
Journal of Machine Learning Research 25 (2024) 1-53 Submitted 1/23; Published 1/24

Critically Assessing the State of the Art
in Neural Network Verification

Matthias König1 h.m.t.konig@liacs.leidenuniv.nl

Annelot W. Bosman1 a.w.bosman@liacs.leidenuniv.nl

Holger H. Hoos1,2,3 hh@cs.rwth-aachen.de

Jan N. van Rijn1 j.n.van.rijn@liacs.leidenuniv.nl

1Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands
2Chair for AI Methodology, RWTH Aachen University, Germany
3University of British Columbia, Canada

Editor: Scott Niekum

Abstract

Recent research has proposed various methods to formally verify neural networks against
minimal input perturbations; this verification task is also known as local robustness verifica-
tion. The research area of local robustness verification is highly diverse, as verifiers rely on
a multitude of techniques, including mixed integer programming and satisfiability modulo
theories. At the same time, the problem instances encountered when performing local
robustness verification differ based on the network to be verified, the property to be verified
and the specific network input. This raises the question of which verification algorithm
is most suitable for solving specific types of instances of the local robustness verification
problem. To answer this question, we performed a systematic performance analysis of
several CPU- and GPU-based local robustness verification systems on a newly and carefully
assembled set of 79 neural networks, of which we verified a broad range of robustness
properties, while taking a practitioner’s point of view – a perspective that complements
the insights from initiatives such as the VNN competition, where the participating tools
are carefully adapted to the given benchmarks by their developers. Notably, we show that
no single best algorithm dominates performance across all verification problem instances.
Instead, our results reveal complementarities in verifier performance and illustrate the
potential of leveraging algorithm portfolios for more efficient local robustness verification.
We quantify this complementarity using various performance measures, such as the Shapley
value. Furthermore, we confirm the notion that most algorithms only support ReLU-based
networks, while other activation functions remain under-supported.

Keywords: Benchmark Analysis, Neural Network Verification, Adversarial Robustness,
Shapley Value, Algorithm Portfolios

1. Introduction

In recent years, deep learning methods based on neural networks have been increasingly
applied within various safety-critical domains and use contexts, ranging from manoeuvre
advisory systems in unmanned aircraft to face recognition systems in mobile phones (see, e.g.,
Julian et al., 2019). Concurrently, it is now well known that neural networks are vulnerable

c©2024 Matthias König, Annelot W. Bosman, Holger H. Hoos, Jan N. van Rijn.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0119.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0119.html

König, Bosman, Hoos, van Rijn

to adversarial attacks (Szegedy et al., 2014), where a given input is manipulated, often in
subtle ways, such that it is misclassified by the network.

In the case of image recognition tasks, the perturbation required to trigger a misclassifica-
tion, whether it is adversarially crafted or arises accidentally, can be so small that it remains
virtually undetectable to the human eye. Against this background, much work has focused
on developing methods to provide formal guarantees regarding the behaviour of a given
neural network (Bastani et al., 2016; Botoeva et al., 2020; Bunel et al., 2018; Dvijotham
et al., 2018; Ehlers, 2017; Gehr et al., 2018; Henriksen and Lomuscio, 2020; Katz et al., 2017;
Scheibler et al., 2015; Tjeng et al., 2019; Wang et al., 2018b; Xiang et al., 2018). For instance,
a network employed in autonomous driving for detecting traffic signs should always produce
accurate predictions, even when the input is slightly perturbed; failing to do so could have
fatal consequences. This specific type of assessment refers to local robustness verification, a
broadly studied verification task, in which a network is systematically tested against various
input perturbations under pre-defined norms, such as the l∞-norm (Goodfellow et al., 2015;
Papernot et al., 2016).

Neural network verification with respect to local robustness is a highly diverse research
area, and existing methods rely on a broad range of techniques. At the same time, neural
networks differ in terms of their architecture, such as the number of hidden layers and nodes,
the type of non-linearities, e.g., ReLU, Sigmoid or Tanh, and the type of operations they
employ, e.g., pooling or convolutional layers. This diversity, both in terms of verification
approaches and neural network design, makes it non-trivial for researchers or practitioners
to assess and decide which method is most suitable for verifying a given neural network
(Casadio et al., 2022). This challenge is amplified by the fact that the neural network
verification community does not (yet) use commonly agreed evaluation protocols, which
makes it difficult to draw clear conclusions from the literature regarding the capabilities and
performance of existing verifiers. More precisely, existing studies use different benchmarks
and, so far, have not provided an in-depth performance comparison of a broad range of
verification algorithms, as we will further outline in Section 2.2.

Recently, a competition series has been initiated, in which several verifiers were applied
to different benchmarks (i.e., networks, properties and datasets) and compared in terms
of various performance measures, including the number of verified instances as well as
running time (Müller et al., 2023). While the results from these competitions have provided
valuable insights into the general progress in neural network verification, several questions
remain unexplored. Most importantly, the ranking of algorithms based on their aggregated
performance scores makes it difficult to assess in detail the strengths or weaknesses of
verifiers on different instances. Indeed, looking at the competition results, one easily gets
the impression that a single approach dominates ‘across the board’ — an assumption that is
known to be inaccurate for other problems involving formal verification tasks; see, e.g., Xu
et al. (2008) or Kadioglu et al. (2011) for SAT.

In this work, we focus exclusively on local robustness verification in image classification
against perturbations under the l∞-norm. This scenario represents a widely studied verifi-
cation task, with a large number of networks being publicly available and many verifiers
providing off-the-shelf support. Notice that most verification tasks can be translated into
local robustness verification queries (Shriver et al., 2021); we, therefore, believe that our
findings are broadly applicable. Moreover, we seek to go beyond existing benchmarking

2

Critically Assessing the State of the Art in Neural Network Verification

approaches and shed light on previously unanswered questions regarding the state of the
art in local robustness verification from a practitioner’s point of view – a perspective that
complements the insights from the VNN competition, where the participating tools are
carefully adapted to the given benchmarks by their developers. Our contributions are as
follows:

• We analyse the current state of practice in benchmarking verification algorithms;

• we perform a systematic benchmarking study of several, carefully chosen GPU- and
CPU-based verification methods based on a newly assembled and diverse set of networks,
including 38 CIFAR and 41 MNIST networks with different activation functions,
representing a much larger number of networks than typically considered, each verified
against several robustness properties, for which we expended a total of approximately
1 GPU and 16 CPU years in running time;

• we present a categorisation of verification benchmarks based on verifier compatibilities
with different layer types and operations;

• we quantify verifier performance in terms of the number of solved instances, running
time, as well as marginal contribution and Shapley value, showing that top-performing
verification algorithms strongly complement rather than consistently dominate each
other in terms of performance, a finding that we also show to hold for the results of
the 2022 VNN Competition – e.g., while the verifiers nnenum and PeregriNN achieved
competitive performance in the FC category of the competition, the former solved
many instances unsolved by the latter and vice versa;

• lastly, we provide a public repository containing all experimental data, along with the
newly assembled network collection.1

2. Background

Neural network verification methods seek to formally assess whether a trained neural network
adheres to some predefined input-output property. In this study, we focus on local robustness
properties. Given a trained neural network and a set of images as inputs, a robustness
verification algorithm aims to verify whether or not there exist slight perturbations to an
image that lead the network to predict an incorrect label. The maximum perturbation of
each variable in the input, i.e., a pixel in a given input image, is predefined and indicated
by the perturbation radius ε. It should be noted that recent work has proposed to move
beyond pixel-based perturbations, which account for realistic sensor errors, to semantic
perturbations, i.e., linear transformations representing changes in contrast, luminosity,
scaling, rotation, and other factors (Mohapatra et al., 2020; Henriksen et al., 2021). This
specific type of verification, however, falls outside the scope of our study.

Formal verification algorithms can be either complete or incomplete (Li et al., 2020).
An algorithm that is incomplete does not guarantee to report a solution for every given
instance; however, incomplete verification algorithms are typically sound, which means

1. https://github.com/ADA-research/nn-verification-assessment

3

https://github.com/ADA-research/nn-verification-assessment

König, Bosman, Hoos, van Rijn

they will report that a property holds only if the property actually holds. On the other
hand, an algorithm that is sound and complete, when given sufficient resources to be run to
completion, will correctly state that a property holds whenever it holds, and, in particular,
will determine accurately when the property does not hold. In this work, we focus on
complete algorithms, as those arguably represent the most ambitious form of neural network
verification, making them preferable over incomplete methods, especially in safety-critical
applications. Furthermore, we focus on the verification of real-valued networks, which are
typically considered in the verification literature, although there exist methods for the
verification of other network types; see, e.g., the work of Narodytska et al. (2018) or Jia and
Rinard (2020) on binarised networks.

2.1 Algorithmic Approaches

Early work on complete verification of neural networks utilised satisfiability modulo theories
(SMT) solvers (Katz et al., 2017, 2019; Pulina and Tacchella, 2011b,a, 2012), which determine
whether a set of logic constraints is satisfiable (Moura and Bjørner, 2009). The resulting
verification problems are NP-complete and challenging to solve in practice. Some SMT-based
verification algorithms, such as those proposed by Katz et al. (2017, 2019), employ the
well-known simplex algorithm (Dantzig, 2002) for assigning values to the SMT variables.

Alternatively, it is possible to formulate the verification task as a constraint optimisation
problem using mixed integer programming (MIP) (Botoeva et al., 2020; Dutta et al., 2018;
Lomuscio and Maganti, 2017; Tjeng et al., 2019). MIP solvers essentially optimise an
objective function subject to a set of constraints. Generally, optimisation problems are
well studied, and by approaching verification tasks from that angle, techniques and insights
from well-developed areas of computer science and operations research can be leveraged.
MIP-based verification algorithms assign variables to each node in the network and, more
specifically, encode non-linearities by means of binary variables indicating whether a node is
in an active or inactive state. Approaches differ in the way perturbations are encoded into
the program as well as in the specification of their objective function. MIP problems, similar
to SMT problems, can be challenging to solve and tend to be computationally expensive (in
terms of CPU time and memory).

To overcome the computational complexity of SMT and MIP, it has been proposed
to use the well-known branch-and-bound algorithm (Land and Doig, 2010) for solving the
verification problem, regardless of whether it is modelled as MIP or SMT (Bunel et al., 2020,
2018; De Palma et al., 2021; Ehlers, 2017; Wang et al., 2018b). Neural network verification
algorithms based on branch-and-bound consist of two main steps: (i) branching and (ii)
bounding. Branching involves splitting the domain of one or more variables (based on
the nodes in the network) into sub-problems of the original problem. These (relaxed) sub-
problems are then solved by cheap but incomplete verification algorithms, which determine
a lower bound to the verification problem, while upper bounds are found via falsification
algorithms (Dong et al., 2018). By repeating these steps, the bounds, i.e., the upper and
lower limits on the possible value of a solution to the verification problem, are tightened
in each iteration. There exist many different branching schemes and bounding algorithms,
which vary in tightness of the lower bounds and general performance.

4

Critically Assessing the State of the Art in Neural Network Verification

To formulate the constraints used in the above-mentioned methods, the non-linear
activation functions of a neural network are usually relaxed. This is mostly done by
approximating the original non-linear activation function by at least two linear functions,
forming upper and lower bounds (Ehlers, 2017; Singh et al., 2019b; Weng et al., 2018; Wong
and Kolter, 2018; Zhang et al., 2018). Employing the linear bounds as relaxation to the
activation function increases the feasible region of each variable in the model, and as the
nodes in each layer are dependent on the previous layer, the bounds on each consecutive
layer become looser. The approximation, thus, provides a trade-off, as loose and fast bounds
lead to large feasible regions while obtaining tight bounds tends to be computationally
expensive. The way in which non-linearities are approximated presents a key distinguishing
factor amongst complete verification algorithms.

Alternatively, it has been proposed to use symbolic interval propagation to compute
bounds on the output range of the network for a given input and use those as additional
constraints (Botoeva et al., 2020; Henriksen and Lomuscio, 2020; Wang et al., 2018a, 2021).
The output range of the output layer is obtained by propagating the bounds through the
network, which renders it unnecessary to encode the entire network and use computationally
expensive solvers. Symbolic interval propagation lends itself as an incomplete verification
method, but it can also complement complete methods, improving their efficiency by reducing
the size of the feasible region of the problem, compared to the looser approximation described
above.

Other bound approximation methods include polyhedra, zonotope and star-set abstraction.
Polyhedra abstraction produces one lower bound for the approximation based on the
trained network, instead of two bounds as used in symbolic interval propagation, where
the latter results in tighter bounds (Singh et al., 2019b; Zhang et al., 2018). Zonotope
abstraction is similar to polyhedra abstraction and is able to model dependencies between
the zonotope representation of different network layers (Gehr et al., 2018; Singh et al., 2018).
In contrast to polyhedron transformations, the zonotope transformations scale polynomially,
and optimisation is efficient. Star sets are a generalisation of the zonotope abstraction, as
they are not restricted to being symmetric (Bak et al., 2020). They are similar to zonotopes;
however, optimisation is less efficient, as it requires solving a linear program.

2.2 Common Practices in Benchmarking Neural Network Verifiers

Considering the diversity in neural network verification problems, it is quite natural to
assume that a single best algorithm does not exist, i.e., a method that always outperforms
all others. It is still hard to identify to what extent a method contributes to the state of the
art, mainly because verification methods are typically evaluated (i) on a small number of
benchmarks, which have often been created for the sole purpose of evaluating the method
at hand, and (ii) against baseline methods for which it is often unclear how they were
chosen, leading to several methods claiming state-of-the-art performance without having
been directly compared. We note that in the context of local robustness verification, a
benchmark most often represents a neural network classifier trained on the MNIST or
CIFAR-10 dataset, respectively.

As previously mentioned, a competition series has been established with the goal of
providing an objective and fair comparison of the state-of-the-art methods in neural network

5

König, Bosman, Hoos, van Rijn

verification, in terms of scalability and speed (Müller et al., 2023). The VNN competition was
held in the years 2020, 2021 and 2022, with different protocols (e.g., for running experiments,
scoring, etc.), benchmarks and participants. Here, we focus on the most recent, 2022 edition.
Within VNN 2022, a total of 12 benchmarks were considered, of which 6 represented test
cases for local robustness verification of image classification networks. Notice that one of
these benchmarks considers bias field perturbations, which are reduced to a standard l∞-
norm specification. Benchmarks were proposed by the participants themselves and included
a total of 13 CIFAR, 2 MNIST and 2 (Tiny)ImageNet networks, which differed in terms
of architecture components, such as non-linearities (e.g., ReLU, Tanh, Sigmoid) and layer
operations (e.g., convolutional or pooling layers, skip connections). Networks were trained
on the CIFAR-10, CIFAR-100, MNIST, TinyImageNet and ImageNet datasets, respectively.
Moreover, each benchmark was composed of random image subsets, excluding images that
were misclassified by the given network, along with varying perturbation radii.

This competition overcame several of the previously reported limitations with regard to
the evaluation of network verifiers. Most notably, it covered a relatively large and diverse
set of neural networks. Moreover, thanks to the active participation from the community, 12
verification algorithms were included in the competition. At the same time, we see room for
further research into the performance of neural network verifiers.

First and foremost, the competition seeks to determine the current state of the art;
however, the competition ranking and scores do not sufficiently quantify the extent to
which an algorithm actually contributes to the state of the art. In other words, it is in the
nature of competitions to determine a winner, at least implicitly suggesting that a single
approach generally outperforms all competitors. However, some verification algorithms
might have limited but distinct areas of strength, which cannot be identified through
aggregated performance measures, such as the total number of verified instances. Although
the competition report (Müller et al., 2023) shows that individual verifier performance differs
among benchmarks, it remains unclear whether all algorithms solve the same set of instances
in the given benchmark, or if they complement each other. Similarly, it does not reveal
whether or not methods are correlated in their performance.

Furthermore, in our study, we conducted both a joint and separate analysis of CPU-
and GPU-based methods. This choice was motivated by the inherent challenges that arise
when attempting to compare these two types of algorithms. Indeed, the competition results
suggest that GPU-based methods are more efficient than CPU-based algorithms (Müller
et al., 2023); however, GPU resources are typically more expensive to run. Additionally,
while CPU-based methods can run a single verification query on each CPU core, allowing for
multiple instances to be solved in parallel on the same machine, GPU-based methods utilise
the full GPU when solving a single verification query. In fact, running multiple queries in
parallel, each utilising a single CPU core, might be a more efficient approach than running
each query sequentially, while utilising all cores. Thus, overall, it remains challenging to
set up a comparison between CPU- and GPU-based verification algorithms in an unbiased
manner, which is why we present both a direct comparison and a separate analysis.

Finally, the competition approaches the state of the art from the perspective of a tool
developer, where the developer is given access to the benchmarks beforehand and can adapt
their implementations as well as hyperparameter settings accordingly. On the other hand, in
this study, we assess the state of the art from the perspective of a practitioner, who typically

6

Critically Assessing the State of the Art in Neural Network Verification

uses a verification tool out of the box, is bounded by the limitations of the implementations,
and might also not be able to tune the hyperparameters of these tools. We believe that both
these perspectives on the state of the art are valid and give complementary insights.

2.3 Algorithm Portfolios

In cases where the performance of an algorithm varies greatly from one instance to another
and where the performance of several different algorithms complements each other across an
instance distribution, one can make use of algorithm portfolios (Gomes and Selman, 2001;
Huberman et al., 1997). Such portfolios combine multiple algorithms in such a way that a
much broader range of performance characteristics can be exploited, compared to running a
single algorithm on its own.

Algorithm portfolios can employ all algorithms in a parallel fashion or, alternatively,
provide the basis for per-instance algorithm selection mechanisms. The latter are based on
instance-specific features, which are used to train a statistical model subsequently used for
selecting the algorithm to be run on a given problem instance, e.g., based on performance
predictions for each individual algorithm in the portfolio (Xu et al., 2011). In the former
case, all algorithms are run in parallel on a given problem instance, and the portfolio
terminates once one algorithm has returned a solution. This implicitly ensures that we
always benefit from the best-performing algorithm in the portfolio; however, it comes at the
cost of increased use of parallel resources when compared to per-instance selection from a
portfolio of algorithms. Thus, when evaluating a parallel algorithm portfolio, it is important
to ensure that all algorithms together do not exceed the global computing budget used by a
single baseline algorithm.

While parallel portfolios have already been shown to increase the efficiency of MIP-based
verification methods (König et al., 2022), they have so far not been exploited more broadly
in the context of neural network verification.

3. Verification Algorithms under Assessment

We consider 8 complete neural network verification algorithms in this work; each of these
was chosen because it fulfilled one of the following conditions: it was (i) ranked among
the top five verification methods according to the 2021 and 2022 VNN competitions or
(ii) supported by the recently published DNNV framework (Shriver et al., 2021). Table 1
presents an overview of all methods we reviewed and their eligibility for inclusion based on
the criteria specified above. Notice that some verification methods, such as Neurify (Wang
et al., 2018a) or BaDNB (De Palma et al., 2021), did not participate in the latest edition
of the VNN competition. On the other hand, it can be assumed that these methods also
contribute to the state of the art in neural network verification. For example, BaDNB, which
is part of the OVAL framework, reached third place in the 2021 edition of the competition
(Bak et al., 2021) but did not compete in 2022. Altogether, we consider our set of algorithms
to be representative of recent and important developments in the area of complete neural
network and, more specifically, local robustness verification.

All methods were employed with their default hyperparameter settings, as they would
likely be used by practitioners. In other words, one aspect of our study is to capture the
situation someone using existing tools “out of the box” might face. We note that the

7

König, Bosman, Hoos, van Rijn

Table 1: Overview of reviewed verification methods and their eligibility for inclusion in our
assessment based on their (i) completeness and (ii) presence in the top five ranking of the
2021 or 2022 VNN Competition or (iii) support through DNNV. Check marks indicate that
a verifier satisfies the criterion, while cross marks indicate that it does not. If a verifier
satisfies the inclusion criteria but is superseded by another, more recent method, the former
is not included.

Verifier Complete? In VNN Comp? In DNNV? GPU/GPU? Reference

BaB 3 7 3 CPU Bunel et al. (2018)
BaDNB 3 3 7 GPU De Palma et al. (2021)
β−CROWN 3 3 7 GPU Wang et al. (2021)
ERAN1 3 3 3 GPU Singh et al. (2019a)
Marabou 3 3 3 CPU Katz et al. (2019)
MIPVerify2 3 7 3 CPU Tjeng et al. (2019)
MN-BaB 3 3 7 GPU Ferrari et al. (2022)
Neurify 3 7 3 CPU Wang et al. (2018a)
nnenum 3 3 3 CPU Bak et al. (2020)
Planet3 3 7 3 CPU Ehlers (2017)
Reluplex4 3 7 3 CPU Katz et al. (2017)
VeriNet 3 7 3 CPU Henriksen and Lomuscio (2020)

1Superseded by MN-BaB.
2Local robustness verification not supported via DNNV.
3Superseded by BaB.
4Superseded by Marabou.

performance of a verifier might improve if its hyperparameters were optimised specifically
for the given benchmark; however, most verifiers have dozens of hyperparameters (or employ
combinatorial solvers that come with their own, extensive set of hyperparameters), which
makes this a non-trivial task, requiring additional expertise and resources (see, e.g., König
et al., 2022).

3.1 CPU-Based Methods

The CPU-based verification algorithms we considered are the following.

BaB. The algorithm proposed by Bunel et al. (2018) restates the verification problem
as a global optimisation problem, which is then solved using branch-and-bound search.
It further incorporates algorithmic improvements to branching and bounding procedures
such as smart branching ; i.e., before splitting, it computes fast bounds on each of the
possible subdomains and chooses the one with the tightest bounds. This method supports
ReLU-based networks; for the remainder of this article, we refer to it as BaBSB.

Marabou. The Marabou framework (Katz et al., 2019) employs SMT solving techniques,
specifically the lazy search technique for handling non-linear constraints. Furthermore,
Marabou employs deduction techniques to obtain information on the activation functions
that can be used to simplify them. The core of the SMT solver is simplex-based, which means
that the variable assignments are made using the simplex algorithm. Marabou supports
ReLU and Sigmoid activation functions as well as MaxPooling operations.

8

Critically Assessing the State of the Art in Neural Network Verification

Neurify. The verification algorithm proposed by Wang et al. (2018a) relies on symbolic
interval propagation to create over-approximations, followed by a refinement strategy based
on symbolic gradient information. The constraint refinement aims to tighten the bounds of
the approximation of activation functions. Neurify can process networks containing ReLU
activation functions.

nnenum. The verifier proposed by Bak et al. (2020) utilises star sets to represent the
values each layer of a neural network can attain. By propagating these through the network,
it checks whether one or more of the star sets results in an adversarial example. This verifier
can handle networks with ReLU activation functions.

VeriNet. The verifier developed by Henriksen and Lomuscio (2020) combines symbolic
intervals with gradient-based adversarial local search for finding counter-examples. The
authors further propose a splitting heuristic for interval propagation based on the influence
of a given node on the bounds of the network output. VeriNet supports networks containing
ReLU, Sigmoid and Tanh activation functions.

3.2 GPU-Based Methods

Next, we present the GPU-based verification algorithms we considered.
BaDNB. The BaDNB verifier introduced by De Palma et al. (2021) builds on earlier

versions of the BaB framework; however, it uses a novel dual formulation of the MIP, which
it solves via branch-and-bound. The novel formulation allows for extensive parallelisation on
GPUs. Furthermore, it employs a bounding heuristic which significantly reduces the number
of branches necessary for solving the verification problem. BaDNB is limited to ReLU-based
networks and MaxPooling operations.

Beta-CROWN. β-CROWN (Wang et al., 2021) is a bound propagation method com-
bined with neuron-split constraints, which divides the original problem into sub-problems
based on the activation function’s range. β-CROWN leverages neuron-split constraints,
while, in general, other bound propagation methods are not able to handle this type of
constraint. Using the framework presented by Bunel et al. (2018), the verifier is complete
and can be efficiently parallelised using GPUs. β-CROWN can handle ReLU, Sigmoid and
Tanh activations as well as MaxPooling layers.

MN-BaB. The MN-BaB verifier (Ferrari et al., 2022) builds on the multi-neuron
constraints underlying the ERAN toolkit (Müller et al., 2021; Singh et al., 2019a,b; Singh
and Gehr, 2019; Singh et al., 2018) as well as GPU-enabled linear bound propagation in a
branch-and-bound framework. MN-BaB uses different verification modes, including input-
domain splitting with bound propagation and full MIP encodings for complete verification.
It is capable of handling various activation functions and layer operations such as ReLU,
Sigmoid, Tanh, and MaxPooling.

4. Setup for Empirical Evaluation

In this work, we seek to provide a clearer picture of the state of the art in neural network
verification. More specifically, we argue that the state of the art is not just defined by a
single verification algorithm, as there might be verifiers that, on their own, perform poorly
but still make meaningful contributions by excelling on limited instance subsets that are
challenging for other verification methods. In the following, we will present an overview of

9

König, Bosman, Hoos, van Rijn

Table 2: Instance set size for each benchmark category. Solvable instances are those solved
by at least one (i.e., any) or all of the considered verifiers. We considered any instance that
was found to be sat or unsat as solved . The number of sat and unsat instances, respectively,
can be found in brackets. The column “Verifiers employed” lists (1) BaBSB, (2) Marabou,
(3) Neurify, (4) nnenum, (5) VeriNet, (6) BaDNB, (7) β-CROWN or (8) MN-BaB as the
matching suitable algorithm(s) to the respective category.

CPU methods

MNIST CIFAR

Category Total Solvable Total Solvable Verifiers employed

Any (sat/unsat) All (sat/unsat) Any (sat/unsat) All (sat/unsat)

ReLU 2 500 1 913 (169/1 744) 42 (38/4) 2 500 972 (946/26) 0 (0/0) (1),(2),(3),(4),(5)
ReLU + MaxPool 400 5 (0/5) 0 (0/0) 100 0 (0/0) 0 (0/0) (2)
Tanh 600 556 (29/527) 0 (0/0) 600 0 (0/0) 0 (0/0) (5)
Sigmoid 600 581 (37/544) 0 (0/0) 600 0 (0/0) 0 (0/0) (2),(5)

GPU methods

ReLU 2 500 2 308 (128/2 180) 948 (53/895) 2 500 2 364 (2 262/102) 1 048 (1 048/0) (6),(7),(8)
ReLU + MaxPool 400 128 (40/88) 84 (25/59) 100 64 (64/0) 0 (0/0) (6),(7),(8)
Tanh 600 319 (28/291) 0 (0/0) 600 497 (494/3) 0 (0/0) (7),(8)
Sigmoid 600 307 (35/272) 304 (0/0) 600 547 (481/66) 0 (0/0) (7),(8)

how we set up our benchmark study, i.e., how we selected problem instances and verification
algorithms. Furthermore, we will provide details on the software we used and the execution
environment in which our experiments were carried out.

4.1 Problem Instances

For our assessment, we compiled a high-quality set of problem instances for local robustness
verification. Following best practices in other research areas, such as optimisation (Hoos
and Stützle, 2004; Bartz-Beielstein et al., 2020), the benchmark should be representative
and diverse, where the former refers to how well the difficulty of the benchmark is aligned
with that of real-world instances from the same problem class, and the latter means that
the instance set should cover a wide range of difficulties.

Overall, our benchmark is comprised of 79 image classification networks, of which 38 are
trained on the CIFAR-10 dataset and 41 are trained on the MNIST dataset. To ensure the
representativeness of our benchmark set, all networks were sampled from the neural network
verification literature, i.e., networks used in existing work on local robustness verification
and provided in public repositories; in other words, the characteristics of the networks
in our benchmark are assumed to match those of networks generally used for evaluating
verification algorithms. We further want our instance set to be diverse. Therefore, we paid
special attention to ensure that the networks we considered differ in size, i.e., the number
of hidden layers and nodes, as well as the type of non-linearities (e.g. ReLU or Tanh) and
layer operations (e.g., pooling or convolutional layers) they employ. Notice that some of the
networks we considered were also used in the 2022 VNN Competition. A full overview of
the networks used in our study and their respective sources is provided in Appendix A.

Of each network, we verified 100 local robustness properties; more precisely, we sampled
100 images from the dataset on which the network has been trained and verified for local
robustness with the perturbation radius ε set at {0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025,

10

Critically Assessing the State of the Art in Neural Network Verification

41 MNIST classifiers
38 CIFAR classifiers

Networks

100 images
per classifier

Instances

5 CPU-based

Verifiers

3 GPU-based

Properties

Local robustness
with 𝜀 = 0.012

Figure 1: Schematic overview of the experimental setup.

0.03, 0.04}. To avoid over-aggregation, we firstly focused our analysis on a single value of ε,
where ε = 0.012, which represents a radius larger than 1/255, the smallest ε-ball distance
used in existing literature (Li et al., 2020), and centred around commonly chosen values for
ε (Wu et al., 2022; Botoeva et al., 2020; Wang et al., 2018b).

Lastly, we split our benchmark set into different categories based on verifier compatibilities.
This means a verifier is only applied to categories it can process. The categories as well as
the instance set size for each category are shown in Table 2.

4.2 Evaluation Metrics

In order to assess the performance of the various methods, we compute four performance
metrics: the average running time, the number of solved instances, the relative marginal
contribution and the relative Shapley value (Fréchette et al., 2016) of each verifier to the
parallel portfolio containing all (applicable) verifiers. The first two of these reflect stand-alone
performance, while the last two capture performance complementarity between verifiers and
their contribution to the overall state of the art. Although these metrics present aggregated
measures, they reflect algorithm performance on an instance level and in relation to other
methods included in our comparison; a more detailed explanation will be provided in the
following paragraphs. Notice that we do not penalise timeouts when computing average
running time; i.e., the maximum running time equals the given time limit.

The marginal contribution is computed as follows. Define V as a set of verifiers and
let s(V) be the total score of set V . Here, the total score s(V) consists of the number of
instances verified by at least one verifier in set V within a given cutoff time. We compute
the marginal contribution per algorithm to determine how much the total performance of all
algorithms (in terms of solved instances) decreases when the given algorithm is removed from
the set of all algorithms if they were employed in a parallel algorithm portfolio. Formally,
to determine the marginal contribution of any of the verifiers v to portfolio V , one needs
to know the value of s(V) and s(V \ {v}), where V \ {v} is the portfolio minus verifier v.
Thus, the marginal contribution of verifier v is expressed as

MC v(V) = s(V)− s(V \ {v}) (1)

Following this terminology, we can define the number of solved instances by verifier v as
a set consisting only of verifier v, Solvedv = s(v) − s(∅), where s(∅) = 0. In other words,
the number of solved instances employs a set of size one whereas the marginal contribution
employs a set of all verifiers under consideration. The relative marginal contribution

11

König, Bosman, Hoos, van Rijn

represents the marginal contribution of a given verifier as a fraction of the sum of every
method’s absolute marginal contribution.

Lastly, the Shapley value is the average marginal contribution of a verifier over all possible
joining orders, where joining order refers to the order in which the verifiers are added to a
parallel portfolio. This value complements the previous two metrics, as it does not assume a
particular order in which algorithms are added to the portfolio. To be precise, the number of
solved instances simply represents a joining order in which the considered algorithm comes
first and in which it is the only one added to the portfolio, whereas the marginal contribution
metric assumes a joining order in which it comes last. However, using fixed orders, as is
the case for the marginal contribution, might not reveal possible interactions between the
given method and other algorithms, e.g., it might understate the importance of a single
algorithm given the presence of another algorithm with highly correlated performance. In
such a case, both algorithms would be assigned very low marginal contribution, even though
one of them should be included in a potential portfolio. Moreover, the fixed joining order
leads to the marginal contribution metric being very sensitive to the composition of the
portfolio in question; i.e., this metric might change drastically if only a subset of methods
would be included in a given portfolio.

This is captured by the Shapley value: Consider a set of verifiers V of size n (i.e.,
|V | = n) and ΠV as the set of all permutations of V . Notice that each permutation π in ΠV

is of size n, which results in set ΠV being of size n!. Now define V π
v as the set of verifiers

where all verifiers joining after v – i.e., appearing after v in permutation π – are discarded
from π. The Shapley value of verifier v, φv, is then calculated as follows:

φv(V) =
1

n!
·
∑
π∈ΠV

(s(V π
v)− s(V π

v \ {v})) (2)

The relative Shapley value of a verifier v is obtained by dividing φv by the sum over the
(absolute) Shapley values for all verifiers under consideration; it intuitively represents the
fraction of the jointly achieved Shapley values over all verifiers that is attributed to verifier
v.

4.3 Execution Environment and Software Used

Our experiments were carried out on a cluster of machines equipped with Intel Xeon E5-2683
CPUs with 32 cores, 40 MB cache size and 94 GB RAM, running CentOS Linux 7. Each
verification method was limited to using a single CPU core per run. Each query (i.e.,
attempt to solve a verification problem instance) was given a time budget of 3 600 seconds
and a memory budget of 3 GB. Generally, we executed the verification algorithms through
the DNNV interface, version 0.4.8. DNNV is a framework that transforms a network and
robustness property into a unified format, which can then be solved by a given method
(Shriver et al., 2021). More specifically, DNNV takes as input a network in the ONNX
format, along with a property specification, and then translates the network and property
to the input format required by the verifier. After running the verifier on the transformed
problem, it returns the results in a standardised manner, where the output is either sat
if the property was falsified or unsat if the property was proven to hold. In cases where
a violation is found, DNNV also returns a counter-example to the property and validates

12

Critically Assessing the State of the Art in Neural Network Verification

it by performing inference with the network. We note that for the VeriNet toolkit, its
implementation in DNNV lags behind the standalone implementation of the verifier. While
we acknowledge that this could affect observed performance, we still chose to run each
CPU method through the DNNV interface to benefit from the broader benchmark support
provided by DNNV.

For GPU-accelerated methods, we used machines equipped with NVIDIA GeForce GTX
1080 Ti GPUs with 11 GB video memory. We provided the same time budget but did not
impose any memory constraints. The GPU-based methods we considered are not supported
by DNNV. Hence, we used the standalone implementations of these algorithms through the
β-CROWN2, OVAL−BaB3, and MN-BaB4 framework, respectively. These methods also
return a counter-example to the property in cases where a violation is found.

5. Results and Discussion

In the following, we provide an in-depth discussion of the results obtained from our exper-
iments. We distinguish between CPU-based algorithms and algorithms that also utilise
GPU resources. Table 2 shows the categories we devised based on layer types present in the
network, along with the resulting instance set sizes as well as information on which verifier
has been employed for each category. Moreover, we investigate whether there exists a single
algorithm that performs best on all instances within a given category. If we find this to not
be the case, we analyse to what extent the algorithms we considered complement each other
in performance, i.e., show strong performance on different problem instances.

5.1 CPU-Based Methods

Table 3 contains the results from our experiments using CPU-based verification algorithms.
It reports the number of problem instances solved by each verifier per network category
(see Table 2 for the total number of problem instances per category), the relative marginal
contribution, the relative Shapley value and the average running time computed over the
subset of solvable instances, i.e., instances that could be solved by at least one of the
considered methods. The relative marginal contribution and the relative Shapley value are
calculated based on the number of solved problem instances. We provide absolute values
for both the marginal contribution and Shapley value in Appendix B. Notice that instances
that were not solved within the time limit were attributed the maximum running time, i.e.,
3 600 seconds.

On ReLU-based MNIST networks, we found VeriNet to be the best-performing verifier,
solving 1 799 out of 2 500 instances, while achieving a relative Shapley value of 0.32. However,
taking relative marginal contribution into account, we found that Neurify achieved the
highest relative marginal contribution of 0.25 (compared to 0.16 for VeriNet), indicating
that it could verify a sizable fraction of instances on which other methods failed to return a
solution. Moreover, the relative marginal contribution scores show that each method could
solve a sizeable fraction of instances unsolved by any other method.

2. Commit 7a46097192207dfbb2fa7135857d6bc4ae7d6cd5
3. Commit 9e1606044759da5693f226ce489e9d4dded21bd6
4. Commit 2aa12b145bb61342f4c464b64be3467b3a275e46

13

König, Bosman, Hoos, van Rijn

Table 3: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value
(φ) and CPU running time averaged per problem instance, computed for each category for
ε = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time
[CPU s] [CPU s]

BaBSB 358 0.22 0.06 3 241 307 0.00 0.09 2 924
Marabou 1 001 0.19 0.16 1 801 400 0.00 0.12 2 153
Neurify 871 0.25 0.14 1 964 915 0.75 0.42 235
nnenum 1 754 0.17 0.31 389 76 0.05 0.03 3 337
VeriNet 1 799 0.16 0.32 263 841 0.20 0.34 500

ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

Marabou 5 1.00 1.00 57 0 0.00 0.00 3 600

Tanh
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

VeriNet 556 1.00 1.00 55 0 0.00 0.00 3 600

Sigmoid
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

Marabou 0 0.00 0.00 3 600 0 0.00 0.00 3 600
VeriNet 581 1.00 1.00 55 0 0.00 0.00 3 600

On ReLU-based CIFAR networks, it should first be noted that there is no verification
problem instance that can be solved by all verifiers, highlighting the structural differences
between instances and the sensitivity of the verification approaches to those differences.
That said, Neurify slightly outperformed VeriNet in terms of the number of solved instances
(915 vs 841 out of 2 500). Furthermore, Neurify achieved a much larger relative marginal
contribution than VeriNet (0.75 vs 0.20), which means that the former could solve a relatively
large number of instances which could not be solved by the other methods. Generally, relative
marginal contribution scores are much less evenly distributed among verifiers when compared
to the MNIST dataset.

Figure 2a and 2b show an instance-level comparison of the two best-performing algorithms
(in terms of relative Shapley value) in the ReLU category for each dataset. In Figure 2a, we
see that on MNIST networks, both VeriNet and nnenum solved instances that the other one,
in turn, could not solve within the given time budget. Concretely, when considering a parallel
portfolio containing both algorithms (see Section 2.3), the number of solved instances slightly

14

Critically Assessing the State of the Art in Neural Network Verification

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

Result
Unsat
Unsolved
Sat

(a) CPU - MNIST

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], Neurify

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

(b) CPU - CIFAR

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
M

N
-B

aB

(c) GPU - MNIST

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
B

aD
N

B

(d) GPU - CIFAR

Figure 2: Performance comparison of the two top-performing verification methods (in terms
of relative Shapley value) in the ReLU category for CPU-based methods on (a) MNIST and
(b) CIFAR networks as well GPU-based methods on (c) MNIST and (d) CIFAR networks.
Each data point represents an instance, and its position on a given axis represents the
performance in terms of running time of the respective solver. The diagonal line represents
the point on which both verifiers perform equally well. The verifier represented on the x-axis
performs better on instances above the diagonal line, and the verifier represented on the
y-axis performs better on instances below the diagonal line. Instances that were not solved
within the time limit are displayed with the maximum running time (i.e., 3 600 seconds).

15

König, Bosman, Hoos, van Rijn

increases to 1 817 out of 2 500 (vs 1 799 solved by VeriNet and 1 754 solved by nnenum alone),
while supplied with similar CPU resources (i.e., 1 800 CPU seconds per verifier, adding up
to the same combined maximum running time as running a single verifier with 3 600 CPU
seconds). We note that leveraging parallel portfolios has already been shown to significantly
improve the performance of MIP-based verification methods (König et al., 2022).

On CIFAR instances, we found Neurify and VeriNet to also have distinct strengths over
each other. This is shown in Figure 2b, where both algorithms could solve a substantial
amount of instances that the other could not return a solution for. Thus, when combined in
a parallel portfolio, 963 instances can be solved (vs 915 solved by Neurify and 841 solved
by VeriNet alone, out of 2 500 instances), while using the same amount of CPU resources,
i.e., 1 800 CPU seconds per verifier. These findings further emphasise the complementarity
between the verification algorithms considered in our study. All remaining verifiers achieved
much lower relative Shapley values and relative marginal contribution scores, indicating that
they would not substantially strengthen the performance of a portfolio already containing
Neurify and VeriNet.

Figure 3a shows the cumulative distribution function of running times over the MNIST
problem instances. As seen in the figure, VeriNet tends to solve these problem instances
fastest; however, Neurify tended to show even better performances on those instances it was
able to solve. We note that most of the instances unsolved by Neurify represent networks
that were trained on images with 3 dimensions, whereas Neurify requires images used as
network inputs to have 2 or 4 dimensions.

Figure 3b shows a similar plot for the CIFAR problem instances. Here, Neurify solved
the largest fraction in less time than other methods. This suggests that Neurify is a very
competitive verifier when applicable to the specific network or input format.

For each of the remaining categories, we found that there is only one verifier that
could effectively handle the respective problem instances. Specifically, instances from the
ReLU+MaxPooling category can be processed by Marabou, although, only a modest number
of MNIST instances could be solved in this way. Networks containing Tanh activation
functions can, in principle, be verified by VeriNet but the algorithm did nonetheless not
solve any CIFAR instances. Lastly, Sigmoid-based networks can be handled by both VeriNet
and Marabou, however, only the former could solve MNIST instances within the given time
and memory budget.

5.2 GPU-Based Methods

Table 4 summarises the results from our experiments using GPU-based verification algorithms.
On ReLU-based MNIST networks, β-CROWN outperformed other methods in terms of both
the number of solved problem instances as well as the average running time. At the same
time, the relative Shapley values of β-CROWN and MN-BaB indicate that these methods
complement each other with respect to their performance on this instance set.

On ReLU-based CIFAR networks, Table 4 shows that BaDNB outperformed both MN-
BaB and β-CROWN, with the former solving 2 332 and the latter solving 1 639 and 1 828
out of 2 500 verification problem instances, respectively. Furthermore, both BaDNB and
β-CROWN achieve large relative Shapley values, suggesting their complementarity in an
algorithm portfolio.

16

Critically Assessing the State of the Art in Neural Network Verification

100 101 102 103

CPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed

BaBSB
Marabou
Neurify
nnenum
Verinet

(a) CPU - MNIST

100 101 102 103

CPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed

BaBSB
Marabou
Neurify
nnenum
Verinet

(b) CPU - CIFAR

10 2 10 1 100 101 102 103

GPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed

-CROWN
BaDNB
MN-BaB

(c) GPU - MNIST

10 2 10 1 100 101 102 103

GPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed
-CROWN

BaDNB
MN-BaB

(d) GPU - CIFAR

Figure 3: Cumulative distribution of the fraction of instances solved by the considered
verification algorithms in the ReLU category as a function of CPU running time. The plots
at the top are for CPU-based algorithms, whereas those at the bottom are for GPU-based
algorithms, on MNIST and CIFAR.

Figure 2c and 2d show the instance-level comparison of the two best-performing algorithms
(in terms of relative Shapley value) in the ReLU category for each dataset. Looking at
Figure 2c, one can see that there is a fairly large number of MNIST instances unsolved by
β-CROWN but solved by MN-BaB as well as the other way around.

On the other hand, BaDNB and β-CROWN seem to have distinctive strengths over
each other on CIFAR instances, as can be seen in Figure 2d: The data points indicating
performance on each verification instance are spread out widely around the line of equal
performance, showing that there are many instances that one method can solve faster than
the other and vice versa.

17

König, Bosman, Hoos, van Rijn

Table 4: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value
(φ) and average GPU running time, computed for each category for ε = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time
[GPU s] [GPU s]

BaDNB 1 188 0.31 0.19 1 760 2 332 0.90 0.45 116
β-CROWN 2 247 0.00 0.42 96 1 828 0.03 0.29 814
MN-BaB 2 103 0.69 0.39 325 1 639 0.07 0.26 1 110

ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

BaDNB 85 0.00 0.22 1 399 0 0.00 0.00 3 600
β-CROWN 128 1.00 0.44 0.4 0 0.00 0.00 3 600
MN-BaB 115 0.00 0.34 366 64 1.00 1.00 0.008

Tanh
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

β-CROWN 319 1.00 1.00 1.16 497 1.00 1.00 0.70
MN-BaB 0 0.00 0.00 3 600 0 0.00 0.00 3 600

Sigmoid
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

β-CROWN 306 0.66 0.50 13 538 0.95 0.68 60
MN-BaB 305 0.33 0.50 24 338 0.05 0.32 1 376

Concurrently, MN-BaB solves a large fraction of CIFAR instances in less time than other
methods, although BaDNB solves more instances overall, which is also reflected in Figure 3d.
On MNIST instances, MN-BaB solves more instances in less time than β-CROWN, although
β-CROWN solves more instances overall; see also Figure 3c.

On MNIST networks containing ReLU activation functions and MaxPooling operations,
we again found relatively large Shapley values for both β-CROWN and MN-BaB, as presented
in Table 4, indicating their potential complementarity in an algorithm portfolio. However,
the relative marginal contribution values indicate that there are no instances unsolved by
β-CROWN that could be solved by other methods. CIFAR instances in this category could
only be verified by MN-BaB, due to verifier incompatibilities with the respective network
structures unrelated to the MaxPooling operations.

Table 4 further shows results for the Tanh category. We found that instances in this
category could effectively only be handled the β-CROWN verifier. Concretely, MN-BaB

18

Critically Assessing the State of the Art in Neural Network Verification

returned an error for the instances in this category; see also Appendix C for additional
details.

Lastly, networks containing Sigmoid activation functions can be handled by both BaDNB
and β-CROWN and achieve perfectly similar relative Shapley values on the MNIST instances
in this category, indicating their complementarity in an algorithm portfolio. However, as seen
in Table 4, this does not hold for CIFAR instances, where β-CROWN seems to dominate in
performance.

5.3 Error Analysis

Although the verification methods should, in principle, be able to solve the instances in the
category they are applied to, we found many instances left unsolved, not only due to time or
memory constraints but also due to other, unexpected issues. Hence, to understand better
why certain instances could not be solved by a given verifier, we categorised and counted
the errors returned by each verification system. For this analysis, we focused on instances
in the ReLU category; results for the remaining categories are presented in Appendix C.
The number of instances solved by each method can be found in Table 3 for CPU- and
Table 4 for GPU-based algorithms. The total number of instances in the ReLU category is
2 500 for MNIST and CIFAR, respectively. We distinguish between timeouts, out-of-memory
and miscellaneous errors, where the latter includes verifier-specific errors of which most are
undefined and not trivial to resolve, especially without in-depth knowledge of the verifier at
hand.

Figure 4a and 4b show the errors returned by CPU-based methods for MNIST and
CIFAR instances, respectively. On MNIST, most verifiers failed to solve a given instance
due to timeouts, except for nnenum, which mostly ran into memory issues, and Neurify,
which requires images used as network inputs to have 2 or 4 dimensions, as mentioned in
Section 5.1. Notice that when supplied with a larger memory budget, nnenum could not
solve substantially more instances, but produced a comparably large number of timeouts
instead; more details can be found in Appendix D.1.

Interestingly, we made different observations with regard to the CIFAR instances. Here,
each method mostly returned errors related to the network structure (or undefined errors).
Besides this, nnenum again failed to verify a sizable fraction of instances due to memory
limitations. Overall, we found CIFAR networks to be much less supported by the CPU-based
methods we considered (as implemented in the DNNV framework) than MNIST networks,
arguably due to the increased complexity of the former. We note that some of these errors
could potentially be circumvented by resorting to the standalone implementations of the
respective verifiers. However, overall, DNNV provides the broadest support for different
network structures and operations (Shriver et al., 2021).

On the other hand, GPU-based verifiers show greater support for the considered networks
than CPU-based methods. As seen in Figure 4c, only BaDNB failed to solve a relatively large
number of MNIST instances due to unsupported network structures or other, unspecified
technical reasons.

In contrast, BaDNB could solve almost all CIFAR instances, as shown in Figure 4d.
However, both MN-BaB and β-CROWN returned several errors of which most are undefined.

19

König, Bosman, Hoos, van Rijn

BaBSB Marabou Neurify nnenum Verinet
0

500

1000

1500

2000

2500

185

1000

1757

906

452

697

200

593

177

746

4

Error type
miscellaneous
timeout
out-of-memory

(a) CPU - MNIST

BaBSB Marabou Neurify nnenum Verinet
0

500

1000

1500

2000

2500

1472
1400 1400 1400 1400

521

300

70 59
200

400

115

1024

200

(b) CPU - CIFAR

BaDNB MN-BaB -CROWN
0

500

1000

1500

2000

2500

1312

301 251

0
96

2

(c) GPU - MNIST

BaDNB MN-BaB -CROWN
0

500

1000

1500

2000

2500

266

930

752

0 31 20

(d) GPU - CIFAR

Figure 4: Frequency of error types returned by the considered verification algorithms on
instances in the ReLU category.

Overall, our results suggest that many verification toolkits only support a limited set
of networks. This occurs despite the fact that these networks are provided in onnx format,
which should, in principle, be supported by each method considered in this study. Similar
findings have been reported in the literature (see, e.g., Meng et al., 2022).

5.4 Analysis on Broader Set of Perturbation Radii

So far, we have considered a single value of ε, but it stands to reason that changing the
perturbation radius may affect algorithm behaviour. Therefore, we conducted further
analysis on a broader set of perturbation radii, i.e., with ε set to values of 0.004, 0.005,
0.008, 0.01, 0.012, 0.02, 0.025, 0.03 and 0.04.

Table 5 shows the results for the CPU-based algorithms on this extended set of problem
instances. Overall, we found VeriNet remains the best-performing CPU-based verifier (in
terms of solved instances and relative Shapley value) on ReLU-based MNIST networks.

20

Critically Assessing the State of the Art in Neural Network Verification

Table 5: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value
(φ) and average CPU running time, computed for each category and ε ∈ {0.004, 0.005, 0.008,
0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time
[CPU s] [CPU s]

BaBSB 3 716 0.06 0.06 3 223 2 690 0.00 0.09 2 964
Marabou 9 457 0.44 0.19 1 721 3 651 0.01 0.12 2 145
Neurify 8 206 0.12 0.14 1 899 8 173 0.71 0.41 289
nnenum 15 144 0.16 0.30 543 744 0.04 0.03 3 315
VeriNet 15 800 0.23 0.32 367 7 674 0.24 0.35 486

ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

Marabou 316 1.00 1.00 50 0 0.00 0.00 3 600

Tanh
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

VeriNet 4 307 1.00 1.00 59 0 0.00 0.00 3 600

Sigmoid
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

Marabou 0 0.00 0.00 3 600 0 0.00 0.00 3 600
VeriNet 4 728 1.00 1.00 59 0 0.00 0.00 3 600

With regard to ReLU-based CIFAR networks, Table 5 shows that, overall, Neurify remained
the best-performing CPU-based method.

However, we observed substantial differences between small and large values of ε in
the relative marginal contribution for each algorithm. More precisely, we analysed the
relative marginal contribution of each verification algorithm for every given value of ε and
show this in Figure 5c. Interestingly, one can see how the relative marginal contribution
of Marabou steeply increases for increasingly larger epsilons, while that of other methods
declines. Similarly, the solved instances and relative Shapley value achieved by each method
changes as the perturbation radius varies; this is visualised in Figure 5a and 5e. In terms of
both metrics, Marabou is strongly outperformed by most of the other algorithms for small
values of ε but ends up achieving competitive or even better performance when ε is large.

An analogous investigation for CIFAR is shown in Figure 5d. In contrast to MNIST, one
can see that the relative marginal contribution of each method is relatively weakly affected
by the perturbation radius and, except for some divergence around ε = 0.005, remains at a

21

König, Bosman, Hoos, van Rijn

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

500

1000

1500

2000

2500
BaBSB
Marabou
Neurify
nnenum
Verinet

(a) MNIST - Instances solved

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

200

400

600

800

1000

(b) CIFAR - Instances solved

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.1

0.2

0.3

0.4

0.5

(c) MNIST - RMC

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.2

0.4

0.6

0.8

(d) CIFAR - RMC

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.05

0.10

0.15

0.20

0.25

0.30

(e) MNIST - Rel. Shapley Value

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.1

0.2

0.3

0.4

(f) CIFAR - Rel. Shapley Value

Figure 5: Performance of CPU-based verifiers for different values of ε in the ReLU category.

stable level. This holds for both solved instances and relative Shapley value as shown in
Figure 5b and 5f.

We performed a similar analysis for GPU-based methods and present results, aggregated
over all values of ε, in Table 6. Among these algorithms, β-CROWN performed best on
MNIST networks in the ReLU category, while BaDNB performed best on CIFAR networks
in the same category. However, we found that the relative marginal contribution of each
algorithm for every considered value of ε differs substantially between small and large values
of ε on MNIST instances, as shown in Figure 6c. For example, when ε = 0.02, BaDNB and

22

Critically Assessing the State of the Art in Neural Network Verification

Table 6: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value
(φ) and average GPU running time, computed for each category and aggregated ε ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time
[GPU s] [GPU s]

BaDNB 9 886 0.71 0.19 1 864 21 438 0.90 0.45 100
β-CROWN 18 955 0.02 0.42 148 17 014 0.03 0.30 783
MN-BaB 17 799 0.27 0.39 363 14 675 0.07 0.25 1 174

ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

BaDNB 720 0.03 0.22 1 493 0 0.00 0.00 3 600
β-CROWN 1 127 0.96 0.46 19 0 0.00 0.00 3 600
MN-BaB 966 0.01 0.32 366 576 1.00 1.00 0.008

Tanh
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

β-CROWN 2 576 1.00 1.00 1.16 4 535 1.00 1.00 0.75
MN-BaB 0 0.00 0.00 3 600 0 0.00 0.00 3 600

Sigmoid
Verifier MNIST CIFAR

Solved RMC φ Avg. Time Solved RMC φ Avg. Time

β-CROWN 2 617 0.66 0.50 23 4 961 0.97 0.69 46
MN-BaB 2 601 0.33 0.50 44 3 042 0.03 0.31 1 420

MN-BaB both achieve relative marginal contribution scores close to 0.5 but then strongly
converge as ε becomes larger. Notably, these changes are not reflected in the relative Shapley
values achieved by each method, where β-CROWN and MN-BaB both reach values close to
0.40 for every value of ε; see Figure 6e for more details.

On CIFAR instances, Figure 6d indicates that the relative marginal contribution scores
are only marginally affected by the chosen perturbation radius. More precisely, BaDNB
achieves the largest relative marginal contribution for every value of ε, while the relative
marginal contributions of β-CROWN and MN-BaB only change slightly as the perturbation
radius increases. At the same time, the observed Shapley values are mostly stable with
regard to the perturbation radius, as shown in Figure 6f.

Lastly, we again compared the performance of the two best-performing CPU as well as
GPU methods on an instance-level for all MNIST and CIFAR networks, respectively, from
the ReLU category and show the results in Figure 7. In each case, we found that one method

23

König, Bosman, Hoos, van Rijn

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

1000

1250

1500

1750

2000

2250
BaDNB
MN-BaB
-CROWN

(a) MNIST - Instances solved

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

1600

1800

2000

2200

2400

(b) CIFAR - Instances solved

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.2

0.4

0.6

0.8

(c) MNIST - RMC

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.2

0.4

0.6

0.8

(d) CIFAR - RMC

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.20

0.25

0.30

0.35

0.40

(e) MNIST - Rel. Shapley value

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.25

0.30

0.35

0.40

0.45

(f) CIFAR - Rel. Shapley value

Figure 6: Performance of GPU-based verifiers for different values of ε in the ReLU category.

could solve some instances that were unsolved by the other, irrespective of the perturbation
radius. Notice that our findings hold even for a much larger value of ε. Specifically, we
ran the two best-performing CPU-based algorithms, nnenum and VeriNet, on the MNIST
instances for ε = 0.2 and present the results in Appendix D.2.

Overall, this clearly demonstrates that our observation of performance complementarity
between verification algorithms holds for a broad range of perturbation radii.

24

Critically Assessing the State of the Art in Neural Network Verification

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105
C

PU
 ti

m
e

[s
],

Ve
ri

ne
t

Epsilon
0.004
0.005
0.008
0.01
0.012
0.02
0.025
0.03
0.04

(a) CPU - MNIST

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], Neurify

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
N

et
(b) CPU - CIFAR

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
M

N
-B

aB

(c) GPU - MNIST

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], -CROWN

10 3

10 2

10 1

100

101

102

103

104

105
G

PU
 ti

m
e

[s
],

B
aD

N
B

(d) GPU - CIFAR

Figure 7: Performance comparison of the two top-performing verification methods (in terms
of relative Shapley value) in the ReLU category for CPU-based methods on (a) MNIST and
(b) CIFAR networks as well GPU-based methods on (c) MNIST and (d) CIFAR networks,
using multiple values of the perturbation radius ε.

5.5 Joint Analysis of CPU- and GPU-Based Methods

As previously explained, directly comparing CPU- and GPU-based algorithms is a challenging
endeavour, due to the different parallelisation schemes as well as the costs associated with
running these algorithms. Here, we seek to capture both of these aspects by conducting
a cost-calibrated analysis. More concretely, we compared these methods whilst factoring
in the price of operating them on a prominent cloud computing platform. To this end, we

25

König, Bosman, Hoos, van Rijn

investigated the price difference between Amazon EC2 CPU instances comparable to the
resources allocated in this study.5 Notice that this hardware is not the exact hardware used
in our experiments but is being used here as a substitute for calculating the cost of running
similar hardware. Based on this cost difference, we reduced the time budget for GPU-based
methods by a factor of 46.9, thereby ensuring that these methods cannot exceed the cost
budget given to the CPU-based algorithms. While we carefully calibrated this factor based
on existing prices, it must be noted that this analysis is based on many assumptions, and
therefore, the comparison between CPU and GPU-based solvers serves only illustrative
purposes.

Results from this analysis can be found in Table 7 for ε = 0.012 and Table 8 for the
full range of values of ε we considered. First and foremost, it can be seen that despite the
higher costs associated with GPU resources, GPU-based verification tools (in particular
β-CROWN, MN-BaB) are in many scenarios the most cost-efficient verifiers. However, the
results also show that there exist scenarios in which CPU-based methods complement GPU-
based methods in their performance. More concretely, Table 8 shows that the CPU-based
verifier Marabou achieved the largest relative marginal contribution among all methods on
MNIST networks from the ReLU category, indicating that it could solve a sizeable number
of instances, which none of the other CPU- or GPU-based methods were able to solve
within the same budget. In addition, the CPU-based verifier VeriNet achieved competitive
marginal contribution and Shapley values. Furthermore, in the Tanh category, VeriNet was
able to solve a large fraction of instances for which β-CROWN failed to return a solution;
this observation holds when analysing both a single value of ε as well as the whole set of
considered perturbation radii.

5.6 Analysis of unsat instances

To gain further insights, we performed an analysis of unsat (i.e., robust) instances; see Table 2
for the number of unsat instances that were found in each network category. More concretely,
we considered only unsat instances as solved, since several verification methods considered
in this study use counter-example generation mostly as an early stopping opportunity. Thus,
unsat instances pose an interesting subset of the benchmark, as it measures the ability of a
method to determine robustness in cases where no such counter-example exist. Furthermore,
commonly used robustness metrics, such as adversarial accuracy, are computed by means of
the fraction of unsat instances in a given instance set. Therefore, verification methods that
can efficiently solve those instances enable a more accurate calculation of these metrics.

Table E.1 shows result from this analysis for ε = 0.012 while Table E.2 shows results
aggregated over the full range of ε values we considered. First of all, we found that the
total number of solved instances decreases when only unsat instances are considered. This is
particularly noticeable for CIFAR, where the majority of instances are non-robust or, in other
words, sat. Furthermore, we observed only minor changes in the relative performance and
complementarity of the given verifiers on MNIST instances across all categories. Specifically,
we found that for the broader set of ε values, the RMC and Shapley value of Marabou

5. We selected the t2.medium and the g4dn.8xlarge instances, which cost $0.0464 and $2.176 per hour,
respectively, see https://aws.amazon.com/ec2/pricing/on-demand/. Notice that there also exists the
even cheaper t2.small instance with only a single CPU core; however, we did not select this machine as it
has only 2 GB RAM.

26

https://aws.amazon.com/ec2/pricing/on-demand/

Critically Assessing the State of the Art in Neural Network Verification

improve substantially, while those for VeriNet strongly deteriorate. This indicates that on
unsat instances, Marabou can solve a large fraction of instances unsolved by other methods,
while VeriNet mainly contributes when sat instances are also considered. For CIFAR,
we also noticed that the relative performance of the given verifiers changed. Specifically,
MN-BaB, which previously achieved competitive relative performance does not seem to
complement other methods on unsat instances; instead, most instances are solved by BaDNB
and β-CROWN, which also show strong complementarity in the ReLU category.

5.7 Analysis of the 2022 VNN Competition Results

To see if and to what extent our observations hold for a larger set of verifiers as well as
different benchmarks, we analysed the results of the 2022 edition of the VNN competition.
We refer to the accompanying report (Müller et al., 2023) for more information about the
participating tools, benchmarks and further technical details. Again, we present a joint as
well as a separate analysis of CPU- and GPU-based verification algorithms. We excluded
CGDTest from the set of methods considered in our analysis, as it represents the only
incomplete verification approach participating in the competition, while our work focuses on
complete verification. In addition, CGDTest produced a substantial number of incorrect
results in the competition, casting doubts on the soundness of the method.

Table F.1 in the appendix shows the results from the VNN competition for CPU-based
verification algorithms. It reports the number of problem instances solved by each verifier
per network category, marginal contribution as well as Shapley values, both in absolute
and relative terms. Most notably, we observe strong complementarity between the verifiers
considered in two of the three benchmark categories. Concretely, in the CNN + ResNet
category, Marabou and VeraPak achieved relative Shapley values of 0.44 and 0.24, respectively.
Indeed, as depicted in Figure F.1c, there are several instances solved by one of the verifiers
but unsolved by the other.

In the FC category, Marabou, nnenum and PerigiNN achieved a similar relative Shapley
value of 0.24, again highlighting the complementarity between these algorithms. Given the
similar relative Shapley values, we resort to the relative marginal contribution to determine
the two best-performing methods in this context; i.e., among these three methods, nnenum
and PerigiNN achieved the largest relative marginal contributions and are, thus, considered
the two best-performing methods. Again, we compare their performance on an instance
level, as shown in Figure F.1e. As can be observed, instances spread out widely around the
equal performance line of the plot, with many instances solved by nnenum but unsolved by
PerigiNN, and vice versa.

In the Complex category, nnenum and PeregriNN achieved Shapley values of 0.46 and
0.50, respectively. However, Figure F.1a reveals that nnenum dominates in performance
over PeregriNN on most instances. We note that the Shapley value represents the average
contribution made by a given verifier over all possible sets of algorithms in a portfolio. Hence,
it indicates that nnenum could solve many instances unsolved by other methods from the full
set of algorithms under consideration; however, nnenum does not complement PeregriNN in
terms of solved instances.

Next, we discuss the results from the 2022 VNN Competition for GPU-based verification
algorithms; these are presented in Table F.2 in the appendix. Surprisingly, for GPU-

27

König, Bosman, Hoos, van Rijn

Table 7: Performance comparison of CPU- and GPU-based verification algorithms in terms
of the number of solved instances, relative marginal contribution (RMC), relative Shapley
value (φ), computed for each category and ε = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

BaDNB 1 171 0.12 0.25 2 217 0.46 0.43
BaBSB 358 0.00 0.00 307 0.00 0.00
β-CROWN 2 245 0.00 0.23 1 819 0.27 0.34
Marabou 1 001 0.06 0.03 400 0.00 0.00
MN-BaB 2 083 0.71 0.38 1 622 0.28 0.19
Neurify 871 0.06 0.03 915 0.00 0.03
nnenum 1 754 0.00 0.03 76 0.00 0.00
VeriNet 1 799 0.06 0.03 841 0.00 0.01

ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

BaDNB 69 0.00 0.05 0 0.00 0.00
β-CROWN 128 1.00 0.67 0 0.00 0.00
Marabou 5 0.00 0.00 0 0.00 0.00
MN-BaB 115 0.00 0.27 64 1.00 1.00

Tanh
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

β-CROWN 319 0.09 0.19 198 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 556 0.91 0.81 0 0.00 0.00

Sigmoid
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

β-CROWN 306 0.00 0.03 538 0.96 0.82
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 305 0.00 0.03 338 0.04 0.18
VeriNet 581 1.00 0.93 0 0.00 0.00

based methods, our findings from analysing the competition results differ from those made
in our previous assessment, as they do not reveal strong complementarity between the
algorithms. Specifically, β-CROWN dominates in performance on every instance in each

28

Critically Assessing the State of the Art in Neural Network Verification

Table 8: Performance comparison of CPU- and GPU-based verification algorithms
in terms of the number of solved instances, relative marginal contribution (RMC),
relative Shapley value (φ), computed for each category and aggregated ε ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

BaDNB 9 455 0.10 0.20 20 408 0.48 0.43
BaBSB 3 716 0.00 0.00 2 690 0.00 0.00
β-CROWN 18 907 0.03 0.18 16 997 0.31 0.36
Marabou 9 457 0.44 0.20 3 651 0.00 0.00
MN-BaB 17 601 0.14 0.24 14 581 0.20 0.16
Neurify 8 206 0.04 0.02 8 173 0.00 0.03
nnenum 15 144 0.00 0.03 744 0.00 0.00
VeriNet 15 800 0.24 0.12 7 674 0.00 0.01

ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

BaDNB 580 0.00 0.00 0 0.00 0.00
β-CROWN 1 127 0.99 0.74 0 0.00 0.00
Marabou 316 0.00 0.00 0 0.00 0.00
MN-BaB 966 0.00 0.22 576 1.00 1.00

Tanh
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

β-CROWN 2 576 0.17 0.24 4 535 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 4 307 0.83 0.76 0 0.00 0.00

Sigmoid
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

β-CROWN 2 617 0.00 0.05 4 961 0.97 0.83
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 2 601 0.00 0.05 3 042 0.03 0.17
VeriNet 4 728 1.00 0.90 0 0.00 0.00

category, although relative Shapley values indicate complementary (for similar reasons as
those outlined above).

29

König, Bosman, Hoos, van Rijn

This reflected in Figure F.1b, Figure F.1d and Figure F.1f. Concretely, these plots show
the performance on an instance level for the two top-performing methods in each category
(in terms of relative Shapley values). In the Complex and FC category, these are β-CROWN
and MN-BaB, while in the CNN + ResNet category, these are β-CROWN and VeriNet. The
latter category represents the only category in which a small degree of complementarity can
be observed, as both verifiers solved some instances unsolved by the other. However, the
fraction solved by VeriNet remains comparably small.

Finally, Table F.3 presents the joint analysis of CPU- and GPU-based methods based
on the competition results. Notice that we did not perform a cost calibration in this case,
as verifiers were employed on hardware with about equal costs. Most interestingly, we
observed performance complementary between these methods in the CNN+ResNet category.
More specifically, the CPU-based Marabou solver could solve several instances unsolved
by GPU-based β-CROWN verifier, although the latter solved the most instances overall,
as reflected in the relative Shapley values (0.53 vs 0.32). Again, this shows that there
exist scenarios in which CPU-based methods complement GPU-based methods in their
performance.

Overall, we find that the biggest difference between the results of the VNN competition
and the results obtained in this study is the degree of complementarity between the GPU-
based verification algorithms, as reflected by the marginal contribution and Shapley values.
While the results from the VNN competition suggest that there is a single best GPU-based
verifier that broadly dominates all other methods, the results presented in our study reveal a
more nuanced story. This difference can most likely be attributed to the size and the diversity
of the proposed benchmark: while the 2022 VNN Competition considered 17 neural networks
as test cases for local robustness verification, our benchmark consists of 79 networks. At
the same time, the competition provides valuable insights into how the considered verifiers
perform when carefully adapted to a specific benchmark. Moreover, while both analyses
have clear contributions, our results highlight the importance of introducing a larger and
more diverse benchmark set.

6. Conclusions and Future Work

In this work, we assessed the performance of a collection of well-known, complete local
robustness verification algorithms, i.e., algorithms used to verify the robustness of an image
classification network against small input perturbations. We found that all of these methods
support ReLU-based networks, while other network types are strongly under-supported.
While this has been suspected in the community, it has, to our knowledge, not yet been
subject to formal study. Generally, we observed that all considered verification algorithms
show severe limitations with regard to the network structures they can process – in many
cases due to unsupported layer operations and in others due to undefined errors.

Furthermore, and more importantly, we presented evidence for strong performance
complementarity: even within the same benchmark category (as defined based on verifier
compatibility), any two verification systems outperform each other on distinct subsets of
instances. As we have demonstrated, this complementarity can be exploited by combining
individual verifiers into parallel portfolios. At the same time, automated portfolio construc-

30

Critically Assessing the State of the Art in Neural Network Verification

tion comes with its own challenges (see, e.g., König et al., 2022), leaving room for further
research into the development and evaluation of appropriate frameworks.

Lastly, we showed that, in general, the performance of verifiers strongly differs between
image datasets, with some methods achieving the best performance on MNIST (in terms of
the number of solved instances and average running time) while falling behind on CIFAR
and vice versa. In addition, even for the same dataset, we found that the performance of a
given verifier can change drastically depending on the perturbation radius; i.e., an algorithm
that performs well for a small value of ε might degrade in performance as the value of ε
increases.

In future work, it would be interesting to analyse in more detail how the relative
performance of verifiers depends on the given perturbation radius and on other performance-
relevant characteristics of the given networks and image classification tasks. We suspect
this to be an interesting yet challenging research direction, as it requires a novel definition
of features specific to neural network verification problems. To the best of our knowledge,
no research on the development of such meta-features has been conducted yet. Due to the
specifics of both the verification problem instances as well as the verification algorithms that
should be systematically explored, we consider this a non-trivial but important challenge
to be solved in future work. Finally, we are interested in expanding our analysis to other
datasets and machine learning tasks beyond supervised image classification.

Acknowledgments

This research was partially supported by TAILOR, a project funded by EU Horizon 2020
research and innovation program under GA No. 952215. The authors would like to thank
Bram Renting, Corné Spek and Hadar Shavit for their support with installing and running
the verification engines on our compute cluster.

References

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. Improved
Geometric Path Enumeration for Verifying ReLU Neural Networks. In Proceedings of the
32nd International Conference on Computer Aided Verification (CAV 2020), pages 66–96,
2020.

Stanley Bak, Changliu Liu, and Taylor Johnson. The Second International Verification of
Neural Networks Competition (VNN-COMP 2021): Summary and Results. arXiv preprint
arXiv:2109.00498, 2021.

Thomas Bartz-Beielstein, Carola Doerr, Daan van den Berg, Jakob Bossek, Sowmya Chan-
drasekaran, Tome Eftimov, Andreas Fischbach, Pascal Kerschke, William La Cava, Manuel
Lopez-Ibanez, et al. Benchmarking in Optimization: Best Practice and Open Issues. arXiv
preprint arXiv:2007.03488, 2020.

Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis, Aditya Nori,
and Antonio Criminisi. Measuring Neural Net Robustness with Constraints. In Advances
in Neural Information Processing Systems 29 (NeurIPS 2016), pages 2613–2621, 2016.

31

König, Bosman, Hoos, van Rijn

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener.
Efficient Verification of ReLU-based Neural Networks via Dependency Analysis. In
Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI-20), pages
3291–3299, 2020.

Rudy Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda. A
Unified View of Piecewise Linear Neural Network Verification. In Advances in Neural
Information Processing Systems 31 (NeurIPS 2018), pages 1–10, 2018.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan
Kumar. Branch and Bound for Piecewise Linear Neural Network Verification. Journal of
Machine Learning Research, 21:42:1–42:39, 2020.

Marco Casadio, Ekaterina Komendantskaya, Matthew L. Daggitt, Wen Kokke, Guy Katz,
Guy Amir, and Idan Refaeli. Neural Network Robustness as a Verification Property: A
Principled Case Study. In Proceedings of the 34rd International Conference on Computer
Aided Verification (CAV 2022), pages 219–231, 2022.

George B. Dantzig. Linear programming. Operations Research, 50(1):42–47, 2002.

Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip H. S. Torr, and M. Pawan Kumar. Improved Branch and Bound for Neural
Network Verification via Lagrangian Decomposition. arXiv preprint arXiv:2104.06718,
2021.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li.
Boosting Adversarial Attacks With Momentum. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2018), pages 9185–9193, 2018.

Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari. Output Range
Analysis for Deep Neural Networks. In Proceedings of the Tenth NASA Formal Methods
Symposium (NFM 2018), pages 121–138, 2018.

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet
Kohli. A Dual Approach to Scalable Verification of Deep Networks. In Proceedings of
the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2018), pages 550–559,
2018.

Ruediger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In
Proceedings of the 15th International Symposium on Automated Technology for Verification
and Analysis (ATVA 2017), pages 269–286, 2017.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete
Verification via Multi-Neuron Relaxation Guided Branch-and-Bound. In Proceedings of
the 10th International Conference on Learning Representations (ICLR 2022), pages 1–15,
2022.

Alexandre Fréchette, Lars Kotthoff, Tomasz Michalak, Talal Rahwan, Holger Hoos, and Kevin
Leyton-Brown. Using the shapley value to analyze algorithm portfolios. In Proceedings of
the 30th AAAI Conference on Artificial Intelligence (AAAI-16), pages 3397–3403, 2016.

32

Critically Assessing the State of the Art in Neural Network Verification

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. AI2: Safety and Robustness Certification of Neural Networks with
Abstract Interpretation. In Proceedings of the 39th IEEE Symposium on Security and
Privacy (IEEE S&P 2018), pages 3–18, 2018.

Carla P Gomes and Bart Selman. Algorithm portfolios. Artificial Intelligence, 126(1–2):
43–62, 2001.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing
Adversarial Examples. In Proceedings of the 3rd International Conference on Learning
Representations (ICLR 2015), pages 1–11, 2015.

Patrick Henriksen and Alessio Lomuscio. Efficient Neural Network Verification via Adaptive
Refinement and Adversarial Search. In Proceedings of the 24th European Conference on
Artificial Intelligence (ECAI 2020), pages 2513–2520, 2020.

Patrick Henriksen, Kerstin Hammernik, Daniel Rueckert, and Alessio Lomuscio. Bias Field
Robustness Verification of Large Neural Image Classifiers. In Proceedings of the 32nd
British Machine Vision Conference 2021 (BMVC 2021), pages 202–2016, 2021.

Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications.
Elsevier / Morgan Kaufmann, 2004. ISBN 1-55860-872-9.

Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An economics approach to hard
computational problems. Science, 275(5296):51–54, 1997.

Kai Jia and Martin C. Rinard. Efficient exact verification of binarized neural networks.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33 (NeurIPS
2020), pages 1–14, 2020.

Kyle D Julian, Mykel J Kochenderfer, and Michael P Owen. Deep neural network compression
for aircraft collision avoidance systems. Journal of Guidance, Control, and Dynamics, 42
(3):598–608, 2019.

Serdar Kadioglu, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann.
Algorithm Selection and Scheduling. In Proceedings of the Seventeenth International
Conference on Principles and Practice of Constraint Programming (CP2011), pages
454–469, 2011.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An Efficient SMT Solver for Verifying Deep Neural Networks. In Proceedings of the 29th
International Conference on Computer Aided Verification (CAV 2017), pages 97–117,
2017.

Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim,
Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J.
Kochenderfer, and Clark Barrett. the Marabou Framework for Verification and Analysis of
Deep Neural Networks. In Proceedings of the 31st International Conference on Computer
Aided Verification (CAV 2019), pages 443–452, 2019.

33

König, Bosman, Hoos, van Rijn

Matthias König, Holger H Hoos, and Jan N van Rijn. Speeding up neural network robustness
verification via algorithm configuration and an optimised mixed integer linear programming
solver portfolio. Machine Learning, 111(12):4565–4584, 2022.

Ailsa H. Land and Alison G. Doig. An Automatic Method for Solving Discrete Programming
Problems. In 50 Years of Integer Programming 1958-2008 - From the Early Years to the
State-of-the-Art, pages 105–132. Springer, 2010.

Linyi Li, Xiangyu Qi, Tao Xie, and Bo Li. Sok: Certified robustness for deep neural networks.
arXiv preprint arXiv:2009.04131, 2020.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward
ReLU neural networks. arXiv preprint arXiv:1706.07351, 2017.

Mark Huasong Meng, Guangdong Bai, Sin Gee Teo, Zhe Hou, Yan Xiao, Yun Lin, and
Jin Song Dong. Adversarial robustness of deep neural networks: A survey from a formal
verification perspective. IEEE Transactions on Dependable and Secure Computing, 2022.

Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. Towards
Verifying Robustness of Neural Networks Against A Family of Semantic Perturbations. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR
2020), pages 241–249, 2020.

Leonardo de Moura and Nikolaj Bjørner. Satisfiability Modulo theories: An Appetizer. In
Proceedings of the Brazilian Symposium on Formal Methods (SBMF 2018), pages 23–36,
2009.

Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Scaling Polyhedral Neural Network Verification on gpus. In Proceedings of Machine
Learning and Systems 3 (MLSys 2021), pages 1–14, 2021.

Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T. Johnson.
The Third International Verification of Neural Networks Competition (VNN-COMP 2022):
Summary and Results. arXiv preprint arXiv:2212.10376, 2023.

Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and Toby
Walsh. Verifying properties of binarized deep neural networks. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI-18), pages 6615–6624, 2018.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation
as a Defense to Adversarial Perturbations Against Deep Neural Networks. In Proceedings
of the 37th IEEE Symposium on Security and Privacy (IEEE S&P 2016), pages 582–597,
2016.

Luca Pulina and A. Tacchella. NeVer: A Tool for Artificial Neural Networks Verification.
Annals of Mathematics and Artificial Intelligence, pages 403–425, 2011a.

Luca Pulina and A. Tacchella. Checking Safety of Neural Networks with SMT Solvers: A
Comparative Evaluation. In AI*IA, pages 127–138, 2011b.

34

Critically Assessing the State of the Art in Neural Network Verification

Luca Pulina and Armando Tacchella. Challenging SMT Solvers to Verify Neural Networks.
AI Communications, pages 117–135, 2012.

Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. Towards Verification
of Artificial Neural Networks. In Proceedings of the 18th Workshop on Methoden und
Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen
(MBMV 2015), pages 30–40, 2015.

David Shriver, Sebastian Elbaum, and Matthew B. Dwyer. DNNV: A Framework for Deep
Neural Network Verification. In Proceedings of the 33rd International Conference on
Computer Aided Verification (CAV 2021), pages 137–150, 2021.

Gagandeep Singh and Timon Gehr. Boosting Robustness Certification of Neural networks.
In Proceedings of the 7th International Conference on Learning Representations (ICLR
2019), pages 1–12, 2019.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev.
Fast and Effective Robustness Certification. In Advances in Neural Information Processing
Systems 31 (NeurIPS 2018), pages 1–12, 2018.

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. Beyond the
Single Neuron Convex Barrier for Neural Network Certification. In Advances in Neural
Information Processing Systems 32 (NeurIPS 2019), pages 1–12, 2019a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An Abstract Domain
for Certifying Neural Networks. In Proceedings of the 46th ACM SIGPLAN Symposium
on Principles of Programming Languages (ACMPOPL 2019), pages 1–30, 2019b.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Proceedings of
the 2nd International Conference on Learning Representations (ICLR 2014), pages 1–10,
2014.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of Neural Networks
with Mixed Integer Programming. In Proceedings of the 7th International Conference on
Learning Representations (ICLR 2019), pages 1–21, 2019.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal Security
Analysis of Neural Networks using Symbolic Intervals. In Proceedings of the 27th USENIX
Security Symposium (USENIX Security 18), pages 1599–1614, 2018a.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient
Formal Safety Analysis of Neural Networks. In Advances in Neural Information Processing
Systems 31 (NeurIPS 2018), pages 6369–6379, 2018b.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and Zico Kolter.
Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural
Network Robustness Verification. In Advances in Neural Information Processing Systems
34 (NeurIPS 2021), pages 29909–29921, 2021.

35

König, Bosman, Hoos, van Rijn

Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane
Boning, and Inderjit Dhillon. Towards Fast Computation of Certified Robustness for
ReLU Networks. In Proceedings of the 35th International Conference on Machine Learning
(ICML 2018), pages 5276–5285, 2018.

Eric Wong and Zico Kolter. Provable Defenses against Adversarial Examples via the Convex
Outer Adversarial Polytope. In Proceedings of the 35th International Conference on
Machine Learning (ICML 2018), pages 5286–5295, 2018.

Haoze Wu, Aleksandar Zeljic, Guy Katz, and Clark W. Barrett. Efficient neural network
analysis with sum-of-infeasibilities. In Dana Fisman and Grigore Rosu, editors, Proceedings
of the 28th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2022), volume 13243, pages 143–163, 2022.

Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. Output Reachable Set Estimation
and Verification for Multilayer Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 29(11):5777–5783, 2018.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Satzilla: Portfolio-based
algorithm selection for sat. Journal of Artificial Intelligence Research, 32:565–606, 2008.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-MIP: Automated
Algorithm Configuration and Selection for Mixed Integer Programming. In RCRA Work-
shop on Experimental evaluation of Algorithms for Solving Problems with Combinatorial
Explosion, pages 16–30, 2011.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient
Neural Network Robustness Certification with General Activation Functions. Advances in
Neural Information Processing Systems 31 (NeurIPS 2018), 31:4944–4953, 2018.

36

Critically Assessing the State of the Art in Neural Network Verification

Appendix A. Overview of considered neural networks

Table A.1: Considered neural networks trained on the MNIST dataset, along with their
training method, employed activation function and source repository.

Network Training Activation Source

cnn max mninst21 Standard ReLU Marabou
cnn max mninst31 Standard ReLU Marabou
convBigA DiffAI ReLU ERAN
convMedA PGD, ε = 0.1 ReLU ERAN
convMedB PGD, ε = 0.1 Sigmoid ERAN
convMedC PGD, ε = 0.1 Tanh ERAN
convMedD PGD, ε = 0.3 ReLU ERAN
convMedE PGD, ε = 0.3 Sigmoid ERAN
convMedF PGD, ε = 0.3 Tanh ERAN
convMedG Standard ReLU ERAN
convMedH Standard Sigmoid ERAN
convMedI Standard Tanh ERAN
convnet1 Standard ReLU ERAN
convSmallA DiffAI ReLU ERAN
convSmallB PGD ReLU ERAN
convSmallC Standard ReLU ERAN
convSuper DiffAI ReLU ERAN
ffnn 6×500A PGD, ε = 0.1 ReLU ERAN
ffnn 6×500B PGD, ε = 0.1 Sigmoid ERAN
ffnn 6×500C PGD, ε = 0.1 Tanh ERAN
ffnn 6×500D PGD, ε = 0.3 ReLU ERAN
ffnn 6×500E PGD, ε = 0.3 Sigmoid ERAN
ffnn 6×500F PGD, ε = 0.3 Tanh ERAN
ffnn 6×500G Standard ReLU ERAN
ffnn 6×500H Standard Sigmoid ERAN
ffnn 6×500I Standard Tanh ERAN
mnist-net Standard ReLU Venus
mnist-net 256×2 Standard ReLU VNN-COMP
mnist-net 256×4 Standard ReLU VNN-COMP
mnist-net 256×6 Standard ReLU VNN-COMP
mnist 3×100 Standard ReLU ERAN
mnist 3×50 Standard ReLU ERAN
mnist 4×1024 Standard ReLU ERAN
mnist 5×100 Standard ReLU ERAN
mnist 6×100 Standard ReLU ERAN
mnist 6×200 Standard ReLU ERAN
mnist 9×100 Standard ReLU ERAN
mnist 9×200 Standard ReLU ERAN
mnist conv1 Standard ReLU ERAN
mnist nn Standard ReLU VeriNet
rsl18a-linf01 SDP ReLU MIPVerify

1Employs MaxPooling layers

37

König, Bosman, Hoos, van Rijn

Table A.2: Considered neural networks trained on the CIFAR-10 dataset, along with their
training method, employed activation function and source repository.

Network Training Activation Source

cifar base kw Wong and Kolter (2018), ε = 1/255 ReLU OVAL
cifar deep kw Wong and Kolter (2018), ε = 1/255 ReLU OVAL
cifar wide kw Wong and Kolter (2018), ε = 1/255 ReLU OVAL
cifar base kw simp Wong and Kolter (2018), ε = 1/255 ReLU Marabou
cifar deep kw simp Wong and Kolter (2018), ε = 1/255 ReLU Marabou
cifar wide kw simp Wong and Kolter (2018), ε = 1/255 ReLU Marabou
cifar-net Standard ReLU Venus
cifar conv1 Standard ReLU ERAN
cifar 4×100 Standard ReLU ERAN
cifar 6×100 Standard ReLU ERAN
cifar 7×1024 Standard ReLU ERAN
cifar 9×200 Standard ReLU ERAN
cifar 4×100 Standard ReLU ERAN
cifar10 2 255 COLT, ε = 2/255 ReLU VNN-COMP
cifar10 8 255 COLT, ε = 8/255 ReLU VNN-COMP
cifar10 2 255 simplified COLT, ε = 2/255 ReLU VNN-COMP
cifar10 8 255 simplified COLT, ε = 8/255 ReLU VNN-COMP
convBigB PGD, ε = 2/255 ReLU ERAN
convMedJ PGD, ε = 2/255 ReLU ERAN
convMedK PGD, ε = 2/255 Sigmoid ERAN
convMedL PGD, ε = 2/255 Tanh ERAN
convMedM PGD, ε = 8/255 ReLU ERAN
convMedN PGD, ε = 8/255 Sigmoid ERAN
convMedO PGD, ε = 8/255 Tanh ERAN
convMedP Standard ReLU ERAN
convMedQ Standard Sigmoid ERAN
convMedR Standard Tanh ERAN
convSmallE DiffAI ReLU ERAN
convSmallF Standard ReLU ERAN
ffnn 6×500J PGD, ε = 2/255 ReLU ERAN
ffnn 6×500K PGD, ε = 2/255 Sigmoid ERAN
ffnn 6×500L PGD, ε = 2/255 Tanh ERAN
ffnn 6×500M PGD, ε = 8/255 ReLU ERAN
ffnn 6×500N PGD, ε = 8/255 Sigmoid ERAN
ffnn 6×500O PGD, ε = 8/255 Tanh ERAN
ffnn 6×500P Standard ReLU ERAN
ffnn 6×500Q Standard Sigmoid ERAN
ffnn 6×500R Standard Tanh ERAN

1Employs MaxPooling layers

38

Critically Assessing the State of the Art in Neural Network Verification

Appendix B. Absolute marginal contributions and Shapley values

Table B.1: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, absolute marginal contribution (MC), absolute Shapley value
(φabs) and CPU running time averaged per problem instance, computed for each category
with ε set at 0.012.

ReLU
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time
[CPU s] [CPU s]

BaBSB 358 23 118 3 241 307 0 86 2 924
Marabou 1 001 20 312 1 801 400 0 117 2 153
Neurify 871 26 265 1 964 915 119 411 235
nnenum 1 754 18 600 389 76 8 28 3 337
VeriNet 1 799 16 618 263 841 31 330 500

ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

Marabou 5 5 5 57 0 0 0 3 600

Tanh
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

VeriNet 556 556 556 55 0 0 0 3 600

Sigmoid
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

Marabou 0 0 0 3 600 0 0 0 3 600
VeriNet 581 581 581 55 0 0 0 3 600

39

König, Bosman, Hoos, van Rijn

Table B.2: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, absolute marginal contribution (MC), absolute Shapley value
(φabs) and average GPU running time, computed for each category with ε set at 0.012.

ReLU
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time
[GPU s] [GPU s]

BaDNB 1 188 8 440 1 760 2 332 250 1 066 116
β-CROWN 2 247 0 966 96 1 828 7 693 818
MN-BaB 2 103 18 903 325 1 639 20 604 1 110

ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

BaDNB 85 0 29 1 399 0 0 0 3 600
β-CROWN 128 12 56 0.4 0 0 0 3 600
MN-BaB 115 0 44 366 64 64 64 0.008

Tanh
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

β-CROWN 319 319 319 1.16 497 496 497 0.70
MN-BaB 0 0 0 3 600 0 0 0 3 600

Sigmoid
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

β-CROWN 306 2 154 13 538 209 374 60
MN-BaB 305 1 153 24 338 9 174 1 376

40

Critically Assessing the State of the Art in Neural Network Verification

Table B.3: Performance comparison of CPU-based verification algorithms in terms of
the number of solved instances, absolute marginal contribution (MC), absolute Shapley
value (φabs) and average CPU running time, computed for each category with aggregated
ε ∈ {0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time
[CPU s] [CPU s]

BaBSB 3 716 103 1 062 3 223 2 690 0 759 2 964
Marabou 9 457 784 3 309 1 721 3 651 8 1 078 2 145
Neurify 8 206 212 2 418 1 899 8 173 1 059 3 662 289
nnenum 15 144 288 5 093 543 744 61 268 3 315
VeriNet 15 800 411 5 442 367 7 674 365 3 061 486

ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

Marabou 316 316 316 50 0 0 0 3 600

Tanh
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

VeriNet 4 307 4 307 4 307 59 0 0 0 3 600

Sigmoid
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

Marabou 0 0 0 3 600 0 0 0 3 600
VeriNet 4 728 4 728 4 728 59 0 0 0 3 600

41

König, Bosman, Hoos, van Rijn

Table B.4: Performance comparison of GPU-based verification algorithms in terms of
the number of solved instances, absolute marginal contribution (MC), absolute Shap-
ley value (φabs) and average GPU running time, computed for each category with
ε ∈ {0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time
[GPU s] [GPU s]

BaDNB 9 886 287 3 832 1 864 21 438 2 251 9 823 100
β-CROWN 18 955 6 8 226 148 17 014 72 6 521 784
MN-BaB 17 799 110 7 700 363 14 675 170 5 401 1 174

ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

BaDNB 720 5 244 1 493 0 0 0 3 600
β-CROWN 1 127 160 525 19 0 0 0 3 600
MN-BaB 966 1 365 531 576 576 576 0.009

Tanh
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

β-CROWN 2 576 2 576 2 576 1.16 4 535 4 535 4 535 0.75
MN-BaB 0 0 0 3 600 0 0 0 3 600

Sigmoid
Verifier MNIST CIFAR

Solved MC φabs Avg. Time Solved MC φabs Avg. Time

β-CROWN 2 617 32 1 325 23 4 961 1 983 3 472 46
MN-BaB 2 601 16 1 309 44 3 042 64 1 553 1 421

42

Critically Assessing the State of the Art in Neural Network Verification

Appendix C. Error analysis for ReLU+MaxPool, Tanh and Sigmoid
categories

Marabou
0

500

1000

1500

2000

2500

100 100
200

Error type
miscellaneous
timeout
out-of-memory

(a) CPU - MNIST

Marabou
0

500

1000

1500

2000

2500

100

(b) CPU - CIFAR

BaDNB MN-BaB -CROWN
0

500

1000

1500

2000

2500

315 285 272

(c) GPU - MNIST

BaDNB MN-BaB -CROWN
0

500

1000

1500

2000

2500

100 36 100

(d) GPU - CIFAR

Figure C.1: Frequency of error types returned by the considered verification algorithms on
instances in the ReLU+MaxPool category. The total number of instances in this category is
400 for MNIST and 100 for CIFAR.

43

König, Bosman, Hoos, van Rijn

Verinet
0

500

1000

1500

2000

2500

44

Error type
miscellaneous
timeout
out-of-memory

(a) CPU - MNIST

Verinet
0

500

1000

1500

2000

2500

600

(b) CPU - CIFAR

MN-BaB -CROWN
0

500

1000

1500

2000

2500

600

281

(c) GPU - MNIST

MN-BaB -CROWN
0

500

1000

1500

2000

2500

600

103

(d) GPU - CIFAR

Figure C.2: Frequency of error types returned by the considered verification algorithms on
instances in the Tanh category. The total number of instances in this category is 600 for
MNIST and 600 for CIFAR.

44

Critically Assessing the State of the Art in Neural Network Verification

Marabou Verinet
0

500

1000

1500

2000

2500

286

19

314

Error type
miscellaneous
timeout
out-of-memory

(a) CPU - MNIST

Marabou Verinet
0

500

1000

1500

2000

2500

600 600

(b) CPU - CIFAR

MN-BaB -CROWN
0

500

1000

1500

2000

2500

295 294

(c) GPU - MNIST

MN-BaB -CROWN
0

500

1000

1500

2000

2500

262

62

(d) GPU - CIFAR

Figure C.3: Frequency of error types returned by the considered verification algorithms on
instances in the Sigmoid category. The total number of instances in this category is 600 for
MNIST and 600 for CIFAR.

45

König, Bosman, Hoos, van Rijn

Appendix D. Analysis of CPU-based methods with larger memory
budget and perturbation radius

nnenum Verinet
0

500

1000

1500

2000

2500

0 00

697746

4

Error type
miscellaneous
timeout
out-of-memory

(a) Memory limit = 3GB

nnenum Verinet
0

500

1000

1500

2000

2500

0 0

667 647

0 0

(b) Memory limit = 30GB

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

Result
Unsat
Unsolved
Sat

(c) Memory limit = 3GB

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

(d) Memory limit = 30GB

Figure D.1: Top row: Frequency of error types returned by the two top-performing
verification methods (in terms of the number of solved instances) on instances in the
ReLU category, with a memory limit of (a) 3GB or (b) 30GB. Bottom row: Performance
comparison of the two top-performing verification methods (in terms of relative Shapley
value) in the ReLU category for CPU-based methods, with a memory limit of (c) 3GB or
(d) 30GB.

46

Critically Assessing the State of the Art in Neural Network Verification

nnenum Verinet
0

500

1000

1500

2000

2500

0 00

697746

4

Error type
miscellaneous
timeout
out-of-memory

(a) ε = 0.012

nnenum Verinet
0

500

1000

1500

2000

2500

0 0

1197

996

708

70

Error type
miscellaneous
timeout
out-of-memory

(b) ε = 0.2

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

Result
Unsat
Unsolved
Sat

(c) ε = 0.012

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

(d) ε = 0.2

Figure D.2: Top row: Frequency of error types returned by the two top-performing
verification methods (in terms of the number of solved instances) on instances in the ReLU
category, when (a) ε = 0.012 or (b) ε = 0.02. Bottom row: Performance comparison of the
two top-performing verification methods (in terms of relative Shapley value) in the ReLU
category for CPU-based methods, when (c) ε = 0.012 or (d) ε = 0.02.

47

König, Bosman, Hoos, van Rijn

Appendix E. Analysis of unsat Instances

Table E.1: Performance comparison of CPU- and GPU-based verification algorithms in
terms of the number of unsat instances, relative marginal contribution (RMC), relative
Shapley value (φ), computed for each category and ε = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

BaDNB 1 072 0.13 0.25 86 0.65 0.63
BaBSB 161 0.00 0.00 0 0.00 0.00
β-CROWN 2 143 0.00 0.23 61 0.35 0.36
Marabou 995 0.07 0.03 6 0.00 0.00
MN-BaB 2 025 0.80 0.40 16 0.00 0.00
Neurify 748 0.00 0.00 20 0.00 0.00
nnenum 1 686 0.00 0.03 26 0.00 0.00
VeriNet 1 675 0.00 0.03 20 0.00 0.00

ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

BaDNB 59 0.00 0.10 0 0.00 0.00
β-CROWN 88 1.00 0.52 0 0.00 0.00
Marabou 5 0.00 0.00 0 0.00 0.00
MN-BaB 86 0.00 0.38 0 0.00 0.00

Tanh
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

β-CROWN 291 0.09 0.18 3 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 527 0.91 0.82 0 0.00 0.00

Sigmoid
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

β-CROWN 272 0.00 0.03 66 1.00 0.00
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 272 0.00 0.03 0 0.00 0.00
VeriNet 544 1.00 0.94 0 0.00 0.00

48

Critically Assessing the State of the Art in Neural Network Verification

Table E.2: Performance comparison of CPU- and GPU-based verification algo-
rithms in terms of the number of unsat instances, relative marginal contribution
(RMC), relative Shapley value (φ), computed for each category and aggregated ε ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

BaDNB 8 059 0.15 0.21 1 069 0.63 0.59
BaBSB 2 303 0.00 0.00 0 0.00 0.00
β-CROWN 17 433 0.04 0.19 866 0.36 0.39
Marabou 9 290 0.61 0.25 60 0.00 0.00
MN-BaB 16 588 0.20 0.28 144 0.00 0.00
Neurify 6 992 0.00 0.00 168 0.00 0.00
nnenum 14 601 0.00 0.03 223 0.00 0.01
VeriNet 14 317 0.00 0.02 177 0.00 0.00

ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

BaDNB 418 0.00 0.08 0 0.00 0.00
β-CROWN 573 1.00 0.50 0 0.00 0.00
Marabou 274 0.00 0.02 0 0.00 0.00
MN-BaB 566 0.00 0.40 0 0.00 0.00

Tanh
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

β-CROWN 2 248 0.15 0.22 151 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 3 993 0.85 0.78 0 0.00 0.00

Sigmoid
Verifier MNIST CIFAR

Solved RMC φ Solved RMC φ

β-CROWN 2 290 0.00 0.04 575 1.00 1.00
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 2 302 0.00 0.04 0 0.00 0.00
VeriNet 4 448 1.00 0.92 0 0.00 0.00

49

König, Bosman, Hoos, van Rijn

Appendix F. Analysis of the 2022 VNN Competition results

Table F.1: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, absolute and relative marginal contribution (MC, RMC), absolute
and relative Shapley value (φabs, φ) as well as average running time, computed for each
category from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC φabs φ Avg. Time

AveriNN 0 0 0.00 0 0.00 192
Debona 2 0 0.00 1 0.04 192
FastBATLLNN 0 0 0.00 0 0.00 192
Marabou 0 0 0.00 0 0.00 192
nnenum 23 0 0.00 11 0.46 190
PeregriNN 24 1 1.00 12 0.50 189
VeraPak 0 0 0.00 0 0.00 192

CNN + ResNet
Verifier

Solved MC RMC φabs φ Avg. Time

AveriNN 0 0 0.00 0 0.00 357
Debona 0 0 0.00 0 0.00 357
FastBATLLNN 0 0 0.00 0 0.00 357
Marabou 122 91 0.61 106 0.44 264
nnenum 81 17 0.11 48 0.20 273
PeregriNN 57 0 0.00 28 0.12 325
VeraPak 72 42 0.28 57 0.24 254

FC
Verifier

Solved MC RMC φabs φ Avg. Time

AveriNN 100 0 0.00 20 0.05 166
Debona 339 3 0.30 82 0.19 91
FastBATLLNN 32 1 0.10 10 0.0 0.5
Marabou 404 0 0.00 102 0.24 53
nnenum 411 1 0.10 105 0.24 37
PeregriNN 397 2 0.20 102 0.24 48
VeraPak 50 3 0.30 13 0.03 66

50

Critically Assessing the State of the Art in Neural Network Verification

Table F.2: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, absolute and relative marginal contribution (MC, RMC), absolute
and relative Shapley value (φabs, φ) as well as average running time, computed for each
category from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC φabs φ Avg. Time

β-CROWN 191 66 1.00 0 0.62 72
MN-BaB 125 0 0.00 0 0.28 164
VeriNet 60 0 0.00 0 0.10 187

CNN + ResNet
Verifier

Solved MC RMC φabs φ Avg. Time

β-CROWN 312 28 1.00 0 0.42 107
MN-BaB 254 0 0.00 0 0.28 179
VeriNet 259 0 0.00 0 0.30 171

FC
Verifier

Solved MC RMC φabs φ Avg. Time

β-CROWN 448 11 1.00 0 0.35 15
MN-BaB 433 0 0.00 0 0.33 30
VeriNet 435 0 0.00 0 0.32 21

51

König, Bosman, Hoos, van Rijn

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Pe

re
gr

iN
N

(a) CPU - Complex

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], , -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
M

N
-B

aB

(b) GPU - Complex

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], Marabou

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ra
Pa

k

(c) CPU - CNN+ResNet

(1).pdf

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], , -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
Ve

ri
N

et

Result
Unsat
Sat
Unsolved

(d) GPU - CNN+ResNet

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Pe

re
gr

iN
N

(e) CPU - FC

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], , -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
M

N
-B

aB

(f) GPU - FC

Figure F.1: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in each category from the 2022 VNN Competition. For
better interpretability, instances that were not solved within their respective time limit are
displayed with the maximum running time attributed to any instance in the benchmark set
(i.e., 1 800 seconds).

52

Critically Assessing the State of the Art in Neural Network Verification

Table F.3: Performance comparison of GPU- and CPU-based verification algorithms in
terms of the number of solved instances, absolute and relative marginal contribution (MC,
RMC) as well as absolute and relative Shapley value (φabs, φ), computed for each category
from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC φabs φ

AveriNN 0 0 0.00 0 0.00
β-CROWN 191 66 0.99 20 0.91
Debona 2 0 0.00 0 0.04
FastBATLLNN 0 0 0.00 0 0.00
Marabou 0 0 0.00 0 0.00
MN-BaB 125 0 0.00 2 0.09
nnenum 23 0 0.00 0 0.46
PeregriNN 24 1 0.01 0 0.50
VeraPak 0 0 0.00 0 0.00
VeriNet 60 0 0.00 0 0.10

CNN + ResNet
Verifier

Solved MC RMC φabs φ

AveriNN 0 0 0.00 0 0.00
β-CROWN 312 15 0.28 6 0.32
Debona 0 0 0.00 0 0.00
FastBATLLNN 0 0 0.00 0 0.00
Marabou 122 36 0.68 10 0.53
MN-BaB 254 0 0.00 1 0.05
nnenum 81 0 0.00 0 0.00
PeregriNN 57 0 0.00 0 0.00
VeraPak 72 2 0.04 1 0.05
VeriNet 259 0 0.00 1 0.05

FC
Verifier

Solved MC RMC φabs φ

AveriNN 100 0 0.00 0 0.00
β-CROWN 448 9 1.00 3 1.00
Debona 339 0 0.00 0 0.00
FastBATLLNN 32 0 0.00 0 0.00
Marabou 404 0 0.00 0 0.00
MN-BaB 433 0 0.00 0 0.00
nnenum 411 0 0.00 0 0.00
PeregriNN 397 0 0.00 0 0.00
VeraPak 50 0 0.00 0 0.00
VeriNet 435 0 0.00 0 0.00

53

	Introduction
	Background
	Algorithmic Approaches
	Common Practices in Benchmarking Neural Network Verifiers
	Algorithm Portfolios

	Verification Algorithms under Assessment
	CPU-Based Methods
	GPU-Based Methods

	Setup for Empirical Evaluation
	Problem Instances
	Evaluation Metrics
	Execution Environment and Software Used

	Results and Discussion
	CPU-Based Methods
	GPU-Based Methods
	Error Analysis
	Analysis on Broader Set of Perturbation Radii
	Joint Analysis of CPU- and GPU-Based Methods
	Analysis of unsat instances
	Analysis of the 2022 VNN Competition Results

	Conclusions and Future Work
	Overview of considered neural networks
	Absolute marginal contributions and Shapley values
	Error analysis for ReLU+MaxPool, Tanh and Sigmoid categories
	Analysis of CPU-based methods with larger memory budget and perturbation radius
	Analysis of unsat Instances
	Analysis of the 2022 VNN Competition results

