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Abstract

We consider estimating a low-dimensional parameter in an estimating equation involving
high-dimensional nuisance functions that depend on the target parameter as an input.
A central example is the efficient estimating equation for the (local) quantile treatment
effect ((L)QTE) in causal inference, which involves the covariate-conditional cumulative
distribution function evaluated at the quantile to be estimated. Existing approaches based
on flexibly estimating the nuisances and plugging in the estimates, such as debiased ma-
chine learning (DML), require we learn the nuisance at all possible inputs. For (L)QTE,
DML requires we learn the whole covariate-conditional cumulative distribution function.
We instead propose localized debiased machine learning (LDML), which avoids this bur-
densome step and needs only estimate nuisances at a single initial rough guess for the
target parameter. For (L)QTE, LDML involves learning just two regression functions, a
standard task for machine learning methods. We prove that under lax rate conditions
our estimator has the same favorable asymptotic behavior as the infeasible estimator that
uses the unknown true nuisances. Thus, LDML notably enables practically-feasible and
theoretically-grounded efficient estimation of important quantities in causal inference such
as (L)QTEs when we must control for many covariates and/or flexible relationships, as we
demonstrate in empirical studies.
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1. Introduction

In this paper, we consider estimating parameters θ∗ = (θ∗1, θ
∗
2) ∈ Θ = Θ1×Θ2 ⊆ Rd defined

as the (unique) solution to the following d-dimensional estimating equation:

Pψ(Z; θ, η∗1(Z; θ1), η∗2(Z)) = 0, θ = (θ1, θ2) ∈ Θ1 ×Θ2, (1)

where Z ∈ Z are observed random variables, η∗1(Z; θ1) and η∗2(Z) are two unknown nuisance
functions, and 0 is the zero vector in Rd. We hope to estimate θ∗ based on (Z1, . . . , ZN ),
N independent and identically distributed (iid) draws from the distribution P. As we
will show, estimating equations of the form above are prevalent in efficient estimation in
causal inference and missing data problems, with quantile treatment effect (QTE) estimation
(Section 1.1) as a prominent example, among many others (Section 1.2).

One important feature of Eq. (1) is that the nuisance η∗1(Z; θ1) involves the parameters
to be estimated as an input. This parameter-dependent nuisance raises several challenges
and causes existing methods to be unstable and computationally burdensome. Specifically,
we could potentially use the observed data to estimate the nuisances η∗1(Z; θ1) and η∗2(Z)
and then solve a sample analogue of Eq. (1) based on the estimated nuisances in order to
estimate θ∗, possibly using cross-fitting (Robins et al., 2008; Zheng and van der Laan, 2011;
Chernozhukov et al., 2018a). However, this requires estimating the nuisance η∗1(Z; θ1) for
all possible θ1 ∈ Θ1, i.e., learning infinitely many functions of Z, and then solving for the
root of an estimated function. For example, when estimating QTE (see Section 1.1), this
involves estimating a whole conditional cumulative distribution function, or equivalently,
infinitely many binary probability regressions. This can be very unstable, especially in
causal inference with observational data where typically a large number of covariates need
to be conditioned on to remove confounding. Although one may discretize the space of Θ1

and estimate η∗1(Z; θ1) only for finitely many θ1, this can still be computationally burden-
some when the discrete grid is large, and the resulting estimator can be sensitive to the
discretization scheme.

In this paper, we propose a localized debiased machine learning (LDML) approach that
only requires estimating η∗1(Z; θ1) at a single θ1 value, without estimating it for all possi-
ble values or ad-hoc discretized values of θ1. Importantly, our estimator is asymptotically
equivalent to an oracle estimator that knows the whole continuum of nuisance function
η∗1(Z; θ1) for all θ1 ∈ Θ1. In other words, asymptotically, our method does not incur any
loss even though it only estimates the nuisance function at a single θ1 value. In the case of
QTE (and other parameters in Section 1.2), the resulting asymptotic variance coincides with
the corresponding semiparametric efficiency bound. Moreover, estimating this far simpler
nuisance reduces to standard classification and regression tasks, i.e., fitting conditional ex-
pectations (regression) and conditional binary probabilities (classification), for which many
machine learning methods exist. In particular, our approach will be shown to be largely
insensitive to how these conditional expectation functions are estimated, so we may directly
use off-the-shelf machine learning methods and treat them as black-box regression or clas-
sification algorithms (e.g., random forests, gradient boosting, neural networks). Therefore,
our proposed method notably enables practical and efficient estimation using time-tested
machine learning methods to solve Eq. (1).
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In comparison, existing approaches for debiased and efficient estimation with black-box
nuisance estimators either focus on settings where nuisances do not depend on the target
parameters (i.e., η∗1(Z; θ1) does not appear) or treat nuisances as abstract objects so that
one must estimate a continuum of nuisances (i.e., estimate η∗1(Z; θ1) for all θ1 ∈ Θ1) when
applying to Eq. (1) thus precluding the use of standard machine-learning algorithms (e.g.,
Tsiatis, 2006; Robins et al., 2008; Zheng and van der Laan, 2011; Robins et al., 2013;
Chernozhukov et al., 2018a; Bravo et al., 2020). Similarly, existing works specifically on the
efficient estimation of QTEs either apply similar debiased approaches using a continuum of
nuisances (Belloni et al., 2017; Dı́az, 2017) or use specific non-black-box nuisance estimators
like polynomial sieves and local polynomial kernel regression and make explicit smoothness
restrictions (Firpo, 2007; Frölich and Melly, 2013). See an extensive literature review in
Section 7. Compared to these works, our proposal is fully generic, flexible, and machine-
learning driven in that it handles many important examples that fit into Eq. (1), as we review
in the next two subsections. Specifically, our method only requires estimating η∗1(Z; θ1)
for a single θ1 and doing so only at slow, nonparametric rates. This involves estimating
a conditional expectation function in all of our examples, which can be implemented by
standard regression and classification machine-learning methods. Our method can be seen
as a variant of DML applied to an alternative localized estimating equation that we prove
asymptotically equivalent to the original Eq. (1). In particular, we develop special localized
estimators for the new localized nuisance that appears in the localized equation. Compared
to the analysis of DML which we build upon (Chernozhukov et al., 2018a), our asymptotic
analysis requires a more careful handling of nonlinear estimating equations and relaxing
nuisance rate conditions. Our proposed method applied to estimating (L)QTEs has been
implemented in the DoubleML python package (Bach et al., 2022).

1.1 Motivating Example: Quantile Treatment Effects

A primary motivation of considering Eq. (1) is the estimation of QTE. In this case, we
consider a population of units, each associated with some baseline covariates X ∈ X , two
potential outcomes Y (0), Y (1) ∈ R for each of two possible treatments, and a treatment
indicator T ∈ {0, 1}. We are interested in the γ-quantile of Y (1): the θ∗1 such that P(Y (1) ≤
θ∗1) = γ (assuming existence and uniqueness) for γ ∈ (0, 1). And, similarly, we are interested
in the quantile of Y (0) and in the difference of the quantiles, known as the quantile treatment
effect (QTE), but these estimation questions are analogous so for brevity we focus just on
θ∗1, the γ-quantile of Y (1). Compared to the average outcome and the average treatment
effect (ATE), the quantile of outcomes and the QTE provide a more robust assessment of
the effects of treatment and are very important quantities in program evaluation.

We do not observe the potential outcomes but instead only the realized factual outcome
corresponding to the assigned treatment, Y = Y (T ). Hence, we only observe Z = (X,T, Y ).
Ignorable treatment assignment with respect to X assumes that Y (1) ⊥⊥ T | X (i.e., no
unobserved confounders) and overlap assumes that P(T = 1 | X) > 0, and these together
ensure that θ∗1 is identifiable from observations of Z. Specifically, a straightforward identi-
fication is given by the so-called inverse propensity weighting (IPW) equation:
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PψIPW(Z; θ∗1, η
∗
2(Z)) = 0, (2)

where ψIPW(Z; θ1, η2(Z)) = I [T = 1] I [Y ≤ θ1] /η2(Z)− γ, η∗2(Z) = P (T = 1 | X) .

Here estimating the propensity score function η∗2 amounts to learning a conditional proba-
bility function from a binary response, for which many standard machine learning methods
exist. Once we construct an estimator η̂2, we can obtain the standard IPW estimator θ̂IPW

1

by solving 1
N

∑N
i=1 ψ

IPW(Zi; θ1, η̂2(Zi)) = 0. Generally, the error of the IPW estimator can
heavily depend on the particular method used to construct η̂2 and its convergence rate can
be slowed down by that of η̂2, prohibiting the use of general nonparametric machine learning
methods and potentially leading to unstable estimates.

Instead, one can alternatively obtain the following estimating equation from the efficient
influence function for θ∗ (Tsiatis, 2006):

Pψ(Z; θ∗1, η
∗
1(Z; θ∗1), η∗2(Z)) = 0, (3)

where ψ(Z; θ1, η1(Z; θ1), η2(Z)) = I [T = 1] (I [Y ≤ θ1]− η1(Z; θ1)) /η2(Z) + η1(Z; θ1)− γ,
η∗1(Z; θ1) = P (Y ≤ θ1 | X,T = 1) .

An important feature of the above is that it satisfies a property known as Neyman or-
thogonality : the moment Pψ(Z; θ1, η1(Z; θ1), η2(Z)) has zero derivatives with respect to the
nuisances at θ∗1, η

∗
1, η
∗
2. This means that the estimating equation is robust to small pertur-

bations in the nuisances so that estimation errors therein contribute only to higher-order
error terms in the final estimate of θ∗1. Neyman orthogonality is leveraged in many works
on semiparametric inference, such as Robins et al. (1994b); Robins and Rotnitzky (1995);
van der Laan and Robins (2003); van der Laan and Rose (2011) (see a more detailed re-
view in Section 7). In particular, Chernozhukov et al. (2018a) recently proposed a debiased
machine learning (DML) approach that also builds on Neyman orthogonality. Their ap-
proach is as follows: split the data randomly into K folds, D1, . . . ,DK , and then for each

k = 1, . . . ,K, use all but the kth fold to construct nuisance estimates η̂
(k)
1 , η̂

(k)
2 , and finally

solve the empirical estimating equation 1
N

∑K
k=1

∑
i∈Dk ψ(Zi; θ1, η̂

(k)
1 (Zi; θ1), η̂

(k)
2 (Zi)) = 0

to obtain the estimator θ̂. They prove that as long as the estimates η̂
(k)
1 , η̂

(k)
2 converge to

η∗1, η
∗
2 faster than N−1/4, the estimate θ̂1 will have similar behavior to the oracle estimate

that solves 1
N

∑N
i=1 ψ(Zi; θ1, η

∗
1(Zi; θ1), η∗2(Zi)) = 0, i.e., the empirical estimating equation

using the true nuisance functions. As a result, the estimate θ̂1 is asymptotically normal and

semiparametrically efficient. Since, apart from the mild rate requirement on η̂
(k)
1 , η̂

(k)
2 , no

metric entropy conditions are assumed, this allows one to successfully use machine learning
methods to learn nuisances and achieve asymptotically normal and efficient estimation.

The problem with this approach for estimating quantiles of outcomes (similarly, QTEs),
however, is that it requires the estimation of a very complex nuisance function: η∗1(Z; θ1) is
the whole conditional cumulative distribution function of a real-valued outcome, potentially
conditioned on high-dimensional covariates. While certainly nonparametric methods for es-
timating conditional distributions exist such as kernel estimators, this learning problem is
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much harder to do in a flexible, blackbox, machine-learning manner, compared to just esti-
mating a single regression function. This indeed stands in stark contrast to the estimation of
average treatment effect (ATE), where applying DML requires a far simpler nuisance func-
tion given by the regression of outcome on covariates and treatment, E [Y | X,T ], for which
a long list of practice-proven machine learning methods can be directly and successfully ap-
plied. The key difference is that the nuisance function in ATE estimation does not depend
on the target parameter and can therefore be estimated in an independent manner whereas
the nuisance function in QTE estimation does depend on the target parameter. This issue
makes DML, despite its theoretical benefits, untenable in practice for the important task
of QTE estimation.

1.2 Estimating Equations with Incomplete Data

More generally, we can consider parameters (θ∗1, θ
∗
2) ∈ Θ1 × Θ2 defined as the solution to

the following estimating equation on the (unavailable) complete data:

P[U(Y (1); θ1) + V (θ2)] = 0, (4)

for some given functions U(y; θ1) and V (θ2). Below we provide some concrete examples.

Example 1 (Quantile of Potential Outcome). In Section 1.1, we consider the quantile θ∗1
defined as P(Y (1) ≤ θ∗1) = γ for γ ∈ (0, 1). This corresponds to Eq. (4) with

U(y; θ1) = I [Y (1) ≤ θ1]− γ, V (θ2) = 0.

Example 2 (CVaR of Potential Outcome). Another example is conditional value at risk
(CVaR) θ∗2 = P[Y (1)I [F1(Y (1)) ≥ γ]]/(1 − γ), where F1 is the cumulative distribution
function of Y (1). This gives the expectation of Y (1) conditioned on being above the γ-
quantile (again, assuming uniqueness). CVaR is also known as expected shortfall, a popular
risk measure in risk management and optimization (Rockafellar and Uryasev, 2002). Letting

U(y; θ1) =
(
I [y ≤ θ1] , max{θ1, (1− γ)−1 (y − γθ1)}

)
, V (θ2) = (−γ, − θ2) , (5)

Eq. (4) defines (θ∗1, θ
∗
2) as the quantile and CVaR of Y (1).

Example 3 (Expectile of Potential Outcome). Yet another example is the expectile, a
measure for asymmetric risk (Newey and Powell, 1987). The γ-expectile of Y (1) is defined
by the following asymmetric least squares problem:

θ∗1 = argmin
θ1∈R

P
[
|γ − I (Y (1)− θ1 ≤ 0)| (Y (1)− θ1)2

]
.

Its first-order condition corresponds to Eq. (4) with

U(y; θ1) = (1− γ) (Y (1)− θ1)− (1− 2γ) max (Y (1)− θ1, 0) , V (θ2) = 0. (6)

We cannot directly use estimating equations above for estimation since they depend on the
counterfactual outcome Y (1) that is partially observed. Under ignorable treatment assign-
ment and overlap, we could also derive an IPW estimating equation akin to Equation (2).
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However, the IPW equation is not Neyman-orthogonal so it is amenable to general machine
learning nuisance estimation. Instead, we can consider the following general-purpose effi-
cient and Neyman orthogonal estimating equation (Tsiatis, 2006, Theorems 10.1 and 10.2)
for the estimand (θ∗1, θ

∗
2) defined by Eq. (4):

ψ(Z; θ, η∗1(Z; θ1), η∗2(Z)) =
I [T = 1]

η∗2(Z)

(
U(Y ; θ1)− η∗1(Z; θ1)

)
+ η∗1(Z; θ1) + V (θ2), (7)

where η∗1(Z; θ1) = E [U(Y ; θ1) | X,T = 1] , η∗2(Z) = P (T = 1 | X) .

This orthogonal estimating equation again involves a nuisance η∗1(Z; θ1) that involves the
target parameter as input. This occurs for all examples above, whether estimating quantiles,
CVaR, or expectiles, and more generally, whenever U(y; θ1) is not linear in θ1. And, in such
cases, learning η∗1(Z; θ1) for all θ1 is practically difficult, which may involve learning a whole
conditional distribution function or a whole continuum of conditional expectation functions
given potentially high-dimensional covariates.

In the above examples, we consider parameters in terms of the counterfactual outcome
Y (1). We can similarly consider parameters of Y (0) and their differences as the treatment
effects. In Appendix A, we further consider the setting where the the treatment assignment
is not ignorable but a binary instrumental variable (IV) is available. In this case, we focus
on parameters defined for the complier subpopulation, such as the local QTE (LQTE).
We present the efficient estimating equations for these local parameters and show they also
satisfy Neyman orthogonality and also involve some estimand-dependent nuisance functions
η∗1(Z; θ1). Thus the same technical challenge also appears in the IV setting.

1.3 Main Idea: Localization

The primary goal of this paper can be understood as extending DML to effectively tackle the
case where nuisances depend on the target parameters. In particular, we propose a technique
called localization to alleviate this dependence. This will enable efficient estimation of
important quantities such as QTEs in the presence of high-dimensional nuisances by using
and debiasing black-box machine learning methods for the standard regression task.

Specifically, we will show that under a condition (Assumption 1) that holds for all of our
examples, we can equivalently consider solving the orthogonal estimating equation

Pψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z)) = 0, (8)

where the function ψ is given in Equation (7). Notably, Equation (8) involves η∗1(Z; θ1)
at the single value θ1 = θ∗1, as opposed to the infinitely many possible values for θ1. This
formulation considerably reduces the need of nuisance estimation: now we only need to
estimate η∗1(Z; θ∗1) and η∗2(Z), both functions only of Z but not of θ1. This enables us to
apply our localization technique.

The basic idea of localization as it applies to the estimation of the quantile of outcomes
is as follows. While perhaps inefficient, the estimator θ̂IPW

1 based on the IPW estimating
equation in Equation (2) relies only on estimating a binary regression η∗1. This is amenable
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to machine learning approaches but may have a slow convergence rate in general. Despite
its slow rate, this rough initial guess can sufficiently localize our nuisance estimation. We
consider estimating η∗1(Z; θ̂IPW

1 ) as an proxy for η∗1(Z; θ∗1), since θ̂IPW
1 provides an initial

estimate of θ∗1. For estimating the quantiles, this means we only have to regress the binary
response I[Y ≤ θ̂IPW

1 ] on X, treating θ̂IPW
1 as fixed. In particular, we propose a special

three-way data splitting procedure that debiases such plug-in nuisance estimates in order
to obtain an estimate for θ∗ with near-oracle performance. In the rest of this paper, we
will further generalize this technique to all parameters and also thoroughly analyze its
asymptotic properties.

Our proposal can be viewed as an application of the DML framework by Chernozhukov et al.
(2018a) for nonlinear orthogonal estimating equations to Eq. (8) with nuisances η∗1(Z; θ∗1)
and η∗2(Z). Our paper contributes to explicitly characterizing the challenge of parameter-
dependent nuisances when estimating important causal parameters such as (L)QTEs. This
complements Chernozhukov et al. (2018a) as all of their examples are for linear estimating
equations and their treatment to nonlinear estimating equations focuses on abstract nui-
sances. Our paper proposes a localization technique and a new data splitting procedure
to practically estimate η∗1(Z; θ∗1) and implement DML for Eq. (8). Importantly, we rigor-
ously establish when it suffices to focus on Eq. (8), provide thorough asymptotic analysis
of the proposed approach, and provide an asymptotically valid general variance estimator
and confidence interval. Notably, our asymptotic analysis is based on a different proof than
Chernozhukov et al. (2018a) so that we permit more flexible rate conditions on the nuisance
estimation (see Appendix F for a detailed discussion). Moreover, our theoretical guaran-
tees for variance estimation and confidence interval also complement Chernozhukov et al.
(2018a), since they only provide such guarantees for linear estimating equations.

Notation. We let d1, d2 be the dimensions of θ∗1, θ
∗
2, respectively, where d1 + d2 = d. For

f : Rd → Rm, ∂θ>f(θ) is the m×d-matrix-valued function with entry ∂fi(θ)
∂θj

in position (i, j)

and ∂θ>f(θ)|θ=θ0 is its evaluation at θ0. For g : Rd → R, ∂θ∂θ>g (θ) is the d × d-matrix-

valued function with entry ∂g(θ)
∂θi∂θj

in position (i, j). We use σmax (∂θ∂θ>g (θ)) to denote its

largest singular value. We let P (Z ∈ A) and E [Z | Z ∈ A] for measurable sets A denote
probabilities and expectations with respect to P. We let Pf(Z) =

∫
f dP for measurable

functions f denote expectations with respect to Z alone, while we let Ef(Z;Z1, . . . , Zn) de-
note expectations with respect to Z and the data. Thus, if ϕ̂ depends on the data, Pf(Z; ϕ̂)
remains a function of the data while Ef(Z; ϕ̂) is a number. We let PN denote the empirical
expectation: PNf(Z) = 1

N

∑N
i=1 f(Zi) for any measurable function f . Moreover, for vector-

valued function f(Z) = (f1(Z), . . . , fd(Z)), we let Pf2(Z) := (Pf2
1 (Z), . . . ,Pf2

d (Z)). For any
x ∈ Rd, we denote the open ball centered at x with radius δ as B(x; δ). For p > 0 and a prob-

ability measure Q, we denote ‖f‖Q,p =
(∫
|f |p dQ

)1/p
. For a set of functions F , we define

the covering number N(ε,F , ‖ · ‖Q,2) as the minimal number N of functions f1, . . . , fN such
that supf∈F infi=1,...,N ‖f − fi‖Q,2 ≤ ε. For positive deterministic sequence an and random
variable sequence Xn, Xn = oP(an) means P(|Xn|/an > ε) → 0∀ε > 0 and Xn = OP(an)
means for any ε > 0, there exists M > 0 such that lim supn→∞ P(|Xn|/an ≥M) ≤ ε.
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2. Method

We next present our methodology, first motivating the localization technique, and then
explicitly stating our meta-algorithm.

2.1 Motivation

Ideally, if the nuisances η∗1 and η∗2 were both known, then Eq. (1) suggests that θ∗ could be
estimated by solving the following estimating equation:

PN [ψ(Z; θ, η∗1(Z; θ1), η∗2(Z))] = 0. (9)

Under standard regularity conditions for Z-estimation (van der Vaart, 1998), the resulting
oracle estimator θ̃ that solves Eq. (9) is asymptotically linear (and hence

√
N -consistent

and asymptotically normal):

√
N(θ̃ − θ∗) =

1√
N

N∑
i=1

−J∗−1ψ(Zi; θ
∗, η∗1(Zi; θ

∗
1), η∗2(Zi)) + oP(1), (10)

where J∗ = ∂θ> {P [ψ(Z; θ, η∗1(Z; θ1), η∗2(Z))]} |θ=θ∗ .

Furthermore, if J∗−1ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z)) is the semiparametrically efficient influence
function for θ∗, then θ̃ also achieves the efficiency lower bound, that is, has minimal asymp-
totic variance among all regular estimators (van der Vaart, 1998).

Since η∗1 and η∗2 are actually unknown, the oracle estimator θ̃ is of course infeasible. Instead,
we must estimate the nuisance functions. A direct application of DML would require us to
learn the whole functions η∗1 and η∗2. That is, in order to solve Eq. (9) we would need to
estimate infinitely many nuisance functions, H1 = {η∗1(·, θ1) : θ1 ∈ Θ1}.

To avoid the daunting task of estimating infinitely many nuisances, we will instead attempt
to target the following alternative oracle estimating equation

PN [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))] = 0. (11)

Although Eq. (11) appears very similar to Eq. (9), it involves η∗1(Z; θ1) only at the single
value θ1 = θ∗1. In other words, among the whole family of nuisances H1, only η∗1(Z; θ∗1) ∈ H1

is relevant for Eq. (11).

The (infeasible) estimators that solve each of Eqs. (9) and (11) have the same leading
asymptotic behavior as long as the respective associated Jacobian matrices coincide, as
posited by the following assumption.

Assumption 1 (Invariant Jacobian). ∂θ>{P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))]}|θ=θ∗ = J∗.

Assumption 1 means that solving Eq. (9) or (11) will have the same asymptotic behavior.
Both, however, are infeasible since they involve unknown nuisances. Nonetheless, Eq. (11)
motivates our new algorithm, which eschews estimating H1 = {η∗1(· ; θ1) : θ1 ∈ Θ1} in full.

It it easy to verify that Assumption 1 holds for estimating equations with incomplete data
(Section 1.2), which includes QTE estimation. In particular, the estimating equation ψ in
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Eq. (7) satisfies that

P [ψ(Z; θ, η∗1(Z; θ1), η∗2(Z))] = P
[
I [T = 1]

η∗2(Z)
U(Y ; θ1)− I [T = 1]− η∗2(Z)

η∗2(Z)
η∗1(Z; θ1)

]
+ V (θ2)

= P [U (Y (1); θ1)] + V (θ2), (12)

which does not depend on η∗1(Z; θ1) at all. Thus whether fixing η∗1(Z; θ1) at θ1 = θ∗1 or not,
the Jacobian matrix of the estimating equation remains the same.

More generally, a sufficient condition for Assumption 1 is the below Fréchet-derivative or-
thogonality condition.

Proposition 1 (Sufficient Conditions for Invariant Jacobian). Assume that the map (θ, η1(·; θ′1)) 7→
P [ψ(Z; θ, η1(Z; θ′1), η∗2(Z))] is Fréchet differentiable at (θ∗, η∗1(·, θ∗1)). Namely, assume that
there exists a bounded linear operator Dη∗1 , such that for any (θ, η1(·, θ′1)) within a small
open neighborhood N around (θ∗, η∗1(·, θ∗1)),

‖P
[
ψ(Z; θ, η1(Z, θ′1), η∗2(Z))

]
− P [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

− ∂θ>{P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))]}|θ=θ∗(θ − θ∗)−Dη∗1 [η1(·, θ′1)− η∗1(·, θ∗1)]‖

= o(‖θ − θ∗‖) + o({P
[
η1(Z, θ′1)− η∗1(Z; θ∗1)

]2}1/2).

Assume further that there exists C > 0 such that for any (θ, η1(·, θ′1)) ∈ N

Dη∗1 [η1(·, θ′1)− η∗1(·, θ∗1)] = 0, (13)

P
[∥∥η∗1(Z, θ′1)− η∗1(Z; θ∗1)

∥∥2
]1/2
≤ C‖θ′1 − θ∗1‖.

Then Assumption 1 is satisfied.

Equation (13) is an orthogonality condition using the Fréchet derivative, which is stronger
than the Gâteaux derivative in Neyman orthogonality (Assumption 2 condition vii.). This
condition is automatically satisfied for the efficient estimating equation with incomplete
data because, following Equation (12), we have that P [ψ(Z; θ, η1(Z; θ′1), η∗2(Z))] does not
depend on η1 at all, so that its Fréchet derivative with respect to η1 trivially exists and is
always 0. Therefore, all of our examples in Section 1.2 satisfy our Assumption 1 and are
therefore amenable to our localization approach. This can be understood as a consequence of
double robustness and parallels how double robustness yields the usual Gâteaux-derivative
Neyman orthogonality of Chernozhukov et al. (2018a).

2.2 The LDML Meta-Algorithm

Motivated by the new (infeasible) estimating equation in Eq. (11), we propose to estimate
θ∗ by the following (feasible) three-way sample splitting method, which we term localized
debiased machine learning (LDML). The algorithm has two parts: three-way-cross-fold
nuisance estimation and solving the estimating equation.

We start by discussing how we estimate the nuisances that we will then plug into Eq. (11).

Definition 1 (3-way-cross-fold nuisance estimation). Fix integers K ≥ 3, K ′ ∈ [1,K − 2].

9
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D1

D2

D3

D4

D5

η̂2

η̂1

θ̂1,init

ψ

(a) Iteration k = 1 of step 2 of Definition 1 in the
LDML meta-algorithm with K = 5,K′ = 2.

D2

D3

ψIPW

η̂2ψIPW

η̂2

θ̂1,init

(b) In some cases, cross-fitted IPW (Def-
inition 4) can be used for θ̂1,init.

Figure 1: Sketch of the LDML estimation procedure and a possible initial guess estimator.
Squiggly arrows “ ” denote estimation. Plain arrows “→” denote plugging in.

1. Randomly permute the data indices and letDk = {d(k−1)N/Ke+1, . . . , dkN/Ke}, k =
1, . . . ,K be a random even K-fold split of the data.

2. For k = 1, . . . ,K:

(a) SetHk,1 = {1, . . . ,K ′+I [k ≤ K ′]}\{k}, Hk,2 = {K ′+I [k ≤ K ′]+1, . . . ,K}\{k}.

(b) Use only DC,1k =
{
Zi : i ∈

⋃
k′∈Hk,1 Dk′

}
to construct an initial estimator θ̂

(k)
1,init of

θ∗1. Use onlyDC,2k =
{
Zi : i ∈

⋃
k′∈Hk,2 Dk′

}
to construct estimator η̂

(k)
1 (· ; θ̂(k)

1,init)

of η∗1(· ; θ̂
(k)
1,init). Use only DC,1k ∪ DC,2k to construct estimator η̂

(k)
2 of η∗2.

For illustration the first iteration of step 2 above is sketched in Fig. 1(a) along with the
plugging of estimated nuisances into the estimating equation (see Definitions 2 and 5).

Notice that since DC,1k and DC,2k are disjoint, η∗1(· ; θ̂
(k)
1,init) is a fixed, nonrandom function

with respect to the data DC,2k . That is, the η∗1 nuisance estimation task in step 2b appears

as estimating a single η∗1(· ; θ′1) ∈ H1 for θ′1 = θ̂
(k)
1,init rather than the estimation of all of H1.

A natural question is, what might be a reasonable initial estimator. In the examples in

Sections 1.1 and 1.2, we can use an IPW estimate for θ̂
(k)
1,init (see Fig. 1(b) and Definition 4).

Given these nuisance estimates, we can obtain the LDML estimator for θ∗ by approximately
solving the average of the estimate of Eq. (11) in each fold.

Definition 2 (LDML). We let the estimator θ̂ be given by (approximately) solving

Ψ(θ) =
1

N

K∑
k=1

∑
i∈Dk

ψ(Zi; θ, η̂
(k)
1 (Zi; θ̂

(k)
1,init), η̂

(k)
2 (Zi)) = 0. (14)

10
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In fact, we allow for an approximate least-squares solution, which is useful if the empirical
estimating equation has no exact solution. Namely, we let θ̂ be any satisfying

‖Ψ(θ̂)‖ ≤ infθ∈Θ ‖Ψ(θ)‖+ εN , for an approximation error εN . (15)

In Appendix D Definition 5, we give an alternative LDML estimator obtained by averaging
solutions to Eq. (11) estimated in each fold separately. These two LDML estimators are
asymptotically equivalent and all results in this paper apply to both, thus we focus on
Definition 2 in the main text. Moreover, both estimators depend on the random splitting in
Definition 1. To reduce the variance from this, we may aggregate estimates from multiple
different sample splitting realizations. See Appendix E for a detailed discussion.

3. Theoretical Analysis

In this section, we provide the sufficient conditions that guarantee the proposed estimator
θ̂ in Definition 2 to be consistent and asymptotically normal. In particular, although the
proposed estimator relies on plug-in nuisance estimators, it is asymptotically equivalent to
the infeasible estimator based on Eq. (9) with true nuisances, that is, it satisfies Eq. (10).
While some of our conditions are analogous to those in Chernozhukov et al. (2018a), some are
not and our proof takes a different approach that enables weaker conditions for convergence
rates of the nuisance estimators.

Our asymptotic normality results may be stated uniformly over a sequence of models PN
for any data generating distribution P ∈ PN . Our first set of assumptions ensure that θ∗

is reasonably identified by the given estimating equation for all P ∈ PN . We also assume
that our estimating equation satisfies the Neyman orthogonality condition with respect to
a nuisance realization set TN ⊂ [Z → R]2 that contains the nuisance estimates η̂1(· ; θ̂1,init)
and η̂2(·) with high probability (Assumption 3 condition i.). Note the set TN consists of
pairs of functions of the data Z alone and not θ1. Therefore, we denote members of the set
as (η1(· ; θ′1), η2(·)) ∈ TN , where η1(· ; θ′1) is simply understood as a symbol representing of
some fixed function of Z alone.

Assumption 2 (Regularity of Estimating Equations). Assume there exist positive con-
stants c1 to c7 such that the following conditions hold for all P ∈ PN :

i. Θ is a compact set and it contains a ball of radius c1N
−1/2 logN centered at θ∗.

ii. The map (θ, a, b) 7→ P [ψ(Z; θ, a, b)] is twice continuously Gâteaux-differentiable.

iii. For any θ ∈ Θ, 2‖P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))] ‖ ≥ ‖J∗(θ − θ∗)‖ ∧ c2.

iv. J∗ is non-singular with singular values bounded between positive constants c3 and c4.

v. Singular values of the covariance matrix Σ are bounded between constants c5 and c6:

Σ := E
[
J∗−1ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))>J∗−>

]
. (16)

11
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vi. The nuisance realization set TN contains the true nuisance parameters (η∗1(· ; θ∗1), η∗2(·)).
Moreover, the parameter space Θ is bounded and for each (η1(· ; θ′1), η2(·)) ∈ TN , the
function class Fη,θ′1 = {Z 7→ ψj(Z; θ, η1(Z; θ′1), η2(Z)) : j = 1, . . . , d, θ ∈ Θ} is suit-
ably measurable and its uniform covering entropy satisfies the following condition: for
positive constants a, v, and q > 2, supQ logN(ε‖Fη,θ′1‖Q,2,Fη,θ′1 , ‖ · ‖Q,2) ≤ v log(aε)
∀ε ∈ (0, 1], where Fη,θ′1 is a measurable envelope for Fη,θ′1 that satisfies ‖Fη,θ′1‖P,q ≤ c7.

vii. ∂r {Pψ(Z; θ∗, η∗1(Z; θ∗1) + r(η1(Z; θ′1)− η∗1(Z; θ∗1)), η∗2(Z) + r(η2(Z)− η∗2(Z))}
∣∣
r=0

= 0
for all (η1(· ; θ′1), η2(·)) ∈ TN .

Assumption 2 conditions i.–v. constitute standard identification and regularity conditions
for Z-estimation (with uniform guarantees; see also Remark 1 below). Assumption 2 con-
dition vi. requires that ψ is a well-estimable function of θ for any fixed set of nuisances.
Importantly, while it imposes a metric entropy condition on ψ, this condition does not
impose metric entropy conditions on our nuisance estimators, so flexible machine learning
nuisance estimators are allowed. This assumption is very mild as Θ is finite-dimensional,
so it can be ensured by some continuity and compactness condition via standard empirical
process theory (Vaart and Wellner, 2023; Kosorok, 2008). Finally, Assumption 2 condition
vii. is the Neyman orthogonality condition (Chernozhukov et al., 2018a). We will show
how these conditions are ensured in the incomplete data setting in Section 1.2. In particu-
lar, the Neyman orthogonality condition holds for the incomplete-data efficient estimating
equations in Section 1.2 with respect to the class of all square integrable functions, let alone
any reasonable nuisance realization set TN .

Our second set of assumptions involve conditions on our nuisance estimators.

Assumption 3 (Nuisance Estimation Conditions). For any P ∈ PN :

i. For some sequence of constants ∆N → 0, the nuisance estimates (η̂
(k)
1 (· ; θ̂(k)

1,init), η̂
(k)
2 (·))

belong to the realization set TN for all k = 1, . . . ,K with probability1 at least 1−∆N .

ii. For some sequence of constants δN , τN → 0, the statistical rates rN , r′N , λ′N (θ) satisfy:

rN := sup(η1(·;θ′1),η2)∈TN ,θ∈Θ ‖P [ψ(Z; θ, η1(Z; θ′1), η2(Z))]− P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))]‖ ≤ δNτN ,

r′N := supθ∈B(θ∗;τN ),
(η1(·;θ′1),η2)∈TN

∥∥∥(P [ψ(Z; θ, η1(Z; θ′1), η2(Z))− ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))]2)1/2
∥∥∥ ≤ δN

logN ,

λ′N (θ) := supr∈(0,1),
(η1(·;θ′1),η2)∈TN

‖∂2
rf(r; θ, η1(·; θ′1), η2)‖ ≤

(
‖θ − θ∗‖+N−1/2

)
δN , ∀θ ∈ B(θ∗; τN ),

where f(r; θ, η1(· ; θ′1), η2) := P[ψ(Z; θ∗ + r(θ − θ∗), η1 (Z; θ′1, r) , η2 (Z; r))],

η1 (Z; θ′1, r) := η∗1(Z; θ∗1) + r(η1(Z; θ′1)− η∗1(Z; θ∗1)), η2 (Z; r) := η∗2(Z) + r(η2(Z)− η∗2(Z)).

iii. The solution approximation error in (15) satisfies εN ≤ δNN−1/2.

Here our condition on λ′N (θ) differs from the counterpart condition in Chernozhukov et al.
(2018a), which also leads to a different proof strategy. Our condition and proof generally

1. The probability is with respect to both the randomness in data sampling and sample splitting in the
cross-fitting, as both impact the realizations of the nuisance estimates.
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require weaker conditions for convergence rates of nuisance estimators. See the discussions
in Appendix F for more details. Moreover, the constants ∆N , δN , τN are all prespecified
and do not depend on any particular instance P. In Section 5, we will verify that Assump-
tion 3 holds for our examples in the incomplete data setting under mild conditions on the
smoothness of the estimating equations and slow rate conditions on the nuisance estimators
(for example, see the conditions in Theorem 3 and its proof).

Our key result in this paper is the following theorem, which shows that the asymptotic
distribution of our estimator is identical to the (infeasible) oracle estimator solving the
estimating equation in Eq. (9) with known nuisances.

Theorem 1 (Asymptotic Behavior of LDML). Assume Assumptions 1 to 3 hold with

max{log2N(1 +N−1/2+1/q), δN logN}/
√
N ≤ τN ≤ δN ,

max{r′N log1/2(1/r′N ), N−1/2+1/q log(1/r′N )} ≤ δN .
(17)

Then the estimator θ̂ given in Definition 2 is asymptotically linear and converges to a
Gaussian distribution uniformly over P ∈ PN :

√
NΣ−1/2(θ̂ − θ∗) =

1√
N

N∑
i=1

−Σ−1/2J∗−1ψ(Zi; θ
∗, η∗1(Zi; θ

∗
1), η∗2(Zi)) +OP(ρN ) N (0, Id),

where Σ is given in Eq. (16), the remainder term satisfies ρN = (N−1/2+1/q + r′N )logN +

r′N log1/2(1/r′N ) + N−1/2+1/q log(1/r′N ) + δN . δN , and the OP term depends only on con-
stants pre-specified in Assumptions 1 to 3 and no instance-specific constants.

The conditions in Eq. (17) and ρN . δN are fairly mild because Assumption 2 condition vi.
requires q > 2 (so N−1/2+1/q → 0) and Assumption 3 condition ii. requires r′N ≤

δN
logN .

Remark 1 (Uniform vs non-uniform convergence). To obtain a non-uniform convergence
result, we need only need set PN = {P} as a constant singleton in Theorem 1. In this
case, much of Assumption 2 simplifies: the existence of the constants c4, c6 is trivial, the
non-singularity of J∗ is enough for c3 to exist, and θ∗ being in the interior of Θ is enough
for c1 to exist. Further, we can relax condition iv. by allowing c5 to be zero (in which case
we rephrase the asymptotic normality in Theorem 1 by putting Σ on the right-hand side of
the limit rather than inverting it). Uniformity, however, is important in practice. Without
uniformity, for any given sample size N there may always exist some bad instances such
that the normal approximation suggested by the convergence is inaccurate (Kasy, 2019).

4. Variance Estimation and Inference

In the previous section we established the asymptotic normality of the LDML estimator
under lax conditions. This suggests that if we can estimate its asymptotic variance, then we
can easily construct confidence intervals on θ. In this section we provide a variance estimator
and prove its consistency, resulting in asymptotically calibrated confidence intervals. For
DML, Chernozhukov et al. (2018a) provides variance estimates only for estimating functions
ψ that are linear in θ, which already excludes estimand-dependent nuisances. Our results are

13
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therefore notable both for handling nonlinear and non-differentiable estimating equations
and for handling estimand-dependent nuisances.

Definition 3 (LDML variance estimator). Given θ̂ from Definition 2 and Ĵ , set

Σ̂ =
1

N

K∑
k=1

∑
i∈Dk

Ĵ−1ψ(Zi; θ̂, η̂
(k)
1 (Zi; θ̂

(k)
1,init), η̂

(k)
2 (Zi))ψ(Zi; θ̂, η̂

(k)
1 (Zi; θ̂

(k)
1,init), η̂

(k)
2 (Zi))

>Ĵ−>.

We next establish the consistency of Σ̂, which relies on the following assumption.

Assumption 4. Assume that ‖Ĵ − J∗‖ = ρJ,N . δN and that for some C, β > 0,

mN := sup(η1(·;θ′1),η2)∈TN P[‖ψ(Z; θ∗, η1(Z; θ′1), η2(Z))‖4]1/4 ≤ C ∀θ ∈ B(θ∗; τN ),

P[‖ψ(Z; θ, η∗1(Zi; θ
∗
1), η∗2(Zi))− ψ(Z; θ∗, η∗1(Zi; θ

∗
1), η∗2(Zi))‖2] ≤ C‖θ − θ∗‖β. (18)

Here, Eq. (18) implies continuity θ 7→ ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z)) in terms of L2 norm in the
range space. Note that this condition can be satisfied even if θ 7→ ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z)) is
non-differentiable. For example, in the estimation of QTEs, the efficient estimating equation
in Eq. (3) involves the indicator function I [Y ≤ θ1], so the map θ 7→ ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))
is obviously not differentiable. However, the condition in Eq. (18) amounts to

P[(P (T = 1 | X))−1 (I[Y ≤ θ1]− I[Y ≤ θ∗1])2] ≤ C|θ1 − θ∗1|β.

In Assumption 5, we will assume that P (T = 1 | X) ≥ επ for a positive constant επ. Then
the condition above follows if the cumulative distribution function of Y (1) is smooth enough,
so that |P(Y (1) ≤ θ1)− P(Y (1) ≤ θ∗1)| ≤ Cεπ |θ1 − θ∗1|

β for any θ1 ∈ B(θ∗1; τN ).

Under Assumption 4, we now show that the variance estimator in Definition 3 is consistent
and it leads to asymptotically valid confidence intervals.

Theorem 2. Assume the assumptions in Theorem 1 and Assumption 4. Then,

Σ̂ = Σ +OP(ρ′′N )→ Σ, uniformly over P ∈ PN ,
where ρ′′N = N−1/2+1/q(logN)1/2 +N−1/4(logN)1/2 + r′N + ρJ,N +N−β/4 . δN .

Given some ζ ∈ Rd, the confidence interval CI := [ζ>θ̂ ± Φ−1(1− α/2)

√
ζ>Σ̂2ζ/N ] obeys

supP∈PN
∣∣P(ζ>θ∗ ∈ CI)− (1− α)

∣∣→ 0, as N →∞.

In Assumption 4, we assumed that we have a consistent estimator Ĵ for J∗. How to
construct such an estimator depends on the problem. When θ 7→ ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))
is differentiable, an estimator may easily be constructed as follows:

Ĵ =
1

N

K∑
k=1

∑
i∈Dk

∂θ>ψ(Z; θ, η̂
(k)
1 (Z; θ̂1,init), η̂

(k)
2 (Z))|θ=θ̂.
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However, the estimating equation for QTE is not differentiable. Thus we rely on deriving
the form of J∗ and estimate it directly, which we discuss in detail in Remark 4.

With finite sample, the variance of the LDML estimator also depends on the uncertain
sample splitting in Definition 1. This uncertainty can be additionally accounted for when
multiple sample splitting realizations are used, which we discuss in Appendix E.

Remark 2 (Estimating and Conducting Inference on Treatment Effects). Suppose we have
two sets of parameters, θ∗(0), θ∗(1), each identified by its own estimating equation, ψ(0), ψ(1),
and we are interested in estimating the difference, τ∗ = θ∗(1)−θ∗(0). For example, θ∗(0), θ∗(1)

can be the quantile and/or CVaR of Y (0), Y (1), respectively, and we are interested in the
QTE and/or CVaR treatment effect. To do this, we can concatenate the two estimating
equations and augment them with the additional equation θ∗(1)−θ∗(0)−τ∗ = 0. Estimating
this set of estimating equations with LDML is equivalent to applying LDML to each of
ψ(0), ψ(1) and letting τ̂ be the difference of the estimates θ̂(0), θ̂(1), where we may use the
same data and the same folds for the two LDML procedures. For QTE and for other
estimating equations with incomplete data, we can even share the nuisance estimates of the

propensity score (i.e., η̂
(0),(k)
2 = 1 − η̂(1),(k)

2 in the below equation). The variance estimate
one would derive for τ̂ from the augmented estimating equations is equivalent to

Σ̂τ =
1

N

K∑
k=1

∑
i∈Dk

ωi,kω
>
i,k, where ωi,k = (Ĵ (1))−1ψ(1)(Zi; θ̂

(1), η̂
(1),(k)
1 (Zi; θ̂

(1),(k)
1,init ), η̂

(1),(k)
2 (Zi))

− (Ĵ (0))−1ψ(0)(Zi; θ̂
(0), η̂

(0),(k)
1 (Zi; θ̂

(0),(k)
1,init ), η̂

(0),(k)
2 (Zi)).

5. Estimating Equations with Incomplete Data

In this section, we apply our method and theory to general estimating equations with in-
complete data presented in Eq. (4), which subsumes the estimation of QTEs, quantile of
potential outcomes, CVaR treatment effect, CVaR of potential outcomes, expectile treat-
ment effect, and expectile of potential outcomes. We will proceed to further specialize these
results to quantile and CVaR estimation, deferring the case of expectiles to the appendix
(Appendix B). We also defer the case of using IVs to estimate the solution to local estimating
equations, such as those that describe the LQTE, to appendix (Appendix A).

As motivated in Section 1.1, under unconfoundedness, there is a very natural initial estima-
tor: the IPW estimator. As we will show, the LDML estimate for this problem using the
IPW initial estimator can be computed using just blackbox algorithms for (possibly binary)
regression, which is the standard supervised learning task in machine learning. And, under
lax conditions, the estimate is efficient, asymptotically normal, and amenable to inference.

Recall that θ is defined by the complete-data estimating equations in Eq. (4), namely,
P[U(Y (1); θ1) + V (θ2)] = 0. Assuming ignorability and overlap, θ is identified from the
incomplete-data observations Z = (X,T, Y ) where Y = Y (T ). In particular, Eq. (7) pro-
vides a Neyman-orthogonal estimating equation identifying θ. For better interpretability,
we give our nuisances names: we denote π∗(t | x) = P(T = t | X = x), µ∗j (x, t; θ1) =

E [Uj(Y ; θ1) | X = x, T = t], and µ∗(x, t; θ1) = [µ∗1(x, t; θ1), . . . , µ∗d(x, t; θ1)]>. For estimat-
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ing parameters corresponding to Y (1), our estimand-independent nuisance is the propensity
score η∗2(Z) = π∗(1 | X), and our estimand-dependent nuisance is η∗1(Z; θ1) = µ∗(X, 1; θ1).
The case for Y (0) is symmetric; and it also need the symmetric ignorability and overlap
assumptions for identifiability: Y (0) ⊥⊥ T | X and P(T = 1 | X) < 1. Treatment effects
(e.g., QTEs) can be estimated by differences of estimates, where we can use the same data,
the same fold splits, and the same estimates of π∗ for both treatments (see Remark 2).

This problem also admits a simpler but unstable (i.e., non-orthogonal) estimating equation
using IPW, which suggests a possible initial estimator, using K ′ ≥ 2 in Definition 1:

Definition 4 (IPW Initial Estimator). For each k = 1, . . . ,K and l ∈ Hk,1 as in Defini-

tion 1, use only the data in DC,1,lk =
{
Zi : i ∈

⋃
k′∈Hk,1\{l}Dk′

}
to construct a propensity

score estimator π̂(k,l)(1 | ·) for π∗(1 | ·). Then let θ̂
(k)
1,init be given by solving the following

estimating equation (or, its least squares solution up to approximation error of εN ):

1

|DC,1k |

∑
l∈Hk,1

∑
i∈Dl

ψIPW(Zi; θ, π̂
(k,l)) = 0, where ψIPW(Z; θ, π) =

I(T = 1)

π(1 | X)
U(Y ; θ1)+V (θ2).

This procedure is illustrated in Fig. 1(b). Note that, given a fixed θ′1, both π∗(1 | ·)
and µ∗(·, 1; θ′1) are conditional expectations of observable variables given X. Thus, in this
setting, the whole LDML estimate using the IPW initial estimate can be computed given
just blackbox algorithms for (possibly binary) regression.

5.1 Theoretical Analysis

We first study the LDML estimate for estimating equations with incomplete data by lever-
aging our general theory in Theorem 1. To this end, we assume a strong form of the overlap
condition and specify the convergence rates of the initial estimator and nuisance estimators
used. We consider a generic treatment level t ∈ {0, 1} in these two assumptions.

Assumption 5 (Strong Overlap). Assume that there exists a positive constant επ > 0 such
that for any P ∈ PN , π(t | X) ≥ επ almost surely.

Assumption 6 (Nuisance Estimation Rates). Assume that for any P ∈ PN : condition i. of
Assumption 3 holds for a sequence of constants ∆N → 0; with probability at least 1−∆N ,
π̂(k)(t | X) ≥ επ for almost all realizations of X, and

‖(P(µ̂(k)(X, t; θ̂
(k)
1,init)− µ

∗(X, t; θ̂
(k)
1,init))

2)1/2‖ ≤ ρµ,N ,

(P(π̂(k)(t | X)− π∗(t | X))2)1/2 ≤ ρπ,N , ‖θ̂(k)
1,init − θ

∗‖ ≤ ρθ,N .

The following theorem establishes that the asymptotic distribution of our proposed esti-
mator is similar to the (infeasible) one that solves the semiparametric efficient estimating
equation in Eq. (7) with known nuisances. This theorem is proved by verifying conditions
in Theorem 1, namely Assumptions 1 to 3.

Theorem 3 (LDML for Estimating Equations with Incomplete Data). Fix t = 1 and let
the estimator θ̂ be given by applying Definition 2 to the estimating equation in Eq. (7).
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Suppose Assumptions 5 and 6 hold and that there exist positive constants c′, C, and c1 to
c7 such that for any P ∈ PN the following conditions hold:

i. Conditions i. (with c1), ii., v. (with c5, c6), and vi. (with c7) of Assumption 2 and
condition iii. of Assumption 3 for the estimating equation in Eq. (7).

ii. For j = 1, . . . , d, θ 7→ P [Uj(Y (t); θ1) + V (θ2)] is differentiable at any θ in a compact
set Θ, and each component of its gradient is c′-Lipschitz continuous at θ∗. Moreover,
for any θ ∈ Θ with ‖θ − θ∗‖ ≥ c3

2
√
dc′

, we have 2‖P [U(Y (t); θ1) + V (θ2)] ‖ ≥ c2.

iii. The singular values of ∂θ>P [U(Y (t); θ1) + V (θ2)] |θ=θ∗ are bounded between c3 and c4.

iv. For any θ ∈ B(θ∗;
4C
√
dρπ,N

δNεπ
)∩Θ, r ∈ (0, 1), and j = 1, . . . , d, there exist h1(x, t; θ1), h2(x, t; θ1)

such that P [h1(X, t; θ1)] <∞, P [h2(X, t; θ1)] <∞ and almost surely∣∣∂rµ∗j (X, t; θ∗1 + r(θ1 − θ∗1))
∣∣ ≤ h1(X, t; θ1),

∣∣∂2
rµ
∗
j (X, t; θ

∗
1 + r(θ1 − θ∗1))

∣∣ ≤ h2(X, t; θ1).

v. For j = 1, . . . , d and any θ ∈ Θ, we have (P(µ∗j (X, t; θ1))2)1/2 ≤ C.

vi. For j = 1, . . . , d and any θ ∈ B(θ∗; max{4C
√
dρπ,N

δNεπ
, ρθ,N}) ∩Θ.{

P
[
µ∗j (X, t; θ1)− µ∗j (X, t; θ∗1)

]2}1/2
≤ C‖θ1 − θ∗1‖,

∥∥∥∥{P [∂θ1µ∗j (X, t; θ1)
]2}1/2

∥∥∥∥ ≤ C,
σmax

(
P
[
∂θ1∂θ>1

µ∗j (X, t; θ1)
])
≤ C, σmax

(
∂θ2∂θ>2

Vj(θ2)
)
≤ C.

vii. ρπ,N (ρµ,N + Cρθ,N ) ≤ ε3π
3 δNN

−1/2, ρπ,N ≤
δ3N

logN , ρµ,N + Cρθ,N ≤
δ2N

logN , δN ≤
4C2
√
d+2επ
ε2π

, and δN ≤ min{ ε2π
8C2d

logN,
√

ε3π
2C
√
d

log1/2N}.

Then θ̂ satisfies the conclusion of Theorem 1 for ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z)) given in Eq. (7),
and its asymptotic variance Σ attains the corresponding semiparametric efficiency bound.

An analogous result for the estimating equations involving Y (0) holds when we change t = 1
to t = 0 everywhere in Theorem 3. See Remark 2 regarding estimation of the difference of
the parameters (i.e., the treatment effects) and inference thereon.

In Theorem 3, conditions ii. and iii. guarantee the identification conditions iii. and iv.
of Assumption 2. Condition iv. enables exchange of integration, which together with
conditions v., vi., and vii. imply the rate condition ii. of Assumption 3. Note condition vii.
permits nonparametric rates for nuisance estimators. Focusing on the order in the sample
size and up to polylog factors, the condition allows for ρπ,Nρµ,N = o(N−1/2), ρπ,Nρθ,N =
o(N−1/2), ρπ,N = o(1), ρµ,N = o(1), ρθ,N = o(1). Note the first two restrictions are on
products, permitting a trade-off between rates for different nuisances (see also Appendix F).

Remark 3 (Rate Conditions with IPW Initial Estimator). In Appendix C, we prove that
if the propensity nuisance estimators used to construct the IPW initial estimators (Defini-
tion 4) also have convergence rate ρπ,N , then the initial estimators’ convergence rates satisfy
that ρθ,N = O (ρπ,N ). In this case, we are essentially imposing ρπ,N = o(N−1/4): condition
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vii. of Theorem 3 requires ρπ,Nρθ,N = o(N−1/2), so unless ρθ,N is somehow even faster than
ρπ,N , we must need both ρθ,N and ρπ,N to be o(N−1/4).

5.2 Quantile and CVaR

Now we consider estimating quantile and (possibly) CVaR based on the semiparametrically
efficient estimating equation in Eq. (3). Instantiating Eq. (7) for the simultaneous estimation
of quantile and CVaR and rearranging, we obtain the following estimating equation:

ψ(Z; θ, η∗1(Z; θ1), η∗2(Z)) =
I [T = 1]

η∗2(Z)

[
I[Y ≤ θ1]− η∗1,1(Z; θ1)

1
1−γ
(

max(Y − θ1, 0)− η∗1,2(Z; θ1)
)]+

[
η∗1,1(Z; θ1)− γ

θ1 + 1
1−γ η

∗
1,2(Z; θ1)− θ2

]
,

where η∗1(Z; θ1) =

[
P (Y ≤ θ1 | X,T = 1)

E [max(Y − θ1, 0) | X,T = 1]

]
, η∗2(Z) = P (T = 1 | X) . (19)

We use Ft(· | x) and Ft(·) to denote the conditional and unconditional cumulative distri-
bution function of Y (t), respectively: for any y, Ft(y | x) = P(Y (t) ≤ y | X = x) and
Ft(y) = P(Y (t) ≤ y). The following proposition gives the asymptotic behavior of our pro-
posed estimators for the quantile and CVaR of Y (1). This conclusion is proved by verifying
all conditions in Theorem 3. Analogous conclusions also hold for Y (0) when all assumptions
hold for t = 0 instead of t = 1.

Proposition 2 (LDML for Quantile and CVaR). Fix t = 1 and Let the estimator θ̂ be given
by applying Definition 2 to the estimating function in Eq. (19). Suppose Assumptions 5
and 6 hold and there exist positive constants c′1 ∼ c′5 and C ≥ 1, such that for any P ∈ PN ,
the following conditions hold:

i. Conditions i. (with c1), ii., v. (with c5, c6) of Assumption 2, condition iii. of As-
sumption 3, and condition vii. of Theorem 3 for the estimating function in Eq. (19)
and the corresponding nuisance estimators.

ii. Ft(θ1) is twice differentiable with derivatives ft(θ1), ḟt(θ1) satisfying 0 < c′1 ≤ ft(θ
∗
1),

ft(θ1) ≤ c′2, |ḟt(θ1)| ≤ c′3 ∀θ1 ∈ Θ1. Moreover, |Ft(θ∗1)−Ft(θ1)| ≥ c′4 for |θ1−θ∗1| ≥
c′1
2c′3

.

iii. At any θ ∈ B(θ∗; max{4C
√
dρπ,N

δNεπ
, ρθ,N}) ∩ Θ, Ft(θ1 | X) is twice differentiable almost

surely with first two order derivatives ft(θ1 | X) and ḟt(θ1 | X) that satisfy ft(θ1 |
X) ≤ C and |ḟt(θ1 | X)| ≤ C almost surely.

iv. 2‖P[U(Y (t); θ1) + V (θ2)]‖ ≥ c′5 for ‖θ−θ∗‖ ≥ min{γ,(1−γ)c′1,γc
′
1}

4
√

2γmax{c′2,c′3}
and U(Y (t); θ1)+V (θ2)

as given in Eq. (5).

v.
(
P
(
E[max(Y − θ1, 0) | X,T = t]2

))1/2 ≤ C for any θ ∈ Θ.

Then θ̂ satisfies the conclusion of Theorem 1 for ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z)) given in Eq. (19)
and for J∗ = diag (ft(θ

∗
1), −1). Moreover, under all conditions above except conditions

iv. and v., the quantile estimator θ̂1 alone still satisfies the analogous asymptotic linear
expansion for ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z)) given in Eq. (3) and for J∗ = ft(θ

∗
1).
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Remark 4 (Estimating ft(θ
∗
1) for Variance Estimation). If we want to conduct inference

on the quantile or QTE using our method from Section 4, we need to estimate ft(θ
∗
1).

Theoretically, for nominal asymptotic coverage, we need only do this consistently, regardless
of rate. One simple approach is to use cross-fitted IPW kernel density estimation at θ̂1:

Ĵ =
1

Nh

K∑
k=1

∑
i∈Dk

I [Ti = 1]

π̂(k)(1 | Xi)
κ((Yi − θ̂1)/h),

where κ(u) is a kernel function such as κ(u) = (2π)−1/2 exp(−u2/2) and h → 0 is a band-
width. Under Assumption 5, h � N−1/5 would be the optimal bandwidth. While this
together with any consistent estimate π̂(k) suffices for asymptotic coverage, the estimate
may be unstable. Generally, estimating ft at any one point, known as counterfactual
density estimation, is a challenging problem. The above simple estimator may be improved
by introducing weight normalization or clipping. There also exist more sophisticated coun-
terfactual density estimators (e.g., Kennedy et al., 2021) that may lead to better variance
estimation for counterfactual quantile estimators and better finite-sample coverage.

6. Empirical Results

We first study the behavior of LDML in a simulation study. We then demonstrate its
use in estimating the QTE of 401(k) eligibility on net financial assets, and the LQTE
of 401(k) participation using eligibility as IV. Replication code is available at https:

//github.com/CausalML/LocalizedDebiasedMachineLearning.

6.1 Simulation Study

First, we consider a simulation study to compare the performance of LDML estimates to
benchmarks. We consider estimating θ∗1 as the second tertile of Y (1) from incomplete data.
The data is randomly generated according to the following process:

X ∼ Uniform
(
[0, 1]20

)
, T ∼ Bernoulli(Φ(3(1−X1 −X3))), Y (1) ∼ N (I[X1 +X2 ≤ 1], 2X3),

and finally we have access to observations for the variables (X,T, Y ) where Y = Y (1) when
T = 1 and Y is missing when T = 0.

We consider estimating θ∗1 using five different methods. First, we consider LDML ap-

plied to the efficient estimating equation (Eq. (3)) with K = 5, K ′ = 2, θ̂
(k)
1,init esti-

mated using 2-fold cross-fitted IPW with random-forest-estimated propensities, and π̂(k)(1 |
X), µ̂(k)(X, 1; θ̂

(k)
1,init) similarly estimated by random forests. Second, we consider K = 5-

fold cross-fitted IPW with random-forest-estimated propensities. Third, we consider DML
with K = 5 and the estimand-dependent nuisance estimated using a discretization ap-
proach similar to the suggestion of Belloni et al. (2018): for j = 1, . . . , 99, fix θ1,j to
be the j/100 marginal quantile of Y and fit µ̂(k)(X, 1; θ1,j) using random forests; then
apply DML with the restricted discretized estimand range {θ1,j : j = 1, . . . , 99}. We re-
fer to this method as DML-D for discretized. Fourth, we consider taking the empirical
cross-fold average of the same counterfactual CDF estimator, 1

N

∑K
k=1

∑
i∈Dk µ̂

(k)(X, 1; ·),
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Figure 2: Results for the simulation study of estimating the second tertile of Y (1) using
different methods. The curves show the estimated mean squared errors. Shaded regions
denote plus/minus one standard error for estimated mean-squared error or mean coverage.
All results are computed from 250 replications of simulations.

and directly inverting this to estimate the marginal quantile. We refer to this method as
PI for plug-in. Fifth, we consider DML with K = 5 and where the estimand-dependent
nuisance is estimated using an approach similar to Meinshausen (2006); Bertsimas and
Kallus (2014): namely, fit a random forest regression to the out-of-fold data {(Xi, Yi) :
i /∈ Dk, Ti = 1} to obtain B regression trees τj : support(X) → {1, . . . , `j}, then set

µ̂(k)(X, 1; θ1) =
∑

i/∈Dk:Ti=1
I[Yi≤θ1]

B

∑B
j=1

I[τj(Xi)=τj(X)]∑
i′ /∈Dk:Ti′=1 I[τj(Xi)=τj(Xi′ )]

for all θ1. We refer to

this method as DML-F for forest. For each method, we run it three times with new random
fold splits (with the same data) and take the median of the three results to be the estimate.

For each of n = 100, 200, . . . , 25600, we consider 250 replications of drawing a dataset of
size n and constructing each of the above four estimates. We plot the mean-squared error
of each method and n over the 250 replications in Fig. 2(a). The shaded regions show
plus/minus one standard error of this as the sample mean of 250 squared errors. LDML
offers competitive performance with DML, while avoiding fitting a continuum of nuisances
(or approximating them with discretization), and even offers a marked improvement for
large n. Methods without debiasing, IPW and PI, perform less well.

In Fig. 2(b) and (c), we additionally report the coverage of the true parameter by confi-
dence intervals given by the estimand plus/minus 1.645 of an estimated standard error. The
standard error for LDML is estimated as in Definition 3 and similarly for DML but using

η̂
(k)
1 (Zi; θ̂) in place of η̂

(k)
1 (Zi; θ̂

(k)
1,init) using the DML estimate θ̂. We consider two choices

for the density estimator Ĵ : a kernel density estimator on a million iid draws from Y (1)
(true density) and the density estimator in Remark 4 (est density). The latter appears to
underestimate the density by roughly a half on average, leading LDML to cover conser-
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Table 1: The QTE of 401(k) eligibility in thousand dollars (and standard error) estimated
by LDML using different regression methods (LASSO, neural network, boosting, and ran-
dom forests), and raw differences of margianl quantiles that do not adjust for covariates.
Here γ ∈ {25%, 50%, 75%} denotes the quantile level of QTE, and K ∈ {5, 15, 25} denotes
the number of folds used in the cross-fitting of LDML.

γ K LASSO Neural Net Boosting Forest Raw

25%
5 0.95 (0.24) 1.05 (0.19) 1.00 (0.20) 0.93 (0.29)

1.50 (0.25)15 0.95 (0.24) 1.06 (0.20) 1.00 (0.20) 0.93 (0.28)
25 0.95 (0.24) 1.03 (0.20) 1.00 (0.20) 0.93 (0.29)

50%
5 4.74 (0.68) 5.56 (0.69) 4.47 (0.85) 3.64 (1.87)

8.98 (0.41)15 4.68 (0.68) 5.59 (0.68) 4.47 (0.85) 3.46 (1.85)
25 4.68 (0.68) 5.55 (0.67) 4.47 (0.85) 3.45 (1.85)

75%
5 14.00 (4.14) 17.12 (4.10) 13.28 (5.11) 13.88 (11.32)

29.67 (1.35)15 13.94 (4.12) 16.86 (4.01) 13.29 (5.20) 14.30 (12.11)
25 13.93 (4.13) 16.87 (4.00) 13.29 (5.16) 14.29 (12.23)

Table 2: The LQTE of 401(k) participation in thousand dollars (and standard error)
estimated by LDML using different regression methods (LASSO, neural network, boosting,
and random forests), and raw differences of marginal quantiles by eligibility that do not
adjust for covariates. Here γ ∈ {25%, 50%, 75%} denotes the quantile level of LQTE, and
K ∈ {5, 15, 25} denotes the number of folds used in the cross-fitting of LDML.

γ K LASSO Neural Net Boosting Forest Raw

25%
5 1.75 (0.23) 2.06 (0.25) 1.57 (0.26) 1.91 (0.44)

4.18 (0.37)15 1.74 (0.23) 2.04 (0.25) 1.57 (0.26) 1.88 (0.44)
25 1.75 (0.23) 2.07 (0.25) 1.58 (0.26) 1.87 (0.44)

50%
5 8.64 (0.60) 10.38 (0.66) 7.54 (0.60) 6.32 (1.12)

15.05 (0.67)15 8.55 (0.59) 10.64 (0.68) 7.53 (0.60) 6.12 (1.11)
25 8.52 (0.59) 10.45 (0.67) 7.51 (0.60) 6.08 (1.11)

75%
5 22.02 (1.87) 31.86 (1.77) 20.54 (2.05) 19.28 (4.81)

38.59 (1.71)15 21.78 (1.86) 32.73 (1.73) 20.48 (2.05) 19.91 (5.07)
25 21.72 (1.89) 33.01 (1.76) 20.45 (2.04) 19.96 (5.24)

vatively. Using the true density provides roughly the nominal 90% coverage predicted by
the asymptotics, validating the theory. Counterfactual density estimation is indeed a chal-
lenging task and the variance estimator may benefit from plugging in more sophisticated
counterfactual density estimators such as that of Kennedy et al. (2021). DML provides bad
coverage regardless of the density estimator used, underestimating the variance.

6.2 Effect of 401(k) Eligibility on Net Financial Assets

Next we consider an empirical case study to demonstrate the estimation of QTE using
LDML in practice and with a variety of machine learning nuisance estimators. We use
data from Chernozhukov and Hansen (2004) to estimate the QTEs of 401(k) retirement
plan eligibility on net financial assets (N = 9915). Eligibility for 401(k) (here considered
the treatment, T ; 37% are eligible in the data) is not randomly assigned, but is argued
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in Chernozhukov and Hansen (2004) to be ignorable conditioned on certain covariates:
age, income, family size, years of education, marital status, two-earner household status,
availability of defined benefit pension plan to household, IRA participation, and home
ownership status. Net financial assets (the outcome, Y ) are defined as the sum of IRA and
401(k) balances, bank accounts, and other interest-earning accounts and assets minus non-
mortgage debt. While Chernozhukov and Hansen (2004) considered controlling for these in
a low-dimensional linear specification, it is not clear whether such is sufficient to account for
all confounding. Consequently, Belloni et al. (2017) considered including higher-order terms
and interactions, but needed to theoretically construct a continuum of LASSO estimates
and may not be able to use generic black-box regression methods. Finally, Chernozhukov
et al. (2018a) considered using generic machine learning methods, but only tackled ATE
estimation.

In contrast, we will use LDML to estimate and conduct inference on the QTEs of 401(k)
eligibility on net assets using a variety of flexible black-box regression methods. First, to
understand the effect of different choices in the application of LDML to the problem, we
consider estimating the 25%, 50%, and 75% QTE while varying K in {5, 15, 25} and varying
the nuisance estimators. We consider estimating both propensity score η∗2 and conditional
cumulative distribution η∗1 with each of: boosting (using R package gbm), LASSO (using
R package hdm), and a one-hidden-layer neural network (using R package nnet). For
LASSO, we use a 275-dimensional expansion of the covariates by considering higher-order
terms and interactions. In each instantiation of LDML, we construct folds so to ensure a
balanced distribution of treated and untreated units, we let K ′ = (K − 1)/2, we use the
IPW initial estimator for θ̂1,init, we normalize propensity weights to have mean 1 within each
treatment group, we use estimates given by solving the grand-average estimating equation
as in Definition 2, and for variance estimation we estimate J∗ using IPW kernel density
estimation as in Remark 4. The solution to the LDML-estimated empirical estimating
equation must occur at an observed outcome Yi and that we can find the solution using
binary search after sorting the data along outcomes. We re-randomize the fold construction
and repeat each instantiation 100 times. We then remove the outlying 2.5% from each end
and report θ̂mean, Σ̂mean as in Appendix E. The resulting estimates and standard errors are
shown in Table 1. The estimates appear overall roughly stable across methods and K.

Next, we consider estimating a range of QTEs. We focus on nuisance estimation using
LASSO and fix K = 15. We then estimate the 10%, 11%, . . . , 89%, and 90% quantiles and
QTEs. We plot the resulting LDML estimates with 90% confidence intervals in Fig. 3 and
compare these to the raw unadjusted marginal quantiles within each treatment group.

6.3 Effect of 401(k) Participation on Net Financial Assets

Next, we estimate the effect of 401(k) participation on net assets. Participation in a 401(k)
plan (here considered the treatment, T ; 26% participate) is not randomly assigned: indi-
viduals with a preference for saving may save more in non-retirement accounts than others
whether they were to participate in retirement savings or not. There may be many other
confounding factors, such as the possibility of higher financial acumen of savers leading to
higher net worth otherwise. It is unlikely that we can control for all these factors using
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Figure 3: LDML estimates of a range of quantiles and QTEs with confidence 90% intervals
and comparison to raw unadjusted marginal quantiles by treatment group.
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Figure 4: LDML estimates of a range of local quantiles and LQTEs with confidence 90%
intervals and comparison to raw unadjusted marginal quantiles by treatment group.

observable covariates. Instead, we rely on instrumenting on eligibility since, as argued in
Section 6.2, eligibility is ignorable given covariates. Additionally, one cannot participate if
one is ineligible, ensuring monotonicity, and some eligible individuals do participate, ensur-
ing relevance. Assuming that eligibility cannot affect net assets except through its effect on
participation, we have that eligibility for a 401(k) (here considered as W ) is valid IV. We
can therefore use it to estimate local quantiles by and LQTEs of 401(k) Participation on
the population of individuals that would participate if eligible.

We use LDML for the LQTE as developed in Appendix A. Again, we consider the impact
of different choices in the application of LDML. We repeat the same specification as above,
using each possible nuisance estimator to fit the conditional probabilities Eqs. (22) and (25).
We display the results for the 25%, 50%, and 75% quantiles while varying K and the
nuisance estimators in Table 2. The qualitative results regarding the stability of LDML
across methods and K remain the same. Then, focusing as before on nuisance estimation
using LASSO and on K = 15, we also estimate a range of local quantiles and QTEs, which
we plot along with 90% confidence intervals in Fig. 3. Again, we compare to the raw
unadjusted marginal quantiles within each treatment group.
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7. Related Literature

Semiparametric Estimation, Neyman orthogonality, and Debiased Machine Learn-
ing. Our work is closely related to the classical semiparametric estimation literature on
constructing

√
N -consistent and asymptotically normal estimators for low dimensional tar-

get parameters in the presence of infinitely dimensional nuisances, typically estimated by
conventional nonparametric estimators such as kernel or series estimators (e.g., Newey, 1990,
1994; Newey et al., 1998; Ibragimov and Hasminskii, 1981; Levit, 1976; Bickel et al., 1998;
Bickel, 1982; Robinson, 1988; var der Vaart, 1991; Andrews, 1994; Linton, 1996; Chen et al.,
2003; Ai and Chen, 2003, 2012). Our work builds on the Neyman orthogonality condition
introduced by Neyman (1959)). This condition plays a critical role in many works that
go beyond the aforementioned literature, such as targeted learning (e.g., van der Laan and
Rose, 2011; van der Laan and Rose, 2018), missing or censored data (e.g., Robins et al.,
1994a; Robins and Rotnitzky, 1995; van der Laan and Robins, 2003; Bang and Robins,
2005; Tsiatis, 2006), inference for coefficients in high dimensional linear models (e.g., Bel-
loni et al., 2016, 2014c; Zhang and Zhang, 2014; Van de Geer et al., 2014; Javanmard and
Montanari, 2014; Chernozhukov et al., 2015; Ning et al., 2017), and semiparametric esti-
mation with nuisances that involve high dimensional covariates (e.g., Belloni et al., 2017;
Smucler et al., 2019; Chernozhukov et al., 2018b; Farrell, 2015; Belloni et al., 2014a,b; Bradic
et al., 2019; Bravo et al., 2020).

Chernozhukov et al. (2018a) highlight the debiased machine learning (DML) approach that
combines orthogonal estimating equations with cross-fitting, so that the traditional Donsker
assumption on nuisance estimators can be relaxed, and a broad array of black-box machine
learning algorithms can be used instead. Their work follows from a body of earlier literature
that also leverage Neyman orthogonality and sample splitting (or cross-fitting) for flexible
semiparametric inference (Klaassen, 1987; Zheng and van der Laan, 2011; Fan et al., 2012;
Bickel, 1982; Robins et al., 2013; Schick, 1986; Robins et al., 2008; van der Laan and Rose,
2011; van der Laan and Robins, 2003). The DML aproach has been applied in numer-
ous works on many different problems, such as heterogeneous treatment effect estimation
(Kennedy, 2020; Nie and Wager, 2017; Curth et al., 2020; Semenova and Chernozhukov,
2020; Oprescu et al., 2019; Fan et al., 2020), causal effects of continuous treatments (Colan-
gelo and Lee, 2020; Oprescu et al., 2019), instrumental variable estimation (Singh and Sun,
2019; Syrgkanis et al., 2019), partial identification (Bonvini and Kennedy, 2019; Kallus
et al., 2019; Semenova, 2017; Yadlowsky et al., 2018), difference-in-difference models (Lu
et al., 2019; Chang, 2020; Zimmert, 2018), off-policy evaluation (Kallus and Uehara, 2020;
Demirer et al., 2019; Zhou et al., 2018; Athey and Wager, 2017), generalized method of mo-
ments (Chernozhukov et al., 2016; Belloni et al., 2018), improved machine learning nuisance
estimation (Farrell et al., 2018; Cui and Tchetgen, 2019), statistical learning with nuisances
(Foster and Syrgkanis, 2019), causal inference with surrogate observations (Kallus and Mao,
2020), linear functional estimation (Chernozhukov et al., 2018d,c; Bradic et al., 2019), etc.
Our work complements this line of research by proposing a simple but effective way to
handle estimand-dependent nuisances. This type of nuisances frequently appears in effi-
cient estimation of complex causal effects such as QTEs, and applying DML directly would
require estimating a continuum of nuisances, which is challenging in practice.
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Efficient estimation of (L)QTE. Firpo (2007) first considered efficient estimation of
QTE and proposed an IPW estimator based on propensity scores estimated by a logistic
sieve estimator. Under strong smoothness conditions, this IPW estimator is

√
N -consistent

and achieves the semiparametric efficiency bound. Frölich and Melly (2013) consider a
weighted estimator for LQTE with weights estimated by local linear regressions using high-
order kernels and show that their estimator is also semiparametrically efficient. Although
these purely weighted methods bypass the estimation of nuisances that depend on the es-
timand, their favorable behavior is restricted to certain nonparametric weight estimators
and strong smoothness requirements. Dı́az (2017) proposed a Targeted Minimum Loss Es-
timator (TMLE) estimator for efficient QTE estimation. Built on the efficient influence
function with nuisances that depends on the quantile itself, this estimator requires esti-
mating a whole conditional cumulative distribution function, which as discussed may be
very challenging in practice using flexible machine learning methods. Belloni et al. (2017)
similarly consider efficient estimation of LQTE with high-dimensional covariates by using a
Neyman-orthogonal estimating equation and discretizing a continuum of LASSO estimators
for the estimand-dependent nuisance. In contrast, our proposed estimator can leverage a
wide variety of flexible machine learning methods for the standard regression task to es-
timate nuisances, since we require estimating conditional cumulative distribution function
only at a single point, which amounts to a binary regression problem.

Estimand-dependent nuisances. Besides (local) quantiles and CVaR, many efficient
estimation problems involve nuisances that depends on the estimand (e.g., Tsiatis, 2006;
Chen et al., 2005). Previous approaches estimate the whole continuum of the estimand-
dependent nuisances either by positing simple parametric model for conditional distribu-
tions (Tsiatis, 2006, Chap 10), using sieve estimators (Chen et al., 2005), or discretizing
a hypothetical continuum of regression estimators (Belloni et al., 2017). In contrast, our
proposed method obviates the need to estimate infinitely many nuisances by fitting nui-
sances only at a preliminary estimate of the parameter of interest. This idea was briefly
mentioned by Robins et al. (1994b), focusing on parametric models for nuisance estimation.
Our paper rigorously develops this approach and admits flexible machine learning methods
for estimating nuisances that depend on the estimand.

8. Conclusion

In many causal inference and missing data settings, the efficient influence function involves
nuisances that depend on the estimand of interest. A key example provided was that of
QTE under ignorable treatment assignment and LQTE estimation using an IV, where in
both cases the efficient influence function depends on the conditional cumulative distribu-
tion function evaluated at the quantile of interest. This structure, common to many other
important problems, makes the application of existing debiased machine learning methods
difficult in practice. In quantile estimation, it requires we learn the whole conditional cu-
mulative distribution function. To avoid this difficulty, we proposed the LDML approach,
which localized the nuisance estimation step to an initial rough guess of the estimand.
This was motivated by the fact that in many applications, the oracle estimating equation
is asymptotically equivalent to one where the nuisance is evaluated at the true parame-
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ter value, which our localization approach targets. Assuming only standard identification
conditions, Neyman orthogonality, and lax rate conditions on our nuisance estimates, we
proved the LDML enjoys the same favorable asymptotics as the oracle estimator that solves
the estimating equation with the true nuisance functions. This newly enables the practical
efficient estimation of important quantities such as QTEs using machine learning.
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Appendix A. LDML Estimates for Local Estimating Equations using
Instrumental Variable

Instead of assuming ignorable treatment assignment, we may have access to an instru-
mental variable (IV). We considier a binary IV denoted as W ∈ {0, 1} and assume that
it satisfies identification conditions in Imbens and Angrist (1994) (namely, for potential
treatments T (w) and potential outcomes Y (t, w), we have exclusion Y (t) := Y (t, w) =
Y (t, 1 − w), exogeneity (Y (t), T (w)) ⊥ W | X, overlap P(W = 1 | X) ∈ (0, 1), relevance
P(T (1) = 1) > P(T (0) = 1), and monotonicity T (1) ≥ T (0)). We seek to use observations of
Z = (X,W, T, Y ) to estimate local parameters defined by the following estimating equation
conditionally on the subpopulation of compliers (i.e., T (1) > T (0)):

P[U(Y (1); θ1) + V (θ2) | T (1) > T (0)] = 0. (20)

For example, specializing Eq. (20) to the functions U (y; θ1) , V (θ2) in Eq. (5) gives the local
quantile and CVaR, which in turn gives the local QTE (LQTE).

Following Belloni et al. (2017), a Neyman orthogonal estimating equation for θ∗ is given by

ψ(Z; θ, θaux ∗
2 , η∗1(Z; θ1), η∗2(Z)) =

[
ψ1(Z; θ, η∗1(Z; θ1), η∗2(Z))
ψ2(Z; θaux ∗

2 , η∗2(Z))

]
, (21)

where

ψ1(Z; θ, η1(Z; θ1), η2(Z)) =

(
η1,1(Z; θ1)− η1,2(Z; θ1) +

W

η2,1(Z)
(TU(Y ; θ1)− η1,1(Z; θ1))

− 1−W
1− η2,1(Z)

(TU(Y ; θ1)− η1,2(Z; θ1))

)
× 1

θaux
2

+ V (θ2) ,

ψ2(Z; θaux
2 , η2(Z)) = η2,2 (Z)− η2,3 (Z) +

W

η2,1 (Z)
(T − η2,2 (Z))− 1−W

1− η2,1 (Z)
(T − η2,3 (Z))− θaux

2 .

with nuisance functions

η∗1(Z; θ1) =

[
E [TU(Y ; θ1) | X,W = 1]
E [TU(Y ; θ1) | X,W = 0]

]
, η∗2(Z) =

 P (W = 1 | X)
P (T = 1 | X,W = 1)
P (T = 1 | X,W = 0)

 . (22)

Here the second estimating equation E [ψ2(Z; θaux ∗
2 , η∗2(Z))] = 0 identifies the compliance

probability, denoted by the following auxiliary parameter θaux ∗
2 :

θaux ∗
2 = E [P (T = 1 | X,W = 1)− P (T = 1 | X,W = 0)] = P (T (1) > T (0)) .

By redefining θ̃1 = θ1, θ̃2 = (θ2, θ
aux
2 ), and θ̃ =

(
θ̃1, θ̃2

)
, the estimating equation becomes

P
[
ψ(Z; θ̃, η∗1(Z; θ̃1), η∗2(Z))

]
= 0, (23)

which apparently fits into our general framework in Eq. (1). Therefore, we can directly
apply our LDML algorithm in Section 2.2 to estimate the local parameters θ∗ = (θ∗1, θ

∗
2).

We can also use the theory in Sections 3 and 4 to analyze the asymptotic distribution of
the resulting estimators and estimate their asymptotic variances.
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A.1 Estimating Local Quantiles

In particular, we take the local quantile estimation as an example, namely, the solution θ∗1
to the local estimating equation in Eq. (20) with

U (Y ; θ1) = I [Y ≤ θ1] , V (θ2) = −γ. (24)

Its orthogonal estimating equation involves the following nuisance functions:

η∗1(Z; θ1) =

[
P (T = 1, Y ≤ θ1 | X,W = 1)
P (T = 1, Y ≤ θ1 | X,W = 0)

]
. (25)

For better readability, we denote the event of being a complier, i.e., T (1) > T (0), as
C, the nuisance functions as π̃∗(X) = P(W = 1 | X), ν∗w (X) = P (T = 1 | X,W = w), and
µ̃∗w(X; θ1) = P (T = 1, Y ≤ θ1 | X,W = w) for w ∈ {0, 1}. We fit estimators for the nuisance
functions based on the sample-splitting scheme given in Definition 1, which we denote

as ˆ̃π(k)(X), ν̂
(k)
w (X) and ˆ̃µ(k)(X; θ̂1,init) = (ˆ̃µ

(k)
1 (X; θ̂1,init), ˆ̃µ

(k)
0 (X; θ̂1,init)) respectively for

k = 1, . . . ,K. Finally, we obtain the estimator θ̂ =
(
θ̂1, θ̂

aux
2

)
by searching approximate

solutions over Θ = Θ1 ×Θ2 ⊆ R× R to the empirical estimating equations in Definition 2
or Definition 5, specialized to Eqs. (21) and (24).

We next assume a strong form of the overlap and relevance assumptions and specify the
convergence rates of the initial estimator and nuisance estimators. We again consider a
generic treatment level t ∈ {0, 1} in these two assumptions.

Assumption 7 (Strong Overlap and Relevance Assumptions). Assume that there exists a
positive constant ε > 0 such that for any P ∈ PN , ε ≤ π̃∗(X) ≤ 1 − ε holds almost surely,
and θaux ∗

2 ≥ ε.

Assumption 8 (Nuisance Estimation Rates). Assume that for any P ∈ PN : with proba-
bility at least 1−∆N , for w = 0, 1,∥∥∥∥∥
{
P
[
ˆ̃µ(k)
w

(
X; θ̂

(k)
1,init)

)
− µ̃∗w

(
X; θ̂

(k)
1,init)

)]2
}1/2

∥∥∥∥∥ ≤ ρ̃µ,N ,
{
P
[
ν̂(k)
w (X)− ν∗w(X)

]2
}1/2

≤ ρ̃ν,N ,{
P
[
ˆ̃π(k)(X)− π̃∗(X)

]2
}1/2

≤ ρ̃π,N , |θ̂(k)
1,init − θ

∗
1| ≤ ρ̃θ,N ,

and ε ≤ ˆ̃π(k)(X) ≤ 1− ε, 0 ≤ ˆ̃µ
(k)
w

(
X; θ̂

(k)
1,init)

)
≤ 1, 0 ≤ ν̂(k)

w (X) ≤ 1 almost surely.

In the following theorem, we derive the asymptotic distribution of the local quantile esti-
mator, which is proved by verifying all assumptions in Theorem 1.

Proposition 3 (LDML for Local Quantile). Fix t = 1 and let Θ = (Θ1,Θ2) ⊆ R2 be a
compact set where θaux

2 ≥ ε for any θaux
2 ∈ Θ2 and ε given in Assumption 7. Let (θ̂1, θ̂

aux
2 )

be the LDML estimator given in either Definition 2 or Definition 5, specialized to Eqs. (21)
and (24). Suppose that there exist constants c′, C such that the following conditions hold
for any instance P ∈ PN :
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i. Conditions i. (with c1), ii., v. (with c5, c6) and condition iii. of Assumption 3 for the
estimating equation in Eqs. (21) and (24).

ii. For any θ1 ∈ Θ1, the distribution function of Y (t) for compliers, denoted as Ft(θ1 |
C), is twice continuously differentible. Its first two order derivatives ft(θ1 | C) and

ḟt(θ1 | C) satisfy that ft(θ1 | C) ≤ c′1,
∣∣∣ḟt(θ1 | C)

∣∣∣ ≤ c′2 for any θ1 ∈ Θ1, and ft(θ
∗
1 |

C) ≥ c′3 > 0.

iii. 2‖P [ψ(Z; θ, θaux
2 , η∗1(Z; θ∗1), η∗2(Z))] ‖ ≥ c2 for all θ = (θ1, θ

aux
2 ) ∈ Θ such that ‖θ −

θ∗‖ ≥ c3
2
√
dcLip

where cLip := max

{√(
c′1
ε2

)2
+
(
c′2
ε

)2
,

√(
2
ε3

)2
+
(
c′1
ε2

)2
}

.

iv. For any θ1 ∈ B(θ∗1; max{ 4ρ̃π,N
ε2(1−ε)δN , ρθ,N}) ∩ Θ and w ∈ {0, 1}, the conditional distri-

bution of Y (t) given X,T (w) = 1, denoted as Ft,w(θ1 | X), is twice differentiable
almost surely with first two order derivatives ft,w(θ1 | X) and ḟt,w(θ1 | X) that satisfy

ft,w(θ1 | X) ≤ C and
∣∣∣ḟt,w(θ1 | X)

∣∣∣ ≤ C almost surely.

v. The nuisance estimator convergence rates satisfy that ρ̃π,N ≤
δ3N

logN , ρ̃µ,N + Cρ̃θ,N ≤
δ2N

logN , ρ̃π,N (ρ̃µ,N + Cρ̃θ,N ) ≤ ε4(1−ε)3

4(ε3+(1−ε)3)
δNN

−1/2, ρ̃π,N ρ̃ν,N ≤ ε3(1−ε)3

8(ε3+(1−ε)3)
δNN

−1/2

with δN satisfying that δN ≤ ε3(1−ε)2
4C+3ε2(1−ε) , δN

logN ≤
1
Cε

for a positive constant Cε given

in Eq. (44) .

Then (θ̂1, θ̂
aux
2 ) satisfies the conclusion of Theorem 1 for ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z)) given in

Eq. (21) and

J∗−1 =

[
1

f1(θ∗1 |C)
− γ

θaux ∗2 f1(θ∗1 |C)
0 −1

]
.

In particular, the local quantile estimator θ̂1 is asymptotically linear with the following
influence function:

1

f1 (θ∗1 | C)
ψ1(Zi; θ

∗, η∗1(Zi; θ
∗
1), η∗2(Zi))−

γ

θaux ∗
2 f1 (θ∗1 | C)

ψ2(Zi; θ
aux ∗
2 , η∗2(Zi)),

where ψ1(Zi; θ
∗, η∗1(Zi; θ

∗
1), η∗2(Zi)) and ψ2(Zi; θ

aux ∗
2 , η∗2(Zi)) are given in Eq. (21). Analo-

gous conclusion for local quantiles of Y (0) holds when all assumptions above hold for t = 0.

Appendix B. LDML Estimates for Expectiles

We can also apply our method and analysis to estimating the γ-expectile θ1 of Y (1), as
defined in Eq. (6). Instantiating Eq. (7) for expectiles and rearranging, we get the following

35



Kallus, Mao, Uehara

efficient estimating function from incomplete data:

ψ(Z; θ1, η
∗
1(Z; θ1), η∗2(Z))

=
I(T = 1)

η∗2,2(Z)

[
(1− γ)

(
Y − η∗2,1(Z)

)
− (1− 2γ) (max (Y − θ1, 0)− η∗1(Z; θ1))

]
+
[
(1− γ)η∗2,1(Z)− (1− 2γ)η∗1(Z; θ1)

]
, (26)

where η∗1(Z; θ1) = E [max(Y − θ1, 0) | X,T = 1] ,

η∗2(Z; θ1) =

[
E [Y | X,T = 1]
P (T = 1 | X)

]
.

The next result gives the asymptotic behavior of LDML applied to these equations.

Proposition 4. Fix t = 1 and let the estimator θ̂1 be given by applying either Definition 2 or
Definition 5 to the estimating function in Eq. (26). Suppose Assumptions 5 and 6 hold and
there exist positive constants C, c′1, c

′
2, such that for any P ∈ PN , the following conditions

hold:

i. Conditions i. (with c1), ii., v. (with c5, c6) of Assumption 2, condition iii. of As-
sumption 3, and condition vii. of Theorem 3 for the estimating function in Eq. (26)
and the corresponding nuisance estimators.

ii. Ft(θ1) is continuous at θ∗1, and | − (1 − 2γ)Ft(θ
∗
1) − γ| ≥ c′1 > 0. Moreover, for any

θ ∈ Θ such that ‖θ−θ∗‖ ≥ c′1
2 , 2 |P [U(Y (t); θ1)]| ≥ c′2 for U(Y (t); θ1) given in Eq. (6).

iii. At any θ1 ∈ B(θ∗; max{4C
√
dρπ,N

δNεπ
, ρθ,N})∩Θ1 , Ft(θ1 | X) is almost surely differentiable

with first-order derivative ft(θ1 | X), and second-order derivative ḟt(θ1 | X) that

satisfies ft(θ1 | X) ≤ C and
∣∣∣ḟt(θ1 | X)

∣∣∣ ≤ C almost surely;

iv. For any θ1 ∈ Θ1,{
P [E[max{Y (t)− θ1, 0} | X]]2

}1/2
≤ C,

{
P [E [Y (t) | X]]2

}1/2
≤ C.

Then θ̂1 satisfies the conclusion of Theorem 1 for ψ(Z; θ∗1, η
∗
1(Z; θ∗1), η∗2(Z)) given in Eq. (26)

and J∗ = −γ − (1 − 2γ)Ft(θ
∗
1). Analogous conclusion for expectile of Y (0) holds when all

assumptions above hold for t = 0.

When constructing confidence intervals, we only need to estimate Ft(θ
∗
1) to estimate J∗.

This can be easily estimated by the inverse propensity reweighted estimator

1

N

∑
k

∑
i∈Dk

I [Ti = t]

π̂(k)(t | Xi)
I
[
Y ≤ θ̂1

]
.

Alternatively, it can be estimated by an imputation estimator based on µ̂(k) or a LDML
estimator that uses both π̂(k) and µ̂(k) (see Remark 4).
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Appendix C. Theoretical Analysis of IPW Initial Estimator

In this part, we show that the IPW initial estimator given in Definition 4 can satisfy the
conditions on θ̂1,init in Assumption 6.

Proposition 5 (IPW Initial Estimator Rate). Fix t = 1 and let the initial estimator θ̂
(k)
1,init

be constructed according to Definition 4 for k = 1, . . . ,K. Assume the following (for t = 1):

i. For each k ∈ {1, . . . ,K} and l ∈ Hk,1, π̂(k,l) satisfies the same conditions as for π̂(k)

in Assumption 6.

ii. Conditions ii., iii., and v. in Theorem 3 (with constants c2 to c4 and C) hold.

iii. There exists a nuisance realization set ΠN that contains the true propensity score π∗

and also the propensity score estimators π̂(k,l) for k = 1, . . . ,K and l ∈ Hk,1 with at
least probability 1−∆N . Moreover, any π ∈ ΠN satisfies that π(t | X) ≥ επ.

iv. For each π ∈ ΠN , the function class Gπ = {(X,T, Y ) 7→ I[T=t]
π(t|X)Uj(Y ; θ1) +Vj(θ2) : j =

1, . . . , d, θ ∈ Θ} is suitably measurable and its uniform covering entropy satisfies the
following condition: for positive constants a′, v′ and q′ > 2, supQ logN(ε‖Gπ‖Q,2,Gπ, ‖·
‖Q,2) ≤ v′ log(a′ε) ∀ε ∈ (0, 1], where Gπ is a measurable envelope for Gπ. There exists
a positive constant c8 such that for any P ∈ PN , ‖Gπ‖P,q′ ≤ c8.

v.
(
K′

N

)1/2
log
(
K′

N

)
+
(
K′

N

)1− 1
q′

log
(
K′

N

)
≤ δNρπ,N ;

Then there exists a constant c that only depends on pre-specified constants in the conditions

above such that with probability 1− c (logN)−1, ρθ,N ≤ 2c−1
3

(
C
√
dε−1
π + 1

)
ρπ,N .

In Remark 3, we discuss the corresponding rate conditions on other nuisance estimators
when using the IPW initial estimator, based on the conclusion in Proposition 5.

Appendix D. An Alternative LDML Estimator

In Definition 2, we construct an LDML estimator by first averaging estimates of the equation
in Eq. (11) over all folds and then solving the grand-average equation approximately. Below
we provide an alternative LDML estimator that first solves the estimate of Eq. (11) from
each fold separately and then averages these solutions.

Definition 5 (LDML2). For k = 1, . . . ,K, construct θ̂(k) by (approximately) solving

Ψ
(k)

(θ) =
1

|Dk|
∑
i∈Dk

ψ(Zi; θ, η̂
(k)
1 (Zi; θ̂

(k)
1,init), η̂

(k)
2 (Zi)) = 0. (27)

In fact, we allow for an approximate least-squares solution, which is useful if the empirical
estimating equation has no exact solution. Namely, we let θ̂k be any satisfying

‖Ψ(k)
(θ̂(k))‖ ≤ infθ∈Θ ‖Ψ

(k)
(θ)‖+ εN . (28)
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Then, we let the final estimator be

θ̂ =
1

K

K∑
k=1

θ̂(k). (29)

We can easily follow previous proofs for the LDML estimator in Definition 2 to show that
Theorems 1 to 3 and Proposition 2 also apply to θ̂ in Definition 5, provided that εN in
Eq. (28) is o

(
N−1/2

)
(i.e., condition iii. in Assumption 3). For example, we demonstrate

this at the end of the proof for Theorem 1. Thus the two LDML estimators in Definition 2
and Definition 5 are asymptotically equivalent.

Appendix E. Practical Considerations

The proposed LDML estimator θ̂ in Definition 2 or Definition 5 relies on nuisance esti-
mates based on random sample splitting (Definition 1). Although the uncertainty due to
sample splitting does not affect the asymptotic theory, it may influence the finite-sample
performance of the LDML estimator.

To make the results more robust to sample splitting, we may consider aggregating the
estimates over different random splitting realizations. In particular, it is possible to use
many other different ways of splitting data. For example, in both Definitions 2 and 5 we
may average more than just K solutions or equations. For each k, we can permute over

all
(
K−1
K′

)
splits of {1, . . . ,K} \ {k} into K ′ and K − 1 − K ′ folds used for fitting θ̂

(k)
1,init

and η̂
(k)
1 (·; θ̂(k)

1,init), η̂
(k)
2 . Or, we could even permute over all

∑K−2
K′=1

(
K−1
K′

)
ways to split

{1, . . . ,K} \ {k} into two. Or, we can even repeat the initial random splitting into K folds
many times over and average the resulting estimates from either Definition 5 or 2, or take
their median to avoid outliers, or solve the grand-mean of estimating equations. All of
these procedures can provide improved finite-sample performance in practice as they can
only reduce variance without affecting bias, and we do recommend these, but they have no
effect on the leading asymptotic behavior, which remains the same whether you use one or
more splits of the data into folds and/or one or more splits of {1, . . . ,K} \ {k} into two.

With estimates from multiple random splitting realizations, we may also improve variance
estimation and to account for the variance due to random splitting. In particular, letting
θ̂s, Σ̂s be the parameter and variance estimates for each run of LDML for s = 1, . . . , S,
we can let θ̂mean = 1

S

∑S
s=1 θ̂s and Σ̂mean = 1

S

∑S
s=1(Σ̂s + 1

S (θ̂s − θ̂mean)(θ̂s − θ̂mean)>) be

the final parameter and variance estimates. Like θ̂mean, the first term in Σ̂mean reduces the
variance in the estimate Σ̂s itself. The second term in Σ̂mean accounts for the variance of
θ̂mean due to random splitting. Notice that the second term vanishes as S → ∞; indeed
then θ̂mean has no variance due to random splitting as it is fully averaged over. Because
θ̂s are each consistent, the second term also vanishes as N → ∞. Removing the 1

S factor

in the second term we can instead get an estimate of the variance of each single θ̂s, rather
than of θ̂mean, accounting for random splitting. This procedure extends a similar proposal
by Chernozhukov et al. (2018a) for inference in linear estimating equations.

38



Localized Debiased Machine Learning

Appendix F. Comparison with Chernozhukov et al. (2018a)

Our proof of Theorem 1 and the proof of Theorem 3.3 in Chernozhukov et al. (2018a) are
overall similar, but critically differ in Step II. In Step II, both proofs are based on the
following decomposition:

‖J∗−1
√
NPN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))] +

√
N(θ̂ − θ∗)‖ ≤ εNN1/2 + 2I4 + 2I5, (30)

where

I4 :=
√
N sup

r∈(0,1),(η1(·;θ′1),η2)∈TN
‖∂2

rf(r; θ̂, η1(·; θ′1), η2)‖,

I5 := GN

[
ψ(Z; θ̂, η̂1(Z, θ̂1,init), η̂2(Z))− ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))

]
‖,

I5 = OP(δN ) is proved analogously in both proofs, and εNN
1/2 = O(δN ) is assumed in both

proofs.

However, our proof and the proof in Chernozhukov et al. (2018a) assume different rate on
λ′N in Assumption 3 and thus I4 =

√
Nλ′N (θ̂):

Our condition λ′N (θ) ≤
(
‖θ̂ − θ∗‖+N−1/2

)
δN , (31)

Condition in Chernozhukov et al. (2018a) λ′N (θ) ≤ N−1/2δN . (32)

Under our condition, I4 ≤
(√

N‖θ̂ − θ∗‖+ 1
)
δN , then jointly considering the left hand

side and right hand side in Eq. (30) gives ‖θ̂− θ∗‖ = Op(N
−1/2), which in turn implies that

I4 = O(δN ), and thus the asserted conclusion in Theorem 1. In contrast, the counterpart
condition in Chernozhukov et al. (2018a) guarantees that I4 = O(δN ) directly without
needing to consider both sides of Eq. (30) jointly.

Now we use the example of estimating equation for incomplete data to show that the
condition Eq. (32) in Chernozhukov et al. (2018a) generally requires stronger conditions for
the convergence rates of nuisance estimators than our condition Eq. (31).

According to Eq. (43), under suitable regularity conditions,

‖∂2
rf(r; θ̂, µ(X,T ; θ′1), π)‖ = O(ρπ,Nρµ,N ) +Op(ρπ,Nρθ,N ) +O(‖θ̂ − θ∗‖2) +O(ρπ,N‖θ̂1 − θ∗1‖)

Since Step I in the proof of Theorem 1 already proves that ‖θ̂ − θ∗‖ ≤ ρπ,N
δN

, we need

ρπ,Nρµ,N ≤ δNN−1/2, ρπ,Nρθ,N ≤ δNN−1/2, and ρπ,N ≤ δ2
N to guarantee our condtion. Thus

our condition in Eq. (31) only requires that the product error rates to vanish faster than
O(N−1/2), which is common in debiased machine learning for linear estimating equation
(Chernozhukov et al., 2018a).

In contrast, to guarantee the condition in Chernozhukov et al. (2018a) given in Eq. (32), we

need to assume that ρπ,N ≤ δ3/2
N N−1/4, besides the conditions on product error rates. There-

fore, following the proof in Chernozhukov et al. (2018a) directly will require the propensity
score to converge faster than O(N−1/4), no matter how fast the initial estimator θ̂1,init and

the regression estimator µ̂(·, θ̂1,init) converge.
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Appendix G. Proofs

G.1 Proofs for Section 2

Proof for Proposition 1. For any θ = (θ1, θ2) such that (θ, η∗1(·, θ)) ∈ N , the asserted
Fréchet differentiability and orthogonality condition imply that

‖P [ψ(Z; θ, η∗1(Z, θ1), η∗2(Z))]− P [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

− ∂θ{P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))]}|θ=θ∗(θ − θ∗)‖ = o(‖θ − θ∗‖).

This means that J∗ = ∂θ{P [ψ(Z; θ, η∗1(Z; θ1), η∗2(Z))]}|θ=θ∗ .

G.2 Proofs for Section 3

Proof for Theorem 1. Fix any sequence {PN}N≥1 that generates the observed data
(Z1, . . . , ZN ) and satisfies that PN ∈ PN for all N ≥ 1. Because this sequence is chosen
arbitrarily, to prove that the asserted conclusion holds uniformly over P ∈ PN , we only
need to prove

√
NΣ−1/2(θ̂ − θ∗) =

1√
N

N∑
i=1

Σ−1/2
[
J∗−1ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))

]
+OPN (ρN )

d→ N (0, Id).

For k = 1, . . . ,K, we use PN,k to represent the empirical average operator based on
Dk. For example, PN,k [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))] = 1

|Dk|
∑

i∈Dk ψ(Zi; θ
∗, η∗1(Zi; θ

∗
1), η∗2(Zi)).

Analogously, PN is the empirical average operator for the whole dataset, i.e., PNf(Z) =
1
N

∑N
i=1 f(Zi). GN,k is the empirical process operator

√
N (PN,k − P). Moreover, for a

given N , PN,k, PN and the population average operator P are all derived from the underly-
ing true distribution PN , but we supress such dependence for ease of notation. Throughout
the proof, we condition on the event (η̂1(·, θ̂1,init), η̂2(·)) ∈ TN , which happens with at least
PN -probability 1 − ∆N according to Assumption 3 condition i.. All statements involving
o(·), OPN (·) or . notations in this proof depend on only constants pre-specified in As-
sumptions 2 and 3, and do not depend on constants specific to the instance PN . This
should be clear from the proof, and the fact that the maximal inequality in Lemma 6.2 of
Chernozhukov et al. (2018a) only depend on pre-specified parameters. Here we prove the
asymptotic distribution of θ̂ given in Definition 2 first.

Step I: Prove a preliminary convergence rate for θ̂: ‖θ̂ − θ∗‖ ≤ τN with PN -
probability 1− o(1). Here we prove this by showing that with PN -probability 1− o(1),∥∥∥P [ψ(Z; θ̂, η∗1(Z; θ∗1), η∗2(Z))

]∥∥∥ = o(τN ) (33)

so that Assumption 2 implies that ‖J∗(θ̂ − θ∗)‖ ∧ c2 = o(τN ). Since the singular values
of J∗ are lower bounded by c3 > 0, we can conclude that with PN -probability 1 − o(1),
‖θ̂ − θ∗‖ ≤ τN for N exceeding an instance-independent threshold.

In order to prove Eq. (33), we use the following decomposition:

P
[
ψ(Z; θ̂, η∗1(Z; θ∗1), η∗2(Z))

]
= (a) + (b) + (c) + (d) + (e),
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where

(a) =
1

K

K∑
k=1

P
[
ψ(Z; θ̂, η∗1(Z; θ∗1), η∗2(Z))

]
− P

[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
,

(b) =
1

K

K∑
k=1

{
P
[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
− PN,k

[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]}
,

(c) =
1

K

K∑
k=1

{
PN,k

[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
− PN,k

[
ψ(Z; θ∗, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]}
,

(d) =
1

K

K∑
k=1

{
PN,k

[
ψ(Z; θ∗, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
− P

[
ψ(Z; θ∗, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]}
,

(e) =
1

K

K∑
k=1

{
P
[
ψ(Z; θ∗, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
− P [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

}
.

Denote I1,k = supθ∈Θ ‖P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))] − P
[
ψ(Z; θ, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
‖

and I2,k = supθ∈Θ ‖PN,k
[
ψ(Z; θ, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
−P
[
ψ(Z; θ, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
‖.

Then obviously,

(a) + (e) ≤ 2

K

K∑
k=1

I1,k, (b) + (d) ≤ 2

K

K∑
k=1

I2,k.

Moreover, according to Eq. (15),

(c) ≤ 1

K

K∑
k=1

‖PN,k
[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
‖+

1

K

K∑
k=1

‖PN,k
[
ψ(Z; θ∗, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
‖

≤ 2

K

K∑
k=1

‖PN,k
[
ψ(Z; θ∗, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
‖+ εN

≤ 2

K

K∑
k=1

∥∥∥∥PN,k [ψ(Z; θ∗, η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
− P

[
ψ(Z; θ∗, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

] ∥∥∥∥
+

2

K

K∑
k=1

∥∥∥∥P [ψ(Z; θ∗, η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
− P [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

∥∥∥∥+ εN

≤ 2

K

K∑
k=1

I1,k +
2

K

K∑
k=1

I2,k + εN .

Therefore,

P
[
ψ(Z; θ̂, η∗1(Z; θ∗1), η∗2(Z))

]
≤ 4

K

K∑
k=1

I1,k +
4

K

K∑
k=1

I2,k + εN .

Note that Assumption 3 condition ii. implies that I1,k ≤ δNτN and the Assumption 3
condition iii. implies that εN ≤ δNN−1/2 = o(τN ).
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To bound I2,k, note that conditionally on η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z), the function class

F
η̂(k),θ̂

(k)
1,init

= {ψj(·; θ, η̂(k)
1 (·, θ̂(k)

1,init), η̂
(k)
2 (·)) : j = 1, . . . , d, θ ∈ Θ} satisfies the asserted en-

tropy condition in Assumption 2, and has envelope F
1,η̂(k),θ̂

(k)
1,init

that satisfies

sup
θ∈Θ

P
[
ψ(Z; θ, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]2
≤ P

[
F 2

1,η̂(k),θ̂
(k)
1,init

]
< Cq,c7

for a positive constant Cq,c7 that only depends on q and c7 specified in Assumption 2.

Then conditionally on θ̂1,init, η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z), we can use Lemma 6.2 eq. (A.1) in

Chernozhukov et al. (2018a) to prove that with PN -probability 1− o(1),

sup
θ∈Θ

GN,k

[
ψ(Z; θ, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
. logN(1 +N−1/2+1/q). (34)

This also holds unconditionally according to Lemma 6.1 of in Chernozhukov et al. (2018a).

This further implies that I2,k . N−1/2 logN(1+N−1/2+1/q) = o(τN ). Thus P
[
ψ(Z; θ̂, η∗1(Z; θ∗1), η∗2(Z))

]
≤

4δNτN + 4N−1/2 logN(1 +N−1/2+1/q) + δNN
−1/2 = o(τN ).

Step II: Linearization and
√
N−Consistency. In Step I, we proved that ‖θ̂− θ∗‖ ≤ τN

with PN -probability 1− o(1). Conditioned on this event, we will show that

‖
√
NPN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))] +

√
NJ∗(θ̂ − θ∗)‖

≤εNN1/2 + I3 + I4 +
1

K

K∑
k=1

I5,k, (35)

where

I3 := inf
θ∈Θ

√
N

∥∥∥∥∥ 1

K

K∑
k=1

PN [ψ(Z; θ, η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))]

∥∥∥∥∥ ,
I4 :=

√
N sup

r∈(0,1),(η1(·;θ′1),η2)∈TN
‖∂2

rf(r; θ̂, η1(·; θ′1), η2)‖,

I5,k := sup
‖θ−θ∗‖≤τN

‖GN,k

[
ψ(Z; θ, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))− ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))

]
‖.

Here Assumption 3 condition ii. guarantees that I4 ≤ δN

(
1 +
√
N‖θ̂ − θ∗‖

)
and the as-

sumption that εN = δNN
−1/2 guarantees that εNN

1/2 ≤ δN . In step III and IV, we will fur-
ther bound I5,k . ρ′N := (N−1/2+1/q + r′N )logN + r′N log1/2(1/r′N ) +N−1/2+1/q log(1/r′N ) .
δN and I3 ≤ I4 + 1

K

∑K
k=1 I5,k respectively.

Consequently, with PN -probability 1− o(1),

‖
√
NPN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))] +

√
NJ∗(θ̂ − θ∗)‖

.
(
δN

(
1 +
√
N‖θ̂ − θ∗‖

))
+ ρ′N + δN . (36)
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This implies that

√
N‖θ̂ − θ∗‖ − ‖

√
NJ∗−1PN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]‖

≤‖
√
N(θ̂ − θ∗) +

√
NJ∗−1PN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]‖

.‖J∗−1‖
[(
δN

(
1 +
√
N‖θ̂ − θ∗‖

))
+ ρ′N + δN

]
and

√
N‖θ̂ − θ∗‖ . 1

c3

[(
δN

(
2 +
√
N‖θ̂ − θ∗‖

))
+ ρN

]
+ ‖
√
NJ∗−1PN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]‖.

By Assumption 2 condition v. and Markov inequality, ‖
√
NJ∗−1PN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]‖ =

OPN (
√
c6). Thus, with PN -probability 1− o(1),

√
N‖θ̂ − θ∗‖ . δN + ρ′N .

Plugging this back into Eq. (36) gives

‖
√
NPN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))] +

√
NJ∗(θ̂ − θ∗)‖ = OPN (δN + ρ′N ).

Since ‖J∗−1‖ ≤ 1/c3 and ‖Σ−1/2‖ ≤ 1/
√
c5, we further have

‖Σ−1/2J∗−1
√
NPN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))] + Σ−1/2

√
N(θ̂ − θ∗)‖

≤ ‖Σ−1/2‖‖J∗−1‖‖
√
NPN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))] +

√
NJ∗(θ̂ − θ∗)‖

. δN + ρ′N = ρN .

Now we prove the decomposition Eq. (35). Note that for any θ ∈ Θ and (η1(·, θ1), η2) ∈ TN

√
N

{
1

K

K∑
k=1

PN,k [ψ(Z; θ, η1(Z, θ1), η2(Z))]

}

=
1

K

K∑
k=1

GN,k [ψ(Z; θ, η1(Z, θ1), η2(Z)))− ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))] +
√
NPN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

+
1

K

K∑
k=1

√
N

{
P [ψ(Z; θ, η1(Z, θ1), η2(Z))]− P [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

}
(37)
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If we apply Eq. (37) with θ = θ̂ and (η1(·, θ1), η2) equal (η̂
(k)
1 (·, θ̂(k)

1,init), η̂
(k)
2 ) for the kth fold,

and apply Eq. (15), then∥∥∥∥ 1

K

K∑
k=1

GN,k

[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))− ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))

]
+
√
N

{
1

K

K∑
k=1

P
[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
− P [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

}
+
√
NPN [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

∥∥∥∥
=
√
N

∥∥∥∥∥ 1

K

K∑
k=1

PN,k
[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]∥∥∥∥∥
≤
√
N inf

θ∈Θ

∥∥∥∥∥ 1

K

K∑
k=1

PN,k
[
ψ(Z; θ, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]∥∥∥∥∥+ εN
√
N. (38)

Here

‖GN,k

[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))− ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))

]
‖ ≤ I5,k (39)

and the second order tayler expansion at r = 0 gives that for some data-dependent r̃ ∈ (0, 1),

√
N

{
P
[
ψ(Z; θ̂, η̂

(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))

]
− P [ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z))]

}
=
√
N
[
f(1; θ̂, η̂

(k)
1 (·, θ̂(k)

1,init), η̂
(k)
2 )− f(0; θ̂, η̂

(k)
1 (·, θ̂(k)

1,init), η̂
(k)
2 )
]

=
√
N

{
J∗(θ̂ − θ∗) + ∂2

rf(r; θ̂, η̂
(k)
1 (·, θ̂(k)

1,init), η̂
(k)
2 )|r=r̃

}
(40)

where the third equality uses the Neyman orthogonality in Assumption 2 condition vii..

Combining Eq. (38), Eq. (39) and Eq. (40) gives decomposition Eq. (35).

Step III: bounding I5,k. To bound I5,k, we still condition on η̂
(k)
1 (·, θ̂(k)

1,init), η̂
(k)
2 , and then

apply Lemma 6.2 in Chernozhukov et al. (2018a) with function class

F ′
η̂(k),θ̂

(k)
1,init

= {ψj(·; θ, η̂(k)
1 (·, θ̂(k)

1,init), η̂
(k)
2 )−ψj(·; θ∗, η∗1(·, θ∗), η∗2) : j = 1, . . . , d, θ ∈ Θ, ‖θ−θ∗‖ ≤ τN}.

We can verify that F ′
η̂(k),θ̂

(k)
1,init

satisfies similar entropy condition with envelope F
1,η̂(k),θ̂

(k)
1,init

+

F1,η∗,θ∗1
. Moreover, Assumption 3 implies that

sup
‖θ−θ∗‖≤τN

‖ψ(Z; θ, η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))− ψ(Z; θ∗, η∗1(Z, θ∗), η∗2(Z))‖P,2 ≤ r′N .

Thus conditionally on θ̂1,init, η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z), we can use Lemma 6.2 eq. (A.1) in

Chernozhukov et al. (2018a) to show that with PN -probability 1− o(1),

I5,k . (N−1/2+1/q + r′N )logN + r′N log1/2(1/r′N ) +N−1/2+1/q log(1/r′N ),
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which also holds unconditionally according to Lemma 6.1 in Chernozhukov et al. (2018a) .

Step IV: bounding I3. Let θ = θ∗ − J∗−1PN [ψ(Z; θ∗, η∗1(Z, θ∗), η∗2(Z))].
Since P [ψ(Z; θ∗, η∗1(Z, θ∗), η∗2(Z))] = 0, J∗ is nonsingular with singular values bounded away
from 0 by c3, and ‖PN [ψ(Z; θ∗, η∗1(Z, θ∗), η∗2(Z))] ‖ = OPN (N−1/2), ‖θ−θ∗‖ = OPN (N−1/2) =
oPN (τN ). According to Assumption 2 condition i., θ ∈ Θ with PN probability 1 − o(1).
Therefore,

I3 ≤
√
N

∥∥∥∥∥ 1

K

K∑
k=1

PN [ψ(Z; θ, η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))]

∥∥∥∥∥
Then apply the linearization Eq. (37) and taylor expansion similar to Eq. (40) with θ = θ

and (η1(·, θ1), η2) equal (η̂
(k)
1 (·, θ̂(k)

1,init), η̂
(k)
2 ) for the kth fold, we can get that

√
N

∥∥∥∥∥ 1

K

K∑
k=1

PN,k[ψ(Z; θ, η̂
(k)
1 (Z, θ̂

(k)
1,init), η̂

(k)
2 (Z))]

∥∥∥∥∥
≤
√
N‖PN [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))] + J∗(θ − θ∗)‖+ I4 +

1

K

K∑
k=1

I5,k = I4 +
1

K

K∑
k=1

I5,k.

where the last equality here holds because PN [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))] + J∗(θ− θ∗) = 0 as
a consequence of the special construction of θ.

Extension: θ̂ defined in Definition 5. By applying step I to IV to sample estimating
equation Eq. (28), we can get that for k = 1, . . . ,K,√
N/KΣ−1/2(θ̂(k) − θ∗) =

1√
N/K

∑
i∈Dk

Σ−1/2J∗−1ψ(Zi; θ
∗, η∗1(Zi; θ

∗
1), η∗2(Zi)) +OP (ρN/K).

Since K is a fixed integer that does not grow with N , the equation above implies that the
asserted conclusion in Theorem 1 also holds for θ̂ = 1

K

∑K
k=1 θ̂

(k).

G.3 Proofs for Section 4

Proof of Theorem 2. We still consider data generating processes {PN}N≥1 defined in the

proof for Theorem 1, and define ⊗a = aa>. Now we prove that

‖PN,k[⊗ψ(Z; θ̂, η̂
(k)
1 (Z, θ̂

(k)
init), η̂

(k)
2 (Z))]− P[⊗ψ(Z; θ∗, η∗1(Z, θ∗1), η∗2(Z))]‖ = OPN (ρ′′N ). (41)

for any k ∈ [1, · · · ,K]. Then, the statement in Theorem 2 is immediately concluded. For
all j, l ∈ [1, · · · , d] (d = d1 + d2), Eq. (41) follows once we have Ijl = OPN (ρ′′N ), where

Ijl := |PN,k[ψj(Z; θ̂, η̂
(k)
1 , η̂

(k)
2 )ψl(Z; θ̂, η̂

(k)
1 , η̂

(k)
2 )]− P[ψj(Z; θ∗, η∗1, η

∗
2)ψl(Z; θ∗, η∗1, η

∗
2)]|.

Here, to simplify the notation, we use η̂
(k)
1 = η̂

(k)
1 (Z, θ̂

(k)
init), η

∗
1 = η∗1(Z, θ∗1), η̂

(k)
2 = η̂

(k)
2 (Z, θ̂

(k)
init), η

∗
2 =

η∗2(Z, θ∗2). Obviously we have Ijl ≤ Ijl,1 + Ijl,2, where

Ijl,1 = |PN,k[ψj(Z; θ̂, η̂
(k)
1 , η̂

(k)
2 )ψl(Z; θ̂, η̂

(k)
1 , η̂

(k)
2 )]− PN,k[ψj(Z; θ∗, η∗1, η

∗
2)ψl(Z; θ∗, η∗1, η

∗
2)]|,

Ijl,2 = |PN,k[ψj(Z; θ∗, η∗1, η
∗
2)ψl(Z; θ∗, η∗1, η

∗
2)]− P[ψj(Z; θ∗, η∗1, η

∗
2)ψl(Z; θ∗, η∗1, η

∗
2)]|,
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and we show that each term here is Op(ρ
′′
N ).

We first bound Ijl,2. This is upper bounded as

P[I2
jl,2] ≤ N−1P[ψ2

j (Z; θ∗, η∗1, η
∗
2)ψ2

l (Z; θ∗, η∗1, η
∗
2)]

≤ N−1{P[ψ4
j (Z; θ∗, η∗1, η

∗
2)]P[ψ4

l (Z; θ∗, η∗1, η
∗
2)]}1/2

≤ N−1P[‖ψ(Z; θ∗, η∗1, η
∗
2)‖4] ≤ N−1C4.

Here, we use the fourth moment assumption in Assumption 4. From conditional Markov
inequality, we have Ijl,2 = OPN (1/N−1/2).

Next, we bound Ijl,1. Following the proof of Theorem 3.2 (Chernozhukov et al., 2018a), we
have

I2
jl,1 ≤ RN ×

{
PN,k[‖ψ(Z; θ∗, η∗1, η

∗
2‖2] +RN

}
,

RN = PN,k[‖ψ(Z; θ̂, η̂1, η̂2)− ψ(Z; θ∗, η∗1, η
∗
2)‖2].

In addition, from the fourth moment assumption in Assumption 4

P[PN,k[‖ψ(Z; θ∗, η∗1, η
∗
2)‖2]] = P[‖ψ(Z; θ∗, η∗1, η

∗
2)‖2] ≤ C2.

It follows from Markov inequality that

PN,k[‖ψ(Z; θ∗, η∗1, η
∗
2)‖2] = OPN (1).

It remains to bound RN . We have

RN = PN,k[‖ψ(Z; θ̂, η̂1, η̂2)− ψ(Z; θ∗, η∗1, η
∗
2)‖2]

≤PN,k[‖ψ(Z; θ̂, η∗1, η
∗
2)− ψ(Z; θ∗, η∗1, η

∗
2)‖2] + PN,k[‖ψ(Z; θ̂, η̂1, η̂2)− ψ(Z; θ̂, η∗1, η

∗
2)‖2].

(42)

Then, the first term of Eq. (42) is upper bounded with PN -probability 1− o(1) as

PN,k[‖ψ(Z; θ̂, η∗1, η
∗
2)− ψ(Z; θ∗, η∗1, η

∗
2)‖2]

=
1√
N

GN,k[‖ψ(Z; θ̂, η∗1, η
∗
2)− ψ(Z; θ∗, η∗1, η

∗
2)‖2] + P[‖ψ(Z; θ̂, η∗1, η

∗
2)− ψ(Z; θ∗, η∗1, η

∗
2)‖2]

≤ sup
θ∈Θ

1√
N

GN,k[‖ψ(Z; θ, η∗1, η
∗
2)− ψ(Z; θ∗, η∗1, η

∗
2)‖2] + P[‖ψ(Z; θ̂, η∗1, η

∗
2)− ψ(Z; θ∗, η∗1, η

∗
2)‖2]

. N−1/2 logN{1 +N−1/2+2/q}+ ‖θ̂ − θ∗‖β2 = N−1/2 logN{1 +N−1/2+2/q}+N−β/2.

In the last inequality, we use Lemma 6.2 (Chernozhukov et al., 2018a). Here, the envelops
exists since ‖ψ(Z; θ, η∗1, η

∗
2) − ψ(Z; θ∗, η∗1, η

∗
2)‖2 ≤ CF 2

η∗,θ∗ for some constant C depending
on d1, d2. According to condition vi. in Assumption 2, it satisfies the moment condition
‖F 2

η∗,θ∗‖P,q/2 ≤ c1. In addition, the metricy entropy assumption is satisfied since

sup
Q

logN(ε‖CF2
1,η∗,θ∗‖Q,2,

{
‖ψ(Z; θ, η∗1, η

∗
2)− ψ(Z; θ∗, η∗1, η

∗
2)‖2 : θ ∈ Θ

}
, ‖ · ‖Q,2)

. sup
Q

log{N(ε‖F1,η∗,θ∗‖Q,2,F1,η,θ′1
, ‖ · ‖Q,2)}2 . v log(a/ε).
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Similarly, with PN -probability probability 1 − o(1), the second term of Eq. (42) can be
upper bounded as follows:

PN,k[‖ψ(Z; θ̂, η̂1, η̂2)− ψ(Z; θ̂, η∗1, η
∗
2)‖2]

=
1√
N

GN,k[‖ψ(Z; θ̂, η̂1, η̂2)− ψ(Z; θ̂, η∗1, η
∗
2)‖2] + P[‖ψ(Z; θ̂, η̂1, η̂2)− ψ(Z; θ̂, η∗1, η

∗
2)‖2]

≤ sup
θ∈Θ

1√
N

GN,k[‖ψ(Z; θ, η̂1, η̂2)− ψ(Z; θ, η∗1, η
∗
2)‖2] + sup

θ∈B(θ∗;τN )
P[‖ψ(Z; θ, η̂1, η̂2)− ψ(Z; θ, η∗1, η

∗
2)‖2]

. N−1/2 logN{1 +N−1/2+2/q}+ {r′N}2.

In the last inequality, we use Lemma 6.2 (Chernozhukov et al., 2018a) and Assumption 3.
In the end, we have

RN = OPN

(
N−1/2+1/q(logN)1/2 +N−1/4(logN)1/2 + r′N

)
+N−β/4.

This concludes the proof.

G.4 Proofs for Section 5

Proof for Theorem 3. In this part, we prove the asymptotic distribution of our estimators
corresponding to the general estimating equation Eq. (7). We prove this by verifying all
conditions in the assumptions for Theorem 1.

Verifying Assumption 1.

J∗ = ∂θ{P [ψ(Z; θ, η∗1(Z; θ1), η∗2(Z))]}|θ=θ∗

=∂θP
{

I(T = t)

π∗(t | X)
U(Y ; θ1)− I(T = t)− π∗(t | X)

π∗(t | X)
µ∗(X, t; θ1) + V (θ2)

}
|θ=θ∗

=∂θP
{

I(T = t)

π∗(t | X)
U(Y ; θ1) + V (θ2)

}
|θ=θ∗

=∂θP
{

I(T = t)

π∗(t | X)
U(Y ; θ1)− I(T = t)− π∗(t | X)

π∗(t | X)
µ∗(X, t; θ∗1) + V (θ2)

}
|θ=θ∗

=∂θ{P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))]}|θ=θ∗ .

Verifying Assumption 2. We first verify conditions iii. and iv. in Assumption 2.
We denote that Jjk(θ) = ∂θ(k)P [Uj(Y (t); θ1) + Vj(θ2)] where θ(k) is the kth component of
θ = (θ1, θ2). By condition ii., Jjk(θ) is Lipschitz continuous at θ∗ with Lipschitz constant
c′. So for any ε > 0, if θ belongs to the open ball B(θ∗; ε/c′), then

|Jjk(θ)− Jjk(θ∗)| = |∂θ(k)P [Uj(Y (t); θ1) + Vj(θ2)]− ∂θ(k)P [Uj(Y (t); θ∗1) + Vj(θ
∗
2)]| ≤ ε.

By Taylor expansion, for any θ ∈ B(θ∗; δ), there exists θ ∈ B(θ∗; ‖θ − θ∗‖) such that

‖P [U(Y (t); θ1) + V (θ2)] ‖ = ‖J(θ)(θ − θ∗)‖ ≥ ‖J(θ∗)(θ − θ∗)‖ − ‖(J(θ)− J(θ∗))(θ − θ∗)‖

≥ ‖J(θ∗)(θ − θ∗)‖ − ε
√
d‖θ − θ∗‖ ≥ ‖J(θ∗)(θ − θ∗)‖ − 1

2
‖J(θ∗)(θ − θ∗)‖

=
1

2
‖J(θ∗)(θ − θ∗)‖,
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where the second last inequality holds if we choose ε ≤ c3
2
√
d
≤ 1

2
√
d
σmin(J(θ∗)), where

σmin(J(θ∗)) is the smallest singular value of J(θ∗). Thus

inf
θ∈B(θ∗;ε/c′)

2‖P [U(Y (t); θ1) + V (θ2)] ‖ ≥ ‖J(θ∗)(θ − θ∗)‖.

Moreover, for any θ ∈ Θ \ B(θ∗; c3
2
√
dc′

), 2‖P [U(Y (t); θ1) + V (θ2)] ‖ ≥ c2 according to condi-

tion ii.. Therefore,

2‖P [U(Y (t); θ1) + V (θ2)] ‖ ≥ J∗(θ − θ∗) ∧ c2, where J∗ = J(θ∗).

Moreover, the singular values J∗ are bounded between c3, c4 according to condition iii..

We then verify condition vii. in Assumption 2: for any (η1(·; θ′1), η2) ∈ TN ,

∂r
{
P
[
ψ(Z; θ∗, η1(Z; θ∗1) + r(η1(·; θ′1)− η∗1(Z; θ∗1)), η∗2(Z))

] }
|r=0

=∂rP
{

I(T = t)

π∗(t | X) + r(π(t | X)− π∗(t | X))

(
U(Y ; θ∗1)− E[U(Y ; θ∗1) | X,T ]

)}
|r=0 = 0.

Verifying Assumption 3. We take TN to be the set that contains all (µ(·, θ′1), π(·)) that
satisfies ‖θ′1 − θ∗1‖ ≤ ρθ,N and∥∥∥∥∥
{
P
[
µ
(
X,T ; θ′1

)
− µ∗

(
X,T ; θ′1

)]2}1/2
∥∥∥∥∥ ≤ ρµ,N ,

{
P [π(T | X)− π∗(T | X)]2

}1/2

≤ ρπ,N ,

with ρπ,N (ρµ,N + Cρθ,n) ≤ ε3π
3 δNN

−1/2, ρπ,N ≤
δ3N

logN , and ρµ,N + Cρθ,N ≤
δ2N

logN .

Then Assumption 6 and condition vii. in Theorem 3 guarantee that the nuisance estimates
(µ̂(, θ̂1,init), π̂) ∈ TN with probability, namely, condition i. in Assumption 3 is satisfied.

Before verifying other conditions, first note that the condition vi. states that{
P [µ∗(X,T ; θ1)− µ∗(X,T ; θ∗1)]2

}1/2 ≤ C‖θ1 − θ∗1‖, ∀‖θ1 − θ∗1‖ ≤ ρθ,N ,

which implies that for any (µ(·, θ′1), π(·)) ∈ TN ,∥∥∥∥∥
{
P
[
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

]2}1/2
∥∥∥∥∥

≤

∥∥∥∥∥
{
P
[
µ(X,T ; θ′1)− µ∗(X,T ; θ′1)

]2}1/2
∥∥∥∥∥+

∥∥∥∥∥
{
P
[
µ∗(X,T ; θ′1)− µ∗(X,T ; θ∗1)

]2}1/2
∥∥∥∥∥ = ρµ,N + Cρθ,N .

Now we verify the condition on rN : for any (η1(·; θ′1), η2(·)) = (µ(·, θ′1), π(·)) ∈ TN , θ ∈ Θ,

‖P
[
ψ(Z; θ, η1(Z; θ′1), η2(Z))

]
− P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))] ‖

≤‖P
(I(T = t)

π(t | X)
− I(T = t)

π∗(t | X)

)(
µ∗(X,T ; θ∗1)− µ(X,T ; θ′1)

)
‖+ ‖PI(T = t)− π∗(t | X)

π∗(t | X)
[µ∗(X,T ; θ∗1)− µ(X,T ; θ′1)]‖.
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The above can be further upper bounded by

1

επ

{
P [π(t | X)− π∗(t | X)]2

}1/2
∥∥∥∥∥
{
P [µ∗(X,T ; θ1)− µ∗(X,T ; θ∗1)]2

}1/2
∥∥∥∥∥

+
1

επ

{
P [π(t | X)− π∗(t | X)]2

}1/2
∥∥∥∥∥
{
P
[
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

]2}1/2
∥∥∥∥∥ ≤ 4C

επ

√
dρπ,N .

Thus, the condition on rN is satisfied with τN such that τN =
4C
√
dρπ,N

δNεπ
.

Next, we verify the condition on r′N : for any θ such that ‖θ − θ∗‖ ≤ 4C
√
dρπ,N

δNεπ
, and any

(η1(·; θ′1), η2(·)) = (µ(·, θ′1), π(·)) ∈ TN ,∥∥∥∥{P [ψ(Z; θ, η1(Z; θ′1), η2(Z))− ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))
]2}1/2

∥∥∥∥
≤‖A‖+ ‖B‖+ ‖C‖,

where A,B,C are three d-dimensional vector whose i-th elements are given as follows:

Ai =

{
P
[(I(T = t)

π(t | X)
− I(T = t)

π∗(t | X)

)(
µ∗i (X,T ; θ1)− µ∗i (X,T ; θ∗1)

)]2
}1/2

Bi =

{
P
[(I(T = t)

π(t | X)
− I(T = t)

π∗(t | X)

)(
µ∗i (X,T ; θ∗1)− µi(X,T ; θ′1)

)]2
}1/2

Ci =

{
P
[
I(T = t)− π∗(t | X)

π∗(t | X)

(
µ∗i (X,T ; θ∗1)− µi(X,T ; θ′1)

)]2
}1/2

.

It follows that ∥∥∥∥{P [ψ(Z; θ, η1(Z; θ′1), η2(Z))− ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))
]2}1/2

∥∥∥∥
≤

4C2
√
dρπ,N

δNε2
π

+
1

επ
(ρµ,N + Cρθ,N ) +

1

επ
(ρµ,N + Cρθ,N )

So when ρπ,N ≤
δ3N

logN , and ρµ,N + Cρθ,N ≤
δ2N

logN , r′N =
δ2N

ε2π logN

(
4C2
√
d+ 2επ

)
≤ δN

logN if

δN ≤ ε2π
4C2
√
d+2επ

.

Finally, to verify the condition on λ′N , we note that for any θ such that ‖θ−θ∗‖ ≤ 4C
√
dρπ,N

δNεπ
,

and any (η1(·; θ′1), η2(·)) = (µ(·, θ′1), π(·)) ∈ TN

f(r; θ, η1(Z; θ′1), η2)

= P
{

I(T = t)

π∗(T | X) + r(π(T | X)− π∗(T | X))

[
µ∗(X,T ; θ∗1 + r(θ1 − θ∗1))− µ∗(X,T ; θ∗1)

− r
(
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

)]
+
[
µ∗(X, t; θ∗1) + r

(
µ(X, t; θ′1)− µ∗(X, t; θ∗1)

)]
+ V (θ∗2 + r(θ2 − θ∗2))

}
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Thus the first-order derivative is

∂rf(r; θ, η1(Z; θ′1), η2)

=− P
{

I(T = t)(
π∗(T | X) + r(π(T | X)− π∗(T | X))

)2 (π(T | X)− π∗(T | X)
)[
µ∗(X,T ; θ∗1 + r(θ1 − θ∗1))

−µ∗(X,T ; θ∗1)− r
(
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

)]}
+ P

{
I(T = t)

π∗(T | X) + r(π(T | X)− π∗(T | X))

×∂
θ
>
1
µ∗(X,T ; θ1)|θ1=θ∗1+r(θ1−θ∗1)(θ1 − θ∗1)

}
− P

{
I(T = t)

π∗(T | X) + r(π(T | X)− π∗(T | X))

×
[
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

]}
+ P

{[
µ(X, t; θ′1)− µ∗(X, t; θ∗1)

]}
+ ∂

θ
>
2
V (θ2)|θ2=θ∗2+r(θ2−θ∗2)(θ2 − θ∗2).

The second order derivative is

∂2
rf(r; θ, η1(Z; θ′1), η2)

=P
{

2I(T = t)(
π∗(T | X) + r(π(T | X)− π∗(T | X))

)3 (π(T | X)− π∗(T | X)
)2[

µ∗(X,T ; θ∗1 + r(θ1 − θ∗1))

−µ∗(X,T ; θ∗1)− r
(
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

)]}
− P

{
I(T = t)(

π∗(T | X) + r(π(T | X)− π∗(T | X))
)2

×
(
π(T | X)− π∗(T | X)

)
∂
θ
>
1
µ∗(X,T ; θ1)|θ1=θ∗1+r(θ1−θ∗1)(θ1 − θ∗1)

}
+P
{

I(T = t)(
π∗(T | X) + r(π(T | X)− π∗(T | X))

)2 (π(T | X)− π∗(T | X)
)[
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

]}
+P
{

I(T = t)

π∗(T | X) + r(π(T | X)− π∗(T | X))
diag

[
(θ1 − θ∗1)>

][
∂2

θ1,θ
>
1

µ∗(X,T ; θ1)|θ1=θ∗1+r(θ1−θ∗1)

]
(θ1 − θ∗1)

}
−P
{ I(T = t)

(
π(T | X)− π∗(T | X)

)(
π∗(T | X) + r(π(T | X)− π∗(T | X))

)2∂θ>1 µ∗(X,T ; θ1)|θ1=θ∗1+r(θ1−θ∗1)(θ1 − θ∗1)

}
+P
{

I(T = t)(
π∗(T | X) + r(π(T | X)− π∗(T | X))

)2 (π(T | X)− π∗(T | X)
)[
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

]
+ diag(θ2 − θ∗2)>∂2

θ2,θ
>
2

V (θ2)|θ2=θ2+r(θ2−θ∗2)(θ2 − θ∗2)

Above, we use condition iv. in Theorem 3 to ensure exchange of integration and differentia-
tion so we can get terms ∂

θ
>
1
µ∗(X,T ; θ1)|θ1=θ∗1+r(θ1−θ∗1) and ∂2

θ1,θ
>
1

µ∗(X,T ; θ1)|θ1=θ∗1+r(θ1−θ∗1).

We can verify that∥∥∥P [(π(T | X)− π∗(T | X)
)
∂
θ
>
1
µ∗(X,T ; θ1)|θ1=θ∗1+r(θ1−θ∗1)(θ1 − θ∗1)

]∥∥∥
≤
{
P
[(
π(T | X)− π∗(T | X)

)]2 }1/2 ×
√
d sup

j,‖θ1−θ∗1‖≤
4C
√
dρπ,N

δNεπ

∥∥∥∥∥P
{[
∂θ1µ

∗
j (X, t; θ1)

]2
}1/2

∥∥∥∥∥× ‖θ1 − θ∗1‖

≤ C
√
dρπ,N‖θ1 − θ∗1‖,
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and ∥∥∥P [diag
[
(θ1 − θ∗1)>

][
∂2

θ,θ
>µ
∗(X,T ; θ)

]
|θ1=θ∗1+r(θ1−θ∗1)(θ1 − θ∗1)

]∥∥∥
≤
√
d‖θ1 − θ∗1‖2 sup

j,‖θ−θ∗‖≤
4C
√
dρπ,N

δNεπ

‖P
[
∂θ1∂θ>1

µ∗j (X,T ; θ1)
]
‖ ≤ C

√
d‖θ1 − θ∗1‖2,

and

sup
r∈(0,1)

∥∥∥∥∥
{
P [µ∗(X,T ; θ∗1 + r(θ1 − θ∗1))− µ∗(X,T ; θ∗1)]2

}1/2
∥∥∥∥∥ ≤ C√d‖θ1 − θ∗1‖.

Thus for any θ such that ‖θ − θ∗‖ ≤ 4C
√
dρπ,N

δNεπ
,

‖∂2
rf(r; θ, µ(X,T ; θ′1), π)‖

≤C
√
d

ε2
π

ρπ,N‖θ1 − θ∗1‖+
1

ε2
π

ρπ,N (ρµ,N + Cρθ,N ) + C‖θ2 − θ∗2‖2. (43)

Given ρπ,N ≤
δ3N

logN , when δN
logN ≤

ε2π
8C2d

and
δ2N

logN ≤
ε3π

2C
√
d
, 4C2d
ε2πδN

ρπ,N‖θ−θ∗‖+ C
√
d

ε3π
ρπ,N‖θ1−

θ∗1‖ ≤ δN‖θ−θ∗‖. Moreover, when ρπ,N (ρµ,N+Cρθ,n) ≤ ε3π
3 δNN

−1/2, 3
ε3π
ρπ,N (ρµ,N+Cρθ,n) ≤

δNN
−1/2. Consequently, ‖∂2

rf(r; θ, µ(X,T ; θ′1), π)‖ ≤ δN (‖θ − θ∗‖+N−1/2).

Semiparametric efficiency. For this estimating equation with incomplete data, Theo-
rems 10.1 and 10.2 in Tsiatis (2006) show that the corresponding semiparametric efficient
influence is

ψeff(Z) = J∗−1ψ(Z; θ∗, η∗1(Z; θ∗1), η∗2(Z)),

where ψ is given in Equation (7). So the asymptotic variance Σ coincides with the semi-
parametric efficiency bound.

Proof for Proposition 2. First note that

P [U(Y (t); θ1) + V (θ2)] =

[
Ft(θ1)− γ

θ1 + 1
1−γE[Y (t)− θ1]+ − θ2

]
.

When Ft(θ1) is differentiable, P [U(Y (t); θ1) + V (θ2)] is also differentiable by Leibnitz inte-
gral rule, with derivative

J(θ) =

[
ft(θ1) 0
Ft(θ1)−γ

1−γ −1

]
, and J∗ = J(θ∗)

[
ft(θ

∗
1) 0

0 −1

]
.

Now we prove Proposition 2 by verifying the assumptions in Theorem 3.

Verifying condition i in Theorem 3. We only need to verify that condition vi. of
Assumption 2 hold. Since Θ is compact, {y 7→ I [y ≤ θ1] , θ ∈ Θ}, {y 7→ max{θ1,

1
1−γ (y −

θ1)}−θ2, θ ∈ Θ} are obviously Donsker classes, so condition vi. of Assumption 2 is satisfied.
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Verifying conditions ii. and iii. in Theorem 3. It is straightforward to show that
J(θ) is invertible with the following matrix as its inverse:

J−1(θ) =

[
1

ft(θ1) 0

− Ft(θ1)−γ
ft(θ1)(1−γ) −1

]
.

Note that σmax(J(θ∗)) ≤ 2 max{ft(θ∗1), 1} ≤ 2 max{c′2, 1} and

σmin(J(θ∗)) = 1/σmax(J−1(θ∗)) ≥ min{ft(θ
∗
1)

2
,
(1− γ)ft(θ

∗
1)

2γ
,
1

2
} ≥ 1

2
min{1, 1− γ

γ
c′1, c

′
1}.

Thus condition iii. in Theorem 3 is satisfied with c3 = 1
2 min{1, 1−γ

γ c′1, c
′
1} and c4 =

2 max{1, c′2}. When we estimate quantile only, then only ft (θ1) in J (θ) matters. Then
condition iii. in Theorem 3 is satisfied with c3 = c′1 and c4 = 2c′2.

Since ft(θ1) ≤ c′2 and ḟt(θ1) ≤ c′3, it follows that each element in J(θ) is Lipschtiz continuous
at θ∗ with Lipschitz constant c′ = max{c′2, c′3}. Moreover, for θ ∈ Θ such that ‖θ − θ∗‖ ≥
c3

2
√

2c′
, we have 2‖P

[
U(Y (t); θ1) + V (θ2)

]
‖ ≥ c′5. This means that condition ii. in Theorem 3

is satisfied with c′ = max{c′2, c′3} and c2 = c′5. When we estimate quantile only, we only

require |F (θ∗1)−F (θ1)| ≥ c′4 for |θ1− θ∗1| ≥
c′1
2c′3

. Then condition ii. in Theorem 3 is satisfied

with c′ = c′3 and c2 = 2c′4.

Verifying condition iv. in Theorem 3. This condition can be verified by the following

facts: for any θ1 such that |θ1 − θ∗1| ≤
4C
√
dρπ,N

δNεπ
,

|∂rµ∗1(X, t; θ∗1 + r(θ1 − θ∗1))| = |∂r{Ft(θ∗1 + r(θ1 − θ∗1) | X)− γ}|
= |ft(θ∗1 + r(θ1 − θ∗1) | X)| |θ1 − θ∗1| ≤ C |θ1 − θ∗1|∣∣∂2

rµ
∗
1(X, t; θ∗1 + r(θ1 − θ∗1))

∣∣ =
∣∣∣ḟt(θ∗1 + r(θ1 − θ∗1) | X)

∣∣∣ |θ1 − θ∗1|
2 ≤ C |θ1 − θ∗1|

2

and

|∂rµ∗2(X, t; θ∗1 + r(θ1 − θ∗1))| = |θ1 − θ∗1|
∣∣∣∣1− 1

1− γ
(1− Ft(θ∗1 + r(θ1 − θ∗1) | X))

∣∣∣∣ ≤ |θ1 − θ∗1|∣∣∂2
rµ
∗
2(X, t; θ∗1 + r(θ1 − θ∗1))

∣∣ = |θ1 − θ∗1|
2 |ft(θ∗1 + r(θ1 − θ∗1) | X)| ≤ C |θ1 − θ∗1|

2 .

Verifying conditions v. and vi. in Theorem 3. For any (θ1, θ2) ∈ Θ,{
P [µ∗1(X, t; θ1)]2

}1/2
= |Ft(θ1 | X)− γ| ≤ 1{

P [µ∗2(X, t; θ1)]2
}1/2

=
{
P [E[max(Y (t)− θ1, 0) | X]]2

}1/2
≤ C.

By first-order Taylor expansion, for any θ1 such that |θ1 − θ∗1| ≤ max{4C
√
dρπ,N

δNεπ
, ρθ,N}, there

exists θ̃1 between θ1 and θ∗1 such that{
P [µ∗1(X, t; θ1)− µ∗1(X, t; θ∗1)]2

}1/2
=

{
P
[
(θ1 − θ∗1)ft(θ̃1 | X)

]2
}1/2

≤ C |θ1 − θ∗1|{
P [µ∗2(X, t; θ1)− µ∗2(X, t; θ∗1)]2

}1/2
=

{
P
[
(θ1 − θ∗1)(Ft(θ̃1 | X)− 1)

]2
}1/2

≤ |θ1 − θ∗1| .
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Moreover, for any θ1 such that |θ1 − θ∗1| ≤ max{4C
√
dρπ,N

δNεπ
, ρθ,N},

(
∂θ2∂θ>2

Vj(θ2)
)

= 0 ≤ C{
P [∂θ1µ

∗
1(X, t; θ1)]2

}1/2
=
{
P [ft(θ1 | X)]2

}1/2
≤ C,{

P [∂θ1µ
∗
2(X, t; θ1)]2

}1/2
=
{
P [Ft(θ1 | X)− 1]2

}1/2
≤ 1,∣∣∣∣P [ ∂2

∂θ2
1

µ∗1(X, t; θ1)

]∣∣∣∣ =
∣∣∣P [ḟt(θ1 | X)

]∣∣∣ ≤ C, ∣∣∣∣P [ ∂2

∂θ2
1

µ∗2(X, t; θ1)

]∣∣∣∣ = |P [ft(θ1 | X)]| ≤ C.

Proof for Proposition 5. We follow the proof of Theorem 1 to consider any sequence of
data generating process PN ∈ PN but we suppress it for ease of notation. We prove the
conclusion for a generic k ∈ {1, . . . ,K}. For l ∈ Hk,1, we denote PN,l and GN,l as the
empirical average operator and empirical process operator for data in the Dl. Throughout
the proof, we condition on the event that the convergence rate of propensity score estimator
π̂(k,l) in mean squared error is ρπ,N and it is lower bounded by επ, which holds with at least
probability 1−∆N according to Assumption 6. In this proof, all notations . only involve
pre-specified constants and not any instance-dependent constants.

We use the following decomposition analogous to that in Step I of proof for Theorem 1.

P
[
ψIPW(Z; θ̂

(k)
init, π

∗)
]

=
1

K ′

∑
l∈Hk,1

{
P
[
ψIPW(Z; θ̂

(k)
init, π

∗)
]
− P

[
ψIPW(Z; θ̂

(k)
init, π̂

(k,l))
]}

+
1

K ′

∑
l∈Hk,1

{
P
[
ψIPW(Z; θ̂

(k)
init, π̂

(k,l))
]
− PN,l

[
ψIPW(Z; θ̂

(k)
init, π̂

(k,l))
]}

+
1

K ′

∑
l∈Hk,1

{
PN,l

[
ψIPW(Z; θ̂

(k)
init, π̂

(k,l))
]
− PN,l

[
ψIPW(Z; θ∗, π̂(k,l))

]}
+

1

K ′

∑
l∈Hk,1

{
PN,l

[
ψIPW(Z; θ∗, π̂(k,l))

]
− P

[
ψIPW(Z; θ∗, π̂(k,l))

]}
+

1

K ′

∑
l∈Hk,1

{
P
[
ψIPW(Z; θ∗, π̂(k,l))

]
− P

[
ψIPW(Z; θ∗, π∗)

]}
By following the Step I of proof for Theorem 1, we can also analogously show that∥∥∥P [ψIPW(Z; θ̂

(k)
init, π

∗)
]∥∥∥ ≤ 4

K ′

∑
l∈Hk,1

I ′1,l +
4

K ′

∑
l∈Hk,1

I ′2,l + εN

where

I ′1,l = sup
θ∈Θ

∥∥∥P [ψIPW(Z; θ, π∗)
]
− P

[
ψIPW(Z; θ, π̂(k,l))

]∥∥∥
I ′2,l = sup

θ∈Θ

∥∥∥P [ψIPW(Z; θ, π̂(k,l))
]
− PN,l

[
ψIPW(Z; θ, π̂(k,l))

]∥∥∥ .
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Bounding I ′1,l. Note that by condition v. of Theorem 3,

I ′1,l =
∥∥∥P [ψIPW(Z; θ, π∗)− ψIPW(Z; θ, π̂(k,l))

]∥∥∥
= sup
θ∈Θ

∥∥∥∥P [µ∗(X, t; θ1)

π̂(k,l)(X)

(
π̂(k,l)(X)− π∗(X)

)]∥∥∥∥ =

√
dρπ,N
επ

max
j

sup
θ∈Θ

{
P
[
µ∗j (X, t; θ1)

]2}1/2
≤
C
√
dρπ,N
επ

.

Bounding I ′2,l. Note that√
N

K ′
I ′2,l =

√
N

K ′
sup
θ∈Θ

∥∥∥PN,l [ψIPW(Z; θ, π̂(k,l)
]
− P

[
ψIPW(Z; θ, π̂(k,l)

]∥∥∥ = sup
θ∈Θ

∥∥∥GN,l

[
ψIPW(Z; θ, π̂(k,l)

]∥∥∥
Given that condition vi. in Assumption 2 is satisfied for the estimating equation ψIPW, we
can follow the end of step I in the proof for Theorem 1 to prove that with PN probability
1− c (logN)−1 for a constant c that depends on only constants in the assumptions,

sup
θ∈Θ

∥∥∥GN,l

[
ψIPW(Z; θ, π̂(k,l)

]∥∥∥ . log

(
N

K ′

)
+

(
N

K ′

)−1/2+1/q′

log

(
N

K ′

)
,

so that I ′2,l .
(
K′

N

)1/2
log
(
K′

N

)
+
(
K′

N

)1− 1
q′

log
(
K′

N

)
≤ δNρπ,N < ρπ,N .

Therefore, with PN -probability 1− c (logN)−1,

P
[
ψIPW(Z; θ̂

(k)
init, π

∗)
]
≤

(
C
√
d

επ
+ 1

)
ρπ,N .

The proof of Theorem 3 shows that conditions ii. and iii. there imply

‖J∗(θ̂(k)
init − θ

∗)‖ ∧ c0 ≤ 2
∥∥∥P [ψIPW(Z; θ̂

(k)
init, π

∗
]∥∥∥ ≤ 2

(
C
√
d

επ
+ 1

)
ρπ,N .

Therefore, with probability 1− c (logN)−1:

ρθ,N =
∥∥∥θ̂(k)

1,init − θ
∗
∥∥∥ ≤ ∥∥∥θ̂(k)

init − θ
∗
∥∥∥ ≤ 2

c3

(
C
√
d

επ
+ 1

)
ρπ,N .

G.5 Proofs for Appendix

Proof of Proposition 3. In this part, we prove the asymptotic distribution of our estimator

θ̂ =
(
θ̂1, θ̂

aux
2

)
∈ Θ1 × Θ2 ⊆ R2 corresponding to Eqs. (21) and (24). We denote θ =

(θ1, θ
aux
2 ). We prove this by verifying all conditions in the assumptions in Theorem 1.

Verifying Assumption 1. Similar to the proof of Theorem 3, we can easily show that

J∗ = ∂θ{P [ψ(Z; θ, θaux
2 , η∗1(Z; θ1), η∗2(Z))]}|θ=θ∗
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does not depend on η∗1(Z; θ1) at all. Thus Assumption 1 holds trivially:

J∗ = ∂θ{P [ψ(Z; θ, η∗1(Z; θ1), η∗2(Z))]}|θ=θ∗ = ∂θ{P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))]}|θ=θ∗ .

Verifying Assumption 2. We first verify conditions iii. and iv. in Assumption 2. We
can easily derive that

P [ψ(Z; θ, θaux
2 , η∗1(Z; θ∗1), η∗2(Z))] =

[
P(C)F1(θ1|C)

θaux2
− γ

θaux ∗
2 − θaux

2

]
and its Jacobian matrix is given by

J(θ) = ∂θ{P [ψ(Z; θ, η∗1(Z; θ∗1), η∗2(Z))]} =

[P(C)f1(θ1|C)
θaux2

−P(C)F1(θ1|C)
(θaux2 )

2

0 −1

]
.

This means that

J(θ∗) =

[
f1 (θ∗1 | C) −

γ
θaux ∗2

0 −1

]
, (J(θ∗))−1 =

[
1

f1(θ∗1 |C)
− γ

θaux ∗2 f1(θ∗1 |C)
0 −1

]
.

Therefore,

σmax (J(θ∗)) ≤ 2 max

{
f1 (θ∗1 | C) ,

γ

θaux ∗
2

, 1

}
≤ 2 max

{
c′1,

γ

ε
, 1
}
,

σmax

(
J−1 (θ∗)

)
≤ 2 max

{
1

f1 (θ∗1 | C)
,

γ

θaux ∗
2 f1 (θ∗1 | C)

, 1

}
≤ 2 max

{
1

c′3
,
γ

c′3ε
, 1

}
.

The latter implies that σmin (J (θ∗)) = 1/σmax

(
J−1 (θ∗)

)
≥ 1

2 min {c′3, c′3ε/γ, 1}. Therefore,
condition iv. in Assumption 2 is satisfied with c3 = 1

2 min {c′3, c′3ε/γ, 1}, c4 = 2 max
{
c′1,

γ
ε , 1
}

.

Moreover, for any (θ1, θ
aux
2 ) ∈ Θ1 ×Θ2 and t = 1, ft(θ1 | C) ≤ c′1,

∣∣∣ḟt(θ1 | C)
∣∣∣ ≤ c′2, so we

have that entries in J(θ) are all Lipschtiz with cLip := max

{√(
c′2
ε

)2
+
(
c′1
ε2

)2
,

√(
2
ε3

)2
+
(
c′1
ε2

)2
}

as a valid Lipschitz constant. Moreover, we have 2‖P [ψ(Z; θ, θaux
2 , η∗1(Z; θ∗1), η∗2(Z))] ‖ ≥ c2

for all θ = (θ1, θ
aux
2 ) ∈ Θ such that ‖θ−θ∗‖ ≥ c3

2
√
dcLip

. By following the proof of Theorem 3,

we can easily verify condition iii. in Assumption 2.

Next, we verify condition vi. in Assumption 2. For any fixed η1 (Z; θ′1) and η2, the
class Fη,θ′1 = {ψj(Z; θ, η1(Z; θ′1), η2(Z)) : j = 1, . . . , d, θ ∈ Θ} depend on θ only through
{I [Y ≤ θ1] : θ1 ∈ Θ1} and {θaux

2 : θaux
2 ∈ Θ2}. Since the latter two classes are Donsker

class, vi. in Assumption 2 for the function class Fη,θ′1 = {ψj(Z; θ, η1(Z; θ′1), η2(Z)) : j =
1, . . . , d, θ ∈ Θ} has to be satisfied as well.

Verifying Assumption 3. We take TN to be the set that contains all (η1 (·; θ′1) =
µ̃(·, θ′1), η2 (·) = (νw (·) , π̃(·))) that satisfies the following conditions: for w = 0, 1,∥∥∥∥∥
{
P
[
µ̃w

(
X; θ̂

(k)
1,init)

)
− µ̃∗w

(
X; θ̂

(k)
1,init)

)]2
}1/2

∥∥∥∥∥ ≤ ρ̃µ,N ,
{
P [νw(X)− ν∗w(X)]2

}1/2

≤ ρ̃ν,N ,{
P
[
π̃(k)(X)− π̃∗(X)

]2
}1/2

≤ ρ̃π,N , |θ′1 − θ∗1| ≤ ρ̃θ,N ,
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and ε ≤ ˆ̃π(k)(X) ≤ 1 − ε, 0 ≤ ˆ̃µ
(k)
w

(
X; θ̂

(k)
1,init)

)
≤ 1, 0 ≤ ν̂

(k)
w (X) ≤ 1 almost surely.

Moreover, ρ̃π,N ≤
δ3N

logN , ρ̃µ,N + Cρ̃θ,N ≤
δ2N

logN , ρ̃π,N (ρ̃µ,N + Cρ̃θ,N ) ≤ ε4(1−ε)3

4(ε3+(1−ε)3)
δNN

−1/2,

ρ̃π,N ρ̃ν,N ≤ ε3(1−ε)3

8(ε3+(1−ε)3)
δNN

−1/2 with δN satisfying that δN ≤ ε3(1−ε)2
4C+3ε2(1−ε) , δN

logN ≤
1
Cε

for a

positive constant Cε given in Eq. (44).

Then Assumption 8 and Proposition 3 condition v. ensure that the nuisance estimates
(µ̂(, θ̂1,init), π̂) ∈ TN with probability, namely, condition i. in Assumption 3 is satisfied.

Before verifying other conditions, we first note that

µ̃∗w (X; θ1) = P (T = 1, Y ≤ θ1 | X,W = w)

= P (T (w) = 1, Y (1) ≤ θ1 | X) = F1,w (θ1 | X) vw (X) .

It follows from Item iv. that for any θ1 ∈ B(θ∗1; max{ 4ρ̃π,N
ε2(1−ε)δN , ρθ,N}) ∩Θ,

[
P
[
(µ̃∗w (X; θ1)− µ̃∗w (X; θ∗1))2

]]1/2
≤ C‖θ1 − θ∗1‖.

This means that for any (µ(·, θ′1), π(·)) ∈ TN ,

∥∥∥∥∥
{
P
[
µ(X,T ; θ′1)− µ∗(X,T ; θ∗1)

]2}1/2
∥∥∥∥∥

≤

∥∥∥∥∥
{
P
[
µ(X,T ; θ′1)− µ∗(X,T ; θ′1)

]2}1/2
∥∥∥∥∥+

∥∥∥∥∥
{
P
[
µ∗(X,T ; θ′1)− µ∗(X,T ; θ∗1)

]2}1/2
∥∥∥∥∥ = ρ̃µ,N + Cρ̃θ,N .

Next, we verify Assumption 3 condition ii.. We first verify the condition on rN . By following
the proof of Theorem 3, we can show that for any (η1(·; θ′1), η2(·)) ∈ TN ,

‖P
[
ψ(Z; θ, θaux

2 , η1(Z; θ′1), η2(Z))
]
− P [ψ(Z; θ, θaux

2 , η∗1(Z; θ∗1), η∗2(Z))] ‖

≤
∥∥∥∥ 1

θaux
2

P
(

W − π̃ (X)

π̃ (X) (1− π̃ (X))
− W − π̃∗ (X)

π̃∗ (X) (1− π̃∗ (X))

)
(µ̃∗W (X; θ1)− µ̃∗W (X; θ∗1))

∥∥∥∥
+

∥∥∥∥ 1

θaux
2

P
(

W − π̃ (X)

π̃ (X) (1− π̃ (X))
− W − π̃∗ (X)

π̃∗ (X) (1− π̃∗ (X))

)(
µ̃∗W (X; θ∗1)− µ̃W

(
X; θ′1

))∥∥∥∥ ≤ 4

ε2 (1− ε)
ρ̃π,N .

The last inequality holds because

µ̃∗w (X; θ1) = P (T (w) = 1, Y (1) ≤ θ1 | X) ∈ [0, 1], almost surely,

and so is µ̃w (X; θ1). This means that the condition on rN is satisfied with τN =
4ρ̃π,N

ε2(1−ε)δN .
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Next, we verify the condition on r′N . Again, by following the proof of Theorem 3, we have

that for any ‖θ − θ∗‖ ≤ 4ρ̃π,N
ε2(1−ε)δN and any (η1(·; θ′1), η2(·)) ∈ TN ,∥∥∥∥{P [ψ(Z; θ, θaux

2 , η1(Z; θ′1), η2(Z))− ψ(Z; θ, θaux
2 , η∗1(Z; θ∗1), η∗2(Z))

]2}1/2
∥∥∥∥

≤

∥∥∥∥∥∥
{
P
(

W − π̃ (X)

π̃ (X) (1− π̃ (X))
− W − π̃∗ (X)

π̃∗ (X) (1− π̃∗ (X))

)2

(µ̃∗W (X; θ1)− µ̃∗W (X; θ∗1))2

}1/2
∥∥∥∥∥∥

+

∥∥∥∥∥∥
{
P
(

W − π̃ (X)

π̃ (X) (1− π̃ (X))
− W − π̃∗ (X)

π̃∗ (X) (1− π̃∗ (X))

)2 (
µ̃∗W (X; θ∗1)− µ̃W

(
X; θ′1

))2}1/2
∥∥∥∥∥∥

+

∥∥∥∥∥∥
{
P
(

W − π̃∗ (X)

π̃∗ (X) (1− π̃∗ (X))

)2 (
µ̃∗W (X; θ∗1)− µ̃W

(
X; θ′1

))2}1/2
∥∥∥∥∥∥ .

The above can be further upper bounded by

4C

ε3 (1− ε)2 δN
ρ̃π,N +

1

ε (1− ε)
(ρ̃µ,N + Cρ̃θ,N )

+
1

ε (1− ε)

{
P
[(
µ̃∗1 (X; θ∗1)− µ̃1

(
X; θ′1

))2]}1/2
+

1

ε (1− ε)

{
P
[(
µ̃∗0 (X; θ∗1)− µ̃0

(
X; θ′1

))2]}1/2

≤ 4C

ε3 (1− ε)2 δN
ρ̃π,N +

3

ε (1− ε)
(ρ̃µ,N + Cρ̃θ,N ) .

Therefore, if ρ̃π,N ≤
δ3N

logN and ρ̃µ,N + Cρ̃θ,N ≤
δ2N

logN , then r′N =
δ2N

logN

(
4C

ε3(1−ε)2 + 3
ε(1−ε)

)
≤

δN
logN given δN ≤ ε3(1−ε)2

4C+3ε2(1−ε) .

Finally, we verify the condition on λ′N . Note that in this case V (θ2) = 0 and denote

ψ̃1 (Z; θ, η1 (Z; θ1) , η2 (Z)) := θaux
2 ψ1(Z; θ, η1(Z; θ′1), η2(Z)).

Then for any (η1(·; θ′1), η2(·)) ∈ TN and θ ∈ B
(
θ∗;

4ρ̃π,N
ε2(1−ε)δN

)
, letting θr = θ∗ + r (θ − θ∗),

η1,r(Z) = η∗1(Z; θ1) + r (η1(Z; θ′1)− η∗1(Z; θ1)) , η∗2(Z), η2,r(Z) = η∗2(Z) + r (η2(Z)− η∗2(Z)),
we have∣∣∂2
rP [ψ1(Z; θr, η1,r(Z), η2,r(Z))]

∣∣ =
∣∣∂2
rP [ψ1(Z; θr, η1,r(Z), η2,r(Z))]

∣∣× 1

θaux ∗
2 + r (θaux

2 − θaux ∗
2 )

+2 |∂rP [ψ1(Z; θr, η1,r(Z), η2,r(Z))]| × θaux
2 − θaux ∗

2

(θaux ∗
2 + r (θaux

2 − θaux ∗
2 ))2

+ |P [ψ1(Z; θr, η1,r(Z), η2,r(Z))]| × 2 (θaux
2 − θaux ∗

2 )2

(θaux ∗
2 + r (θaux

2 − θaux ∗
2 ))3 .

By following the proof of Theorem 3, we can bound each term above and prove that∣∣∂2
rP
[
ψ1(Z; θ∗ + r (θ − θ∗) , η∗1(Z; θ1) + r

(
η1(Z; θ′1)− η∗1(Z; θ1)

)
, η∗2(Z) + r (η2(Z)− η∗2(Z)))

]∣∣
≤4

(
1

ε4
+

1

(1− ε)3 ε

)
ρ̃π,N (ρ̃µ,N + Cρ̃θ,N ) +

(
Cε,1

ρ̃π,N
δN

+ Cε,2 (ρ̃µ,N + Cρ̃θ,N )

)
‖θ − θ∗‖,
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where

Cε,1 = 4C

(
1

ε3 (1− ε)
+

1

ε2 (1− ε)2

)
+

1

ε2

(
2

ε2
+

2

(1− ε)2 +
4C

ε3 (1− ε)
+

4C

ε2 (1− ε)2

)
+ 16

(
1 +

1

ε
+

1

1− ε

)
1

ε5 (1− ε)
, Cε,2 =

2

ε2

(
1 +

1

ε
+

1

1− ε

)
.

Also define

Cε = Cε,1 + Cε,2. (44)

Since ρ̃π,N ≤
δ3N

logN and ρ̃µ,N + Cρ̃θ,N ≤
δ2N

logN , if δN
logN ≤

1
Cε

, then(
Cε,1

ρ̃π,N
δN

+ Cε,2 (ρ̃µ,N + Cρ̃θ,N )

)
≤ Cε

δ2
N

logN
≤ δN .

Morevoer, when ρ̃π,N (ρ̃µ,N + Cρ̃θ,N ) ≤ ε4(1−ε)3

8(ε3+(1−ε)3)
δNN

−1/2, we have

4

(
1

ε4
+

1

(1− ε)3 ε

)
ρ̃π,N (ρ̃µ,N + Cρ̃θ,N ) ≤ 1

2
δNN

−1/2.

Plus, we can similarly show that given ρ̃π,N ρ̃ν,N ≤ ε3(1−ε)3

8(ε3+(1−ε)3)
δNN

−1/2,

∣∣∂2
rP [ψ2(Z; θaux ∗

2 + r (θaux
2 − θaux ∗

2 ) , η∗2(Z) + r (η2(Z)− η∗2(Z)))]
∣∣ ≤ 4

(
1

ε3
+

1

(1− ε)3

)
ρ̃π,N ρ̃ν,N ≤

1

2
δNN

−1/2.

Then Assumption 3 condition ii. follows from∥∥∂2
rP
[
ψ(Z; θ∗ + r (θ − θ∗) , η∗1(Z; θ1) + r

(
η1(Z; θ′1)− η∗1(Z; θ1)

)
, η∗2(Z) + r (η2(Z)− η∗2(Z)))

]∥∥
≤δN‖θ − θ∗‖+ δNN

−1/2,

Therefore, we have

√
N

[
θ̂1 − θ∗1

θ̂aux
2 − θaux ∗

2

]
=

1√
N

N∑
i=1

J−1 (θ∗)

[
ψ1(Zi; θ

∗, η∗1(Zi; θ
∗
1), η∗2(Zi))

ψ2(Zi; θ
aux ∗
2 , η∗2(Zi))

]
+OP (ρN ) .

Proof for Proposition 4. We only need to verify the conditions in Theorem 3.

Verifying condition i. in Theorem 3. We only need to verify that condition vi. of As-
sumption 2 hold. Since Θ is compact, {y 7→ (1− γ) y − θ1, θ ∈ Θ}, {y 7→ (1− 2γ) max{y −
θ1, 0}, θ ∈ Θ} are obviously Donsker classes, condition vi. of Assumption 2 is satisfied.
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Verifying condition ii. and iii. in Theorem 3. According to Eq. (6), the esti-
mating function for complete data is given by U(Y (1); θ1) = (1− γ) (Y (1)− θ1) − (1 −
2γ) max (Y (1)− θ1, 0). It follows that

∂

∂θ1
P [U(Y (t); θ1)] = −(1− γ)− (1− 2γ)

∂

∂θ1
P [max (Y (t)− θ1, 0)]

= −(1− γ)− (1− 2γ)
∂

∂θ1

∫ ∞
θ1

(y − θ1)ft(y)dy = −γ − (1− 2γ)Ft(θ1).

Here the differentiability of ∂
∂θ1

P [U(Y (t); θ1)] is guaranteed by Leibniz integral rule, the
continuity of its derivative at θ∗1 is guaranteed by the continuity of Ft(θ1) at θ∗1 , and J(θ∗1) =
∂
∂θ1

P [U(Y (t); θ1)] |θ1=θ∗1
= −γ−(1−2γ)Ft(θ

∗
1), whose singular value |−γ−(1−2γ)Ft(θ

∗
1)| is

bounded between c′4 and max{γ, 1−γ}. Moreover, ∂
∂θ1

P [U(Y (t); θ1)] ≤ max{γ, 1−γ}, which
implies that P [U(Y (t); θ1)] is Lipschtiz continuous with Lipschitz constant max{γ, 1−γ} ≤
1. Therefore, the constants c′ in condition ii. and constant c3 in iii. of Theorem 3 can be

set as c3 = c′1, c
′ = 1. The assumption that ‖θ − θ∗‖ ≥ c3

2c′ =
c′1
2 , 2P [U(Y (t); θ1)] ≥ c′2 for

any θ ∈ Θ ensures the condition ii. of Theorem 3 with constant c2 = c′2.

Verifying condition iv. in Theorem 3. Note that for any θ ∈ B(θ∗;
4C
√
dρπ,N

δNεπ
) ∩Θ, we

have µ∗(X, 1; θ∗1 + r(θ − θ∗1)) = (1− γ)η∗2,1(Z)− (1− 2γ)η∗1(Z; θ∗1 + r(θ1 − θ∗1)). Thus

|∂rµ∗(X, 1; θ∗1 + r(θ1 − θ∗1))| = |−γ(θ1 − θ∗1)− (1− 2γ)(θ1 − θ∗1)Ft(θ
∗
1 + r(θ − θ∗1) | X)| ≤ 2|θ1 − θ∗1|,∣∣∂2

rµ
∗(X, 1; θ∗1 + r(θ1 − θ∗1))

∣∣ = |1− 2γ||θ1 − θ∗1|ft(θ∗1 + r(θ1 − θ∗1) | X) ≤ C|1− 2γ||θ1 − θ∗1|,

which trivially imply condition iv. in Theorem 3.

Verifying condition iv in Theorem 3. Again µ∗(X, 1; θ1) = (1 − γ)η∗2,1(Z) − (1 −
2γ)η∗1(Z; θ1). The the asserted assumpton iv means that

{
P[η∗2,1(Z)]2

}1/2 ≤ C and
{
P[η∗1(Z; θ1)]2

}1/2 ≤

C for any θ ∈ Θ, thus
{
P [µ∗(X, 1; θ1)]2

}1/2
is upper bounded by |1− γ|+ |1− 2γ|C ≤ 2C

for any θ ∈ Θ. Plus, for any θ1 ∈ B(θ∗1; max{4C
√
dρπ,N

δNεπ
, ρπ,N}) ∩Θ, we have

{P
[
∂

∂θ1
µ∗(X, 1; θ1)

]2

}1/2 ≤ sup
x
| − γ − (1− 2γ)Ft(θ1 | X = x)| ≤ 2,

P
[
∂2

∂θ2
1

µ∗(X, 1; θ1)

]
≤ |1− 2γ|P [ft(θ1 | X)] ≤ C|1− 2γ|,

and there exists θ̃1 between θ1 and θ∗1 such that

{
P [µ∗(X, 1; θ1)− µ∗(X, 1; θ∗1)]2

}1/2
= |θ1 − θ∗1|

{
P
[
∂

∂θ1
µ∗(X, 1; θ̃1)

]2
}1/2

≤ 2|θ1 − θ∗1|.
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