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Abstract

We introduce robust principal component analysis from a data matrix in which the entries of
its columns have been corrupted by permutations, termed Unlabeled Principal Component
Analysis (UPCA). Using algebraic geometry, we establish that UPCA is a well-defined
algebraic problem since we prove that the only matrices of minimal rank that agree with
the given data are row-permutations of the ground-truth matrix, arising as the unique
solutions of a polynomial system of equations. Further, we propose an efficient two-stage
algorithmic pipeline for UPCA suitable for the practically relevant case where only a fraction
of the data have been permuted. Stage-I employs outlier-robust PCA methods to estimate
the ground-truth column-space. Equipped with the column-space, Stage-II applies recent
methods for unlabeled sensing to restore the permuted data. Allowing for missing entries
on top of permutations in UPCA leads to the problem of unlabeled matrix completion, for
which we derive theory and algorithms of similar flavor. Experiments on synthetic data,
face images, educational and medical records reveal the potential of our algorithms for
applications such as data privatization and record linkage.

Keywords: robust principal component analysis, matrix completion, record linkage, data
re-identification, algebraic geometry

1. Introduction

In principal component analysis, a cornerstone of machine learning and data science, one is
given a data matrix X̃, assumed to be a corrupted version of a ground-truth data matrix
X∗ = [x∗1 · · · x∗n] ∈ Rm×n, typically but not necessarily assumed to have low rank, and the
objective is to estimate X∗ or the column-space S∗ ⊂ Rm of X∗. The most common types of
corruptions that have attracted interest in modern studies are additive sparse perturbations
(Candès et al., 2011; Zhang and Yang, 2018), outlier data points that lie away from S∗
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(Xu et al., 2012; Vaswani et al., 2018), missing entries, also known as low-rank —or even
high-rank (Eriksson et al., 2012; Ongie et al., 2017, 2021)— matrix completion (Candès and
Recht, 2009; Ganti et al., 2015; Balzano et al., 2018; Eftekhari et al., 2019; Bertsimas and Li,
2020), and entry-wise non-linear corruption (El Karoui, 2010; Yao et al., 2021b; Guionnet
et al., 2023; Mergny et al., 2024).

Recently, permutations have been emerging as another type of data corruption, typically
set in the context of linear regression, where the correspondences between the input and the
output data have been partially distorted or are even entirely unavailable (Unnikrishnan
et al., 2015, 2018; Hsu et al., 2017; Slawski and Ben-David, 2019; Slawski et al., 2020; Zhang
and Li, 2020; Marano and Willett, 2020; Wang et al., 2020; Tsakiris et al., 2020; Mazumder
and Wang, 2023; Peng et al., 2022; Onaran and Villar, 2022; Azadkia and Balabdaoui, 2022).
There, one is given a point x∗ of a linear subspace S∗, but only up to a permutation of
its coordinates, say x̃ = Π∗x∗ with Π∗ an unknown permutation, and the goal is to find
x∗ from the data x̃, S∗. An alternative formulation for this problem is that given a matrix
A ∈ Rm×r, which can be regarded as a basis of the linear subspace S∗, and a response
vector x̃ = Π∗Ac∗ shuffled by an unknown permutation Π∗, the goal is to find Π∗ and the
regression coefficients c∗. This Unlabeled Sensing (Unnikrishnan et al., 2015, 2018) problem
has many potential applications, e.g., record linkage (Slawski and Ben-David, 2019; Slawski
et al., 2020), visual (Santa Cruz et al., 2017, 2018) or textual (Brown et al., 1990; Schmaltz
et al., 2016; Shen et al., 2017) permutation learning, matching problems in neuroscience
(Nejatbakhsh and Varol, 2021) and biology (Abid and Zou, 2018; Ma et al., 2021; Xie et al.,
2021), and DNA-based data storage (Shomorony and Heckel, 2021; Weinberger and Merhav,
2022; Lenz et al., 2022; Ravi et al., 2022).

While methods for unlabeled sensing rely on knowledge of the source subspace S∗, this is
not always known in practice. On the other hand, data of the form X̃ = [x̃1, . . . , x̃n] ∈ Rm×n
with x̃j = Π

∗
j x
∗
j an unknown permutation of an unknown point x∗j ∈ S∗, are often available,

thus raising the question of whether S∗ can be estimated from X̃. An important example
of this situation is record linkage (Fellegi and Sunter, 1969; Muralidhar, 2017; Antoni and
Schnell, 2019; Nikolaenko et al., 2013; Ong et al., 2014; Ranbaduge et al., 2021), where the
objective is to integrate data from independent sources, x̃1, . . . , x̃n ∈ Rm, for subsequent data
analysis. Since the entries of different records x̃i’s are collected separately, the data matrix X̃
is unlabeled in the sense that, the entries of its i-th row do not necessarily correspond to the
same entity. Such kind of unlabeled data X̃ also arise in the context of data privatization,
where the data provider anonymizes the original data X∗ by permuting each column of X∗

prior to release (Domingo-Ferrer and Muralidhar, 2016; He et al., 2012; Nikolaenko et al.,
2013). In such a way, the marginal distribution of each corresponding original attribute is
preserved, and hence so are the statistical properties such as the mean, the median, and
the variance of the data. Data re-identification is a concern, since companies with privacy
policies, health care providers, and financial institutions may release the collected data after
anonymization. Understanding the fundamental limits of re-identifying the original data X∗

from the released data X̃ is essential for striking a balance between data privacy and data
preservation (Abowd, 2019; Narayanan and Shmatikov, 2008). Applications with unlabeled
data also arise in the multiple-image correspondence problem (Zeng et al., 2012; Ji et al.,
2014) in image processing and computer vision. Oliveira et al. (2005) showed that estimating
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the correspondence of points across a sequence of images of a single rigid body motion, can
be expressed as a rank-minimization problem in terms of partial permutation matrices.

1.1 Related Work

In this section, we briefly review some existing work on three problems that interconnect
in this paper; that is, unlabeled sensing, robust principal component analysis with outliers,
and matrix completion with outliers. Beyond them, we also mention the recent and related
works of Breiding et al. (2018, 2023) and Tachella et al. (2023), that combine flavors from
data science, inverse problems, and algebraic models.

1.1.1 Unlabeled Sensing

There is a large literature on application-specific problems that involve lack of correspon-
dences, e.g. in computer vision or statistics; here we just review four recent methods for
unlabeled sensing (Unnikrishnan et al., 2018) that will be used in this paper. In unlabeled
sensing one is given a subspace S∗ ⊂ Rm of dimension r and a point x̃ which is some permuted
version of a point x∗ ∈ S∗ and the goal is to recover x∗ from S∗ and x̃. A critical distinction
among methods in the literature is the sparsity level α of the permutation, that is the ratio
of coordinates that are moved by the permutation.

The case of dense permutations (α = 1) is extremely challenging, with existing methods
only able to handle small ranks r. We consider two methods known to perform best in
this regime. The algebraic-geometric method called AIEM in Tsakiris et al. (2020) has
linear complexity in m, and instead concentrates its effort on solving a polynomial system
of r equations in r variables to produce an initialization for an expectation maximization
algorithm. Currently, this method is efficient for r ≤ 5 and intractable otherwise. A very
different method is CCV-Min of Peng and Tsakiris (2020), which proceeds via branch-
and-bound together with concave minimization and can handle r ≤ 8, though intractable
otherwise. For a picture regarding the computational complexity of existing unlabeled
sensing methods, we refer to the discussion in Peng and Tsakiris (2020).

For sparse permutations (small α) we review two methods (Slawski and Ben-David, 2019;
Slawski et al., 2021). The `1-RR algorithm of Slawski and Ben-David (2019) applies an `1
robust linear regression relaxation and it works when α ≤ 0.5. Another approach is the
Pseudo-Likelihood method (PL) of Slawski et al. (2021), which fits a two-component mixture
density for each entry of x̃, one accounting for fixed data and the other for permuted data.
The fitting is done via a combination of hypothesis testing, reweighted least-squares, and
alternating minimization; while this method works well for α ≤ 0.7, it is sensitive to the
particular basis of S∗ used to generate x̃.

The unlabeled sensing problem has in fact been explored, at least theoretically, towards
greater generality (Unnikrishnan et al., 2015, 2018; Dokmanić, 2019; Tsakiris and Peng, 2019;
Peng and Tsakiris, 2021; Tsakiris, 2023a). In one such extended setting, already present
in (Unnikrishnan et al., 2015, 2018), we are only given a subset of coordinates of x̃ (and
the subspace S∗) and we aim to recover x∗. We call this problem unlabeled sensing with
missing entries. It is a more challenging problem for which very few algorithms exist; e.g.
see Elhami et al. (2017); Tsakiris and Peng (2019). Tsakiris and Peng (2019) proposes two
algorithms: Algorithm-A is based on a combination of branch-and-bound and a dynamic
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programming strategy; Algorithm-B is a RANSAC-style method based also on dynamic
programming computation. Both algorithms perform well, if the subspace dimension r is
sufficiently small (e.g., ≤ 3) and if one is given sufficiently many entries of x̃.

1.1.2 Robust PCA with Outliers

PCA methods with robustness to outliers will also play a role in this paper. Among a large
literature we review four state-of-the-art methods inspired by sparse (You et al., 2017),
cosparse (Tsakiris and Vidal, 2018b) and low-rank (Xu et al., 2012) (Rahmani and Atia,
2017) representations. In that context, X̃ can be partitioned into inlier points that lie in an
unknown r-dimensional subspace S∗ ⊂ Rm and outlier points that lie away from S∗; the goal
is to recover S∗ from X̃.

A successor of Soltanolkotabi and Candés (2012), the convex method of You et al. (2017),
which we refer to as Self-Expr, solves a self-expressive elastic net problem so that each x̃j is
expressed as an `2-regularized sparse linear combination of the other points. Inlier points
need approximately r other inliers for their self-expression as opposed to about m points
for outliers. The self-expressive coefficients are used to define transition probabilities of
a random walk on the self-representation graph and the average of the t-step transition
probability distributions for t = 1, . . . , T is used as a score for inliers vs outliers, with higher
scores expected for the former. Then Ŝ is taken to be the subspace spanned by the r top x̃j’s.

Dual Principal Component Pursuit (DPCP) of Tsakiris and Vidal (2015, 2018b) solves a
non-smooth non-convex problem for an orthonormal basis B∗ of the orthogonal complement
of S∗. In contrast to other robust-PCA methods, particularly those based on convex
optimization, DPCP was shown in Zhu et al. (2018); Ding et al. (2021) to tolerate as
many outliers as the square of the number of inliers, under a relative spherically uniform
distribution assumption on inliers and outliers. This assumption is certainly not true for
outliers obtained by permuting the coordinates of inliers, but we will experimentally see
that an even stronger property holds for the case of UPCA (Figure 5).

The now classical outlier pursuit method of Xu et al. (2012), which we refer to as OP,
decomposes via convex optimization X̃ into the sum of a low-rank matrix, representing
the inliers, and a column-sparse matrix, representing the outliers. Ŝ is obtained as the rth
principal component subspace of the low-rank part. Finally, the Coherence Pursuit (CoP)
method of Rahmani and Atia (2017) is based on the following simple but effective principle:
with X̃−j the matrix X̃ with column j removed, for each x̃j one computes its coherence X̃>−jx̃j
with the rest of the points. As it turns out, inliers tend to have coherences of higher `2-norm
than outliers, and the r top x̃j’s are taken to span Ŝ.

1.1.3 Matrix Completion with Outliers

As mentioned in the introduction, matrix completion—or robust PCA with missing entries—
has been a well-studied problem, with numerous developed theories (Candès and Recht,
2009; Candès and Plan, 2010; Singer and Cucuringu, 2010; Eriksson et al., 2012; Balcan
et al., 2019; Tsakiris, 2023b) and algorithms (Cai et al., 2010; Keshavan et al., 2010; Balzano
et al., 2010; Majumdar and Ward, 2011; Tanner and Wei, 2013; Bertsimas and Li, 2020);
see, e.g., Davenport and Romberg (2016); Vaswani and Narayanamurthy (2018) for a survey.

4



Unlabeled Principal Component Analysis and Matrix Completion

Closely related to this paper is a more general setting of matrix completion, where the
given data matrix X̃ not only has some entries missing but also some of its columns are
outliers. This setup is more challenging, and research on it is relatively scarce. Chen et al.
(2011, 2015) considered this problem, and proposed a convex program that minimizes a
combination of a nuclear norm with an `1,2 norm over a matrix of variables. Their method,
which we call MCO, is shown to succeed for sufficiently many inliers and observed entries.
We will make use of MCO later, to solve our unlabeled matrix completion problem.

1.2 Contributions

In this paper, we consider the recovery of X∗ from its unlabeled version X̃, which we term
Unlabeled Principal Component Analysis (UPCA). We take one step further and generalize
UPCA into Unlabeled Matrix Completion (UMC), where we now need to recover X∗ from
only a subset of entries of X̃. We make contributions in the following three aspects:

1. Theoretical contributions (Section 2)

(a) We establish that as long as r := rank(X∗) < min{m,n} and X∗ is generic (see
Definition 1), then up to a permutation of its rows, X∗ is the only matrix of rank
less than or equal to r that is compatible with X̃. This asserts that UPCA is a
well-posed problem, since the inherent ambiguity of whether X̃ comes from X∗ or
a row-permuted version of X∗ is in most cases practically harmless (Sections 2.1.1
and 2.1.3).

(b) We establish that in this basic formulation, UPCA is a purely algebraic problem, by
exhibiting a polynomial system of equations parametrized by X̃, whose solutions
are all the row-permutations of X∗; solving the UPCA problem amounts to
obtaining one such solution (Section 2.1.4).

(c) We furthermore generalize our UPCA theorems for UMC, thereby obtaining
results of similar “information-theoretical” flavor for the scenario with permuted
incomplete data (Section 2.2).

2. Algorithmic contributions (Section 3)

(a) Inasmuch as solving the polynomial system of UPCA is in principle NP-hard, we
introduce an efficient algorithmic pipeline, Algorithm 1, for the practically relevant
case where a significant part of the data have undergone the same dominant
permutation, while the rest of the points have been permuted arbitrarily (see
Section 2.1.5); in the case of record linkage this would correspond to one of the
records having much larger size than the others. The first stage of the pipeline
employs PCA methods with robustness to outliers (Xu et al., 2012; Soltanolkotabi
and Candés, 2012; Rahmani and Atia, 2017; You et al., 2017; Tsakiris and Vidal,
2018b; Zhu et al., 2018; Lerman and Maunu, 2018) to produce an estimate Ŝ
of S∗ from X̃; the second stage of the pipeline uses unlabeled sensing methods
(Slawski and Ben-David, 2019; Slawski et al., 2021; Tsakiris et al., 2020; Peng
and Tsakiris, 2020) to furnish an estimate X̂ of X∗ from Ŝ and X̃ (See Algorithm
1). Moreover, we introduce a simple but efficient algorithm for unlabeled sensing,
Algorithm 2, based on least-squares with recursive filtration.
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(b) Our algorithmic development for UMC is parallel to that of UPCA. We start with
the dominant permutation assumption and introduce a two-stage algorithmic
pipeline (Algorithm 3). The first stage detects and completes inlier columns, and
then estimates the subspace S∗ by matrix completion with column outliers (recall
Section 1.1.3). The second stage estimates the data matrix X∗ by solving the
problem of unlabeled sensing on the projected coordinates for each column.

3. Experimental evaluation (Section 4)

(a) We assess our algorithmic pipeline for UPCA and our proposed unlabeled sensing
algorithm on synthetic data (Section 4.1.1 and 4.1.2), face images (Section 4.1.3),
educational and medical records (Section 4.1.4), with encouraging results.

(b) We also perform experiments for the proposed UMC pipeline (Section 4.2).

2. Theoretical Foundations

In this section, we formulate and study two problems, unlabeled principal component
analysis (UPCA) and unlabeled matrix completion (UMC). The goal of UPCA is to recover
a ground-truth rank-deficient matrix X∗ from its unlabeled version X̃. The goal of UMC is to
also recover X∗ from X̃, but now X̃ is a partial observation of a permuted version of X∗. See
Figure 1 for an intuitive understanding of the setup; we will formalize the settings soon.


x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44


(a) Ground-truth X∗


x31 x22 x23 x44
x11 x32 x43 x34
x21 x42 x33 x14
x41 x12 x13 x24


(b) UPCA data matrix X̃


x31 ∗ x23 x44
∗ x32 x43 ∗
x11 x22 ∗ x14
x41 ∗ x13 x34


(c) UMC data matrix X̃

Figure 1: (1a): Ground-truth matrix X∗. (1b): Data matrix X̃ for UPCA, obtained by
shuffling each column of X∗ via some unknown permutation. (1c): Data matrix X̃
for UMC, obtained via removing some entries (indicated by ∗) and shuffling every
column of X∗. In both UPCA and UMC, we need to recover X∗ from data X̃.

2.1 Unlabeled Principal Component Analysis

In this section, we first introduce the problem formulation of the unlabeled principal
component analysis problem, and then we give necessary preliminaries on algebraic geometry,
followed by the result that UPCA is well-posed. Next, we show UPCA is a purely algebraic
problem in this basic formulation. Finally, we discuss a special case where many data have
undergone the same dominant permutation.

2.1.1 Problem Formulation

Let us denote by Pm the set of all permutations of coordinates of Rm. We let X∗ =
[x∗1 · · · x∗n] ∈ Rm×n be our ground-truth data matrix with rank r < min{m,n} and column
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space S∗ = C(X∗), and we suppose that the available data are

X̃ = [x̃1 · · · x̃n] = [Π∗1x
∗
1 · · ·Π∗nx∗n] ∈ Rm×n, (1)

where each Π∗j ∈ Pm is an unknown permutation. Let Pnm =
∏
i∈[n] Pm be n ordered copies of

Pm, where [n] = {1, . . . , n}. For π = (Π1, . . . , Πn) ∈ Pnm we set π(X̃) = [Π1x̃1 · · ·Πnx̃n]. We
pose Unlabeled Principal Component Analysis (UPCA) as the following rank minimization
problem:

min
π∈Pnm

rankπ(X̃) (2)

First, note that (2) never has a unique solution, because if π = (Π1, . . . , Πn) is a solution,
then so is π ′ = (ΠΠ1, . . . , ΠΠn) for every permutation Π ∈ Pm. This reveals an inherent
ambiguity of UPCA: it is only possible to recover X∗ from X̃ up to a permutation ΠX∗ of its
rows. On the other hand, this is rather harmless in many situations, since ΠX∗ is the same
dataset as X∗ except that the row-features appear now in some different order. Thus, our
hope in formulating (2) is that the only solutions are of the form π = (ΠΠ∗1

>, . . . , ΠΠ∗n
>)

with Π ranging across Pm and Π∗j as in (1). However, without any other assumptions on
the data X∗, there could in principle be additional undesired permutations that also give
rankX∗, or even worse, the minimum rank in (2) could be lower than r = rankX∗. Our
results show that for generic enough data, such pathological situations do not occur, and
the only solutions to (2) are the ones associated with row-permutations of X∗.

2.1.2 Elements of Algebraic Geometry

Before stating our results, we make the notion of generic precise using some basic algebraic
geometry (Cox et al., 2013; Harris, 2013). Let Z = (zij) be an m× n matrix of variables zij
and R[Z] = R

[
zij : i ∈ [m], j ∈ [n]

]
the ring of polynomials in the zij’s with real coefficients.

An algebraic variety of Rm×n is the set of solutions of a polynomial system of equations in
R[Z]. In particular, the set of (r+ 1)× (r+ 1) determinants of Z are polynomials in zij’s of
degree r+ 1 and define the algebraic variety

Mr = {X ∈ Rm×n| rankX ≤ r } ,

since rankX ≤ r if and only if all (r+ 1)× (r+ 1) determinants of X are zero.
The algebraic variety Mr admits a topology, called Zariski topology, which makes it

convenient to work with. The closed sets in this topology are the algebraic subvarieties
of Mr. These are sets of matrices of rank ≤ r, which in addition satisfy certain other
polynomial equations in R[Z]. For example, the set of matrices of rank at most r− 1 is a
proper closed subset of Mr, because in addition to the equations defining Mr, it is further
defined by requiring all r × r determinants to be zero. Open sets in Mr are defined as
complements of closed sets, or equivalently they are defined by requiring that certain sets of
polynomials are not all simultaneously zero. For example, the set of matrices of rank exactly
equal to r is a proper open subset of Mr defined by the non-simultaneous vanishing of all
r× r determinants of Z; a matrix has rank r if and only if all (r+ 1)× (r+ 1) determinants
are zero and least one r × r determinant is non-zero. Now, the algebraic variety Mr is
irreducible in the sense that it can not be described as the union of two proper algebraic
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subvarieties of it (Kleiman and Landolfi, 1971). A consequence of this is that non-empty
open sets of Mr have the very important property of being topologically dense. This means
that given a non-empty open set U ⊂ Mr and a point X ∈ Mr, every neighborhood of X
intersects U . It follows that under any non-degenerate continuous probability measure on
Mr, a non-empty Zariski-open set of Mr has measure 1. For example, the set of matrices
in Mr of rank r is non-empty and open, and thus it is dense. Hence a randomly sampled
matrix in Mr under a continuous probability measure will have rank r with probability 1.
We refer to such a fact by saying that a generic matrix in Mr has rank r. More generally:

Definition 1 We say that a generic matrix in Mr satisfies a property, if the property is
true for every matrix in a non-empty open subset of Mr.

2.1.3 UPCA is a Well-Posed Problem

Our first theoretical result is as follows.

Theorem 2 For X∗ a generic matrix in Mr, we have that rankπ(X̃) ≥ r for any π ∈ Pnm,
with equality if and only if π(X̃) = ΠX∗ for some Π ∈ Pm.

Theorem 2 says that for X∗ ∈Mr generic, and up to a permutation of the coordinates of
Rm, S∗ is the unique r-dimensional subspace that explains the data X̃ in the UPCA sense,
and r = rankX∗ is the minimum objective in (2).

2.1.4 UPCA is an Algebraic Problem

How can one go about solving the discrete optimization problem (2)? In general, brute force
selection of the Πj’s has complexity O

(
(m!)n

)
, which is out of the question. On the other

hand, problem (2) has a rich algebraic structure, which allows us to show that X∗, up to a
permutation of its rows, is the unique solution to a polynomial system of equations.

To begin with, for each j ∈ [n] and each ` ∈ [m], we define the following column-symmetric
polynomials of R[Z]:

p̄`,j(Z) :=
∑
i∈[m]

z`ij, p`,j(Z) := p̄`,j(Z) − p̄`,j(X̃)

Note that p̄`,j
(
π(Z)

)
= p̄`,j(Z) for any π ∈ Pnm and thus p̄`,j(X̃) = p̄`,j(X

∗). Now let us think
of X ∈Mr as a product of two matrices of size m× r and r× n, and let us define another
polynomial ring with variables associated to these two factors. For i = r + 1, . . . ,m, and
k ∈ [r] and j ∈ [n], we let bik, ckj be a new set of variables over R. Organize the bik’s to
occupy the (m − r) × r bottom block of an m × r matrix B whose top r × r block is the
identity matrix of size r, and the ckj’s into a r× n matrix C = (ckj). For i ∈ [m], we write
b>i for the i-th row of B; for j ∈ [n], we write cj for the j-th column of C. With x̃ij, x

∗
ij

the i-th coordinate of x̃j, x
∗
j respectively, we obtain polynomials q`,j for ` ∈ [m], j ∈ [n] of
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R[B,C] by substituting zij 7→ b>i cj in the p`,j(Z)’s above:

q`,j(B,C) := p̄`,j(BC) − p̄`,j(X̃)

=
∑
i∈[m]

(b>i cj)
` −
∑
i∈[m]

x̃`ij

=
∑
i∈[m]

(b>i cj)
` −
∑
i∈[m]

x∗ij
`

The set of common roots of all q`,j’s is an algebraic variety YX∗ that depends only on X∗:

YX∗ =
{
(B ′, C ′) ∈ Rm×r × Rr×n |q`,j(B ′, C ′) = 0, ∀` ∈ [m], ∀j ∈ [n]; B ′[r],[r] = Ir

}
Here, B ′[r],[r] = Ir signifies that the top r × r block of B ′ ∈ Rm×r is the identity matrix.

Then, with Π ∈ Pm, if the column-space C(ΠX∗) of ΠX∗ does not drop dimension upon
projection onto the first r coordinates, then there exists a unique basis B∗Π of C(ΠX∗) with the
identity matrix occurring at the top r× r block. In that case, there is a unique factorization
ΠX∗ = B∗ΠC

∗
Π and the point (B∗Π, C

∗
Π) lies in the variety YX∗ because

q`,j(B
∗
Π, C

∗
Π) = p̄`,j(B

∗
ΠC
∗
Π) − p̄`,j(X̃)

= p̄`,j(ΠX
∗) − p̄`,j(X

∗)

= p̄`,j(X
∗) − p̄`,j(X

∗) = 0.

Our second result says that if X∗ is generic, then all points of YX∗ are of this type. That is,
they correspond to factorizations B∗ΠC

∗
Π of ΠX∗ as Π varies across all permutations:

Theorem 3 For a generic matrix X∗ in Mr we have

YX∗ =
{
(B∗Π, C

∗
Π) ∈ Rm×r × Rr×n |Π ∈ Pm; B∗Π,[r],[r] = Ir; ΠX

∗ = B∗ΠC
∗
Π

}
Thanks to Theorem 3 we have the following important conceptual finding. Assuming

X∗ is generic, to obtain X∗ up to some permutation of its rows from X̃, one only needs to
compute an arbitrary root (B ′, C ′) of the polynomial system of equations

q`,j(B,C) = 0, ∀` ∈ [m], ∀j ∈ [n] (3)

and multiply its factors to get B ′C ′. Developing a polynomial system solver for UPCA
would involve two main challenges: attaining robustness to noise and scalability. We leave
such an endeavor to future research.

2.1.5 UPCA with Dominant Permutations

In this section we consider a special case of interest, where part of the data have undergone the
same dominant permutation (see Figure 2). To make this precise, we define the multiplicity
µ(Π) of a permutation Π ∈ Pm to be the number of times that Π appears as Π = Π∗j in (1)
with j ranging in [n]. Figure 2c shows an example for the case µ(Π∗1) = 3 and µ(Π∗3) = 1.
In fact, given the inherent ambiguity of UPCA discussed above, we may as well take this
dominant permutation to be the identity matrix Im of size m×m. We have:

9
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
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44


(a) Ground-truth X∗


x31 x22 x23 x44
x11 x32 x43 x34
x21 x42 x33 x14
x41 x12 x13 x24


(b) UPCA data matrix X̃


x41 x42 x23 x44
x11 x12 x43 x14
x21 x22 x33 x24
x31 x32 x13 x34


(c) UPCA data matrix with

a dominant permutation

Figure 2: (2a): Ground-truth matrix X∗. (2b): Data matrix X̃ for UPCA, obtained by
shuffling each column of X∗ via some unknown permutation. (2c): Data matrix
X̃ for UPCA with a dominant permutation, obtained via shuffling some columns
(columns 1, 2, 4 in the figure) by the same permutation and shuffling others
arbitrarily (column 3 highlighted in bold).

Theorem 4 Suppose that µ(Im) > max {µ(Π), r} for any other Π 6= Im. Then for a generic
X∗ ∈Mr, we have that S∗ is the unique solution to the following consensus maximization
problem

max
dim S≤r

#{x̃j | x̃j ∈ S ; j ∈ [n]}, (4)

where # denotes the cardinality of a set, and the maximization is taken over all subspaces
S ⊂ Rm of dimension ≤ r.

Theorem 4 says that for sufficiently generic ground-truth data X∗, the given data X̃ admit
a natural partition into a set of inliers and outliers with respect to the linear subspace S∗:

X̃in := {x̃j | x̃j ∈ S∗}, X̃out := {x̃j | x̃j 6∈ S∗}

Of course we do not know what the partition into inliers and outliers is, because we do not
know what S∗ is. But the presence of this geometric structure is enough for PCA methods
with robustness to outliers to operate on X̃ in order to estimate S∗. Section 3.1 proceeds
algorithmically building on this insight.

2.2 Unlabeled Matrix Completion

A generalization of UPCA with practical significance is to consider PCA from data corrupted
by both permutations and missing entries. To proceed we need some extra notations.

With ωj a subset of [m] we let Pωj ∈ Rm×m be the matrix representing the projection
of Rm onto the coordinates contained in ωj, that is Pωj is a diagonal matrix with the kth
diagonal element non-zero and equal to 1 if and only if k ∈ ωj. With ωj as above for every
j ∈ [n], we write Ω =

⋃
j∈[n]ωj × {j} ⊂ [m]× [n] and p

Ω
= (Pω1 , . . . , Pωn). Let RΩ be the

subspace of Rm×n of all matrices that have zeros in the complement of Ω. The association
X = [x1 · · · xn] 7→ p

Ω
(X) = [Pω1x1 · · ·Pωnxn] induces a map

p
Ω
:Mr −→ RΩ

With this notation, in ordinary bounded-rank matrix completion (of which low-rank
matrix completion is a special case) one is given a partially observed matrix p

Ω
(X∗) and the

10
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objective is to compute an at most rank-r completion, that is an element of the fiber

p−1
Ω

(
p
Ω
(X∗)

)
=
{
X ∈Mr | pΩ(X) = pΩ(X

∗)
}

A big question is to characterize the observation patterns Ω for which p
Ω
(X∗) is generically

finitely completable, in the sense that there exists a dense open set U of Mr such that for
every X∗ ∈ U the fiber p−1

Ω

(
p
Ω
(X∗)

)
is a finite set. Even harder is the characterization of the

Ω’s that are generically uniquely completable, i.e. the fiber consists only of X∗. Both of these
questions remain open in their generality, while several authors have made progress from
different points of view, including rigidity theory (Singer and Cucuringu, 2010), algebraic
combinatorics (Király and Tomioka, 2012; Király et al., 2015), tropical geometry (Bernstein,
2017) and algebraic geometry (Tsakiris, 2023b, 2024).

Next, we let Pωj be the permutations Π ∈ Pm that permute only the coordinates in ωj
and set PΩ =

∏
j∈[n] Pωj . With πΩ = (Π1, . . . , Πn) ∈ PΩ the association X = [x1 · · · xn] 7→

πΩ(X) = [Π1x1 · · ·Πnxn] induces a map

πΩ : RΩ −→ RΩ

Now suppose that the available data matrix X̃ is of the form X̃ = π̃Ω ◦ pΩ(X
∗) for some

π∗Ω ∈ PΩ. Then the problem of unlabeled matrix completion can be posed as finding an

element X in the fiber
(
πΩ ◦ pΩ

)−1
(X̃) of some map

Mr

p
Ω−→ RΩ

πΩ−→ RΩ

Assuming X̃ is generic, p
Ω

can be determined by inspection of the missing-pattern of X̃,
while π̃Ω is unknown, as in unlabeled-PCA. Also, for a fixed πΩ ∈ Pm,Ω there is no a priori
guarantee that X̃ is in the image of the map πΩ ◦ pΩ, while as πΩ varies in Pm,Ω more than

one πΩ ◦ pΩ’s may reach X̃ via possibly infinitely many X’s in Mr.
For this model, we will obtain theoretical recovery guarantees in Sections 2.2.1 and 2.2.2.

Under the dominant permutation hypothesis, we will have theoretical assertions in Section
2.2.3, which further leads us to an algorithm in Section 3.2 and experimental analysis in
Section 4.2.

2.2.1 Finite Recovery for UMC

In what follows we describe conditions under which finitely many X ∈Mr explain the data
X̃ for UMC. We exploit recent results of Tsakiris (2023b, 2024), where a family of generically
finitely completable Ω’s was studied. The following definition (Sturmfels and Zelevinsky,
1993) is needed for the description of the family.

Definition 5 An (r,m)-SLMF (Support of a Linkage Matching Field) is a set

Φ =
⋃

j∈[m−r]

ϕj × {j} ⊂ [m]× [m− r]

with the ϕj’s subsets of [m] of cardinality r+ 1, satisfying

#
⋃
j∈T

ϕj ≥ #T + r, ∀T ⊆ [m− r].

11
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We have the following finiteness result for unlabeled matrix completion:

Theorem 6 Suppose Ω ⊂ [m]× [n] satisfies the following two conditions. First, #ωj ≥ r
for every j ∈ [n]. Second, there exists a partition [n] =

⋃
ν∈[r] Jν of [n] into r subsets Jν,

such that for every ν ∈ [r] there exist m − r subsets ϕνj ∈
⋃
k∈JνΩk with j ∈ [m − r] such

that Φν =
⋃
j∈[m−r]ϕ

ν
j × {j} is an (r,m)-SLMF. For X̃ = π∗Ω ◦ pΩ(X

∗), where X∗ is a generic
matrix in Mr, and π∗Ω ∈ Pm,Ω, the following set of unlabeled completions is finite:⋃

πΩ∈Pm,Ω

(
πΩ ◦ pΩ

)−1
(X̃) (5)

The set (5) can be thought of as the set of all at most rank-r unlabeled completions of
X̃. They can be computed, at least on a conceptual level, in a similar fashion as in UPCA
by symmetric polynomials, this time supported on Ω.

2.2.2 UMC is an Algebraic Problem

We extend Theorem 3 to reveal an algebraic structure of the UMC problem:

Theorem 7 Suppose Ω satisfies the hypothesis of Theorem 6. Then there is a Zariski-open
dense set U in Mr, such that for every X∗ ∈Mr the unlabeled completions (5) of X̃ are of
the form B ′C ′, with identity in the top r × r block of B ′, and (B ′, C ′) ranging among the
finitely many roots of the polynomial system∑

i∈ωj

(b>i cj)
` −
∑
i∈ωj

x̃`ij = 0, j ∈ [n], ` ∈ [#ωj]

In particular, for every root (B ′, C ′) there is πΩ ∈ Pm,Ω with πΩ ◦ pΩ(B
′C ′) = p

Ω
(X∗).

Remark 8 By inspecting the proof of Theorem 6 one sees that the effect of the permutations
manifests itself only through the fact that Pm,Ω is a finite group of automorphisms of RΩ.
Hence, the proof and the statement of Theorem 6 remain unchanged if one replaces Pm,Ω by
any finite group of automorphisms of RΩ. What will change in Theorem 7, is that one now
needs to use polynomials that are invariant to the action of the specific group. Indeed, for
permutations these are the symmetric polynomials.

2.2.3 UMC with Dominant Permutations

In Section 2.1.5 we discussed UPCA under the dominant permutation assumption. In that
scenario, inliers are the columns of X̃ that lie in the (shuffled) ground-truth subspace ΠS∗,
while outliers arise as the columns that are shuffled by permutations other than Π and thus
driven away from ΠS∗ (Figure 3b); namely, inliers and outliers in UPCA are partitioned as
per

X̃in := {x̃j |Π
∗
j = Π}, X̃out := {x̃j |Π

∗
j 6= Π}. (6)

We now extend that scenario to the UMC setting.
Generalizing (6), we can define the partition for the UMC data X̃:

X̃in := {x̃j |PωjΠ
∗
j = PωjΠ}, X̃out := {x̃j |PωjΠ

∗
j 6= PωjΠ} (7)

12
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
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44


(a) Ground-truth X∗


x41 x32 x13 x44
x11 x22 x43 x24
x31 x12 x33 x14
x21 ∗ x23 x34


(b) UPCA data matrix with

a dominant permutation


x41 x32 ∗ x44
x11 ∗ x43 ∗
∗ x12 x33 x14
x21 ∗ x23 x34


(c) UMC data matrix X̃ with

a dominant permutation

Figure 3: Similar to Figure 1, yet the difference is as follows. In Figure 3b and 3c, columns
1, 2, 4 of X̃ have been shuffled by the same permutation (i.e., the dominant permu-
tation); column 3 (highlighted in bold) is shuffled by a different permutation and
thus treated as an outlier.

Given the inherent ambiguity of UPCA, we can assume the dominant permutation is the
identity Im as in Section 2.1.5 (this is equivalent to replacing the ground-truth subpsace
S∗ by Π∗S∗, a harmless assumption for theoretical purposes, and often for practical ones
as well). Then, the dominant identity permutation assumption entails sufficiently many j’s
for which Π∗j = Im, and also that X̃in contains sufficiently many data points x̃j’s that would

span S∗ if correctly completed; we can thus naturally regard every point of X̃in as an inlier.
However, pathological scenarios would arise if completing any point of X̃out in whatever way
yielded a point in S∗. Fortunately, this pathological situation can in general be ruled out:

Proposition 9 For a generic X∗ inMr, and for x̃ = PωΠ
∗x∗ a column in X̃ with #ω ≥ r+1

and PωΠ
∗ 6= PωIm, any completion of x̃ is away from S∗, i.e. Pωy 6= x̃, ∀y ∈ S∗.

For a generic matrix X∗ ∈Mr with #ωj ≥ r+ 1 (∀j), it is now safe to treat every column
of X̃out as an outlier, and indeed (7) gives a well-defined partition of inliers X̃in and outliers
X̃out. This extends the insight of UPCA with the dominant identity permutation assumption,
and makes it possible to estimate S∗ via matrix completion methods that are robust to
outliers. Precise algorithmic solutions leveraging such insights fall right into Section 3.2.

3. Algorithms

In this section, we study the problems of UPCA and UMC under the dominant identity
permutation assumption. We propose two-stage algorithmic pipelines for both problems:

• For UPCA, the first stage computes a subspace Ŝ from X̃ via outlier-robust PCA
methods. The second stage applies unlabeled sensing methods to X̃ (and Ŝ) in a
column-wise manner. Figure 4a gives a diagram, and Section 3.1 gives full details.

• The UMC pipeline parallels and extends that of UPCA. The first stage computes
Ŝ from X̃ via matrix completion with column outliers. The second stage first takes
Pωj Ŝ and Pωj x̃j as inputs, and outputs an estimate Pωj x̂j via solving the problem of
unlabeled sensing with missing entries. After completing the missing entries in Pωj x̂j
by a least-square method, we get the estimate x̂j. See Figure 4b and Section 3.2.
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X̃
fit a linear subspace Ŝ
via outlier-robust PCA

Ŝ
apply unlabeled sensing
to x̃j for each column j X̂

(a) UPCA

X̃

fit a linear subspace Ŝ
via matrix completion
with column outliers

Ŝ
apply unlabeled sensing

to Pωj x̃j for each column j X̂

(b) UMC

Figure 4: The proposed algorithmic pipelines for UPCA and UMC.

3.1 Two-Stage Algorithmic Pipeline for UPCA

We saw in the previous section that the UPCA problem (2) is well-defined (Theorem 2)
and in principle solvable by a polynomial system of equations (Theorem 3). However, this
polynomial system is at the moment intractable to solve even for moderate dimensions. On
the other hand, Theorem 4 suggests the following practical two-stage algorithmic pipeline
for the case where there is a dominant permutation, which we will take to be the identity.

Here we proposed a two-stage method, summarized in Algorithm 1.

3.1.1 Stage-I of UPCA

The existence of a dominant identity permutation enables estimating the underlying subspace,
which is the task of Stage-I in the proposed algorithmic pipeline. Hence, at Stage-I a PCA
method with robustness to outliers is employed to produce an estimate Ŝ of S∗ from X̃. Such
robust PCA methods include OP (Xu et al., 2012), Self-Repr (Soltanolkotabi and Candés,
2012; You et al., 2017), CoP (Rahmani and Atia, 2017), and DPCP (Tsakiris and Vidal,
2018b; Zhu et al., 2018; Lerman and Maunu, 2018), as mentioned in Section 1.1.2.

3.1.2 Stage-II of UPCA

Once equipped with a robust estimate of S∗, the aim of Stage-II is to estimate X∗, which
can be achieved by employing methods for unlabeled sensing. These methods take a point
x̃j of X̃, identified as an outlier with respect to the subspace Ŝ, and return an estimate x̂j of
x∗j by (directly or indirectly) solving the problem

min
Π∈Pm, x̂j∈Ŝ

‖x̃j − Πx̂j‖2 (8)

Hence, at Stage-II of the pipeline, one feeds Ŝ and X̃ to an unlabeled sensing method
(Slawski and Ben-David, 2019; Slawski et al., 2021; Tsakiris et al., 2020; Peng and Tsakiris,
2020; Mazumder and Wang, 2023; Onaran and Villar, 2022), which operates point by point,
returning for every x̃j an estimate x̂j. Here one may choose to threshold the x̃j’s based on
their distance to Ŝ and apply unlabeled sensing on the outliers only. Alternatively, if extra
computational power is available for dispensing with choosing a threshold, one may apply
unlabeled sensing on every x̃j; we follow this approach in the experiments for UPCA.
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Algorithm 1 Two-stage Algorithmic Pipeline for UPCA

1: Input: observed data matrix X̃, rank r
2: estimate Ŝ of S∗ ← outlier-robust PCA on X̃ . Stage-I
3: for j = 1, . . . , n do . Stage-II
4: estimate x̂j of x∗j ← unlabeled sensing (8) on (x̃j, Ŝ)
5: end for
6: return estimate X̂ = [x̂1, . . . , x̂n] of X∗

3.1.3 A New Method For Unlabeled Sensing: LSRF

Inasmuch as there are very few scalable unlabeled sensing methods, we here propose a simple
but comparatively efficient alternative in sparsely permuted cases, named Least-Squares
with Recursive Filtration (LSRF), see Algorithm 2. This method is parameter-free and
alternates between ordinary least-squares and a dimensionality reduction step that removes
the coordinate of the ambient space on which the residual error attains its maximal value,
until r coordinates are left.

LSRF is designed to solve unlabeled sensing with sparse permutations, empirically
succeeding for up to 60%-70% permuted entries. The complexity is O(m2r2), and can
be further reduced to O((mrκ )2) by removing κ rows in A in each iteration when m is
large. For comparing computational complexity with other algorithms, which often have
hyper-parameters, AIEM is exponential in r and linear in m; each iteration of PL has
complexity at least O(mr3) if done via second-order optimization; `1-RR has complexity
at least O(mr2 + k(m + r2)) if done via sub-gradient descent, where k is the number of
iterations.

Algorithm 2 Unlabeled Sensing via Least-Squares with Recursive Filtration (LSRF)

1: Input: permuted point x̃j, basis B∗ of subspace S∗

2: v(0) ← x̃j, A
(0) ← B∗

3: for k = 1, . . . ,m− r do
4: c← A(k−1)†v(k−1)

5: i ′ ← argmaxi |v
(k−1)
i −A

(k−1)
i c|

6: remove the i ′th entry of v(k−1) to get v(k)

7: remove the i ′th row of A(k−1) to get A(k)

8: end for
9: return estimate x̂j = A

(m−r)A(m−r)†v(m−r) for x∗j

3.2 Two-Stage Algorithmic Pipeline for UMC

As in UPCA, we propose a two-stage pipeline for UMC that can be effective under the
dominant permutation assumption. We detail our algorithmic pipeline next.
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3.2.1 Stage-I of UMC

Stage-I of UMC parallels that of UPCA, with the same goal of estimating the ground-truth
subspace S∗, yet with the additional challenge that the data matrix now has missing entries
(Figure 1). Recall that, under the dominant permutation assumption, we can treat the
columns permuted by the dominant permutation as inliers and others outliers (Figure 3).
As such, Stage-I amounts to solving the problem of matrix completion with column outliers
(reviewed in Section 1.1.3). To do so, a direct solution is employing the convex program
of Chen et al. (2015), called MCO, which estimates S∗ in a way that is robust to column
outliers and missing entries.

However, MCO comes with two issues that might hinder its accuracy. First, it aims to
complete inliers and detect outliers simultaneously ; doing so can be very challenging and
thus error-prone. Second, its convex program can not leverage the inherent non-convexity of
the problem. To alleviate these issues, we build upon existing non-convex outlier-robust
PCA procedures and propose an alternative to MCO. The alternative proposal detects
inliers, completes inliers, and estimates the ground-truth subspace S∗ in cascade:

1. (Detect Inliers) We first complete all missing entries of X̃ by the value 0, thereby
obtaining a complete matrix X̃0; such matrix X̃0 is sometimes called zero-filled data
matrix (Yang et al., 2015; Tsakiris and Vidal, 2018a). Similarly to (7), X̃0 can be
partitioned into zero-filled inliers and zero-filled outliers. Then we proceed as if the zero-
filled inliers were correct completions of UMC inliers X̃in that span the ground-truth
space S∗, and run existing outlier-robust PCA methods on X̃0. Since the missing entries
of X̃ are heuristically filled by zeros, such a subspace estimate might be inaccurate,
away from S∗, and thus inadequate for the subsequent recovery task. On the other
hand, if we are further given an inlier threshold as a hyper-parameter, then we can
obtain an estimated partition of inliers and outliers. In particular, an incomplete
point x̃j is classified as an inlier if the distance between its zero-filled version and
the estimated subspace is smaller than the inlier threshold; otherwise it is an outlier.
Hence, we declare a set of inliers as determined by the partition, and will use these
estimated inliers for the sequel.

2. (Complete Inliers) The detected inliers x̃j’s in the previous step are in fact incomplete,
and at this point, we will no longer rely on their zero-filled versions; instead, we aim to
find their authentic completions (x∗j )’s, which are expected to span S∗ if the detected
inliers are indeed inliers in the sense of (7). In other words, we are now confronted
with a low-rank matrix completion task. Therefore, step 2 is to complete the detected
inliers using standard matrix completion algorithms.

3. (Estimate S∗) Finally, given an estimate for the ground-truth rank r, we can now
simply perform a singular value decomposition on the matrix of completed inliers, and
obtain the final estimate Ŝ of S∗.

The above routine in cascade can be upgraded into a block coordinate descent method (Peng
and Vidal, 2023): Alternate among inlier detection and completion and subspace estimation.
Moreover, convergence guarantees of (Peng and Vidal, 2023) might be applied here. That
said, we do not pursue this idea of block coordinate descent here, as the above routine
already shows satisfactory recovery performance (see Section 4.2).
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3.2.2 Stage-II of UMC

After Stage-I, we have obtained an estimate Ŝ of the ground-truth subspace S∗ and completed
inliers. Since each outlier x̃j is a point x∗j in S∗ except being permuted and having some

entries missing, there is a chance of recovering a good estimate x̂j of xj from Ŝ and x̃j. In
such cases, we can first restore the permutation of each column via solving (8) on observed
entries (using the subspace Pωj Ŝ) and then complete the missing entries of that column via
a least-squares computation. We summarize our approach in Algorithm 3.

Algorithm 3 Two-stage Algorithmic Pipeline for UMC

1: Input: observed data matrix X̃, rank r
2: X̃0 ← fill missing entries in X̃ with zeros
3: estimate Ŝ of S∗ ← matrix completion with column outliers on X̃0 . Stage-I
4: B̂ ← basis of Ŝ
5: for j = 1, . . . , n do . Stage-II
6: estimate PωjΠ̂j of PωjΠ

∗
j ← unlabeled sensing (8) on (Pωj x̃j, Pωj Ŝ)

7: estimate coefficient ĉj of x∗j in basis B̂ ← least squares on (PωjB̂, PωjΠ̂jx̃j)

8: x̂j ← B̂ · ĉj
9: end for

10: return estimate X̂ = [x̂1, . . . , x̂n] of X∗

4. Experimental Evaluation

Here we perform synthetic and real data experiments to evaluate the proposed algorithmic
pipelines for UPCA (Section 4.1) and UMC (Section 4.2). We use two metrics for performance
evaluation. The first is the largest principal angle θmax(S

∗, Ŝ) between the estimated subspace
Ŝ and ground-truth S∗, and this is used for Stage-I to evaluate subspace learning accuracy.

The second metric is the relative estimation error ‖X̂−X
∗‖F

‖X∗‖F between the estimated data matrix

X̂ and the ground-truth X∗, which quantifies the final performance of our algorithmic pipeline.
For both metrics, smaller values imply better performance.

4.1 UPCA Experiments

We begin by assessing the performance of Stage-I of the pipeline in Section 4.1.1. This
entails understanding how different PCA methods with robustness to outliers behave when
the outliers are induced by permutations, as in Theorem 4. Next in section 4.1.2, we evaluate
the overall UPCA pipeline of Algorithm 1 on synthetic data with added spherical noise.

4.1.1 Stage-I of UPCA

To understand how different PCA methods with robustness to outliers behave when the
outliers are induced by permutations, we access the performance of Stage-I of the pipeline
in section 4.1.1. We consider Self-Expr (Self-Expressive elastic net) (You et al., 2017;
Soltanolkotabi and Candés, 2012), CoP (Coherence Pursuit) (Rahmani and Atia, 2017), OP
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(Outlier Pursuit) (Xu et al., 2012), and DPCP (Dual Principal Component Pursuit) (Tsakiris
and Vidal, 2018b; Lerman and Maunu, 2018); these methods are reviewed in Section 1.1.2.

We fix m = 50 and n = 500. With dimS∗ taking values r = 1 : 1 : 49, S∗ is sampled
uniformly at random from the Grassmannian Gr(r,m). Then n points x∗j are sampled
uniformly at random from the intersection of S∗ with the unit sphere of Rm to yield X∗.
Denote by nin the number of inliers and nout the number of outliers, with nin + nout = n.
We consider outlier ratios nout/n = 0.1 : 0.1 : 0.9. For a fixed outlier ratio, we set Π̃j to the
identity for j ∈ [nin] and determine the Π̃j’s for j > nin as follows. An important parameter
in the design of a permutation Π is its sparsity level α ∈ [0, 1]. This is the ratio of coordinates
that are moved by Π. To obtain Π̃j, for a fixed α, for each j > nin, we randomly choose
αm coordinates and subsequently a random permutation on those coordinates. We consider
permutation sparsity levels α = 1, 0.6, 0.2, 0.1.

In Self-Repr and CoP, Ŝ is taken to be the subspace spanned by the top r x̃j’s with
largest inlier scores. We use the Iteratively-Reweighed-Least-Squares method proposed by
Tsakiris and Vidal (2017) and Lerman and Maunu (2018) for solving the DPCP problem as
it works very well empirically.1 The output subspace Ŝ of OP is obtained as the rth principal
component subspace of the decomposed low-rank matrix. For Self-Expr we use λ = 0.95,
α = 10 and T = 1000, see section 5 in You et al. (2017). For DPCP we use Tmax = 1000,
ε = 10−9 and δ = 10−15, see Algorithm 2 in Tsakiris and Vidal (2018b). Finally, OP uses
λ = 0.5 and τ = 1 in Algorithm 1 of Xu et al. (2012).

Figure 5 depicts the outlier-ratio versus rank phase transitions, where to calibrate the
analysis with what we know about these methods from prior work, we have included in the
top row of the figure the phase transitions for outliers randomly chosen from the unit sphere.
By reading that top row we recall: i) DPCP has overall the best performance across all ranks
and all outlier ratios, ii) OP identifies correctly S∗ only in the low rank low outlier-ratio
regime, as expected from its conceptual formulation, and iii) CoP and Self-Expr, even though
low-rank methods in spirit, they have accuracy similar to each other and considerably better
than OP. We also note that CoP is the fastest method requiring 0.51sec for the computation
of a single phase transition plot for each trial (i.e., average time for running all settings of
outlier ratio 0.1 : 01 : 0.9 and rank 1 : 1 : 49 once), Self-Expr is the slowest with 752sec and
DPCP and OP take 1.31sec and 5.62sec, respectively2.

Now let us look at what happens for permutation-induced outliers. For α = 1, where
the permutations move all the coordinates of the points they are corrupting, we see that
the phase transition plots are practically the same as for random outliers. In other words,
obtaining the outliers by randomly permuting all coordinates of inlier points, with different
permutations for different outliers, seems to be yielding an outlier set as generic for the
task of subspace learning as sampling the outliers randomly from the unit sphere. A second
interesting phenomenon is observed when the permutation ratio is decreased to α = 0.1. In
that regime the methods exhibit two very different trends. On one hand, CoP and Self-Expr
appear to break down, which is expected, because as the permutations become more sparse,
the outlier points become more coherent with the rest of the data set. On the other hand,
the accuracy of DPCP and OP improves for sparser permutations; a justification for this

1. Theoretical advances on Iteratively-Reweighed-Least-Squares have also been recently made; see, e.g.,
Peng et al. (2022, 2023) and Section 2.4 of Peng and Vidal (2023).

2. Experiments are run on an Intel(R) i7-8700K, 3.7 GHz, 16GB machine.
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Figure 5: θmax(S
∗, Ŝ) in UPCA Stage-I: outlier ratio vs. rank phase transitions for various

PCA methods with robustness to outliers.

is that both methods get initialized via the SVD of X̃, which yields a subspace closer to
S∗ for smaller α. For example, the value of principal angles θmax(S

∗, Ŝ) for Self-Expr, CoP,
OP, DPCP, for α = 0.2, outlier ratio 0.9 and r = 49 are 79◦, 83◦, 14◦, 13◦, respectively.
As another example, for α = 0.1, outlier ratio 0.7 and r = 25 the value of θmax(S

∗, Ŝ) is
67◦, 80◦, 7◦, (10−6)◦, with the methods ordered as above. Overall, DPCP is consistently
outperforming the rest of the methods, justifying it as our primary choice in the next section.
An interesting research direction is to analyze the theoretical guarantees of these methods
for this specific type of outliers.

4.1.2 The Full Pipeline of UPCA

Now we evaluate the UPCA pipeline of Algorithm 1 on synthetic data. We keep m = 50
as before, and add spherical noise with to a fixed SNR of 40dB. We get the estimate Ŝ of
S∗ via DPCP (Tsakiris and Vidal, 2018b; Lerman and Maunu, 2018) in Stage-I and apply
the unlabeled sensing methods (Tsakiris et al., 2020; Peng and Tsakiris, 2020; Slawski and
Ben-David, 2019; Slawski et al., 2021) and Algorithm 2 in Stage-II to get X̂ from Ŝ and X̃.
We distinguish between dense and sparse permutations.
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Dense Permutations. We first consider dense permutations, that is α = 1. This is
an extremely challenging case, with the difficulty manifesting itself through the fact that
existing methods can only handle small ranks r. We consider AIEM and CCV-Min, two
state-of-the-art methods mentioned in Section 1.1.1. For AIEM we use a maximum number
of 1000 iterations in the alternating minimization of (8). For CCV-Min we use a precision
of 0.001, the maximal number of iterations is set to 50, and the maximum depth to 12 for
r = 3 and 14 for r = 4, 5.

Figure 6 depicts the relative estimation error of X̂ for different outlier ratios from
75% (25 inliers) to 94% (6 inliers) and ranks r = 3, 4, 5. To assess the overall effect of
the quality of Ŝ, we use two versions of AIEM and CCV-Min. The first, denoted by
AIEM(Ŝ) and CCV-Min(Ŝ), uses as input the estimated subspace Ŝ, while the second version,
AIEM(S∗) and CCV-Min(S∗), uses the ground-truth subspace S∗. Note that the estimation
error of AIEM(S∗)/CCV-Min(S∗) is independent of the outlier ratio. On the other hand,
the estimation error of AIEM(Ŝ)/CCV-Min(Ŝ) depends on the outlier ratio through the
computation of Ŝ. Indeed, Ŝ is expected to be closer to S∗ for smaller outlier ratios, as
we already know from Figure 5. In particular, for up to 75% outliers the estimation error
of AIEM(Ŝ)/ CCV-Min(Ŝ) coincides with that of AIEM(S∗)/ CCV-Min(S∗), indicating an
accurate estimation of S∗. At the other extreme, for 94% outliers both AIEM(Ŝ)/ CCV-
Min(Ŝ) break down, indicating that the estimation of Ŝ failed. Finally, note that CCV-Min
has at least half order of magnitude smaller estimation error than AIEM. This is due to
our specific choice of the branch & bound CCV-Min parameters which control the trade-off
between accuracy and running time; for example, for r = 3 and 75% outliers, AIEM runs in
42msec with 1% error, while CCV-Min needs about 15sec to bound X̂ 0.42% away from X∗.

For AIEM, we use the customized Gröbner basis solvers of Tsakiris et al. (2020), developed
for r ≤ 4, which solve the polynomial system in milliseconds, and the maximum number
iterations in the alternating minimization procedure is Tmax = 1000. For r = 5, the design
of such solvers is an open problem3, thus we use the generic solver Bertini (Bates et al.),
which runs within a few seconds. For r ≥ 6 though, AIEM remains as of now practically
intractable. For CCV-Min the precision is 0.001, Tmax = 50, and the maximum depth is 12
for r = 3 and 14 for r = 4, 5. For `1-RR we use λ = 0.01

√
log(n)/n in (13) of Slawski and

Ben-David (2019).
Sparse Permutations. The methods that we saw in the previous section certainly

apply in the special case where only a fraction of the coordinates is permuted. However,
they are still subject to the same computational limitations that practically require the rank
r to be small (r ≤ 6 for AIEM and r ≤ 8 for CCV-Min). On the other hand, the problem of
linear regression without correspondences is tractable for a wider range of ranks when the
permutations are sparse (small α). This important case arises in applications such as record
linkage, where domain specific algorithms are only able to guarantee partially correctly
matched data. Here we consider three methods, `1-RR (Slawski and Ben-David, 2019), PL
(Slawski et al., 2021), and our proposed LSRF (Algorithm 2).

Figures 7b-7d show the relative estimation error of UPCA for α = 0.1 : 0.1 : 0.6, rank
r = 1 : 1 : 25 and outlier ratio fixed to 90%, with Ŝ computed in Stage-I by DPCP (Tsakiris
and Vidal, 2018b; Lerman and Maunu, 2018) and X̂ computed via `1-RR, PL, or LSRF

3. The fast solver generator of Larsson et al. (2017) is an improved version of the one used by Tsakiris et al.
(2020) for r = 3, 4. However, we found that for r = 5 it suffers from numerical stability issues.
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Figure 6: UPCA (Algorithm 1) for dense permutations (α = 1) with Ŝ produced by DPCP
(Tsakiris and Vidal, 2018b; Lerman and Maunu, 2018) at Stage-I and X̂ produced
by AIEM (Tsakiris et al., 2020) or CCV-Min (Peng and Tsakiris, 2020) at Stage-II.

from X̃ and Ŝ in Stage-II. It is important to note that r = 25 = m/2 is the largest rank
for which unique recovery of X∗ is theoretically possible (Unnikrishnan et al., 2015, 2018;
Tsakiris and Peng, 2019; Dokmanić, 2019). Figure 7a shows that θmax(S

∗, Ŝ) always stays
below 2◦, indicating the success of DPCP. As before, we also show in Figures 7e-7g the
estimation error when S∗ is used instead of Ŝ. Evidently, the performance is nearly identical
regardless of whether Ŝ or S∗ is used, again justifying the success of Stage-I. Now `1-RR and
Algorithm 2 have similar accuracy, but Algorithm 2 is more efficient than `1-RR, considering
that computing X̂ takes 0.3sec seconds for Algorithm 2 and 1.5min for `1-RR. Even though
PL delivers X̂ in 1sec, it is not performing as well, which we attribute to its sensitivity on
the particular basis of S∗ that is used to generate the data; this is not available here since
DPCP returns the specific basis of dual principal components.

4.1.3 Experiments on Face Images

In this section we offer a flavor of how the ideas discussed so far apply in a high-dimensional
example with real data. We use the well-known database Extended Yale B (Georghiades
et al., 2001), which contains fixed-pose face images of distinct individuals, with 64 images
per individual under different illumination conditions. It is well-established that the images
of each individual approximately span a low-dimensional subspace. It turns out that for
our purpose the value r = dimS∗ = 4 is good enough, and values higher than r do not
bring improvements that human eyes can distinguish. Since each image has size 192× 168,
the images of each individual can be approximately seen as n = 64 points x∗j , j ∈ [64] of a
4-dimensional linear subspace S∗, embedded in an ambient space of dimension m = 32256.
In what follows we only deal with the images of a fixed individual. We consider four
permutation types corresponding to fully or partially (α = 0.4) permuting image patches
of size 16× 24 or 48× 42, as shown in the second column of Figure 8. To generate a fixed
number of nout = 16 outliers only one out of the four permutation types is used for each trial.
The original images (inliers) together with the ones that have undergone patch-permutation
(outliers) are given without any inlier/outlier labels, and the task is to restore all corrupted
images. This is a special case of visual permutation learning, recently considered using deep
networks (Santa Cruz et al., 2017, 2018).
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Figure 7: Estimation error ‖X
∗−X̂‖F
‖X∗‖F of UPCA (Algorithm 1) for sparse permutations (α ≤ 0.6)

and outlier ratio 90%, with Ŝ computed by DPCP (Tsakiris and Vidal, 2018b;
Lerman and Maunu, 2018) in Stage-I and X̂ computed by `1-RR (Slawski and
Ben-David, 2019), PL (Slawski et al., 2021) or Algorithm 2 in Stage-II.

We compute Ŝ as follows. With X̃ = UΣV> the thin SVD of X̃, where U ∈ R32256×64,
DPCP fits a 4-dimensional subspace S̄ to the columns of X̄ = U>X̃, a process which takes
about a tenth of a second. Then S̄ is embedded back into R32256 via the map U : R64 → R32256
to yield Ŝ. To compute X̂ from Ŝ and X̃ we use the custom algebraic solver of AIEM as
well as `1-RR, PL, LSRF, with a proximal subgradient implementation of `1-RR using the
toolbox of Beck and Guttmann-Beck (2019).

original outlier AIEM `1-RR PL LSRF

Figure 8: UPCA on the face data set Extended Yale B.
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The first column of Figure 8 shows an original image, and the second column shows
the corresponding outlier obtained by applying a sample permutation for each of the four
different permutation types. Columns three to six give the corresponding point in the output
of Algorithm 1 for different unlabeled sensing methods and Ŝ computed by DPCP (Tsakiris
and Vidal, 2018b). CCV-Min (Peng and Tsakiris, 2020) is not included as branch-and-
bound becomes prohibitively expensive for such large m). Notably, AIEM (Tsakiris et al.,
2020) rather satisfactorily restores the original image regardless of permutation type. The
performance of the other three methods is shown only for their operational regime, where
the given data are corrupted by sparse permutations, and Algorithm 2 most accurately
captures the illumination of the original image. Overall, we find these results encouraging,
especially if one takes into consideration that the methods are very efficient, requiring only
0.2sec (AIEM), 7sec (`1-RR), 0.2sec (PL) and 10sec (Algorithm 2), discounting the DPCP
step, which costs 0.1sec, regardless of permutation type. This is in contrast with existing
deep network architectures for visual permutation learning, such as (Santa Cruz et al., 2018),
which are based on branch-and-bound and thus have in principle an exponential complexity
in the number of permuted patches.

4.1.4 Experiments on Data Re-identification (UPCA)

Finally, we evaluate the UPCA Algorithm 1 for the task of re-identification (section 1) using
real educational and medical records and simulated permutations for various sparsity levels
α, thus emulating a privacy protection scenario. Both of the data sets that we use contain no
personally identifiable information. DPCP (Tsakiris and Vidal, 2018b; Lerman and Maunu,
2018) computes Ŝ in Stage-I and `1-RR (Slawski and Ben-David, 2019), PL (Slawski et al.,
2021) or Algorithm 2 produce X̂ in Stage-II.
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Figure 9: Relative estimation error ‖X̂−X
∗‖F

‖X∗‖F for UPCA on real data in de-anonymization.

The first data set consists of the test scores of m = 707 high-school students on 6 subjects
during two different periods, together with the sum of the score tests for each period, thus
n = 14. For 7 out of 14 tests we apply random permutations of the student indices and thus
have 50% outliers. With r = 3, the relative estimation errors on the score records are shown
in Figure 9a. The black dashed line depicts the relative difference between the observed data
X̃ and the original data X∗, which as expected increases for higher α’s. The performance of
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`1-RR, PL and Algorithm 2 is in alignment with our earlier findings in that Algorithm 2
tends to have a superior performance and PL is the least competitive. All these methods
apply in principle for sparse permutations and thus their accuracy naturally degrades for
large α.

The second data set consists of all the benign cases in Breast Cancer Wisconsin (Di-
agnostic) (Asuncion and Newman, 2007). It has m = 357 patients and n = 30 features of
a breast mass digitized image for each patient. We randomly permute the patient indices
for 15 of the features thus having 50% outliers and set r = 4. Figure 9b shows the relative
estimation error of X̂ for various permutation sparsity levels α, with the unlabeled sensing
methods exhibiting the same trend as before. Remarkably, for α = 0.7, the UPCA Algorithm
1 incorporating Algorithm 2 in Stage-II reduces the original error of the data X̃ from 32.24%
to 6.35% in 0.5sec, as opposed to 15.90% and 19.57% when `1-RR (Slawski and Ben-David,
2019) or PL (Slawski et al., 2021) are incorporated, respectively.

4.2 UMC Experiments

In this section, we evaluate the proposed two-stage algorithmic pipeline, Algorithm 3, for
UMC. Section 4.2.1 tests Stage-I and reports the recovery accuracy of the subspace S∗.
Section 4.2.2 presents the performance of the full pipeline in terms of recovering X∗.

The experiments of Sections 4.2.1 and 4.2.2 operate on synthetic data with the following
setup. We set the ambient dimension m = 50, the overall number of data points n = 100,
the dimension of the ground-truth subspace r = 3, the noise level is 0.01, inliers are
associated with the dominant identity permutation, and outliers are shuffled by random
dense permutations (α = 1).

Finally, in Section 4.2.3 we study again the experiments of data re-identification once
shown in Section 4.1.4, this time for the case of UMC.

4.2.1 Stage-I of UMC

As discussed in Section 3.2, Stage-I amounts to solving the problem of matrix completion
with column outliers, and for this, we can use two approaches. One is MCO (Chen et al.,
2015), which simultaneously detects the inliers and estimates the ground-truth subspace
S∗. The other approach, called DPCP+IST, is an instantiation of our idea in Section 3.2:
(1) detect the inliers applying the DPCP method (Tsakiris and Vidal, 2018b) on zero-filled
data; (2) complete the detected inliers using a non-convex method based on iterative soft
thresholding (Majumdar and Ward, 2011), which we call IST; (3) estimate S∗ using an SVD
on the matrix of completed inliers.

With the output Ŝ of either of the above two approaches, we report the largest principal
angle θmax(S

∗, Ŝ) in Figure 10 for different ratios of outliers (0.1 : 0.1 : 0.9) and missing
entries (0.1 : 0.1 : 0.9). In particular, via Figure 10 we deliver two messages:

• Both MCO and DPCP+IST find an accurate enough subspace estimate Ŝ given
sufficiently many inliers and observed entries. For example, we have θmax(S

∗, Ŝ) equal
to 2.44◦ for MCO and 5.51◦ for DPCP+IST for 10% missing entries and 50% outliers.

• The accuracy of MCO decays more rapidly than DPCP+IST in the presence of more
outliers and more missing entries. For example, with 50% outliers and 50% missing
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entries, we have θmax(S
∗, Ŝ) equal to 20.37◦ for MCO and 2.61◦ for DPCP+IST.

Moreover, the figure shows DPCP+IST can handle up to 60% missing entries &
60% outliers, or 10% missing entries & 40% outliers, with errors of roughly 5◦ when
m = 50, n = 100, and r = 3.
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Figure 10: The largest principal angle θmax(S
∗, Ŝ) for Stage-I of Algorithm 3 on synthetic

data with varying ratios of outliers and missing entries.

Overall, at least in the present setting, DPCP+IST appears to be more accurate and
more robust than MCO for Stage-I. This is perhaps because DPCP+IST benefits from
decoupling the estimation task into several steps, where each step sufficiently leverages the
non-convex structure of the problem.

Figure 11 reports the largest principal angle θmax(S
∗, Ŝ) for r = 1 : 1 : 20 when the outlier

ratio is 40% and the ratio of missing entries is 20% with m = 50, n = 100. In this setting,
the performance starts dropping significantly when the rank is greater than 12.

θmax(S
∗, Ŝ)
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Figure 11: The largest principal angle θmax(S
∗, Ŝ) for Stage-I of DPCP+IST on synthetic

data with varying ranks.

4.2.2 The Full Pipeline of UMC

We now evaluate the whole two-stage pipeline (Algorithm 3) for UMC. We solve Stage-I
via DPCP+IST; see Figure 10 and Section 4.2.1. We solve Stage-II via either AIEM or
CCV-Min; see Section 1.1.1.
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In the experiments, we fix the outlier ratio to 40% with varying ratios of missing entries
0.1 : 0.1 : 0.8. For better illustration, we report the recovery accuracy for inliers and outliers
separately. In particular, with the ground-truth matrix X∗in of inliers and the estimated

inlier matrix X̂in given by the algorithm, we report the relative error
||X̂in−X

∗
in||F

||X∗in||F
that reflects

the recovery accuracy of inliers. The metric
||X̂out−X∗out||F

||X∗out||F
is defined similarly for outliers.
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Figure 12: Relative errors for UMC with m = 50, n = 100, r = 3, and outlier ratio 40%.

4.2.3 Experiments on Data Re-identification (UMC)

Extending the UPCA experiments of Section 4.1.4, we now evaluate our UMC algorithm on
the medical and educational data. We fix the outlier ratio to be 50%, and vary the ratio of
missing entries among 0.05 : 0.05 : 0.50.
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Figure 13: Relative estimation errors of the proposed UMC pipeline on real data.

In Figure 13 we present the results. The black curves indicate the distances from the
(zero-filled) observed data matrix X̃ to the ground-truth X∗

in
; the distances grow as the ratio

of missing entries increases. The proposed UMC algorithm operates on X̃ to restore X∗,
which is intuitively why it gives smaller relative errors as shown by the colored curves. In
particular, for 25% missing entries, our algorithm reduces the relative error from 51% (black)
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to 17% (red and blue) for the high-school scores (Figure 13a) and from 51% to 37% for the
breast tumor features (Figure 13b).

5. Proofs

The proofs of Theorem 2-7 use basic algebraic geometry and we recall the required notions
as we go along. An accessible introduction on the subject is Cox et al. (2013), while a more
advanced is Harris (2013). We also refer to the works Tsakiris (2023b); Tsakiris et al. (2020)
on matrix completion and linear regression without correspondences, whose mathematical
analysis is very related. The proof of Theorem 7 is very similar to the proof of Theorem 3
and is omitted.

5.1 Proof of Theorem 2

We first prove the theorem over C, then we transfer the statement over R. We note here
that there is nothing special about R and C with regards to the problem. Indeed, the same
proof applies if one replaces R with any infinite field F and C with the algebraic closure F̄ of
F. Set

MC = {X ∈ Cm×n| rankC X ≤ r }

and note that since MC is irreducible, the intersection of finitely many non-empty open sets
in MC is itself non-empty and open, and thus dense. Here irreducibility means that MC
can not be decomposed as the union of two proper subvarieties of MC.

Lemma 10 There is an open dense set U1 in MC such that for any X ∈ U1 and any
π = (Π1, . . . , Πn) ∈

∏
i∈[n] Pm, every m× r submatrix of π(X) has rank r.

Proof First, fix some π = (Π1, . . . , Πn) ∈
∏
i∈[n] Pm and then some index set J =

{j1, . . . , jr} ⊂ [n]. The submatrix π(X)J := [Πj1xj1 , · · · , Πjrxjr ] of π(X) has rank less than r
if and only if all of its r× r minors are zero. For each subset I = {i1, . . . , ir} ⊂ [m] we have
a polynomial detπ(Z)I,J ∈ C[Z] where π(Z)I,J is the row-submatrix of π(Z)J obtained by
selecting the rows with index in I. The set of matrices in Cm×n for which the evaluation
of this polynomial is non-zero is an open set, call it Uπ,I,J . Then π(X)J has rank r if and
only if X ∈ Uπ,J :=

⋃
I Uπ,I,J , where I ranges over all subsets of [m] of cardinality r. As a

union of finitely many open sets, Uπ,J is open. Moreover, every m× r submatrix of π(X)
has rank r if and only if X ∈ Uπ :=

⋂
J Uπ,J , where now J ranges over all subsets of [n]

of cardinality r. Uπ is open because it is the finite intersection of open sets. Finally, every
m× r submatrix of π(X) has rank r for any π if and only if X is in the open set U1 :=

⋂
π Uπ,

where the intersection is taken over all π’s.

The proof will be complete once we show that U1 is non-empty. By what we said above
about intersections of finitely many non-empty open sets in an irreducible variety, it is enough
to show that each Uπ,J is non-empty. We do this by constructing a specific X ∈ Uπ,J . Recall
here that any Π ∈ Pm is diagonalizable over C with non-zero eigenvalues. It is an elementary
fact in linear algebra that there exists a choice of eigenvector vk of Πjk for every k ∈ [r]
such that v1, . . . , vr are linearly independent. Now our X is taken to be the matrix with
vk at column jk for every k ∈ [r] and zero everywhere else. Clearly X ∈MC and moreover
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π(X)J = [Πj1xj1 · · · , Πjrxjr ] = [Πj1v1 · · · , Πjrvr] = [λ1v1 · · · λrvr], where λk is the correspond-
ing eigenvalue of vk. Since none of the λk’s is zero, this matrix has rank r, that is X ∈ Uπ,J .

Denote by C(X) the column-space of X and Im the identity matrix of size m×m. Note
also that whenever p is a non-zero polynomial in ν variables with coefficients in C, there is
always some ξ ∈ Cν such that p(ξ) 6= 0.

Lemma 11 There is an open dense set U2 in MC such that for any X ∈ U2, we have that
Πxj /∈ C(X) for any Π ∈ Pm \ {Im} and any j ∈ [n].

Proof Πxj /∈ C(X) if and only if rank[X Πxj] = r + 1. As in the proof of Lemma 10, this
condition is met on an open set UΠ,j ofMC where some (r+1)×(r+1) determinant of [X Πxj]
is non-zero. Then the statement of the theorem is true on the open set U2 =

⋂
Π∈Pm, j∈[n] UΠ,j.

As in the proof of Lemma 10, to show that U2 is non-empty it suffices to show that each
UΠ,j is non-empty. We show the existence of an X ∈ UΠ,j. Let Z = (zik) be an m × r
matrix of variables over C and consider the polynomial ring C[Z]. Let us write zk for the
kth column of Z. Since Π is not the identity, there exists some i ∈ [m] such that zi1 is
different from the ith element of Πz1, where z1 is the first column of Z. Instead, suppose
that the variable zi1 appears in the i ′th coordinate of Πz1 with i ′ 6= i. Now take any I ⊂ [m]
with cardinality r + 1 such that i, i ′ ∈ I and consider det[Z Πz1]I where [Z Πz1]I is the
submatrix of [Z Πz1] obtained by selecting the rows with index in I. This is a polynomial
of C[Z] that has the form ±z2i1 det[z2 · · · zr]I\{i,i ′} + · · · where the remaining terms do not
involve zνi1 for ν > 1. Since the entries of Z are algebraically independent, det[z2 · · · zr]I\{i,i ′}
is a non-zero polynomial. We conclude that det[Z Πz1]I is also a non-zero polynomial.
Hence there exists some Z ′ ∈ Cm×r such that det[Z ′ Πz ′1]I 6= 0. Now define X by setting
xj = z

′
1, xjk = z

′
k, k ∈ [r] for any choice of jk’s distinct from j, and zeros everywhere else. By

construction X ∈ UΠ,j.

Let f : Cm×r × Cr×n →MC be the surjective map given by f(B ′, C ′) = B ′C ′.

Lemma 12 There is an open dense set U3 in MC such that for any X ∈ U3, we have that
for any j ∈ [n], any J = {j1, . . . , jr} ⊂ [n] with j /∈ J and any Π1, . . . , Πr ∈ Pm not all
identities, it holds that rank[xj Π1xj1 · · · Πrxjr ] = r+ 1.

Proof With j,J and Πk’s fixed, the set Uj,J ,Π1,...,Πr of X’s in MC for which the rank of
[xj Π1xj1 · · ·Πrxjr ] is r+1, is open. Indeed, this is defined by the non-simultaneous vanishing
of all (r+ 1)× (r+ 1) minors of [zj Π1zj1 · · ·Πrzjr ], where zk is the kth column of the matrix
of variables Z from the proof of Lemma 11. We note that these are polynomials in Z with
integer coefficients. Set U3 =

⋂
j,J ,Π1,...,Πr Uj,J ,Π1,...,Πr where the intersection is taken over all

choices of j,J , Π1, . . . , Πr as in the statement of the lemma. As in the proof of Lemma 10,
the set U3 is open and to show that it is non-empty is suffices to show that each Uj,J ,Π1,...,Πr
is non-empty.

Let U1,U2 be the open sets of Lemmas 10 and 11. Since MC is irreducible and
U1,U2 are open and non-empty, we have that U1 ∩ U2 is non-empty. Since f is surjec-
tive, f−1(U1 ∩ U2) is also non-empty. Take any (B ′, C ′) ∈ f−1(U1 ∩ U2). By definition, the
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rank of [Π1B
′c ′j1 · · ·ΠrB

′c ′jr ] is r. By hypothesis, there is some k ∈ [r] such that Πk is not
the identity and thus again by definition we have rank[B ′ ΠkB

′c ′jk ] = r+ 1. Consequently,

ΠkB
′c ′jk /∈ C(B

′) and so the two r-dimensional subspaces C(B ′) and C
(
[Π1B

′c ′j1 · · ·ΠrB
′c ′jr ]

)
are distinct. Thus there exists some c ′′ ∈ Cr such that B ′c ′′ 6∈ C

(
[Π1B

′c ′j1 · · ·ΠrB
′c ′jr ]

)
.

Define C ′′ ∈ Cr×n by setting c ′′ν = c ′ν for every ν 6= j and c ′′j = c ′′. Then by construction
B ′C ′′ ∈ Uj,J ,Π1,...,Πr .

Take X∗ = [x∗1 · · · x∗n] ∈ U3 and let X̃ = [Π̃1x
∗
1 · · · Π̃nx∗n]. Now rank X̃ = rank Π̃−1

1 X̃ =

rank[x∗1 Π̃
−1
1 Π̃2x

∗
2 · · · Π̃

−1
1 Π̃nx

∗
n]. If there is some k ≥ 2 such that Π̃1 6= Π̃k, by Lemma 12 any

m × (r + 1) submatrix of Π̃−1
1 X̃ that contains columns 1 and k will have rank r + 1. On

the other hand, when all Π̃k’s are equal for k ∈ [n], the rank of X̃ is r by Lemma 10. This
concludes the proof of the theorem over C with the claimed open set being U3, which we
denote in the sequel by UC.

Set MR = {X ∈ Rm×n| rankR X ≤ r }. There is an inclusion of sets i : MR ↪→ MC
where for X ∈ MR we view i(X) as the complex matrix associated to X. The reason for
this inclusion is that if the columns of X generate an r-dimensional subspace over R, then
they generate an r-dimensional subspace over C. To finish the proof, it suffices to show
the existence of a non-empty open set UR in MR such that i(UR) ⊂ UC. This comes from
two key ingredients. The first one is the observation that the polynomials that induce UC,
i.e. the polynomials of C[Z] whose non-simultaneous vanishing indicates membership of
a point X ∈ MC in UC, they have integer and thus real coefficients. This can be seen by
inspecting the proof of Lemma 12. Call the set of these polynomials pU ⊂ Z[Z]. For the
second ingredient, let pM ⊂ Z[Z] be the set of all (r+ 1)× (r+ 1) minors of the matrix of
variables Z. It is a matter of linear algebra that MR and MC are the common roots of
the polynomial system pM over Rm×n and Cm×n respectively. What is instead a difficult
theorem in commutative algebra is that the following algebraic converse is true; see Section
2.6 in Tsakiris (2023b): a polynomial q ∈ R[Z] vanishes on every point of MR if and only if
it is a polynomial combination of elements of pM, that is if and only if q =

∑
p∈pM cp p for

some cp’s in R[Z]. This statement also holds true if we replace R with C. Now the set UC
consists of those points of MC that are roots of the polynomial system pM but not of pU .
Since UC is non-empty, not all polynomials in pU are polynomial combinations of pM. But
then, by what we just said, not all points of MR are common roots of pU . This means that
the open set of MR defined by the non-simultaneous vanishing of all polynonials in pU is
non-empty. This open set is the claimed U .

5.2 Proof of Theorem 3 and Theorem 7

Let U1 be the open set of Theorem 1. Let U2 be the set of X’s for which C(X) does not drop
dimension under projection onto any r coordinates. This set is open in M because X ∈ U2 if
and only if for any I ⊂ [m] of cardinality r not all r× r minors of XI are zero, XI being the
row-submatrix of X obtained by selecting the rows with index in I. Set U = U1∩U2. Then for
any X∗ ∈ U and any Π ∈ Pm there is a unique factorization ΠX∗ = B∗ΠC

∗
Π with the top r× r

block of B∗Π ∈ Rm×r being the identity. Since p̄`,j(X̃) = p̄`,j(X
∗) = p̄`,j(ΠX

∗) = p̄`,j(B
∗
ΠC
∗
Π) we
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have that (B∗Π, C
∗
Π) ∈ YX∗ for every Π ∈ Pm. For the reverse direction we recall a basic fact

(see Lemma 2 of Song et al. (2018)):

Lemma 13 Fix any j ∈ [n]. Suppose that ξ1, ξ2 ∈ Rm are such that p̄`,j(ξ1) = p̄`,j(ξ2) for
every ` ∈ [m]. Then ξ1 = Πξ2 for some Π ∈ Pm.

Now let (B ′, C ′) ∈ YX∗ and write c ′j for the jth column of C ′. For a fixed j ∈ [n] the equations
q`,j(B

′, C ′) = 0 are equivalent to p̄`,j(B
′c ′j) = p̄`,j(x

∗
j ) for every ` ∈ [m]. By Lemma 13 there

must exist some Πj ∈ Pm such that B ′c ′j = Πjx
∗
j . This is true for every j ∈ [n] so that

B ′C ′ = [Π1x
∗
1 · · ·Πnx∗n]. This implies that rank[Π1x

∗
1 · · ·Πnx∗n] = r. Since X∗ ∈ U , Theorem

1 gives that all Π’s must be the same permutation Π ∈ Pm, so that B ′C ′ = ΠX∗. Since by
construction for any (B ′′, C ′′) ∈ YX∗ the top r× r block of B ′′ is the identity, we have that
B ′ = B∗Π and thus necessarily C ′ = C∗Π.

The proof of Theorem 7 is very similar to the proof of Theorem 3 and is omitted.

5.3 Proof of Theorem 4

First notice that S∗ contains exactly µ(Im) columns of X̃ according to Lemma 11. Now
we suppose x̃j1 , . . . , x̃jµ(Im)

are µ(Im) ≥ r + 1 points in X̃ such that not all Πj1 , . . . , Πjµ(Im)

are the identity Im. Since µ(Im) > µ(Π) for any other Π 6= Im, it is impossible that
Πj1 = · · · = Πjµ(Im)

. According to Theorem 1, the points x̃j1 , . . . , x̃µ(Im) span a subspace of
dimension at least r+ 1.

5.4 Proof of Theorem 6

As before, we first consider the problem over C. The transfer to R follows the same argument
as in the proof of Theorem 1 in Tsakiris (2023b) and is omitted. We use the same letters
p
Ω
:MC → CΩ and πΩ : CΩ → CΩ to indicate the same maps between the corresponding

spaces over C.
The map p

Ω
is defined by xij 7→ xij if (i, j) ∈ Ω and xij 7→ 0 if (i, j) ∈ Ωc. These are

polynomial functions in the xij’s so that p
Ω

is a morphism of irreducible algebraic varieties.
In particular, p

Ω
is continuous in the Zariski topology, and thus inverse images of open sets

are open. Now, under the hypothesis on Ω, it was shown in Tsakiris (2023b, 2024) that Ω
is generically finitely completable. This is equivalent to the existence of a dense open set U0
in MC such that for every X∗ ∈ U0 the fiber p−1

Ω
(X∗) is a finite set. It is also equivalent to

saying that p
Ω

is dominant, in the sense that the image p
Ω
(MC) of p

Ω
is a dense set in

CΩ, that is the closure of p
Ω
(MC) is CΩ.

Lemma 14 The image p
Ω
(U0) of U0 under p

Ω
contains a non-empty open set of CΩ.

Proof A locally closed set is the intersection of a closed set with an open set. A con-
structible set is the finite union of locally closed sets. Chevalley’s theorem says that a
morphism of algebraic varieties takes a constructible set to a constructible set. Since U0
is open, it is constructible, and thus p

Ω
(U0) is also constructible. Hence, there exists

a positive integer s, closed sets Yk, k ∈ [s] and non-empty open sets Vk, k ∈ [s] of MC
such that p

Ω
(U0) =

⋃
k∈[s] Yk ∩ Vk. For the sake of contradiction, suppose that p

Ω
(U0)

does not contain any non-empty open set. Then necessarily all Yk’s are proper closed
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sets, otherwise some Vk is contained in p
Ω
(U0). Hence p

Ω
(U0) is contained in the closed

set Y =
⋃
k∈[s] Yk. This is a proper closed set because MC is irreducible. But then the

closure of p
Ω
(U0) is contained in Y, which contradicts the fact that p

Ω
(U0) is dense in CΩ.

By Lemma 14 p
Ω
(U0) contains a non-empty open set V0. Now each πΩ ∈ PΩ is a bijective

polynomial function on CΩ. Hence πΩ : CΩ → CΩ is a homeomorphism of topological
spaces, so that πΩ(V0) is a non-empty open set of CΩ. Define V =

⋂
πΩ∈PΩ

πΩ(V0). It is a

non-empty open set of CΩ.

Lemma 15 For any π ′Ω ∈ PΩ we have that π ′Ω(V) = V.

Proof If f : S→ T is a one-to-one (injective) function of sets and S1, S2 are subsets of S,
then we always have f(S1 ∩ S2) = f(S1) ∩ f(S2). Hence π ′Ω(V) =

⋂
πΩ∈PΩ

π ′Ω ◦ πΩ(V0). But

PΩ is a group under composition of functions so that the coset π ′ΩPΩ = {π ′Ω ◦πΩ |πΩ ∈ PΩ}
is equal to PΩ.

As noted earlier, p
Ω

is continuous and so the set U = p−1
Ω
(V) is open. Moreover, it

is non-empty since V is a subset of V0 which is a subset of the image of p
Ω

. Hence U

is dense in MC. Suppose that X∗ ∈ U and set X̃ = π̃ΩpΩ(X
∗) for some π̃Ω ∈ PΩ. It is

enough to show that as πΩ ranges in PΩ there are only finitely many X ∈ MC such that
πΩpΩ(X) = X̃. This equation can be written as p

Ω
(X) = π ′ΩpΩ(X

∗) with π ′Ω = π−1Ω ◦ π̃Ω.
Since X∗ ∈ U, p

Ω
(X∗) ∈ V. Thus π ′ΩpΩ(X

∗) ∈ π ′Ω(V). By Lemma 15 we have π ′Ω(V) = V
and so π ′ΩpΩ(X

∗) ∈ V. But V ⊂ V0 so that π ′ΩpΩ(X
∗) ∈ V0. Since V0 is a subset of

p
Ω
(U0), there is some X0 ∈ U0 such that π ′ΩpΩ(X

∗) = p
Ω
(X0). By definition of U0 the fiber

p−1
Ω

(
p
Ω
(X0)

)
is a finite set. But p−1

Ω

(
p
Ω
(X0)

)
= p−1

Ω

(
π ′ΩpΩ(X

∗)
)

so that there are finitely
many X’s in M that map under p

Ω
to π ′ΩpΩ(X

∗). As there are finitely many choices for
π ′Ω, we are done.
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