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Abstract
The traditional multi-armed bandit (MAB) model for recommendation systems assumes the
user stays in the system for the entire learning horizon. In new online education platforms
such as ALEKS or new video recommendation systems such as TikTok, the amount of time
a user spends on the app depends on how engaging the recommended contents are. Users
may temporarily leave the system if the recommended items cannot engage the users. To
understand the exploration, exploitation, and engagement in these systems, we propose
a new model, called MAB-A where “A” stands for abandonment and the abandonment
probability depends on the current recommended item and the user’s past experience
(called state). We propose two algorithms, ULCB and KL-ULCB, both of which do more
exploration (being optimistic) when the user likes the previous recommended item and
less exploration (being pessimistic) when the user does not. We prove that both ULCB
and KL-ULCB achieve logarithmic regret, OplogKq, where K is the number of visits (or
episodes). Furthermore, the regret bound under KL-ULCB is asymptotically sharp. We
also extend the proposed algorithms to the general-state setting. Simulation results show
that the proposed algorithms have significantly lower regret than the traditional UCB and
KL-UCB, and Q-learning-based algorithms.1

Keywords: multi-armed bandit, abandonment, exploration, exploitation, regret bound

1. Introduction

Recommendation algorithms have become increasingly important in many online platforms
such as online education, TikTok, YouTube Shorts, advertising platforms, etc. The system
interacts with the users to learn their preferences and recommends personalized contents

∗. The work was done when Xin Liu was a postdoctoral research fellow at the University of Michigan.
1. A two-page extended abstract of this paper has appeared at the Allerton Conference in 2022.
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(a) A new recommendation system.
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(b) Total regret over K episodes.

Figure 1: A new recommendation system and comparison among algorithms.

(learning subjects, videos, songs, products etc.) to each user. These recommendation
systems can be modeled as a classic problem called multi-armed bandit (MAB) (Lattimore
and Szepesvári, 2020). Each arm in MAB corresponds to a specific type of item in the
recommendation system. The recommendation of an item of the ith type is regarded as a
pull of arm ai. Taking recommending short videos as an example, each arm ai represents a
class of similar videos (e.g. videos from the same dancer, not a single video). For simplicity,
we assume the reward is 1 if the user likes the recommended item and is 0 otherwise. In this
case, it is reasonable to assume that the mean reward of each arm is fixed, which means that
the user’s preference in different types of items remains unchanged. In a traditional MAB
problem, the learner can continue to play the arms with the goal of maximizing the average
reward, which either assumes a single user stays in the system for a long period of time or
assumes the learner is recommending a single item to each user with a large number of users.
While this traditional MAB formulation models recommendation systems such as online
advertising well, there are new recommendation systems that are significantly different from
these traditional models. In these new recommendation systems, such as TikTok or ALEKS,
the learner continuously recommends videos/contents to a user, and the user, other than like
or dislike the item, may abandon the system if the recommended items cannot engage the
user, and come back later. For example, a user watches TikTok or YouTube Shorts for some
period of time, where the duration depends on how interesting/engaging the videos, then
leaves the systems, and comes back later, as shown in Figure 1(a).

This makes the problem different from traditional MAB because the objective now is to
maximize the total reward per episode (visit) instead of the average reward per pull. Therefore,
in addition to finding the most rewarding arm, the learner also needs to continue to engage
the user to maximize the number of plays of each episode. Because of the abandonment, the
exploration needs to be carefully designed so that the learner should explore (recommend
new types of items) when the user is less likely to abandon the system. In other words,
we need to consider an exploration-exploitation-engagement tradeoff in this problem. As
we can see from Figure 1(b), a well-designed algorithm can significantly outperform the
traditional MAB algorithms such as upper confidence bound (UCB) (Auer et al., 2002) and
Kullback-Leibler UCB (KL-UCB) (Garivier and Cappé, 2011).

We study this new MAB problem with abandonment, denoted by MAB-A. Consider a
recommendation system where the system recommends one item at a time to the user. For
example, for mobile phone users, since the screen is small, the system such as a mobile app can
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only recommend one item at a time instead of recommending multiple items simultaneously.
The user may or may not like the item, and they may abandon the system with a certain
probability (called abandonment probability in this paper) based on current and previous
experience. The objective is to maximize the total reward per episode, where an episode
ends when the user abandons (leaves) the system temporarily.

For traditional MAB problems, classic index policy algorithms such as UCB and KL-
UCB work well and KL-UCB achieves the instance-dependent lower bound for traditional
MAB with Bernoulli rewards (Garivier and Cappé, 2011; Lai and Robbins, 1985). However,
these traditional algorithms are not suitable for the new MAB-A problem, since they do not
consider the abandonment and do not use the state information (the user’s experience). Hence,
they may not be optimal. We propose to use a state-dependent exploration-exploitation
mechanism, which does more exploration (being optimistic) when the user is less likely to
abandon the system and less exploration (being pessimistic) when the user is more likely to
abandon the system. Our algorithms are based on both an upper confidence bound and a
lower confidence bound. Our main contributions are as follows:

• Baseline: First, we characterize the baseline by showing that a genie-aided optimal policy
for MAB-A problem is always pulling the optimal arm (Lemma 1).

• Sharp bounds: We propose two algorithms based on upper and lower confidence bounds,
named as Upper and Lower Confidence Bounds (ULCB) and Kullback-Leibler Upper
and Lower Confidence Bounds (KL-ULCB) algorithms. We prove that both algorithms
achieve OplogKq regret bound (Theorem 2 and Theorem 4). We further establish an
asymptotic lower bound for MAB-A problem and show that KL-ULCB attains the bound
(Theorem 6), so the regret under KL-ULCB is asymptotically sharp.

• Extension to a general-state model: We extend the proposed algorithms to MAB-A
problems with a general continuous state space. In particular, we propose four algo-
rithms, DISC-ULCB, DISC-KL-ULCB, CONT-ULCB, and CONT-KL-ULCB. We establish
OplogKq upper bounds for DISC-ULCB and DISC-KL-ULCB (Theorem 11) and show
that the bound for DISC-KL-ULCB is nearly sharp for large n, where n is the number of
discretized bins in the algorithm.

• Numerical evaluation: Simulation results in Section 5 and Appendix D confirm our
theoretical results and show that our algorithms have significantly lower regret than the
traditional UCB and KL-UCB algorithms, and have order-wise lower regret than generic
reinforcement learning (RL) algorithms like Q-learning.

• Technical novelty: In MAB-A, the episode length follows different distributions under
different policies, so the regret analysis based on step-by-step coupling, like in the traditional
MAB analysis, does not work. We overcome this difficulty by exploiting the performance
difference lemma (Kakade and Langford, 2002; Yang et al., 2021) to couple the rewards
by the sum of gap functions along the sample path that follows our algorithm. On the
other hand, MAB-A can be regarded as a special class of Markov decision process (MDP)
problems with a terminal state, and is mostly related to the stochastic shortest path (SSP)
problem (Bertsekas and Tsitsiklis, 1991). MAB-A, however, is a stochastic longest path
problem so the existing algorithms and analysis for SSP do not apply. We take advantage
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of the special properties of bandits and abandonment to establish a sharp OplogKq regret
bound, while most regret bounds on SSP are Op

?
Kq.

1.1 Related Work

We are not aware of any work in the literature with the same setting as the MAB-A problem,
but there are a few related works. Schmit and Johari (2018) study a setting with abandonment,
where the mean reward is an increasing function of the action. The abandonment occurs
when the action is larger than the user’s threshold, and thus the algorithms should consider
the trade-off between getting high rewards and avoiding losing users. In contrast, in our
MAB-A setting, the reward is unknown and a higher reward makes the user less likely to
abandon the system. The concept of abandonment also appears in the sequential choice
bandit problem (Cao and Sun, 2019) and the departing bandit problem (Ben-Porat et al.,
2022). However, the abandonment probabilities in their models do not depend on the past
experience of the user. Another work by Wu et al. (2018) studies the exploration-exploitation
tradeoff in an opportunistic bandit setting, where the regret of pulling a suboptimal arm
varies under different environmental conditions. Our proposed algorithms and proof ideas
are partly inspired by the exploration-exploitation intuition in their work (Wu et al., 2018).
However, the key difference between the opportunistic bandit setting and our MAB-A setting
is that there is no abandonment in the opportunistic bandit setting. Also, the state in the
MAB-A setting depends on previous rewards while the load (state) in the opportunistic bandit
setting does not. The above differences lead to different algorithms and theoretical results.
There are two other works studying user retention, (Sabbeh, 2018) and (Cai et al., 2023).
Sabbeh (2018) compared different machine learning techniques to predict the probability
that a customer will stay with his service provider or switch to another one. Cai et al. (2023)
proposed a novel reinforcement learning algorithm, which can significantly improve user
retention. However, there is no theoretical performance guarantee in these works.

Note that the MAB-A problem can be modeled as a special case of stochastic shortest
path (SSP) problems (Bertsekas and Tsitsiklis, 1991) with non-positive costs. RL algorithms
like Q-learning (Watkins, 1989) and Q-learning with UCB (Yang et al., 2021) might be
used for the MAB-A problem but these general algorithms do not make use of the special
structures in MAB-A and therefore are too complex and not regret optimal, which is verified
in the simulation results in Section 5. Other algorithms (Cohen et al., 2021; Chen et al., 2021;
Vial et al., 2021; Tarbouriech et al., 2021) are designed for SSP problems with non-negative
costs, which are fundamentally different from MAB-A since MAB-A tries to maximize the
episode length but SSP problems with non-negative costs may not. Hence, these algorithms
cannot be applied to the MAB-A problem. Besides, only Op

?
Kq instead of OplogKq regret

bounds are proved in these papers.

2. Model and Preliminaries

The MAB-A problem is defined as follows. LetM (M ě 2) be the number of arms and denote
the set of arms by ta1, a2, ¨ ¨ ¨ , aMu. Assume that the rewards of pulling the arms are i.i.d.
Bernoulli random variables with unknown mean µpaiq, i P t1, 2, ...,Mu. Consider K episodes
in total, where each episode represents a single visit of a user and an episode ends when the
user abandons the system temporarily. The process of the kth episode goes as follows. At
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step h “ 1, an initial state Sk,1 P t0, 1u is sampled from an arbitrary distribution. At step
h “ 2, 3, ..., the state is defined by Sk,h :“ Rk,h´1, where Rk,h´1 is the reward obtained at
the previous step h´ 1. Then an arm Ak,h P ta1, ..., aMu is pulled and a Bernoulli random
reward Rk,h P t0, 1u is obtained with mean µpAk,hq. Given pSk,h, Rk,hq, abandonment occurs
with probability qpSk,h, Rk,hq. If the abandonment occurs, the terminal state g is reached,
i.e., Sk,h`1 “ g, which terminates the current episode k. Otherwise, the process goes to the
next step.

Therefore, the process of one episode is an MDP with state space S “ t0, 1, gu, action
space A “ ta1, ..., aMu, and Bernoulli random rewards. The transition graph and details
can be found in Appendix A. The state can be interpreted as the experience of the user. At
the first step (h “ 1) in each episode, the initial state Sk,1 can be interpreted as the user’s
first impression and is observed by the learner. Note that given Ak,h, the reward Rk,h is
independent of Sk,h. We write Rk,hpAk,hq when necessary in order to explicitly show the
dependency between Rk,h and Ak,h. We will consider a general-state model in Section 4,
where the state depends on the rewards received in all previous steps of the current episode.
We remark that we first consider the current model, for which we can establish sharp bounds.
However, the intuition and exploration strategy obtained from the current model will be
applied to the general-state model and nearly sharp bounds can be established based on
discretization. We point out that these two models, the simple model and the general-state
model cannot capture all the characteristics of real-world systems and hence cannot be
directly applied to complex real-world applications, but we discovered that the idea of doing
exploration when the user is less likely to abandon the system can help reduce the regret.
This intuition could possibly be helpful in the design of low regret algorithms for more
complex models such as contextual bandits and be applied in practice when we know when
the user is less likely to abandon the system.

We make the following assumption on the problem.

Assumption 1 Assume qpi, jq ě qpi1, j1q if i`j ă i1`j1, qp0, 0q ą 0, qp0, 1q ă 1, qp1, 1q ă 1,
and 0 ă µpaM q ď µpaM´1q ď ... ď µpa2q ă µpa1q ă 1.

The assumption on qp¨, ¨q implies the abandonment probability becomes larger when the
user’s experience becomes worse. It also means that the user will continue engaging with the
platform when they receive high rewards in hopes that the experience will re-occur (Petrillo,
2021). The assumptions qp0, 0q ą 0 and µpaiq ă 1 @i ensure that all policies are proper.
That is, all policies lead to the terminal state g with probability one, regardless of the initial
state (Bertsekas and Tsitsiklis, 1991). Without loss of generality, we let µpaM q ď µpaM´1q ď

... ď µpa2q ă µpa1q. The assumptions µpaM q ą 0, qp0, 1q ă 1, and qp1, 1q ă 1 ensure that
there is always a positive proportion of time during which the process is in state 1.

To understand the exploration-exploitation-engagement trade-off of MAB-A defined
above, we next define the baseline, i.e. the reward under a genie-aided (model-based) optimal
policy, which knows the model perfectly. The result is summarized in Lemma 1, which states
that the optimal policy is always pulling arm a1. The proof can be found in Appendix B.1.

Lemma 1 Let Assumption 1 hold. The genie-aided optimal policy π˚ is always pulling arm
a1.
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Let π : S ˆ Φ Ñ A denote a deterministic policy such that Ak,h “ πpSk,h, φk,hq, where
φk,h P Φ is the historical samples till step h of episode k (not including the current step), i.e.,

φk,h “ pS1,1, A1,1, R1,1, ..., Sk,1, Ak,1, Rk,1, ..., Sk,h´1, Ak,h´1, Rk,h´1q.

Let Π :“ tπ : S ˆ Φ Ñ Au denote the set of all such policies. Let Ikpπ, s, ϕq denote the
number of steps taken to reach the terminal state g given the current state s and the historical
samples ϕ P Φ under the policy π P Π in episode k. Mathematically, let D be a random set
such that Dpπ, s, ϕq :“ ti : Sk,h`i “ g, Sk,h “ s, φk,h “ ϕ,Ak,h`j “ πpSk,h`j , φk,h`jq,@j “
0, 1, ..., i ´ 1u, where Sk,h, φk,h, Ak,h (for all h) are random variables under the process
controlled by the policy π. Then

Ikpπ, s, ϕq :“

#

minDpπ, s, ϕq, if Dpπ, s, ϕq ‰ H;

8, if Dpπ, s, ϕq “ H.

Similarly, let Ikpπ˚, sq denote the number of steps taken to reach the terminal state g given
the current state s under π˚ in episode k, i.e.,

Ikpπ
˚, sq :“

#

minD˚psq, if D˚psq ‰ H;

8, if D˚psq “ H,

where D˚psq :“ ti : Sk,h`i “ g, Sk,h “ s,Ak,h`j “ a1,@j “ 0, 1, ..., i´ 1u, in which Sk,h, Ak,h
(for all h) are random variables under the process controlled by the policy π˚.2

The objective is to find a policy π P Π to minimize the expected regret (over K episodes)
defined by

ErRegπpKqs “ E

»

–

K
ÿ

k“1

Ikpπ
˚,Sk,1q
ÿ

h“1

Rk,hpa1q

fi

fl´ E

»

–

K
ÿ

k“1

Ikpπ,Sk,1,φk,1q
ÿ

h“1

Rk,hpπpSk,h, φk,hqq

fi

fl . (1)

3. Main Results and the Proof Roadmap

In this section, we first present two algorithms for the MAB-A problem. One is ULCB,
which uses an upper or lower confidence bound depending on the state for exploration and
exploitation. The other one is KL-ULCB algorithm, which uses KL divergence for the
confidence bounds.

3.1 Algorithms

We propose the ULCB algorithm, which is an index policy like UCB algorithm but the
difference is that ULCB uses state-dependent indices, as shown in Algorithm 1. Firstly, the
ULCB algorithm plays each arm once by Round-Robin. After that, at step h of episode k, if
the state Sk,h “ 0, we let

µ̃0
t paq “ µ̄tpaq ` c0

d

log t` c logplog tq

2Ntpaq
(2)

2. We slightly abuse the notation, not including the policy in the notation Sk,h, Ak,h.
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Algorithm 1 ULCB Algorithm
1: Initialize: N1paq Ð 0, µ̄1paq Ð 0 for all a P A, tÐ 1, c0, c1, c.
2: for episode k “ 1, ...,K do
3: hÐ 1, Sk,1 Ð initial state of episode k, Sk,1 P t0, 1u
4: while Sk,h ‰ g do
5: if there exists Arm a1 such that Ntpa

1q “ 0 then
6: play Arm Ak,h “ a1 and observe Rk,h // play each arm once
7: else
8: if Sk,h “ 0 then

9: Let µ̃0
t paq “ µ̄tpaq ` c0

b

log t`c logplog tq
2Ntpaq

for all a P A // indices for state 0
10: Take the action Ak,h P argmaxa µ̃

0
t paq and observe Rk,h

11: else
12: Let µ̃1

t paq “ µ̄tpaq ` c1

b

log t`c logplog tq
2Ntpaq

for all a P A // indices for state 1
13: Take the action Ak,h P argmaxa µ̃

1
t paq and observe Rk,h

14: end if
15: end if
16: if abandonment occurs then Sk,h`1 “ g
17: else Sk,h`1 “ Rk,h
18: end if
19: Define pSt, At, S1t, Rtq :“ pSk,h, Ak,h, Sk,h`1, Rk,hq
20: /* update Nt`1paq and µ̄t`1paq */
21: Update: Nt`1pAtq “ NtpAtq ` 1 and Nt`1paq “ Ntpaq @a ‰ At
22: Update: µ̄t`1pAtq “

µ̄tpAtqNtpAtq`Rt
Nt`1pAtq

and µ̄t`1paq “ µ̄tpaq @a ‰ At
23: tÐ t` 1, hÐ h` 1
24: end while
25: end for

for all a P A, where c and c0 are constants, t is the time step counting from the first episode,
Ntpaq :“

řt´1
s“1 1tAs “ au denotes the number of times arm a has been pulled before time

step t, and µ̄tpaq :“
´

řt´1
s“1 1tAs “ auRs

¯

{Ntpaq denotes the average of rewards of pulling
arm a before time step t. Note that we also denote the state, the action, and the reward at
time step t by St, At, and Rt, respectively. Then we take an action Ak,h P argmaxa µ̃

0
t paq. If

the state Sk,h “ 1, we let

µ̃1
t paq “ µ̄tpaq ` c1

d

log t` c logplog tq

2Ntpaq
(3)

for all a P A, where c1 is a constant. Then we take an action Ak,h P argmaxa µ̃
1
t paq. The

algorithm then updates St`1, Nt`1paq, and µ̄t`1paq. The process goes to the next step or
the next episode depending on whether the abandonment occurs or not.

In fact, the indices µ̃0
t paq and µ̃1

t paq are the (upper or lower) confidence bounds of the
expected reward of arm a. Note that c0 and c1 in (2) and (3) are not necessarily positive.
Our theoretical results actually indicate that we should use positive coefficient in state 1 and
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negative coefficient in state 0, which means optimism (upper confidence bound) in state 1
and pessimism (lower confidence bound) in state 0. This leads to more exploration in state 1
than in state 0.

We also propose the KL-ULCB algorithm, which replaces the indices µ̃0
t paq and µ̃1

t paq
in (2) and (3) with

µ̃0
t paq “min tp : klpµ̄tpaq, pqNtpaq ď c0 log t` c logplog tqu (4)

µ̃1
t paq “max tp : klpµ̄tpaq, pqNtpaq ď c1 log t` c logplog tqu (5)

where klpp1, p2q is the KL divergence between two Bernoulli random variables with parameters
p1 and p2. KL-ULCB is similar to ULCB except that KL-ULCB uses KL divergence for the
confidence bound instead of directly adding the bonus term. This idea is borrowed from
KL-UCB (Garivier and Cappé, 2011). Note that c0 and c1 in (4) and (5) are positive. The
“min” in (4) and “max” in (5) imply pessimism in state 0 and optimism in state 1.

3.2 Main Results

We next present three theorems, including the regret upper bound on ULCB (Theorem 2),
the regret upper bound on KL-ULCB (Theorem 4), and a regret lower bound (Theorem
6) that matches the upper bound of KL-ULCB. We also present the proof idea and roadmap
in the next subsection and present the results for the general-state setting in Section 4.

Let V ˚psq and Q˚ps, aq denote the optimal value function and optimal Q-function defined
by

V ˚psq :“E

»

–

Ikpπ
˚,sq

ÿ

h“1

Rk,hpa1q

ˇ

ˇ

ˇ

ˇ

ˇ

Sk,1 “ s

fi

fl , (6)

Q˚ps, aq :“µpaq ` E

»

–

Ikpπ
˚,Sk,2q`1
ÿ

h“2

Rk,hpa1q

ˇ

ˇ

ˇ

ˇ

ˇ

Sk,1 “ s,Ak,1 “ a

fi

fl , (7)

for s ‰ g, and V ˚pgq :“ Q˚pg, aq :“ 0, for any a P A.

Theorem 2 (Upper bound for ULCB) Let Assumption 1 hold. Suppose for any a ‰ a1,

V ˚p0q ´Q˚p0, aq ě V ˚p1q ´Q˚p1, aq. (8)

Then under ULCB algorithm with c0 “ ´1, c1 “ 1 and c “ 4, we have

lim sup
KÑ8

ErRegπpKqs

logK
ď

ÿ

i‰1

V ˚p1q ´Q˚p1, aiq

2pµpa1q ´ µpaiqq2
.

The condition (8) means that a suboptimal pull induces more regret (loss) in state 0 than
in state 1. This motivates us to do more exploration in state 1 and to be conservative
in state 0, i.e., c1 ą c0. With c1 “ 1 and c0 “ ´1, Theorem 2 provides an asymptotic
logarithmic upper bound with an instance-dependent constant

ř

i‰1
V ˚p1q´Q˚p1,aiq
2pµpa1q´µpaiqq2

. We will
show later in Section 3.3.1 that the constant term in the upper bound for the traditional
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UCB algorithm (c0 “ c1 “ 1) could be
ř

i‰1
V ˚p0q´Q˚p0,aiq
2pµpa1q´µpaiqq2

, which is greater than the
one obtained by the ULCB algorithm. In fact, V ˚p1q ´ Q˚p1, aiq could be significantly
smaller than V ˚p0q ´ Q˚p0, aiq in some cases. Consider a simple example qp0, 0q “ 1

and qp0, 1q “ qp1, 0q “ qp1, 1q “ 0. Then we have V ˚p1q ´ Q˚p1, aiq “
µpa1q´µpaiq

1´µpa1q
and

V ˚p0q´Q˚p0, aiq “
µpa1q´µpaiq
p1´µpa1qq2

, and thus the upper bound obtained by ULCB algorithm will
be significantly better especially when µpa1q is close to 1.

Condition (8) is in terms of the value function and Q-function, which may not be
straightforward to verify. Lemma 3 provides a sufficient condition for (8) in terms of qpi, jq.
See Appendix B.2 for the proof.

Lemma 3 Let Assumption 1 hold. Assume qp1, 0q ‰ qp0, 0q and

qp0, 1q ´ qp1, 1q

qp0, 0q ´ qp1, 0q
ď min

"

1´ qp0, 1q

1´ qp1, 1q
,
1´ qp0, 0q

1´ qp1, 0q

*

. (9)

Then for any a ‰ a1, we have

V ˚p0q ´Q˚p0, aq ě V ˚p1q ´Q˚p1, aq.

One example of the condition (9) is that the difference between qp0, 1q and qp1, 1q is small
but the difference between qp0, 0q and qp1, 0q is relatively large. This means that when the
user obtains a reward 1, they are more likely to forget their previous reward compared with
obtaining a reward 0 when they make the abandonment decision. Hence, intuitively, we
should be more conservative in state 0 so that we are more likely to obtain a reward 1 in
order to encourage the user to stay in the system. That is the intuition of using optimistic
estimate in state 1 and pessimistic estimate in state 0 in the ULCB algorithm.

We show in (29) in Appendix B.2 that at least one of the two cases, condition (8) or
V ˚p0q ´Q˚p0, aq ď V ˚p1q ´Q˚p1, aq for all a, holds. When the condition (8) does not hold
and hence a suboptimal pull induces more regret in state 1 than in state 0, the learner needs
to be optimistic in state 0 and pessimistic in state 1. Modified ULCB and KL-ULCB can
guarantee the same regret bounds (see Theorems 19, 20, and 21 in Appendix E).

Theorem 4 (Upper bound for KL-ULCB) Let all the assumptions in Theorem 2 hold.
Then using the KL-ULCB algorithm with c0 “ c1 “ 1, and c “ 4, we have

lim sup
KÑ8

ErRegπpKqs

logK
ď

ÿ

i‰1

V ˚p1q ´Q˚p1, aiq

klpµpaiq, µpa1qq
. (10)

Theorem 4 gives a regret upper bound for KL-ULCB. Compared with the result in Theorem 2,
the bound in Theorem 4 is better since klpµpaiq, µpa1qq ě 2pµpa1q ´ µpaiqq

2 by Pinsker’s
inequality. This bound is also better than the one obtained by KL-UCB,

ř

i‰1
V ˚p0q´Q˚p0,aiq
klpµpaiq,µpa1qq

,
which will be illustrated later in Section 3.3.1.

In order to analyze instance-dependent lower bound for MAB-A, similar to the MAB
literature (Lai and Robbins, 1985; Lattimore and Szepesvári, 2020), we define the set of all
consistent policies by Πcons:

9



Yang, Liu, and Ying

Definition 5 A policy π P Π is consistent, i.e., π P Πcons, if for any µpa1q, ..., µpaM q, qp0, 0q,
qp0, 1q, qp1, 0q, qp1, 1q, and any α ą 0, limKÑ8 ErRegπpKqs{K

α “ 0.

Theorem 6 gives an asymptotic lower bound among policies in Πcons for the MAB-A problem.

Theorem 6 (Lower bound) Let all the assumptions in Theorem 2 hold. For any π P Πcons

and any µpa1q,...,µpaM q, qp0, 0q, qp0, 1q, qp1, 0q, qp1, 1q satisfying the assumptions, we have

lim inf
KÑ8

ErRegπpKqs

logK
ě

ÿ

i‰1

V ˚p1q ´Q˚p1, aiq

klpµpaiq, µpa1qq
. (11)

By Theorem 4 and Theorem 6, the regret upper bound obtained by the KL-ULCB algorithm
attains the lower bound asymptotically.

Intuitively, the regret upper bound of ULCB (or KL-ULCB) is better than that of UCB (or
KL-UCB) because UCB (or KL-UCB) will explore in state 0 where the risk of abandonment
is higher and hence the instantaneous regret of a wrong decision in state 0 is higher than
that in state 1.

3.3 Proof Roadmap

In this section, we present the proof roadmap of Theorems 2, 4, and 6. Before that, we first
illustrate the main intuition behind the proofs.

The first challenge in the proofs is how to couple the rewards from two policies, i.e., the
two terms in the regret definition (1). Note that we cannot subtract the rewards step by step
like the traditional proof for MAB, since the episode lengths Ik for the two different policies
are two different random variables. We use the performance difference lemma (Kakade and
Langford, 2002; Yang et al., 2021) in the RL literature to couple the rewards by the sum
of gap functions (V ˚psq ´ Q˚ps, aq) along the sample path that follows the policy of the
algorithm. The gap function represents the regret induced by pulling a suboptimal arm a in
state s assuming all the future actions follow the optimal policy. Then we can deal with the
regret step by step and further decompose the regret of each step into state 1 and state 0.

In the proof for the upper bound for ULCB (Theorem 2), we managed to bound the regret
induced in state 0 by a constant. First, since there is always a positive proportion of time
during which the process is in state 1 and optimistic estimates are used in state 1, we can
show that the number of optimal pulls in state 1 scales linearly with t with high probability
(Lemma 7). The intuition is that optimistic estimates encourage exploration, which induces
only logarithmic number of suboptimal pulls. Hence, the confidence intervals around the
optimal arm a1 should be tight enough. In state 0, it can be proved that under the pessimistic
estimation, the estimate of a suboptimal arm µ̃0

t paq is less than the true mean µpaq with high
probability. Since µpaq ď µpa1q, µ̃0

t paq will also be less than µ̃0
t pa1q with high probability by

the tightness of µ̃0
t pa1q (a result from the analysis in state 1). Hence, a1 will be pulled with

high probability in state 0, which implies a constant upper bound of suboptimal pulls in state
0 (Lemma 8). Then it remains to bound the number of suboptimal pulls in state 1, which
can be bounded using the techniques in (Garivier and Cappé, 2011) and an upper bound of
episode length (Lemma 9). The proof for the upper bound for KL-ULCB (Theorem 4) is
similar to that for ULCB. The difference is that we use concentration inequalities for the KL
divergence.

10
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For the lower bound (Theorem 6), we first bound the regret below by the number of
suboptimal pulls multiplied by the gap function in state 1 since the gap function in state 1
is smaller than that in state 0. Then it remains to bound the number of suboptimal pulls
below. The idea is similar to the proof of the instance-dependent lower bound for the MAB
problem (Lai and Robbins, 1985), but the difference is that the horizon (total number of
pulls) in MAB-A is not a constant but a random variable. Our idea is to use a simple lower
bound, i.e., the horizon is greater than the number of episodes.

Our upper bound matches the lower bound thanks to the regret decomposition, the
constant regret in state 0, and the sharpness of the bound in state 1 using KL divergence.
Next, we will present the regret decomposition and the proof for Theorem 2 in more details.
See Appendix B.7 and B.8 for the proofs of Theorem 4 and Theorem 6, respectively.

3.3.1 Regret Decomposition

Our results and the proofs start from the regret decomposition.
We first define value function and Q function to facilitate the analysis. Define

V πps, ϕq :“E

»

–

Ikpπ,s,ϕq
ÿ

h“1

Rk,hpπpSk,h, φk,hqq

ˇ

ˇ

ˇ

ˇ

ˇ

Sk,1 “ s, φk,1 “ ϕ

fi

fl , (12)

Qπps, ϕ, aq :“µpaq ` E

»

–

Ikpπ,Sk,2,φk,2q`1
ÿ

h“2

Rk,hpπpSk,h, φk,hqq

ˇ

ˇ

ˇ

ˇ

ˇ

Sk,1 “ s, φk,1 “ ϕ,Ak,1 “ a

fi

fl ,

for any s ‰ g, and V πpg, ϕq :“ Qπpg, ϕ, aq :“ 0, for any ϕ P Φ, a P A, and π P Π.
By the definitions of V ˚ in (6) and V π in (12), the expected regret defined in (1) is

ErRegπpKqs “
K
ÿ

k“1

„

E rV ˚pSk,1qs ´ E rV πpSk,1, φk,1qs



. (13)

By the performance difference formula in the RL literature, we can decompose the regret
into the summation of the gaps between value function and Q function in different states
shown as (14).

ErRegπpKqs “ E

«

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

`1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

ff

, (14)

where St and At are the state and action at time step t following the policy π, and T pK,πq :“
řK
k“1 Ikpπ, Sk,1, φk,1q is the number of pulls over K episodes under policy π. The proof

details for (14) can be found in Appendix B.3. From the regret decomposition (14), the
terms V ˚p0q ´Q˚p0, aiq and V ˚p1q ´Q˚p1, aiq can be interpreted as the regrets induced by
pulling a suboptimal arm ai in state 0 and 1, respectively. Thus, the key idea of obtaining a
lower regret is first determining which of the two terms is smaller and then putting more
exploration in that state.

11
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Suppose that we use traditional UCB or KL-UCB algorithm. Both use the same explo-
ration strategy for state 1 and state 0. Thus, from (14), we obtain an upper bound

ErRegπpKqs ď E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tAt “ aiu

fi

fl rV ˚p0q ´Q˚p0, aiqs ,

where the constant term V ˚p0q ´ Q˚p0, aiq is worse than V ˚p1q ´ Q˚p1, aiq in Theorem 2
and Theorem 4. Therefore, the use of state-dependent exploration-exploitation mechanism
in our algorithms can help us obtain better upper bounds by reducing the expected number
of suboptimal pulls in state 0.

3.3.2 Proof of Theorem 2

The proof mainly includes three steps, which correspond to the following three lemmas as we
explained in Section 3.3.

Lemma 7 Let all the assumptions in Theorem 2 hold. Consider the ULCB algorithm with
c0 “ ´1, c1 “ 1, and c “ 4. Let pmin :“ µpaM qmin t1´ qp0, 1q, 1´ qp1, 1qu. Let η P p0, pminq

and γ P p0, µpa1q ´ µpa2qq be two constants. There exists a constant T1 such that for any
t ě T1,

P
ˆ

Ntpa1q ď
ppmin ´ ηqpt´ 1q

2

˙

ď
M ´ 1

2γ2 exp p2γ2c2pt´ 1q ´ 4γ2q
`

c3

c2pt´ 1q rlog pc2pt´ 1qqs2
` exp

ˆ

´
η2pt´ 1q

2

˙

,

where c2, c3, and T1 are constants depending only on pmin, η, M , γ, µpa1q, and µpa2q.

Lemma 7 shows that when t is large enough, the number of optimal pulls scales linearly
with t with high probability. The key idea of the proof of Lemma 7 is that when Ntpa1q is
small, a1 will be pulled with high probability. Lemma 7 looks similar to Lemma 2 in the
work of Wu et al. (2018) but we have a tighter bound which requires more effort in the proof.
We need to use a “peeling trick” (Garivier and Cappé, 2011) instead of directly using the
union bound to prove a tighter bound. The proof of this result is based on the optimistic
exploration in state 1. See Appendix B.4 for a complete proof. Lemma 7 is essential since
we will show that the confidence bound around the optimal arm is tight enough for large t
based on this result. Then we can bound the regret induced by pulling suboptimal arms in
state 0 by a constant using pessimistic estimate (lower confidence bound), which is shown by
Lemma 8:

Lemma 8 Let all the assumptions in Theorem 2 hold. Consider the ULCB algorithm with
c0 “ ´1, c1 “ 1, and c “ 4. The regret induced in state 0 is bounded by

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

fi

fl ď c4

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqs , (15)

where c4 is a constant which depends only on M , µpa1q, µpa2q, pmin, η, and γ.

12



Exploration, Exploitation, Engagement in MAB-A

The proof idea of Lemma 8 is as follows. We first show that µpaiq ě µ̃0
t paiq with high

probability. And based on Lemma 7 we can show that µ̃0
t pa1q and µpa1q are close enough for

large t. Hence, for large t, we have µ̃0
t pa1q « µpa1q ě µpaiq ě µ̃0

t paiq with high probability,
which implies that a1 will be pulled in state 0 with high probability. Hence PpSt “ 0, At “ aiq
is small enough so that we can bound (15). See Appendix B.5 for a complete proof.

We then bound the regret induced in state 1 by a term of order logK shown by Lemma 9:

Lemma 9 Let all the assumptions in Theorem 2 hold. Consider the ULCB algorithm with
c0 “ ´1, c1 “ 1, and c “ 4. For any ε ą 0, the regret induced in state 1 is bounded by

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

fi

fl

ď
ÿ

i‰1

p1` εq rV ˚p1q ´Q˚p1, aiqs

2pµpa1q ´ µpaiqq2
logK ` oplogKq.

In the proof of Lemma 9, we first use techniques from Garivier and Cappé (2011) since ULCB
uses upper confidence bound in state 1, and then we bound the term ErlogpT pK,πqqs to get
a bound of order logK. See Appendix B.6 for a complete proof.

Combining (14) with Lemma 8 and Lemma 9, Theorem 2 is proved.

4. Extension to a General-State Setting

In this section, we extend our results to the general-state setting. We first present an MAB-A
model with continuous state space, and then verify that the optimal policy is still always
pulling the optimal arm. Next, we propose two types of algorithms and analyze the regret.
We obtain the same form of regret lower bound for the general-state setting. We also obtain
regret upper bounds for DISC-ULCB and DISC-KL-ULCB algorithms.

4.1 Model and the Optimal Policy

Define the continuous state space by S “ r0, 1s Y tgu. Define the state Sk,h at step h of
episode k as an exponential moving average of previous rewards in episode k, i.e.,

Sk,h :“ p1´ θqSk,h´1 ` θRk,h´1

for any k ě 1 and h ě 2, where θ P p0, 1q is a constant forgetting factor, which means how
much the user forgets their previous experience. Sk,1 P r0, 1s is sampled from an arbitrary
distribution. The abandonment probability at step h of episode k is a function of the next
state Sk,h`1, denoted by qpSk,h`1q.

Assumption 2 Assume that 0 ă qps1q ď qps2q if s1 ě s2 for any s1, s2 P r0, 1s, and
0 ă µpaM q ď µpaM´1q ď ... ď µpa2q ă µpa1q.

The assumptions on qp¨q is reasonable since the abandonment probability becomes larger
when the user’s experience becomes worse. The positivity assumption on q ensures that all
policies are proper. We let 0 ă µpaM q ď µpaM´1q ď ... ď µpa2q ă µpa1q as in Assumption 1.

Define the genie-aided (model-based) optimal policy π˚ the same way as in the original
setting. Then we have Lemma 10. The proof can be found in Appendix C.2.
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Lemma 10 Let Assumption 2 hold. Then the genie-aided optimal policy π˚ is always pulling
arm a1.

4.2 Algorithms and Regret Analysis

We propose DISC-ULCB and DISC-KL-ULCB algorithms, which first discretize the state
space r0, 1s into n bins, r0, 1

nq, r
1
n ,

2
nq,...,r

n´1
n , 1s, and then use the ULCB or KL-ULCB

algorithm, where we view any state in rn´1
n , 1s as state 1 and any state in the other bins as

state 0.
We next analyze the regret of these two algorithms. Following the same way as the regret

decomposition in (14), we have

ErRegπpKqs “E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

n´1
ÿ

m“1

1

"

St P

„

m´ 1

n
,
m

n

˙

, At “ ai

*

rV ˚pStq ´Q
˚pSt, aiqs

`1

"

St P

„

n´ 1

n
, 1



, At “ ai

*

rV ˚pStq ´Q
˚pSt, aiqs



for any integer n ě 2, where V ˚pStq ´Q˚pSt, aiq can be interpreted as the regret induced by
pulling arm ai in state St. We consider the case where V ˚ps1q´Q

˚ps1, aq ď V ˚ps2q´Q
˚ps2, aq

for any a P A, s1, s2 P r0, 1s, s1 ě s2. This case means that the regret induced by pulling a
suboptimal arm increases as the state decreases. Some examples can be found in Appendix C.3.
In this case, we can obtain an upper bound

ErRegπpKqs

ďE

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

n´1
ÿ

m“1

1

"

St P

„

m´ 1

n
,
m

n

˙

, At “ ai

*„

V ˚
ˆ

m´ 1

n

˙

´Q˚
ˆ

m´ 1

n
, ai

˙

`1

"

St P

„

n´ 1

n
, 1



, At “ ai

*„

V ˚
ˆ

n´ 1

n

˙

´Q˚
ˆ

n´ 1

n
, ai

˙

ff

(16)

and a lower bound

ErRegπpKqs ěE

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tAt “ aiu

fi

fl rV ˚p1q ´Q˚p1, aiqs . (17)

From (17) we can obtain the same regret lower bound as Theorem 6 by following the same
proof. For the upper bounds for DISC-ULCB and DISC-KL-ULCB algorithms, we have the
following theorem.

Theorem 11 Let Assumption 2 hold. Let n ě 2 denote the number of bins for DISC-ULCB
or DISC-KL-ULCB algorithms. Suppose qpsq ă 1 @s P rn´1

n , 1s and

V ˚ps1q ´Q
˚ps1, aq ď V ˚ps2q ´Q

˚ps2, aq (18)
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for any a P A, s1, s2 P r0, 1s, s1 ě s2. Then using DISC-ULCB algorithm with c0 “ ´1,
c1 “ 1, and c “ 4, we have

lim sup
KÑ8

ErRegπpKqs

logK
ď

ÿ

i‰1

V ˚
`

n´1
n

˘

´Q˚
`

n´1
n , ai

˘

2pµpa1q ´ µpaiqq2
. (19)

Using DISC-KL-ULCB algorithm with c0 “ c1 “ 1, and c “ 4, we have

lim sup
KÑ8

ErRegπpKqs

logK
ď

ÿ

i‰1

V ˚
`

n´1
n

˘

´Q˚
`

n´1
n , ai

˘

klpµpaiq, µpa1qq
. (20)

Theorem 11 shows that we have OplogKq upper bounds for DISC-ULCB and DISC-KL-
ULCB. The proof is by (16) and the same method as the proofs of Theorem 2 and Theorem 4,
and therefore is omitted. For DISC-KL-ULCB, the asymptotic upper bound is nearly tight
for large n. However, if n is large, there is a very small fraction of time when the state of
the system is in rn´1

n , 1s. It results in a very slow exploration since most of the exploration
happens in rn´1

n , 1s. Hence, the regret might be large initially despite the fact that the
asymptotic regret upper bound is near optimal. To overcome this, we propose a second type
of algorithms, CONT-ULCB and CONT-KL-ULCB. For CONT-ULCB, we use indices µ̃st paq
as follows

µ̃st paq “ µ̄tpaq ` p2s´ 1q

d

log t` c logplog tq

2Ntpaq
. (21)

Similarly, CONT-KL-ULCB uses KL divergence in the indices. µ̃st paq changes gradually from
lower confidence bound to upper confidence bound when s changes from 0 to 1, which means
that the algorithm changes from exploitation to exploration continuously, which therefore
leads to more exploration at the beginning compared to DISC-ULCB and DISC-KL-ULCB.

More details, proofs, and simulation results about this extension can be found in Appendix
C.

5. Simulation Results

In this section, we present simulation results for the performance of the proposed algorithms.
In the simulation, we assume Sk,1 “ 1 for simplicity. This is to say that the user assumes a
class of items are good if the user has not yet seen the items. Let M “ 2, µpa1q “ 0.9, and
µpa2q “ 0.8. Note that for all the algorithms in the simulation, we do not include the log log
terms (i.e., c “ 0) in the indices which are also omitted in (Garivier and Cappé, 2011). We
simulated 2ˆ 104 episodes with 107 independent runs. We set c1 “ 1, c0 “ ´1 for ULCB
and c1 “ c0 “ 1 for KL-ULCB. We also compare our algorithms with Q-learning (Watkins,
1989) with ε-greedy, Q-learning with UCB (Yang et al., 2021), and UCBVI (Azar et al.,
2017). For Q-learning with ε-greedy, at each step, we select a random action with probability
ε and select a greedy action according to the Q table with probability 1´ ε. At each step,
we update the Q table based on the update formula in (Watkins, 1989) with the discount
factor γ “ 1. For Q-learning with UCB, at each step, we select a greedy action according to
the estimated Q table. At each step, we update the Q table with an additional bonus term
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Figure 2: Simulation results: For (a) and (b), qp0, 0q “ 1, qp1, 1q “ qp1, 0q “ qp0, 1q “ 0. For
(c) and (d), qp0, 0q “ 0.8, qp1, 0q “ qp0, 1q “ 0.2, qp1, 1q “ 0.1.
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as in (Yang et al., 2021) with the parameter H replaced with the mean episode length of
the best policy. For UCBVI, at the beginning of each episode, we first calculate the sample
average of the rewards and that of the abandonment probabilities. Then we update the Q
table using value iteration as in (Azar et al., 2017) based on the Bellman equation with
an additional bonus term. This is a natural model-based RL algorithm for this problem.
For Figure 2(a), the 95% confidence bounds are at most ˘8.73. For Figure 2(c), the 95%
confidence bounds are at most ˘0.63.

In terms of average cumulative regret, Figure 2(a) and 2(c) show that ULCB outperforms
traditional UCB and that KL-ULCB outperforms traditional KL-UCB. The key reason is
that ULCB (or KL-ULCB) chooses to explore when the user is less likely to abandon the
system, which reduce the risk of abandonment compared to UCB (or KL-UCB). Moreover,
our algorithms have order-wise lower regret than Q-learning (Watkins, 1989) with ε-greedy,
Q-learning with UCB (Yang et al., 2021), and UCBVI (Azar et al., 2017). The reason is
that these Q-learning based (model-free or model-based) algorithms have no known regret
guarantee for this type of problem, i.e., stochastic longest path problem. It is significantly
different from the finite-horizon episodic MDP or discounted MDP problems, where there is
either a finite horizon in each episode or a discount factor. From Figure 2(a) and 2(c) we can
see that these three algorithms induce a very large regret at the beginning of the learning
process, which may be due to severe error propagation during the update of Q values.

Note that the asymptotic upper bound (UB) and lower bound (LB) in Figure 2(a) and 2(c)
only consider the logK term in the regret and ignore the other lower order terms, so only
the slopes matter. Figure 2(b) and 2(d) plot the average cumulative regret over K episodes
divided by logK. It can be seen that the curves go towards the asymptotic regret upper
bound (UB) and the asymptotic lower bound (LB). These results confirm our theoretical
results.

See Appendix D for simulation parameters and additional simulation results. Simulations
for the general-state setting can be found in Appendix C.5.

6. Conclusion

We studied a new MAB problem with abandonment. The proposed ULCB and KL-ULCB
achieve OplogKq regret, and KL-ULCB is asymptotically sharp. We also extended our algo-
rithms to the general-state setting. Simulation results show that our algorithms outperform
UCB, KL-UCB, and Q-learning-based algorithms and confirm our theoretical results about
the state-dependent exploration-exploitation mechanism.
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Appendix A. State Transition of the MDP in Section 2

The transition graph of the MDP defined in Section 2 is shown in Figure 3 with state space
S “ t0, 1, gu, action space A “ ta1, ..., aMu, and Bernoulli random rewards.

The transition probabilities P ps1|s, aq while pulling arm a are shown in Table 1. The
model can also be extended to the case where users never abandon the system at the first
step by defining one more state in which the abandonment probability is 0.

0 1

𝑃𝑃 1 0,𝑎𝑎𝑖𝑖 = 𝜇𝜇 𝑎𝑎𝑖𝑖 1 − 𝑞𝑞 0,1
𝑅𝑅 𝑎𝑎𝑖𝑖 = 1

𝑃𝑃 0 1, 𝑎𝑎𝑖𝑖 = 1 − 𝜇𝜇 𝑎𝑎𝑖𝑖 1 − 𝑞𝑞 1,0
𝑅𝑅 𝑎𝑎𝑖𝑖 = 0

𝑃𝑃 𝑔𝑔 0,𝑎𝑎𝑖𝑖 = 1 − 𝜇𝜇 𝑎𝑎𝑖𝑖 𝑞𝑞 0,0 + 𝜇𝜇 𝑎𝑎𝑖𝑖 𝑞𝑞 0,1
𝑅𝑅 𝑎𝑎𝑖𝑖 ~Bernoulli(𝜇𝜇 𝑎𝑎𝑖𝑖 )

𝑔𝑔

𝑃𝑃 𝑔𝑔 1, 𝑎𝑎𝑖𝑖 = 1 − 𝜇𝜇 𝑎𝑎𝑖𝑖 𝑞𝑞 1,0 + 𝜇𝜇 𝑎𝑎𝑖𝑖 𝑞𝑞 1,1
𝑅𝑅 𝑎𝑎𝑖𝑖 ~Bernoulli(𝜇𝜇 𝑎𝑎𝑖𝑖 )

𝑃𝑃 𝑔𝑔 𝑔𝑔,𝑎𝑎𝑖𝑖 = 1
𝑅𝑅(𝑎𝑎𝑖𝑖) = 0

𝑃𝑃 0 0, 𝑎𝑎𝑖𝑖 = (1 − 𝜇𝜇 𝑎𝑎𝑖𝑖 ) 1 − 𝑞𝑞 0,0
𝑅𝑅 𝑎𝑎𝑖𝑖 = 0

𝑃𝑃 1 1, 𝑎𝑎𝑖𝑖 = 𝜇𝜇 𝑎𝑎𝑖𝑖 1 − 𝑞𝑞 1,1
𝑅𝑅 𝑎𝑎𝑖𝑖 = 1

Figure 3: Transition graph for action ai, i P t1, 2, ...,Mu.

Appendix B. Missing Proofs

B.1 Proof of Lemma 1: Optimal Policy

If the model is known, this problem can be viewed as a SSP problem (Bertsekas and Tsitsiklis,
1991). Since µpaiq ď µpa1q ă 1,@i “ 2, ...,M and qp0, 0q ą 0, all policies are proper. Hence,
by the results of Bertsekas and Tsitsiklis (1991), there exists a stationary optimal policy.
Therefore, it is enough to consider only stationary policies for π˚. Define for any state s P S
and a P A,

V ˚psq :“ Eπ˚

«

8
ÿ

h“1

Rk,hpAk,hq | Sk,1 “ s

ff

, (22)

P ps1|s, aq
Next state s1

0 1 g

Current state s
0 p1´ µpaqqp1´ qp0, 0qq µpaqp1´ qp0, 1qq p1´ µpaqqqp0, 0q ` µpaqqp0, 1q
1 p1´ µpaqqp1´ qp1, 0qq µpaqp1´ qp1, 1qq p1´ µpaqqqp1, 0q ` µpaqqp1, 1q
g 0 0 1

Table 1: Transition probabilities P ps1|s, aq
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where Ak,h follows the policy π˚, and

Q˚ps, aq :“

#

µpaq ` Eπ˚
“
ř8
h“2Rk,hpAk,hq | Sk,1 “ s,Ak,1 “ a

‰

, s ‰ g

0, s “ g
(23)

where Ak,h, h ě 2 follows the policy π˚. Note that V ˚psq and Q˚ps, aq do not depend on
k since the statistics of the MDPs remain the same among episodes and these MDPs are
independent. For s ‰ g, we have the Bellman equation as follows

V ˚psq “max
a

Q˚ps, aq

Q˚ps, aq “µpaq ` E

«

Eπ˚

«

8
ÿ

h“2

Rk,hpAk,hq |Sk,2

ff

| Sk,1 “ s,Ak,1 “ a

ff

“µpaq ` E rV ˚pSk,2q|Sk,1 “ s,Ak,1 “ as . (24)

Thus, we have

Q˚ps, aq “µpaq ` P p0|s, aqV ˚p0q ` P p1|s, aqV ˚p1q

“µpaq ` p1´ µpaqqp1´ qps, 0qqV ˚p0q ` µpaqp1´ qps, 1qqV ˚p1q
(25)

for any s P t0, 1u and a P A. Then we have

Q˚p1, aq ´Q˚p0, aq “

„

p1´ µpaqqp1´ qp1, 0qqV ˚p0q ` µpaqp1´ qp1, 1qqV ˚p1q



´

„

p1´ µpaqqp1´ qp0, 0qqV ˚p0q ` µpaqp1´ qp0, 1qqV ˚p1q



“p1´ µpaqqV ˚p0qpqp0, 0q ´ qp1, 0qq ` µpaqV ˚p1qpqp0, 1q ´ qp1, 1qq.
(26)

Since by definition we know V ˚psq ě 0 for any s P t0, 1u, and we know qp0, 0q ´ qp1, 0q ě 0
and qp0, 1q ´ qp1, 1q ě 0, from the result of (26), we have Q˚p1, aq ´ Q˚p0, aq ě 0 for any
a P ta1, ..., aMu. Therefore, we have

V ˚p1q ´ V ˚p0q “max
a

Q˚p1, aq ´max
a

Q˚p0, aq “ max
a

Q˚p1, aq ´Q˚p0, a1q

ěQ˚p1, a1q ´Q˚p0, a1q ě 0,

where a1 :“ argmaxaQ
˚p0, aq. Then by (25), for any i “ 2, ...,M , we have

Q˚ps, a1q ´Q
˚ps, aiq “ pµpa1q ´ µpaiqq ` pµpaiq ´ µpa1qqp1´ qps, 0qqV

˚p0q

` pµpa1q ´ µpaiqqp1´ qps, 1qqV
˚p1q

“pµpa1q ´ µpaiqq ` pµpa1q ´ µpaiqq

„

p1´ qps, 1qqV ˚p1q ´ p1´ qps, 0qqV ˚p0q



, (27)

where
p1´ qps, 1qqV ˚p1q ´ p1´ qps, 0qqV ˚p0q ě 0 (28)

due to the fact that V ˚p1q ě V ˚p0q ě 0 and qps, 0q ě qps, 1q for any s P t0, 1u. Therefore,
by (27), (28), and µpa1q ě µpaiq,@i “ 2, ...,M , we have Q˚ps, a1q ě Q˚ps, aiq for any
i “ 2, ...,M and s P t0, 1u. Therefore, always pulling Arm a1 is an optimal policy.
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B.2 Proof of Lemma 3

Lemma 3 can be proved by obtaining a lower bound for the ratio V ˚p0q{V ˚p1q. For
i P t2, 3, ...,Mu, we have

rV ˚p0q ´Q˚p0, aiqs ´ rV
˚p1q ´Q˚p1, aiqs

“ rQ˚p0, a1q ´Q
˚p0, aiqs ´ rQ

˚p1, a1q ´Q
˚p1, aiqs

“ rµpa1q ´ µpaiqs r1` p1´ qp0, 1qqV
˚p1q ´ p1´ qp0, 0qqV ˚p0qs

´ rµpa1q ´ µpaiqs r1` p1´ qp1, 1qqV
˚p1q ´ p1´ qp1, 0qqV ˚p0qs

“ rµpa1q ´ µpaiqs rpqp0, 0q ´ qp1, 0qqV
˚p0q ´ pqp0, 1q ´ qp1, 1qqV ˚p1qs , (29)

where the first and second equalities follow from (24) and Lemma 1. Since µpa1q ą 0, we
have V ˚p1q ą 0. Then by the Bellman equation (24) and Lemma 1, we have

V ˚p0q

V ˚p1q
“
µpa1q ` µpa1qp1´ qp0, 1qqV

˚p1q ` p1´ µpa1qqp1´ qp0, 0qqV
˚p0q

µpa1q ` µpa1qp1´ qp1, 1qqV ˚p1q ` p1´ µpa1qqp1´ qp1, 0qqV ˚p0q

“
µpa1q `

p1´qp0,1qq
p1´qp1,1qqµpa1qp1´ qp1, 1qqV

˚p1q ` p1´qp0,0qq
p1´qp1,0qqp1´ µpa1qqp1´ qp1, 0qqV

˚p0q

µpa1q ` µpa1qp1´ qp1, 1qqV ˚p1q ` p1´ µpa1qqp1´ qp1, 0qqV ˚p0q

ě

min
!

1´qp0,1q
1´qp1,1q ,

1´qp0,0q
1´qp1,0q

)

rµpa1q ` µpa1qp1´ qp1, 1qqV
˚p1q ` p1´ µpa1qqp1´ qp1, 0qqV

˚p0qs

µpa1q ` µpa1qp1´ qp1, 1qqV ˚p1q ` p1´ µpa1qqp1´ qp1, 0qqV ˚p0q

“min

"

1´ qp0, 1q

1´ qp1, 1q
,
1´ qp0, 0q

1´ qp1, 0q

*

, (30)

where the inequality is due to the fact that min
!

1´qp0,1q
1´qp1,1q ,

1´qp0,0q
1´qp1,0q

)

ď 1. It follows from (9)

and (30) that V ˚p0q
V ˚p1q ě

qp0,1q´qp1,1q
qp0,0q´qp1,0q , which implies

pqp0, 0q ´ qp1, 0qqV ˚p0q ´ pqp0, 1q ´ qp1, 1qqV ˚p1q ě 0.

Hence, it follows from (29) that V ˚p0q ´Q˚p0, aiq ě V ˚p1q ´Q˚p1, aiq.
We also provide closed-form expressions of the value functions V ˚p1q, V ˚p0q and the

Q-functions Q˚p1, aq, Q˚p0, aq here. From Lemma 1, we know that the optimal policy is
always pulling arm a1, so V ˚p1q “ Q˚p1, a1q and V ˚p0q “ Q˚p0, a1q. Hence, from the
Bellman equation (25), we have the following set of linear equations in terms of V ˚p1q and
V ˚p0q

V ˚p1q “µpa1q ` p1´ µpa1qqp1´ qp1, 0qqV
˚p0q ` µpa1qp1´ qp1, 1qqV

˚p1q

V ˚p0q “µpa1q ` p1´ µpa1qqp1´ qp0, 0qqV
˚p0q ` µpa1qp1´ qp0, 1qqV

˚p1q.

Solving this set of linear equations, we can obtain

V ˚p1q “
µpa1qr1` qp0, 0q ´ µpa1qqp0, 0q ` µpa1qqp1, 0q ´ qp1, 0qs

denom

V ˚p0q “
r1´ µpa1qp1´ qp1, 1qqsV

˚p1q ´ µpa1q

p1´ µpa1qqp1´ qp1, 0qq
.
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where

denom “qp0, 0q ` µpa1qr´2qp0, 0q ` qp1, 0q ` qp0, 1q ` qp1, 1qqp0, 0q ´ qp1, 0qqp0, 1qs

` µpa1q
2rqp0, 0q ` qp1, 1q ´ qp1, 0q ´ qp0, 1q ´ qp1, 1qqp0, 0q ` qp1, 0qqp0, 1qs.

Substituting the above results of V ˚p1q and V ˚p0q into (25), we can obtain the expressions
for Q˚p1, aq and Q˚p0, aq.

B.3 Proof of the Regret Decomposition (14)

From the definition of V ˚ and Q˚ in (6) and (7) and by Lemma 1, we have the following
Bellman equation

V ˚psq “max
a

Q˚ps, aq “ Q˚ps, a1q

Q˚ps, aq “µpaq ` E rV ˚pSk,2q|Sk,1 “ s,Ak,1 “ as (31)

for s ‰ g. Similarly, we have the Bellman equation for V π and Qπ as follows

V πps, ϕq “Qπps, ϕ, πps, ϕqq

Qπps, ϕ, aq “µpaq ` E

«

E
„Ikpπ,Sk,2,φk,2q`1

ÿ

h“2

Rk,hpπpSk,h, φk,hqq |Sk,2, φk,2



ˇ

ˇ

ˇ

ˇ

Sk,1 “ s, φk,1 “ ϕ,Ak,1 “ a

ff

“µpaq ` E rV πpSk,2, φk,2q | Sk,1 “ s, φk,1 “ ϕ,Ak,1 “ as (32)

for s ‰ g.
From (13), the regret induced in episode k is E rV ˚pSk,1qs ´E rV πpSk,1, φk,1qs, which can

be decomposed as follows

E rV ˚pSk,1qs ´ E rV πpSk,1, φk,1qs

“E rV ˚pSk,1q ´Q˚pSk,1, Ak,1qs ` E rQ˚pSk,1, Ak,1q ´ V πpSk,1, φk,1qs

“E rV ˚pSk,1q ´Q˚pSk,1, Ak,1qs ` E rQ˚pSk,1, Ak,1q ´QπpSk,1, φk,1, Ak,1qs
“E rV ˚pSk,1q ´Q˚pSk,1, Ak,1qs
` E rE rV ˚pSk,2q|Sk,1, Ak,1s ´ E rV πpSk,2, φk,2q|Sk,1, φk,1, Ak,1ss

“E rV ˚pSk,1q ´Q˚pSk,1, Ak,1qs ` E rV ˚pSk,2q ´ V πpSk,2, φk,2qs “ ...

“

8
ÿ

h“1

E rV ˚pSk,hq ´Q˚pSk,h, Ak,hqs ,

where Sk,h, φk,h, and Ak,h are the states, historical samples, and actions following the policy
π, respectively. The second equality is due to the fact that Ak,h “ πpSk,h, φk,hq, the third
equality follows from the Bellman equations (31) and (32), and the fourth equality is by the
tower law. The limit in the result is well-defined since V ˚pSk,hq ´ Q˚pSk,h, Ak,hq ě 0. In
fact, this regret decomposition borrows from (Yang et al., 2021), and it can also be viewed
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as the performance difference formula (Kakade and Langford, 2002) in the RL literature.
Then the regret can be further decomposed into the summation of the gaps between value
function and Q function in different states shown as follows

ErRegπpKqs “
K
ÿ

k“1

8
ÿ

h“1

E rV ˚pSk,hq ´Q˚pSk,h, Ak,hqs

“E

«

K
ÿ

k“1

8
ÿ

h“1

V ˚pSk,hq ´Q
˚pSk,h, Ak,hq

ff

“E

»

–

K
ÿ

k“1

Ikpπ,Sk,1,φk,1q
ÿ

h“1

V ˚pSk,hq ´Q
˚pSk,h, Ak,hq

fi

fl “ E

»

–

T pK,πq
ÿ

t“1

V ˚pStq ´Q
˚pSt, Atq

fi

fl

“E

«

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

` 1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

ff

,

where the second equality is by monotone convergence theorem, the third equality is by
the definition of Ikpπ, Sk,1, φk,1q, T pK,πq :“

řK
k“1 Ikpπ, Sk,1, φk,1q is the number of pulls

over K episodes following the policy π, and the last equality follows from the fact that
V ˚psq ´Q˚ps, a1q “ 0 for any s.

B.4 Proof of Lemma 7

Choose a T1 such that for any t ě T1,

ppmin ´ ηqpt´ 1q

2pM ´ 1q
ě 2, and

g

f

f

e

log t` 4 log plog tq
ppmin´ηqpt´1q

pM´1q ´ 2
ď pµpa1q ´ µpa2qq ´ γ.

Let N1
t paq be the number of times arm a P A was pulled in state 1 before time step t. Then

P
ˆ

Ntpa1q ď
ppmin ´ ηqpt´ 1q

2

˙

ď P
ˆ

N1
t pa1q ď

ppmin ´ ηqpt´ 1q

2

˙

ďP

˜

N1
t pa1q ď

ppmin ´ ηqpt´ 1q

2
,
t´1
ÿ

i“1

1tSi “ 1u ą ppmin ´ ηqpt´ 1q

¸

` P

˜

t´1
ÿ

i“1

1tSi “ 1u ď ppmin ´ ηqpt´ 1q

¸

(33)

where the first inequality follows from the fact that N1
t paq ď Ntpaq. Next we will show that

Pp
řt´1
i“1 1tSi “ 1u ď ppmin´ ηqpt´ 1qq is small. Let F0 :“ tH,Ωu be the minimum σ-algebra,

and Fi :“ σpS1, A1, ..., Si, Aiq be the σ-algebra generated by the random variables up to time
i. Since for any a P A,

P pSi “ 1|Si´1 “ 0, Ai´1 “ aq ěµpaqp1´ qp0, 1qq
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P pSi “ 1|Si´1 “ 1, Ai´1 “ aq ěµpaqp1´ qp1, 1qq,

we have

E r1tSi “ 1u|Fi´1s ě µpaM qmin t1´ qp0, 1q, 1´ qp1, 1qu “ pmin ą 0.

Hence we have

P

˜

t´1
ÿ

i“1

1tSi “ 1u ď ppmin ´ ηqpt´ 1q

¸

“ P

˜

t´1
ÿ

i“1

pmin ´

t´1
ÿ

i“1

1tSi “ 1u ě ηpt´ 1q

¸

ďP

˜

t´1
ÿ

i“1

pE r1tSi “ 1u|Fi´1s ´ 1tSi “ 1uq ě ηpt´ 1q

¸

. (34)

Let ∆i :“ E r1tSi “ 1u|Fi´1s ´ 1tSi “ 1u. Note that ∆i is measurable with respect to Fi,
Er∆i|Fi´1s “ 0, and |∆i| ď 1. Hence, by Azuma-Hoeffding inequality (Van Handel, 2016),
we have

P

˜

t´1
ÿ

i“1

pE r1tSi “ 1u|Fi´1s ´ 1tSi “ 1uq ě ηpt´ 1q

¸

ď exp

ˆ

´
η2pt´ 1q

2

˙

. (35)

Therefore, from (33), (34) and (35), it follows that

P
ˆ

Ntpa1q ď
ppmin ´ ηqpt´ 1q

2

˙

ďP

˜

N1
t pa1q ď

ppmin ´ ηqpt´ 1q

2
,
t´1
ÿ

i“1

1tSi “ 1u ą ppmin ´ ηqpt´ 1q

¸

` exp

ˆ

´
η2pt´ 1q

2

˙

ďP

˜

M
ÿ

i“2

N1
t paiq ą

ppmin ´ ηqpt´ 1q

2

¸

` exp

ˆ

´
η2pt´ 1q

2

˙

ďP
ˆ

N1
t pajq ą

ppmin ´ ηqpt´ 1q

2pM ´ 1q

˙

` exp

ˆ

´
η2pt´ 1q

2

˙

, (36)

where the second inequality is due to the fact that
řM
i“1N

1
t paiq “

řt´1
i“1 1tSi “ 1u and in

the last inequality j P argmaxiPt2,...,MuN
1
t paiq. Consider the event tN1

t pajq ą
ppmin´ηqpt´1q

2pM´1q u.

Let τt ă t be the time step when aj is pulled in state 1 for the
Q

ppmin´ηqpt´1q
2pM´1q

U

-th time. Then
we have

τt ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

` pM ´ 1q ě
ppmin ´ ηqpt´ 1q

2pM ´ 1q
` pM ´ 1q (37)

N1
τtpajq “

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1 ě
ppmin ´ ηqpt´ 1q

2pM ´ 1q
´ 1, (38)

where the first inequality is due to the fact that the ULCB algorithm pulls the other pM ´ 1q

arms at the beginning. Let Lt :“ ppmin´ηqpt´1q
2pM´1q ` pM ´ 1q. Then we have

P
ˆ

N1
t pajq ą

ppmin ´ ηqpt´ 1q

2pM ´ 1q

˙
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ďP
ˆ

τt ě Lt, N
1
τtpajq “

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1, Sτt “ 1, Aτt “ aj

˙

ďP
ˆ

µ̃1
τtpajq ě µ̃1

τtpa1q, τt ě Lt, N
1
τtpajq “

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ďP
ˆ

µ̃1
τtpajq ě µ̃1

τtpa1q, τt ě Lt, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ďP
ˆ

µ̃1
τtpajq ě µ̃1

τtpa1q, µ̃
1
τtpa1q ě µpa1q, τt ě Lt, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

` P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

, (39)

where the first inequality follows from (37), (38), and the definition of τt, the second inequality
follows from Sτt “ 1, Aτt “ aj , and Line 13 of Algorithm 1, the third inequality is due to
the fact that Nτtpajq ě N1

τtpajq, and the last inequality is by law of total probability.
By Lemma 12 (which is presented after this proof) and c1 “ 1, c “ 4, for any t ě T1, we

can bound the second term in (39) as follows

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

ď
e logLt logpt´ 2q ` 4e logplogLtq logpt´ 2q ` e

LtplogLtq4

ď
e logpt´ 2q ` 4 logpt´ 2q ` e

LtplogLtq3
ď

p4` eq logpt´ 1q ` e

ppmin´ηqpt´1q
2pM´1q

”

log
´

ppmin´ηqpt´1q
2pM´1q

¯ı3

ď
c3

c2pt´ 1q rlog pc2pt´ 1qqs2
, (40)

where the second inequality is obtained by dividing the numerator and the denominator
by logLt, the third inequality is by the definition of Lt, and the last inequality is obtained
by dividing the numerator and the denominator by log pc2pt´ 1qq, where c2 :“ pmin´η

2pM´1q and
c3 :“ 4`e

log 2 log 2
c2
` e

log 2 . For the first term in (39), we have

P
ˆ

µ̃1
τtpajq ě µ̃1

τtpa1q, µ̃
1
τtpa1q ě µpa1q, τt ě Lt, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ďP
ˆ

µ̃1
τtpajq ě µpa1q, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

. (41)

Consider the event tµ̃1
τtpajq ě µpa1q, Nτtpajq ě

Q

ppmin´ηqpt´1q
2pM´1q

U

´ 1u. Then we have

µ̃1
τtpajq “µ̄τtpajq `

d

log τt ` 4 log plog τtq

2Nτtpajq

ěµpa1q “ µpajq ` pµpa1q ´ µpajqq ě µpajq ` pµpa1q ´ µpa2qq,

which implies

µ̄τtpajq ´ µpajq ěpµpa1q ´ µpa2qq ´

d

log τt ` 4 log plog τtq

2Nτtpajq
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ěpµpa1q ´ µpa2qq ´

g

f

f

e

log t` 4 log plog tq
ppmin´ηqpt´1q

pM´1q ´ 2
ě γ,

where the second inequality is by τt ă t and Nτtpajq ě
Q

ppmin´ηqpt´1q
2pM´1q

U

´ 1, and the last
inequality is by t ě T1 and the definition of T1. Hence we have

P
ˆ

µ̃1
τtpajq ě µpa1q, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ďP
ˆ

µ̄τtpajq ´ µpajq ě γ,Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ď

M
ÿ

i“2

P
ˆ

µ̄τtpaiq ´ µpaiq ě γ,Nτtpaiq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ď

M
ÿ

i“2

t´1
ÿ

n“
Q

ppmin´ηqpt´1q

2pM´1q

U

´1

P

˜

1

n

n
ÿ

s“1

Rspaiq ´ µpaiq ě γ

¸

ďpM ´ 1q
t´1
ÿ

n“
Q

ppmin´ηqpt´1q

2pM´1q

U

´1

expp´2nγ2q ď
M ´ 1

2γ2 exp p2γ2c2pt´ 1q ´ 4γ2q
. (42)

In the derivation above, the second inequality is by the union bound over all possible j. The
third inequality is by the union bound over all possible number of pulls of arm ai, where
tRspaiqu

n
s“1 are n i.i.d. Bernoulli rewards of pulling arm ai. The fourth inequality uses

Hoeffding inequality, and the last inequality is by integration.
From (36), (39), (40), (41), and (42), it follows that for any t ě T1,

P
ˆ

Ntpa1q ď
ppmin ´ ηqpt´ 1q

2

˙

ď
M ´ 1

2γ2 exp p2γ2c2pt´ 1q ´ 4γ2q
`

c3

c2pt´ 1q rlog pc2pt´ 1qqs2
` exp

ˆ

´
η2pt´ 1q

2

˙

.

Lemma 12 Let all the assumptions in Lemma 7 hold. Consider the ULCB algorithm. Let
Lt :“ ppmin´ηqpt´1q

2pM´1q ` pM ´ 1q, δLt :“ c2
1 logLt ` cc

2
1 logplogLtq. Then for any t ě T1,

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

ď e rδLt logpt´ 2qs expp´δLtq (43)

Proof This lemma can be proved by a minor modification of the proof of Theorem 10
in the work of Garivier and Cappé (2011). The main difference is that τt is a random
variable with a lower bound Lt. We present the whole proof for completeness. We first define
several notations and construct a martingale. Let n be any time step. Let tXiu

n
i“1 be the

i.i.d. Bernoulli rewards generated by pulling arm a1. Let tF 1iu be an increasing sequence of
σ-algebra such that

F 10 :“ σpS1, A1q, F 1i :“ σpS1, A1, X1, ..., Si, Ai, Xi, Si`1, Ai`1q, i ě 1.
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Note that Xi is independent of F 1i´1 and Xi is measurable with respect to F 1i . By the
definition of τn, the event tτn ´ 1 ě iu “ tτn ď iuc is measurable with respect to F 1i´1 for
any i P t1, ..., n´ 2u. Let

Vn :“
n´2
ÿ

i“1

εiXi, Un :“
n´2
ÿ

i“1

εi, n ě 2,

where εi :“ 1tAi “ a1, i ď τn´ 1u, which is measurable with respect to F 1i´1. Hence, Vn and
Un`1 are measurable with respect to F 1n´2. For any λ P R, let φpλq :“ logE rexppλX1qs. For
any n ě 0, define W λ

n by

W λ
n :“ exp pλVn`2 ´ Un`2φpλqq . (44)

For any n ě 1, we have

E
“

exp pλpVn`2 ´ Vn`1qq |F 1n´1

‰

“ E
“

exp pλεnXnq |F 1n´1

‰

“ E
“

pexp pλXnqq
εn |F 1n´1

‰

“
`

E
“

exp pλXnq |F 1n´1

‰˘εn
“ exp

`

εn logE
“

exppλXnq|F 1n´1

‰˘

“ exp pεnφpλqq “ exp ppUn`2 ´ Un`1qφpλqq , (45)

where the third equality is due to the fact that εn P t0, 1u and εn is measurable with respect
to F 1n´1, and the fifth equality is due to the fact that Xn is independent of F 1n´1. Hence,
by (45) and the fact that Vn`1 and Un`2 are measurable with respect to F 1n´1 we have

E
“

exp pλVn`2 ´ Un`2φpλqq |F 1n´1

‰

“ exp pλVn`1 ´ Un`1φpλqq ,

i.e., E
“

W λ
n |F 1n´1

‰

“ W λ
n´1, which implies that W λ

n is a martingale with respect to the
filtration tF 1nu. Hence we have for any n,

E
”

W λ
n

ı

“ E
”

W λ
0

ı

“ 1. (46)

Next we will use this conclusion to bound P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

. Note that
Nτtpa1q “ Ut and µ̄τtpa1q “ Vt{Ut by definition. By Line 12 of Algorithm 1, µ̃1

τtpa1q

can also be written as

µ̃1
τtpa1q “ max

!

p : 2Ut pp´ µ̄τtpa1qq
2
ď c2

1 log τt ` cc
2
1 logplog τtq

)

. (47)

Since t ě T1, we have Lt ěM ` 1 ě 3 by the definition of Lt. Hence, by the definition of
δLt , we have δLt ą 0. If δLt ď 1, then

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

ď 1 ď exp p1´ δLtq rδLt logpt´ 2qs

for t ě T1. Then we only need to consider the case where δLt ą 1. We use the same “peeling
trick” as in the work of Garivier and Cappé (2011): we divide t1, 2, ..., t ´ 2u of possible
values for Ut into slices ttn´1 ` 1, ..., tn´1u of geometrically increasing size, and treat the
slices individually. Let βt :“ 1

δLt´1 . Let t0 :“ 0 and for n P N, tn :“ tp1` βtq
nu. Let Dt be
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the first integer such that tDt ě t´ 2. Hence, Dt “

Q

logpt´2q
logp1`βtq

U

. Define En :“ ttn´1 ă Ut ď

tnu X tµ̃
1
τtpa1q ă µpa1q, τt ě Ltu. Then by union bound, we have

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

“ P

˜

Dt
ď

n“1

En

¸

ď

Dt
ÿ

n“1

P pEnq . (48)

Note that
 

µ̃1
τtpa1q ă µpa1q, τt ě Lt

(

Ď
 

µ̄τtpa1q ă µpa1q, 2Utpµpa1q ´ µ̄τtpa1qq
2 ą c2

1 log τt ` cc
2
1 logplog τtq, τt ě Lt

(

Ď
 

µ̄τtpa1q ă µpa1q, 2Utpµpa1q ´ µ̄τtpa1qq
2 ą δLt

(

(49)

by (47), τt ě Lt, and the definition of δLt . Let mt be the smallest integer such that
δLt
mt`1 ď 2µpa1q

2. If Ut ď mt and µ̄τtpa1q ă µpa1q, then

2Utpµpa1q ´ µ̄τtpa1qq
2 ď 2mtpµpa1q ´ µ̄τtpa1qq

2 ď 2mtµpa1q
2 ă δLt ,

which implies that
 

Ut ď mt, µ̄τtpa1q ă µpa1q, 2Utpµpa1q ´ µ̄τtpa1qq
2 ą δLt

(

“ H. (50)

Therefore, it follows from (49) and (50) that
 

Ut ď mt, µ̃
1
τtpa1q ă µpa1q, τt ě Lt

(

“ H.

Hence, En “ H for all n such that tn ď mt. For n such that tn ą mt, let t̃n´1 :“
maxttn´1,mtu. Then we have

En Ďtt̃n´1 ă Ut ď tnu X tµ̃
1
τtpa1q ă µpa1q, τt ě Ltu

Ďtt̃n´1 ă Ut ď tnu X tµ̄τtpa1q ă µpa1q, 2Utpµpa1q ´ µ̄τtpa1qq
2 ą δLtu, (51)

where the second relation follows from (49). Define zt such that 0 ď zt ă µpa1q and
2pµpa1q ´ ztq

2 “
δLt

p1`βtqn
. Note that if En occurs, then the definition of zt is valid since

δLt
p1` βtqn

ď
δLt
Ut
ď

δLt
mt ` 1

ď 2µpa1q
2,

where the first inequality follows from Ut ď tn ď p1 ` βtq
n, the second inequality follows

from Ut ě mt` 1, and the third inequality is by the definition of mt. For Ut ą t̃n´1, we have

En X
 

Ut ą t̃n´1

(

Ď En X tUt ą tn´1u Ď En X
 

Ut ą tp1` βtq
n´1u

(

ĎEn X
 

Ut ě p1` βtq
n´1

(

Ď En X

"

2pµpa1q ´ ztq
2 “

δLt
p1` βtqn

ě
δLt

p1` βtqUt

*

, (52)

where the first relation is by definition of t̃n´1, the second relation is by the definition of
tn´1, and the last relation uses the definition of zt. For Ut ď tn, we have

En X tUt ď tnu ĎEn X tUt ď tp1` βtq
nuu Ď En X tUt ď p1` βtq

nu
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ĎEn X tUt ď p1` βtq
nu X

 

2Utpµpa1q ´ µ̄τtpa1qq
2 ą δLt

(

ĎEn X

"

2pµpa1q ´ µ̄τtpa1qq
2 ą

δLt
Ut
ě

δLt
p1` βtqn

“ 2pµpa1q ´ ztq
2

*

, (53)

where the first relation is by the definition of tn, the third relation follows from (51), and the
last relation uses the definition of zt. Hence, from (51) (52), and (53), it follows that

En Ď

"

µ̄τtpa1q ă µpa1q, 2pµpa1q ´ µ̄τtpa1qq
2 ą 2pµpa1q ´ ztq

2 ě
δLt

p1` βtqUt

*

Ď

"

µ̄τtpa1q ă zt, 2pµpa1q ´ ztq
2 ě

δLt
p1` βtqUt

*

. (54)

Define λt :“ log pztp1´ µpa1qqq´log pµpa1qp1´ ztqq ď 0. By Lemma 9 in the work of Garivier
and Cappé (2011), we have

φpλtq ď log p1´ µpa1q ` µpa1q exppλtqq . (55)

Then it follows from (54) and (55) that

En Ď

"

λtµ̄τtpa1q ´ φpλtq ě λtzt ´ log p1´ µpa1q ` µpa1q exppλtqq ,

2pµpa1q ´ ztq
2 ě

δLt
p1` βtqUt

*

“

"

λtµ̄τtpa1q ´ φpλtq ě klpzt, µpa1qq, 2pµpa1q ´ ztq
2 ě

δLt
p1` βtqUt

*

Ď

"

λtµ̄τtpa1q ´ φpλtq ě 2pµpa1q ´ ztq
2, 2pµpa1q ´ ztq

2 ě
δLt

p1` βtqUt

*

Ď

"

λtµ̄τtpa1q ´ φpλtq ě
δLt

p1` βtqUt

*

, (56)

where the second relation is by the definition of λt and klp¨, ¨q, and the third relation
uses Pinsker’s inequality such that 2pµpa1q ´ ztq

2 ď klpzt, µpa1qq. By the relation that
µ̄τtpa1q “ Vt{Ut, the definition of W λ

n in (44), and (56), we have

En Ď

"

log
´

W λt
t´2

¯

ě
δLt

p1` βtq

*

“

"

W λt
t´2 ě exp

ˆ

δLt
p1` βtq

˙*

.

By Markov’s inequality, we have

P pEnq ď P
ˆ

W λt
t´2 ě exp

ˆ

δLt
p1` βtq

˙˙

ď

E
”

W λt
t´2

ı

exp
´

δLt
p1`βtq

¯ “ exp

ˆ

´
δLt

p1` βtq

˙

,

where the equality follows from (46). Hence, from (48), it follows that

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

ď

Dt
ÿ

n“1

P pEnq ď Dt exp

ˆ

´
δLt

p1` βtq

˙

. (57)
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Recall that βt “ 1
δLt´1 . Then

Dt “

R

logpt´ 2q

logp1` βtq

V

“

S

logpt´ 2q

logp1` 1
δLt´1q

W

ď rδLt logpt´ 2qs , (58)

where the last inequality follows from the fact that logp1` 1
x´1q ě

1
x for any x ą 1. From (57)

and (58), it follows that

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

ď rδLt logpt´ 2qs exp

ˆ

´
δLt

p1` βtq

˙

“e rδLt logpt´ 2qs expp´δLtq.

B.5 Proof of Lemma 8

By monotone convergence theorem and linearity of expectation, we have

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

fi

fl

“E

«

8
ÿ

t“1

1tt ď T pK,πqu
M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

ff

“

8
ÿ

t“1

E

«

1tt ď T pK,πqu
M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

ff

ď

8
ÿ

t“1

E

«

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

ff

“

8
ÿ

t“1

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqsE r1tSt “ 0, At “ aius

“

8
ÿ

t“1

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqsP pSt “ 0, At “ aiq

“

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqs
8
ÿ

t“1

P pSt “ 0, At “ aiq , (59)

where P pSt “ 0, At “ aiq can be bounded by

P pSt “ 0, At “ aiq ď P
`

St “ 0, At “ ai, µpaiq ě µ̃0
t paiq

˘

` P
`

µpaiq ă µ̃0
t paiq

˘

.

Note that by definition of µ̃0
t paiq we know

µ̃0
t paiq “ µ̄tpaiq ´

d

log t` 4 logplog tq

2Ntpaiq
“ min

 

p : 2pµ̄tpaiq ´ pq
2Ntpaiq ď log t` 4 logplog tq

(

.

(60)

29



Yang, Liu, and Ying

Hence, by Theorem 10 in the work of Garivier and Cappé (2011), we have

P
`

µpaiq ă µ̃0
t paiq

˘

ď
e rrlog t` 4 logplog tqs log ts

tplog tq4
ď

6e

tplog tq2
(61)

for any t ě T1. Hence, we have

P pSt “ 0, At “ aiq ď P
`

St “ 0, At “ ai, µpaiq ě µ̃0
t paiq

˘

`
6e

tplog tq2

for any t ě T1. Similarly, we have

P pSt “ 0, At “ aiq

ďP
`

St “ 0, At “ ai, µ̃
1
t pa1q ě µpa1q, µpaiq ě µ̃0

t paiq
˘

` P
`

µ̃1
t pa1q ă µpa1q

˘

`
6e

tplog tq2

ďP
`

St “ 0, At “ ai, µ̃
1
t pa1q ě µpa1q, µpaiq ě µ̃0

t paiq
˘

`
12e

tplog tq2
(62)

for any t ě T1. Note that µ̃1
t pa1q “ µ̃0

t pa1q ` 2
b

log t`4 logplog tq
2Ntpa1q

by definition. Hence, we have

P
`

St “ 0, At “ ai, µ̃
1
t pa1q ě µpa1q, µpaiq ě µ̃0

t paiq
˘

“P

˜

St “ 0, At “ ai, µ̃
0
t pa1q ` 2

d

log t` 4 logplog tq

2Ntpa1q
ě µpa1q, µpaiq ě µ̃0

t paiq

¸

“P

˜

St “ 0, At “ ai, µ̃
0
t pa1q ` 2

d

log t` 4 logplog tq

2Ntpa1q
ě µpaiq ` pµpa1q ´ µpaiqq,

µpaiq ě µ̃0
t paiq

¸

ďP

˜

St “ 0, At “ ai, µ̃
0
t pa1q ` 2

d

log t` 4 logplog tq

2Ntpa1q
ě µ̃0

t paiq ` pµpa1q ´ µpaiqq

¸

ďP

˜

St “ 0, At “ ai, µ̃
0
t pa1q ě µ̃0

t paiq ` pµpa1q ´ µpa2qq ´ 2

d

log t` 4 logplog tq

2Ntpa1q

¸

.

Then by Lemma 7, for any t ě T1, we have

P
`

St “ 0, At “ ai, µ̃
1
t pa1q ě µpa1q, µpaiq ě µ̃0

t paiq
˘

ďP

˜

St “ 0, At “ ai, µ̃
0
t pa1q ě µ̃0

t paiq ` pµpa1q ´ µpa2qq ´ 2

d

log t` 4 logplog tq

2Ntpa1q
,

Ntpa1q ą
ppmin ´ ηqpt´ 1q

2

˙

` P
ˆ

Ntpa1q ď
ppmin ´ ηqpt´ 1q

2

˙

ďP

˜

St “ 0, At “ ai, µ̃
0
t pa1q ą µ̃0

t paiq ` pµpa1q ´ µpa2qq ´ 2

d

log t` 4 logplog tq

ppmin ´ ηqpt´ 1q

¸
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`
M ´ 1

2γ2 exp p2γ2c2pt´ 1q ´ 4γ2q
`

c3

c2pt´ 1q plog pc2pt´ 1qqq2
` exp

ˆ

´
η2pt´ 1q

2

˙

Define T2 such that T2 ě T1 and for any t ě T2, µpa1q ´ µpa2q ě 2
b

log t`4 logplog tq
ppmin´ηqpt´1q . Then for

any t ě T2, we have

P
`

St “ 0, At “ ai, µ̃
1
t pa1q ě µpa1q, µpaiq ě µ̃0

t paiq
˘

ďP
`

St “ 0, At “ ai, µ̃
0
t pa1q ą µ̃0

t paiq
˘

`
M ´ 1

2γ2 exp p2γ2c2pt´ 1q ´ 4γ2q
`

c3

c2pt´ 1q plog pc2pt´ 1qqq2
` exp

ˆ

´
η2pt´ 1q

2

˙

ď
M ´ 1

2γ2 exp p2γ2c2pt´ 1q ´ 4γ2q
`

c3

c2pt´ 1q plog pc2pt´ 1qqq2
` exp

ˆ

´
η2pt´ 1q

2

˙

, (63)

where the last inequality follows from P
`

St “ 0, At “ ai, µ̃
0
t pa1q ą µ̃0

t paiq
˘

“ 0 by the ULCB
algorithm. Therefore, it follows from (62) and (63) that

8
ÿ

t“T2

P pSt “ 0, At “ aiq ď
8
ÿ

t“T2

M ´ 1

2γ2 exp p2γ2c2pt´ 1q ´ 4γ2q
`

c3

c2pt´ 1q plog pc2pt´ 1qqq2

` exp

ˆ

´
η2pt´ 1q

2

˙

`
12e

tplog tq2

ď
pM ´ 1q expp4γ2 ´ 2γ2c2pT2 ´ 2qq

4γ4c2
`

c3

c2 logrc2pT2 ´ 2qs

`
2

η2
exp

ˆ

´
η2pT2 ´ 2q

2

˙

`
12e

logpT2 ´ 1q
. (64)

Hence, from (59), it follows that

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

fi

fl

ď

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqs

«

T2 `

8
ÿ

t“T2

P pSt “ 0, At “ aiq

ff

ď c4

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqs ,

where the last inequality follows from (64) and

c4 :“T2 `
pM ´ 1q expp4γ2 ´ 2γ2c2pT2 ´ 2qq

4γ4c2
`

c3

c2 logrc2pT2 ´ 2qs
`

2

η2
exp

ˆ

´
η2pT2 ´ 2q

2

˙

`
12e

logpT2 ´ 1q
.

B.6 Proof of Lemma 9

By monotone convergence theorem and linearity of expectation, we have

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

fi

fl
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“E

«

8
ÿ

t“1

1tt ď T pK,πqu
M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

ff

“E

«

M
ÿ

i“2

8
ÿ

t“1

1tSt “ 1, At “ ai, t ď T pK,πqu rV ˚p1q ´Q˚p1, aiqs

ff

“

M
ÿ

i“2

rV ˚p1q ´Q˚p1, aiqsE

«

8
ÿ

t“1

1tSt “ 1, At “ ai, t ď T pK,πqu

ff

ď

M
ÿ

i“2

rV ˚p1q ´Q˚p1, aiqs

˜

M ` E

«

8
ÿ

t“M`1

1tSt “ 1, At “ ai, t ď T pK,πqu

ff¸

. (65)

Let ε ą 0. Let Bptq :“ 1`ε
2pµpa1q´µpaiqq2

rlog t` 4 logplog tqs. Then we have

E

«

8
ÿ

t“M`1

1tSt “ 1, At “ ai, t ď T pK,πqu

ff

“E

«

BpT pK,πqq `
8
ÿ

t“M`1

1tSt “ 1, At “ ai, t ď T pK,πq, N1
t paiq ě BpT pK,πqqu

ff

ďE

«

BpT pK,πqq `
8
ÿ

t“M`1

1tSt “ 1, At “ ai, t ď T pK,πq, Ntpaiq ě BpT pK,πqqu

ff

ďE

«

BpT pK,πqq `
8
ÿ

t“M`1

1tSt “ 1, At “ ai, Ntpaiq ě Bptqu

ff

“ErBpT pK,πqqs `
8
ÿ

t“M`1

P pSt “ 1, At “ ai, Ntpaiq ě Bptqq , (66)

where the first inequality is due to the fact that Ntpaiq ě N1
t paiq, the second inequality is

due to the fact that Bptq is increasing in t, and the last equality is by monotone convergence
theorem. For the second term, we have

8
ÿ

t“M`1

P pSt “ 1, At “ ai, Ntpaiq ě Bptqq

ď

8
ÿ

t“M`1

P
`

µ̃1
t pa1q ă µpa1q

˘

`

8
ÿ

t“M`1

P
`

St “ 1, At “ ai, Ntpaiq ě Bptq, µ̃1
t pa1q ě µpa1q

˘

ď

8
ÿ

t“M`1

6e

tplog tq2
`

8
ÿ

t“M`1

P
`

St “ 1, At “ ai, Ntpaiq ě Bptq, µ̃1
t pa1q ě µpa1q

˘

ď

8
ÿ

t“M`1

6e

tplog tq2
`

8
ÿ

t“M`1

P
`

St “ 1, At “ ai, Ntpaiq ě Bptq, µ̃1
t paiq ě µ̃1

t pa1q ě µpa1q
˘

ď
6e

logM
`

8
ÿ

t“M`1

P
`

At “ ai, Ntpaiq ě Bptq, µ̃1
t paiq ě µpa1q

˘

, (67)
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where the second inequality is by Theorem 10 in the work of Garivier and Cappé (2011),
similar to (61) in the proof of Lemma 8. The third inequality holds since the ULCB algorithm
pulls arm ai in state 1 if and only if µ̃1

t paiq ě µ̃1
t pa1q when t ě M ` 1. Consider that the

event tAt “ ai, Ntpaiq ě Bptq, µ̃1
t paiq ě µpa1qu holds. Then we have

µpa1q ď µ̃1
t paiq “ µ̄tpaiq `

d

log t` 4 logplog tq

2Ntpaiq
ď µ̄tpaiq `

µpa1q ´ µpaiq
?

1` ε
, (68)

where the last inequality is by Ntpaiq ě Bptq and the definition of Bptq. Define rεpaiq P
pµpaiq, µpa1qq such that

µpa1q ´ rεpaiq “
µpa1q ´ µpaiq
?

1` ε
. (69)

Then it follows from (68) and (69) that µpa1q ď µ̄tpaiq ` µpa1q ´ rεpaiq, which implies that
µ̄tpaiq ě rεpaiq. Hence, the second term in (67) can be bounded by

8
ÿ

t“M`1

P
`

At “ ai, Ntpaiq ě Bptq, µ̃1
t paiq ě µpa1q

˘

ď

8
ÿ

t“M`1

P pAt “ ai, µ̄tpaiq ě rεpaiqq

“

8
ÿ

t“M`1

P pAt “ ai, µ̄tpaiq ´ µpaiq ě rεpaiq ´ µpaiqq

“

8
ÿ

t“M`1

t´1
ÿ

n“1

P

˜

At “ ai, Ntpaiq “ n,
1

n

n
ÿ

s“1

Rspaiq ´ µpaiq ě rεpaiq ´ µpaiq

¸

ď

8
ÿ

n“1

8
ÿ

t“n`1

P

˜

At “ ai, Ntpaiq “ n,
1

n

n
ÿ

s“1

Rspaiq ´ µpaiq ě rεpaiq ´ µpaiq

¸

ď

8
ÿ

n“1

P

˜

1

n

n
ÿ

s“1

Rspaiq ´ µpaiq ě rεpaiq ´ µpaiq

¸

, (70)

where the second equality is by law of total probability, where tRspaiquns“1 are i.i.d. Bernoulli
rewards of pulling arm ai, and the last inequality is due to the fact that tAt “ ai, Ntpaiq “
nu8t“n`1 are mutually exclusive and the countable additivity of probability measure. Then
by Hoeffding inequality and (70), we have

8
ÿ

t“M`1

P
`

At “ ai, Ntpaiq ě Bptq, µ̃1
t paiq ě µpa1q

˘

ď

8
ÿ

n“1

exp
´

´2n prεpaiq ´ µpaiqq
2
¯

ď
1

2 prεpaiq ´ µpaiqq
2 . (71)

Therefore, from (65), (66), (67), and (71), it follows that

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

fi

fl
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ď

M
ÿ

i“2

rV ˚p1q ´Q˚p1, aiqs

„

M ` ErBpT pK,πqqs `
6e

logM
`

1

2 prεpaiq ´ µpaiqq
2



, (72)

where

ErBpT pK,πqqs “E
„

1` ε

2pµpa1q ´ µpaiqq2
rlog T pK,πq ` 4 logplog T pK,πqqs



ď
1` ε

2pµpa1q ´ µpaiqq2

„

logE rT pK,πqs ` 4 log plogE rT pK,πqsq


ď
1` ε

2pµpa1q ´ µpaiqq2

„

log c5K ` 4 log plogpc5Kqq



, (73)

where the first inequality is by Jensen’s inequality, and the second inequality is by Lemma 13
(which is presented after this proof). Then it follows from (72) and (73) that

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

fi

fl

ď
ÿ

i‰1

1` ε

2pµpa1q ´ µpaiqq2
pV ˚p1q ´Q˚p1, aiqq logK ` oplogKq. (74)

Lemma 13 Let Assumption 1 hold. Then for any policy π P Π, we have

ErT pK,πqs “
K
ÿ

k“1

E rIkpπ, Sk,1, φk,1qs ď
K
ÿ

k“1

E rIkpπ˚, Sk,1qs ď c5K.

Proof Define a genie-aided (model-based) policy π1˚ that maximizes the expected number of
steps in one episode, i.e., for any s P t0, 1u, π1˚ :“ argmaxπ E rIpπ, sqs , where π is taken over
all policies and Ipπ, sq is the number of steps in one episode given initial state s. We omit
the subscript k in Ipπ, sq since the distribution does not depend on the episode number k.
Then we have

E
“

Ipπ1˚, 1q|Ak,1 “ a
‰

“1` µap1´ qp1, 1qqE
“

Ipπ1˚, 1q
‰

` p1´ µaqp1´ qp1, 0qqE
“

Ipπ1˚, 0q
‰

(75)

E
“

Ipπ1˚, 0q|Ak,1 “ a
‰

“1` µap1´ qp0, 1qqE
“

Ipπ1˚, 1q
‰

` p1´ µaqp1´ qp0, 0qqE
“

Ipπ1˚, 0q
‰

(76)

Then

E
“

Ipπ1˚, 1q|Ak,1 “ a
‰

´ E
“

Ipπ1˚, 0q|Ak,1 “ a
‰

“µapqp0, 1q ´ qp1, 1qqE
“

Ipπ1˚, 1q
‰

` p1´ µaqpqp0, 0q ´ qp1, 0qqE
“

Ipπ1˚, 0q
‰

ě 0,

where the inequality follows from Assumption 1. Hence, we have

E
“

Ipπ1˚, 1q
‰

´ E
“

Ipπ1˚, 0q
‰

“ max
a

E
“

Ipπ1˚, 1q|Ak,1 “ a
‰

´max
a

E
“

Ipπ1˚, 0q|Ak,1 “ a
‰

“max
a

E
“

Ipπ1˚, 1q|Ak,1 “ a
‰

´ E
“

Ipπ1˚, 0q|Ak,1 “ a1
‰
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ěE
“

Ipπ1˚, 1q|Ak,1 “ a1
‰

´ E
“

Ipπ1˚, 0q|Ak,1 “ a1
‰

ě 0, (77)

where a1 :“ argmaxa E rIpπ1˚, 0q|Ak,1 “ as. Hence, from (75) and (76), we have

E
“

Ipπ1˚, 1q|Ak,1 “ a1

‰

´ E
“

Ipπ1˚, 1q|Ak,1 “ ai
‰

“pµa1 ´ µaiq

„

p1´ qp1, 1qqE
“

Ipπ1˚, 1q
‰

´ p1´ qp1, 0qqE
“

Ipπ1˚, 0q
‰



ě 0,

where the inequality follows from (77) and Assumption 1. Similarly,

E
“

Ipπ1˚, 0q|Ak,1 “ a1

‰

´ E
“

Ipπ1˚, 0q|Ak,1 “ ai
‰

“pµa1 ´ µaiq

„

p1´ qp0, 1qqE
“

Ipπ1˚, 1q
‰

´ p1´ qp0, 0qqE
“

Ipπ1˚, 0q
‰



ě 0.

Therefore, the policy π1˚ is always pulling a1, i.e., π1˚ “ π˚, which implies that

ErT pK,πqs “
K
ÿ

k“1

E rIkpπ, Sk,1, φk,1qs ď
K
ÿ

k“1

E rIkpπ˚, Sk,1qs ď
K
ÿ

k“1

E rIpπ˚, 1qs ď c5K.

B.7 Proof of Theorem 4: Upper Bound for KL-ULCB

The proof idea is similar to that of Theorem 2. The proof is based on the regret decomposition
in (14). We will first show that the number of optimal pulls scales linearly with t with
high probability. Then, we will bound the expected regrets induced in state 0 and state 1
respectively. We first prove a lemma similar to Lemma 7 as follows.

Lemma 14 Let all the assumptions in Theorem 4 hold. Consider the KL-ULCB algorithm
with c0 “ c1 “ 1, and c “ 4. Let pmin :“ µpaM qmin t1´ qp0, 1q, 1´ qp1, 1qu. Let η P p0, pminq

be a constant. Let γ1 ą 0 be a constant and rγ1 P pµpa2q, µpa1qq such that klprγ1 , µpa1qq “
klpµpa2q,µpa1qq

1`γ1 . Define T3 such that for any t ě T3,

ppmin ´ ηqpt´ 1q

2pM ´ 1q
ě 2, and

log t` 4 log plog tq
ppmin´ηqpt´1q

2pM´1q ´ 1
ď

klpµpa2q, µpa1qq

1` γ1
.

Then for any t ě T3

P
ˆ

Ntpa1q ď
ppmin ´ ηqpt´ 1q

2

˙

ď P
ˆ

N1
t pa1q ď

ppmin ´ ηqpt´ 1q

2

˙

ď exp

ˆ

´
η2pt´ 1q

2

˙

`
M ´ 1

kl
`

rγ1 , µpa2q
˘

exp
´

kl
`

rγ1 , µpa2q
˘

”

ppmin´ηqpt´1q
2pM´1q ´ 2

ı¯ `
c3

c2pt´ 1q rlog pc2pt´ 1qqs2
,

where c2 :“ pmin´η
2pM´1q and c3 :“ 4`e

log 2 log 2
c2
` e

log 2 are constants.
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Proof Let t ě T3. Using the same argument as in the proof of Lemma 7, we have

P
ˆ

Ntpa1q ď
ppmin ´ ηqpt´ 1q

2

˙

ď P
ˆ

N1
t pa1q ď

ppmin ´ ηqpt´ 1q

2

˙

ďP
ˆ

µ̃1
τtpajq ě µpa1q, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

` P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

` exp

ˆ

´
η2pt´ 1q

2

˙

, (78)

where N1
t paq denotes the number of times arm a P A was pulled in state 1 before time step

t, j P argmaxiPt2,...,MuN
1
t paiq, τt ă t denotes the time step when aj is pulled in state 1 for

the
Q

ppmin´ηqpt´1q
2pM´1q

U

-th time, and Lt :“ ppmin´ηqpt´1q
2pM´1q ` pM ´ 1q. The second term in (78),

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

, can be bounded by

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

ď e rδLt logpt´ 2qs expp´δLtq, (79)

where δLt :“ logLt ` 4 logplogLtq. The proof of (79) is omitted since it can be proved the
same way as Lemma 12 by just replacing the Euclidean distance in the proof of Lemma 12
with KL divergence. Hence, we have

P
`

µ̃1
τtpa1q ă µpa1q, τt ě Lt

˘

ď
c3

c2pt´ 1q rlog pc2pt´ 1qqs2
, (80)

where c2 :“ pmin´η
2pM´1q and c3 :“ 4`e

log 2 log 2
c2
` e

log 2 . Consider that the event
"

µ̃1
τtpajq ě µpa1q, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

*

holds. Define kl`px, yq :“ klpx, yq1tx ă yu. Then we have

kl`pµ̄τtpajq, µpa1qq ďkl`pµ̄τtpajq, µ̃
1
τtpajqq “

log τt ` 4 log plog τtq

Nτtpajq
ď

log t` 4 log plog tq
ppmin´ηqpt´1q

2pM´1q ´ 1

ď
klpµpa2q, µpa1qq

1` γ1
,

where the last inequality is by t ě T3 and the definition of T3. Hence, for the first term
in (78), we have

P
ˆ

µ̃1
τtpajq ě µpa1q, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ďP
ˆ

kl`pµ̄τtpajq, µpa1qq ď
klpµpa2q, µpa1qq

1` γ1
, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ď

M
ÿ

i“2

P
ˆ

kl`pµ̄τtpaiq, µpa1qq ď
klpµpa2q, µpa1qq

1` γ1
, Nτtpaiq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ď

M
ÿ

i“2

t´1
ÿ

n“
Q

ppmin´ηqpt´1q

2pM´1q

U

´1

P

˜

kl`

˜

1

n

n
ÿ

s“1

Rspaiq, µpa1q

¸

ď
klpµpa2q, µpa1qq

1` γ1

¸

, (81)
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where the second inequality is by the union bound over all possible j, and the last inequality is
by the union bound over all possible number of pulls of arm ai, where tRspaiquns“1 are n i.i.d.
Bernoulli rewards of pulling arm ai. Consider that the event tkl`p 1

n

řn
s“1Rspaiq, µpa1qq ď

klpµpa2q,µpa1qq
1`γ1 u holds. By the definition of rγ1 , we have kl`p 1

n

řn
s“1Rspaiq, µpa1qq ď klprγ1 , µpa1qq,

which implies that 1
n

řn
s“1Rspaiq ě rγ1 . Hence, we have

kl

˜

1

n

n
ÿ

s“1

Rspaiq, µpaiq

¸

ě kl
`

rγ1 , µpaiq
˘

ě kl
`

rγ1 , µpa2q
˘

(82)

since µpaiq ď µpa2q ă rγ1 ď
1
n

řn
s“1Rspaiq. Hence, from (81) and (82), it follows that

P
ˆ

µ̃1
τtpajq ě µpa1q, Nτtpajq ě

R

ppmin ´ ηqpt´ 1q

2pM ´ 1q

V

´ 1

˙

ď

M
ÿ

i“2

t´1
ÿ

n“
Q

ppmin´ηqpt´1q

2pM´1q

U

´1

P

˜

kl

˜

1

n

n
ÿ

s“1

Rspaiq, µpaiq

¸

ě kl
`

rγ1 , µpa2q
˘

,
1

n

n
ÿ

s“1

Rspaiq ą µpaiq

¸

ďpM ´ 1q
t´1
ÿ

n“
Q

ppmin´ηqpt´1q

2pM´1q

U

´1

exp
`

´nkl
`

rγ1 , µpa2q
˘˘

ď
M ´ 1

kl
`

rγ1 , µpa2q
˘

exp
´

kl
`

rγ1 , µpa2q
˘

”

ppmin´ηqpt´1q
2pM´1q ´ 2

ı¯ , (83)

where the second inequality uses the concentration inequality for KL divergence (Mardia
et al., 2020), and the last inequality is by integration. From (78), (80), and (83), Lemma 14
is proved.

Lemma 14 shows that when t is large enough, the number of optimal pulls scales linearly
with t with high probability. This plays an important role in the proof of Lemma 15, which
bounds the expected regret induced by pulling suboptimal arms in state 0 by a constant.

Lemma 15 Let all the assumptions in Theorem 4 hold. Consider the KL-ULCB algorithm
with c0 “ c1 “ 1, and c “ 4. The regret induced in state 0 can be bounded by

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

fi

fl ď

M
ÿ

i“2

c6,i rV
˚p0q ´Q˚p0, aiqs ,

where c6,i are constants which depend only on M , µpa1q, µpa2q, µpaiq, pmin, η, and γ1.

Proof Using the same argument as in the proof of Lemma 8, we have

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

fi

fl
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ď

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqs
8
ÿ

t“1

P pSt “ 0, At “ aiq , (84)

where P pSt “ 0, At “ aiq can be bounded by

P pSt “ 0, At “ aiq ď P
`

St “ 0, At “ ai, µpaiq ě µ̃0
t paiq

˘

` P
`

µpaiq ă µ̃0
t paiq

˘

ďP
`

St “ 0, At “ ai, µpaiq ě µ̃0
t paiq

˘

`
6e

t plog tq2

for any t ě T3, where the inequality is by Theorem 10 in the work of Garivier and Cappé
(2011). Note that St “ 0, At “ ai implies that µ̃0

t paiq ě µ̃0
t pa1q by the KL-ULCB algorithm.

Hence, for any t ě T3, we have

P pSt “ 0, At “ aiq ď P
`

µpaiq ě µ̃0
t paiq, µ̃

0
t paiq ě µ̃0

t pa1q
˘

`
6e

t plog tq2

ďP
`

µpaiq ě µ̃0
t pa1q

˘

`
6e

t plog tq2

ďP
ˆ

µpaiq ě µ̃0
t pa1q, Ntpa1q ą

ppmin ´ ηqpt´ 1q

2

˙

` P
ˆ

Ntpa1q ď
ppmin ´ ηqpt´ 1q

2

˙

`
6e

t plog tq2

ďP
ˆ

µpaiq ě µ̃0
t pa1q, Ntpa1q ą

ppmin ´ ηqpt´ 1q

2

˙

`
6e

t plog tq2
` exp

ˆ

´
η2pt´ 1q

2

˙

`
M ´ 1

kl
`

rγ1 , µpa2q
˘

exp
´

kl
`

rγ1 , µpa2q
˘

”

ppmin´ηqpt´1q
2pM´1q ´ 2

ı¯ `
c3

c2pt´ 1q rlog pc2pt´ 1qqs2
,

(85)

where the last inequality uses Lemma 14. Consider that the event tµpaiq ě µ̃0
t pa1q, Ntpa1q ą

ppmin´ηqpt´1q
2 u holds. Define kl´px, yq :“ klpx, yq1tx ą yu. Hence, we have

kl´pµ̄tpa1q, µpaiqq ď klpµ̄tpa1q, µ̃
0
t pa1qq ď

log t` 4 logplog tq

Ntpa1q
ď

log t` 4 logplog tq
ppmin´ηqpt´1q

2

.

Define T4 such that T4 ě T3 and for any t ě T4,
log t`4 logplog tq
ppmin´ηqpt´1q

2

ď
klpµpa1q,µpa2qq

1`γ1 . Then for any

t ě T4, we have

kl´pµ̄tpa1q, µpaiqq ď
klpµpa1q, µpa2qq

1` γ1
ď

klpµpa1q, µpaiqq

1` γ1
.

Define r1γ1paiq P pµpaiq, µpa1qq such that klpr1γ1paiq, µpaiqq “
klpµpa1q,µpaiqq

1`γ1 . Then we have

kl´pµ̄tpa1q, µpaiqq ď klpr1γ1paiq, µpaiqq,

which implies that µ̄tpa1q ď r1γ1paiq. Therefore, we have

klpµ̄tpa1q, µpa1qq ě klpr1γ1paiq, µpa1qq
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since µ̄tpa1q ď r1γ1paiq ă µpa1q. Hence, the first term in (85) can be bounded by

P
ˆ

µpaiq ě µ̃0
t pa1q, Ntpa1q ą

ppmin ´ ηqpt´ 1q

2

˙

ďP
ˆ

klpµ̄tpa1q, µpa1qq ě klpr1γ1paiq, µpa1qq, Ntpa1q ą
ppmin ´ ηqpt´ 1q

2
, µ̄tpa1q ă µpa1q

˙

ď

t´1
ÿ

n“
Q

ppmin´ηqpt´1q

2

U

P

˜

kl

˜

1

n

n
ÿ

s“1

Rspa1q, µpa1q

¸

ě kl
`

r1γ1paiq, µpa1q
˘

,
1

n

n
ÿ

s“1

Rspa1q ă µpa1q

¸

ď

t´1
ÿ

n“
Q

ppmin´ηqpt´1q

2

U

exp
`

´nkl
`

r1γ1paiq, µpa1q
˘˘

ď
1

kl
´

r1γ1paiq, µpa1q

¯

exp
´

kl
´

r1γ1paiq, µpa1q

¯ ”

ppmin´ηqpt´1q
2 ´ 1

ı¯ , (86)

where the second inequality is by the union bound over all possible number of pulls of arm a1,
where tRspa1qu

n
s“1 are n i.i.d. Bernoulli rewards of pulling arm a1, the third inequality uses

the concentration inequality for KL divergence (Mardia et al., 2020), and the last inequality
is by integration. Then by combining (85) and (86), we have

8
ÿ

t“T4

P pSt “ 0, At “ aiq

ď

8
ÿ

t“T4

1

kl
´

r1γ1paiq, µpa1q

¯

exp
´

kl
´

r1γ1paiq, µpa1q

¯ ”

ppmin´ηqpt´1q
2 ´ 1

ı¯ `
6e

t plog tq2

` exp

ˆ

´
η2pt´ 1q

2

˙

`
M ´ 1

kl
`

rγ1 , µpa2q
˘

exp
´

kl
`

rγ1 , µpa2q
˘

”

ppmin´ηqpt´1q
2pM´1q ´ 2

ı¯

`
c3

c2pt´ 1q rlog pc2pt´ 1qqs2

ď
2

ppmin ´ ηq
”

kl
´

r1γ1paiq, µpa1q

¯ı2 `
6e

logpT4 ´ 1q
`

2

η2
`

2pM ´ 1q2
“

kl
`

rγ1 , µpa2q
˘‰2
ppmin ´ ηq

`
c3

c2 logrc2pT4 ´ 2qs
. (87)

Combining (84) and (87), we have

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu rV
˚p0q ´Q˚p0, aiqs

fi

fl

ď

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqs

«

T4 `

8
ÿ

t“T4

P pSt “ 0, At “ aiq

ff

ď

M
ÿ

i“2

rV ˚p0q ´Q˚p0, aiqs c6,i,
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where c6,i :“ 2

ppmin´ηq
”

kl
´

r1
γ1
paiq,µpa1q

¯ı2 `
6e

logpT4´1q`
2
η2
`

2pM´1q2

rklprγ1 ,µpa2qqs
2
ppmin´ηq

` c3
c2 logrc2pT4´2qs .

Next, we will bound the expected regret induced by pulling suboptimal arms in state 1.
Lemma 16 shows the result.

Lemma 16 Let all the assumptions in Theorem 4 hold. Consider the KL-ULCB algorithm
with c0 “ c1 “ 1, and c “ 4. For any ε ą 0, the regret induced in state 1 can be bounded by

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

fi

fl

ď
ÿ

i‰1

1` ε

klpµpaiq, µpa1qq
pV ˚p1q ´Q˚p1, aiqq logK ` oplogKq (88)

Proof This proof is similar to the proof of Lemma 9. Using the same argument as in the
proof of Lemma 9, we have

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

fi

fl

ď

M
ÿ

i“2

rV ˚p1q ´Q˚p1, aiqs

˜

M ` ErB1pT pK,πqqs `
6e

logM
`

8
ÿ

t“M`1

P
`

At “ ai, Ntpaiq ě B1ptq, µ̃1
t paiq ě µpa1q

˘

¸

,

(89)

where B1ptq :“ 1`ε
klpµpaiq,µpa1qq

rlog t` 4 logplog tqs. Consider that the event tAt “ ai, Ntpaiq ě

B1ptq, µ̃1
t paiq ě µpa1qu holds. Then we have

kl` pµ̄tpaiq, µpa1qq ďkl
`

µ̄tpaiq, µ̃
1
t paiq

˘

ď
log t` 4 logplog tq

Ntpaiq

ď
log t` 4 logplog tq

B1ptq
“

klpµpaiq, µpa1qq

1` ε
,

where kl`px, yq :“ klpx, yq1tx ă yu. Define r1εpaiq P tµpaiq, µpa1qu such that klpr1εpaiq, µpa1qq

“
klpµpaiq,µpa1qq

1`ε . Then we have

kl` pµ̄tpaiq, µpa1qq ď klpr1εpaiq, µpa1qq,

which implies that µpaiq ď r1εpaiq ď µ̄tpaiq. Hence we have

klpµ̄tpaiq, µpaiqq ě klpr1εpaiq, µpaiqq.
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Therefore, we have

8
ÿ

t“M`1

P
`

At “ ai, Ntpaiq ě B1ptq, µ̃1
t paiq ě µpa1q

˘

ď

8
ÿ

t“M`1

P
`

At “ ai, klpµ̄tpaiq, µpaiqq ě klpr1εpaiq, µpaiqq
˘

“

8
ÿ

t“M`1

t´1
ÿ

n“1

P

˜

At “ ai, Ntpaiq “ n, kl

˜

1

n

n
ÿ

s“1

Rspaiq, µpaiq

¸

ě kl
`

r1εpaiq, µpaiq
˘

¸

ď

8
ÿ

n“1

8
ÿ

t“n`1

P

˜

At “ ai, Ntpaiq “ n, kl

˜

1

n

n
ÿ

s“1

Rspaiq, µpaiq

¸

ě kl
`

r1εpaiq, µpaiq
˘

¸

ď

8
ÿ

n“1

P

˜

kl

˜

1

n

n
ÿ

s“1

Rspaiq, µpaiq

¸

ě kl
`

r1εpaiq, µpaiq
˘

¸

ď

8
ÿ

n“1

exp
`

´nkl
`

r1εpaiq, µpaiq
˘˘

ď
1

kl pr1εpaiq, µpaiqq
, (90)

where the first equality is by law of total probability, where tRspaiquns“1 are i.i.d. Bernoulli
rewards of pulling arm ai. The third inequality is due to the fact that tAt “ ai, Ntpaiq “
nu8t“n`1 are mutually exclusive and the countable additivity of probability measure. The
fourth inequality uses the concentration inequality for KL divergence (Mardia et al., 2020),
and the last inequality is by integration. It then follows from (89) and (90) that

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

fi

fl

ď

M
ÿ

i“2

rV ˚p1q ´Q˚p1, aiqs

ˆ

M ` ErB1pT pK,πqqs `
6e

logM
`

1

kl pr1εpaiq, µpaiqq

˙

, (91)

where

ErB1pT pK,πqqs “E
„

1` ε

klpµpaiq, µpa1qq
rlog T pK,πq ` 4 logplog T pK,πqqs



ď
1` ε

klpµpaiq, µpa1qq

„

logE rT pK,πqs ` 4 log plogE rT pK,πqsq


ď
1` ε

klpµpaiq, µpa1qq

„

log c5K ` 4 log plogpc5Kqq



, (92)

where the first inequality is by Jensen’s inequality, and the second inequality is by Lemma 13.
It then follows from (91) and (92) that

E

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tSt “ 1, At “ aiu rV
˚p1q ´Q˚p1, aiqs

fi

fl
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ď
ÿ

i‰1

1` ε

klpµpaiq, µpa1qq
pV ˚p1q ´Q˚p1, aiqq logK ` oplogKq.

By the regret decomposition result (14), Lemma 15, and Lemma 16, we have

lim sup
KÑ8

ErRegπpKqs

logK
ď

ÿ

i‰1

1` ε

klpµpaiq, µpa1qq
pV ˚p1q ´Q˚p1, aiqq ,

i.e., Theorem 4 is proved.

B.8 Proof of Theorem 6: Lower Bound

From the regret decomposition (14), given any consistent policy π P Πcons, we have

ErRegπpKqs “ E
„T pK,πq

ÿ

t“1

M
ÿ

i“2

1tSt “ 0, At “ aiu pV
˚p0q ´Q˚p0, aiqq

` 1tSt “ 1, At “ aiu pV
˚p1q ´Q˚p1, aiqq



ěE

»

–

T pK,πq
ÿ

t“1

M
ÿ

i“2

1tAt “ aiu pV
˚p1q ´Q˚p1, aiqq

fi

fl

“

M
ÿ

i“2

E

»

–

T pK,πq
ÿ

t“1

1tAt “ aiu

fi

fl pV ˚p1q ´Q˚p1, aiqq , (93)

where the first inequality uses the conclusion of Lemma 3, V ˚p0q ´ Q˚p0, aiq ě V ˚p1q ´

Q˚p1, aiq. We have to bound the term E
”

řT pK,πq
t“1 1tAt “ aiu

ı

“ E
“

NT pK,πq`1paiq
‰

. Let
ε P p0, 1q. Consider a different system i, i P t2, ...,Mu, where the only difference is that the
mean value of the reward of pulling arm ai is µ1paiq P pµpa1q, 1q such that

klpµpaiq, µ
1paiqq ď p1` εqklpµpaiq, µpa1qq. (94)

Define event Ci as follows

Ci :“

"

NT pK,πq`1paiq ď
1´ ε

klpµpaiq, µ1paiqq
logK, k̂lNT pK,πq`1paiq ď p1´

ε

2
q logK

*

,

where for any n,

k̂ln :“
n
ÿ

s“1

log
µpaiqRspaiq ` p1´ µpaiqqp1´Rspaiqq

µ1paiqRspaiq ` p1´ µ1paiqqp1´Rspaiqq
, (95)

where tRspaiquns“1 are i.i.d. Bernoulli rewards of pulling arm ai in the original system. It can
be easily verified that Erk̂lns “ nklpµpaiq, µ

1paiqq. We first show that the change of measure
identity (96) holds.
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Lemma 17 Given a policy π P Π and total number of episodes K, we have

P1 pCiq “ E
”

1Ci exp
´

´k̂lNT pK,πq`1paiq

¯ı

, (96)

where P1 is the probability measure in system i, and E is based on probability measure in the
original system.

Proof For any outcome (sample path) ω P Ci, let Xpωq denotes the value of the random
variable X on the sample path ω. Then we have

P ptωuq “
K
ź

k“1

P pSk,1 “ Sk,1pωqq

Ikpωq´1
ź

h“1

P pAk,h “ Ak,hpωq|Sk,hpωq, φk,hpωq, πq

P pRk,h “ Rk,hpωq|Ak,hpωqq p1´ q pSk,hpωq, Rk,hpωqqq

P
`

Ak,Ikpωq “ Ak,Ikpωqpωq|Sk,Ikpωqpωq, φk,Ikpωqpωq, π
˘

P
`

Rk,Ikpωq “ Rk,Ikpωqpωq|Ak,Ikpωqpωq
˘

q
`

Sk,Ikpωqpωq, Rk,Ikpωqpωq
˘

.

Let kpsq and hpsq denote the episode number and time step when ai was pulled for the s-th
time, respectively. Hence, we have

P1 ptωuq “ P ptωuq
NT pK,πq`1paiqpωq

ź

s“1

„

1
 

Rkpsqpωq,hpsqpωqpωq “ 1
( µ1paiq

µpaiq

` 1
 

Rkpsqpωq,hpsqpωqpωq “ 0
( 1´ µ1paiq

1´ µpaiq



.

It then follows that

P1 pCiq “
ÿ

ωPCi

P1 ptωuq “
ÿ

ωPCi

P ptωuq
NT pK,πq`1paiqpωq

ź

s“1

„

1
 

Rkpsqpωq,hpsqpωqpωq “ 1
( µ1paiq

µpaiq

` 1
 

Rkpsqpωq,hpsqpωqpωq “ 0
( 1´ µ1paiq

1´ µpaiq



“E

»

–1Ci

NT pK,πq`1paiq
ź

s“1

1
 

Rkpsq,hpsq “ 1
( µ1paiq

µpaiq
` 1

 

Rkpsq,hpsq “ 0
( 1´ µ1paiq

1´ µpaiq

fi

fl

“E
”

1Ci exp
´

´k̂lNT pK,πq`1paiq

¯ı

,

where the last equality is by the definition of k̂ln in (95).

By Lemma 17 and k̂lNT pK,πq`1paiq ď p1´
ε
2q logK in the definition of Ci, we have

P1 pCiq “ E
”

1Ci exp
´

´k̂lNT pK,πq`1paiq

¯ı

ě P pCiqK´p1´ ε
2q.

It follows that

P pCiq ďKp1´
ε
2qP1 pCiq ď Kp1´

ε
2qP1

ˆ

NT pK,πq`1paiq ď
1´ ε

klpµpaiq, µ1paiqq
logK

˙
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“Kp1´
ε
2qP1

˜

ÿ

j‰i

NT pK,πq`1pajq ě T pK,πq ´
1´ ε

klpµpaiq, µ1paiqq
logK

¸

ďKp1´
ε
2qP1

˜

ÿ

j‰i

NT pK,πq`1pajq ě K ´
1´ ε

klpµpaiq, µ1paiqq
logK

¸

ďKp1´
ε
2q
E1

”

ř

j‰iNT pK,πq`1pajq
ı

K ´ 1´ε
klpµpaiq,µ1paiqq

logK
, (97)

where the second inequality is by the definition of Ci, the first equality is due to the fact
that

ř

j NT pK,πq`1pajq “ T pK,πq, the third inequality is due to the fact that T pK,πq ě K,
and the last inequality is by Markov’s inequality, where E1 is based on probability measure
in system i. Since π P Πcons, by the definition of consistent policies in Definition 5, we have

E1rRegπpKqs “ o pKαq (98)

for any α ą 0. Similar to (93), for system i, we can obtain

E1rRegπpKqs ě
ÿ

j‰i

E1
»

–

T pK,πq
ÿ

t“1

1tAt “ aju

fi

fl

`

V 1˚p1q ´Q1˚p1, ajq
˘

ěmin
j‰i

`

V 1˚p1q ´Q1˚p1, ajq
˘

E1
«

ÿ

j‰i

NT pK,πq`1pajq

ff

, (99)

where V 1˚ and Q1˚ are the optimal value function and optimal Q function for system i,
respectively. Since µ1paiq ą µpajq for any j ‰ i, similar to the original system, it can be
verified that minj‰i pV

1˚p1q ´Q1˚p1, ajqq ą 0. Hence, from (99), we have

E1
«

ÿ

j‰i

NT pK,πq`1pajq

ff

ď
E1rRegπpKqs

minj‰i pV 1˚p1q ´Q1˚p1, ajqq
“ o pKαq

for any α ą 0, where the equality is by (98). It then follows from (97) that

P pCiq ď Kp1´
ε
2q

o pKαq

K ´ 1´ε
klpµpaiq,µ1paiqq

logK

for any α ą 0. Let α “ ε
4 . Then we have

P pCiq ď Kp1´
ε
2q

o
´

K
ε
4

¯

K ´ 1´ε
klpµpaiq,µ1paiqq

logK
“ o

´

K´ ε
4

¯

. (100)

Note that by definition of Ci and the law of total probability, we have

P
ˆ

NT pK,πq`1paiq ď
1´ ε

klpµpaiq, µ1paiqq
logK

˙
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“P pCiq ` P
ˆ

NT pK,πq`1paiq ď
1´ ε

klpµpaiq, µ1paiqq
logK, k̂lNT pK,πq`1paiq ą p1´

ε

2
q logK

˙

ďP pCiq ` P
´

k̂lNT pK,πq`1paiq ´NT pK,πq`1paiqklpµpaiq, µ
1paiqq ą

ε

2
logK,

NT pK,πq`1paiq ď
1´ ε

klpµpaiq, µ1paiqq
logK

˙

ďP pCiq `

1´ε
klpµpaiq,µ

1paiqq
logK

ÿ

n“1

P
´

k̂ln ´ nklpµpaiq, µ
1paiqq ą

ε

2
logK

¯

ďP pCiq `

1´ε
klpµpaiq,µ

1paiqq
logK

ÿ

n“1

exp

¨

˚

˝

´
ε2plogKq2

2n
∣∣∣log µpaiq

µ1paiq
´ log 1´µpaiq

1´µ1paiq

∣∣∣2
˛

‹

‚

ďP pCiq `
1´ ε

klpµpaiq, µ1paiqq
logK exp

¨

˚

˝

´
ε2plogKq2

2 1´ε
klpµpaiq,µ1paiqq

logK
∣∣∣log µpaiq

µ1paiq
´ log 1´µpaiq

1´µ1paiq

∣∣∣2
˛

‹

‚

“P pCiq `
p1´ εq logK

klpµpaiq, µ1paiqqK

ε2klpµpaiq,µ
1paiqq

2p1´εq

∣∣∣∣log µpaiq

µ1paiq
´log

1´µpaiq

1´µ1paiq

∣∣∣∣2
, (101)

where the second inequality is by union bound over all possible values of NT pK,πq`1paiq, and
the third inequality is by Hoeffding’s inequality. It follows from (100) and (101) that

lim
KÑ8

P
ˆ

NT pK,πq`1paiq ď
1´ ε

klpµpaiq, µ1paiqq
logK

˙

“ 0,

which implies that

lim
KÑ8

P
ˆ

NT pK,πq`1paiq ą
1´ ε

klpµpaiq, µ1paiqq
logK

˙

“ 1. (102)

By Markov’s inequality, we have

P
ˆ

NT pK,πq`1paiq ą
1´ ε

klpµpaiq, µ1paiqq
logK

˙

ď
E
“

NT pK,πq`1paiq
‰

1´ε
klpµpaiq,µ1paiqq

logK
.

Therefore, we have

E
“

NT pK,πq`1paiq
‰

ě P
ˆ

NT pK,πq`1paiq ą
1´ ε

klpµpaiq, µ1paiqq
logK

˙

1´ ε

klpµpaiq, µ1paiqq
logK.

(103)

Hence, it follows from (93) and (103) that

ErRegπpKqs ě
M
ÿ

i“2

E
“

NT pK,πq`1paiq
‰

pV ˚p1q ´Q˚p1, aiqq
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P ps1|s, aq
Next state s1

p1´ θqx p1´ θqx` θ g

State s x p1´ µpaqqr1´ qpp1´ θqxqs µpaqr1´ qpp1´ θqx` θqs p1´ µpaqqqpp1´ θqxq ` µpaqqpp1´ θqx` θq
g 0 0 1

Table 2: Transition probabilities P ps1|s, aq

ě

M
ÿ

i“2

P
ˆ

NT pK,πq`1paiq ą
p1´ εq logK

klpµpaiq, µ1paiqq

˙

p1´ εq logK

klpµpaiq, µ1paiqq
pV ˚p1q ´Q˚p1, aiqq

ě

M
ÿ

i“2

P
ˆ

NT pK,πq`1paiq ą
p1´ εq logK

klpµpaiq, µ1paiqq

˙

p1´ εq logK

p1` εqklpµpaiq, µpa1qq
pV ˚p1q ´Q˚p1, aiqq ,

(104)

where the last inequality follows from (94). From (102) and (104), we have

lim inf
KÑ8

ErRegπpKqs

logK
ě

ÿ

i‰1

1´ ε

p1` εqklpµpaiq, µpa1qq
pV ˚p1q ´Q˚p1, aiqq .

Appendix C. Extension to the General-State Setting

In this section, we present the details of the state transition, the details of the proofs, and
the simulation results in the general-state setting.

C.1 State Transition

The transition probabilities P ps1|s, aq while pulling arm a are shown in Table 2, where
x P r0, 1s.

C.2 Proof of Lemma 10

If the model is known, this problem can be viewed as a SSP problem (Bertsekas and Tsitsiklis,
1991). Since qpsq ą 0 for any s P r0, 1s, all policies are proper. Hence, by the results
of Bertsekas and Tsitsiklis (1991), there exists a stationary optimal policy. Therefore, it is
enough to consider only stationary policies for π˚. Define the optimal value function V ˚ and
optimal Q function Q˚ the same way as (22) and (23). Then for s ‰ g and a P A, we have
the Bellman equation as follows

V ˚psq “max
a

Q˚ps, aq

Q˚ps, aq “µpaq ` p1´ µpaqq r1´ qpp1´ θqsqsV ˚pp1´ θqsq

` µpaq r1´ qpp1´ θqs` θqsV ˚pp1´ θqs` θq.

Hence, for any s1, s2 P r0, 1s such that s1 ě s2 and any a P A, we have

Q˚ps1, aq ´Q
˚ps2, aq

“p1´ µpaqq

"

r1´ qpp1´ θqs1qsV
˚pp1´ θqs1q ´ r1´ qpp1´ θqs2qsV

˚pp1´ θqs2q

*
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` µpaq

"

r1´ qpp1´ θqs1 ` θqsV
˚pp1´ θqs1q ` θq

´ r1´ qpp1´ θqs2 ` θqsV
˚pp1´ θqs2 ` θq

*

ěp1´ µpaqq r1´ qpp1´ θqs1qs rV
˚pp1´ θqs1q ´ V

˚pp1´ θqs2qs

` µpaq r1´ qpp1´ θqs1 ` θqs rV
˚pp1´ θqs1 ` θq ´ V

˚pp1´ θqs2 ` θqs ,

where the inequality is by Assumption 2. Therefore, we have

V ˚ps1q ´ V
˚ps2q “ max

a
Q˚ps1, aq ´max

a
Q˚ps2, aq “ max

a
Q˚ps1, aq ´Q

˚ps2, a
1q

ěQ˚ps1, a
1q ´Q˚ps2, a

1q

ěp1´ µpaqq r1´ qpp1´ θqs1qs rV
˚pp1´ θqs1q ´ V

˚pp1´ θqs2qs

` µpaq r1´ qpp1´ θqs1 ` θqs rV
˚pp1´ θqs1 ` θq ´ V

˚pp1´ θqs2 ` θqs , (105)

where a1 :“ argmaxaQ
˚ps2, aq. Note that 1 ´ qpsq ă 1 for any s P r0, 1s by Assumption 2.

Hence, by iteratively applying (105), we can obtain V ˚ps1q ´ V
˚ps2q ě 0, which means that

V ˚psq is non-decreasing in s. Hence, for any s P r0, 1s and any i P t2, ...,Mu, we have

Q˚ps, a1q ´Q
˚ps, aiq

“pµpa1q ´ µpaiqq ` pµpa1q ´ µpaiqq

"

r1´ qpp1´ θqs` θqsV ˚pp1´ θqs` θq

´ r1´ qpp1´ θqsqsV ˚pp1´ θqsq

*

ě 0, (106)

where the inequality is by Assumption 2 and the monotonicity of V ˚. Therefore, the
genie-aided optimal policy is always pulling Arm a1.

C.3 Some Examples of the Abandonment Probability Functions

We present some examples of the abandonment probability functions qp¨q that satisfy V ˚ps1q´

Q˚ps1, aq ď V ˚ps2q ´Q
˚ps2, aq for any a P A, s1, s2 P r0, 1s, s1 ě s2.

For any a P A, s1, s2 P r0, 1s, s1 ě s2, we have

rV ˚ps1q ´Q
˚ps1, aqs ´ rV

˚ps2q ´Q
˚ps2, aqs

“ rQ˚ps1, a1q ´Q
˚ps1, aqs ´ rQ

˚ps2, a1q ´Q
˚ps2, aqs

“pµpa1q ´ µpaqq

"

r1´ qpp1´ θqs1 ` θqsV
˚pp1´ θqs1 ` θq ´ r1´ qpp1´ θqs1qsV

˚pp1´ θqs1q

´ r1´ qpp1´ θqs2 ` θqsV
˚pp1´ θqs2 ` θq ` r1´ qpp1´ θqs2qsV

˚pp1´ θqs2q

*

,

(107)

where the first quality is by Lemma 10, and the second equality is by (106). From (107),
we know that the sign of rV ˚ps1q ´Q

˚ps1, aqs ´ rV
˚ps2q ´Q

˚ps2, aqs depends only on the
abandonment probability function qp¨q and V ˚p¨q. By Lemma 10, the Bellman equation of
V ˚psq is as follows

V ˚psq “µpa1q ` p1´ µpa1qq r1´ qpp1´ θqsqsV
˚pp1´ θqsq
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` µpa1q r1´ qpp1´ θqs` θqsV
˚pp1´ θqs` θq

Therefore, if we know the abandonment function qp¨q and µpa1q, we can numerically calculate
V ˚p¨q and then determine the sign of rV ˚ps1q ´Q

˚ps1, aqs ´ rV
˚ps2q ´Q

˚ps2, aqs by (106).
For example, let µpa1q “ 0.9, θ “ 0.5, and

qpsq “ 1´
logpc6s` 1q

logpc6 ` 1q
, (108)

where c6 is a constant. Figure 4 shows the abandonment probability functions (108) for
c6 “ 5, c6 “ 50, and c6 “ 1000. We numerically check that for c6 “ 5, c6 “ 50, and
c6 “ 1000,

rV ˚ps1q ´Q
˚ps1, aqs ď rV

˚ps2q ´Q
˚ps2, aqs (109)

for any a P A, s1, s2 P r0, 1s, s1 ě s2. We conjecture that (109) holds for any c6 ě 5.

C.4 Details of CONT-ULCB and CONT-KL-ULCB Algorithms

The CONT-ULCB algorithm is shown in Algorithm 2. The CONT-KL-ULCB algorithm
replaces µ̃Sk,ht paq in Algorithm 2 with KL divergence, i.e., for all a P A,

µ̃
Sk,h
t paq “

#

min tp : klpµ̄tpaq, pqNtpaq ď p1´ 2Sk,hq log t` c logplog tqu , Sk,h ď
1
2

max tp : klpµ̄tpaq, pqNtpaq ď p2Sk,h ´ 1q log t` c logplog tqu , Sk,h ą
1
2 .

C.5 Simulation Results for the General-State Setting

Consider the MAB-A problem of the general-state setting. Let the abandonment probability
function qp¨q be

qpsq “ 1´
logpc6s` 1q

logpc6 ` 1q

(a) c6 “ 5 (b) c6 “ 50 (c) c6 “ 1000

Figure 4: Examples of abandonment probability functions.
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Algorithm 2 CONT-ULCB Algorithm
1: Initialize: N1paq Ð 0, µ̄1paq Ð 0 for all a P A, tÐ 1, c0, c1, c.
2: for episode k “ 1, ...,K do
3: hÐ 1, Sk,1 Ð initial state of episode k, Sk,1 P r0, 1s
4: while Sk,h ‰ g do
5: if there exists Arm a1 such that Ntpa

1q “ 0 then
6: play Arm Ak,h “ a1 and observe Rk,h
7: else
8: Let µ̃Sk,ht paq “ µ̄tpaq ` p2Sk,h ´ 1q

b

log t`c logplog tq
2Ntpaq

for all a P A

9: Take the action Ak,h P argmaxa µ̃
Sk,h
t paq and observe Rk,h.

10: end if
11: if abandonment occurs then Sk,h`1 “ g
12: else Sk,h`1 “ p1´ θqSk,h ` θRk,h
13: end if
14: Define pSt, At, S1t, Rtq :“ pSk,h, Ak,h, Sk,h`1, Rk,hq
15: Update: Nt`1pAtq “ NtpAtq ` 1 and Nt`1paq “ Ntpaq @a ‰ At
16: Update: µ̄t`1pAtq “

µ̄tpAtqNtpAtq`Rt
Nt`1pAtq

and µ̄t`1paq “ µ̄tpaq @a ‰ At
17: tÐ t` 1, hÐ h` 1
18: end while
19: end for

for any s P r0, 1s, where c6 is a constant. Let the forgetting factor θ “ 0.5 in the simulation.
We present the simulation results for our proposed DISC-ULCB, CONT-ULCB, DISC-KL-
ULCB, and CONT-KL-ULCB algorithms. Let n “ 4 for the discretization of DISC-ULCB
and DISC-KL-ULCB. We simulated 2ˆ 104 episodes with 107 independent runs. Simulation
results are shown in Figure 5, Figure 6, and Figure 7 for different sets of arms and different
abandonment probabilities (different c6).

Remark 18 For Figure 5(a), the 95% confidence bounds are at most ˘4.43. For Figure 6(a),
the 95% confidence bounds are at most ˘3.11. For Figure 7(a), the 95% confidence bounds
are at most ˘0.12.

From Figure 5(a), Figure 6(a), and Figure 7(a), we can see in all the three different settings
that both DISC-ULCB and CONT-ULCB algorithms outperform the traditional UCB in
terms of average cumulative regret, and that both DISC-KL-ULCB and CONT-KL-ULCB
algorithms outperform the traditional KL-UCB. Moreover, CONT-ULCB and CONT-KL-
ULCB perform slightly better than DISC-ULCB and DISC-KL-ULCB, respecively. These
figures also show that the slopes of DISC-ULCB and DISC-KL-ULCB converges to the slopes
of their corresponding upper bounds. Also, in Figure 5(b), Figure 6(b), and Figure 7(b) where
the Y-axis is the average cumulative regret divided by logK, the curves of DISC-ULCB and
DISC-KL-ULCB go towards their corresponding asymptotic upper bounds, which confirms
our theoretical results.

49



Yang, Liu, and Ying

100 101 102 103 104

K episodes (log scale)

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 to
ta

l r
eg

re
t

UCB
DISC-ULCB
CONT-ULCB
UB for DISC-ULCB
KL-UCB
DISC-KL-ULCB
CONT-KL-ULCB
UB for DISC-KL-ULCB
LB for MAB-A

(a) Comparison among algorithms

101 102 103 104

K episodes (log scale)

0

20

40

60

80

100

120

A
ve

ra
ge

 to
ta

l r
eg

re
t /

 lo
g(

K
)

DISC-ULCB
CONT-ULCB
UB for DISC-ULCB
DISC-KL-ULCB
CONT-KL-ULCB
UB for DISC-KL-ULCB
LB for MAB-A

(b) Upper bound (UB) and lower bound (LB)

Figure 5: Simulation results for the general-state setting, M “ 2, µpa1q “ 0.9, µpa2q “ 0.8,
c6 “ 1000.
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Figure 6: Simulation results for the general-state setting, M “ 2, µpa1q “ 0.9, µpa2q “ 0.8,
c6 “ 100.
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Figure 7: Simulation results for the general-state setting, M “ 2, µpa1q “ 0.2, µpa2q “ 0.1,
c6 “ 1000.

Appendix D. Simulation Parameters and Additional Simulations

In the simulation of Q-learning with ε-greedy, we set ε “ 0.1. The learning rate is set to be
1

Nps,aq , where Nps, aq is the number of times the state-action pair ps, aq has been visited. For
Q-learning with UCB, we set the episode length parameter H to be the maximum expected
episode length in MAB-A, which is the expected episode length under the policy of always
pulling the optimal arm a1. The number of episodes K is set to be 1000. The constant c in
the bonus term is set to be 4. For UCBVI, we also set the episode length parameter H to
be the expected episode length under the best policy and the number of episodes K is set
to be 1000. The probability parameter δ is set to be 0.001. The bonus term is modified to
bps, aq “ 7H logp5SAHK{δq

b

1
mintNpaq,Nrps,1q,Nrps,0qu

, where Npaq is the number of pulls of
arm a and Nrps, rq is the number of visits of state-reward pair ps, rq. This is natural because
Npaq, Nrps, 1q, and Nrps, 0q reflect the uncertainty of the estimates of the mean rewards and
the abandonment probabilities.

We did additional simulations for different sets of arms and different abandonment
probabilities, as shown in Figure 8 and Figure 9. The other settings are the same as those in
Section 5. The same conclusion holds, i.e., our proposed ULCB and KL-ULCB outperform
the traditional UCB and KL-UCB, respectively, our algorithms have order-wise lower regret
than Q-learning with ε-greedy, Q-learning with UCB, and UCBVI, and the simulation results
are also consistent with our theoretical results.

In order to further understand the exploration and the exploitation in MAB-A problem,
we run ULCB algorithms with different c0 and c1, which are the state-dependent exploration-
exploitation coefficients in the indices for state 0 and state 1, respectively. Larger coefficient
means more exploration. The results are shown in Figure 10. In Figure 10(a), c0 is fixed,
and as c1 increases, the cumulative regret decreases. In Figure 10(b), c1 is fixed, and as c0

increases, the cumulative regret increases. These changes of regret are consistent with our
theoretical results which suggest more exploration in state 1.
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Figure 8: Simulation results, M “ 2, µpa1q “ 0.2, µpa2q “ 0.1, qp0, 0q “ 1, qp1, 0q “
qp0, 1q “ qp1, 1q “ 0.
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Figure 9: Simulation results, M “ 3, µpa1q “ 0.9, µpa2q “ 0.8, µpa3q “ 0.5, qp0, 0q “ 1,
qp1, 0q “ qp0, 1q “ qp1, 1q “ 0.
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Figure 10: ULCB: different coefficients c0 and c1, qp0, 0q “ 1, qp1, 1q “ qp1, 0q “ qp0, 1q “ 0.

Appendix E. Results for the Opposite Case—(8) Does Not Hold

Note that you can see in (29) in Appendix B.2 that the inequality V ˚p1q ´ Q˚p1, aq ě
V ˚p0q ´Q˚p0, aq or V ˚p1q ´Q˚p1, aq ď V ˚p0q ´Q˚p0, aq does not depend on a. Hence, at
least one of the two cases holds. In this section, we consider the case where V ˚p1q´Q˚p1, aq ě
V ˚p0q´Q˚p0, aq, i.e., condition (8) does not hold. One example is that qp0, 0q “ 0.6, qp1, 0q “
qp0, 1q “ 0.5, qp1, 1q “ 0.1. With modified algorithms, we have results similar to our main
results.

E.1 Upper Bound for Modified ULCB

Theorem 19 Let Assumption 1 hold. Suppose V ˚p1q´Q˚p1, aq ě V ˚p0q´Q˚p0, aq for any
a ‰ a1. Then using Algorithm 1 with c0 “ 1, c1 “ ´1, and c “ 4, we have

lim sup
KÑ8

ErRegπpKqs

logK
ď

ÿ

i‰1

V ˚p0q ´Q˚p0, aiq

2pµpa1q ´ µpaiqq2
.

Note that in Theorem 2 we use c0 “ ´1 and c1 “ 1 while in Theorem 19 we use the opposite,
i.e., c0 “ 1 and c1 “ ´1. The proof is symmetric to that of Theorem 2 and hence is omitted.

E.2 Upper Bound for Modified KL-ULCB

For the case where V ˚p1q ´ Q˚p1, aq ě V ˚p0q ´ Q˚p0, aq, we use a modified KL-ULCB
algorithm, which replaces the indices µ̃0

t paq and µ̃1
t paq in (4) and (5) with

µ̃0
t paq “max tp : klpµ̄tpaq, pqNtpaq ď c0 log t` c logplog tqu

µ̃1
t paq “min tp : klpµ̄tpaq, pqNtpaq ď c1 log t` c logplog tqu .

Theorem 20 Let all the assumptions in Theorem 19 hold. Then using the above modified
KL-ULCB algorithm with c0 “ c1 “ 1 and c “ 4, we have

lim sup
KÑ8

ErRegπpKqs

logK
ď

ÿ

i‰1

V ˚p0q ´Q˚p0, aiq

klpµpaiq, µpa1qq
. (110)

53



Yang, Liu, and Ying

The proof is symmetric to that of Theorem 4 and hence is omitted.

E.3 Lower Bound for the Opposite Case

Theorem 21 Let all the assumptions in Theorem 19 hold. Let π be a consistent policy,
i.e., π P Πcons. Then for any µpa1q, ..., µpaM q, qp0, 0q, qp0, 1q, qp1, 0q, qp1, 1q satisfying the
assumptions, we have

lim inf
KÑ8

ErRegπpKqs

logK
ě

ÿ

i‰1

V ˚p0q ´Q˚p0, aiq

klpµpaiq, µpa1qq
. (111)

The proof is symmetric to that of Theorem 6 and hence is omitted. From Theorem 20 and
Theorem 21, the upper bound obtained by the modified KL-ULCB algorithm matches the
lower bound asymptotically for the case where V ˚p1q ´Q˚p1, aq ě V ˚p0q ´Q˚p0, aq for any
a ‰ a1.
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