 100, 200, and the model

Model V : X ∼ N(0,Θ
−1

),

where Θ is 20× 20 precision matrix with diagonal entries 1, 1, 1, 1.333, 3.010, 3.203, 1.543, 1.270,
1.544, 3, 1, 1, 1.2, 1, 1, 1, 1, 3, 2, 1, and nonzero off-diagonal entries θ3,5 = 1.418, θ4,10 = −0.744,
θ5,9 = 0.519, θ5,10 = −0.577, θ13,17 = 0.287, θ17,20 = 0.542, θ14,15 = 0.998. As expected,
Figure 6 shows that Yuan and Lin (2007), Liu et al. (2009), and Lee et al. (2016b) perform better
than sufficient graphical model in this case. However, sufficient graphical model still performs
reasonably well and significantly outperforms the fully nonparametric methods.

Finally, we conducted some simulation on the generalized cross validation criterion (14) for
determining the threshold ρn. We generated samples from Models I through V as described above,
produced the ROC curves using sufficient graphical model, and determined the threshold ρn by
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Figure 6: Averaged ROC curves for Model V. Left panel: n = 100; right panel: n = 200.

(14). The results are presented in Figure 7 in the Appendix. In each penal, the generalized cross
validation-determined threshold ρn are represented by the black dots on the red ROC curves.

7. Application

We now apply sufficient graphical model to a data set from the DREAM 4 Challenge project and
compare it with other methods. The goal of this Challenge is to recover gene regulation networks
from simulated steady-state data. A description of this data set can be found in Marbach et al.
(2010). Since Lee et al. (2016b) already compared their method with Yuan and Lin (2007), Liu
et al. (2009), Voorman et al. (2013), Fellinghauer et al. (2013), and Naı̈ve method for this dataset
and demonstrated the superiority of Lee et al. (2016b) among these estimators, here we will focus on
the comparison of the sufficient graphical model with Lee et al. (2016b) and the champion method
for the DREAM 4 Challenge.

The data set contains data from five networks each of dimension of 100 and sample size 201. We
use the Gaussian radial basis function kernel for sufficient graphical model and Lee et al. (2016b)
and the tuning methods described in Section 4.3. For sufficient graphical model, the dimensions
dij are taken to be 1. We have also experimented with dij = 2 but the results (not presented here)
show no significant difference. Because networks are available, we can compare the ROC curves
and their areas under the curve’s, which are shown in Table 1.
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Table 1: Comparison of sufficient graphical model, Lee et al. (2016b), Naı̈ve and the champion
methods in DREAM 4 Challenge

Network 1 Network 2 Network 3 Network 4 Network 5
Sufficient graphical model 0.85 0.81 0.83 0.83 0.79

Lee et al. (2016b) 0.86 0.81 0.83 0.83 0.77
Champion 0.91 0.81 0.83 0.83 0.75

Naı̈ve 0.78 0.76 0.78 0.76 0.71

As we can see from Table 1, sufficient graphical model has the same areas under the ROC curve
values as Lee et al. (2016b) for Networks 2, 3, and 4, performs better than Lee et al. (2016b) for
Network 5, but trails slightly behind Lee et al. (2016b) for Network 1; sufficient graphical model
has the same areas under the curve as the champion method, performs better for Network 5 and
worse for Network 1. Overall, sufficient graphical model and Lee et al. (2016b) perform similarly
in this dataset, and they are on a par with the champion method. We should point out that suffi-
cient graphical model and Lee et al. (2016b) are purely empirical; they employ no knowledge about
the underlying physical mechanism generating the gene expression data. However, according to
Pinna et al. (2010), the champion method did use a differential equation that reflects the underly-
ing physical mechanism. The results for threshold determination are presented in Figure 8 in the
Appendix.

8. Discussion

This paper is a first attempt to take advantage of the recently developed nonlinear sufficient dimen-
sion reduction method to nonparametrically estimate the statistical graphical model while avoiding
the curse of dimensionality. Nonlinear sufficient dimension reduction is used as a module and ap-
plied repeatedly to evaluate conditional independence, which leads to a substantial gain in accuracy
in the high-dimensional setting. Compared with the Gaussian and copula Gaussian methods, our
method is not affected by the violation of the Gaussian and copula Gaussian assumptions. Com-
pared with the additive method (Lee et al., 2016b), our method does not require an additive structure
and retains the conditional independence as the criterion to determine the edges, which is a com-
monly accepted criterion. Compared with fully nonparametric methods, sufficient graphical model
avoids the curse of dimensionality and significantly enhances the performance.

The present framework opens up several directions for further research. First, the current model
assumes that the central class S

X
(i,j)|X−(i,j) is complete, so that generalized sliced inverse regres-

sion is the exhaustive nonlinear sufficient dimension reduction estimate. When this condition is
violated, generalized sliced inverse regression is no longer exhaustive and we can employ other
nonlinear sufficient dimension reduction methods such as the generalized sliced averaged variance
estimation (Lee et al., 2013; Li, 2018b) to recover the part of the central class that generalized sliced
inverse regression misses. Second, though we have assumed that there is a proper sufficient sub-
σ-field G−(i,j) for each (i, j), the proposed estimation procedure is still justifiable when no such
sub-σ-field exists. In this case, U ij is still the most important set of functions that characterize the
statistical dependence of X(i,j) on X−(i,j) – even though it is not sufficient. Without sufficiency, our
method may be more appropriately called the Principal Graphical Model than the sufficient graph-
ical model. Third, the current method can be extended to functional graphical model, which are
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common in medical applications such as EEG and fMRI. Several functional graphical models have
been proposed recently, by Zhu et al. (2016), Qiao et al. (2019), Li and Solea (2018b), and Solea
and Li (2022). The idea of a sufficient graph can be applied to this setting to improve efficiency.
Finally, given the sample size n and the number of nodes p, the proposed 2-step procedure requires
inversions of several n× n matrices for each pair of nodes. This results in computation complexity
ofO(p2n3) for constructing the entire graph, which could be burdensome for large-scale data. Iden-
tifying strategies to mitigate the computational cost would be a promising topic for future research.

This paper also contains some theoretical advances that are novel to nonlinear sufficient dimen-
sion reduction. For example, it introduces a general framework to characterize how the error of
nonlinear sufficient dimension reduction propagates to the downstream analysis in terms of conver-
gence rates. Furthermore, the results for convergence rates of various linear operators allowing the
dimension of the predictor to go to infinity are the first of its kind in nonlinear sufficient dimension
reduction. These advances will benefit the future development of sufficient dimension reduction in
general, beyond the current context of estimating graphical models.
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Bernd Fellinghauer, Peter Bühlmann, Martin Ryffel, Michael Von Rhein, and Jan D Reinhardt. Sta-
ble graphical model estimation with random forests for discrete, continuous, and mixed variables.
Computational Statistics & Data Analysis, 64:132–152, 2013.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432–441, 2008.

Kenji Fukumizu, Francis R Bach, and Michael I Jordan. Dimensionality reduction for supervised
learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5(Jan):
73–99, 2004.

Kenji Fukumizu, Francis R Bach, and Arthur Gretton. Statistical consistency of kernel canonical
correlation analysis. Journal of Machine Learning Research, 8(Feb):361–383, 2007.

Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of con-
ditional dependence. Advances in neural information processing systems, pages 489–496, 2008.

Kenji Fukumizu, Francis R Bach, and Michael I Jordan. Kernel dimension reduction in regression.
The Annals of Statistics, pages 1871–1905, 2009.

Gene H. Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method for
choosing a good ridge parameter. Technometrics, 1979.

Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. Pairwise variable selection for high-
dimensional model-based clustering. Biometrics, 66(3):793–804, 2010.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Alexandros. Karatzoglou, Alex. Smola, Kurt. Hornik, and Achim. Zeileis. Kernlab – an s4 package
for kernel methods in r. Journal of Statististical Software, 11(9):1–20, 2004.

Kyongwon Kim, Bing Li, Zhou Yu, and Lexin Li. On post dimension reduction statistical inference.
to appear in The Annals of Statistics, 2020.
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Appendix

This Appendix consists of three parts:

1. Proofs of all theorems, lemmas, corollaries, and propositions in the paper. These are done in
Appendixes A through H;

2. Some additional theoretical results that are quoted by the paper, including the asymptotic de-
velopment for the high-dimensional setting (Section I), examples of joint distributions satisfy-
ing condition (3) in the paper, and a necessary and sufficient condition for ran(B) ⊆ ran(A)
(Appendix K);

3. Some additional simulation plots for threshold determination quoted in the paper (Appendix
M).

Appendix A. Preliminaries

A.1 Hilbert-Schmidt norm and operator norm

Lemma 15 If H 1 and H 2 are Hilbert spaces and f and g are members of H 1 and H 2, respec-
tively, then ‖f ⊗ g‖HS = ‖f‖H1

‖g‖H2
.

Proof Because

(f ⊗ g)(f ⊗ g)
∗
f = (f ⊗ g)(g ⊗ f)f = f〈g, g〉H2

〈f, f〉H1
,

‖g‖2H2
‖f‖2H1

is the eigenvalue of the rank-1 operator (f ⊗ g)(f ⊗ g)∗, which is by definition the
Hilbert-Schmidt norm ‖f ⊗ g‖2HS. 2

Lemma 16 If A and B are linear operators, then

‖AB‖HS ≤ ‖A‖OP‖B‖HS

Proof Recall that ‖AB‖2HS = tr(B∗A∗AB). Because

A
∗
A ≤ λmax(A

∗
A)I,

we have

tr(B
∗
A
∗
AB) ≤ λmax(A

∗
A)tr(B

∗
B) = ‖A‖2OP ‖B‖

2

HS. 2

Corollary 17 If A1, . . . , Am are bounded linear operators with at least one of them, say Ai being
a Hilbert-Schmidt operator, then

‖A1 · · ·Ai · · ·Am‖HS ≤ ‖A1‖OP · · · ‖Ai‖HS · · · ‖Am‖OP.

Lemma 18 If A and B are self adjoint Hilbert Schmidt operators, then

‖AB‖HS ≤ ‖A‖HS ‖B‖HS.
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Proof This follows from Lemma 16 and the fact that, for any self adjoint operator A, ‖A‖OP ≤
‖A‖HS. 2

Corollary 19 If A1, . . . , Am are self adjoint Hilbert Schmidt operators, then

‖A1 · · ·Am‖HS ≤ ‖A1‖HS · · · ‖Am‖HS.

A.2 Covariance operator and mean element in reproducing kernel Hilbert space

In this subsection we give formal definitions of various concepts used in Section 3, such as the mean
element, the covariance operator, the centered reproducing kernel Hilbert space, and the inverse of
an operator. For a linear operator A in a Hilbert space H , let ker(A) = {h ∈H : Ah = 0} be the
kernel of A, ran(A) = {Ah : h ∈H } the range of A, and ran(A) the closure of ran(A).

We first introduce the generic notion of the centered reproducing kernel Hilbert space. Suppose
(Ω,F , P ) is a probability space and U is a random element defined on (Ω,F , P ) taking values
in (ΩU ,FU). Let κ : ΩU × ΩU → R be a positive kernel. The reproducing kernel Hilbert space
generated by the kernel κ is the completion of the linear span of the set of functions {κ(·, u) : u ∈
ΩU}with the inner product between members of the linear span determined by 〈u1, u2〉 = κ(u1, u2).
Let us denote this reproducing kernel Hilbert space as K U . Under the assumption that Eκ(U,U) <
∞, the mean element µU of U is a well defined element of K U and the covariance operator ΣUU of
U is a well defined linear operator that maps from K U to K U , and they are uniquely defined by the
relations

1. 〈f, µU〉KU
= Ef(U) for each f ∈ K U ;

2. 〈f,ΣUUg〉KU
= cov[f(U), g(U)] for all f, g ∈ K U .

See, for example, Li (2018b). To study statistical relations, we can, without loss of generality,
reset K U to be ran(ΣUU). This is because ran(ΣUU) = ker(ΣUU)⊥, any f ∈ ker(ΣUU) satisfies
var[f(U)] = 0. Hence ker(ΣUU) consists of functions of U that are almost surely constants. Such
functions can be removed from K U without affecting any statistical relation. Thus it suffices to
consider the subspace ran(ΣUU) ≡ H U of K U . We call H U the centered reproducing kernel
Hilbert space generated by κ. Li and Song (2017) (in Lemma 1) showed that H U is the closed
subspace of K U spanned by the set of functions {κU(·, u) − µU : u ∈ ΩU}. Since ker(ΣUU) = 0
when ΣUU is restricted on H U , it is an injective linear operator. We use Σ−1

UU to denote the operator
from ran(ΣUU) to ran(ΣUU) = H U that sends ΣUUh to h. This inverse, however, is not a bounded
operator because the operator ΣUU , if it is defined, is a Hilbert-Schmidt operator.

Next, let V be another random element defined on (Ω,F , P ) taking values in (ΩV ,FV ), κV :
ΩV × ΩV → R a positive definite kernel that satisfies EκV (V, V ) < ∞, and H V the centered
reproducing kernel Hilbert space generated by κV . The covariance operator ΣUV is a mapping from
H V to H U that satisfies

〈f,ΣUV g〉HU
= cov[f(U), g(V )]

for each f ∈H U and g ∈H V .

29



LI AND KIM

The function µU and the linear operators such as ΣUU and ΣUV can be represented explicitly in
terms of kernels, as follows:

µU =EκU(·, U),

ΣUU =E{[κU(·, U)− EκU(·, U)]⊗ [κU(·, U)− EκU(·, U)]},
ΣUV =E{[κU(·, U)− EκU(·, U)]⊗ [κV (·, V )− EκV (·, V )]},

(18)

where ⊗ is the tensor product, κU(·, U) is the function ΩU → R, u 7→ κU(u, U), and EκU(·, U) is
the function ΩU → R, 7→ E[κU(u, U)].

A.3 Sample mean of operators

The following lemma is taken from Fukumizu et al. (2007).

Lemma 20 Suppose

(a) U1 and U2 are random vectors taking values in ΩU1
⊆ Rp1 and ΩU2

⊆ Rp2 , respectively;

(b) κ1 : ΩU1
× ΩU1

→ R, κ2 : ΩU2
× ΩU2

→ R are positive kernel functions such that
E[κ1(U1, U1)] <∞ and E[κ2(U2, U2)] <∞;

(c) (U11, U21), . . . , (U1n, U2n) are an i.i.d. sample of (U1, U2).

Then ‖Σ̂U1U2
− ΣU1U2

‖HS = OP (n−1/2).

A.4 Tychonoff regularized inverse

Henceforth, we say that a linear operator A is a CSP operator if it is compact, self-adjoint, and
positive semidefinite. Note that A being positive semidefinite implies that A is injective; that is,
ker(A) = {0}. If A : H → H is an injective linear operator, we define A−1 to be the linear
operator from ran(A) to H such that, for any g ∈ ran(A), A−1g is the unique element f ∈ H
such that Af = g. For any α > 0, we denote the operator (Aα)−1 by A−α. The conditions for the
following lemma are not the weakest possible, but they make the proof simple and they are all we
will need.

Lemma 21 Suppose H and K are Hilbert spaces and

(a) A1 : K → K is a CSP operator;

(b) A2 : H → K is a finite-rank linear operator;

(c) α > 0, and ran(A2) ⊆ ran(Aα

1 ).

Then, for any η > 0, (A1 + ηI)−αA2 is a finite-rank operator with

‖(A1 + ηI)
−α
A2‖HS ≤ ‖A

−α
1 A2‖HS. (19)

Condition (c) is equivalent to ran(A2) ⊆ dom(A−α1 ), so that the operator A−α1 A2 is a well
defined finite-rank operator.
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Proof First, since A−α1 A2 is a finite-rank operator, it is a Hilbert-Schmidt operator. Because

(A1 + ηI)
−α
A2 = (A1 + ηI)

−α
A
α

1A
−α
1 A2

and (A1 + ηI)−αAα

1 ≤ (A1 + ηI)−α(A1 + ηI)α = I, we have

A
∗
2[(A1 + ηI)

−α
]
2
A2 = A

∗
2A
−α
1 [(A1 + ηI)

−α
A
α

1 ]
2
A
−α
1 A2 ≤ A

∗
2(A

−α
1 )2A2,

where the first equality holds because (A1 + ηI)−α and Aα

1 commute. Hence the trace norm of the
left is no greater than the trace norm of the right, which is equivalent to (19). 2

Corollary 22 Suppose

1. A1 : K → K and A3 : H →H are CSP operators;

2. A2 : H → K is a finite rank linear operator;

3. α > 0, β > 0, ran(A2) ⊆ ran(Aα

1 ), ran(A∗2) ⊆ ran(Aβ

3 ).

Then (A1 + ηI)−αA2(A3 + εI)−β is a finite-rank operator and

‖(A1 + ηI)
−α
A2(A3 + εI)

−β‖HS ≤ ‖A
−α
1 A2A

−β
3 ‖HS. (20)

Proof Again, it is obvious thatA−α1 A2A
−β
3 is a finite-rank operator, so it has a finite Hilbert-Schmidt

norm. Since the conditions in Lemma 21 are satisfied for A1 and A2 therein replaced by A1 and
A2A

−β
3 in this corollary, the operator (A1 + ηI)−αA2A

−β
3 is Hilbert Schmidt with

‖(A1 + ηI)
−α
A2A

−β
3 ‖HS ≤ ‖A

−α
1 A2A

−β
3 ‖HS. (21)

Similarly, since the conditions in Lemma 21 are satisfied for A1 and A2 therein replaced by A3 and
A∗2(A1 + ηI)−α in this corollary, the operator (A3 + εI)−βA∗2(A1 + ηI)−α is Hilbert Schmidt with

‖(A3 + εI)
−β
A
∗
2(A1 + ηI)

−α‖ ≤‖A−β3 A
∗
2(A1 + ηI)

−α‖HS

= ‖(A1 + ηI)
−α
A
∗
2A
−β‖HS,

where the right-hand side, by (21), is no greater than ‖A−α1 A2A
−β‖HS. 2

Lemma 23 Suppose H and K are Hilbert spaces and

(a) A1 : K → K is a CSP operator;

(b) α > 0, and ran(A2) ⊆ ran(Aα

1 ); A−α2 A1 is a bounded linear operator.

Then, for any η > 0, (A1 + ηI)−αA2 is a finite-rank operator with

‖(A1 + ηI)
−α
A2‖OP ≤ ‖A

−α
1 A2‖OP. (22)

The proof is similar to that of Lemma 21 and is omitted.
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A.5 Negative square root

The next lemma can be verified by simple computation (see, for example, Fukumizu, Bach, and
Gretton (2007)).

Lemma 24 If A and B are self adjoint and invertible linear operators, then

A
−1/2 −B−1/2

=A
−3/2

(B
3/2 −A3/2

)B
−1/2

+A
−3/2

(A−B)

=A
−1/2

(B
3/2 −A3/2

)B
−3/2

+ (A−B)B
−3/2

.

A.6 Notations for order of magnitude

If {An} is a sequence of random operators and {an} is a sequence of positive numbers such
that ‖An‖OP = OP (an), then we write An = ȮP (an). If ‖An‖HS = OP (an), then we write
An = ÖP (an). Note that An = ÖP (an) implies An = ȮP (an), and ÖP (an)ȮP (bn) = ÖP (anbn).
Similarly, if ‖An‖OP = oP (an), then we write An = ȯP (an). If ‖An‖HS = oP (an), then we write
An = öP (an).

Also, as already mentioned in the main manuscript, if {an} and {bn} are sequences of positive
numbers, then we write an ≺ bn if an/bn → 0. We write an � bn if 0 < lim infn(bn/an) ≤
lim supn(bn/an) <∞. We write bn � an if either bn ≺ an or bn � an.

Appendix B. Proof of Theorem 1

Proof of X i Xj|X−(i,j) ⇒ X i Xj|G−(i,j). Since G−(i,j) ⊆ σ(X−(i,j)), we have

X
i

X
j|X−(i,j) ⇔ X

i
X

j|(X−(i,j)
,G−(i,j)

).

Hence {
X i Xj|X−(i,j)

(X i, Xj) X−(i,j)|G−(i,j)
⇒

{
X i Xj|X−(i,j),G−(i,j)

(X i, Xj) X−(i,j)|G−(i,j)

⇒

{
X i Xj|X−(i,j),G−(i,j)

X i X−(i,j)|G−(i,j)

⇒X
i

(X
j
, X

−(i,j)
)|G−(i,j)

⇒X
i

X
j|G−(i,j)

,

where the first implication follows from statement 2 of Theorem 2.1 of Li (2018b); the second from
statement 4; the third from statement 2 again.

Proof of X i Xj|G−(i,j) ⇒ X i Xj|X−(i,j). Let A ∈ σ(X i), B ∈ σ(Xj). It suffices to show
that

P (X
i ∈ A,Xj ∈ B|X−(i,j)

) = P (X
i ∈ A|X−(i,j)

)P (X
j ∈ B|X−(i,j)

).

Because (X i, Xj) X−(i,j)|G−(i,j), the left hand side is

P (X
i ∈ A,Xj ∈ B|G−(i,j)

),
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which, by condition 2, is equal to P (X i ∈ A|G−(i,j))P (Xj ∈ B|G−(i,j)). However, by statement 2
of Theorem 2.1 of Li (2018b), we have X i X−(i,j)|G−(i,j) and Xj X−(i,j)|G−(i,j). Hence

P (X
i ∈ A|G−(i,j)

)P (X
j ∈ B|G−(i,j)

) = P (X
i ∈ A|X−(i,j)

)P (X
j ∈ B|X−(i,j)

),

as desired.

Appendix C. Proof of Theorem 7

(i) Because, by the reproducing property of an reproducing kernel Hilbert space,

ur(a) = 〈ur, κ0(·, a)〉H, vr(a) = 〈vr, κ0(·, a)〉H, r = 1, . . . , d,

we have

‖U(a)− V (a)‖2
Rd

=

d∑
r=1

〈ur − vr, κ0(·, a)〉2H ≤
d∑
r=1

‖ur − vr‖
2

H ‖κ0(·, a)‖2H

=κ0(a, a)

d∑
r=1

‖ur − vr‖
2

H = κ0(a, a)‖U − V ‖2
H

d .

Now take square root on both sides to complete the proof of (a).
(ii) By the definition of the inner product in an reproducing kernel Hilbert space,

‖κ1(·, U(a))− κ1(·, V (a))‖2H1

= 〈κ1(·, U(a))− κ1(·, V (a)), κ1(·, U(a))− κ1(·, V (a))〉H1

= κ1(U(a), U(a))− 2κ1(U(a), V (a)) + κ1(V (a), V (a))

≤ |κ1(U(a), U(a))− κ1(V (a), U(a))|
+ |κ1(U(a), V (a))− κ1(V (a), V (a))|.

(23)

By Taylor’s mean value theorem

κ1(V (a), U(a))− κ1(U(a), U(a))

=

[
∂κ1(s, U(a))

∂s

]
s=U(a)

[V (a)− U(a)]

+
1

2
[V (a)− U(a)]T

[
∂2κ1(s, U(a))

∂s∂sT

]
s=ξ

[V (a)− U(a)]

for some ξ in the line joining U(a) and V (a). Since, by assumption, the first derivative above is 0,
and the second derivative has bounded eigenvalues, there is a constant C1 > 0 such that

|κ1(V (a), U(a))− κ1(U(a), U(a))| ≤C1‖V (a)− U(a)‖2
Rd

≤C1‖V − U‖
2

H
d κ0(a, a),

(24)

where the second inequality follows from part (i). By similar computation, we have, for a constant
C1 > 0 (which can be taken as the same constant above),

|κ1(U(a), V (a))− κ1(V (a), V (a))| ≤ 2
−1
C1‖V − U‖

2

H
d κ0(a, a). (25)

Substitute (24) and (25) into the right-hand side of (23) to prove (ii). 2
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Appendix D. Proof of Theorem 8

(i) Tentatively abbreviating U ij(X−(i,j)) and Û ij(X−(i,j)) by U ij and Û ij , we have

‖Σ̂
Û
ij
Û
ij − Σ̂

U
ij
U
ij‖HS

= ‖En(κ
ij

U (·, Û ij
)⊗ κijU (·, Û ij

))− En(κ
ij

U (·, U ij
)⊗ κijU (·, U ij

))

− [En(κ
ij

U (·, Û ij
))⊗ En(κ

ij

U (·, Û ij
))

− En(κ
ij

U (·, U ij
))⊗ En(κ

ij

U (·, U ij
))]‖HS

≤ ‖En(κ
ij

U (·, Û ij
)⊗ κijU (·, Û ij

))− En(κ
ij

U (·, U ij
)⊗ κijU (·, U ij

))‖HS

+ ‖[En(κ
ij

U (·, Û ij
))⊗ En(κ

ij

U (·, Û ij
))

− En(κ
ij

U (·, U ij
))⊗ En(κ

ij

U (·, U ij
))]‖HS

≡ ‖∆(1)

n ‖HS + ‖∆(2)

n ‖HS,

(26)

where, for example, En(κijU (·, Û ij)) is the abbreviation of

n
−1

n∑
a=1

κ
ij

U (·, Û ij

a )

We now derive the order of magnitude of ‖∆(1)

n ‖HS. Because

En(κ
ij

U (·, Û ij
)⊗ κijU (·, Û ij

))− En(κ
ij

U (·, U ij
)⊗ κijU (·, U ij

))

= En[(κ
ij

U (·, Û ij
)− κijU (·, U ij

))⊗ (κ
ij

U (·, Û ij
)− κijU (·, U ij

))]

+ En[(κ
ij

U (·, Û ij
)− κijU (·, U ij

))⊗ κijU (·, U ij
)]

+ En[κ
ij

U (·, U ij
)⊗ (κ

ij

U (·, Û ij
)− κijU (·, U ij

))],

we have, by the triangular inequality,

‖∆(1)

n ‖HS ≤En‖(κ
ij

U (·, Û ij
)− κijU (·, U ij

))⊗ (κ
ij

U (·, Û ij
)− κijU (·, U ij

))‖HS

+ 2En‖(κ
ij

U (·, Û ij
)− κijU (·, U ij

))⊗ κijU (·, U ij
)‖HS.

By Lemma 15, the right-hand side can be rewritten as

En‖κ
ij

U (·, Û ij
)− κijU (·, U ij

)‖2
H

ij
(U)

+ 2En(‖κijU (·, Û ij
)− κijU (·, U ij

)‖
H

ij
(U)
‖κijU (·, U ij

)‖
H

ij
(U)

).
(27)

Now applying Theorem 7, part (ii), with

Ω = Ω
−(i,j)

, κ0 = κ
−(i,j)

X , H 0 = H
−(i,j)

(X),

Rd
= Rdij , κ1 = κ

ij

U , H 1 = H
ij

(U),

we see that, for some C > 0, (27) is bounded from above by

C
2‖Û ij − U ij‖2

[H
−(i,j)

(X)]
dij
Enκ

−(i,j)

X (X
−(i,j)

, X
−(i,j)

)

+ 2C‖Û ij − U ij‖
[H
−(i,j)

(X)]
dij

× En{[κ
−(i,j)

X (X
−(i,j)

, X
−(i,j)

)κ
ij

U (U
ij

(X
−(i,j)

), U
ij

(X
−(i,j)

)]
1/2}.

(28)
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By the weak law of large numbers,

Enκ
−(i,j)

X (X
−(i,j)

, X
−(i,j)

) = OP (1)

En{[κ
−(i,j)

X (X
−(i,j)

, X
−(i,j)

)κ
ij

U (U
ij

(X
−(i,j)

), U
ij

(X
−(i,j)

)]
1/2} = OP (1).

Hence (28) is of the order OP (b2n)OP (1) +OP (bn)OP (1) = OP (bn).
Next, we derive the order of magnitude of ‖∆(2)

n ‖HS, which can be rewritten as

‖{[En(κ
ij

U (·, Û ij
))− En(κ

ij

U (·, U ij
)) + En(κ

ij

U (·, U ij
))]

⊗ [En(κ
ij

U (·, Û ij
))− En(κ

ij

U (·, U ij
)) + En(κ

ij

U (·, U ij
))]}

− En(κ
ij

U (·, U ij
))⊗ En(κ

ij

U (·, U ij
))‖HS

≤ ‖En(κ
ij

U (·, Û ij
))− En(κ

ij

U (·, U ij
))‖2

H
ij

(U)

+ 2‖En(κ
ij

U (·, Û ij
))− En(κ

ij

U (·, U ij
))‖

H
ij

(U)
‖En(κ

ij

U (·, U ij
))‖

H
ij

(U)

≤ En‖κ
ij

U (·, Û ij
)− κijU (·, U ij

)‖2
H

ij
(U)

+ 2En‖κ
ij

U (·, Û ij
)− κijU (·, U ij

)‖
H

ij
(U)

En‖κ
ij

U (·, U ij
)‖

H
ij

(U)
.

As shown in the proof of ‖∆(1)

n ‖HS, this too is of the orderOP (b2n)OP (1)+OP (bn)OP (1) = OP (bn).
(ii) and (iii): The proofs of (ii) and (iii) are essentially the same as the proof of (i), so we just
highlight the proof of (ii) and omit the proof of (iii). Similar to (26), we have

‖Σ̂
(X
i
Û
ij

)Û
ij − Σ̂

(X
i
U
ij

)U
ij‖HS ≤ ‖∆

(1)

n ‖HS + ‖∆(2)

n ‖HS,

where

∆
(1)

n =En(κ
i,ij

XU(·, (X i
, Û

ij
))⊗ κijU (·, Û ij

))− En(κ
i,ij

XU(·, (X i
, U

ij
))⊗ κijU (·, U ij

))

∆
(2)

n =En(κ
i,ij

XU(·, (X i
, Û

ij
)))⊗ En(κ

ij

U (·, Û ij
))

− En(κ
i,ij

XU(·, (X i
, U

ij
)))⊗ En(κ

ij

U (·, U ij
)).

Because

∆
(1)

n =En[(κ
ij

U (·, (X i
, Û

ij
))− κijU (·, (X i

, U
ij

)))⊗ (κ
ij

U (·, Û ij
)− κijU (·, U ij

))]

+ En[(κ
ij

U (·, (X i
, Û

ij
))− κijU (·, (X i

, U
ij

)))⊗ κijU (·, U ij
)]

+ En[κ
ij

U (·, (X i
, U

ij
))⊗ (κ

ij

U (·, Û ij
)− κijU (·, U ij

))],

we have

‖∆(1)

n ‖HS

≤ En‖(κ
i,ij

XU(·, (X i
, Û

ij
))− κi,ijXU(·, (X i

, U
ij

))‖2
H

ij
(U)

+ 2En(‖(κi,ijXU(·, (X i
, Û

ij
))− κi,ijXU(·, (X i

, U
ij

))‖
H

ij
(U)
‖κijU (·, U ij

)‖
H

ij
(U)

)

≤ C2‖Û ij − U ij‖2
[H
−(i,j)

(X)]
dij
Enκ

−(i,j)

X (X
−(i,j)

, X
−(i,j)

)

+ 2C‖Û ij − U ij‖
[H
−(i,j)

(X)]
dij

× En{[κ
−(i,j)

X (X
−(i,j)

, X
−(i,j)

)κ
ij

U (U
ij

(X
−(i,j)

), U
ij

(X
−(i,j)

)]
1/2}.

The rest of the proof is the same as the corresponding part of the proof of part (i). 2
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Appendix E. Proof of Theorem 9

Denote

Σ̂
(X
i
Û
ij

)Û
ij , (Σ̂

Û
ij
Û
ij + δnI)

−1
, Σ̂

Û
ij

(X
j
Û
ij

)
,

Σ̂
(X
i
U
ij

)U
ij , (Σ̂

U
ij
U
ij + δnI)

−1
, Σ̂

U
ij

(X
j
U
ij

)
,

Σ
(X
i
U
ij

)U
ij , Σ

−1

U
ij
U
ij , Σ

U
ij

(X
j
U
ij

)

(29)

by Â, B̂, Ĉ, Ã, B̃, C̃, A, B, C, respectively. Then, by the definition of conjoined conditional
covariance operator and the triangular inequality,

‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ̂

Ẍ
i
Ẍ
j |Uij
‖HS

≤ ‖Σ̂
(X
i
Û
ij

)(X
j
Û
ij

)
− Σ̂

(X
i
U
ij

)(X
j
U
ij

)
‖HS + ‖ÂB̂Ĉ − ÃB̃C̃‖HS

(30)

By Theorem 8, the first term is OP (bn). The second term (without the norm) is

ÂB̂Ĉ − ÃB̃C̃ = (Â− Ã)B̂Ĉ + Ã(B̂ − B̃)Ĉ + ÃB̃(Ĉ − C̃)

= (Â− Ã)B̂Ĉ + ÃB̂(B̃
−1 − B̂−1

)B̃Ĉ + ÃB̃(Ĉ − C̃).
(31)

Since, by Theorem 8,

Â− Ã = ÖP (bn), B̃
−1 − B̂−1

= ÖP (bn), Ĉ − C̃ = ÖP (bn),

in order for (31) to hold it suffices to show that

B̂Ĉ = ȮP (1), ÃB̂ = ȮP (1), B̃Ĉ = ȮP (1), ÃB̃ = ȮP (1). (32)

To simplify the notation, let

B̌ = (Σ
U
ij
U
ij + δnI)

−1
, D̂ = Σ̂

Û
ij
Û
ij , D̃ = Σ̂

U
ij
U
ij , D = Σ

Û
ij
Û
ij .

For the first relation (32), by Theorem 8, Ĉ − C̃ = ÖP (bn); by Lemma 20, C̃ − C = ÖP (n−1/2).
Hence

B̂Ĉ = B̂(Ĉ − C̃) + B̂(C̃ − C) + (B̂ − B̃)C + (B̃ − B̌)C

+ (B̌ −B)C +BC

= ÖP (δ
−1

n bn) + ÖP (δ
−1

n n
−1/2

) + (B̂ − B̃)C + (B̃ − B̌)C + B̌C.

(33)

The third term on the right is

(B̂ − B̃)C = B̂ÖP (bn)B̃C

= ÖP (δ
−1

n bn)(B̃ − B̌)C + ÖP (δ
−1

n bn)B̌C

= ÖP (δ
−1

n bn)B̃ÖP (n
−1/2

)B̌C + ÖP (δ
−1

n bn)B̌C

= ÖP (δ
−1

n bn)ÖP (δ
−1

n n
−1/2

)ȮP (1) + ÖP (δ
−1

n bn)ȮP (1).
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So, by condition (b) and the fact that n−1/2 ≺ bn, this term is öP (1). The fourth term on the
right-hand side of (33) is

(B̃ − B̌)C = B̃ÖP (n
−1/2

)B̌C = ÖP (δ
−1

n bn) = öP (1).

By Lemma 23, B̌C = ȮP (1). Hence the first relation in (32) holds. For later use, note that in this
process we also proved

B̃C = ȮP (1), (and hence also) AB̃ = ȮP (1). (34)

For the second relation in (32):

ÃB̂ = (Ã−A)B̂ +A(B̂ − B̃) +AB̃. (35)

The first term is of the order ÖP (n−1/2δ−1

n ). The second term is

AB̃ÖP (bn)B̂ =AB̃ÖP (bn)ȮP (δ
−1

n ) = ÖP (bnδ
−1

n ) = ÖP (1),

where the second equality follows from (34), and the third from condition (b). The third term, again
by (34), is of the order ȮP (1). Thus the second relation in (32) holds.

For the third relation in (32):

B̃Ĉ = B̃(Ĉ − C̃) + B̃C̃ = ÖP (δ
−1

n bn) + B̃C̃. (36)

Using an argument similar to the next step, we can show that

B̃C̃ = ȮP (1). (37)

Hence the third relation in (32) holds.
For the fourth relation in (32):

ÃB̃ = (Ã− C)B̃ +AB̃ = ȮP (δ
−1

n )ȮP (δn + n
−1/2

) +AB̃.

By (34), the last term is of the order ȮP (1). Thus the fourth relation in (32) holds.

Appendix F. Proof of Theorem 10

Lemma 25 Suppose

(a) the conditions in Corollary 22 are satisfied for α = 2;

(b) ‖Â1 −A1‖HS = OP (n−1/2), ‖Â2 −A2‖HS = OP (n−1/2);

(c) n−1 ≺ ηn ≺ 1, n−1/2 ≺ εn ≺ 1.

Then

‖(Â1 + ηnI)
−1/2

A2(Â3 + εnI)
−1‖HS = OP (1),

‖A−1/2

1 A2(Â3 + εnI)
−1‖HS = OP (1),

‖[(Â1 + ηnI)
−1/2 −A−1/2

1 ]A2‖HS = OP (η
−1/2

n n
−1/2

+ ηn),

‖A−1/2

1 A2[(Â3 + εnI)
−1 −A−1

3 ]A
∗
2A
−1/2

1 ‖HS = OP (n
−1/2

+ εn).

(38)
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Proof Let

B1 = (Â1 + ηnI)
−1/2 − (A1 + ηnI)

−1/2
,

B2 = (A1 + ηnI)
−1/2 −A−1/2

1 ,

B3 = A
−1/2

1 ,

C1 = (Â3 + εnI)
−1 − (A3 + εnI)

−1
,

C2 = (A3 + εnI)
−1 −A−1

3 ,

C3 = A
−1

3 .

(39)

Then we can reexpress

(Â1 + ηnI)
−1/2

A2(Â3 + εnI)
−1

= (B1 +B2 +B3)A2(C1 + C2 + C3)

=

3∑
i=1

3∑
j=1

BiA2Cj.
(40)

We now analyze the nine terms in (40). By Lemma 24,

B1 = {(Â1 + ηnI)
−1/2

[(A1 + ηnI)
3/2 − (Â1 + ηnI)

3/2
] + (Â1 −A1)}

× (A1 + ηnI)
−3/2

= ȮP (η
−1/2

n n
−1/2

+ n
−1/2

)(A1 + ηnI)
−3/2

= ȮP (η
−1/2

n n
−1/2

)(A1 + ηnI)
−3/2

.

Similarly,

B2 = {(A1 + ηnI)
−1/2

[A
3/2

1 − (A1 + ηnI)
3/2

] + ηnI}A
−3/2

1 .

Since (A1 + ηnI)−1/2 commutes with A3/2

1 and (A1 + ηnI)3/2, we have

B2 = ȮP (ηn)(A1 + ηnI)
−1/2

A
−3/2

1 . (41)

The terms C1 and C2 are

C1 = (A3 + εnI)
−1

(A3 − Â3)(Â3 + εnI)
−1

= (A3 + εnI)
−1
ȮP (n

−1/2
ε
−1

n )

C2 =A
−1

3 (A3 + εnI)
−1

(−εnI) = A
−1

3 (A3 + εnI)
−1
ȮP (εn)

Hence ∑2

i=1

∑2

j=1
BiA2Cj

= ȮP (η
−1/2

n n
−1/2

)(A1 + ηnI)
−3/2

A2(A3 + εnI)
−1
ȮP (n

−1/2
ε
−1

n )

+ ȮP (η
−1/2

n n
−1/2

)(A1 + ηnI)
−3/2

A2A
−1

3 (A3 + εnI)
−1
ȮP (εn)

+ ȮP (ηn)(A1 + ηnI)
−1/2

A
−3/2

1 A2(A3 + εnI)
−1
ȮP (n

−1/2
ε
−1

n )

+ ȮP (ηn)(A1 + ηnI)
−1/2

A
−3/2

1 A2A
−1

3 (A3 + εnI)
−1
ȮP (εn).

(42)
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Because

A
−3/2

1 A2A
−1

3 , A
−3/2

1 A2A
−2

3 , A
−2

1 A2A
−1

3 , A
−2

1 A2A
−2

3

are finite-rank operators, by Lemma 21 and Corollary 22, the four operators in the middle of the
four terms in (42) all have finite Hilbert-Schmidt norms which do not depend on n. Thus∑2

i=1

∑2

j=1
BiA2Cj

= ÖP (η
−1/2

n ε
−1

n n
−1

+ η
−1/2

n n
−1/2

εn + ηnn
−1/2

ε
−1

n + ηnεn) = öP (1),
(43)

where the last equality follows from condition (c). Let R be the indices of the rest of the terms
except the last term: R = {(1, 3), (2, 3), (3, 1), (3, 2)}. Then∑

(i,j)∈RBiA2Cj = ÖP (η
−1/2

n n
−1/2

+ ηn + n
−1/2

ε
−1

n + εn) = öP (1), (44)

where the last equality follows from condition (c). Thus we have

(Â1 + ηnI)
−1/2

A2(Â3 + εnI)
−1

= B3A2C3 + oP (1) = A
−1/2

1 A2A
−1

3 + öP (1),

which implies the first relation in (38). For the second relation in (38), we have, by (44),

‖A−1/2

1 A2(Â3 + εnI)
−1‖HS ≤‖B3A2C1‖HS + ‖B3A2C2‖HS + ‖A−1/2

1 A2A
−1

3 ‖HS

= ‖A−1/2

1 A2A
−1

3 ‖HS +OP (n
−1/2

ε
−1

n + εn) = OP (1).

For the third relation in (38), we have

[(Â1 + ηnI)
−1/2 −A−1/2

1 ]A2 = B1A2 +B2A2.

Using Lemma 24, it is easy to see that

B1A2 = ȮP (η
−1/2

n n
−1/2

)(A1 + ηnI)
−3/2

A2 = ȮP (η
−1/2

n n
−1/2

),

where, for the last equality, we have used Lemma 21, which implies ‖(A1 + ηnI)−3/2A2‖HS ≤
‖A−3/2

1 A2‖HS. By (41),

B2A2 = ȮP (ηn)(A1 + ηnI)
−1/2

A
−3/2

1 A2

= ȮP (ηn)A
−3/2

1 (A1 + ηnI)
−1/2

A2

= ȮP (ηn)A
−2

1 A2 = ÖP (ηn).

Hence

[(Â1 + ηnI)
−1/2 −A−1/2

1 ]A2 = ÖP (η
−1/2

n n
−1/2

+ ηn).

For the last relation in (38), we have

A
−1/2

1 A2[(Â3 + εnI)
−1 −A−1

3 ]A
∗
2A
−1/2

1

= A
−1/2

1 A2A
−1

3 [A3 − Â3 − εnI)](Â3 + εnI)
−1
A
∗
2A
−1/2

1

= A
−1/2

1 A2A
−1

3 ȮP (n
−1/2

+ εn)(Â3 + εnI)
−1
A
∗
2A
−1/2

1 .

(45)

By the second relation in (38), (Â3 + εnI)−1A∗2A
−1/2

1 = ÖP (1). Thus the last relation in (38) holds.
2
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Lemma 26 Suppose

(a) the conditions in Corollary 22 are satisfied for α = 1;

(b) ‖Â1 −A1‖OP = OP (n−1/2), ‖Â2 −A2‖OP = OP (n−1/2);

(c) n−1/2 ≺ ηn ≺ 1, n−1/2 ≺ εn ≺ 1.

Then

‖(Â1 + ηnI)
−1
A2(Â3 + εnI)

−1‖HS = OP (1),

‖A−1

1 A2(Â3 + εnI)
−1‖HS = OP (1),

‖[(Â1 + ηnI)
−1 −A−1

1 ]A2‖HS = OP (η
−1

n n
−1/2

+ ηn),

‖A−1

1 A2[(Â3 + εnI)
−1 −A−1

3 ]A
∗
2A
−1/2

1 ‖HS = OP (n
−1/2

+ εn).

(46)

Proof Reset B1, B2, and B3 to

B1 = (Â1 + ηnI)
−1 − (A1 + ηnI)

−1
, B2 = (A1 + ηnI)

−1 −A−1

1 , B3 = A
−1

1 ,

and keep C1, C2, C3 the same as before. Then

B1 = ȮP (n
−1/2

η
−1

n )(A1 + ηnI)
−1
, B2 = ȮP (ηn)(A1 + ηnI)

−1
A
−1

1 .

Hence

(Â1 + ηnI)
−1
A2(Â3 + εnI)

−1

=
∑3

i=1

∑3

j=1
BiA2Cj

= ÖP (n
−1/2

η
−1

n n
−1/2

ε
−1

n + n
−1/2

η
−1

n εn + n
−1/2

η
−1

n

+ ηnn
−1/2

ε
−1

n + ηnεn + ηn + n
−1/2

ε
−1

n + εn)

= ÖP (n
−1/2

η
−1

n + ηn + n
−1/2

ε
−1

n + εn)

= A
−1

1 A2A3 + öP (1),

where the last equality follows from condition (c). Hence the first relation in (46) holds. The second
relation in (46) holds because

A
−1

1 A2(Â3 + εnI)
−1

=A
−1

1 A2C1 +A
−1

1 A2C2 +A
−1

1 A2C3

= ÖP (n
−1/2

ε
−1

n + εn) +A
−1

1 A2A
−1

3 = A
−1

1 A2A
−1

3 + öP (1).

The third relation in (46) holds because

[(Â1 + ηnI)
−1 −A−1

1 ]A2 = B1A2 +B2A2 = ÖP (η
−1

n n
−1/2

+ ηn).

The proof of the fourth relation in (46) is similar to the derivation in (45). 2

PROOF OF THEOREM 10. Note that, because ran(Σ3/2

XX) ⊆ ran(ΣXX), condition (b) implies that
ran(ΣXY ) ⊆ ran(Σα

XX) is satisfied for both α = 1 and α = 3/2. Also, condition (d) is made to
simplify the proof; it can be relaxed with a lengthier proof.
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Denote the operators

(Σ̂
X

(i,j)
X

(i,j) + εnI)
−1
, Σ̂

X
−(i,j)

X
(i,j) , (Σ̂

X
−(i,j)

X
−(i,j) + ηnI)

−1/2

Σ
−1

X
(i,j)

X
(i,j) , Σ

X
−(i,j)

X
(i,j) , Σ

−1/2

X
−(i,j)

X
−(i,j)

by Â, B̂, Ĉ, A, B, C, respectively. In this notation, f̂ ij1 , . . . , f̂
ij

dij
are the first dij eigenfunctions of

the generalized eigenvalue problem

maximize 〈f, B̂ÂB̂∗f〉−(i,j)

subject to 〈f, Ĉ−2
f〉−(i,j) = 1, 〈f, Ĉ−2

fr〉−(i,j) = 0, i = 1, . . . , k − 1.

This means f̂ ijr = Ĉφ̂ijr , where φ̂ijr is the rth eigenfunction of ĈB̂ÂB̂∗Ĉ. We first derive the order
of magnitude of the operator

ĈB̂ÂB̂
∗
Ĉ − CBAB∗C (47)

in terms of the Hilbert Schmidt norm (another route is to derive this in terms of the operator norm,
which is also sufficient for our purpose). By simple calculation,

ĈB̂ÂB̂
∗
Ĉ − CBAB∗C = Ĉ(B̂ −B)Â(B̂ −B)

∗
Ĉ + Ĉ(B̂ −B)ÂB

∗
Ĉ

+ ĈBÂ(B̂ −B)
∗
Ĉ + ĈBÂB

∗
Ĉ − CBAB∗C.

(48)

The reason for choosing this particular form of decomposition is to expose the finite-rank operator
B, so that, for example, when combined with the operator C (an unbounded operator), BC is still a
finite-rank operator. The Hilbert-Schmidt norm of the first term on the right is

‖Ĉ(B̂ −B)Â(B̂ −B)
∗
Ĉ‖HS ≤ ‖Ĉ‖

2

OP‖B̂ −B‖
2

HS‖Â‖OP = OP (η
−1

n ε
−1

n n
−1

). (49)

For the second term in (48), by Lemma 25, ‖ĈBÂ‖HS = ‖ÂB∗Ĉ‖HS = OP (1). Hence, by Lemmas
16 and 18,

‖Ĉ(B̂ −B)ÂB
∗
Ĉ‖HS = ‖ĈBÂ(B̂ −B)

∗
Ĉ‖HS

≤‖Ĉ‖OP ‖B̂ −B‖HS ‖ÂB
∗
Ĉ‖HS = OP (η

−1/2

n n
−1/2

).
(50)

The third term in (48) is the adjoint operator of the second term, so it has the same norm. The
Hilbert-Schmidt norm of the last two terms in (48) is

‖ĈBÂB∗Ĉ − CBAB∗C‖HS

≤ ‖ĈBÂB∗(Ĉ − C)‖HS + ‖(Ĉ − C)BÂB
∗
C‖HS

+ ‖CB(Â−A)B
∗
C‖HS

≤ ‖ĈBÂ‖HS ‖B
∗
(Ĉ − C)‖HS + ‖(Ĉ − C)B‖HS ‖ÂB

∗
C‖HS

+ ‖CB(Â−A)B
∗
C‖HS

(51)

By the first relation in (38), ‖ĈBÂ‖HS = OP (1); by the second, ‖ÂB∗C‖HS = OP (1); by the third,
‖(Ĉ − C)B‖HS = OP (η−1/2

n n−1/2 + ηn); by the fourth, ‖CB(Â− A)B∗C‖HS = OP (n−1/2 + εn).
Therefore,

‖ĈBÂB∗Ĉ − CBAB∗C‖HS =OP (η
−1/2

n n
−1/2

+ ηn + n
−1/2

+ εn)

=OP (η
−1/2

n n
−1/2

+ ηn + εn).
(52)
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Combining (49), (50), and (52), we have

‖ĈB̂ÂB̂∗Ĉ − CBAB∗C‖HS = OP (η
−1

n ε
−1

n n
−1

+ η
−1/2

n n
−1/2

+ ηn + εn).

Next, recall that (λ̂ij1 , φ̂
ij

1 ), . . . , (λ̂ijdij , φ̂
ij

dij
) are the first dij pairs of eigenvalue and eigenfunction

of ĈB̂ÂB̂∗Ĉ, and let (λij1 , φ
ij

1 ), . . . , (λijdij , φ
ij

dij
) be the first dij eigenvalue-eigenfunction pairs of

CBAB∗C. By perturbation theory of linear operators, |λ̂ijr −λ
ij

r | is of the same order of magnitude
as ‖ĈB̂ÂB̂∗Ĉ − CBAB∗C‖HS, and, if condition (d) holds, then

‖φ̂ijr − φ
ij

r ‖H−(i,j)
(X)

also has the same order of magnitude. That is, for each r = 1, . . . , dij ,

λ̂
ij

r − λ
ij

r =OP (η
−1

n ε
−1

n n
−1

+ η
−1/2

n n
−1/2

+ ηn + εn)

‖φ̂ijr − φ
ij

r ‖H−(i,j)
(X)

=OP (η
−1

n ε
−1

n n
−1

+ η
−1/2

n n
−1/2

+ ηn + εn).
(53)

By construction,

f̂
ij

r = Ĉφ̂r = λ̂
ij

r Ĉ
2
B̂ÂB̂

∗
Ĉφ̂

ij

r . (54)

We now derive the order of magnitude of

‖Ĉ2
B̂ÂB̂

∗
Ĉ − C2

BAB
∗
C‖HS.

Similar to (48),

Ĉ
2
B̂ÂB̂

∗
Ĉ − C2

BAB
∗
C

= Ĉ
2
(B̂ −B)Â(B̂ −B)

∗
Ĉ + Ĉ

2
(B̂ −B)ÂB

∗
Ĉ

+ Ĉ
2
BÂ(B̂ −B)

∗
Ĉ + Ĉ

2
BÂB

∗
Ĉ − CBAB∗C

where the first term on the right, similar to (49), is of the order

‖Ĉ2
(B̂ −B)Â(B̂ −B)

∗
Ĉ‖HS = OP (η

−3/2

n ε
−1

n n
−1

). (55)

By the first relation in (38), ‖ÂB∗Ĉ‖HS = OP (1), and hence

‖Ĉ2
(B̂ −B)ÂB

∗
Ĉ‖HS ≤‖Ĉ

2‖OP ‖B̂ −B‖HS ‖ÂB
∗
Ĉ‖HS

=OP (η
−1

n n
−1/2

).
(56)

By the first relation in (46), ‖Ĉ2B∗Â‖HS = OP (1), and hence

‖Ĉ2
BÂ(B̂ −B)

∗
Ĉ‖HS ≤‖Ĉ

2
BÂ‖HS ‖B̂ −B‖HS‖Ĉ‖OP

=OP (n
−1/2

η
−1/2

n ).
(57)

Similar to (51), we have

‖Ĉ2
BÂB

∗
Ĉ − C2

BAB
∗
C‖HS

≤ ‖Ĉ2
BÂ‖HS ‖B

∗
(Ĉ − C)‖HS

+ ‖(Ĉ2 − C2
)B‖HS ‖ÂB

∗
C‖HS + ‖C2

B(Â−A)B
∗
C‖HS
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Applying Lemma 25 and Lemma 26 to the right-hand side above, we obtain

‖Ĉ2
BÂB

∗
Ĉ − C2

BAB
∗
C‖HS

= OP (1)OP (η
−1/2

n n
−1/2

+ ηn) +OP (η
−1

n n
−1/2

+ ηn)

+OP (n
−1/2

+ εn)

= OP (η
−1

n n
−1/2

+ ηn + εn)

(58)

Combining (55) through (58), we have

Ĉ
2
B̂ÂB̂

∗
Ĉ − C2

BAB
∗
C

= ÖP (η
−3/2

n ε
−1

n n
−1

+ η
−1

n n
−1/2

+ η
−1/2

n n
−1/2

+ η
−1

n n
−1/2

+ ηn + εn)

= ÖP (η
−3/2

n ε
−1

n n
−1

+ η
−1

n n
−1/2

+ ηn + εn).

(59)

Finally, let us derive the convergence rate of Û ij . By (54), we have

f̂
ij

r − f
ij

r = (λ̂
ij

r − λ
ij

r )Ĉ
2
B̂ÂB̂

∗
Ĉφ̂

ij

r

+ λ
ij

r (Ĉ
2
B̂ÂB̂

∗
Ĉ − C2

BAB
∗
C)φ̂

ij

r + λ
ij

r C
2
BAB

∗
C(φ̂

ij

r − φ
ij

r ).

Hence

‖f̂ ijr − f
ij

r ‖H−(i,j)
(X)
≤ |λ̂ijr − λ

ij

r | ‖Ĉ
2
B̂ÂB̂

∗
Ĉ‖OP ‖φ̂

ij

r ‖H−(i,j)
(X)

+ λ
ij

r ‖Ĉ
2
B̂ÂB̂

∗
Ĉ − C2

BAB
∗
C‖OP ‖φ̂

ij

r ‖H−(i,j)
(X)

+ λ
ij

r ‖C
2
BAB

∗
C‖OP ‖φ̂

ij

r − φ
ij

r ‖H−(i,j)
(X)
.

By (53) and (59), the right-hand side is of the order

OP (η
−1/2

n n
−1/2

+ ηn + εn)

+OP (η
−3/2

n ε
−1

n n
−1

+ η
−1

n n
−1/2

+ ηn + εn)

+OP (η
−1/2

n n
−1/2

+ ηn + εn)

= OP (η
−3/2

n ε
−1

n n
−1

+ η
−1

n n
−1/2

+ ηn + εn)

(60)

Because

‖Ûij − Uij‖
[H
−(i,j)

(X)]
dij

= (
∑dij

r=1
‖f̂ ijr − f

ij

r ‖H−(i,j)
(X)

)1/2,

‖Ûij − Uij‖
[H
−(i,j)

(X)]
dij

has the same order of magnitude as (60). 2

Appendix G. Proof of Theorem 11

Using the notation defined in (29), we have

‖Σ̂
Ẍ
i
Ẍ
j |Uij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS

= ‖Σ̂
(X
i
U
ij

)(X
j
U
ij

)
− Σ

(X
i
U
ij

)(X
j
U
ij

)
‖HS + ‖ÃB̃C̃ −ABC‖HS

(61)
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By Lemma 20, the first term is of the order OP (n−1/2). Similar to (31),

ÃB̃C̃ −ABC = (Ã−A)B̃C̃ +A(B̃ −B)C̃ +AB(C̃ − C). (62)

By Lemma 20, Ã − A = ÖP (n−1/2); by (37), B̃C̃ = ȮP (1). Hence the first term is of the order
ÖP (n−1/2). The second term is

A(B̃ −B)C̃ = AB(B
−1 − B̃−1

)B̃C̃ = ÖP (δn + n
−1/2

). (63)

It is easy to see that the third term on the right-hand side of (62) is also of the order ÖP (δn +n−1/2).
Hence

ÃB̃C̃ −ABC = ÖP (n
−1/2

+ δn) = ÖP (δn),

where the last equality holds because n−1/2 ≺ bn � δn.

Appendix H. Proof of Theorem 14

When εn, ηn, and εn take the given form, the convergence rate in (17) becomes

bn � n
3b/2+a−1

+ n
b−1/2

+ n
−b

+ n
−a � max(n

3b/2+a−1
, n

b−1/2
, n
−b
, n
−a

)

We need to minimize bn over the set

C = {(a, b) : a < 1
2 , b <

1
2 ,

3b
2 + a− 1 < 0}.

Equivalently, we need to minimize

f(a, b) = max(3b2 + a− 1, b− 1
2 ,−b,−a)

over C. Our strategy is to minimize f(a, b) over (0, 12) × (0, 12) and then check the minimizers
(there are more than one) belong to C.

Because b− 1
2 ≥ −b iff b ≥ 1

4 , we have

f(a, b) =

{
max(3b2 + a− 1, b− 1

2 ,−a) b ≥ 1
4

max(3b2 + a− 1,−b,−a) b < 1
4

Furthermore, for b ≥ 1
4 ,

f(a, b) = max(3b2 + a− 1, b− 1
2 ,−a) =


−a a ∈ (0, 12 − b)
b− 1

2 a ∈ [12 − b,
1
2 −

b
2 ]

3
2b+ a− 1 a ∈ (12 −

b
2 ,

1
2)

which implies

min
0<a< 1

2

f(a, b) = b− 1
2 ⇒ min

b≥ 1
2

min
0<a< 1

2

f(a, b) = 1
3 −

1
2 = −1

6
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For b < 1
4 ,

f(a, b) = max(3b2 + a− 1,−b,−a) =

{
−a a ∈ (0, b)

−b a ∈ [b, 12)

which implies

min
0<a< 1

2

f(a, b) = −b⇒ f(a, b) > −1
4 for all b ∈ (0, 14), a ∈ (0, 12).

Thus f(a, b) reaches its minimum −1
4 when b = 1

4 , a ∈ [12 − b,
1
2 −

b
2 ] = [14 ,

3
8 ]. Finally, it is easy

to check that this set is contained in C.

Appendix I. Asymptotic analysis under high-dimensional setting

In this section we consider the scenario where the dimension of pn ofX goes to infinity with n. This
asymptotic regime is significantly different from the fixed-p case, because, under some conditions,
the unscaled covariance operator ΣUV in (18) tends to 0 as pn → ∞. In this case, the convergence
rate of ‖Σ̂UV − ΣUV ‖HS is no longer meaningful unless it is compared with the magnitude of ΣUV .

Specifically, suppose we use the Gaussian radial basis function kernel, and let U1, . . . , Un be an
i.i.d. sample of a generic random vector U ∈ Rpn . Commonly used choices of the shape parameter
γ in the radial basis function (11) are based on some types of the center point of the distances

{‖Ui − Uj‖ : i, j = 1, . . . , n, i 6= j}.

For example, the default choice of γ in Kernlab (Karatzoglou et al., 2004) is γ = 1/τ 2 where τ is
a number between the 10th and 90th percentiles of the above set; Fukumizu et al. (2009) uses the
median of the above set, whereas Lee et al. (2013) takes τ 2 to be the average of ‖Ui − Uj‖2. At the
population level, the choice of γ of Lee et al. (2013) amounts to taking τ 2 to be E‖U − Ũ‖2, where
Ũ an independent copy of U .

To make further progress possible we need to give a prototype on the dependence structure of
U , the kernel, and its tuning parameter, which we summarize in the following assumption.

Assumption 7 We make the following assumption for the pn →∞ asymptotic regime:

1. (sparsity) There is a subset Apn of {1, . . . , pn} such that

(a) {X i : i ∈ Apn} are independent;

(b) {X i : i ∈ Apn} {X i : i ∈ Ac

pn
};

(c) The cardinality of Ac

pn
is bounded as pn →∞.

2. (kernel) For any subvector U of X , the kernel κU is the Gaussian radial basis function with
shape parameter γ = 1/τ 2, and τ 2 proportional to E‖U − Ũ‖2, where Ũ is an independent
copy of U .

3. (identical marginal distributions) X1, . . . , Xpn are identically distributed with variance σ2

and finite fourth moment.
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The first assumption is a sparsity assumption: it implies that the number of edges does not diverge to
infinity. While this is by no means the only possible scenario under which we can obtain asymptotic
result similar to that given below, it helps us to gauge the magnitude of E‖U − Ũ‖2 with minimal
complication. The third assumption is a simplifying assumption: without it the theory still holds but
the notation for the proofs will be more complicated. The second assumption can also be relaxed to
non-Gaussian radial basis function’s.

In addition to the above structural assumption, we also need the following technical assumption.

Assumption 8 Let U and V represent X−(i,j) and X(i,j), respectively, (Ũ , Ṽ ) an independent copy
of (U, V ), and V̄ a copy of V that is independent of (U, V, Ũ , Ṽ ). Let U t, V t and so on be the t-th
component of U , V . Let Bij = {1, . . . , pn} \ {i, j} and let

Spn = (pn − 2)
−1∑

t∈Bij
[(U t − Ũ t)2 − 2σ2],

Tpn = (pn − 2)
−1∑

t∈Bij
[(U t − Ū t)2 − 2σ2].

(64)

We assume that the sequences

{e−Spn (
√
pnSpn)

2
: n = 1, 2, . . .},

{e−Spn [
√
pn(Spn + Tpn)]

2
: n = 1, 2, . . .}

are uniformly integrable.

As will be clear in the proof of Theorem 27, the quantities

e
−Spn (

√
pnSpn)

2 and e
−Spn [

√
pn(Spn + Tpn)]

2

are of the orderOP (1) as pn →∞. This assumption is used to guarantee the boundedness of certain
expectation sequences.

The next theorem shows that ‖ΣUU‖HS and ‖ΣUV ‖HS are of the order O(p−1/2

n ).

Theorem 27 Under Assumptions 7 and 8 we have, as pn →∞,

(a) ‖Σ
X
−(i,j)

X
−(i,j)‖HS � p

−1/2

n , (b) ‖Σ
X

(i,j)
X
−(i,j)‖HS � p

−1/2

n .

Before proving this theorem, we first prove three lemmas. For convenience, we abbreviate pn
by p, keeping in mind that it goes to infinity with the sample size.

Lemma 28 Suppose Assumption 7 holds and X̃ is an independent copy of X . Then, for any i, j ∈
{1, . . . , p},

(a) E(‖X−(i,j) − X̃−(i,j)‖2) � p
(b) E[(γ‖X−(i,j) − X̃−(i,j)‖2 − 2σ

2
)
2
] � p−1

.

Proof To prove the first relation, letW t represent the t-th component of the (p−2)-vectorX−(i,j)−
X̃−(i,j), t ∈ {1, . . . , p} \ {i, j} ≡ Bij . Then

E(‖X−(i,j) − X̃−(i,j)‖2) =
∑
t∈Bij

E[(W
t
)
2
] = (p− 2)2σ

2 � p.
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Thus the first relation holds.
To prove the second relation we take γ � p−1 – without loss of generality, take γ = (p− 2)−1.

Then,

γ‖X−(i,j) − X̃−(i,j)‖2 − 2σ
2

= (p− 2)
−1
∑
t∈Bij

[(W
t
)
2 − 2σ

2
].

Let H t = (W t)2 − 2σ2. Then

E[(γ‖X−(i,j) − X̃−(i,j)‖2 − 2σ
2
)
2
]

= (p− 2)
−2
∑

t,s∈Bij

E(H
s
H

t
)

= (p− 2)
−2

∑
t,s∈Bij∩Ap

E(H
s
H

t
) + (p− 2)

−2
∑

t,s∈Bij∩A
c
p

E(H
s
H

t
).

Since the cardinality of Ac

p is bounded, the second term on the right is of the order (p−2)−2O(1) =
O(p−2). Because {H t : t ∈ Ap} are i.i.d., and card(Ap) � p, the first term on the right-hand side is

(p− 2)
−2

∑
t,s∈Bij∩Ap

E[(H
t
)
2
] � (p− 2)

−2
E[(H

t
)
2
]card(Ap) � p

−1
,

which proves the second relation. 2

In the following, if two random elements A and B have the same distribution, then we write
A

D
= B.

Lemma 29 Suppose U and V are random vectors and κ1 and κ2 their respective kernels. Then

‖ΣUV ‖
2

HS =E[κ1(U, Ũ)κ2(V, Ṽ )]− 2E[κ1(U, Ũ)κ2(V, V̄ )]

+ E[κ1(U, Ũ)]E[κ2(V, Ṽ )].
(65)

where (Ũ , Ṽ ) (U, V ) V̄ , (Ũ , Ṽ )
D
= (U, V ), and V̄ D

= V .

Proof By definition,

ΣUV = E[(κ1(·, U)− µU)⊗ (κ2(·, V )− µV )].

Let F = κ1(·, U) − µU and G = κ2(·, V ) − µV , and let (F̃ , G̃) denote the counterpart of (F,G)
with U and V replaced by Ũ and Ṽ . Then

‖ΣUV ‖
2

HS = 〈E(F ⊗G), E(F ⊗G)〉HS

= E〈F ⊗G, F̃ ⊗ G̃〉HS

= E(〈F, F̃ 〉HU
〈G, G̃〉HV

).

Note that

〈F, F̃ 〉HU
= κ1(U, Ũ)− 〈κ1(·, U), µU〉HU

− 〈µU , κ1(·, Ũ)〉HU
+ 〈µU , µU〉HU

≡ κ1(U, Ũ)− τ1(U)− τ1(Ũ) + cU ,

47



LI AND KIM

where τ1(u) = 〈κ(·, u), µU〉HU
and cU = 〈µU , µU〉HU

. Similarly,

〈G, G̃〉HV
= κ2(V, Ṽ )− τ2(V )− τ2(Ṽ ) + cV .

So

‖ΣUV ‖
2

HS = E{[κ1(U, Ũ)− τ1(U)− τ1(Ũ) + cU ][κ2(V, Ṽ )− τ2(V )− τ2(Ṽ ) + cV ]}.

Put λ1(U, Ũ) = τ1(U) + τ1(Ũ) and λ2(V, Ṽ ) = τ2(V ) + τ2(Ṽ ). Note that

Eκ1(U, Ũ) = cU , Eκ2(V, Ṽ ) = cV , Eλ1(U, Ũ) = 2cU , Eλ2(V, Ṽ ) = 2cV .

Use these relations to make the decomposition

‖ΣUV ‖
2

HS =E{[κ1(U, Ũ)− λ1(U, Ũ) + cU ][κ2(V, Ṽ )− λ2(V, Ṽ ) + cV ]}
=E[κ1(U, Ũ)κ2(V, Ṽ )]− E[κ1(U, Ũ)λ2(V, Ṽ )]

− E[λ1(U, Ũ)κ2(V, Ṽ )] + E[λ1(U, Ũ)λ2(V, Ṽ )]− cUcV .
(66)

The term E[λ1(U, Ũ)λ2(V, Ṽ )] on the right-hand side is

E[(τ1(U) + τ1(Ũ))(τ2(V ) + τ2(Ṽ ))] = 2E[τ1(U)τ2(V )] + 2E[τ1(U)]E[τ2(V )]

= 2E[τ1(U)τ2(V )] + 2cUcV

Furthermore,

E[τ1(U)τ2(V )] =E[〈κ1(·, U), µU〉HU
〈κ2(·, V ), µV 〉HV

] = E[κ1(U, Ũ)κ2(V, V̄ )].

The term E[κ1(U, Ũ)λ2(V, Ṽ )] on the right-hand side of (66) is

E[κ1(U, Ũ)λ2(V, Ṽ )] =E[κ1(U, Ũ)(τ2(V ) + τ2(Ṽ )]

= 2E[κ1(U, Ũ)τ2(V )] = 2E[κ1(U, Ũ)κ2(V, V̄ )]

Thus we have the desired equality. as desired. 2

In the next lemma and theorem, U, V, Ũ , Ṽ , V̄ are random vectors defined in Assumption 8, and
κ1 and κ2 are the Gaussian radial basis function kernels for U and V with shape parameters γ1 and
γ2.

Lemma 30 If Assumptions 7 and 8 are satisfied, then

(a) E[κ1(U, Ũ)]− e2σ
2

� p−1

(b) E[κ1(U, Ũ)κ1(U, Ū)]− e4σ
2

� p−1

(c) E[κ1(U, Ũ)
2
]− e4σ

2

� p−1

(d) E{[κ1(U, Ũ)− e2σ
2

]κ2(V, Ṽ )} � p−1

(e) E{[κ1(U, Ũ)− e2σ
2

]κ2(V, V̄ )} � p−1

(67)
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Proof Proof of (a), (b), and (c). Using the notation in Assumption 8, we have

E[κ1(U, Ũ)] = e
2σ

2

e
Sp .

By Chebychev’s inequality and part (b) of Lemma 28, Sp
P→ 0. By Skorohod’s representation

theorem, there is a sequence S̃p such that S̃p
D
= Sp and S̃p → 0 almost surely. By Taylor expansion,

E(e
−Sp) = E(e

−S̃p) = 1− E(S̃p) + E(e
ξpS̃

2

p)/2, (68)

where ξp is a random number between 0 and −S̃p. This means, if S̃p > 0, then ξp ≤ 0, and if
S̃p ≤ 0, ξp ≤ −S̃p. Consequently, eξp ≤ 1 + e−S̃p . Also, by construction E(S̃p) = 0. Let c > 0.
Then, by (68) and the above discussion,

|E(e
−Sp)− 1| ≤E(S̃

2

p)/2 + E(e
−S̃pS̃

2

p)/2

≤E(S̃
2

p)/2 + e
c
E(S̃

2

p)/2 + E[e
−S̃pS̃

2

pI(|Sp| > c)]/2

� p−1
+ E[e

−S̃pS̃
2

pI(|Sp| > c)]/2,

where the third line follows from Lemma 28. Since pe−S̃pS̃2

pI(|Sp| > c) converges to 0 almost
surely, and the sequence is uniformly integrable, we have

pE[e
−S̃pS̃

2

pI(|Sp| > c)]→ 0 ⇒ E[e
−S̃pS̃

2

pI(|Sp| > c)] = o(p
−1

).

This proves (a) in (67). The proofs of (b) and (c) are similar.
Proof of (d) and (e). By Taylor expansion,

E[(κ1(U, Ũ)− e2σ
2

)κ2(V, Ṽ )] =E[e
2σ

2

(e
−Sp − 1)κ2(V, Ṽ )]

=E[(−Sp + e
ξpS

2

p/2)κ2(V, Ṽ )]

= − E[Spκ2(V, Ṽ )] + E[e
ξpS

2

pκ2(V, Ṽ )]/2,

where ξp is a number between 0 and −Sp. The first term on the right is

E[Spκ2(V, Ṽ )] = (p− 2)
−1∑

t∈Bij
E{[(U t − Ũ t)2 − 2σ2]κ2(V, Ṽ )}

Note that the components U − Ũ in Ap are independent of (V, Ṽ ) regardless of the positions of
{i, j}. Furthermore, Bij ∩Ac

p has bounded number of terms. Hence, in the decomposition∑
t∈Bij∩Ap

E{[(U t − Ũ t)2 − 2σ2]κ2(V, Ṽ )}

+
∑

t∈Bij∩A
c
p
E{[(U t − Ũ t)2 − 2σ2]κ2(V, Ṽ )},

the first sum is 0; the second sum, which has bounded number of terms, is of the order O(1).
Therefore

E[Spκ2(V, Ṽ )] = O(p
−1

).

Also, because κ2 is bounded by 1, we have

E[e
ξpS

2

pκ2(V, Ṽ )] ≤ E(e
ξpS

2

p).

As was already shown, the right-hand side � p−1. This proves (d). Relation (e) can be prove simi-
larly. 2
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Proof of Theorem 27 Proof of (a). By Lemma 28, E(‖U − Ũ‖2) � p−1. So, without loss of
generality, we take γ1 = (p− 2)−1. By Lemma 29,

‖ΣUU‖
2

HS =E[κ1(U, Ũ)
2
]− 2E[κ1(U, Ũ)κ1(U, Ū)] + E

2
[κ1(U, Ũ)], (69)

Using the notation in Assumption 8, we have

E[κ1(U, Ũ)] = e
2σ

2

E(e
−Sp) = e

2σ
2

[1 + 1− E(e
−Sp)].

Applying (a), (b), and (c) of Lemma 30, we have

‖ΣUU‖
2

HS = {E[κ1(U, Ũ)
2
]− e4σ

2

+ e
4σ

2

}

− 2{E[κ1(U, Ũ)κ1(U, Ū)]− e4σ
2

+ e
4σ

2

}

+ {E[κ1(U, Ũ)]− e−2σ
2

+ e
2σ

2

}2 � p−1
,

which proves (a).
Proof of (b). Since the dimension of V is 2, we have E(‖V − Ṽ ‖2) � 1. Thus, without loss of

generality, we take γ1 = (p− 2)−1, γ2 = 1. By Lemma 29,

‖ΣUV ‖
2

HS =E[κ1(U, Ũ)κ2(V, Ṽ )]

− 2E[κ1(U, Ũ)κ2(V, V̄ )] + E[κ1(U, Ũ)]E[κ2(V, Ṽ )].

Applying (a), (d) and (e) of Lemma 30, we have

‖ΣUV ‖
2

HS =E{[κ1(U, Ũ)− e2σ
2

]κ2(V, Ṽ )}+ e
2σ

2

E[κ2(V, Ṽ )]

− 2E{[κ1(U, Ũ)− e2σ
2

]κ2(V, V̄ )} − 2e
2σ

2

E[κ2(V, V̄ )]

+ E[κ1(U, Ũ)− e2σ
2

]E[κ2(V, Ṽ )] + e
2σ

2

E[κ2(V, Ṽ )] � p−1
,

which completes the proof. 2

Theorem 27 motivates us to redefine the covariance operator and its sample estimate as

ΣUV (pn) = p
1/2

n E[(κ(·, U)− µU)⊗ (κ(·, V )− µV )],

Σ̂UV (pn) = p
1/2

n En[(κ(·, U)− µ̂U)⊗ (κ(·, V )− µ̂V )],

where (U, V ) is either (X−(i,j), X−(i,j)) or (X−(i,j), X(i,j)). Since X(i,j) is of the fixed dimension 2,
we do not need to re-scale Σ

X
(i,j)

X
(i,j) . The next theorem gives the convergence rates of the rescaled

covariance operators Σ̂
X
−(i,j)

X
−(i,j)(pn) and Σ̂

X
−(i,j)

X
(i,j)(pn).

Theorem 31 If Assumptions 7 and 8, then, as pn →∞,

(a) ‖Σ̂
X
−(i,j)

X
−(i,j)(pn)− Σ

X
−(i,j)

X
−(i,j)(pn)‖HS = OP (pn/n),

(b) ‖Σ̂
X
−(i,j)

X
(i,j)(pn)− Σ

X
−(i,j)

X
(i,j)(pn)‖HS = OP (pn/n).
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Proof Let U, V, Ũ , Ṽ , V̄ , κ1, κ2, γ1, γ2, F,G, τ1, cU , cV be as defined in the proof of Theorem 27.
Proof of (a). By definition,

Σ̂UU − ΣUU =En[(F − EnF )⊗ (F − EnF )]

=En(F ⊗ F )− En(F )⊗ En(F ).

By the triangular inequality,

‖Σ̂UU − ΣUU‖HS ≤‖En[F ⊗ F − E(F ⊗ F )]‖HS + ‖En(F )⊗ En(F )‖HS

≤‖En(Z)‖HS + ‖En(F )⊗ En(F )‖HS,

where Z = F ⊗ F − E(F ⊗ F ). By Chebychev’s inequality,

P (‖En(Z)‖HS > K) ≤ K−2
E[‖En(Z)‖2HS].

Because Z1, . . . , Zn are i.i.d. random operators with mean 0, we have

E[‖En(Z)‖2HS] = n
−1
E‖Z‖2HS.

We next derive magnitude of E‖Z‖2HS. Note that

E‖Z‖2HS =E〈F ⊗ F − E(F ⊗ F ), F ⊗ F − E(F ⊗ F )〉HS

=E〈F ⊗ F, F ⊗ F 〉HS − 〈E(F ⊗ F ), E(F ⊗ F )〉HS

=E〈F ⊗ F, F ⊗ F 〉HS +O(p
−1

)

=E(〈F, F 〉2HU
) +O(p

−1
),

where the third equality follows from Theorem 9. The inner product 〈F, F 〉HU
is calculated as

〈F, F 〉HU
= 〈κ1(·, U)− µU , κ1(·, U)− µU〉HU

= 1− 2τ1(U) + cU ,

where, for the second equality, we used κ1(U,U) = 1. Hence

〈F, F 〉2HU
= 1− 4τ1(U) + 2cU + 4τ1(U)

2 − 4τ1(U)cU + cUcU .

Taking expectation of the above quantity and evoking the relation E[τ1(U)] = cU , we have

E〈F ⊗ F, F ⊗ F 〉HS = 1− 2cU + 4E[τ1(U)
2
]− 3c

2

U .

By Lemma 30, we have

cU = Eκ1(U, Ũ) = e
2σ

2

+O(p
−1

), E[τ1(U)
2
] = E[κ1(U, Ũ)

2
] = e

4σ
2

+O(p
−1

).

Hence

E〈F ⊗ F, F ⊗ F 〉HS = 1− 2e
2σ

2

+ e
4σ

2

+O(p
−1

).

Note that the right-hand side (without O(p−1) term) is always positive if σ2

u > 0 and σ2

v > 0. So we
have

‖Σ̂UU(p)− ΣUU(p)‖2HS � p/n.
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It follows that

P (‖Σ̂UU(p)− ΣUU(p)‖HS > K) ≤ C

K2 (p/n)

for a constant C > 0. Denoting the right-hand side by ε, we have

P (‖Σ̂UU(p)− ΣUU(p)‖HS >
√
Cn/p/

√
ε) ≤ ε,

which implies ‖Σ̂UU(p)− ΣUU(p)‖HS = OP (
√
p/n).

Proof of (b). Similar to part (a), we have

‖Σ̂UV − ΣUV ‖HS ≤ ‖En(R)‖HS + ‖En(F )⊗ En(G)‖HS,

where R = F ⊗G− E(F ⊗G). By Chebychev’s inequality,

P (‖En(R)‖HS > K) ≤ K−2
E[‖En(R)‖2HS] = n

−1
K
−2
E‖R‖2HS.

By the second relation in Theorem 27,

E‖R‖2HS = E‖F ⊗G‖2HS − ‖ΣUV ‖
2

HS = E(‖F‖2HU
‖G‖2HV

) +O(p
−1

).

Similar to part (a), we can show that

E〈F ⊗ F,G⊗G〉HS = 1− cV − cU + 4E[κ1(U, Ũ)κ2(V, V̄ )]− 3cUcV .

Note that, here, cV doesn’t depend on p. By Lemma 30,

cU = Eκ1(U, Ũ) = e
2σ

2

+O(p
−1

),

E[κ1(U, Ũ)κ2(V, V̄ )] = e
2σ

2

cV +O(p
−1

).

Hence

E〈F ⊗ F,G⊗G〉HS = 1− cV − e
2σ

2

+ e
2σ

2

cV +O(p
−1

).

So we have ‖Σ̂UV (p)− ΣUV (p)‖2HS � p/n, which implies (b). 2

Next, we consider the re-scaled eigenvalue problem (8) with Σ̂
X
−(i,j)

X
−(i,j) and Σ̂

X
−(i,j)

X
(i,j)

replaced by Σ̂
X
−(i,j)

X
−(i,j)(pn) and Σ̂

X
−(i,j)

X
(i,j)(pn), while keeping Σ̂

X
(i,j)

X
(i,j) intact as the di-

mension of X(i,j) is fixed at 2. Let Û ij be the same random vector as defined at the end of Section
4.1 except it corresponds to the re-scaled version of the eigenvalue problem (8). Then we have the
following convergence rate for Û ij . We will use mn to abbreviate pn/n.

Theorem 32 Suppose

(a) Assumptions 1, 7, and 8 are satisfied;
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(b) Σ
X
−(i,j)

X
(i,j)(pn) is a finite-rank operator with

ran(Σ
X
−(i,j)

X
(i,j)(pn)) ⊆ ran(Σ

2

X
−(i,j)

X
−(i,j)(pn)),

ran(Σ
X

(i,j)
X
−(i,j)(pn)) ⊆ ran(Σ

X
(i,j)

X
(i,j));

the rank dij of Σ
X
−(i,j)

X
(i,j)(pn) does not depend on n so long as pn ≥ max(i, j);

(c) m−1/2

n ≺ ηn ≺ 1, n−1/2 ≺ εn ≺ 1;

(d) for each r = 1, . . . , dij , λ
ij

1 > · · · > λijdij .

Then

‖Û ij − U ij‖
[H
−(i,j)

(X)]
dij

= OP (η
−3/2

n ε
−1

n m
−1

n + η
−1

n m
−1/2

n + ηn + εn).

To prove this theorem, we first prove two lemmas which are modified versions of Lemmas 25
and 26. We will only highlight the differences from the earlier proofs without repeating the similar
parts.

Lemma 33 Suppose

(a) the conditions in Corollary 22 are satisfied for α = 2, in addition, the rank of A2 does not
depend on p,

(b) as n→∞ (and hence p→∞),

A1 � 1, A2 � 1, A3 � 1,

‖Â1 −A1‖HS = OP (m
−1/2

n ), ‖Â2 −A2‖HS = OP (m
−1/2

n ),

‖Â3 −A3‖HS = OP (n
−1/2

);

(c) m−1

n ≺ ηn ≺ 1, n−1/2 ≺ εn ≺ 1.

Then

‖(Â1 + ηnI)
−1/2

A2(Â3 + εnI)
−1‖HS = OP (1),

‖A−1/2

1 A2(Â3 + εnI)
−1‖HS = OP (1),

‖[(Â1 + ηnI)
−1/2 −A−1/2

1 ]A2‖HS = OP (η
−1/2

n m
−1/2

n + ηn),

‖A−1/2

1 A2[(Â3 + εnI)
−1 −A−1

3 ]A
∗
2A
−1/2

1 ‖HS = OP (n
−1/2

+ εn).

(70)

Proof Let B1, B2, B3, C1, C2, C3 be as defined in the proof of Lemma 25. Then following the proof
of that lemma we can show

B1 = ȮP (η
−1/2

n m
−1/2

n )(A1 + ηnI)
−3/2

B2 = ȮP (ηn)(A1 + ηnI)
−1/2

A
−3/2

1

C1 = (A3 + εnI)
−1
ȮP (n

−1/2
ε
−1

n )

C2 =A
−1

3 (A3 + εnI)
−1
ȮP (εn).

(71)
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Hence ∑2

i=1

∑2

j=1
BiA2Cj

= ȮP (η
−1/2

n m
−1/2

n )(A1 + ηnI)
−3/2

A2(A3 + εnI)
−1
ȮP (n

−1/2
ε
−1

n )

+ ȮP (η
−1/2

n m
−1/2

n )(A1 + ηnI)
−3/2

A2A
−1

3 (A3 + εnI)
−1
ȮP (εn)

+ ȮP (ηn)(A1 + ηnI)
−1/2

A
−3/2

1 A2(A3 + εnI)
−1
ȮP (n

−1/2
ε
−1

n )

+ ȮP (ηn)(A1 + ηnI)
−1/2

A
−3/2

1 A2A
−1

3 (A3 + εnI)
−1
ȮP (εn).

(72)

Because

A
−3/2

1 A2A
−1

3 , A
−3/2

1 A2A
−2

3 , A
−2

1 A2A
−1

3 , A
−2

1 A2A
−2

3

are finite-rank operators with their ranks not dependent on p, by Lemma 21 and Corollary 22, the
four operators in the middle of the four terms in (72) all have finite Hilbert-Schmidt norms which
do not depend on n. Thus∑2

i=1

∑2

j=1
BiA2Cj

= ÖP (η
−1/2

n ε
−1

n m
−1/2

n n
−1/2

+ η
−1/2

n m
−1/2

n εn + ηnn
−1/2

ε
−1

n + ηnεn) = öP (1),
(73)

where the last equality follows from condition (c). Let R be the index set defined in the proof of
Lemma 25. Then, by (72) it is easy to see that∑

(i,j)∈RBiA2Cj = ÖP (η
−1/2

n m
−1/2

n + ηn + n
−1/2

ε
−1

n + εn) = öP (1),

where the last equality follows from condition (c). The first relation in (70) can then be proved
following the corresponding steps in the proof of Lemma 25. By (71),

‖A−1/2

1 A2(Â3 + εnI)
−1‖HS = ‖A−1/2

1 A2A
−1

3 ‖HS +OP (n
−1/2

ε
−1

n + εn) = OP (1),

which is the second relation in (70). Similarly, by (71),

[(Â1 + ηnI)
−1/2 −A−1/2

1 ]A2 = B1A2 +B2A2 = ÖP (η
−1/2

n m
−1/2

n + ηn),

which is the third relation in (70). The last relation in (70) is proved exactly as that of Lemma 25.
2

Lemma 34 Suppose

(a) the conditions in Corollary 22 are satisfied for α = 1, in addition, the rank of A2 does not
depend on p,

(b) as n→∞ (and hence p→∞),

A1 � 1, A2 � 1, A3 � 1,

‖Â1 −A1‖HS = OP (m
−1/2

n ), ‖Â2 −A2‖HS = OP (m
−1/2

n ),

‖Â3 −A3‖HS = OP (n
−1/2

);
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(c) m−1/2

n ≺ ηn ≺ 1, n−1/2 ≺ εn ≺ 1.

Then

‖(Â1 + ηnI)
−1
A2(Â3 + εnI)

−1‖HS = OP (1),

‖A−1

1 A2(Â3 + εnI)
−1‖HS = OP (1),

‖[(Â1 + ηnI)
−1 −A−1

1 ]A2‖HS = OP (η
−1

n m
−1/2

n + ηn),

‖A−1

1 A2[(Â3 + εnI)
−1 −A−1

3 ]A
∗
2A
−1/2

1 ‖HS = OP (n
−1/2

+ εn).

(74)

Proof Let B1, B2, B3, C1, C2, and C3 be as defined in Lemma 26. Then

B1 = ȮP (m
−1/2

n η
−1

n )(A1 + ηnI)
−1
, B2 = ȮP (ηn)(A1 + ηnI)

−1
A
−1

1 .

By these, the last two relations in (71), as well as condition (c), we have

(Â1 + ηnI)
−1
A2(Â3 + εnI)

−1

=
∑3

i=1

∑3

j=1
BiA2Cj

= A
−1

1 A2A3 + ÖP (m
−1/2

n η
−1

n n
−1/2

ε
−1

n +m
−1/2

n η
−1

n εn +m
−1/2

n η
−1

n

+ ηnn
−1/2

ε
−1

n + ηnεn + ηn + n
−1/2

ε
−1

n + εn)

= A
−1

1 A2A3 + ÖP (m
−1/2

n η
−1

n + ηn + n
−1/2

ε
−1

n + εn)

= A
−1

1 A2A3 + öP (1),

proving the first relation in (74). The second and third relations in (74) are proved as follows:

A
−1

1 A2(Â3 + εnI)
−1

=A
−1

1 A2C1 +A
−1

1 A2C2 +A
−1

1 A2C3

= ÖP (n
−1/2

ε
−1

n + εn) +A
−1

1 A2A
−1

3

=A
−1

1 A2A
−1

3 + öP (1)

[(Â1 + ηnI)
−1 −A−1

1 ]A2 =B1A2 +B2A2 = ÖP (η
−1

n m
−1/2

n + ηn).

The proof of the fourth relation in (74) is similar to (45). 2

Proof of Theorem 32. Again, since this theorem is a modified version of Theorem 10, we only
highlight the differences from the proof of that theorem. Denote the operators

(Σ̂
X

(i,j)
X

(i,j) + εnI)
−1
, Σ̂

X
−(i,j)

X
(i,j)(p), [Σ̂

X
−(i,j)

X
−(i,j)(p) + ηnI]

−1/2

Σ
−1

X
(i,j)

X
(i,j) , Σ

X
−(i,j)

X
(i,j)(p), [Σ

X
−(i,j)

X
−(i,j)(p)]

−1/2

by Â, B̂, Ĉ, A, B, C, respectively. Follow the proof of Theorem 10 until (49), and use Theorem 31
to replace (49) by

‖Ĉ(B̂ −B)Â(B̂ −B)
∗
Ĉ‖HS = OP (η

−1

n ε
−1

n m
−1

n ). (75)

Use Theorem 31 and Lemma 33 to replace (50) by

‖Ĉ(B̂ −B)ÂB
∗
Ĉ‖HS = OP (η

−1/2

n m
−1/2

n ). (76)
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Continue to follow the proof of Theorem 10 until (52). Evoke Lemma 33 to replace (52) by

‖ĈBÂB∗Ĉ − CBAB∗C‖HS =OP (η
−1/2

n m
−1/2

n + ηn + n
−1/2

+ εn)

=OP (η
−1/2

n m
−1/2

n + ηn + εn).
(77)

Combine (75), (76), and (77) to obtain

‖ĈB̂ÂB̂∗Ĉ − CBAB∗C‖HS = OP (η
−1

n ε
−1

n m
−1

n + η
−1/2

n m
−1/2

n + ηn + εn).

Continue to follow the proof of Theorem 10, using the above updated rate, to obtain

λ̂
ij

r − λ
ij

r =OP (η
−1

n ε
−1

n m
−1

n + η
−1/2

n m
−1/2

n + ηn + εn),

‖φ̂ijr − φ
ij

r ‖H−(i,j)
(X)

=OP (η
−1

n ε
−1

n m
−1

n + η
−1/2

n m
−1/2

n + ηn + εn).
(78)

Continue to follow the proof of Theorem 10 until (55), and use Theorem 31 to replace (55) by

‖Ĉ2
(B̂ −B)Â(B̂ −B)

∗
Ĉ‖HS = OP (η

−3/2

n ε
−1

n m
−1

n ). (79)

Use Theorem 31 and the first relation in (70) to replace (56) by

‖Ĉ2
(B̂ −B)ÂB

∗
Ĉ‖HS = OP (η

−1

n m
−1/2

n ). (80)

Use Theorem 31 and the first relation in (74) to replace (57) by

‖Ĉ2
BÂ(B̂ −B)

∗
Ĉ‖HS = OP (m

−1/2

n η
−1/2

n ). (81)

Continue to follow the proof of Theorem 10 until (58), and use Lemmas 33 and 34 to replace (58)
by

‖Ĉ2
BÂB

∗
Ĉ − C2

BAB
∗
C‖HS = OP (η

−1

n m
−1/2

n + ηn + εn). (82)

Combine (79) through (82) to obtain

Ĉ
2
B̂ÂB̂

∗
Ĉ − C2

BAB
∗
C = ÖP (η

−3/2

n ε
−1

n m
−1

n + η
−1

n m
−1/2

n + ηn + εn). (83)

Continue to follow the proof of Theorem 10 until (84), and use (78) and (83) to replace (60) by

‖f̂ ijr − f
ij

r ‖H−(i,j)
(X)

= OP (η
−3/2

n ε
−1

n m
−1

n + η
−1

n m
−1/2

n + ηn + εn). (84)

Since dij is bounded as n→∞, the above implies the asserted result. 2

From this point onwards the diverging pn no longer plays a role in the asymptotics because
the kernels κi,ijXU and κijU in the second step of SGM has fixed dimensions that do not depend on n.
In other words, Theorems 7, 8, 9, and 11 still apply, but this time to the new convergence rate bn
given in Theorem 32, which leads to the following the convergence rate of the conjoined conditional
covariance operator in the pn →∞ setting.

Theorem 35 Suppose the following conditions hold:
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(a) (First-level kernel) E[κ(S, S)] <∞ is satisfied for κ = κ(i,j)

X and κ = κ−(i,j)

X ;

(b) (First-level operator) Σ
X
−(i,j)

X
(i,j)(pn) is a finite-rank operator with rank dij and

ran(Σ
X
−(i,j)

X
(i,j)(pn)) ⊆ ran(Σ

2

X
−(i,j)

X
−(i,j)(pn)),

ran(Σ
X

(i,j)
X
−(i,j)(pn)) ⊆ ran(Σ

X
(i,j)

X
(i,j));

dij does not depend on n so long as pn ≥ max(i, j); all the dij nonzero eigenvalues of

Σ
X

(i,j)
X
−(i,j)(pn)[Σ

X
−(i,j)

X
−(i,j)(pn)]

−1
Σ
X
−(i,j)

X
(i,j)(pn)

are distinct, and the eigenvalues gaps do not tend to 0;

(c) (First-level tuning parameters)m−1/2

n ≺ ηn ≺ 1, n−1/2 ≺ εn ≺ 1, η−3/2

n ε−1

n m
−1

n +η−1

n m−1/2

n +
η1/2

n + εn ≺ 1;

(d) (Second-level kernel) E[κ(S, S)] < ∞ is satisfied for κ = κijU , κi,ijXU , and κj,ijXU ; furthermore,
they are transparent kernels;

(e) (Second-level operators) Σ−1

U
ij
U
ijΣU

ij
(X
i
U
ij

)
and Σ−1

U
ij
U
ijΣU

ij
(X
j
U
ij

)
are bounded linear oper-

ators;

(f) (Second-level tuning parameter) δn � η−3/2

n ε−1

n m
−1

n + η−1

n m−1/2

n + ηn + εn.

Then

‖Σ̂
Ẍ
i
Ẍ
j |Ûij
− Σ

Ẍ
i
Ẍ
j |Uij
‖HS = OP (η

−3/2

n ε
−1

n m
−1

n + η
−1

n m
−1/2

n + ηn + εn). (85)

Appendix J. Joint distribution satisfying condition (3)

It is relatively easy to find joint distributions of X = (X1, . . . , Xp)T that satisfy the (3) for every
pair of nodes (i, j) with G

X
−(i,j) being a proper sub-σ-field of σ(X−(i,j)). The multivariate Gaus-

sian distribution is an obvious (but trivial) example, because the conditional distribution of X(i,j)

given X−(i,j) depends on a linear function of X−(i,j). In this case, U ij is of dimension 1. Another
example is the copula Gaussian distribution; that is, there exist injective functions c1, . . . , cp such
that (c1(X

1), . . . , cp(X
p)) = (C1, . . . , Cp) is multivariate Gaussian. In this case the conditional

distribution of C(i,j) given C−(i,j) is a linear function of C−(i,j). This implies that there exists a
1-dimensional U ij such that X(i,j) X−(i,j)|U ij . There are also abundant examples satisfying (3)
that are unrelated to multivariate Gaussian distribution. For example, consider a multivariate distri-
bution determined by the graph where each pair of vertices can have at most r neighbors. In this
case, for each pair (i, j), there exists a U ij of dimension at most r that satisfies (3).

Appendix K. Equivalent condition for ran(B) ⊆ ran(A)

Let H and K be separable Hilbert spaces, let A : H → H a compact and self adjoint operator,
and let B : K → H be compact operator. Let {(λi, ui) : i = 1, 2, . . .} be the eigenvalue-
eigenfunction sequence of A, with |λ1| ≥ |λ2| ≥ · · · , and let {(τi, vi, wi) : i = 1, 2, . . .} be a
sequence where τi is the ith largest singular value ofB, vi is the corresponding left eigenfunction of
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B, and wi is the corresponding right eigenfunction of B, with τ1 ≥ τ2 ≥ · · · . The next proposition
gives a necessary and sufficient condition for ran(B) ⊆ ran(A) in terms of their eigenvalues,
eigenfunctions, singular values, and singular functions. Without loss of generality, assume that {ui}
and {vi} are orthonormal bases of H and {wi} is an orthonormal basis of K . In the following, in a
series such as

∑∞
i=1

aibi, we allow ai or bi to be∞, and treat as if∞ were a number. In particular,
we adopt the convention 0 · ∞ = 0 and c · ∞ =∞ if c 6= 0.

Proposition 36 If the assumptions in the last paragraph are satisfied, then the following statements
hold true:

1. ran(B) = {f ∈H :
∑∞

i=1
τ−2

i 〈f, vi〉
2

H <∞};

2. ran(B) ⊆ ran(A) if and only if, for any f ∈H , and as n→∞,

n∑
i=1

λ
−2

i 〈f, ui〉
2

H = O

(
n∑
i=1

τ
−2

i 〈f, vi〉
2

H

)
.

In part 1, when there are only a finite number (say n0) of nonzero τi, we have τ−2

i = ∞ for
i > n0. Therefore, by the stated convention about∞, the inequality

∑∞
i=1

τ−2

i 〈f, vi〉
2

H < ∞ holds
if and only if 〈f, vi〉H = 0 for all i > n0. To provide further intuition, we give a necessary and
sufficient condition for Assumption 2 in Proposition 36, which implies that following examples
satisfy and violate Assumption 2, respectively:

1. Assumption 2 is satisfied if Σ
X
−(i,j)

X
(i,j) has finite number of nonzero singular values, and

the corresponding left singular functions are contained in the subspace spanned by a finite
number of eigenfunctions of Σ

X
−(i,j)

X
−(i,j) ;

2. Assumption 2 is violated if the left singular functions of Σ
X
−(i,j)

X
(i,j) are aligned with the

eigenfunctions of Σ
X
−(i,j)

X
−(i,j) , and the singular values of Σ

X
−(i,j)

X
(i,j) converge to 0 at a

slower rate than the eigenvalues of Σ
X
−(i,j)

X
−(i,j) .

Proof 1. First, consider the cases where there are n0 < ∞ nonzero τi. In this case, it is easy to see
that

ran(B) = span(v1, . . . , vn0} = {f ∈H :

∞∑
i=1

τ
−2

i 〈f, vi〉
2

H <∞}.

Next, assume all τi’s are nonzero, and let

S =

{
f ∈H :

∞∑
i=1

τ
−2

i 〈f, vi〉
2

H <∞

}
,

and f a member of S . Since
∑∞

i=1
τ−2

i 〈f, vi〉
2

H <∞, the function

h =

∞∑
i=1

τ
−1

i 〈f, vi〉H wi
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is a well defined member of K . Furthermore,

Bh =

∞∑
i=1

τi〈h,wi〉K vi

=

∞∑
i=1

∞∑
j=1

τiτ
−1

j 〈f, vj〉H 〈wj, wi〉K vi

=

∞∑
i=1

∞∑
j=1

τiτ
−1

j 〈f, vj〉H 〈wj, wi〉K vi

=

∞∑
i=1

〈f, vi〉H vi = f.

Thus f is a member of ran(B), which proves S ⊆ ran(B).
If f ∈ ran(B), then there is an h ∈ K such that

f = Bh =

∞∑
i=1

τi〈h,wi〉K vi.

Hence

∞∑
i=1

τ
−2

i 〈f, vi〉
2

H =

∞∑
i=1

τ
−2

i

( ∞∑
j=1

τj〈h,wj〉K 〈vj, vi〉H

)2

=

∞∑
i=1

τ
−2

i τ
2

i 〈h,wi〉
2

K

=

∞∑
i=1

〈h,wi〉
2

K = ‖h‖2K <∞.

Thus f is a member of S .
2. Applying part 1 of this proposition to operators A and B, we have

ran(A) =

{
f :

∞∑
i=1

λ
−2

i 〈f, ui〉
2

H <∞

}
,

ran(B) =

{
f :

∞∑
i=1

τ
−2

i 〈f, vi〉
2

H <∞

}
.

Let

an =

n∑
i=1

λ
−2

i 〈f, ui〉
2

H , bn =

n∑
i=1

τ
−2

i 〈f, vi〉
2

H ,

a =

∞∑
i=1

λ
−2

i 〈f, ui〉
2

H , b =

∞∑
i=1

τ
−2

i 〈f, vi〉
2

H .

Then limn→∞ an = a and limn→∞ bn = b. Hence the following statements are equivalent:
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1. b <∞⇒ a <∞;

2. bn = O(an),

which proves the second assertion. 2

Appendix L. Coordinate representation of SGM algorithm

L.1 Coordinate mapping

We first briefly describe how to represent operators as matrices and functions as vectors using co-
ordinate mapping. A full description of coordinate mapping can be found in Sections 12.3 and
12.4 of Li (2018b). Let H 1 and H 2 be finite-dimensional Hilbert spaces with spanning sets
B 1 = {h11, . . . , h1m1

} and B 2 = {h21, . . . h2m2
}. Here, we allow the vectors in the spanning

sets to be linearly dependent. Any function f ∈ H 1 can be represented as a linear combination of
vectors in B 1; we call the Rm1-vector of linear coefficients the coordinate of f with respect to B 1

and denote the coordinate by [f ]B1
. If A : H 1 → H 2 is a linear operator, then Af is a member

of H 2 and has a coordinate [Af ]B2
with respect to the spanning set B 2 of H 2. There is always a

matrix M ∈ Rm2×m1 such that [Af ]B2
= M [f ]B1

, and we call this matrix the coordinate of A with
respect to B 1-B 2, and denote it by B2

[A]B1
.

The following proposition will be used in the subsequent discussions. It concerns a single
finite-dimensional Hilbert space and its spanning set B = {h1, . . . , hm}. Let A : H → H be a
self-adjoint operator.

Proposition 37 Let GB = {〈ha, hb〉H}na,b=1 be the Gram matrix of the set B , I : H → H the
identity mapping, and ε > 0 a constant. Then

1. ‖A‖HS = ‖G1/2

B (B[A]B)G†1/2B ‖F, where ‖ · ‖HS is the Hilbert-Schmidt norm of a linear oper-
ator, ‖ · ‖F is the Frobenius norm of a matrix, and G†1/2B is the Moore-Penrose inverse of the
matrix G1/2

B .

2. B[(A + cI)−1]B = G†1/2B {G1/2

B (B[A]B)G†1/2B + cQB}†G1/2

B , where QB is the projection on
to span{[h1]B, . . . , [hm]B}.

The proof, which is omitted, can be done using Theorem 8 of Li and Solea (2018a). Note that part
2 of the proposition can be equivalently written as

B[(A+ εI)
−1

]B = G
†1/2
B {G1/2

B (B[A]B)G
†1/2
B + εIn}

†
G

1/2

B ,

because G†1/2B G1/2

B = QB.

L.2 Matrix representation for eigenvalue problem (8)

Let K
X
−(i,j) , G

X
−(i,j) , Q, and H −(i,j)

X be the objects defined in Section 4 of the manuscript. Then,
it can be easily verified that the number

〈κ−(i,j)

X (·, X−(i,j)

a )− En[κ
−(i,j)

X (·, X−(i,j)
)],

κ
−(i,j)

X (·, X−(i,j)

b )− En[κ
−(i,j)

X (·, X−(i,j)
)]〉−(i,j)
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is the (a, b)th entry of G
X
−(i,j) . In other words, G

X
−(i,j) is the Gram matrix of the spanning set of

H −(i,j)

X :

{κ−(i,j)

X (·, X−(i,j)

a )− En[κ
−(i,j)

X (·, X−(i,j)
)] : a = 1, . . . , n} ≡ C .

By the same argument G
X

(i,j) is the Gram matrix of the spanning set of H (i,j)

X :

{κ(i,j)

X (·, X(i,j)

a )− En[κ
(i,j)

X (·, X(i,j)
)] : a = 1, . . . , n} ≡ B .

By Lemma 12.3, part 4, in Li (2018b),

〈f, Σ̂
X
−(i,j)

X
(i,j)(Σ̂

X
(i,j)

X
(i,j) + ε

(i,j)

X I)
−1

Σ̂
X

(i,j)
X
−(i,j)f〉−(i,j)

= [f ]C
TG

X
−(i,j) [Σ̂

X
−(i,j)

X
(i,j)(Σ̂

X
(i,j)

X
(i,j) + ε

(i,j)

X I)
−1

Σ̂
X

(i,j)
X
−(i,j)f ]C.

By parts 1 and 3 of the same lemma,

[Σ̂
X
−(i,j)

X
(i,j)(Σ̂

X
(i,j)

X
(i,j) + ε

(i,j)

X I)
−1

Σ̂
X

(i,j)
X
−(i,j)f ]C

= (C[Σ̂
X
−(i,j)

X
(i,j) ]B)(B[(Σ̂

X
(i,j)

X
(i,j) + ε

(i,j)

X I)
−1

]B)(B[Σ̂
X

(i,j)
X
−(i,j) ]C)[f ]C.

By Theorem 12.1 of Li (2018b),

C[Σ̂
X
−(i,j)

X
(i,j) ]B = G

X
(i,j) ,

B[Σ̂
X

(i,j)
X

(i,j) ]B = G
X

(i,j) ,

B[Σ̂
X

(i,j)
X
−(i,j) = G

X
−(i,j) .

By Proposition 37,

B[(Σ̂
X

(i,j)
X

(i,j) + ε
(i,j)

X I)
−1

]B =G
†1/2

X
(i,j)(G

1/2

X
(i,j)GX

(i,j)G
†1/2

X
(i,j) + ε

(i,j)

X QB)
†
G

1/2

X
(i,j)

=QB(G
X

(i,j) +
(i,j)

X In)
−1
QB.

Hence

[Σ̂
X
−(i,j)

X
(i,j)(Σ̂

X
(i,j)

X
(i,j) + ε

(i,j)

X I)
−1

Σ̂
X

(i,j)
X
−(i,j)f ]C

= G
X

(i,j)(G
X

(i,j) + ε
(i,j)

X In)
−1
G
X
−(i,j) [f ]C

and consequently,

〈f, Σ̂
X
−(i,j)

X
(i,j)(Σ̂

X
(i,j)

X
(i,j) + ε

(i,j)

X I)
−1

Σ̂
X

(i,j)
X
−(i,j)f〉−(i,j)

= [f ]C
TG

X
−(i,j) G

X
(i,j)(G

X
(i,j) + ε

(i,j)

X In)
−1
G
X
−(i,j) [f ]C.

Similarly,

〈f, Σ̂
X
−(i,j)

X
−(i,j)f〉−(i,j) = [f ]C

TG
2

X
−(i,j) [f ]C.

Thus the operator-level generalized eigenvalue problem (8) can be rewritten in the following matrix
form

maximize bTG
X
−(i,j)G

X
(i,j)(G

X
(i,j) + ε

(i,j)

X In)
−1
G
X
−(i,j)b

subject to bTG
2

X
−(i,j)b = 1.
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Setting G
X
−(i,j)b = a and solving this equation for a with Tychonoff regularization, we have b =

(G
X
−(i,j) + ε−(i,j)

X In)−1a. Thus, at the kth step, a is simply the kth eigenvector of

(G
X
−(i,j) + ε

−(i,j)

X In)
−1
G
X
−(i,j)

G
X

(i,j)(G
X

(i,j) + ε
(i,j)

X In)
−1
G
X
−(i,j)(G

X
−(i,j) + ε

−(i,j)

X In)
−1
.

Let a1, . . . , adij be first dij eigenfunctions of the above matrix, and br = (G
X
−(i,j) + ε−(i,j)

X In)−1ar

for r = 1, . . . , dij . The eigenfunctions f ij1 , . . . , f
ij

dij
of the problem (8) are then

f
ij

r =

n∑
a=1

b
r

a{κ
−(i,j)

X (·, X−(i,j)

a )− En[κ
−(i,j)

X (·, X−(i,j)
)]}.

L.3 Matrix representation of ‖Σ̂
Ẍ
i
Ẍ
j |Uij
‖HS

By Theorem 12.1 of Li (2018b), the coordinate representations of the estimated covariance operators
in (10) are

B
i,ij
XU

[Σ̂
(X
i
U
ij

)(X
j
U
ij

)
]
B
j,ij
XU

=G
X
j
U
ij ,

B
i,ij
XU

[Σ̂
(X
i
U
ij

)U
ij ]

B
ij
U

= G
U
ij ,

B
ij
U

[Σ̂
U
ij

(X
j
U
ij

)
]
B
j,ij
XU

=G
X
j
U
ij ,

B
ij
U

[Σ̂
U
ij
U
ij ]

B
ij
U

= G
U
ij .

Applying the above relations and part 2 of Proposition 37, we obtain the coordinate representation
of the conjoined conditional covariance operator for each (i, j) as

B
i,ij
XU

[Σ̂
Ẍ
i
Ẍ
j |Uij

]
B
j,ij
XU

= G
X
j
U
ij −G

U
ij (G

U
ij + ε

(i,j)

U Q)
†
G
X
j
U
ij .

By part 1 of Proposition 37, the Hilbert Schmidt norm of the above operator is the Frobenius norm∥∥∥G1/2

X
i
U
ijG

1/2

X
j
U
ij −G1/2

X
i
U
ijGU

ij (G
U
ij + ε

(i,j)

U Q)
†
G

1/2

X
j
U
ij

∥∥∥
F

.

Appendix M. Additional simulation for estimating threshold ρ

Appendix N. Miscellaneous

Nonlinear sufficient dimension reduction is a particularly natural framework for reducing dimension
in a statistical graphical model: the following example illustrates the conceptual difficulty to use
linear sufficient dimension reduction. Suppose X has four components X1, X2, X3, X4 and the
linear sufficient dimension reduction relation is imposed on (X3, X4) by(

X3

X4

)
=

(
(X1 +X2)2

sin(X1 +X2)

)
+

(
ε3

ε4

)
where (ε3, ε4) X . Then, there might not exist constants β1, β2 and a functions f1, f2 such that(

X1

X2

)
=

(
f1(β1X

3 + β2X
4)

f2(β1X
3 + β2X

4)

)
+

(
ε1

ε2

)
where (ε1, ε2) X . In other works, linear sufficient dimension reduction is not rich enough to be
imposed on every pair of nodes without causing inconsistency. This is not a problem for nonlinear
sufficient dimension reduction, as it imposes no specific form on the conditional distributions of
X(i,j) given X−(i,j).
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Figure 7: Threshold determination for simulation studies. Upper panels: Model I with n = 1000
(left) and Model II with n = 1000 (right); middle panels: Model III with n = 50 (left) and Model
IV with n = 50 (right); bottom panel: Model V with n = 100. The red curves are the receiver
operating characteristic curves; and the black dots are the positions of the thresholds determined
generalized cross validation.
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Figure 8: Threshold determination for application. Upper panels: Network 1 (left) and Network 2
(right); middle panels: Network 3 (left) and Network 4 (right); bottom panel: Network 5. The red
curves are the receiver operating characteristic curves; and the black dots are the positions of the
thresholds determined generalized cross validation.
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