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Abstract
Learning interpretable representations of neural dynamics at a population level is a crucial
first step to understanding how observed neural activity relates to perception and behavior.
Models of neural dynamics often focus on either low-dimensional projections of neural
activity or on learning dynamical systems that explicitly relate to the neural state over time.
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We discuss how these two approaches are interrelated by considering dynamical systems
as representative of flows on a low-dimensional manifold. Building on this concept, we
propose a new decomposed dynamical system model that represents complex non-stationary
and nonlinear dynamics of time series data as a sparse combination of simpler, more
interpretable components. Our model is trained through a dictionary learning procedure,
where we leverage recent results in tracking sparse vectors over time. The decomposed
nature of the dynamics is more expressive than previous switched approaches for a given
number of parameters and enables modeling of overlapping and non-stationary dynamics.
In both continuous-time and discrete-time instructional examples, we demonstrate that
our model effectively approximates the original system, learns efficient representations,
and captures smooth transitions between dynamical modes. Furthermore, we highlight
our model’s ability to efficiently capture and demix population dynamics generated from
multiple independent subnetworks, a task that is computationally impractical for switched
models. Finally, we apply our model to neural “full brain” recordings of C. elegans data,
illustrating a diversity of dynamics that is obscured when classified into discrete states.

1. Introduction

The past decade has seen rapid growth in neuroscience driven by the emergence of new
technologies that enable the recording of neural population activity, such as large-scale
optical imaging (Demas et al., 2021) and electrophysiology (Steinmetz et al., 2021). As
a result, neural data analysis has moved beyond the characterization of single neurons to
the modeling of entire large neuronal populations (Saxena and Cunningham, 2019). For
large simultaneous recordings, a significant challenge lies in understanding the intricate
correlated patterns of neural activity on a single trial basis. Currently, the quantitative
language describing these observations has primarily leveraged two conceptual frameworks:
1) dimensionality reduction and 2) dynamical systems modeling.

Dimensionality reduction primarily addresses the identification of a small number of
degrees of freedom that characterize a time series recording. Often these methods treat
activity patterns at individual time points independently and seek to discover a represen-
tative geometry that underlies the data. Traditional linear methods, including PCA, ICA,
POD (Berkooz et al., 1993), and their variants (Yu et al., 2008; Wu et al., 2017) are often
employed to reduce high-dimensional time-series data and can be viewed as decomposing
time signals into a linear summation of components with time-changing coefficients. However,
these methods do not yet capture the fundamental nature of dynamical systems as they
do not directly model the recursive changes in a system state as a function of it’s previous
values.

These methods have recently given way to more flexible descriptions of dimensionality
reduction. Many recent nonlinear dimensionality reduction methods rely on the manifold
hypothesis (Wu et al., 2017; Nieh et al., 2021; Gallego et al., 2017; Cunningham and Yu, 2014;
Benisty et al., 2021; Mishne et al., 2016), including local embeddings (Balasubramanian and
Schwartz, 2002; Roweis and Saul, 2000) and variational auto-encoders (Han et al., 2019).
This neural manifold assumption (i.e., that instantaneous neural activity patterns lie on a
low-dimensional manifold) removes the assumption of linearity in the low-dimensional neural
representation, and enables the identification of correlated activity that corresponds to a
potentially much lower-dimensional geometric structure. Similar to the linear dimensionality
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reduction methods, however, nonlinear methods also do not explicitly capture the temporal
nature of the data.

By contrast, dynamical systems models focus primarily on capturing the temporal
relationships within neural activity. However, these models often treat activity patterns
over time as arising from individual latent states without regard to any geometric structure
being modeled by these low-dimensional latent variables. Proposed dynamical systems
models include concise linear dynamical systems (LDS) (Churchland et al., 2012), switched
systems that capture abrupt non-stationarities (Linderman et al., 2017; Glaser et al.,
2020; Nassar et al., 2018), GLMs that learn sets of filters to describe temporal conditional
probabilities (Pillow et al., 2008), and more recently arbitrary function approximations in the
form of general recurrent neural networks (RNNs) (Pandarinath et al., 2018; Keshtkaran and
Pandarinath, 2019). This collection of approaches reflect a fundamental trade-off between
model complexity and interpretability. On one side are simple, regularized, often linear
models that directly expose latent relationships in the data, but are limited in their ability to
accurately model complex time-varying structures. On the other side are modern black-box
deep learning methods, which are highly expressive but obfuscate learned relationships and
are thus difficult to interpret (Schulz et al., 2020). While dynamical systems models remain
a promising avenue for capturing the temporal dynamics of neural activity, they often lack
explicit constraints on the structure of the latent variables or on the underlying neural
manifold.

Accordingly, there is a critical need to develop methods that remain interpretable while
maintaining a high level of expressivity (i.e., capturing rich nonlinear structure that arises
when studying neural population activity). While both traditional dimensionality reduction
methods and dynamical systems models seek to represent low-dimensional structures, we
currently lack methods that integrate the manifold hypothesis directly into a dynamical
systems model, thus maintaining both model expressivity and interpretability. This gap
in modeling limits our ability to study important problems in neuroscience. As a prime
example, one task that remains challenging is the identification and characterization of
multiple subnetworks within a neural population. Population recordings often consist of
distinct subnetworks that exhibit different functional roles or represent different aspects of
information processing. Understanding the dynamics of each distinct subnetwork is crucial
for revealing the underlying mechanisms of neural computation. While each subnetwork may
have its own dynamics, connectivity patterns, functional properties, and interactions with
other subnetworks, the multivariate time series in neural recordings represent all subnetworks’
combined activity and must be unmixed to discover the true underlying structure.

To address this need, we introduce a decomposed Linear Dynamical Systems (dLDS)
model that describes high-dimensional neural activity as dynamical flows on a low-dimensional
manifold. Transitions between consecutive time points are decomposed as a time-varying
mixture of linear dynamics systems (LDSs). In our approach, each LDS element captures a
canonical movement along the neural manifold, which are linearly combined to model the
overall dynamics in the low-dimensional data geometry. Specifically, we constrain the linear
combination at each time point to be sparse (i.e., only a few dynamics are combined at any
time point). This parsimony eases the task of interpreting the individual LDS systems in
light of global dynamical structure or external variables. The dLDS model exhibits increased
expressiveness per model parameter compared to existing switched Linear Dynamical Systems
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(SLDS), and can capture richer dynamics while maintaining interpretability due to the use of
simple LDS primitives that highlight unique dynamical patterns under different conditions.
Our implementation of dLDS encompasses both continuous- and discrete-time variants, each
with distinct advantages under different settings (e.g., scalability and invariance to system
speed, respectively). Our main contributions in this paper are 1) introducing the dLDS
model to illustrate its foundational properties, capabilities, and strengths; 2) demonstrating
key advantages of this model over current approaches in multiple scenarios; and 3) illustrating
its use in the analysis of population neural activity from calcium imaging in C. elegans.

2. Background and Related Work

Dynamical systems models of neural data. Dynamical systems models explicitly seek
to identify the relationships of neural activity patterns over time. Early work leverages
the learning of LDSs to approximate the progression of activity in neural state space (Sani
et al., 2021a; Golub et al., 2013; Churchland et al., 2012). These approaches leverage theory
from traditional linear stationary system identification literature, such as Kalman filtering,
etc. (Haykin, 1996). Applications include characterization of neural populations, controlling
of brain-computer interfaces, and relating brain activity to external variables (Yu et al.,
2007). Due to the nonlinear and non-stationary dynamics present in neural activity, two
primary approaches have been taken to extend dynamical systems models beyond the linear
and stationary regimes: 1) nonlinear recurrent neural networks (Pandarinath et al., 2018;
Keshtkaran and Pandarinath, 2019; Sussillo et al., 2015; Sani et al., 2021b; Kleinman et al.,
2021), and 2) Switched Linear Dynamical Systems (SLDS) (Ackerson and Fu, 1970; Chang
and Athans, 1978; Hamilton, 1990; Bar-Shalom and Li, 1990; Ghahramani and Hinton,
1996; Murphy, 1998; Fox et al., 2008; Linderman et al., 2017). Recurrent neural network
(RNN) approaches, while highly flexible, are based on training “black boxes” which make
interpretability of the learned dynamics difficult. Moreover, some emerging RNN-based
approaches (e.g., (Pandarinath et al., 2018; Keshtkaran and Pandarinath, 2019)) compress
the dynamics into initial conditions that recapitulate the neural dynamics when input into
the trained RNN.

SLDS explicitly seeks interpretable characterizations of the dynamics by modeling
transitions over time between a discrete set of linear systems. SLDS variants are described
as a Gauss-Markov process and a switching model that determines transitions between the
linear dynamics through a discrete-time Markov process. Although SLDS can discover latent
dynamics, it is a limited generative model since state durations are determined stochastically.
Recurrent SLDS (rSLDS) extends SLDS by including an additional dependency between
the discrete switches and the previous location in state space through a stick-breaking
logistic function (Linderman et al., 2017). The rSLDS model improves interpretability by
dividing the state space into K partitions with locally linear dynamics. However, rSLDS
introduces challenges during inference due to its dependencies on the permutation of the
discrete switches. Tree-structured recurrent SLDS is an extension of rSLDS that addresses
this issue through a generalized stick-breaking procedure that enables efficient inference
and the ability to represent dynamics at multiple levels of resolution (Nassar et al., 2018).
However, scalability remains an issue as the optimal number of discrete systems is difficult
to determine, often leading to inefficient representations of the underlying dynamics.
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We note that conventional LDSs and switching LDSs models, whether treating the
system as a single dynamical entity or potentially switching between LDSs, inherently
lack the capability to capture multiple co-occurring processes or overlapping subsystems
(e.g., simultaneous observation of slow-timescale and faster-timescale systems). To address
this limitation, we choose to draw inspiration from sparse coding, offering a solution that
maintains a balance between interpretability and the ability to capture concurrent processes.

Sparse coding and dictionary learning. Learning data representations is a central
theme in machine learning and neuroscience. One fundamental approach is sparse coding,
which assumes a form of efficiency in representation under a linear generative model (Ol-
shausen and Field, 1996; Aharon et al., 2006). In the sparse coding representation, each data
point yk can be linearly generated from a latent vector ak such that yk = Dak + ε, where
the matrix D contains representational features as its elements, and ε is representational
noise. Sparse coding assumes that the representation is efficient in that for any yk, only a few
of the features (columns of D) are required to construct the data point (i.e., the number of
non-zero entries in ak for any yk is assumed to be small relative to the size of ak). In general,
D is unknown and must be learned from data via a process called dictionary learning.
Dictionary learning can be expressed as a variational approach with a delta approximation
to the posterior (Barello et al., 2018) that results in a two-step optimization that iterates
between inferring the sparse vector ak for a subset of points, and updating the dictionary
D by taking a gradient step over the approximated likelihood.

Transport Operators. Related to dLDS is the Transport Operators (TOs) framework
for learning manifold structure in data (Culpepper and Olshausen, 2009). TOs represent
a class of generative manifold models by characterizing transformations in local regions
as a continuous-time-evolving LDS model. The transformation matrix is decomposed as a
weighted sum of K dictionary elements called TOs, each individually representing movement
along a particular path on the latent manifold and can be combined to reconstruct observed
transformations. Operators are learned as part of the DL iterative procedure and are
updated at each iteration by taking a gradient descent step to minimize the desired cost.
This approach has been demonstrated to effectively approximate geometrical structures of
nonlinear manifolds in a variety of settings. For complex data, TOs have been integrated
into the latent space of autoencoders and VAEs which enables generative transformation
paths and meaningful extrapolations (Connor and Rozell, 2020; Connor et al., 2021a). More
recent advances include relaxing the requirement of transformation labels, learning local
operator statistics for identity-preserving transformations, and improving the scalability of
inference for higher-order models (Connor et al., 2021b; Fallah and Rozell, 2022). Despite
this progress, existing work on TOs mainly focuses on discovering the geometry of latent
manifolds, but fails to describe the nonlinear temporal flows on these manifolds in complex
time series data.

Interpretability. Interpretability is undoubtedly an important consideration to under-
standing neural dynamics. However, concrete evaluation of interpretability is hampered by
the variety of different definitions in the literature. For example, some approaches focus on
mapping abstract concepts into domains that humans more naturally understand Montavon
et al. (2018). In the context of neural signals, data is collected from arbitrary nonlinear
dynamical systems which generally have no analytical solutions available, making it chal-
lenging to predict and interpret their behavior. To facilitate the ease of human reasoning, a
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model must be transparent both with respect to the whole model altogether as well as for
each of its individual parts separately (Lipton, 2018). Reasoning about the entire model
can be achieved through simple, parsimonious representations, while reasoning about its
components is accomplished through statistically transparent structures that can be easily
modified and analyzed. Taken together, this suggests that an interpretable model is one
that is sparse with simple building blocks.

The dLDS model takes inspiration from these guidelines and achieves transparency and
parsimony through three separate mechanisms. First, dimensionality reduction finds a latent
low-dimensional representation that summarizes and approximately generates the correlated
high-dimensional signals. Second, the latent nonlinear system is locally approximated with
linear systems. Linear components are fully characterized mathematically, making it possible
to determine the behavior of the system through its eigendecomposition and gain insight
into the underlying mechanisms at any point in time. Third, each transition is decomposed
into a sparse combination of a dictionary of linear dynamics which improves parsimony
through the reuse of the learned dictionary to efficiently represent shared dynamics over
time and under different conditions.

Expressivity. Expressivity is the ability for a model to accurately represent a broad
range of highly complex functions (Raghu et al., 2017). A popular approach to modeling
complicated nonlinear dynamical systems is to form a piecewise approximation by transi-
tioning between a fixed set of linear regimes throughout the trajectory of the signal (Vyas
et al., 2020), such as in SLDS, rSLDS and their variants. A direct result of the fixed number
of linear regimes is that it has limited capacity in the types of systems that it can well
approximate. In particular, if new system behavior must be captured, then these models
must increase the number of linear states (and perhaps fit the entire model from scratch).

For example, switched systems often learn approximate dynamics which have disconti-
nuities along the boundaries of the switches. This can be well suited to capturing sudden
changes in dynamics, but may not accurately represent smooth transitions between dynami-
cal modes. Approximating smooth transitions requires increasing the number of linear states
available to capture intermediate stages. Additionally, learning discrete states independently
becomes prohibitively costly when estimating dynamics for a population that contains
multiple independent subgroups that may switch at different times (requiring a different
model for each combination of sub-population activity). However, the number of possibilities
grows exponentially as the number of subgroups and dynamical modes increases, rendering
this approach combinatorially impractical. Moreover, this challenge is compounded during
inference where the learned systems are rigid and cannot adapt to capture similar dynamics.
For example, SLDS must learn new distinct states to accurately represent subtle variations
of similar dynamics such as changes in speed. For a fixed number of parameters, dLDS
improves the expressivity of the switching linear approach by offering a controlled way to
flexibly modify and reuse learned linear regimes.

3. Decomposed linear dynamical systems

We begin our model description with the observation model. Let Y = [y1, ...,yT ] ∈ Rk×T be
a sequence of T k-dimensional observation vectors y1, ...,yT . A loading matrix D ∈ Rk×p
links each observation vector yt to its underlying latent state, xt ∈ Rp, such that:
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Figure 1: Decomposed dynamical system model. A: Trajectories along the manifold
are guided by local DOs. In neuroscience, we indirectly observe the latent manifold
state xt through the observation model D. The space of transports {gl}l=1:L
can be learned directly or through a discretized approximation {fm}m=1:M . B:
The decomposed linear dynamical systems includes an observation model, a
dynamics model, and hierarchical variables ct that control the non-stationarity in
the dynamics. These dynamics coefficients can be structured (top), e.g., one fixed
active coefficient at a time results in switching between discrete states, whereas
enabling flexibility in the coefficient’s value can enable scaled dynamics, sparsely
structured dynamics, or even more arbitrarily distributed dynamics.

yt = Dxt + εt, (1)

where εt is measurement noise from an isotropic Gaussian distribution.
Critical to dLDS is modeling the temporal evolution of the latent states along the

underlying geometry. We begin with the common assumption that xt lies on a d-dimensional
manifoldM⊂ Rp. To stay on the manifold over time, the flows guiding the latent state xt
must move along the manifold, according to its tangent space at each point, as depicted in 1.
An appropriate continuous-time model that describes the movement along the manifold can
be expressed as ẋt = Gtxt + Σ1/2Ẇt where Gt represents a local transformation at any
point in time that maps the point xt onto nearby points on the manifold andWt is standard
Wiener process.

Taking a finite step integrates a first-order linear differential equation whose solution
involves the matrix exponential. Moreover, as the tangent space is a subspace, the operator
Gt can be decomposed at each time point into a linear combination of dictionary elements
gl which we refer to as dynamic operators (DOs) to emphasize that they are specifically
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designed to represent dynamic processes rather than static geometry. The set of DOs span
the space of possible local motions at different points on the manifold (i.e., glxt spans the
tangent space at xt) and are weighted by the coefficients c̃t = [c̃1t, ..., c̃Lt]T which encode the
representation of the dynamical trajectory through xt. Any trajectory between two points
xt and xt+τ on the manifold, can be written as

Gt =
L∑
l=1
glc̃lt (2)

xt+τ ≈ expm (Gtτ)xt + νt, (3)

where νt ∼ N(0,Στ) is Gaussian noise.
As a result, the latent dynamics, xt ∈ Rp, evolves according to the non-stationary

dynamical systems matrix (Gt) defined by the evolution of c̃t over time. The continuous-
time differential formulation in Equation (3) can hence flexibly define dynamics. However, it
requires computing a matrix exponential, which can be computationally expensive in higher
dimensions. Thus, for a fixed sampling rate, we can set τ = 1 and approximate the action of
the DO dictionary over a local area as exp(

∑L
l=1 glc̃lt) ≈ Ft (see Appendix A for discussion)

for each time point t = 1, ...T , which can be expanded into its own basis as

Ft =
M∑
m=1

fmcmt, (4)

where fm ∈ Rp×p for all m = 1 . . .M , the dynamics coefficients for the discrete time form are
denoted by ct = [c1t, ..., cMt]T , and the dictionary is composed of a set ofM linear dynamical
systems represented by{fm}m=1:M . Note that in the discrete formulation above, we have
normalized the time interval between samples to τ = 1 without loss of generality. This
choice simplifies the model description, ensuring that the model evolves at fixed intervals of
τ in the discrete state.

The discrete-time dynamics model is defined as

xt = Ftxt−1 + νt =
M∑
m=1

fmcmtxt−1 + νt. (5)

In dLDS, we distinguish between the two sets of unknowns: model parameters (D and
either {gl}l=1:L or {fm}m=1:M ) and model coefficients (xt and c̃t for the continuous form,
and xt and ct for the discrete form). The model parameters define the total geometry of the
data that we wish to learn through example data. The model coefficients dictate specific
trajectories through the learned geometry that can be inferred given the model parameters
for any data coming from the same distribution. Next, we focus on defining algorithms
capable of learning the model parameters from data.
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Model training framework. We frame learning from example data as optimization
over the following cost function,

{x̂t, ĉt}Tt=1 = arg min
{xt,ct}

 T∑
t=1
‖yt −Dxt‖22 +

T∑
t=2

λ0

∥∥∥∥∥∥xt −
M∑
m=1

fmcmtxt−1

∥∥∥∥∥∥
2

2

+
T∑
t=1

(
λ1‖xt‖1 + λ2‖ct‖1

)
+

T∑
t=2

λ3‖ct − ct−1‖22

 .
(6)

The first and second term encourages accurate reconstruction of the observed data and
latent dynamics, the third and fourth terms encourage sparsity in the latent state and
dynamics coefficient, while the fifth term encourages temporal smoothness of the coefficients.
Their respective regularization terms are given by λ0, λ1, λ2, and λ3. For simplicity, we
focus here on the discrete dynamics {fm}m=1:M . However, we note that a similar learning
algorithm can be derived for continuous dynamics by including the matrix exponential
into the transition, at the cost of introducing nonconvexity to the objective function. To
deal with this challenge, we leverage advances in automatic differentiation and stochastic
optimization to provide estimates of the coefficients and model parameters. To optimize
this objective, we follow the dictionary learning literature (Olshausen and Field, 1996) and
perform coordinate descent, alternating between estimating latent variables x and c, and
updating model parameters {fm}m=1:M and D.

Inference of Latent Variables x and c. First, we derive an efficient process for
inferring xt and ct given the data and an estimate of the model parameters, assuming isotropic
Gaussian noise in the observation and dynamics model. The `1 sparsity regularization
encourages the use of only a few dynamical systems, fm, at each time point. Similarly,
in cases where we believe that the latent states are independent, `1 regularization over xt
encourages appropriate decoupling. Modifying λ0, λ1, and λ2 (or setting them to zero)
allows our approach to adapt to different modeling conditions by modulating the expected
sparsity in both the dynamics coefficients and latent state (Fig. 1B, top). The last term,
λ3‖ct − ct−1‖22, encourages smoothness over the time-varying coefficients. This smoothness
constraint between consecutive time points can prevent high jumps and abrupt changes in
the model coefficients over time that may be due to noise, thereby enhancing its ability to
capture underlying trends without being overly influenced by noise or outliers.

Solving the above for all time points can be computationally intensive, particularly due
to the bilinear form induced by the products between xt−1 and ct. We adopt the recent Basis
Pursuit De-Noising with Dynamical Filtering (BPDN-DF) (Charles et al., 2016) approach for
dynamic filtering of sparse signals. BPDN-DF is used for inferring the coefficients, ct, and the
latent variables, xt, at a single time point, and proceeds through all time points sequentially.
By conditioning on past time point estimates, the dynamics prediction

∑M
m=1 cmtfmx̂t−1

can be written as F̃tct where the mth column of F̃ ∈ Rp×M is the product fmx̂t−1. Thus,
the dynamics can be then rewritten as

xt = Ftxt−1 =
M∑
m=1

cmtfmxt−1 =
M∑
m=1

[fmxt−1]cmt = F̃tct. (7)
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Inferring all coefficients at each time step reduces to a LASSO problem (or partial LASSO
or least-squares, depending on if any λ values are set to zero),

x̂t, ĉt = arg min
xt,ct

[
‖yt −Dxt‖22 + λ0

∥∥∥xt − F̃tct∥∥∥2

2
+ λ1‖xt‖1 + λ2‖ct‖1 + λ3‖ct − ĉt−1‖22

]
.

(8)
We note that for the continuous case, the same basic framework holds. However, the

matrix exponential prevents the consolidation of the previous estimate and dynamics into a
single matrix F̃ , and retains the following form:

x̂t, ̂̃ct = arg min
xt,ct

‖y −Dxt‖22 + λ0

∥∥∥∥∥∥xt − expm

 L∑
l=1
glc̃lt

 x̂t−1

∥∥∥∥∥∥
2

2

+λ1‖xt‖1 + λ2‖c̃t‖1 + λ3‖c̃t − ̂̃ct‖22
. (9)

Updating the model parameters. Given the inferred model coefficients, the sec-
ond step of the learning framework is a gradient step over the model parameters. For
the latent state projection D, the gradient can be computed as in traditional dictionary
learning (Olshausen and Field, 1996):

D̂ ← ΠCD
(D − ηD∇D

T∑
t=1

(yt −Dxt)2) = ΠCD
(D + ηD

T∑
t=1

(yt −Dxt)xTt )). (10)

As with any dictionary learning procedure, there is a fundamental ambiguity in the scale of
the model parameters and coefficients. We therefore constrain each column of D to have
unit-norm via the projection

∏
CD

. Note that this update rule is appropriate in both the
continuous and discrete time cases.

For the dynamics we start with the discrete case. For each fm, the gradient can be
computed as

f̂m ← ΠCfm

f̂m − ηf∇fm

T∑
t=2

∥∥∥∥∥∥xt −
M∑
m=1

cmtfmxt−1

∥∥∥∥∥∥
2

2

 (11)

= ΠCfm

f̂m + ηf

T∑
t=2

(
cmt

(
xt − F̃tct

)
xTt−1

). (12)

A similar ambiguity with the latent projection D occurs between the scale of fm and
ct, so we impose the constraint that each fm has a unit spectral radius. This constraint is
applied at each optimization iteration and in practice transforms the gradient descent to a
projected gradient descent.

Parameter updates for updating the continuous operators can be similarly derived over
the gradient of the term involving the matrix exponential of

∑
l glclt. Thus the derivative

must be computed through the matrix exponential (see Algorithm 2), and we find it easier
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Algorithm 1 dLDS Model Training
Input Y , λ1, λ2, η, M . Input observations and hyperparameters
Initialize {fm}m=1:M , D . Randomly initialize model parameters
while not converged do . Iterating until convergence

Infer ct and xt via Equation 8
Update D via Equation 10
Update each fm via Equation 11
if rMSE does not change then . Check if stuck in a local minimum
fm,ij ← fm,ij + ξij where ξij ∼ N (0, σ2) . Randomly perturb all elements of fm

end if
end while

to replace the strict constraint over the spectral radius with a looser regularization over the
Frobenius norm ‖gl‖2F .

ĝl ← ΠCgl

ĝl − ηg∇gl

T∑
t=2

∥∥∥∥∥∥xt − expm

 L∑
l=1

c̃ltgl

xt−1

∥∥∥∥∥∥
2

2

+ λg

L∑
l=1
‖gl‖2F

, (13)

where λg is the weight of the Frobenius norm regularization over the dynamics matrices gl,
and ΠCgl

is the projection operator to the constraint set Cgl
on gl.

The full algorithm is presented in Algorithm 1. As a special case that can be of interest in
lower-dimensional data settings, we also consider the scenario in which the observation matrix,
D, is fixed to be the identity matrix (i.e., yt = xt). In this case we have direct observations of
points on the manifold, and the model learning can be reduced in computational complexity
(see Appendix E for the continuous and discrete cases). In all cases, we also intermittently
perturb the model parameters to prevent local minima.

3.1 Interpretability for dLDS

Each individual component of the sparse decomposition is interpretable in the context of
dynamical systems. For the continuous coefficients, the scale and magnitude have intuitive
meaning and can modify the dictionary to account for many of the natural variations seen
in time series data. Changes in speed or frequency of oscillations can be represented by
increasing the coefficient’s magnitude. Larger coefficients represent faster speeds and higher
frequencies while smaller magnitudes represent slow speeds or low frequency oscillations.
The signs of the coefficients also represent the direction of motion in the dynamical systems.
A positive sign indicates movement in the direction of the learned system while a negative
sign indicates reverse-time or backwards movement.

The dictionary is also readily interpreted since linear dynamical systems have analytical
solutions which fully characterize its properties mathematically. The rank and structure
of the linear systems can reveal the underlying dimensionality of a particular dynamic. A
system with low rank and block-diagonal structure may suggest subspace-specific transitions
and enables the modeling of trajectories generated from several independent subnetworks.

In addition to the interpretability of individual model components, it is also possible to
reason over the model as a whole. By enforcing the sparsity constraint over the coefficients,
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we encourage the model to reduce redundancy and learn dictionary elements that are
statistically independent. Moreover, sparsity reduces the complexity of the representation
and facilitates a clearer understanding of the underlying dynamics by allowing only a few
active components at any point in time. Furthermore, we formulate a mixture model to
represent dynamics, and enable the learning of shared dynamics, where multiple processes
are governed by the same underlying system. In grouping together similar processes and
modeling them as a single unit, we simplify the analysis and interpretation of the data.

3.2 Expressivity for dLDS

The dLDS model improves the expressiveness of traditional switching linear models by
replacing the discrete dynamical states with a sparse coding model. By relaxing the discrete
switches and introducing continuous coefficients, we enable the model to compactly represent
a more flexible family of linear approximations for nonlinear dynamical systems during
learning and inference, as compared to switch-based models. In fact there are several
types of constraints we can impose on the coefficients (Fig. 1B). In the most restrictive
setting, coefficients are constrained to being 1-hot vectors, which recovers the SLDS model
as a special case. Relaxing the constraint on the magnitude of the coefficients results in a
model with scaled coefficients over individual systems (Fig 1B). As a result of the 1-sparse
coefficients, only a single system can be active, but its magnitude can be scaled positively and
negatively. Time-warped AR-HMM (Costacurta et al., 2022) is an example of a model in this
family and uses a single continuous coefficient to scale existing discrete states to compactly
represent learned dynamics at different speeds. The dLDS model relaxes the constraint of
only having a single system active at a time and allows for n-sparse representations of the
linear approximation at each point in time. Allowing multiple dynamics components to be
active at a time dramatically improves the expressivity of dLDS in a way that is similar
to how Factorial HMMs are able to represent an exponential number of bits given a linear
increase in the number of parameters (Ghahramani and Jordan, 1995). In fact, there is a
factorial version of SLDS that allows for the interaction of multiple factors via their cross
product Quinn et al. (2008); dLDS instead superimposes dynamics operators for improved
interpretability.

For a fixed number of parameters, a more expressive model should be able to achieve lower
approximation error over a broad range of systems (Dong et al., 2020). During inference,
dLDS achieves lower approximation error through its continuous sparse coefficients, which
can flexibly adjust to modify and combine existing learned dynamics to accurately capture
new trajectories from similar systems. By contrast, switching linear systems cannot adapt
learned discrete states to unseen trajectories even in the presence of small variations. During
learning, dLDS offers a rich model that can efficiently capture important dynamics such as
smooth transitions between states and ramping of amplitudes. The SLDS model, on the
other hand, can achieve a similar expressivity but only in the limit of having a separate
discrete state for every pair of consecutive time slices. Such a representation is prohibitively
expensive, scaling linearly with the length of the signal and quadratically with the number
of discrete states. Moreover, increasing the number of parameters in this manner would
result in severe overfitting and prevent SLDS models from effectively capturing interesting
structures and learning meaningful representations. Further, allowing for a large number of
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discrete states introduces discontinuities on the boundaries of the linear dynamics which can
be an inappropriate assumption for signals collected, e.g., from neural systems.

4. Experiments

To demonstrate the capabilities of dLDS, we present several experiments in both continuous
and discrete settings. We first showcase the model’s efficiency in representing continuous
data (Sections 4.1, 4.2, Fig. 2). Then we demonstrate the model’s ability to reconstruct
discrete dynamics and recover shared underlying operators from synthetic, low-dimensional,
nonlinear dynamical systems in the case of changing stability regimes (Section 4.3, Fig. 3),
smooth transitions between ground truth DOs (Section 4.4, Fig. 4), independent but
simultaneously observed systems (Section 4.5, Fig. 5), and across model regularization
settings and initializations (Sections 4.6, 4.7, Figs. 6, 7). (Note that in all of the simulation-
based experiments, we focused on the case whereD is the identity matrix). Finally, we apply
the model to real-world C. elegans calcium imaging data to uncover underlying patterns
that were previously obscured (Section 4.8, Figs. 8, 9).

4.1 Continuous-time dLDS can efficiently model dynamics at different speeds

Continuous coefficients provide an effective means for efficient representation and smooth
transitions between dynamical modes. Specifically, by modulating the dynamics coefficients
ct, dLDS can accurately model the same system operating at different speeds. To demonstrate
the representational efficiency, we consider a two-dimensional slowly decaying spiral that
progressively increases its rotational velocity by one unit of speed every 5 units of time.
The trajectory sampled from this system, as depicted in Figure 2A, undergoes four speed
shifts. In our study, we compare dLDS with standard switching linear models, focusing on
rSLDS (Linderman et al., 2017). To ensure fair comparisons, we approximately matched the
number of parameters and fit the dynamics using L = 4 systems. dLDS learned to represent
the entire system using a single DO and effectively eliminated unused operators (Fig. 2C
left column). Furthermore, dLDS used the coefficients to modify the single DO in order to
capture the changes in speed (Fig. 2B bottom). By contrast, rSLDS recovered a less efficient
representation by learning four non-zero discrete states, despite only using three of them
during inference (Fig. 2C right column). Although rSLDS managed to capture the original
system, it was unable to identify the shared behavior and used separate states to model
the same dynamics at different speeds. Lastly, it is worth noting that rSLDS encountered
limitations in inference due to its rigid discrete states, which obscured when the system
changes between the fastest speeds as the result of approximation errors in the dynamics
(Fig. 2B top). On the other hand, dLDS exhibited adaptability by flexibly adjusting its
coefficients to identify speed changes, despite approximation errors in the DO.

4.2 Continuous-time dLDS efficiently represents trajectories on a sphere

Next, we highlight the ability of dLDS to model smooth transitions in dynamics of a particle
moving around an axis of a spherical manifold. At regular intervals of 5 units of time, the
system undergoes a random rotation θ ∈ [0, 2π] along the x-axis. Figure 2D shows a sampled
path for 100 rotations while Figure 2E illustrates the continuum of ground truth rotations
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Figure 2: Synthetic linear systems, examples of efficient representation. A: The
generated path from ground truth 2D spiral system, colored by speed in phase
space (top) and unrolled over time (bottom). B: The inferred rSLDS discrete
states (top) and the inferred dLDS coefficients (bottom). rSLDS models speed
changes with three discrete states and incorrectly groups the two fastest speeds
together while dLDS changes coefficients on a single dictionary element. C: dLDS
learns a single dictionary element (left column) that can be reused while rSLDS
learns redundant systems (right column). Smooth transitions between DOs
represent different paths on a spherical manifold: D: The generated path
on the ground truth 3D sphere colored to visualize progression through time. E:
Possible ground truth rotations. Multiple traces show dynamics and a single trace
is highlighted (red) for better visibility. F: Convex combinations of learned DOs
g1 and g3 allow for smooth transitions along continuum of rotated systems. G:
dLDS learns two DOs that can be combined to represent all paths on the sphere
while rSLDS must learn each angle of rotation separately.

that can occur. In contrast to the previous experiment where we fit each model with the
exact number of ground truth modes, we consider the situation where the models are fit with
fewer systems than the total number of dynamical modes. In both switched and decomposed
models, we fit the dynamics using L = 4 systems.

dLDS recovered two DOs, which represented the original system at two distinct angles ,
and shrank the remaining operators to zero (Fig. 2G, left). The two DOs offered an efficient
description of the system, as they could be combined to represent the complete range of
rotations (Fig. 2F). By smoothly changing the ratios of the coefficients, dLDS could smoothly
transition between each DO to accurately represent intermediate trajectories. By contrast,
rSLDS learned four non-zero discrete states, each capturing the original system at different
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angles (Fig. 2G, right). Although rSLDS may provide an accurate description of the particle
when its trajectory aligns with one of the learned states, trajectories that fall in between
one of the learned discrete states may result in poor approximation and incorrectly inferred
states. Again, rSLDS learned each discrete state separately and was unable to find the
relationship between them, while dLDS learned that similar trajectories along the spherical
manifold can be represented by sharing DOs.

4.3 Discrete-time dLDS flexibly models different stability regimes

By adjusting coefficients, the discrete-time dLDS model enables modeling shifts in the
stability of a system (3). We consider a simple transition of a spiral system that shifts from
a stable, decaying regime to an unstable, expanding regime:

xt =

0.99fxt−1 if 0 < t ≤ T
2 ,

1
0.99fxt−1 if T2 < t ≤ T.

f =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
where θ = π

5 . (14)

In this system, the rotational matrix f underlies the ground truth dynamics, and the matrix’s
coefficient ct has a fixed value of ct = 0.99 for 0 < t ≤ T/2 and then the inverse value
ct = 1/0.99 for T/2 < t ≤ T (Fig. 3B blue). The rotational nature of f generates the spiral
that initially converges exponentially and then moves outward, becoming unstable (Fig. 3C
blue).

We trained both rSLDS and dLDS on a single (M = 1) dynamical state to emphasize the
efficiency in representation. In this experiment, dLDS well approximates this original system
(Fig. 3C red) by using the identified coefficients (Fig. 3B red) to adjust the single learned
DO’s stability. In doing so, it is able to efficiently control the direction of the rotation
(inwards or outwards) while retaining the system’s overall rotational behavior. Conversely,
fitting rSLDS to a single discrete state conceals the presence of a shift in stability since
learned dynamics are rigid during inference (Fig. 3B,C teal). In fact, we find that dLDS can
recover the ground truth dynamics operator with high precision and accurately reconstruct
the dynamics to a level not achievable in a switched model with a single operator.

4.4 Discrete-time dLDS efficiently reconstructs smooth transitions between
ground truth dynamics

While switching models demonstrate excellent performance in capturing sudden changes in
dynamics, the discrete nature of their dynamical states presents a challenge when it comes
to representing seamless transitions. By contrast, discrete-time dLDS can model smooth
transitions between two operational modes of a system. To illustrate this, we construct
a system generated from a set of two rotational linear operators f1 and f2 (Fig. 4C top)
whose coefficients c1t and c2t smoothly change over time following a sigmoid and a mirrored
sigmoid (Fig. 4A blue), respectively: xt = (c1tf1 + c2tf2)xt−1 (Fig. 4B blue). dLDS trained
with two DOs (M = 2) is able to both fully reconstruct the dynamics (Fig. 4B, mid row)
and recover the rotational part of the ground truth operators (Fig. 4C, mid row). We
observed that the differences between the lower right corner of f1 and the upper left corner
of f2 in the reconstructed dLDS operators, compared to the real DOs, do not affect the
reconstruction process. This is because the dynamic here (x) is defined as a transition from
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again (2).png

Figure 3: dLDS captures changes in system stability. A: Schematic behavior of
dLDS and switching dynamics in modeling transitions between linear dynamics.
Switching systems jump between dynamic states producing sharp trajectories while
dLDS can smoothly change the DO coefficients to capture gradual transitions in the
system. B: The ground truth dynamics over time (blue, top), versus the recovered
dynamics by dLDS (middle, red) and rSLDS (bottom, teal). C: Comparison of
the generated coefficients (blue) versus the dLDS recovered coefficients (red), and
the rSLDS coefficients (teal).

a horizontal to a vertical spiral, resulting in x3 and x1 values that are close to zero when f1
and f2 are respectively active. When trained with two discrete states, rSLDS, by definition,
cannot reconstruct such dynamics well (Fig. 4B teal). Indeed, the learned discrete states in
rSLDS (Fig. 4C, bottom) did not recover the ground truth systems and instead learned two
similar discrete states that both incorrectly combined the dynamical modes together. As
a result, rSLDS inaccurately inferred erratic jumps between the two similar systems in an
attempt to capture the smooth transition (Fig. 4A, teal). In general, it is unclear how to
appropriately set the number of discrete states to get an accurate representation of smooth
transitions for switching models. Even if given an adequate number of discrete states, the
intermediate stages can experience overfitting as a result of the low number of samples in
the transition interval. dLDS addresses these issues through the continuous coefficients,
which flexibly modify existing dynamics to account for minor variations and enable learning
of shared structure even in the intermediate stages of a smooth transition.

4.5 Discrete-time dLDS disentangles simultaneously observed systems

One benefit of decomposing dynamics is the ability to account for multiplexed sub-systems
within the same recorded data. Consider a single recording of a neural population that
consists of two distinct sub-populations, denoted as a and b. The sub-population a consists
of N1 neurons, while the sub-population b consists of N2 neurons, and the recordings of these
sub-populations over time are represented by xat ∈ RN1×T and xbt ∈ RN2×T , respectively. To
represent the full data, we concatenate these two populations’ recordings vertically, resulting
in xt = [xat ;xbt ] ∈ R(N1+N2)×T . If the switches of both sub-populations are not synchronized,
even when both locally adhere to a switched LDS model, an SLDS model would need
to transition whenever either subsystem a or subsystem b switches. Consequently, the
SLDS model would have to consider all possible coexistence scenarios of these two systems
collectively. Thus, the timescales of the unique populations are lost, and the interpretability
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2023B (2).png

Figure 4: dLDS captures rotational dynamics from 2 underlying rotational sys-
tems. A: The ground truth dynamics (top, blue), compared to the recovered
dynamics by dLDS (middle, red) and rSLDS (right, teal). Each column corre-
sponds to a different axis. B: Comparison of the generated coefficients (blue),
the dLDS recovered coefficients (red), and the rSLDS coefficients (teal). C: The
ground-truth DOs (top, blue) versus the DOs recovered by dLDS (middle, red)
and rSLDS (bottom, teal).

of the combined recordings becomes muddled. dLDS, however, can naturally account for
such settings by summing operators that guide only the dynamics of subsets of the system.

To demonstrate this effect, we simulate a ten-dimensional state xt, where the first five
elements of the vector constitute “population a” and the last five elements “population
b”. We then generate six ground truth DOs (Fig 5A, top row), three of which only act on
population a (maroon), and the other three on population b (cyan). To simplify the setting,
each population constituted an SLDS system and switched abruptly between one of its three
systems, or went silent with no dynamics active (Fig. 5C blue). We repeated this process,
generating 50 draws of the process with different initial states and different switch patterns.

We fit both dLDS and rSLDS to the generated data, providing both with a maximum of
15 dynamical operators (M = 15). The dLDS model was able to recover a basis of operators
that match the ground truth synthetic operators (Fig. 5A, middle row). Specifically, the
recovered dynamical operators were well localized in terms of being localized to either the
upper or lower diagonal block, indicating that dLDS learned the underlying block structure
of the system. Furthermore, the dynamical operators for each learned system matched one
of the ground truth operators with a correlation of ≈ 1 (Fig. 5E, left), and the coefficients
directly convey when each subsystem switched independent of the other subsystem (Fig. 5B,
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red). By contrast, rSLDS learned dynamical systems that had both upper and lower blocks
on the diagonal active, indicating that it was learning combined dynamics across both
subsystems (Fig. 5A, bottom row) that do not convey the true underlying independence
between the subsystems. In fact, when provided with more discrete states than necessary,
rSLDS learns several redundant dynamics as a result of its inability to share information
between its states. For instance, f4 and f14 resemble each other as well as f9 and f10, and
f5 f11 and f12 (Fig. 5E, right). These redundant dynamics cause unstable inference of the
discrete states and result in inappropriate jumps between states with similar dynamics in
the middle of the true switching intervals (Fig. 5B, teal).

4.6 Discrete-time dLDS efficiently represents a range of simulated behaviors
and aligns DO coefficients to the axes for interpretability

We will now illustrate how dLDS can effectively capture intuitive aspects of nonlinear
models of the underlying dynamics of biological systems. Specifically, we consider the
FitzHugh–Nagumo (FHN) model: a 2D excitable-oscillatory dynamical system model
that describes the temporal behavior of a nerve membrane potential in response to a
stimulus (FitzHugh, 1961) and is a simplification of the Hodgkin-Huxley model (Hodgkin
and Huxley, 1952). The FHN model is defined by a pair of conjugated differential equations
denoted by

∂v

∂t
= v − v3

3 − w + Iext τ
∂w

∂t
= v + a− bw, (15)

where the state-space (v, w) are the nerve membrane potential (v) and the voltage recovery
variable (w), respectively. Iext is an external stimulus, and τ , a and b are model parameters.
Here we set Iext = 0.5, τ = 20, a = 0.8, and b = 0.7, and consider a sample initialized at
(v0, w0) = (−0.5, 0). This example demonstrates the effect of sparsity regularization on the
model’s representation of the dynamics. We ran dLDS with and without the `1 regularization
over ct to test how sparsity changes the interpretability of the system (Fig. 6) and show that
including the `1 regularization term on the coefficients promoted their orientation towards
the axes (Fig. 6B,G). For both the regularized and unregularized cases, the transitions
of coefficients between the quadrants of the coefficients’ space enable our model to well
represent a diverse set of voltage behaviors (e.g., depolarization, repolarization, etc.) with
only M = 2 operators (Fig. 6D,I). The smooth transitions using the same two operators in
both forward and reverse directions cannot be captured by switched systems. This result
is consistent with the ct-plane visualization in the ‘arbitrary’ versus ‘sparse’ cases (e.g.,
Fig. 1B).

4.7 Discrete-time dLDS recovers shared dynamics between different
simulation initializations

We next demonstrate the ability of dLDS to capture the complex dynamics of the Lorenz
attractor, a well-known system that exhibits chaotic behavior and is often used as a
benchmark for dynamical models. The Lorenz attractor is a nonlinear chaotic system
governed by

∂x

∂t
= α(y − x) ∂y

∂t
= x(β − z)− y ∂z

∂t
= xy − γz. (16)
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Figure 5: dLDS identifies independently evolving groups from combined time
series. A: The ground truth DOs displaying the block structure of the data (top),
DOs recovered by dLDS (middle), DOs recovered by rSLDS (bottom). Framed
dLDS DOs have a perfect correlation to the “true” DOs for both populations (cyan,
maroon). B: The ground truth coefficients (top), dLDS recovered coefficients
(middle) and rSLDS recovered coefficients (bottom). dLDS can accurately recover
the structure of the ground truth and nullifies redundant coefficients, while
rSLDS combines dynamics across the blocks. C: True generated dynamics (left),
dLDS reconstruction (middle), and rSLDS reconstruction (right). D: The data
reconstruction correlations for dLDS (red) and rSLDS (teal) with the ground
truth. dLDS achieves perfect reconstruction. E: The correlations of each true DO
(rows) with each recovered DO (columns). dLDS (left) recovers all true DOs (each
row presents exactly one black cell), while rSLDS tends to combine DOs across
the two independent groups.

For our dLDS experiment, we set α = 10; β = 25; γ = 2.67. Here, we demonstrate dLDS’
inference capability to model unseen data of the same dynamics with different initializations,
using the learned set of operators. By training dLDS on a set of Lorenz attractors with
different initial conditions, and then benchmarking on unseen attractors that originated from
unused initial conditions, we highlight the ability of operators learned via dLDS to generalize
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Figure 6: Comparison between the unregularized dLDS (top row) and the sparse
dLDS model (bottom row) for the FitzHugh-Nagumo oscillator. A & F:
The temporal evolution of the membrane voltage (blue-green) and of the dynamics
coefficients. Three points of interest were highlighted to showcase our model’s
capability to capture various behaviors with only 2 basis components. These
points of interest include 1) the action potential (AP) repolarization (t = 100), 2)
the AP peak (t = 332), and 3) hyper-polarization (t = 733). B & G: Comparison
between the coefficients’ space of the unregularized and the regularized case. For
the unregularized dLDS model, the model coefficients (ct) can occupy any location
in space, and need not be on the axes. By contrast, when adding regularization to
the model, sparse coefficients lie near the axes. C & H: The learned reconstructed
dynamics Ft at the time points of interest, highlighting dLDS’s ability to infer
more distinct phases than the number of sub-dynamics (fi)—a capability that
is not available to linear or switching models. D & I: Stream-plots of the basis
operators learned by dLDS (f1 and f2). E: The phase-space plot of the FHN
model (v-w space), with time points of interest highlighted.

past individual trajectories. dLDS was able to reconstruct the unseen Lorenz attractors
with high accuracy (Fig. 7B bottom row). Although the model was allowed to use up to
seven operators, no more than 2-3 operators were active at a time (Fig. 7A bottom row),
maintaining the balance between interpretability and expressivity. Additionally, the clear
association between the patterns of the DOs’ coefficients and the location on the attractor
highlights the model’s interpretability, making it a powerful tool for modeling nonlinear
dynamical systems. In Figure 7B, the stars on the Lorenz attractors mark the peaks of c1
(cyan), c2 (green), c5 (pink), c7 (red), highlighting their repeated and consistent locations
along the Lorenz manifold. The link between the different dimensions of the Lorenz and the
c values can be easily seen (Fig. 7A,C). Figure 7C depicts the link between the Lorenz’s
first dimension and the coefficients representation, by coloring the three most dominant
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(3)B.png

Figure 7: Demonstrating model generalizability by applying dLDS to the Lorenz
attractor with unseen initial conditions (I.C.s). A: DO coefficients (bot-
tom) plotted against the Lorenz state values (top) show coefficient patterns
associated with different sections of the Lorenz attractor. B: Comparison between
unseen Lorenz trajectories (top row) and their dLDS reconstructions (bottom
row). Stars indicate the locations of peaks of different operators’ coefficients,
highlighting how the underlying components localize on the attractor. C: The
three most active dynamics coefficients are color-coded by the corresponding x1
values. Regions visibly associated with different ranges of x1 highlight repeated
patterns dynamics in the Lorenz attractor.

operators’ coefficients according to the Lorenz’s first dimension values. One can see the clear
change of colors in different areas of the ct space.

21



Mudrik, Chen, Yezerets, Rozell, Charles

4.8 Discrete-time dLDS identifies latent dynamics in C. elegans data

Finally, we apply dLDS to “whole brain” C. elegans calcium imaging recordings (Kato
et al., 2015; Zimmer, 2021; Linderman et al., 2019) (Fig. 9A). We benchmarked dLDS
model against rSLDS in the experiments where Kato et al. (2015) inferred the immobilized
worms’ pirouetting behavior under varying oxygen concentrations (four states: forward
crawl, reverse crawl, sustained reverse crawl, and post-reversal turn) from the neural activity.
dLDS revealed obscured differences in the neural dynamics during different behavioral states
for further exploration.

First, we observed that the map D from the latent space to the neural observations was
able to highlight neurons that heavily overlapped with known neurons of interest and group
them together in the latent space. For example, the stronger weights in D highlighted AVAL
and RIML, interneurons involved in a backward motion, and VA01, a motor neuron (Fig. 8,
neurons of interest in red). AVAL and RIML were both represented in latent dimensions 1,
2, 4, 6, and 8, whereas AIBL, an interneuron that instead promotes turns, was represented
in latent dimensions 1, 2, 5, 8, and 10. VA01 was most represented in latent dimensions 3,
4, 6, 8, and 10, which suggests some shared utilization of this motor neuron for backward
motion and some for turning. This mapping can be used in future studies to reconstruct
measures of functional connectivity from latent space dynamics back to the neural activity
(ambient) space.

Second, we noticed obscured within-state evolving dynamics (Fig. 9B). This may indicate
a gradual change in the worm’s internal state or behavior in the middle of these discretely-
labeled behavioral states; however, it is difficult to identify a behavioral or internal state
correlated with the data provided. These results indicate that dLDS can be applicable to
datasets with continuous descriptions of behavior as opposed to discrete behavioral state
labels.

Third, while rSLDS recapitulated 1-sparse behavioral state classification with high
fidelity, we observed periods where the inferred discrete states oscillated unrealistically,
e.g., between the post-reversal turn (rSLDS state 4) and forward crawling (rSLDS state
1). By contrast, dLDS adjusted the dynamics coefficients without changing the usual
relationships between the dynamics. The traces maintained a standard motif shape and
order of purple/yellow/blue/red from top to bottom, with blue activating during periods
of high oscillation in the rSLDS classification (Fig. 9B). However, not every behavioral
state transition from state 4 to state 1 (“4-to-1”) induced high oscillation in the rSLDS
classification; we take as controls those time intervals where the rSLDS inferred states
were stable, which we defined as a remaining constant for at least 10 time points in a row.
Focusing on a specific example, the stable rSLDS control (Fig. 9C,E,G) and high rSLDS
oscillation (Fig. 9D,F,H) intervals both appeared to reflect 4-to-1 behavioral state transitions
according to the ground-truth inferred behavior labels from Kato et al. (2015). However,
during the high oscillation interval, in the dLDS latent states, the yellow trace stayed on,
unlike in the control interval (Fig. 9E,F). In the dLDS dynamics coefficients (Fig. 9C,D),
several dynamics were active at the beginning of State 4 in the control interval but not
in the high oscillation interval (264-266s vs. 367-370s). Moreover, in the high oscillation
interval, the dynamic corresponding to the orange trace stayed active, unlike in the control
interval. Both dLDS and rSLDS identified some differences in neural activity between these
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Figure 8: dLDS identifies important neurons in C. elegans data via the observa-
tion matrix D. Top: Median fluorescence values for each recording channel
(Worm 1, stimulated case). Channels labeled by neuron names represent individual
neurons identified by Kato et al. (Kato et al., 2015; Zimmer, 2021). Bottom: The
observation matrix D mapping the latent states x to the fluorescence y.

two time intervals. However, dLDS offers a finer resolution lens for parsing and interpreting
the dynamics that create these differences.

4.9 Additional experiments

We further tested dLDS in a higher-dimensional discrete-time setting (12x12 image patches),
demonstrating the ability to recover ground truth dynamics in simple permutation tests, as
well as identifying a decomposable transformation of image patches learned from natural
videos (Appendix J).

5. Discussion, Limitations, and Future Work

In this work, we present a manifold-flow-inspired model of learning decomposed Linear
Dynamical Systems. Our proposed model, dLDS, expands on the idea of switching linear
systems to a model where linear combinations of a finite dictionary of systems can represent
a richer set of dynamics. Unlike more unstructured dynamics models (Harris et al., 2021;
Proctor et al., 2016; Luttinen et al., 2014), the sparsity specifically provides an intuitive sense
of interpretability for the dynamics that we observe over multiple examples. We present
the model in both continuous- and discrete-time settings and provide both synthetic and
real-data examples of learning the dynamics dictionary in practice.

Our model-learning provides an avenue by which we can estimate dynamical systems that
are locally linear at each point, but whose parameters change over time. This enables both the
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Figure 9: Demixed dynamics in a single C. elegans in the stimulated experimen-
tal setting, with 4 behavioral states. A: Neuronal activity for a subset of
neurons and their reconstruction (R2 = 0.74) using dLDS with 10 DOs. B: Re-
gions corresponding to inferred behavioral states 4 and 1, with the top 4 dynamics
coefficients for these epochs. Gray highlights indicate periods of high oscillation
in the rSLDS state. By contrast, the dLDS dynamics coefficients during the 4-to-1
state transition varied more smoothly. c1, c2, c5, and c8 were highly active, with
a quantitative change at the transition between states 4 and 1. C-H: A time
interval where rSLDS exhibits state oscillations during a transition from state
4 to 1 (right column, D, F, H) juxtaposed with a control interval with stable
rSLDS states during a similar transition (left column, C, E, G). Compared are
the dLDS c traces (C, D), dLDS x traces (E, F), and Behavioral states (blue
circles) labeled by Kato et al. (2015) vs. rSLDS states (red crosses, not matched)
(G, H).

estimation and tracking of non-stationary dynamics, as well as the approximation of nonlinear
dynamics by treating the nonlinearity as a temporal non-stationarity. dLDS benefits from
the efficiency, sparsity, and convergence guarantees of the BPDN-DF algorithm Charles
et al. (2016), which filters forward in time; however, future implementation of a smoothing
solution (e.g., forward-backward, or joint local estimation of multiple states) may improve
model accuracy. In addition, the learning procedure requires tuning a number of parameters,
including regularization parameters and the number of latent and dynamics coefficients.
Important targets of future work will be to develop approaches to automatically set the
model hyperparameters. Furthermore, we aim to investigate additional aspects of the model
such as its stability, its performance under different statistical assumptions (e.g., Poisson),
and its predictive capability.

In this work, we primarily focused on the linear observation model (Eq. (1)) common
in many neural data analysis methods. However, it is known that for manifold structured
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data, nonlinear models can often further reduce data dimensionality. Thus future methods
should implement nonlinear observation models to reduce the dimensionality of the space
in which the dynamics dictionary is learned, e.g., learning DOs in the latent space of an
auto-encoder (Connor et al., 2021b).

The examples we present highlight a series of both simple and more complex systems.
We note that even the simpler systems represent plausible system behaviors in real data
that are not captured well by existing techniques. For example, the evolution of a system
at different speeds indeed targets a weakness of switching models. However, it is not a
contrived example. In fact, there are noted examples of neural systems that have warped
timescales representing elongated processing of the same computation (Wang et al., 2017).

One nuanced point that is critical to address is that our framework can model both
nonlinear and non-stationary systems. In particular, dLDS achieves this ability, over models
that purely target nonlinear systems (Brunton et al., 2016), by modeling the nonlinearities
as nonstationarities through the time-varying coefficients ct. The benefit of this model
is that for nonlinear systems we expect, as we have seen in the FHN and Lorenz cases,
regularities in the system behavior that can be tracked by analyzing the dynamics coefficients.
Nonstationarities can also be identified in a similar way by noting non-periodic changes
in ct or changes in ct in nearby locations in state space at different times. This nuance is
important, as it is often of interest if the observed changes in neural dynamics are due to
changes in the system behavior or due to the intrinsic nonlinear interactions. Further work
should continue to try to identify markers to better disambiguate these cases.

In our method, the coefficients (c’s) and dynamics values (x’s) are co-inferred to address a
joint LASSO problem. While there is no overt connection between them, an implicit relation-
ship is established through joint optimization. Specifically, the association between the data
and x and c can be expressed as ỹ ≈ Ax̃, where ỹ = [y; [0]p,1],A = [[D, [0]M,M ]; [−Ip×p, Fx]],
and x̃ = [x; c]. Here, Fx denotes the concatenated columns of fixt−1. The dependencies
manifest in the lower part of the A matrix. However, these dependencies lack the explicit
or localized nature observed in rSLDS. We have included additional discussions on this
limitation in the corresponding section.

It is crucial to emphasize that dLDS is not conceived as a generative model in the sense
that each sample represents a fully realistic trajectory. We draw an analogy to the total
variation (TV) model for image reconstruction. Natural images exhibit low TV norms,
but random samples of images with low TV norms may not necessarily be natural images.
Similarly, samples from our model are not intended for trajectory generation; rather, they
provide essential constraints for inference, enabling the learning of meaningful trajectories
based on the data. In other words, the prior is selected to yield a robust posterior rather
than being the most accurate prior. This choice facilitates a reduction in variance without
introducing extraneous bias. One advantage is that inadequate data or flawed inference
parameters will not yield correct-looking model outputs, adding an extra layer of error
correction and validation to the interpretation of the results.

We acknowledge that other advancements in modeling may aim to establish a more
explicit relationship between c and x. However, we assert that such endeavors go beyond
the core model’s scope, as they would introduce additional assumptions and biases that are
more application-specific. Future research should certainly explore these directions.
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One direction that we have not explored in this work is the inclusion of a driving
term in the dynamics equation, e.g., in discrete time by adding a term But such that
xt = Ftxt +But. Here ut can represent a set of control variables, and B is the projection of
those inputs into the latent space. While this term is trivial to add to our basic framework
(in fact, similar update rules can be included to learn B), we focused here on the most basic
case to demonstrate the utility of the dynamics model alone. Future work will focus on this
term, in particular as it can be used to account for system inputs such as sensory stimuli in
modeling neural dynamics.

Similarly, it may be possible in future work to explore additional constraints on the
latent states and dynamics coefficients such that they are explicitly, rather than implicitly,
connected. For example, certain dynamics operators may be confined to certain parts of the
state space by grouping them together in subsets during inference.

Limitations: In addition to the above discussion points, other current limitations of our
work are that under some parameter regimes, the estimates for the dynamics coefficients can
be unstable. Additionally, we note that we observe better performance when normalizing
and centering the datasets. These shortcomings recommend future directions for preventing
severe instability in the inference step by building in bias terms, e.g., similar to the learned
offset terms in other LDS approaches to approximating nonlinear systems (Linderman et al.,
2017). We note that our model is not proposed to replace rSLDS, but to reveal how the
activity of the same elements smoothly evolves over time, rather than a binary ‘switch’
between elements. The two methods will have different strengths depending on the assumed
dynamics of a given system.

6. Data and Code Availability

The code for both the discrete and the continuous models can be found at https://github.com/dLDS-
Decomposed-Linear-Dynamics. The discrete code can also be pip-installed using the dLDS-
discrete Python package, as described in https://pypi.org/project/dLDS-discrete-2022/.
Additionally, an interactive Python notebook of the discrete model visualization is available at
https://colab.research.google.com/drive/1PgskOtYoLL83ecXz_ALXk9oLofR2AeRf?usp=
sharing.

Data from Kato et al. (2015) were obtained from the Open Science Framework site (Zim-
mer, 2021). The SSM Python package from the Linderman lab was used to run rSLDS (Lin-
derman et al., 2020).
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Appendix A. Discrete-time Approximation of Continuous-time dLDS

We can derive the discrete-time model by taking the Taylor Series expansion of matrix
exponential from the continuous-time latent transition (Eq. (3)),

xt+1 = expm

 L∑
l=1

cctgl

xt + νt

=

I +
L∑
l=1

cctgl + 1
2

 L∑
l=1

cctgl

2

+ 1
6

 L∑
l=1

cctgl

3

+ · · ·

xt + νt

≈

I +
L∑
l=1

cctgl

xt + νt,

where for simplicity, we assume that samples are equally spaced such that τ = 1. The last
approximation comes from considering only the linear approximation in the Taylor series
expansion.

To use the BPDN-DF inference procedure, we must rewrite it in the form

xt+1 − xt =
L∑
l=1
glxtcct + νt = G̃tc+ νt,

where the columns of G̃t are given by glxt. However, the main challenge with working in
this form is that the variance of the left hand side increases as a result of the noise,

var(xt+1 − xt) = var(νt+1 − νt) = var(νt+1) + var(νt)− 2cov(νt+1,νt) = 2var(νt),

since var(νt+1) = var(νt) and cov(νt+1,νt) = 0 for independent random noise variables.
Moreover, since xt+1 and xt are correlated random variables, we expect that E[‖xt+1 −xt‖]
is significantly smaller than E[‖xt‖]. Combining these two results, we see that the finite
differences approach to BPDN-DF reduces the magnitude of the signal while also doubling
the variance of the noise, resulting in the degraded accuracy of coefficient estimates. Instead,
we define a discrete-time dynamics operator expm(

∑L
l=1 cltgl) ≈ Ft which allows us to

circumvent the issue of low signal-to-noise during coefficient inference in noisy datasets.

Appendix B. Demonstrating dLDS behavior, using the Lorenz attractor

As we increase the sparsity regularization in dLDS, the temporal changes in the coefficients
become sharper, but still maintain smooth transitions between temporal epochs dominated
by individual dynamical systems. Thus dLDS enables the learning of dynamics under many
conditions from smoothly changing dynamics to sharper switching-like dynamics. The choice
of sparsity level is thus a model hyperparameter that can be set by the users for specific
applications.

Appendix C. Duffing Dynamics and Linearization Components Recovery

As an example of the application of our model’s abilities, we demonstrate its capability in
recovering the latent components of a linearization of the Duffing oscillator. The Duffing

1
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Figure 10: A 2-dimensional projection of the Lorenz reconstruction results on the x-z axes,
for the unregularized case. Learning three dynamical systems to approximate
the Lorenz attractor motion reveals that dLDS can track smoothly changing
dynamics by titrating the contributions of separate dynamical systems. We note
that even in the case where the values of ct are not regularized e.g., data in this
plot, different dynamics become more or less dominant over different areas within
the attractor.
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for rslds.png

Figure 11: A 2-dimensional projection of the Lorenz reconstruction results as obtained by
rSLDS. In contrast to dLDS, here the transitions between different representations
are sudden (via switching), resulting in only one dynamical system active at each
time point.
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oscillator is a classical example of a nonlinear, second-order differential equation that exhibits
chaotic behavior. It is described by the following equation:

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt), (17)

where α, β, and γ are parameters that control the behavior of the oscillator, and γ cos(ωt)
represents a periodic driving force with amplitude γ and frequency ω.

To apply our model to the Duffing oscillator, we define y = ẋ. We can then rewrite the
Duffing oscillator equation in terms of y as follows:

ẏ + δy + αx+ βx3 = γ cos(ωt). (18)

We can represent the Duffing oscillator using a decomposed linear dynamical systems
model by discretizing the system over time. We use the state vector [xt, yt] to represent the
state of the system at time t. The discrete-time model of the Duffing oscillator is given by
the following equation:

[
ẋt
ẏt

]
=
[

0 1
−α− βx2

t −δ

] [
xt
yt

]
+
[

0
γ cos(ωt)

]
. (19)

We can then apply our model to this discrete-time Duffing oscillator equation. We
estimate the transition matrix At by fitting our model to the time series data. We can
decompose At into two matrices, Ft = Ft,1 + Ft,2, where Ft,1 and Ft,2 correspond to distinct
physical processes.

Specifically, the matrix Ft,1 =
[

1 ∆t
−α∆t 1− δ∆t

]
describes the linear dynamics of the

system, while Ft,2 =
[

0 0
−βx2

t∆t 0

]
describes the nonlinearity of the system.

Using these matrices, we can write the discrete-time Duffing oscillator equation in matrix
multiplication form as follows:

[
xt+1
yt+1

]
=

[ 1 ∆t
−α∆t 1

]
+
[

0 0
−βx2

t∆t 0

][xt
yt

]
+
[

0
− cos(t)

]
, (20)

where cos(t) represents the cosine function evaluated at time t. By estimating the
matrices Ft,1 and Ft,2 using our model, we can recover the underlying linear and nonlinear
components of the Duffing oscillator dynamics.

By applying dLDS to the Duffing oscillator, we highlight the model’s capacity to
reconstruct nonlinear dynamics using basic linear components whose coefficients change
over time and to recover the ground-truth basic linear elements that underlie these complex
dynamics. These results emphasize the potential of dLDS for extracting valuable insights
from intricate systems, by facilitating the reconstruction of nonlinear dynamics with basic
linear components, and by retrieving the underlying basic linear elements.
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Figure 12: Results of dLDS analysis on the Duffing oscillator. A) Time traces
(orange and green) of each dynamic operators (DO) for different initial conditions
(I.C.) in separate subplots. B) Comparison between the real dynamics of the
Duffing oscillator and the reconstructed dynamics by dLDS for each I.C. The
color represents time. C) Heatmaps of each DO, where the first DO shows the
main diagonal and other non-zero elements, as its coefficient in A is 2, while the
second DO shows the lower left diagonal element and all other elements are zero.

Appendix D. Continuous-time dLDS learning

For completeness, we provide here in Algorithm 2 the dLDS learning algorithm for continuous
time dynamics. In this work for continuous time we assume that D = I.

Appendix E. Special case of no observation model

For completeness, we provide here in Algorithm 3 the dLDS learning algorithm for discrete-
time dynamics under the condition that D = I. This special case is less computationally
intensive and enables the learning of dynamics in the native data space.

Appendix F. A note on LASSO solvers

We found that the correlations between fmx̂t could be large for certain time points. These
correlations meant that some `1 regularize least-squares solvers would exhibit instability
during learning. We noticed this in particular for the primary LASSO functions in both MAT-
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Algorithm 2 Continuous-time dLDS training assuming D = I

Input Y , λ1, λ2, η, L . Data, penalty on c, penalty on G, learning rate, n dictionary
elements
Initialize {Gi}l=1:L, D . Randomly initialize sub-dynamics, observation model
Normalize each dynamical system by dividing by its spectral radius
while not converged do . Iterating until convergence

for t in {0, . . . , T − 1} do . Run for every time-adjacent data pair
Randomly sample {ĉl(t)}Ll=1
Update {ĉl(t)}Ll=1 ← arg min{cl(t)}E

Update Ĝ← arg minGE
end for

end while

Algorithm 3 Dynamics dictionary learning for D = I

Input Y , λ1, η, M . Input observations and hyperparameters
Initialize {fm}m=1:M , . Initialize dynamics dictionary randomly
Normalize each fm to unit spectral radius
while not converged do . Iterating until convergence
ĉt = arg minc ‖yt −

∑
m fmcmtyt−1‖+ λ1‖c‖1

Update each fm via Equation 11
Normalize each fm to unit operator norm
if rMSE does not change then . Check if the algorithm stuck in a local minimum

fm ← fm + ν . Add random noise to each {fm}
end if

end while

LAB and Python. We found that instead, the SPGL1 solver of the pylops package (Ravasi
and Vasconcelos, 2020) was more robust in Python, and the TFOCS software 1 (Becker et al.,
2011) was more robust in MATLAB. While TFOCS solves the LASSO program directly,
SPGL1 solves a slightly modified version:

ĉt = arg min
c

∥∥∥∥∥∥xt+1 −
M∑
m=1

fmcm(t) ∗ xt

∥∥∥∥∥∥
2

s.t. ||ct||1 ≤ τ . (21)

Importantly, despite presenting only the SPGL1 results in the above paper, the Python
code enables the user to choose from a wide range of solvers (including FISTA, ISTA, Sklearn
LASSO (Pedregosa et al., 2011), OMP), and the decision of which solver to use is up to the
user and should depend on the data properties and the user’s goals in running the model.

1. https://github.com/cvxr/TFOCS
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Experiment L λG λc ηG ηc γ

Speed 4 1 1e-1 1e-1 1e-2 0.985
Rotation 4 20 8e-2 5e-3 1e-2 0.985

Table 1: Continuous-time experiment model parameters. L is the total number of
dictionary elements initialized. λG is regularization placed on dictionary elements;
we control this value through the weight decay. λc is the regularization strength
placed on the coefficients. ηG and ηc are the learning rates for dictionary elements
and coefficients, respectively. γ is the rate for the learning rate decay schedule.

Appendix G. Additional information on experiments

G.1 Continuous-time model parameters

Continuous-time models were implemented in PyTorch. Model parameters for each experi-
ment are shown in Table 1.

G.2 FitzHugh-Nagumo (discrete-time model)

We used the Python discrete code for the FHN case. The iterative model ran until convergence
(reconstructed error < 1e-8) or until reaching a maximum of 6,000 iterations. The ground
truth for the FHN dynamics was created based on (15), using 1000 samples with time
intervals of 0.2 (s.t. tmax = 200). We used M = 2 dictionary elements, an initial value of
η = 30 (from (11)), while its decay rate over the training iterations was set to γ = 0.99;
The standard-deviation of the perturbations added randomly to each fm in case of local
minimum, as described in Algorithm 1, was set to 0.1.

For the regularized dynamics case, the hyperparameters of the SPGLl solver, "iter lim",
the maximum number of solver iterations in each coefficients updating step, was set to 10,
and τ (from (21)) was set to 0.3.

For the unregularized case, the following pseudo-inverse was used for each the updating
step of the coefficients in each time point and in each iteration:

F̃t = [f1xt,f2xt, ...,fMxt] ∈ R(2×M)

xt+1 = F̃tct

ĉt = F̃t
†
xt+1, (22)

where † denotes the pseudo-inverse.

G.3 The Lorenz attractor (discrete-time model)

We used the Python discrete code for the Lorenz attractor case, with different options for the
number of dictionary elements. In the paper, the results of our model for M = 5 dictionary
elements are presented, along the corresponding results from the reference (rSLDS with 5
discrete states).

As in the FHN case, the dLDS iterative model ran until convergence (reconstructed error
< 1e-8) or until reaching a maximum of 6,000 iterations. The ground truth for the Lorenz
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rSLDS dLDS

Experiment R R2 R R2

Synthetic speed 0.99 0.99 0.99 0.99
Synthetic rotation 0.99 0.99 0.99 0.99
Unregularized FHN 1.0 1.0 1.0 1.0
Regularized FHN - - 1.0 1.0

Unregularized Lorenz 0.99 0.99 1.0 1.0
Regularized Lorenz - - 0.93 0.70

C. elegans 0.96 0.92 0.86 0.74

Table 2: Pearson correlation and R2 values for one-step prediction for rSLDS vs
dLDS, for each experiment.

attractor was created based on Equation (16), using 1000 samples with time intervals of 0.01
(s.t. tmax = 10). Similarly to the FHN, the initial value of η was set to 30, while its decay
rate over the training iterations was set to 0.99. The standard-deviation of the perturbations
added randomly to each fi in case of local minimum, as described in Algorithm 1, was set
to 0.1.

The updating step of the coefficients was performed similarly to the updating method-
ology presented above for the FHN case, according to which in the unregularized case,
the coefficients were updated using the pseudo-inverse, and for the regularized case, the
coefficients were updated using the SPGL1 solver.

With respect to the hyperparameters of the SPGLl solver in the Lorenz case, "iter
lim" was set to 10, and τ (from Equation (21)) was set to 0.55. A comparison of model
performance measures between dLDS and rSLDS is shown in Table 2.

G.4 Summary of model performance comparisons

Table 2 compares rSLDS and dLDS summary statistics for each experiment.

Appendix H. Comparison between dLDS and rSLDS for the FHN model

In the main text we focus on comparing dLDS for the FHN oscillator under regularized and
unregularized conditions to emphasize the role of regularization over the dynamics coefficients
ct. Here we further demonstrate the comparison between dLDS to rSLDS (Fig. 13).

In contrast to the rSLDS model, for which the coefficients are binary, in our model the
coefficients can take on continuous values. Hence, contrasting the observed coefficients-space
spanned by rSLDS (13D) and dLDS (13E,F), in dLDS the dynamics representations are
not limited to discrete locations on the axes, but can travel along them, resulting in a more
flexible representation without the need to increase the number of dynamical systems learned.
Specifically, we identify that while rSLDS learns slightly varying dynamical systems, while
dLDS learns reorientations to different axes which more smoothly trade off with each other
as the system rotates about the attractor.
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Figure 13: Learned representations using dLDS and rSLDS for the FHN oscilla-
tor. Note three time points of interest: repolarization, action potential peak,
and hyperpolarization. With M = 2, dLDS can reconstruct the three distinct
states, while rSLDS can only capture two reconstructed states in this case. A,
B, C: All three models were able to reconstruct the FHN dynamics. D: The
coefficients obtained by the rSLDS are restricted to the axes, resulting in no
more than two distinct reconstructed states to describe the action potential cycle.
E: Although the coefficients of the regularized dLDS tend to live on the axes due
to the sparse regularization, this constraint is softer than of the rSLDS (in which
living outside the axes is not possible). F: Coefficients space obtained for the
unregularized dLDS model. Most coefficients do not necessarily live on the axes,
since no regularization was applied.

Additionally, as the `1 regularization over ct in dLDS increases, the coefficients become
more similar to those obtained by rSDLS, namely, more restricted to the axes. Thus,
modulating the regularization in our model makes possible the creation and exploration of a
continuum of representations whose coefficients-space range from switched systems (high
regularization) to arbitrary structured (unregularized), as described in Figure 1B.

Appendix I. Sparse video example

To test the model in a sparse higher-dimensional setting we simulate a single dynamics
function is present (M = 1) and the sparsity dictionary as the canonical basis (D = I).
This test will check if our algorithm can accomplish simple system identification as a special
case. We modeled the single dynamics function as a permutation matrix concatenated with
a scaling matrix, i.e., signal coefficients move around and may be scaled (Fig. 14A). The
learned and true models are a very close match, differing by only a permutation and sign
change (the same ambiguity present in all dictionary learning methods).
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True dictionaryA True dynamics

Learned dictionary Learned dynamics

C

B Learned dictionary

Learned dynamics

Figure 14: Pixel permutation example. A: Example test set consisting of a sparse
number of pixels being permuted via an unknown permutation matrix. dLDS
recovers in this case both the pixel-sparse dictionary as well as the ground truth
permutation matrix. B: For a more complex example where multiple permutation
matrices may be used (sometimes in tandem to split or merge pixels), the correct
pixel-sparse dictionary is again learned. C: For the same example as B, the set
of permutation matrices is learned, capturing the underlying dynamics.

In a more complex simulation, we simulate a dictionary of twelve distinct scaled per-
mutation functions, only two of which are used at any time step (i.e. the sparsity of ct is
two). This system induces complex, highly non-stationary dynamics. Figure 14B,C depicts
the results of the learning procedure, demonstrating that the sparsity dictionary is again
learned up to a permutation and sign change, and the learned dynamics functions are again
close matches to the true dynamics (i.e., we recover 12 scaled permutation matrices).

Appendix J. BBC video example

To test dLDS on higher-dimensional real data, we learn a dynamics dictionary for natural
video sequences. For computational considerations we restricted our algorithm to learn
representations of 12x12 pixel patches, and learned a 4x overcomplete sparsity dictionary
concurrently with 25 576x576 DOs. As no ground truth is available for video sequences, we
instead qualitatively explore learned dictionaries. First we note that the sparsity dictionary
recovered the expected Gabor-like statistics for image patches (Olshausen and Field, 1996;
Aharon et al., 2006) (Fig. 15A). This result matches the intuition that the spatial statistics are
not qualitatively changed by including the temporal model. To assess the dynamics we note
that despite the high-dimensional nature of the data, the learned dynamics were relatively
low-dimensional (rank 2-10), with one exception that had almost full rank (Fig. 15B).
Additionally, the top eigenvectors tend to be correlated, but not overly so. The correlations
cluster around ∼ 0.2 with some correlations as high as 0.8 (Fig. 15C). This indicates that
the learned functions are neither independent nor identical. Thus, interactions between the
dLDS DOs permit flexible nonlinear behaviors.

Three such examples are shown in Figure 15D-F. First we project a single frame forward
by a combination of two overlapping dynamics, f1 and f5. As the weight on f1 is reduced
and that on f5 increased, the projection changes from exaggerating the linear feature in the
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Figure 15: Results of dynamics learning on natural image patches. A: The spatial
dictionary interestingly retains the Gabor-like structure seen in previous static
dictionary learning algorithms. B: Learned dynamics are low rank. The typical
rank of each fm (aside from one almost full-rank function) ranges from 2-10. C:
the correlations between the top two eigenvectors show that the dynamics are
mostly non-aligned, yet overlap, allowing for second-order effects when combining
dynamics. D: Linear combinations of dictionary elements can achieve nonlinear
effects. Starting from the same frame, the next frame changes continuously
between two possible next frames as the fraction of each dynamic function used is
swept from completely using f8 to f5. E,F: Examples of dynamics combinations
that achieve nonlinear effects. For each of changing from using more of f1 and
f12 and f1 and F23, the overall effect (rotation/expansion and outward expansion
respectively) happens with faster or slower speeds.

top-left to inverting the image with an emphasis on the bottom right. Similar effects appear
in iterated dynamics projections, for example changing the weights on f1 and f12. This
combination effectively rotates a bar over time, and the speed of rotation depends on the
amount of f1 vs. f12 in the linear combination. This type of speed modulation is impossible
in a switched model unless one mode for each speed is included, which is untenable for a
continuum of speeds. Similarly when f1 and f23 are traded off, a vertical bar slowly has
the bottom edge expand to encompass the bottom-right corner, again with different speeds
depending on the ratio chosen.
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Appendix K. Invariance of the model to transformations in the latent
state

Consider the base model complete with the observation equation and decomposed dynamics,

yt = Dxt, xt11 =

 M∑
m=1

fmcmt

xt−1. (23)

For any learned model, we can always define a transformation of the latent space via an
invertible matrix U such that

zt = U−1xt xt = Uzt. (24)

This transformation results in an equivalent solution

yt = DUzt, zt =

U−1
M∑
m=1

fmUcmt

 zt−1, (25)

i.e., an equivalent set of parameters D̃ = DU and f̃m = U−1∑M
m=1 fmU result in the same

sequence of dynamics but in a transformed latent space. One way to prevent the rotational
ambiguity is to assume structure over the latent space, such as we implement via sparsity
over xt, which enables us to learn the correct representation (up to a permutation and
sign-flip) of observation model (Fig. 14).
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