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Abstract

We propose new limiting dynamics for stochastic gradient descent in the small learning rate
regime called stochastic modified flows. These SDEs are driven by a cylindrical Brownian
motion and improve the so-called stochastic modified equations by having regular diffu-
sion coefficients and by matching the multi-point statistics. As a second contribution, we
introduce distribution dependent stochastic modified flows which we prove to describe the
fluctuating limiting dynamics of stochastic gradient descent in the small learning rate -
infinite width scaling regime.

Keywords: stochastic gradient descent, machine learning, overparametrization, stochas-
tic modified equation, fluctuation mean field limit

1. Introduction

Stochastic gradient descent algorithms (SGD), going back to Robbins and Monro (1951),
are the most common way to train neural networks. Due to the non-convexity and non-
smoothness of the corresponding loss landscapes, the analysis of the optimization dynamics
is highly challenging. The analysis of the implicit, algorithmic bias of SGD in overparam-
eterized networks is one of the key open problems in the understanding of the empirically
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observed good generalization properties of networks trained by SGD. Since the dynamics
of SGD depend on many choices, like the choice of the loss function, the architecture of the
network and the training data, their systematic understanding relies on the identification
of universal structures that are invariant to these many degrees of freedoms, while retaining
the essential properties of SGD. In recent years, several of such scaling limits and corre-
sponding limiting dynamics have been identified. Among these, solutions to SDEs have been
obtained as universal continuum objects in the small learning rate regime (Li et al. 2019; E
et al. 2020), while (stochastic) Wasserstein gradient flows have been found in infinite width
overparameterized limits (Nitanda and Suzuki 2017; Chizat and Bach 2018, 2020; Mei et al.
2018; Nguyen 2019; Rotskoff et al. 2019; Javanmard et al. 2020; Sirignano and Spiliopoulos
2020a,b; Gess et al. 2022; Rotskoff and Vanden-Eijnden 2022). In the present work, we
introduce a new form of stochastic limiting dynamics which solves simultaneously three
challenges met in previous works: (1) the irregularity of diffusion coefficients, (2) matching
multi-point statistics, and (3) incorporating overparameterized limits.

Before we comment on each of these aspects in a few more details, let us recall the
principle setup of SGD in supervised learning. For a given training data set Ξ ⊆ Rn0

sampled from a probability distribution ϑ, one aims to minimize the empirical risk

R(z) := EϑR̃(z, ξ), z ∈ Rd,

where R̃ : Rd × Ξ → R is a loss function. Let ξn, n ∈ N0(:= N ∪ {0}), be i.i.d. samples of
training data drawn from ϑ. Then, the SGD dynamics is given by

Zηn+1(x) = Zηn(x)− η∇R̃(Zηn(x), ξn), n ∈ N0, (1)

where Z0(x) = x, x ∈ Rd and η > 0. In particular, Zηn, n ∈ N0, allows to analyze the
training dynamics of different initializations x subject to the same choice of training data.

We next address the above mentioned challenges in a few more details.

(1) The irregularity of diffusion coefficients: In the regime of small learning
rate, the foundational works of Li et al. (2017, 2019) have suggested stochastic modified
equations (SME) as universal continuum limits that capture both the average gradient
descent performed by SGD and its fluctuations. More precisely, it is shown that the SGD
dynamics Zηn, n ∈ N0, with learning rate η can be approximated to higher order in η by
solutions to SMEs

dY η
t (x) = −∇

(
R(Y η

t (x)) +
η

4
|∇R(Y η

t (x))|2
)
dt+

√
ηΣ1/2(Y η

t (x))dWt, (2)

where Y η
0 (x) = x for x ∈ Rd, Wt, t ≥ 0, is a Brownian motion in Rd and Σ : Rd → Rd×d is

the matrix defined by

Σ(y) = Eϑ
[
(∇yR̃(y, ξ)−∇R(y))⊗ (∇yR̃(y, ξ)−∇R(y))

]
, y ∈ Rd. (3)

This convergence incorporates a certain degree of universality of (2), since the fluctuations
in (2) are given in terms of Brownian motion, irrespective of the specific distribution ϑ. In
machine learning, and, in particular, in overparameterized settings, the covariance matrix
Σ is typically degenerate. As a result, the square root Σ1/2 appearing in (2) has limited
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regularity properties,1 which makes the analysis of (2) challenging, and leads to assumptions
on Σ1/2 that are in general not known to hold, see e.g. Ankirchner and Perko (2023);
Perko (2023) and Example 2. The first contribution of this work is to resolve this issue by
introducing a new model for the stochastic limiting dynamics, which we name stochastic
modified flow (SMF),

dXη
t (x) = −∇

(
R(Xη

t (x)) +
η

4
|∇R(Xη

t (x))|2
)
dt+

√
η

∫
Ξ
G(Xη

t (x), ξ)W (dξ, dt),

Xη
0 (x) = x, x ∈ Rd,

(4)

where G(x, ξ) = ∇R̃(x, ξ) − ∇R(x) and W is a cylindrical Wiener process on the space
L2((Ξ, ϑ);R). It is important to notice that (4) satisfies the same martingale problem as

(2), while avoiding the appearance of Σ
1
2 , thereby bypassing the resulting irregularity of

the diffusion coefficients. In contrast, only regularity assumptions on the individual losses
R̃ are needed. More precisely, we get the following result.

Theorem 1 (see Theorem 12 and Corollary 14) Let R̃(·, ξ) be regular enough for ϑ-
a.e. ξ ∈ Ξ and let T > 0. Then for every f ∈ C4

b(Rd), one has

sup
x∈Rd

sup
n:nη≤T

∣∣Ef(Xη
nη(x))− Ef(Zηn(x))

∣∣ . η2.

We note that, under the assumptions of Corollary 14, there exists a unique solution to
(4), see Theorem 5, such that the flow of solutions to (4) is differentiable with respect to
the initial condition up to a certain order, see e.g. Section 4.6 in Kunita (1990).

(2) Matching multi-point statistics: In a variety of works, a dynamical systems ap-
proach to the dynamics of SGD has been introduced (Wu et al. 2018; Sato et al. 2022). This
aims at using the concepts of attractors, Lyapunov exponents, stochastic synchronization
etc. in the analysis of SGD dynamics, for example, in order to analyze asymptotic global
stability, that is, if

|Zηn(x)− Zηn(y)| → 0 for n→∞ (5)

in probability. As before, the systematic analysis of such dynamical behavior of SGD
relies on the identification of appropriate universal limiting models. It is thus tempting
to analyze the dynamical features of SGD by means of those of (2). However, this is not
correct, since (2) only captures the single-point motion of SGD, while dynamical features
like stability (5) are properties of the multi-point motions. More precisely, (2) captures the
limiting behavior of the law of single motions Law(Zηn(x)), but not the joint multi-point
laws Law(Zηn(x1), . . . , Zηn(xm)) (see also Example 3).

As a second main contribution, in this work we prove that (SMF), in contrast to (2),
captures the correct multi-point distributions of SGD, and therefore opens the way for an
analysis of the dynamical properties of its (stochastic) flow. This can also be understood on
the level of the corresponding Fokker-Planck equations. While the SME matches only the
Fokker-Planck equation of the one-point motion of SGD, the infinite dimensional Fokker-
Planck equation of SMF matches also the infinite dimensional Fokker-Planck equation of

1. The simple example Σ(y) = y2, Σ1/2(y) = |y| shows that not more than Lipschitz continuity can be
expected from Σ1/2 in general.
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the flow of SGD, and, therefore, in particular, the Fokker-Planck equations of all multi-point
motions.

Theorem 2 (see Theorem 12 and Corollary 15) Under the assumption of Theorem 1,
for every Φ ∈ C4

b(P2(Rd)) one has

sup
µ∈P2(Rd)

sup
n:nη≤T

∣∣EΦ
(
µ ◦ (Xη

nη)
−1
)
− EΦ

(
µ ◦ (Zηn)−1

)∣∣ . η2,

where µ ◦ f−1 denotes the push forward of the measure µ under a map f . Furthermore, for
every m ∈ N and f ∈ C4

b(Rdm),

sup
x1,...,xm∈Rd

sup
n:nη≤T

∣∣Ef(Xη
nη(x1), . . . , Xη

nη(xm))− Ef(Zηn(x1), . . . , Zηn(xm))
∣∣ . η2.

(3) Overparameterized limits: As a third main contribution, we extend the small
learning rate limit to also incorporate the infinite width limit. We here consider networks
with quadratic loss function. Let D ⊆ Rn0 × Rk0 be a given training data set with inputs
Ξ = {ξ : (ξ, f(ξ)) ∈ D} and labels {f(ξ) : (ξ, f(ξ)) ∈ D}.2 For the approximation of f we
choose a parameterized hypotheses space M := {fM (z, ·) : z ∈ RMd}, M,d ∈ N, where

fM (z, ξ) =
1

M

M∑
i=1

Ψ(zi, ξ), ξ ∈ Ξ, (6)

with Ψ : Rd × Ξ→ Rk0 , z = (zi)i∈[M ] and [M ] := {1, . . . ,M}. For example, one can choose
M to be the space of response functions of fully connected feed-forward neural networks
with one hidden layer containing M hidden neurons. In that case, we choose a function
φ : R → R, the activation function, and we write z = (zi)i∈[M ] with zi = (ci, U i, bi) ∈
Rk0 × Rn0 × R and Ψ(zi, ξ) = ciφ(U i · ξ + bi). Then,

fM (z, ξ) =
1

M

M∑
i=1

ciφ(U i · ξ + bi), ξ ∈ Ξ.

The aim of risk minimization (with respect to the square loss) is to select a suitable model
fM (z, ·) minimizing the risk R(z) = EϑR̃(z, ξ), z ∈ RMd, for

R̃(z, ξ) =
1

2
|f(ξ)− fM (z, ξ)|2, z ∈ RMd, ξ ∈ Ξ.

As before, this optimization task is executed by the stochastic gradient descent algorithm (1)
with the starting value Zη0 = (Zi,η0 )i∈[M ] being a tuple of i.i.d. random variables with

distribution µ ∈ P2(Rd) that are independent of ξn, n ∈ N0.
A simple computation gives that

R(z) = Cf −
1

M

M∑
i=1

F (zi) +
1

2M2

M∑
i,j=1

K(zi, zj),

2. For simplicity we assume that the ground-truth is given by a function f : Rn0 → Rk0 .
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where Cf = 1
2Eϑ|f(ξ)|2 and

F (zi) = Eϑ
[
f(ξ) ·Ψ(zi, ξ)

]
, K(zi, zj) = Eϑ

[
Ψ(zi, ξ) ·Ψ(zj , ξ)

]
. (7)

Taking

V (ν, zi) = ∇F (zi)−
∫
Rd
∇ziK(zi, y)ν(dy),

G(ν, zi, ξ) =

(
f(ξ)−

∫
Rd

Ψ(y, ξ)ν(dy)

)
∇ziΨ(zi, ξ)

− Eϑ
[(
f(ξ)−

∫
Rd

Ψ(y, ξ)ν(dy)

)
∇ziΨ(zi, ξ)

] (8)

and replacing η in (1) by Mη, we can rewrite the expression for the dynamics of Zηn =
(Zi,ηn )i∈[M ], n ∈ N0, as follows

Zi,ηn+1 = Zi,ηn + ηV (ΓM,η
n , Zi,ηn ) + ηG(ΓM,η

n , Zi,ηn , ξn),

ΓM,η
n =

1

M

M∑
j=1

δ
Zj,ηn

, i ∈ [M ], n ∈ N0,
(9)

where δz denotes the δ-measure in z.
We obtain quantified estimates on the approximation of the dynamics of the empirical

measure ΓM,η
n , n ∈ N0, of SGD by the solution to a distribution dependent stochastic

modified flow (DDSMF)

dXη
t (x) =

[
V (Ληt , X

η
t (x))− η

4
∇|V (Ληt , X

η
t (x))|2 − η

4

〈
D|V (Ληt , X

η
t (x))|2,Ληt

〉]
dt

+
√
η

∫
Ξ
G(Ληt , X

η
t (x), ξ)W (dξ, dt),

Xη
0 (x) = x, Ληt = µ ◦ (Xη

t )−1, x ∈ Rd, t ≥ 0,

(10)

where D denotes the differentiation with respect to the measure dependent argument in the
sense of Lions,3 〈ϕ, ν〉 denotes the integration of a function ϕ : Rd → R with respect to a
measure ν and W is a cylindrical Wiener process on L2((Ξ, ϑ);R). We remark that

1

2

〈
D|V (ν, z)|2, ν

〉
= V (ν, z) 〈∇x∇zK(z, x), ν(dx)〉 ,

according to the form of V in (8) and properties of Lions derivative.

Theorem 3 (see Theorem 12, Corollary 16 and Remark 17) Let Ψ be regular enough
and T > 0. Then for every Φ ∈ C4

b(P2(Rd)) and µ ∈ P2(Rd) with a finite p moment with
p > 2, one has

sup
n:nη≤T

∣∣EΦ(Ληnη)− EΦ(ΓM,η
n )

∣∣ . η2

for every η > 0 and M large enough.

3. For more details see Section 2.2.
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Again, under the assumption of Corollary 16, there exists a unique solution to the DDSMF
(10), see Theorem 5.

This extends the framework of SMEs and SMFs to (10) which can thus serve as the
starting point to analyze the stochastic dynamics of SGD in large, shallow networks.

Overview of the literature. Stochastic modified equations as limiting objects of SGD
in the regime of small learning rates have been introduced in Li et al. (2017, 2019). Following
these original papers several results were derived for diffusion approximations with SMEs,
e.g., generator based proofs (Feng et al. 2018; Hu et al. 2019), approximations for SGD
without reshuffling (Ankirchner and Perko 2022) and uniform-in-time estimates for strongly
convex objective functions (Feng et al. 2020; Li and Wang 2022). The approximating SME
can be used to derive optimal hyperparameter schedules, e.g. for the learning rate (Li et al.
2017) or the batch-size (Zhao et al. 2022; Perko 2023). For a discussion on the validity of
the diffusion approximation for finite (non-infinitesimal) learning rate see Li et al. (2021a).

The derivation of stochastic continuum limits of SGD has proven instrumental in the
analysis of optimization dynamics in several regards. For example, in Wojtowytsch (2024)
an analysis of the corresponding Fokker-Planck equation has been performed, proving that
the limiting distribution carries more mass on flatter minima. This extends earlier work in
Zhu et al. (2019); Xie et al. (2020), where the specific structure of the noise in supervised
learning is shown to help escaping from sharp and poor minima. In Li et al. (2021b), an
SDE approximation suggests that, along a manifold of minimizers, SGD has an implicit
bias towards minimizing the trace of the Hessian. In Gess and Kassing (2023), a continuous
time model was used in order to derive a Lyapunov function for the convergence rate of
momentum SGD, see also Moucer et al. (2023) for a general approach for finding a Lyapunov
function for continuous time optimization methods.

In Chizat and Bach (2018); Mei et al. (2018); Rotskoff and Vanden-Eijnden (2018a);
Javanmard et al. (2020); Sirignano and Spiliopoulos (2020b), the convergence of gradient
descent dynamics for overparameterized neural networks to a Wasserstein gradient flow has
been analyzed. The conservative SPDE describing the mean-field limit that incorporates
the fluctuations of the stochastic gradient descent was suggested in Rotskoff and Vanden-
Eijnden (2018b, 2022). The rigorous study of the well-posedness of this conservative SPDE
and proof of quantified central limit theorem has been done in Gess et al. (2022), using
the observation that its solutions can be described by the SDE with interaction (11) be-
low, which was investigated e.g., in Pilipenko (2006); Dorogovtsev (2024); Dorogovtsev and
Ostapenko (2010); Belozerova (2020); Wang (2021) (see also Kurtz and Xiong 1999; Doro-
govtsev 2004; Carmona et al. 2016; Wang 2021 for its connection with McKean–Vlasov
SDEs with common noise). It should be noted that the stochastic modified flows proposed
in this work are of a particular form of the SDE with interaction (11). In Rotskoff and
Vanden-Eijnden (2018a); Sirignano and Spiliopoulos (2020a), a linear SPDE has been rig-
orously identified in the context of central limit fluctuations of stochastic gradient descent
in the overparameterized regime.

The paper is organized as follows: In Section 2, we introduce a stochastic differential
equation with interaction (see (11)) that covers both the SMF (4) and the DDSMF (10)
and recall existence and uniqueness results assuming Lipschitz-continuity of its coefficients.
Moreover, we state a result for the continuous dependence of solutions to the SDE with
interaction with respect to its initial distribution, as well as an analog of Kolmogorov’s
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equation in the setting of SDEs with interaction. Section 3 is devoted to the main result
of this article, Theorem 12, which compares the dynamics of a discrete time Markov chain
with those of a solution to a corresponding SDE with interaction. Theorem 1, Theorem 2
and Theorem 3 then follow as consequences of Theorem 12, see Corollary 14, Corollary 15
and Corollary 16, respectively.

2. Measure-valued Diffusion and Stochastic Modified Flows

The goal of this section is to prove the well-posedness for stochastic modified flows and
investigate some properties of the associated semigroup. We recall that P2(Rd) denotes the
space of probability measures µ on Rd such that∫

Rd
|x|2µ(dx) <∞

with the Wasserstein distance defined by

W2(µ, ν) = inf
χ∈Π(µ,ν)

(∫
Rd

∫
Rd
|x− y|2χ(dx, dy)

) 1
2

,

where Π(µ, ν) is the set of all probability measures on Rd × Rd with marginals µ and ν. It
is well-know that P2(Rd) equipped with the Wasserstein distance W2 is a Polish space.

Let L2((E, ν);Rk) be the space of all 2-integrable functions from a measure space
(E, E , ν) to Rk with the usual inner product 〈·, ·〉ν and the associated norm ‖ · ‖ν . We
will further fix a measure space (Ξ,G, ϑ) such that ϑ is a finite measure and the space
L2((Ξ, ϑ);R) is separable. We will also consider a cylindrical Wiener process Wt, t ≥ 0, on
L2((Ξ, ϑ);R) defined on a filtered complete probability space (Ω,F , (Ft)t≥0,P),4 that is,

(i) for every t ≥ 0, the map Wt : L2((Ξ, ϑ);R)→ L2((Ω,P);R) is linear;

(ii) for every h ∈ L2((Ξ, ϑ);R), Wt(h), t ≥ 0, is an (Ft)t≥0-Brownian motion with
VarWt(h) = ‖h‖2ϑt.

We will assume that (Ft)t≥0 is the complete right-continuous filtration generated by Wt,
t ≥ 0. For an (Ft)t≥0-progressively measurable L2((Ξ, ϑ);Rk)-valued process g(t, ·) =
{g(t, ξ), ξ ∈ Ξ}, t ≥ 0, with ∫ t

0
‖g(s, ·)‖2ϑds <∞

a.s. for every t ≥ 0, we will write∫ t

0

∫
Ξ
g(s, ξ)W (dξ, ds) :=

∫ t

0
Υ(s)dWs

for Υ(s)h = 〈g(s, ·), h〉ϑ = (〈gi(s, ·), h〉ϑ)i∈[k], h ∈ L2((Ξ, ϑ);R).5 We note that the stochas-
tic integral with respect to a cylindrical Wiener process can be rewritten as an infinite sum of

4. See Section 2.1.2 in Gawarecki and Mandrekar (2011) for the definition and further properties.
5. For the definition of the integral with respect to a cylindrical Wiener process see, e.g., (Gawarecki and

Mandrekar, 2011, Section 2.2.4).
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stochastic integrals with respect to independent standard Brownian motions. Indeed, since
L2((Ξ, ϑ);Rk) is a separable Hilbert space, there exists an orthonormal basis {en, n ∈ N}
in L2((Ξ, ϑ);Rk). Then, according to Lemma 2.8 in Gawarecki and Mandrekar (2011),∫ t

0

∫
Ξ
g(s, ξ)W (dξ, ds) =

∞∑
n=1

∫ t

0
〈g(s, ·), en〉ϑdWs(en),

where Wt(en), t ≥ 0, n ∈ N, are independent standard (Ft)t≥0-Brownian motions and the
series on the right-hand side of the equation converges in L2((Ω,P);R) for each t ≥ 0.

2.1 Stochastic Modified Flows

For measurable functions B : [0,∞) × P2(Rd) × Rd → Rd, G : [0,∞) × P2(Rd) × Rd →
L2((Ξ, ϑ);Rd) and a probability measure µ ∈ P2(Rd), we consider the following stochastic
differential equation

dXt(x) = B(t,Λt, Xt(x))dt+

∫
Ξ
G(t,Λt, Xt(x), ξ)W (dξ, dt),

X0(x) = x, Λt = µ ◦X−1
t , x ∈ Rd, t ≥ 0.

(11)

It is clear that the equations (4) and (10) can be written in the form of (11). Therefore, in
this section we will only focus on (11) which is called the stochastic differential equation with
interaction and was studied, e.g., in Dorogovtsev and Kotelenez (1997); Pilipenko (2006);
Wang (2021). Let B(E) denote the Borel σ-algebra on a topological space E. Following the
definition from (Dorogovtsev, 2024, Definition 2.3.1) or (Gess et al., 2022, Definition 2.5),
we introduce the notion of a solution to (11).

Definition 4 A family of continuous processes {Xt(x), t ≥ 0}, x ∈ Rd, is called a (strong)
solution to the SDE with interaction (11) with initial mass distribution µ ∈ P2(Rd) if, for
each t ≥ 0 the restriction of X to the time interval [0, t] is B([0, t])⊗B(Rd)⊗Ft-measurable,
Λt = µ ◦X−1

t , t ≥ 0, is a continuous process in P2(Rd) and for every x ∈ Rd, a.s.,

Xt(x) = x+

∫ t

0
B(s,Λs, Xs(x))ds+

∫ t

0

∫
Ξ
G(s,Λs, Xs(x), ξ)W (dξ, ds),

for all t ≥ 0. For convenience, we will also call the measure-valued process Λt, t ≥ 0, a
solution to (11).

Let φp(x) = |x|p, x ∈ Rd. The following theorem was proved in Gess et al. (2022). See
Theorem 2.9 and Corollary 2.10 for the well-posedness and the estimates; the existence of
a continuous modification of X was observed in the proof of Theorem 2.9 ibid.

Theorem 5 Assume that the coefficients B, G of (11) are Lipschitz continuous with respect
to (µ, x) ∈ P2(Rd) × Rd, that is, for every T > 0 there exists L > 0 such that for each
t ∈ [0, T ], µ, ν ∈ P2(Rd) and x, y ∈ Rd

|B(t, µ, x)−B(t, ν, y)|+ ‖G(t, µ, x, ·)−G(t, ν, y, ·)‖ϑ
≤ L (W2(µ, ν) + |x− y|) ,

(12)
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and

|B(t, δ0, 0)|+ ‖G(t, δ0, 0, ·)‖ϑ ≤ L, (13)

where δ0 denotes the δ-measure at 0 on Rd. Then, for every µ ∈ P2(Rd), there exists a
unique strong solution Xt(x), t ≥ 0, x ∈ Rd, to the SDE with interaction (11). Moreover,
there exists a version of X·(x), x ∈ Rd, that is a continuous in (t, x), and for every T > 0
and p ≥ 2 there exists a constant C > 0 such that

E sup
t∈[0,T ]

|Xt(x)|p ≤ C(1 + 〈φp, µ〉+ |x|p),

for all x ∈ Rd. In particular,

E sup
t∈[0,T ]

〈φp,Λt〉 ≤ C(1 + 〈φp, µ〉),

where Λt = µ ◦X−1
t .

From now on, we will only consider the version Xt(x), t ≥ 0, x ∈ Rd, of a solution to the
SDE with interaction (11) which is continuous in (x, t). In order to reflect the dependency
on the initial mass distribution we will write Xt(µ, x) and Λt(µ) instead of Xt(x) and Λt.
We next recall the result on the continuous dependence of Λt(µ), t ≥ 0, with respect to the
initial condition µ, that was obtained in (Gess et al., 2022, Theorem 2.14).

Proposition 6 Under the assumption of Theorem 5, for every T > 0 there exists a constant
C > 0 depending only on T and the Lipschitz constant L such that

E sup
t∈[0,T ]

|Xt(µ, x)−Xt(ν, y)|2 ≤ C
(
W2

2 (µ, ν) + |x− y|2
)

and

E sup
t∈[0,T ]

W2
2 (Λt(µ),Λt(ν)) ≤ CW2

2 (µ, ν)

for all µ, ν ∈ P2(Rd) and x, y ∈ Rd.

2.2 Measure-valued Diffusion

The goal of this section is to obtain an analog of Kolmogorov’s equation for the process
Λt(µ), t ≥ 0, given in (11). For this purpose, we need to recall the notion of Lions deriva-
tive according to Cardaliaguet (2013). We say that a function f : P2(Rd) → Rk is L-
differentiable at µ, if there exists an element Df(µ) in L2((Rd, µ);Rk × Rd) such that

lim
‖h‖µ→0

f(µ ◦ (id + h)−1)− f(µ)− 〈Df(µ), h〉µ
‖h‖µ

= 0,

where id denotes the identity map on Rd and the limit is taken over h ∈ L2((Rd, µ);Rd). In
this case, Df(µ) is called the L-derivative of f at µ.

9
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Remark 7 For the interested reader, we would like to note that the L-derivative is the
Lions derivative introduced via the lifting of function on P2(Rd) to functions defined on a
Hilbert space L2((Ω̃, P̃);Rd) for a probability space (Ω̃, F̃ , P̃),6 according to the discussion in
Section 2 in Ren and Wang (2020). Moreover, under some regularity assumptions on the
L-derivative Df , it coincides with the Wasserstein gradient and the gradient of the linear
functional derivative,7 by Theorem 5.64 and Proposition 5.48 in Carmona and Delarue
(2018), respectively.

Let f : P2(Rd) → Rk be continuous. If for every µ ∈ P2(Rd) the function f is L-
differentiable at µ and its derivative has a µ-version Df(µ, x) such that Df(µ, x) is jointly
continuous in (µ, x) ∈ P2(Rd) × Rd, we will say that f is continuously differentiable on
P2(Rd). The set of all continuously differentiable functions on P2(Rd) will be denoted by
C1(P2(Rd)). We will also consider functions defined on the product space [0, T ]×P2(Rd)×
Rm. Therefore, we define C0,1,1

b (P2(Rd)×Rm) as a class of all continuous bounded functions
f : [0, T ] × P2(Rd) × Rm → Rk that are continuously differentiable in the second and
third variables and their derivatives are jointly continuous and bounded in all variables.
Similarly, for l ∈ N we can introduce the space C0,l,l

b (P2(Rd) × Rm) by assuming that all
mixed derivatives in the second and third variables to the l-th order exist and are jointly
continuous and bounded in all variables.

Similarly to C0,l,l
b ([0, T ]×P2(Rd)×Rm), we define the class C̃0,l,l

b ([0, T ]×P2(Rd)×Rm)
as the set of continuous and bounded functions f : [0, T ] × P2(Rd) × Rm → L2((Ξ, ϑ);Rk)
such that for ϑ-a.e. ξ ∈ Ξ we have f(·, ·, ·, ξ) ∈ C0,l,l

b ([0, T ] × P2(Rd) × Rm) and all its
mixed derivatives up to the l-th order are continuous and bounded as L2((Ξ, ϑ);Rk)-valued
functions.

If f ∈ C0,l,l
b ([0, T ] × P2(Rd) × Rm) is independent of the first variable (resp. first and

third variables), we will simply write f ∈ Cl,l
b (P2(Rd) × Rm) (resp. f ∈ Cl

b(P2(Rd))). The

set C̃l,l
b ([0, T ]× P2(Rd)× Rm) is defined analogously.

Example 1 If ϕi ∈ C1
b(Rd), i ∈ [n], and h ∈ C1(Rn) then f(µ) = h(〈ϕ1, µ〉, . . . , 〈ϕn, µ〉),

µ ∈ P2(Rd), belongs to C1
b(P2(Rd)) and

Df(µ, x) =

n∑
i=1

∂ih(〈ϕ1, µ〉, . . . , 〈ϕn, µ〉)∇ϕi(x), x ∈ Rd, µ ∈ P2(Rd).

For the coefficients B and G of the equation (11), we define the following second-order
differential operator

Ltf(µ) : =
1

2

∫
Rd

∫
Rd
Ã(t, µ, x, y) : D2f(µ, x, y)µ(dx)µ(dy)

+
1

2

∫
Rd
A(t, µ, x) : ∇Df(µ, x)µ(dx)

+

∫
Rd
B(t, µ, x) ·Df(µ, x)µ(dx),

(14)

6. See Definition 6.1 in Cardaliaguet (2013) or Definition 5.22 in Carmona and Delarue (2018).
7. For the definitions of the Wasserstein gradient and the linear functional derivative see e.g. Definitions 5.62

and 5.43 in Carmona and Delarue (2018), respectively.
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for f ∈ C2
b(P2(Rd)), where

Ã(t, µ, x, y) = Eϑ [G(t, µ, x, ξ)⊗G(t, µ, y, ξ)]

= (〈Gi(t, µ, x, ·), Gj(t, µ, y, ·)〉ϑ)i,j∈[d] ,

A(t, µ, x) = Ã(t, µ, x, x)

and we use the notation C : D =
∑d

i,j=1 ci,jdi,j for C = (ci,j)i,j∈[d], D = (di,j)i,j∈[d] and

a · b =
∑d

i=1 aibi for a = (ai)i∈[d], b = (bi)i∈[d].

We next provide the well posedness of the Kolmogorov equation associated to (11). This
result can be obtained as in the proof of Theorem 3.1 in Wang (2021) with slight changes,
where a similar equation driven by a finite dimensional noise was considered.

Proposition 8 (Kolmogorov equation) Let T > 0 and the coefficients B, G of (11)
belong to C0,2,2

b ([0, T ]×P2(Rd)×Rd) and C̃0,2,2
b ([0, T ]×P2(Rd)×Rd), respectively. For µ ∈

P2(Rd), let Λt(µ), t ∈ [0, T ], be a solution to (11) with initial mass distribution Λ0(µ) = µ.
Then, for every Φ ∈ C2

b(P2(Rd)), the function

U(t, µ) = EΦ(Λt(µ)), (t, µ) ∈ [0, T ]× P2(Rd),

is a unique solution to the equation

∂tU(t, µ) = LtU(t, µ),

U(0, µ) = Φ(µ), (t, µ) ∈ [0, T ]× P2(Rd),
(15)

in the class C0,2
b ([0, T ]× P2(Rd)) with ∂tU ∈ C([0, T ]× P2(Rd)).

If, additionally, B ∈ C0,l,l
b ([0, T ] × P2(Rd) × Rd), G ∈ C̃0,l,l

b ([0, T ] × P2(Rd) × Rd) and

Φ ∈ Cl
b(P2(Rd)), for some l > 2, then U ∈ C0,l

b ([0, T ]× P2(Rd)).

Remark 9 In general, the constants that estimate the uniform norm of derivatives of a
solution U to the equation (15) will depend on T and increase exponentially fast as T →∞.8

However, we believe that additional convexity assumptions (e.g. choosing B = ∇R for a
strongly convex function R) can prevent a blow-up of the corresponding constants at infinity
and open the way for a uniform-in-time analysis of the stochastic modified equation, see Feng
et al. (2020); Li and Wang (2022), and the mean-field dynamics, see Chen et al. (2022);
Suzuki et al. (2023).

3. Diffusion Approximation via Stochastic Modified Flows

The goal of this section is to prove the theorems stated in the introduction. For this, we
first show a general result comparing the dynamics of a Markov chain defined below with a
corresponding SDE with interaction and cylindrical noise. Then, we show that the results
given in the introduction immediately follow from the general comparison statement. We
fix measurable functions V : P2(Rd)×Rd → Rd and G : P2(Rd)×Rd → L2((Ξ, ϑ);Rd) such

8. We refer the reader to estimates in Section 3 in Wang (2021) for more details.
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that EϑG(µ, x, ξ) = 0 for all (µ, x) ∈ P2(Rd)× Rd. For η > 0 and µ ∈ P2(Rd), we consider
a Markov chain defined by

Zηn+1(z) = Zηn(z) + ηV (Γηn, Z
η
n(z)) + ηG(Γηn, Z

η
n(z), ξn),

Zη0 (z) = z, Γηn = µ ◦ (Zηn)−1, z ∈ Rd, n ∈ N0,
(16)

where ξn, n ∈ N0, are i.i.d. sampled from the distribution ϑ. We remark that, e.g., the
SGD dynamics in the overparameterized shallow neural network in (9) can be written in
form of (16) by taking µ = 1

M

∑M
i=1 δZi0

and Zi,ηn = Zηn(Zi,η0 ), i ∈ [M ]. We will approximate

Γηn, n ∈ N0, by solutions to the DDSMF

dXη
t (x) =

[
V (Ληt , X

η
t (x))− η

4
∇|V (Ληt , X

η
t (x))|2 − η

4

〈
D|V (Ληt , X

η
t (x))|2,Ληt

〉]
dt

+
√
η

∫
Ξ
G(Ληt , X

η
t (x))W (dξ, dt),

Xη
0 (x) = x, Ληt = µ ◦ (Xη

t )−1, x ∈ Rd, t ≥ 0,

(17)

where W is a cylindrical Wiener process on L2((Ξ, ϑ);R). We first prove some auxiliary
statements that will imply the well-posedness of the DDSMF (17).

Lemma 10 Let ε > 0 and γs, s ∈ [0, ε], be a family of square integrable random variables
on Rk defined on a probability space (Ω,F ,P). If

γ′0 := lim
s→0+

γs − γ0

s

exists in L2((Ω,P);Rk), then for every f ∈ C1(P2(Rk)) one has

lim
s→0+

f(Law(γs))− f(Law(γ0))

s
= E

[
Df(Law(γ0), γ0) · γ′0

]
.

Proof This statement was obtained in (Wang, 2021, Lemma 2.4).

Lemma 11 Let the functions V and G belong belong to C1,1
b (P2(Rd)×Rd) and C̃1,1

b (P2(Rd)×
Rd), respectively. Then, for every x, y ∈ Rd and µ, ν ∈ P2(Rd), we have

|V (µ, x)− V (ν, y)|+ ‖G(µ, x, ·)−G(ν, y, ·)‖ϑ ≤ L (W2(µ, ν) + |x− y|) ,

with

L = sup
x,y∈Rd,µ∈P2(Rd)

(|∇V (µ, x)|+ |DV (µ, x, y)|)

+ sup
x,y∈Rd,µ∈P2(Rd)

(‖∇G(µ, x, ·)‖ϑ + ‖DG(µ, x, y, ·)‖ϑ) .

Proof Let x, y ∈ Rd and µ, ν ∈ P2(Rd) be fixed. We take an arbitrary probability measure
χ on Rd × Rd with marginals µ, ν and consider random variables ζ0, ζ1 on the probability

12
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space (Rd×Rd,B(Rd×Rd), χ) defined by ζ0(x, y) = y and ζ1(x, y) = x for all (x, y) ∈ Rd×Rd.
Then Law(ζ0) = ν and Law(ζ1) = µ. Set γs = (1 − s)ζ0 + sζ1, s ∈ [0, 1], and note that
γi = ζi, for i ∈ {0, 1}, and γ′s = (ζ1 − ζ0), for all s ∈ [0, 1]. We have

|V (µ, x)− V (ν, y)| ≤ |V (µ, x)− V (µ, y)|+ |V (µ, y)− V (ν, y)|

and we can bound the terms on the right hand side of the inequality as follows. With the
mean-value theorem, the first term can be bounded by supz∈Rd,ρ∈P2(Rd) |∇V (ρ, z)| |x − y|.
To bound the second term, we will use Lemma 10 and the mean-value theorem:

|V (µ, y)−V (ν, y)| = |V (Law(ζ1), y)− V (Law(ζ0), y)| ≤ sup
s∈[0,1]

∣∣∣∣ ddsV (Law(γs), y)

∣∣∣∣
≤ sup

s∈[0,1]

∣∣∣∣∫
Rd

∫
Rd

DV (Law(γs), y, γs(z1, z2)) · γ′s(z1, z2)χ(dz1, dz2)

∣∣∣∣
≤ sup

z1,z2∈Rd,ρ∈P2(Rd)

|DV (ρ, z1, z2)|
∫
Rd

∫
Rd
|ζ1(z1, z2)− ζ0(z1, z2)|χ(dz1, dz2)

≤ sup
z1,z2∈Rd,ρ∈P2(Rd)

|DV (ρ, z1, z2)|
(∫

Rd

∫
Rd
|z2 − z1|2χ(dz1, dz2)

) 1
2

.

Taking the infimum over all probability measures χ on Rd × Rd with marginals µ, ν, we
obtain

|V (µ, y)− V (ν, y)| ≤ sup
z1,z2∈Rd,ρ∈P2(Rd)

|DV (ρ, z1, z2)|W2(µ, ν).

The estimate for ‖G(x, µ)−G(y, ν)‖ϑ can be obtained similarly.

Now we are ready to proof the main result of this work.

Theorem 12 Let V ∈ C5,5
b (P2(Rd) × Rd), G ∈ C̃4,4

b (P2(Rd) × Rd). For µ ∈ P2(Rd) and
η > 0, let Γηn(µ), n ∈ N0, and Ληt (µ), t ≥ 0, be defined by (16), and (17), respectively.
Assume that EϑG(µ, x, ξ) = 0 for all µ ∈ P2(Rd), x ∈ Rd as well as

sup
x∈Rd

sup
µ∈P2(Rd)

Eϑ|G(µ, x, ξ)|3 <∞. (18)

Then, for every Φ ∈ C4
b(P2(Rd)) and T > 0 there exists a constant C independent of η such

that
sup

µ∈P2(Rd)

sup
n:nη≤T

∣∣EΦ(Ληnη(µ))− EΦ(Γηn(µ))
∣∣ ≤ Cη2, (19)

for all η > 0.

Proof We first remark that the measure-valued process Ληt (µ), t ≥ 0, is uniquely defined
due to Theorem 5 and Lemma 11. Without loss of generality, we consider η ≤ T . The proof
of this theorem relies on the comparison of the generators associated with the processes
Γηn(µ), n ∈ N0, and Ληt (µ), t ≥ 0, up to a certain order of η. We first demonstrate how such
a bound on their difference can be used to conclude the proof.
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We start from the definition of the transition semigroup for the process Γηn(µ), n ∈ N0.
For convenience of notation, we will drop the superscript η in Γηn and Ληt and simply write
Γn and Λt, respectively. Note that Γn+1 = Γn ◦ Y −1

n (Γn, ·), where

Yn(µ, y) = y + ηV (µ, y) + ηG(µ, y, ξn), µ ∈ P2(Rd), y ∈ Rd.

Indeed, by (16), Zn+1(z) = Yn(Γn, Zn(z)), z ∈ Rd, and, hence,

Γn ◦ Y −1
n (Γn, ·) = µ ◦ Z−1

n ◦ Y −1
n (Γn, ·)

= µ ◦ Yn(Γn, Zn(·))−1 = µ ◦ Z−1
n+1 = Γn+1,

for all n ∈ N0. Therefore, defining the linear operator S on the set of all bounded measurable
functions Ψ : P2(Rd)→ R by

SΨ(µ) = EϑΨ(µ ◦ Y −1
1 (µ, ·)), µ ∈ P2(µ),

we conclude that

EϑΨ(Γn(µ)) = EϑΨ(Γn−1(µ) ◦ Y −1
n−1(Γn−1(µ), ·))

= Eϑ
[
Eϑ
[
Ψ(Γn−1(µ) ◦ Y −1

n−1(Γn−1(µ), ·))
∣∣∣Γn−1(µ)

]]
= EϑSΨ(Γn−1(µ)) = · · · = SnΨ(µ),

(20)

for all n ∈ N. Hence, defining U(t, µ) = EΦ(Λt(µ)), t ≥ 0, µ ∈ P2(Rd), and using (20), we
get for each µ ∈ P2(Rd) and n ∈ N

EΦ(Γn(µ)))− EΦ(Λnη(µ)) = SnΦ(µ)− U(tn, µ)

=
n−1∑
i=0

Sn−i−1 (SU(ti, µ)− U(ti+1, µ)) ,
(21)

where ti := iη.
Thus, by (21), and by the inequality

sup
µ∈P2(Rd)

|SΨ(µ)| ≤ sup
µ∈P2(Rd)

|Ψ(µ)|,

we deduce that for all n ∈ N with nη ≤ T

sup
µ∈P2(Rd)

|EΦ(Λnη(µ))− EΦ(Γn(µ))| ≤ sup
µ∈P2(Rd)

n−1∑
i=0

|SU(ti, µ)− U(ti+1, µ)|. (22)

In conclusion, to prove (19), it remains to compare SU(ti, µ) with U(ti+1, µ). For this, we
will expand the generators associated with the processes Γηn(µ), n ∈ N0, and Ληt (µ), t ≥ 0,
with respect to η up to the second order.

To obtain the expansion of SΨ(µ) for Ψ ∈ C3
b(P2(Rd)), we fix µ ∈ P2(Rd), ξ ∈ Ξ

and consider Y (µ, y) = y + ηV (µ, y) + ηG(µ, y, ξ), y ∈ Rd, as a random variable on the
probability space (Rd,B(Rd), µ). Define

γs(y) = (1− s)y + sY (µ, y), y ∈ Rd, s ∈ [0, 1].

14
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Then γ0(y) = y, γ1(y) = Y (µ, y), γ′s(y) = η(V (µ, y) + G(µ, y, ξ)) and Law(γs) := µ ◦ γ−1
s

for all y ∈ Rd, s ∈ [0, 1]. Using Taylor’s formula, we obtain

Ψ(µ ◦ Y −1(µ, ·)) = Ψ(Law(γ1)) = Ψ(Law(γ0)) +
d

ds
Ψ(Law(γs))

∣∣
s=0

+
1

2

d2

ds2
Ψ(Law(γs))

∣∣
s=0

+
1

2

∫ 1

0

d3

ds3
Ψ(Law(γs))(1− s)3ds.

(23)

We next compute the derivatives appearing in the expression above. By Lemma 10, we get

d

ds
Ψ(Law(γs)) = η

∫
Rd

DΨ(Law(γs), γs(x)) · (V (µ, x) +G(µ, x, ξ))µ(dx)

and

d2

ds2
Ψ(Law(γs)) = η

d

ds

∫
Rd

DΨ(Law(γs), γs(x)) · (V (µ, x) +G(µ, x, ξ))µ(dx) =

= η2

∫
Rd

∫
Rd

D2Ψ(Law(γs), γs(x), γs(y))

: (V (µ, x) +G(µ, x, ξ))⊗ (V (µ, y) +G(µ, y, ξ))µ(dx)µ(dy)

+ η2

∫
Rd
∇DΨ(Law(γs), γs(x))

: (V (µ, x) +G(µ, x, ξ))⊗ (V (µ, x) +G(µ, x, ξ))µ(dx).

The third derivative d3

ds3
Ψ(Law(γs)) can be computed analogously. Since its precise form

is not needed, we omit its computation and observe only that d3

ds3
Ψ(Law(γs)), s ∈ [0, 1],

is uniformly bounded by C‖Ψ‖C3
b

for some constant C > 0 depending in particular on∫
|G(µ, x, ξ)|3µ(dx).

Taking the expectation of (23) with respect to ϑ and using Fubini’s theorem, the equal-
ities γ0(x) = x, Law(γ0) = µ, EϑG(µ, x, ξ) = 0, the assumption in (18) and the fact that
Ψ ∈ C3

b(P2(Rd)), we obtain

SΨ(µ) = EϑΨ(Law(γ1)) = Ψ(µ) + η

∫
Rd

DΨ(µ, x) · V (µ, x)µ(dx)

+
η2

2

∫
Rd

∫
Rd

D2Ψ(µ, x, y) : V (µ, x)⊗ V (µ, y)µ(dx)µ(dy)

+
η2

2

∫
Rd
∇DΨ(µ, x) : V (µ, x)⊗ V (µ, x)µ(dx)

+
η2

2

∫
Rd

∫
Rd

D2Ψ(µ, x, y) : Ã(µ, x, y)µ(dx)µ(dy)

+
η2

2

∫
Rd
∇DΨ(µ, x) : A(µ, x)µ(dx) + η3R1(Ψ, µ),

(24)

where supµ∈P2(Rd) |R1(Ψ, µ)| ≤ C‖Ψ‖C3
b
, for a constant C > 0 and

Ã(µ, x, y) = Eϑ [G(µ, x, ξ)⊗G(µ, y, ξ)] , A(µ, x) = Ã(µ, x, x).
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We next expand the generator of the process Ληt (µ), t ≥ 0. Recall that U(t, µ) =
EΦ(Λt(µ)), t ≥ 0, µ ∈ P2(Rd). According to Proposition 8, we can conclude that for every
t ≥ ti

U(t, µ) = U(ti, µ) +

∫ t

ti

LU(r, µ)dr, (25)

where L = L1 + ηL2 and

L1U(r, µ) : =

∫
Rd
V (µ, x) ·DU(r, µ, x)µ(dx),

L2U(r, µ) : =
1

2

∫
Rd

∫
Rd
Ã(µ, x, y) : D2U(r, µ, x, y)µ(dx)µ(dy)

+
1

2

∫
Rd
A(µ, x) : ∇DU(r, µ, x)µ(dx)

− 1

4

∫
Rd
∇|V (µ, x)|2 ·DU(r, µ, x)µ(dx)

− 1

4

∫
Rd

∫
Rd

D|V (µ, x)|2(y) ·DU(r, µ, x)µ(dx)µ(dy).

Iterating the equality (25) as in the proof of Lemma 3 in Li and Wang (2022), we obtain

U(ti+1, µ) = U(ti, µ) + ηL1U(ti, µ) + η2

(
L2 +

1

2
L2

1

)
U(ti, µ) + η3R2(µ), (26)

where supµ∈P2(Rd) |R2(µ)| ≤ C‖U‖
C0,4
b ([0,T ]×P2(Rd))

for a constant C > 0.

In order to compare SU(ti, µ) and U(ti+1, µ), we next express L2 + 1
2L

2
1 in terms of the

coefficients of the equation (17). Note that, according to Example 1, we have

DL1U(r, µ, x) = ∇ [V (µ, x) ·DU(r, µ, x)] +

∫
Rd

D [V (µ, y) ·DU(r, µ, y)] (x)µ(dy)

= DU(r, µ, x)∇V (µ, x) + V (µ, x)∇DU(r, µ, x)

+

∫
Rd

DU(r, µ, y)DV (µ, y, x)µ(dy) +

∫
Rd
V (µ, y)D2U(r, µ, y, x)µ(dy).

Thus, using the equalities

1

2
∇|V (µ, x)|2 = V (µ, x)∇V (µ, x) and

1

2
D|V (µ, x)|2(y) = V (µ, x)DV (µ, x, y),

we get

L2
1U(r, µ, x) =

1

2

∫
Rd
∇|V (µ, x)|2 ·DU(r, µ, x)µ(dx)

+

∫
Rd
∇DU(r, µ, x) : V (µ, x)⊗ V (µ, x)µ(dx)

+
1

2

∫
Rd

∫
Rd

D|V (µ, x)|2(y) ·DU(r, µ, x)µ(dx)µ(dy)

+

∫
Rd

∫
Rd

D2U(r, µ, x, y) : V (µ, x)⊗ V (µ, y)µ(dx)µ(dy).
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Consequently,(
L2 +

1

2
L2

1

)
U(r, µ) =

1

2

∫
Rd

∫
Rd
Ã(µ, x, y) : D2U(r, µ, x, y)µ(dx)µ(dy)

+
1

2

∫
Rd
A(µ, x) : ∇DU(r, µ, x)µ(dx)

− 1

4

∫
Rd
∇|V (µ, x)|2 ·DU(r, µ, x)µ(dx)

− 1

4

∫
Rd

∫
Rd

D|V (µ, x)|2(y) ·DU(r, µ, x)µ(dx)µ(dy)

+
1

4

∫
Rd
∇|V (µ, x)|2 ·DU(r, µ, x)µ(dx)

+
1

2

∫
Rd
∇DU(r, µ, x) : V (µ, x)⊗ V (µ, x)µ(dx)

+
1

4

∫
Rd

∫
Rd

D|V (µ, x)|2(y) ·DU(r, µ, x)µ(dx)µ(dy)

+
1

2

∫
Rd

∫
Rd

D2U(r, µ, x, y) : V (µ, x)⊗ V (µ, y)µ(dx)µ(dy)

=
1

2

∫
Rd

∫
Rd
Ã(µ, x, y) : D2U(r, µ, x, y)µ(dx)µ(dy)

+
1

2

∫
Rd
A(µ, x) : ∇DU(r, µ, x)µ(dx)

+
1

2

∫
Rd
∇DU(r, µ, x) : V (µ, x)⊗ V (µ, x)µ(dx)

+
1

2

∫
Rd

∫
Rd

D2U(r, µ, x, µ) : V (µ, x)⊗ V (µ, y)µ(dx)µ(dy).

Comparing (26) with (24) for Ψ = U(ti, ·), we conclude that

SU(ti, µ) = U(ti, µ) + ηL1U(ti, µ) + η2

(
L2 +

1

2
L2

1

)
U(ti, µ) + η3R1(U(ti, ·), µ)

= U(ti+1, µ) + η3R1(U(ti, ·), µ)− η3R2(µ).

Inserting into (21), and using the fact that U ∈ C0,4
b ([0, T ]×P2(Rd)) (see Proposition 8),

yields, for all n ∈ N with nη ≤ T

sup
µ∈P2(Rd)

|EΦ(Λnη(µ))− EΦ(Γn(µ))| ≤ sup
µ∈P2(Rd)

n−1∑
i=0

η3|R1(U(ti, ·), µ)−R2(µ)|

≤ Cnη3 ≤ CTη2,

where C is a constant that depends on T , see Remark 9. This completes the proof of the
theorem.
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Remark 13 From the proof of Theorem 12 one can see that for every Φ ∈ C4
b(P2(Rd)) and

T > 0 there exists a constant C > 0 such that

sup
µ∈P2(Rd)

sup
n:nη≤T

|EΦ(Λnη(µ))− EΦ(Γn(µ))| ≤ Cη,

for all η > 0, if Λt = Λt(µ), t ≥ 0, is defined by the SDE with interaction

dXt(x) = V (Λt, Xt(x))dt+
√
η

∫
Ξ
G(Λt, Xt(x))W (dξ, dt),

X0(x) = x, Λt = µ ◦X−1
t , x ∈ Rd, t ≥ 0.

We now apply Theorem 12 to the comparison of the SGD dynamics and stochastic
modified flows considered in the introduction. First, we recover a variant of the statement
for stochastic modified equations.

Corollary 14 Let Zηn(x), n ∈ N0, be defined by (1) for a loss function R̃ and Xη
t (x), t ≥ 0,

be a solution to (4). Let also R̃(·, ξ) ∈ C6
b(Rd) for ϑ-a.e. ξ ∈ Ξ and assume that∫

Ξ
‖R̃(·, ξ)‖2C6

b
ϑ(dξ) <∞ and sup

x∈Rd
Eϑ|∇R̃(x, ξ)|3 <∞.

Then, for every f ∈ C4
b(Rd) and T > 0, there exists a constant C > 0 independent of η

such that

sup
x∈Rd

sup
n:nη≤T

∣∣Ef(Xη
nη(x))− Ef(Zηn(x))

∣∣ ≤ Cη2

for all η > 0.

Proof Using the dominated convergence theorem it is easily seen that the functions V :=
−∇R and G := ∇R̃−∇R belong to C5,5

b (P2(Rd)×Rd) and C̃4,4
b (P2(Rd)×Rd), respectively,

where R = EϑR̃. Moreover, EϑG(x, ξ) = 0 for all x ∈ Rd and supx∈Rd Eϑ|G(x, ξ)|3 < ∞.
Hence, applying Theorem 12 to the function Φ(µ) = 〈f, µ〉, µ ∈ P2(Rd), that trivially
belongs to C4

b(P2(Rd)), we obtain

sup
x∈Rd

sup
n:nη≤T

∣∣Ef(Xη
nη(x))− Ef(Zηn(x))

∣∣
= sup

µ=δx,x∈Rd
sup

n:nη≤T

∣∣E〈f(Xη
nη), µ〉 − E〈f(Zηn), µ〉

∣∣
≤ sup

µ∈P2(Rd)

sup
n:nη≤T

∣∣EΦ(Ληnη(µ))− EΦ(Γηn(µ))
∣∣ ≤ Cη2,

for all η > 0 and some constant C > 0 independent of η, where Ληt (µ) = µ ◦ (Xη
t )−1 and

Γηn(µ) = µ ◦ (Zηn)−1. This completes the proof of the statement.

The next example shows the limited regularity properties of the solution to the SME
(2).
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Example 2 Let (Ξ,G, ϑ) be a probability space with ϑ({1}) = ϑ({−1}) = 1
2 and let R̃(x, ξ) =

1
2ξx

2 for all x ∈ R and ξ ∈ Ξ. Then R ≡ 0 and Σ1/2(x) = |x| for all x ∈ R. Let x, η > 0.
Then Y η

t (x) := x exp(
√
ηWt − η

2 t)), t ≥ 0, solves the SDE (2) with Y η
0 (x) = x. Contrari-

wise, for x ≤ 0 the SDE (2) is solved by Y η
t (x) := x exp(−√ηWt − η

2 t)), t ≥ 0. Thus, for
fixed t > 0 the family of random variables Y η

t (x), x ∈ R, is not differentiable w.r.t. x at
the origin. However, since R̃ is a smooth function, the solution to the SMF (4) is smooth
w.r.t. the initial condition.

Corollary 15 Under the assumptions of Corollary 14, for every m ∈ N, f ∈ C4
b(Rdm),

Φ ∈ C4
b(P2(Rd)) and T > 0 there exists a constant C > 0 independent of η such that

sup
x1,...,xm∈Rd

sup
n:nη≤T

∣∣Ef(Xη
nη(x1), . . . , Xη

nη(xm))− Ef(Zηn(x1), . . . , Zηn(xm))
∣∣ ≤ Cη2 (27)

and
sup

µ∈P2(Rd)

sup
n:nη≤T

∣∣EΦ(µ ◦ (Xη
nη)
−1)− EΦ(µ ◦ (Zηn)−1)

∣∣ ≤ Cη2 (28)

for all η > 0.

Proof The estimate (28) can be obtained by the same argument as in the proof of Corol-
lary 14. To prove (27), we will apply Corollary 14 to the function

R̃ext(z, ξ) = R̃(z1, ξ) + . . .+ R̃(zm, ξ), z = (zi)i∈[m] ∈ Rdm, ξ ∈ Ξ.

Note that
∇R̃ext(z, ξ) =

(
∇ziR̃(zi, ξ)

)
i∈[m]

for all z = (zi)i∈[m] ∈ Rdm and ξ ∈ Ξ. Defining Zext,η
n (x), n ∈ N0, by (1) with R̃ and Rd

replaced by R̃ext and Rdm, respectively, it is easily seen that

Zext,η
n (x) = (Zηn(xi))i∈[m] , n ∈ N0,

for all x = (xi)i∈[m] ∈ Rdm.

We next set Rext(z) = EϑR̃ext(z, ξ), z = (zi)i∈[m]. Then

∇Rext(z) = (∇ziR(zi))i∈[m]

and
∇|∇Rext(z)|2 =

(
∇zi |∇ziR(zi)|2

)
i∈[m]

for all z = (zi)i∈[m] ∈ Rdm. Moreover,

Gext(z, ξ) := ∇R̃ext(z, ξ)−∇Rext(z, ξ) = (G(zi, ξ))i∈[m] ,

where G is the coefficient of (4) that equals ∇R̃ − ∇R. Under the assumptions of the
corollary, equation (4) with R and G replaced by Rext and Gext, respectively, has a unique
solution Xext,η

t (x), x ∈ Rdm, t ≥ 0. Moreover,

Xext,η
t (x) = (Xη

t (xi))i∈[m] , t ≥ 0,
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a.s. for all x = (xi)i∈[m]. Since R̃ext satisfies the assumptions of Corollary 14, one gets for

every f ∈ C4
b(Rdm)

sup
x∈Rdm

∣∣Ef(Xext,η
nη (x))− f(Zext,η

n (x))
∣∣

= sup
x1,...,xm∈Rd

sup
n:nη≤T

∣∣Ef(Xη
nη(x1), . . . , Xη

nη(xm))− Ef(Zηn(x1), . . . , Zηn(xm))
∣∣ ≤ Cη2

for a constant C > 0 independent of η. This completes the proof of the statement.

In the next example, we show that Corollary 15 cannot hold for the solution to the
classical stochastic modified equation (2), since the distribution of the two-point motion is
different from the distribution of the two-point motion of (4).

Example 3 The covariation of the two-point motion (Xη
t (x), Xη

t (x̄)), t ≥ 0, from the
SMF (4) equals

[Xη(x), Xη(x̄)]t = η

∫ t

0
Ã(Xη

s (x), Xη
s (x̄))ds, t ≥ 0, (29)

where Ã(x, y) = 〈G(x, ·) ⊗ G(y, ·)〉ϑ. However, the covariation of the two-point motion
(Y η
t (x), Y η

t (x̄)), t ≥ 0, obtained from the SDE (2), is given by

[Y η(x), Y η(x̄)]t = η

∫ t

0
Σ(Ys(x))1/2Σ(Ys(x̄))1/2ds, t ≥ 0, (30)

for Σ(x) = Ã(x, x). This implies that the processes (Xη(x), Xη(x̄)) and (Y η(x), Y η(x̄))
have different distributions in general. We further notice that the covariance of the one step
SGD dynamics defined by (1) satisfies

cov(Zη1 (x), Zη1 (y)) = η2Ã(x, y),

which is comparable with (29), but not with (30).

Next, we consider the SGD scheme Zηn = (Zi,ηn )i∈[M ], n ∈ N0, incorporating the infinite

width limit that is defined by (9), where Zi,η0 , i ∈ [M ], are i.i.d. random variables sampled
from a measure µ ∈ P2(Rd). We prove the convergence of the empirical distribution process
ΓM,η
n = 1

M

∑M
i=1 δZi,ηn , n ∈ N0, to a mean-field solution Ληt = µ ◦ (Xη

t )−1, t ≥ 0, of the

DDSMF defined by (10).

Corollary 16 Let µ ∈ P2(Rd) and µM = 1
M

∑m
j=1 δZj,η0

, where Zj,η0 , j ∈ [M ], are i.i.d.

random variables with distribution µ. Let ΓM,η
n , n ∈ N0, and Ληt , t ≥ 0, be as in (9)

and (10), respectively, with ΓM,η
0 = µM and Λη0 = µ. Assume that the function Ψ in (6)

satisfies: Ψ(·, ξ) ∈ C6
b(Rd) for ϑ-a.e. ξ ∈ Ξ,∫

Ξ

(
‖Ψ(·, ξ)‖2C6

b
+ |f(ξ)|2

)
‖Ψ(·, ξ)‖2C6

b
ϑ(dξ) <∞
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and

sup
x∈Rd

∫
Ξ

(
‖Ψ(·, ξ)‖3C0

b
+ |f(ξ)|3

)
|∇xΨ(x, ξ)|3ϑ(dξ) <∞.

Then, for every Φ ∈ C4
b(P2(Rd)) there exists a constant C > 0 independent of η and M

such that

sup
n:nη≤T

∣∣EΦ(Ληnη)− EΦ(ΓM,η
n )

∣∣ ≤ Cη2 + C
√
EW2

2 (µ, µM ) (31)

for all η > 0 and M ∈ N. In particular, if µ has finite pth moment for some p > 2, with
p 6= 4 for d ≤ 4 and p 6= d

d−2 for d ≥ 5, then for every a > 0 there exists a constant C > 0
independent of η and M such that

sup
n:nη≤T

∣∣EΦ(Ληnη)− EΦ(ΓM,η
n )

∣∣ ≤ Cη2 (32)

for all η > 0 and M ∈ N satisfying K(M)
η4
≤ a, where

K(M) =


M−

1
2 +M−

p−2
2 if d ≤ 3,

M−
1
2 ln(1 +M) +M−

p−2
2 if d = 4,

M−
2
d +M−

p−2
2 if d ≥ 5.

Proof First, we show that V ∈ C5,5
b (P2(Rd) × Rd) and G ∈ C̃4,4

b (P2(Rd) × Rd), where V
and G are given by (8). Analogously to the proof of Corollary 14, we get that F ∈ C6

b(Rd),
where F (z) = Eϑ [f(ξ) ·Ψ(z, ξ)], z ∈ Rd, and, thus, ∇F ∈ C5

b(Rd). For K(z1, z2) =
Eϑ
[
Ψ(z1, ξ) ·Ψ(z2, ξ)

]
, z1, z2 ∈ Rd, we use the dominated convergence theorem to get that

K ∈ C6
b(R2d). Using Example 1, we get, for K̃(µ, z) = 〈∇zK(z, ·), µ〉, µ ∈ P2(Rd), z ∈ Rd,

that

DK̃(µ, z1, z2) = ∇z2∇z1K(z1, z2),

with analogous expressions for higher derivatives. Thus, K̃ ∈ C5,5
b (P2(Rd) × Rd) and,

therefore, V ∈ C5,5
b (P2(Rd)× Rd). To see that G ∈ C̃4,4

b (P2(Rd)× Rd) note that

G̃(µ, z, ξ) = (f(ξ)− 〈Ψ(·, ξ), µ〉)∇zΨ(z, ξ), µ ∈ P2(Rd), z ∈ Rd, ξ ∈ Ξ,

satisfies G̃ ∈ C̃4,4
b (P2(Rd)×Rd) and Eϑ[G̃(·, ·, ξ)] ∈ C4,4

b (P2(Rd)×Rd). Moreover, we clearly
have EϑG(µ, x, ξ) = 0 for all µ ∈ P2(Rd), x ∈ Rd and supx∈Rd supµ∈P2(Rd) Eϑ|G(µ, x, ξ)|3 <
∞.

Note that one needs to check the estimate (31) only for η ∈ (0, T ]. Let Ληt (µ), t ≥ 0, be
defined by (10) for every µ ∈ P2(Rd). We next fix µ ∈ P2(Rd) and consider the empirical
distribution µM = 1

M

∑M
i=1 δZi,η0

associated with the family of i.i.d. random variables Zi,η0 ,

i ∈ [M ], sampled from the distribution µ. By Theorem 12, there exists a constant C > 0
independent of η such that

sup
µ∈P2(Rd)

sup
n:nη≤T

∣∣EΦ(Ληnη(µ))− EΦ(Γηn(µ))
∣∣ ≤ Cη2
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for all η ∈ (0, T ], where Γηn(µ), n ∈ N0, is determined by (16) with V and G given by (8).
Therefore, using the equality ΓM,η

n = Γηn(µM ) for all n ∈ N0, one has

sup
n:nη≤T

∣∣EΦ(Ληnη(µ
M ))− EΦ(ΓM,η

n )
∣∣ = sup

n:nη≤T

∣∣EΦ(Ληnη(µ
M ))− EΦ(Γηn(µM ))

∣∣
= sup

n:nη≤T

∣∣∣E [E [Φ(Ληnη(µ
M )
∣∣∣A]− E

[
Φ(Γηn(µM ))

∣∣∣A]]∣∣∣
≤ E

[
sup

n:nη≤T

∣∣∣E [Φ(Ληnη(µ
M )
∣∣∣A]− E

[
Φ(Γηn(µM ))

∣∣∣A]∣∣∣]
≤ sup

µ∈P2(Rd)

sup
n:nη≤T

∣∣EΦ(Ληnη(µ))− EΦ(Γηn(µ))
∣∣ ≤ Cη2

for all η ∈ (0, T ] and M ∈ N, where A = σ(Zi,η0 , i ∈ [M ]).
We next compare EΦ(Ληnη(µ)) with EΦ(Ληnη(µM )). Applying Lemma 11 to V = Φ and

G = 0, we can estimate

|EΦ(Ληnη(µ))− EΦ(Ληnη(µ
M ))|2 ≤ ‖Φ‖2C1

b
EW2

2 (Ληnη(µ),Ληnη(µ
M )).

Since the coefficients of the SDE (10) are Lipschitz continuous, where the Lipschitz constant
can be chosen independently of η ∈ (0, T ] due to the assumptions of the corollary and
Lemma 11, we can apply Proposition 6 to bound EW2

2 (Ληnη(µ),Ληnη(µM )). Thus, there
exists a constant C > 0 independent of η, M and n such that

EW2
2 (Ληnη(µ),Ληnη(µ

M )) ≤ CEW2
2 (µ, µM )

for all η ∈ (0, T ], M ∈ N and n ∈ N0 with nη ≤ T . This completes the proof of the first
part of the corollary.

If µ has finite pth moment for p > 2 such that p 6= 4 for d ≤ 4 and p 6= d
d−2 for d ≥ 5,

then, by Theorem 1 in Fournier and Guillin (2015),

EW2
2 (µ, µM ) ≤ C1〈φp, µ〉

2
pK(M),

where φp(x) = |x|p, x ∈ Rd, and C1 > 0 depends only on p and d. Assuming that K(M)
η4
≤ a

for some a > 0, we get

sup
n:nη≤T

∣∣EΦ(Ληnη)− EΦ(ΓM,η
n )

∣∣ ≤ Cη2 + C
√

EW2
2 (µ, µM ) ≤ Cη2 + C

√
aC1〈φp, µ〉

1
p η2.

This completes the proof of the second part of the statement.

Remark 17 Assume that the measure µ ∈ P2(Rd) has all finite moments in Corollary 16.
Then we can choose p so large that the first term in every case of the definition of the
constant K(M) dominates. Therefore, the estimate (32) holds for all η > 0 and M ≥ a

ηq ,

where q = 8 for d ≤ 3, q = 2d for d ≥ 5 and any q > 8 for d = 4, since K(M)
η4
≤ a is

satisfied for some a > 0 and large enough p.
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Céline Moucer, Adrien Taylor, and Francis Bach. A systematic approach to Lyapunov
analyses of continuous-time models in convex optimization. SIAM J. Optim., 33(3):
1558–1586, 2023. ISSN 1052-6234,1095-7189. doi: 10.1137/22M1498486. URL https:

//doi.org/10.1137/22M1498486.

Phan-Minh Nguyen. Mean field limit of the learning dynamics of multilayer neural networks.
arXiv:1902.02880, 2019. URL https://arxiv.org/abs/1902.02880.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles.
arXiv:1712.05438, 2017. URL https://arxiv.org/abs/1712.05438.

Stefan Perko. Unlocking optimal batch size schedules using continuous-time control and per-
turbation theory. arXiv:2312.01898, 2023. URL https://arxiv.org/abs/2312.01898.

Andrey Yu. Pilipenko. Support theorem on stochastic flows with interaction. Theory Stoch.
Process., 12(1-2):127–141, 2006. ISSN 0321-3900.

25

https://doi.org/10.1016/S0304-4149(99)00024-1
https://arxiv.org/abs/2207.04922
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.1073/pnas.1806579115
https://doi.org/10.1137/22M1498486
https://doi.org/10.1137/22M1498486
https://arxiv.org/abs/1902.02880
https://arxiv.org/abs/1712.05438
https://arxiv.org/abs/2312.01898


Gess, Kassing and Konarovskyi

Panpan Ren and Feng-Yu Wang. Space-distribution PDEs for path independent additive
functionals of McKean-Vlasov SDEs. Infin. Dimens. Anal. Quantum Probab. Relat. Top.,
23(3):2050018, 15, 2020. ISSN 0219-0257,1793-6306. doi: 10.1142/S0219025720500186.
URL https://doi.org/10.1142/S0219025720500186.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, September 1951. ISSN 0003-4851, 2168-8990. doi:
10.1214/aoms/1177729586.

Grant Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems:
Asymptotic convexity of the loss landscape and universal scaling of the approximation
error. arXiv:1805.00915, 2018a. URL http://arxiv.org/abs/1805.00915.

Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles: Long time
convergence and asymptotic error scaling of neural networks. In Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018b.

Grant Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of artificial neural
networks: an interacting particle system approach. Comm. Pure Appl. Math., 75(9):
1889–1935, 2022. ISSN 0010-3640.

Grant Rotskoff, Samy Jelassi, Joan Bruna, and Eric Vanden-Eijnden. Neuron birth-death
dynamics accelerates gradient descent and converges asymptotically. In International
Conference on Machine Learning, pages 5508–5517. PMLR, 2019.

Yuzuru Sato, Daiji Tsutsui, and Akio Fujiwara. Noise-induced degeneration in online
learning. Physica D: Nonlinear Phenomena, 430:133095, 2022. ISSN 01672789. doi:
10.1016/j.physd.2021.133095.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: a
central limit theorem. Stochastic Process. Appl., 130(3):1820–1852, 2020a. ISSN 0304-
4149. doi: 10.1016/j.spa.2019.06.003. URL https://doi.org/10.1016/j.spa.2019.

06.003.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: a
law of large numbers. SIAM J. Appl. Math., 80(2):725–752, 2020b. ISSN 0036-1399. doi:
10.1137/18M1192184. URL https://doi.org/10.1137/18M1192184.

Taiji Suzuki, Denny Wu, and Atsushi Nitanda. Convergence of mean-field langevin dy-
namics: Time and space discretization, stochastic gradient, and variance reduction.
arXiv:2306.07221, 2023. URL https://arxiv.org/abs/2306.07221.

Feng-Yu Wang. Image-dependent conditional McKean-Vlasov SDEs for measure-valued
diffusion processes. J. Evol. Equ., 21(2):2009–2045, 2021. ISSN 1424-3199. doi: 10.1007/
s00028-020-00665-z. URL https://doi.org/10.1007/s00028-020-00665-z.

Stephan Wojtowytsch. Stochastic Gradient Descent with Noise of Machine Learning Type
Part II: Continuous Time Analysis. J. Nonlinear Sci., 34(1):Paper No. 16, 2024. ISSN
0938-8974,1432-1467. doi: 10.1007/s00332-023-09992-0. URL https://doi.org/10.

1007/s00332-023-09992-0.

26

https://doi.org/10.1142/S0219025720500186
http://arxiv.org/abs/1805.00915
https://doi.org/10.1016/j.spa.2019.06.003
https://doi.org/10.1016/j.spa.2019.06.003
https://doi.org/10.1137/18M1192184
https://arxiv.org/abs/2306.07221
https://doi.org/10.1007/s00028-020-00665-z
https://doi.org/10.1007/s00332-023-09992-0
https://doi.org/10.1007/s00332-023-09992-0


Stochastic Modified Flows and SGD

Lei Wu, Chao Ma, and Weinan E. How SGD selects the global minima in over-parameterized
learning: a dynamical stability perspective. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. In International Conference
on Learning Representations, 2020.

Jim Zhao, Aurelien Lucchi, Frank Norbert Proske, Antonio Orvieto, and Hans Kersting.
Batch size selection by stochastic optimal control. In Has it Trained Yet? NeurIPS 2022
Workshop, 2022.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in
stochastic gradient descent: Its behavior of escaping from sharp minima and regulariza-
tion effects. In International Conference on Machine Learning, pages 7654–7663. PMLR,
2019.

27


	Introduction
	Measure-valued Diffusion and Stochastic Modified Flows
	Stochastic Modified Flows
	Measure-valued Diffusion

	Diffusion Approximation via Stochastic Modified Flows

