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Abstract

Ideal supervised classification assumes known correct labels, but various truthing issues
can arise in practice: noisy labels; multiple, conflicting labels for a sample; missing labels;
and different labeler combinations for different samples. Previous work introduced a noisy-
label model, which views the observed noisy labels as random variables conditioned on the
unobserved correct labels. It has mainly focused on estimating the conditional distribution
of the noisy labels and the class prior, as well as estimating the correct labels or training
with noisy labels. In a complementary manner, given the conditional distribution and class
prior, we apply estimation theory to classifier testing, training, and comparison of different
combinations of labelers. First, for binary classification, we construct a testing model and
derive approximate marginal posteriors for accuracy, precision, recall, probability of false
alarm, and F-score, and joint posteriors for ROC and precision-recall analysis. We propose
minimum mean-square error (MMSE) testing, which employs empirical Bayes algorithms
to estimate the testing-model parameters and then computes optimal point estimates and
credible regions for the metrics. We extend the approach to multi-class classification to
obtain optimal estimates of accuracy and individual confusion-matrix elements. Second, we
present a unified view of training that covers probabilistic (i.e., discriminative or generative)
and non-probabilistic models. For the former, we adjust maximum-likelihood or maximum
a posteriori training for truthing issues; for the latter, we propose MMSE training, which
minimizes the MMSE estimate of the empirical risk. We also describe suboptimal training
that is compatible with existing infrastructure. Third, we observe that mutual information
lets one express any labeler combination as an equivalent single labeler, implying that
multiple mediocre labelers can be as informative as, or more informative than, a single
expert labeler. Experiments demonstrate the effectiveness of the methods and confirm the
implication.
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1. Introduction

Supervised classification uses labeled data to train and test a predictive model or classifier,
which will be used to predict the labels of unlabeled data. The predictive model is a mapping
g : X → Y, parameterized by θ, from a feature space X to a set Y = {0, 1, . . . , C − 1} of
C mutually exclusive and exhaustive classes or labels. The input to the model is a feature
vector x ∈ X , and the output of the model is the predicted label ŷ = g(x;θ) ∈ Y, which may
or may not agree with the correct label y ∈ Y. A labeled sample (x, y) consists of a feature
vector x and its corresponding correct label y, while an unlabeled sample is just a feature
vector x. A set of N labeled samples is denoted as {x,y}, where x = (x1, . . . ,xN ) =
(xi)

N
i=1, y = (yi)

N
i=1, and for each i, xi ∈ X , yi ∈ Y, where yi is the correct label associated

with xi. The result of applying a learned model to each feature vector in x is the list of
corresponding predicted labels ŷ = (ŷi)

N
i=1 = (g(xi;θ))Ni=1.

Training learns the model from a training set of labeled samples. Testing uses a separate
testing set of labeled samples, applies the learned model to its feature vectors, and calculates
metrics that quantify the agreement between each predicted label and the corresponding
correct label. Our notation does not distinguish between the training and testing sets, since
the intended set will be clear from context.

1.1 Truthing Issues

It is usually assumed that the correct labels are known during training and testing; we refer
to this situation as the ideal case. However, this critical assumption is often violated in
practice (see Everingham et al. (2006, p. 172), Frénay and Verleysen (2014), or Northcutt
et al. (2021b), for example), which can degrade the trained model and produce misleading
testing metrics. Deviation from the ideal case can invalidate many hours of hard work and
computer processing, as well as make users and clients skeptical of the utility of a classifier
or its performance.

Consequently, substantial resources are often devoted to truthing, the process of labeling
data as correctly as possible. We use the term labeler to mean an entity that assigns labels
to samples; some authors use terms like “teacher“ or “annotator.” A labeler could be a
human, a sensor, a laboratory test, or even another classifier. Despite a labeler’s best efforts,
errors can and do still occur. Humans make mistakes, become fatigued, and have varying
amounts of expertise, attentiveness, and motivation; sensors are subject to noise, occlusion,
and other degradations; laboratory test results are not always definitive; and classifiers are
rarely perfect predictors. In addition, labeling via crowdsourcing means that more than one
labeler could assign a label to the same feature vector xi, and if the labels conflict, then at
least one of them must be incorrect.

In short, a number of truthing issues can arise: truth errors, multiple labelers who
provide conflicting labels for the same sample, missing labels, and different combinations of
labelers for different samples. We introduce some notation here and include an example of
it in Table 1. We assume there are T labelers, indexed from 1 to T , and we let T = {1, 2,
. . . , T}. Let zi,t ∈ {∅} ∪ Y, t ∈ T , denote the noisy label assigned to xi by the tth labeler,
where zi,t = ∅ if no label was assigned. We require that at least one labeler assigns a label
to each sample; that is, zi,t ∈ Y for some t ∈ T . Hence, a labeler can only assign one label
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Labeler Index t
1 2 3 4 5

Sample Feature Correct Noisy
Index Vector Label Labels zi
i xi yi zi,1 zi,2 zi,3 zi,4 zi,5

1 x1 0 0 1 0 0 ∅
2 x2 1 1 ∅ ∅ 1 ∅
3 x3 0 0 0 0 0 0

4 x4 1 1 1 0 0 1

5 x5 0 0 ∅ ∅ 0 0
...

...
...

...

N xN 0 0 0 ∅ 0 ∅

Table 1: Example of notation for binary classification and five labelers. This example cor-
responds to the training example in Section 5.4.

to a sample. Of course, zi,t might be incorrect and differ from yi. Denote the set of noisy
labels for xi by zi = (zi,t)t∈T ; the noisy labels need not agree. Finally, let z = (zi)

N
i=1.

A natural approach, introduced by Dawid and Skene (1979), is to treat the correct labels
and noisy labels as random variables (RVs). We adopt this viewpoint and use capitalization
(e.g., Y ) for an RV and lowercase (e.g., y) for its non-random counterpart. Hence, Yi is
the correct-label RV for the ith sample, so Y = (Yi)

N
i=1 is the list of correct-label RVs,

and y is the list of correct labels themselves. Similarly, the feature-vector RVs are Xi

and X = (Xi)
N
i=1, and their realizations are xi and x. Also, Zi,t, Z, Zi = (Zi,t)t∈T ,

and Z = (Zi)
N
i=1 indicate noisy-label RVs, while zi,t, z, zi, and z indicate their respective

realizations.

We assume that the RVs associated with different samples are independent and iden-

tically distributed and that the correct-label RVs have class prior π =
(
π(y)

)C−1

y=0
, where

π(y) = p(y) = Pr(Y = y). We further assume that the noisy-label RVs are conditionally
dependent given the correct-label RV, and we denote the noisy-label conditional distribution
by p(z|y;ψ), which is parameterized by ψ, and where a semi-colon separates RVs from non-
random parameters. We refer to p(z|y;ψ)π(y) as a noisy-label model. For the ith sample,
the parameters are ψi. We assume that Zi and Zj follow the same conditional distribution
p(z|y;ψ) if ψi = ψj = ψ. At this stage, we let the parameters remain completely general.
Also, let ψ = (ψi)

N
i=1 be the list of parameters for all samples.

Much of the related work, described in Section 1.2, has focused on constructing a model
for p(z|y;ψ), estimating the parameters ψ and class prior π, and estimating the correct-
label RVs Y . This paper and the related work implicitly assume that p(z|y;ψ) 6= p(z;ψ)
so that the noisy-label RVs provide some information about the correct-label RV. If z is
non-informative, then none of these methods will be effective. Denote the estimated correct
label for the ith sample as y̌i, and let y̌ = (y̌i)

N
i=1.

In this paper, we seek answers to the following questions:
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1. How can one test a classifier in the presence of truthing issues1?

2. How can one train a classifier in the presence of truthing issues?

3. How can one compare different combinations of labelers with different abilities?

1.2 Related Work

We organize the related work into noisy-label modeling and learning, training with truthing
issues, testing with truthing issues, and comparing combinations of labelers.

1.2.1 Noisy-Label Modeling and Learning

Several authors have proposed noisy-label models p(z|y;ψ)π(y) and developed methods for
learning them,2 i.e., estimating ψ and π. Often, they also estimated the correct-label RVs
Y . Table 2 presents a summary. All but one set of authors allowed for multiple labelers.
The table shows that most of them assumed that the noisy-label RVs are conditionally
independent given the correct-label RV.

Dawid and Skene (1979) made an initial, influential foray into this area. They did not
address supervised classification, but they considered the problem of compiling observations
of patients from multiple clinicians who might disagree or make mistakes. In this context,
they introduced the conditional-RV formulation that is now commonplace.

When the correct labels are available, they showed that maximum-likelihood (ML) es-
timation of ψ and π is straightforward. With the benefit of hindsight, it is clear that this
situation amounts to learning a classifier from an auxiliary data set {z′,y′} where the noisy
labels z′ serve as the feature vector. For example, one might have a small auxiliary data
set containing noisy labels from clinicians and correct labels from a separate, gold-standard
laboratory test, and a large amount of data with only noisy labels.

More important, when the correct labels are unavailable, Dawid and Skene demonstrated
the utility of the expectation-maximization (EM) algorithm of Dempster et al. (1977) for
estimating ψ, π, and Y . Many other authors have built upon this work.

Donmez et al. (2010) considered classification and regression, and they also proposed
using the EM algorithm for learning the noisy-label model. They studied conditions under
which ML estimates of the noisy-label model parameters are consistent. For classification,
they showed that consistency holds under certain conditions, such as when the labelers are
weak learners or better and the class prior π is not equiprobable.

Whitehill et al. (2009) proposed a model for p(z|y;ψ) that considers sample difficulty
and labeler expertise. A Bayesian extension of the model allowed priors for these parameters.
They used both the EM algorithm and a Bayesian version of it to estimate ψ and Y .
Welinder and Perona (2010) and Welinder et al. (2010) expanded the model to
include labeler bias and to support multi-class labels and continuously-valued annotations.

1. We tackle testing before training because our testing approach applies regardless of how a classifier was
trained. Also, if truthing issues are present, then there is little point in training a classifier if one cannot
evaluate its performance.

2. One could propose learning a model of the form p(z|x, y)p(x, y) or p(z|y,x)p(y|x) from an auxiliary set
{x′,y′,z′}. However, learning it would be harder than learning a predictive model for p(x, y) or p(y|x),
so if such a set were available, then one could just learn the predictive model from {x′,y′}.
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Reference Description Number
of Classes

Labeler
Dependence

Dawid and Skene
(1979)

• Seminal work
• ML estimation of noisy-label model, if correct
labels available
• EM estimation of noisy-label model and
correct labels, if correct labels unavailable

Multiple Independent

Donmez et al. (2010) • Also regression
• EM estimation of noisy-label models
• Consistency conditions for ML estimates

Multiple Independent

Whitehill et al. (2009) • Sample-difficulty and labeler-expertise model
• EM or Bayesian estimation of noisy-label
model

Binary Independent

Welinder and Perona
(2010); Welinder
et al. (2010)

Extension of Whitehill et al. (2009) to include
labeler bias, multiple classes, and
continuously-valued annotations

Binary or
Multiple

Independent

Branson et al. (2017) • Extension of Welinder et al. (2010); Welinder
and Perona (2010) to part-keypoint and
bounding-box annotations
• Sequential acquisition of noisy labels

Binary Independent

Van Horn et al. (2018) Extension of Branson et al. (2017) to multiple
classes and sequentially dependent labelers

Multiple Sequentially
dependent

Karger et al. (2014) • Allocation of labelers to unlabeled samples
• Iterative message passing

Binary Independent

Zhou et al. (2015) Minimax conditionl entropy principle Multiple Independent

Platanios et al. (2016) • Hierarchical models
• Gibbs sampling

Binary Independent
or dependent

Northcutt et al.
(2021a)

• Assume previously-trained classifier
• Estimate joint dist. p(z, y) on new data set
• Correct or remove mislabeled samples

Multiple Not
applicable

Table 2: Related work on noisy-label modeling and learning. References that jointly learn
a noisy-label model and train a predictive model appear in Table 3.

Branson et al. (2017) extended the models by Welinder and Perona and by Welinder et al.
to include other forms of annotation. They also introduced an algorithm that sequentially
acquires more noisy labels until the risk of the estimated correct label falls below a threshold.
Van Horn et al. (2018) extended the work by Branson et al. to multi-class classification
and sequentially dependent labelers.

Karger et al. (2014) considered the problem of allocating labelers to unlabeled samples
and proposed a message-passing algorithm for estimating the correct labels. Zhou et al.
(2015) included sample difficulty in their model of p(z|y;ψ) and estimated ψ, π, and
Y by optimizing a minimax criterion on the conditional entropy of Z given Y . Platanios
et al. (2016) proposed a variety of generative models for p(z|y;ψ), and they applied Gibbs
sampling to infer π, ψ, and Y .

None of these authors considered training or testing, and they used the known correct
labels to compute estimation errors in their experiments. For our purposes, these works
offer noisy-label models that could be learned—even without correct labels—and used with
our training and testing methods. The model introduced by Whitehill et al. (2009) is
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italicized because, in Section 5.1.2, we present a similar model for p(z|y;ψ) that includes
sample difficulty and labeler fallibility; however, our purpose is not to estimate ψ but to
demonstrate training and testing when ψ is already available.

Northcutt et al. (2021a) took a different viewpoint and assumed the availability of
an existing classifier, previously trained on an auxiliary data set with enough correctly-
labeled samples to overcome the presence of some noisily-labeled ones. Given a feature
vector, the existing classifier predicts class probabilities for all classes, unlike a human
labeler who provides a noisy label indicating a single class. For a new data set with noisy
labels, Northcutt et al. leveraged this property to estimate the joint distribution p(z, y) as
well as p(z|y) and π. They used these estimates to identify samples in the new data set
that were likely mislabeled and to correct or remove them. A new classifier can then be
trained or tested using the corrected labels. This approach offers a different way to obtain a
noisy-label model, and our methods can complement it by addressing samples whose noisy
labels cannot be resolved.

Some other authors perform joint learning of a noisy-label model and training of a
predictive model. These references are discussed next.

1.2.2 Training (and Joint Learning) with Truthing Issues

Works on training with truthing issues are listed in Table 3 and reviewed here.

Cid-Sueiro (2012) and Cid-Sueiro et al. (2014) took a Bayesian viewpoint and
examined weak losses for training with partial labels, which are modeled slightly differently
than the noisy labels considered here. The authors related the weak loss to an equivalent
loss for correct labels and studied theoretical aspects of constructing a weak loss from a
given equivalent loss. Their approach does not conform to the unified view of training
that we offer in Section 3.2; it could be interpreted as the reverse of the minimum mean-
square error training method proposed in Section 3.4.1. The two approaches are discussed
in Section 3.6.1.

Natarajan et al. (2013, 2018) took a classical (i.e., frequentist) view and trained
binary classifiers on noisy labels from a single labeler by forming a proxy loss function for Z
that is an unbiased estimator (in the classical sense) of the ideal loss function for y. Their
approach does not fit into our unified view; further discussion appears in Section 3.6.2. van
Rooyen and Williamson (2018) presented an abstract framework for learning with noisy
labels, parts of which generalize the work by Cid-Sueiro (2012), Cid-Sueiro et al. (2014),
and Natarajan et al. (2013, 2018).

Ratner et al. (2016, 2017) proposed a technique for programmatically generating
multiple noisy labels for many unlabeled samples and subsequently training discriminative
classifiers with the noisy labels. To model p(z|y;ψ), they introduced generative models with
independent or dependent labelers, and they estimated ψ while assuming an equiprobable
class prior. Training minimized the expected empirical risk with respect to p(z|y;ψ).

The remaining authors considered joint learning and training with noisy labels. Raykar
et al. (2010) used the EM algorithm to jointly estimate ψ, π, and θ and train a logistic re-
gression binary classifier. They also presented a Bayesian form of the algorithm with priors
on the labelers’ error probabilities and provided approximate posteriors of the error prob-
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abilities, and they extended the approach to multi-class classification, ordinal regression,
and regression.

Khetan et al. (2018) presented a version of the EM algorithm that alternates between
training a binary classifier with z and the current estimates of ψ and π and then updating
the estimates of ψ and π using the current predictions. They weight the training loss
function using the correct-label posterior for each possible correct-label value, effectively
marginalizing out the correct-label RV.

To train a convolutional neural network (CNN) on noisy labels from a single labeler
and estimate p(z|y), Sukhbaatar et al. (2015) and Jindal et al. (2016) appended
an additional layer to the softmax output of a base network. During training, the base
network learns to predict the unknown correct labels while the additional layer estimates
p(z|y) and predicts the noisy label from the output of the base network. Following training,
the additional layer can be excised and the base network used for prediction. This training
method lies outside our unified view of training and is discussed in Section 3.6.3.

Tanno et al. (2019) jointly trained a CNN and estimated the confusion matrices
for multiple independent labelers. They used the confusion matrices to convert the CNN
outputs into predictions of the noisy labels, which is similar to the work by Sukhbaatar et al.
(2015). Notably, Tanno et al. introduced a trace-regularization term, which minimizes the
traces of the confusion matrices and, under certain conditions, ensures proper estimation.
The authors compared their method to several other methods, including those of Raykar
et al. (2010), Khetan et al. (2018), and Sukhbaatar et al. (2015). This approach does not
fit our unified view of training, and further discussion appears in Section 3.6.4

All of these authors used the correct labels during testing or other experimental eval-
uations; they did not consider testing with truthing issues. As Table 3 shows, many of
them do not consider multiple, possibly dependent labelers, which our work allows. Some
of them jointly learn a noisy-label model and a predictive model, which we do not consider.
A number of these works fit within our unified view of training (Section 3). The table
italicizes parts of Ratner et al. (2016, 2017) and Khetan et al. (2018) that are consistent
with our use of minimum mean-square error estimation of the empirical risk (Section 3.4.1).
In the work of Raykar et al. (2010), logistic regression is italicized because we also use it as
an illustrative example (Section 5.4).

1.2.3 Testing with Truthing Issues

As noted above, all of the related work on training used a reserved set of correct labels for
testing. Related work on testing with truthing issues appears in Table 4.

Smyth et al. (1994) considered testing with noisy labels assigned by a scientist or
classifier to synthetic aperture imagery of the planet Venus to indicate the presence or
absence of types of volcanoes. Clearly, absolute ground truth is unavailable in this case. To
test an individual scientist’s predicted labels, the authors used the EM algorithm proposed
by Dawid and Skene (1979) with the noisy labels from all other scientists to estimate the
correct labels, which were then treated as if correct. A classifier was also trained using
consensus labels from two scientists (Burl et al., 1994). It was tested by comparing its
predictions to the estimated correct labels from EM using all scientists’ noisy labels.
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Reference Description Number
of Classes

Labeler
Dependence

Joint with
noisy-label
model
learning?

Fits into
our
unified
view?

Cid-Sueiro (2012);
Cid-Sueiro et al.
(2014)

• Theoretical
Bayesian view
• Weak loss designed
for partial labels
• Equivalent loss for
correct labels

Binary or
multiple

Not
applicable
(Partial
labels)

No No

Natarajan et al.
(2013, 2018)

• Classical or
frequentist view
• Proxy loss function
that is unbiased in
classical sense

Binary Not
applicable
(Single
labeler)

No No

van Rooyen and
Williamson (2018)

• Abstract framework
• Generalization of
Cid-Sueiro (2012);
Cid-Sueiro et al.
(2014); Natarajan
et al. (2013, 2018)

Binary Not
applicable
(Single
labeler)

No No

Ratner et al. (2016,
2017)

• Logistic regression
• Also long short-term
memory network
• Programmatic noisy
labeling
• Minimization of
expected empirical
risk

Binary Independent
or dependent

No Yes

Raykar et al. (2010) • Binary logistic
regression as main
example
• Also regression,
ordinal regression
• EM or Bayesian
estimation

Binary or
multiple

Independent Yes Yes

Khetan et al. (2018) • Empirical risk
minimization
• Marginalization of
loss function using
correct-label posterior

Binary or
multiple

Independent Yes Yes

Sukhbaatar et al.
(2015); Jindal et al.
(2016)

• CNN
• Base network learns
p(y|x)
• Extra layer learns
p(z|y)

Multiple Not
applicable
(Single
labeler)

Yes No

Tanno et al. (2019) • CNN
• Regularization of
trace of labelers’
confusion matrices

Multiple Independent Yes No

Table 3: Related work on training with truthing issues.
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Reference Description Number
of Classes

Labeler
Dependence

Smyth et al. (1994) • Comparison of one labeler’s noisy labels with
estimated correct labels obtained by applying
EM to other labelers’ noisy labels
• Multi-class labels (volcano type or
non-volcano) reduced to binary labels (volcano
or non-volcano)

Multiple,
reduced
to binary

Independent

Lam and Stork (2003) • Effect of noisy labels on probability of error
• Variance of estimated probability of error as a
function of labeler error probability, number of
samples

Multiple,
reduced
to binary

Not
applicable
(Single
labeler)

Carlotto (2009) • Study of the effect of noisy labels on accuracy
• Relationship between accuracies calculated on
correct labels and on noisy labels
• Rough estimate of ideal accuracy

Multiple Not
applicable
(Single
labeler)

Holodnak et al. (2018) Empirical study of methods for estimating
accuracy from noisy labels

Multiple Independent
or dependent

Table 4: Related work on testing with truthing issues.

For binary classification, Lam and Stork (2003) related the ideal probability of error
Pr(ŷ 6= y) = 1− accuracy to a labeler’s error probability ε = Pr(z 6= y) and the classifier’s
apparent probability of error Pr(ŷ 6= z). They provided an estimate of Pr(ŷ 6= y) given an
assumed value of ε, and they examined the variance of this estimate as a function of ε and
the number of samples N .

Carlotto (2009) analyzed how measured accuracy is affected by truth errors for a single
labeler. Carlotto obtained an expression that relates ideal accuracy to accuracy calculated
against noisy labels and suggested a rough estimate of accuracy when the labeler’s error
probability is known.

Holodnak et al. (2018) conducted an empirical study with real and simulated data
to compare a variety of techniques for estimating the accuracy of a classifier from noisy
labels. They introduced two models that incorporate dependencies between the labelers or
noisy-label RVs, and they demonstrated that estimation techniques that assume conditional
independence provide less reliable estimates as labeler dependence increases.

In a survey paper on classification with label noise (Frénay and Verleysen, 2014, p. 862),
the authors remark, “a problem that is seldom mentioned in the literature is that model
validation can be difficult in the presence of label noise.” Indeed, the number of references
on testing is considerably smaller than that on learning or training, and such work has
mainly examined accuracy. Nevertheless, the above works reflect the main approaches:
Calculate estimated correct labels y̌ and use them as the reference; estimate the ideal
accuracy in some way; and comparative studies. Our work includes many common testing
metrics, including accuracy, precision, recall or probability of detection, and probability of
false alarm. We focus on estimating the testing metrics rather than the correct labels, and
we develop algorithms for computing Bayesian optimal estimates of scalar and joint metrics.
Our experiments use conditionally independent labelers for implementational convenience,
but our approaches accommodate noisy-label models with conditionally dependent labelers.
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1.2.4 Comparing Combinations of Labelers

Regarding the comparison of different combinations of labelers, we have found one rather
distantly-related publication.

For binary classification and a single labeler, Lugosi (1992) viewed the correct-label
RV and noisy-label RV as the respective input and output of a communications channel.
Lugosi examined purely theoretical aspects of the effects of noisy labels on accuracy if a
classifier uses the maximum a posteriori or nearest-neighbor decision rule.

In Section 4, we make the channel analogy for one or more labelers, but we proceed
in a different direction. We suggest that mutual information can be used to compare
combinations of labelers, which implies that the information conveyed by multiple mediocre
labelers can equal or exceed that provided by a single expert labeler.

1.3 Supervised Classification and Estimation Theory

This work applies estimation theory to supervised classification with truthing issues, and
Figure 1 presents conceptual diagrams for these two fields. The diagrams look similar but
differ in a fundamental way: In supervised classification, the actual process is unknown,
while in estimation theory, the actual variable is unknown. Supervised classification is
concerned with finding a good predictive model that generalizes to future, out-of-sample
realizations from an unknown process, given a set of labeled samples from the process and
a family of models. In this work, estimation theory is concerned with making a good guess
at the current, in-sample value of an unobserved variable, given noisy measurements and a
model for the measurement process.

These fields also use similar terms and objectives. Supervised classification learns model
parameters θ, estimation theory finds an estimate ŷ or estimator Ŷ , and both fields seek
an answer that is best according to some criterion. We present a few examples. In these
examples, the criterion is essentially the same; the differences lie in the components that
are assumed to be known, the solution space, and the optimization methods.

First, both fields employ ML estimation: classification selects non-random parameters
θ to maximize p(y|x;θ) or p(y,x;θ), and estimation chooses ŷ to maximize pZ|Y (z|ŷ).

Second, when classification treats the model parameters as RVs Θ with prior p(θ), it
uses the maximum a posteriori (MAP) criterion and chooses θ to maximize p(θ|y,x). When
estimation adopts the MAP criterion, it selects ŷ = arg maxy p(y|z).

Third, classification may minimize the average square loss N−1
∑N

i=1(yi − g(xi;θ))2,
while estimation may minimize the mean-square error (MSE) E[(Y − h(Z))2]. We make
repeated use of minimum mean-square error (MMSE) estimation, which seeks the estimator
h(Z) that minimizes the MSE. A convenient standard result (see Appendix C) is that the
MMSE estimator is the conditional mean of Y given Z:

hMMSE(Z) = arg min
h

E[(Y − h(Z))2] = E[Y |Z]. (1)

Finally, classification may minimize the average zero-one loss N−1
∑N

i=1 1(yi 6= g(xi;θ)),
where 1(w) is the indicator function: 1(w) = 0 if w is false, and 1(w) = 1 if w is true.
Likewise, estimation may adopt the minimum probability-of-error (MPE) criterion and min-
imize E[1(Y 6= h(Z))], the probability of error. Another standard result from estimation
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(a) Supervised classification (b) Estimation theory

Figure 1: Comparison of supervised classification and estimation theory. In supervised
classification, the goal is to use a set of correctly-labeled samples from an unknown
actual process to learn a predictive model that generalizes to future, out-of-sample
realizations from the process. In estimation theory, the goal is to estimate the
in-sample value of an unobserved variable from noisy measurements produced
by a known measurement process. For each problem, the key unknown element
appears in red, the key known element in green, and the desired element in blue.

theory (see Appendix D) is that the MPE estimator corresponds to the MAP estimator:

hMPE(Z) = arg min
h

E[1(Y 6= h(Z))] = arg max
y
p(y|Z) = hMAP(Z). (2)

Our application of estimation theory begins with the assumption that a good noisy-label
model p(z|y;ψ)π(y) is available. If an auxiliary data set {z′,y′} is available, then such a
model could be obtained via supervised learning. Much of the related work addresses the
problem of learning a model when correct labels are unavailable but some knowledge about
the labelers’ error behavior and/or class prior is available. Consequently, this paper is
complementary to and broadly compatible with much of the related work.

1.4 Novel Contributions and Organization

We use boldface to highlight specific novel contributions. We discuss some conceptual
contributions and then use the three questions raised in Section 1.1 to cover the organization
of the rest of the paper and mention other contributions. For reference, Tables 5, 6, and 7
list abbreviations, symbols, and important distributions used throughout this paper.

Supervised classification with truthing issues involves three different components, which
each require a model. The truthing or labeling process requires a noisy-label model, training
learns the predictive model, and testing calls for a testing model. Much of the related work
has investigated ways to learn a noisy-label model and/or use a noisy-label model to train
a predictive model.

The greatest conceptual contribution of this paper is its application of Bayesian es-
timation theory to training and testing. To our knowledge, this paper is the first one
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to take this viewpoint and pursue its possibilities so extensively. We concentrate on train-
ing and testing, and we start with the assumption that a noisy-label model p(z|y,ψ)π(y)
is available, so this work complements much of the related work. The Bayesian approach
naturally allows for multiple labelers, different combinations of labelers for each sample,
and missing and/or conflicting noisy labels. It also supports noisy-label models with con-
ditionally dependent labelers.3

In this work, we say that an estimator is optimal only if it meets three requirements: it
employs an appropriate estimand, it fully exploits all available information, and it minimizes
a well-defined penalty criterion (or maximizes a well-defined utility criterion). An estimator
that fails any of these requirements is considered suboptimal.

Our technical contributions consist of testing and training approaches that are optimal in
this strict sense. Our optimal testing approach focuses on estimating the metrics, introduces
a testing model that enables thorough exploitation of the available information, and employs
the MMSE criterion. In contrast, some suboptimal methods omit estimation theory entirely,
others estimate the correct labels instead of the metrics, and still others omit a testing model
and fail to take full advantage of the available information.

Our optimal training methods select an appropriate likelihood function, posterior, or
risk that is faithful to the original objective from ideal training; they use the noisy-label
model to exploit the available information completely; and they apply the ML, MAP, or
MMSE criterion. Some suboptimal methods ignore estimation theory, while others estimate
the correct labels rather than the risk.

Our proposed methods never estimate the correct labels because, in our view, they are
not the right estimand. This viewpoint marks another novel conceptual contribution: Our
conscious choice to refrain from estimating the correct labels. We deliberately avoid
making hard decisions about the unobserved correct labels because doing so would produce
errors that would propagate into training and testing. In this way, our work differs from
existing, suboptimal approaches that estimate the correct labels and then proceed as if the
estimated labels were correct.

1. How can one test a classifier in the presence of truthing issues?

This question is deeply investigated in Section 2. For binary classification, we propose
a testing model for the noisy and predicted labels (Section 2.1, Figure 2). We then
derive the estimation-theoretic testing methods as follows:

(a) We express various metrics in terms of two common RVs that are independent
and approximately normally distributed (Section 2.2).

(b) We derive approximate marginal posteriors for accuracy, precision, recall
or probability of detection, probability of false alarm, and F-score
and the approximate joint posteriors for probability of detection and
probability of false alarm as well as for precision and recall (Section 2.3).

(c) We propose MMSE testing and develop empirical Bayes algorithms for
estimating the testing-model parameters via iterative MMSE estimation

3. For ease of implementation, our simulations and experiments employ conditionally independent labelers,
but the derivations and algorithms do not.
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(Algorithms 1 and 2, Figure 3), and we discuss their relation to the EM algorithm
and convergence (Section 2.4),

(d) We explain how to calculate Bayesian optimal estimates (MMSE, MAP, and
credible regions) of the metrics from the estimated testing-model parameters
and posteriors (Section 2.5).

We also describe some alternative testing approaches (Section 2.6), such as MPE or
MAP estimation of the correct labels (Section 2.6.1, Algorithm 3) and fully Bayesian
estimation (Section 2.6.2).

For multi-class classification (Section 2.7), we extend the testing model (Sec-
tion 2.7.1), provide another empirical Bayes algorithm for MMSE testing (Al-
gorithm 4, Figure 4), and derive approximate posteriors for accuracy and indi-
vidual elements of the confusion matrix (Section 2.7.2).

2. How can one train a classifier in the presence of truthing issues?

We consider this question in Section 3. We restate the assumption of independent
samples (Section 3.1), and we present a unified view of training that encompasses
and organizes some of the related work (Section 3.2).

For probabilistic (e.g., discriminative or generative) models, we derive the likelihood
function or posterior of the predictive model parameters for truthing issues
such that the original, ideal training principle (ML or MAP) is preserved (Section 3.3).

For non-probabilistic models (Section 3.4), which are trained by minimizing the empir-
ical risk, we propose MMSE training, which minimizes the MMSE estimate of
the empirical risk, and we demonstrate that this approach leads to the same training
objective proposed by some related work (Section 3.4.1). We review properties associ-
ated with MMSE estimation (Section 3.4.2), mention its convenient form for gradient
calculation (Section 3.4.3), and consider some special cases (Section 3.4.4). We pro-
vide a basic condition for consistency of the MMSE estimator (Section 3.4.5).

Next, we mention some aspects of MMSE training that make it more appealing than
ML and MAP training (Section 3.5). We also discuss some alternative training ap-
proaches that do not fit into the unified view (Section 3.6). Finally, we describe ways to
do training with infrastructure that was not designed for truthing issues (Section 3.7).

3. How can one compare different combinations of labelers with different abilities?

This question is briefly studied in Section 4. We make a simple analogy between the
noisy-label model and a communications channel, which suggests mutual information
as a basis for comparing combinations of labelers. We focus on the binary symmetric
broadcast channel (Section 4.1), and we suggest expressing the mutual information
for a set of labelers in terms of that for a single equivalent labeler (Section 4.2).
We observe that, in theory, multiple mediocre labelers can be as informative
as—or more informative than—a single expert labeler (Section 4.3).

Experimental results appear in Section 5. We relied on simulation to generate many of
the correct, noisy, and predicted labels (Section 5.1). We simulated correct and predicted

13



Su

Abbreviation Expansion
BSBC binary symmetric broadcast channel
BSC binary symmetric channel
CLT central limit theorem
CNN convolutional neural network
EM expectation-maximization
ERM empirical risk minimization
MAC moment-approximation condition
MAD maximum absolute difference
MAP maximum a posteriori
ML maximum likelihood
MMSE minimum mean-square error
MPE minimum probability-of-error
MSE mean-square error
OP operating point
P-R precision-recall
ROC receiver operating characteristic
RV random variable

Table 5: List of abbreviations.

labels in a straightforward manner (Section 5.1.1), and we employed a particular noisy-label
model (Section 5.1.2) that is similar to the one by Whitehill et al. (2009). For testing, we
review results for several experiments on binary classification (Section 5.2), and we report
on one experiment on multi-class classification (Section 5.3). For training, we provide an
example involving binary logistic regression (Section 5.4). For the comparison of labelers,
we show experiments that use the proposed training and testing methods to verify the
possibility of equivalent mutual information (Section 5.5).

Section 6 provides a summary and conclusions (Section 6.1), a workflow for super-
vised classification with truthing issues (Section 6.2), and suggested future directions (Sec-
tion 6.3). Several appendices are also included. Appendix A derives testing metrics in terms
of the common RVs from Section 2.2. Appendix B summarizes results on ratios of jointly
normal RVs; they are useful for calculating posteriors of scalar metrics. Appendices C
and D review MMSE, MPE, and MAP estimation. Appendix E provides derivations for
the training approaches in Sections 3.3 and 3.4. Appendix F gives details for the logistic
regression training example in Section 5.4.

2. Testing with Truthing Issues: Grading with Dirty Answer Keys

We cover testing before training because the results and methods presented here apply
regardless of how a classifier was trained. They can be employed even if training did not
consider truthing issues. Additionally, if one needs to train a model with truthing issues,
then one very likely needs to test the trained model with truthing issues, too. One might
be reluctant to embark on training if one suspects that truthing issues will invalidate the
testing metrics. This section provides reassurance that reliable testing is possible.

Conventional testing calculates metrics over an ideal testing set {ŷ,y} to measure the
(dis)agreement between the predicted labels ŷ and the correct labels y. In machine learning,
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Symbol Description Symbol Description
B Bernoulli distribution g̃ pre-threshold pred. model

Beta beta distribution h arbitrary estimator
C number of classes hMMSE MMSE estimator

Cemp, [C] confusion matrix i sample index
Cat categorical distribution j iteration or generic index

Femp
β , [Fβ ] F-score pD, [PD] probabilty of detection

I mutual information pFA, [PFA] probability of false alarm

Jideal ideal training objective p̃D, p̃FA, [P̃D, P̃FA] OP parameters
Jpri primary term s pre-threshold pred. stat.
Jreg regularization term t labeler index

Kemp, [K] cond. conf. matrix x, x, x, [X, X, X] feature vectors

K̃ cond. conf. matrix param. y, y, [Y , Y ] correct labels

L loss function ŷ, ŷ, [Ŷ , Ŷ ] predicted labels

L̂MMSE MMSE est. of loss function y̌, y̌ estimated correct labels
M no. draws in sampling algs. z, z, z, [Z, Z, Z] noisy labels
N number of samples α clipping value

N̂1 number of times ŷi = 1 β F-score parameter
Remp, [R] empirical risk δ, δ sample difficulty

R̂MMSE MMSE est. of emp.-risk RV ε error prob. (57) or (60)
T number of labelers η prob. provide noisy label

[U , V ] common RVs for metrics θ, θ, θ∗, [Θ] pred.-model parameters
N normal distribution λ regularization weight
T set of labelers π, π class prior
U uniform distribution τ decision threshold
X feature-vector space φ, φ labeler fallibility
Y set of classes ψ, ψ, ψ noisy-label params.
f arbitrary function 0 zero vector
g predictive model 1(·) indicator function

Table 6: List of main symbols. Brackets indicate RVs.

Distribution Description

p(z|y;ψ) noisy-label conditional distribution

p(z|y;ψ)π(y) noisy-label model

p(ŷi|yi; p̃D, p̃FA) predicted-label conditional distribution (3), (4), (5), (6)

p(ŷi|yi; p̃D, p̃FA)p(zi|yi;ψi) testing model (7)

p(yi|ŷi, zi;ψi, p̃D, p̃FA) testing class posterior (10)

p(yi|zi;ψi) training class posterior (41)

Table 7: List of key distributions.
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ŷ is obtained by applying the learned model g to each feature vector xi ∈ x. However,
testing does not actually involve the feature vectors x, so the results of this section apply to
problems outside of machine learning, such as reconciling observations by multiple clinicians
(for examples, see Dawid and Skene, 1979; Raykar et al., 2010).

With truthing issues, testing must work with the testing set {ŷ, z,ψ,π} instead of
{ŷ,y}. The metrics are functions of the correct-label RVs, which are unobserved, so the
metrics are RVs whose values remain uncertain. We therefore treat testing as an estimation
problem: we want to know the in-sample values of the metrics on the testing set. We seek
the posteriors of the metric RVs, conditioned on ŷ and z. Optimal estimates or credible
regions for the metric RVs can then be calculated from the posteriors.

Our approach exploits all available information, including the predicted labels ŷ. The
problem is analogous to grading a multiple-choice quiz using answer keys from one or more
teaching assistants who have poor handwriting. The answer keys provide information about
the correct answers, but the student’s answers do, too. We can obtain the best estimate
of the grade by consulting the student’s answers along with the answer keys, rather than
relying on the answer keys alone.

Most of this section covers binary classification; Section 2.7 discusses extensions to multi-
class classification. For binary classification, we consider several common scalar metrics:
accuracy, precision, recall or probability of detection,4 probability of false alarm,5 and F-
score. Each of these metrics takes on values in [0, 1]. For probability of false alarm, smaller
values indicate better performance; for the other metrics, larger values correspond to better
performance. Table 8 gives the empirical forms for these metrics, denoted as acc, prec,
pD or rec, pFA, and Femp

β , respectively. We also consider two common joint metrics: the
receiver operating characteristic (ROC) and precision-recall (P-R) operating points, namely
(pD, pFA) and (prec, rec). The empirical metrics are used in the ideal case when {ŷ,y} is
available. The corresponding RV forms are ACC , PREC , PD or REC , PFA, Fβ, as well
as (PD,PFA) and (PREC ,REC ). We overload the lowercase symbols to mean either an
empirical metric or a realization of a metric RV.

2.1 Testing Assumptions

In ideal testing, the metrics do not involve the feature vectors, so we eliminate X and x
from consideration. If we had a good testing model for p(ŷ,z|y), then we could use it to
estimate the metric RVs. One might propose learning it from an auxiliary set {ŷ′,y′, z′},
but if such a set were available, then one could just do ideal testing with {ŷ′,y′}.6

Instead, we must devise a model for p(ŷ,z|y) and estimate its parameters from {ŷ, z,ψ,
π}, with no prospect of learning them from auxiliary data. We tackle this problem by
applying techniques from estimation theory rather than machine learning.

We state our assumptions here, and Figure 2 shows the graphical model depicting them.
We assume that ŷ, z, ψ, and π are available. We let N̂1 denote the number of times that
ŷi = 1; it is immediately available from ŷ. We further assume that the noisy-label RVs Zi

4. Recall, probability of detection, sensitivity, and true positive rate are equivalent terms.
5. Probability of false alarm is equivalent to (1− specificity) and false positive rate.
6. We have chosen to omit any dependence on the feature vectors. If one were to propose learning a testing

model such as p(ŷ,z|x, y)p(x, y) from {x′, ŷ′,y′,z′}, then a similar contradiction would arise.
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Metric
Empirical Form Random-Variable Form

Symbol Expression Symbol Expression

Accuracy acc
no. of times ŷi = yi

N
ACC U − V − N̂1

N
+ 1

Precision prec
no. of times ŷi=1 and yi=1

no. of times ŷi=1
PREC

N

N̂1

U

Prob. of
Detection,
Recall

pD, rec
no. of times ŷi = 1 and yi = 1

no. of times yi = 1
PD,REC

U

U + V

Prob. of False
Alarm

pFA
no. of times ŷi = 1 and yi = 0

no. of times yi = 0
PFA

N̂1/N − U
1− (U + V )

F-Score (β > 0) Femp
β (1 + β2)

prec · rec

β2prec + rec
Fβ

(1 + β2)U

β2(U + V ) + N̂1/N

Table 8: Binary-classification metrics: Empirical forms and RV forms in terms of the com-
mon RVs U and V from (8) and (9).

Figure 2: Graphical model for testing approach. Small rectangles indicate non-random vari-
ables; circles indicate RVs. Shading indicates a variable that is fully observed.
Large rectangles indicate N independent instances of the enclosed variables in-
dexed by i.

have conditional distribution p(zi|yi;ψi) and do not depend on the predicted label. As is
common practice, we also assume independent samples, so p(z|y;ψ) =

∏N
i=1 p(zi|yi;ψi).

Next, we observe that accuracy, precision, and F-score can each be written solely in
terms of the class prior, probability of detection, and probability of false alarm. For example,
acc = π(0)(1 − pFA) + π(1)pD, and prec = π(1)pD/(π(0)pFA + π(1)pD). Consequently, we
introduce the ROC operating-point (OP) parameters (p̃D, p̃FA), which suffice to determine
the other metrics because the class prior is assumed known. The OP parameters represent
the anticipated performance on the testing set before Ŷ and Z are observed.

We then treat each predicted label ŷi as a realization of a predicted-label RV Ŷi condi-
tioned on the correct-label RV Yi and (p̃D, p̃FA). The predicted-label conditional distribution
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is simply

pŶi|Yi(0|0; p̃D, p̃FA) = 1− p̃FA, (3)

pŶi|Yi(1|0; p̃D, p̃FA) = p̃FA, (4)

pŶi|Yi(0|1; p̃D, p̃FA) = 1− p̃D, (5)

pŶi|Yi(1|1; p̃D, p̃FA) = p̃D. (6)

The assumption of independent samples means p(ŷ|y; p̃D, p̃FA) =
∏N
i=1 p(ŷi|yi; p̃D, p̃FA).

Our final assumption is that, given Yi, the RVs Ŷi and Zi are conditionally independent,
where (p̃D, p̃FA) and ψi only influence Ŷi and Zi, respectively. This assumption may be a
strong one, but it reflects the typical case in which Ŷi is generated without access to Zi. For
example, Ŷi could be the output of a predictive model whose only input is Xi, or Ŷi could
be a diagnosis made by a clinician who has not seen the diagnoses from other clinicians.

Therefore, our testing model is

p(ŷi, zi|yi;ψi, p̃D, p̃FA) = p(ŷi|yi; p̃D, p̃FA)p(zi|yi;ψi). (7)

We excluded Xi, so Yi is the only RV that can link Zi and Ŷi, and the model includes
such a connection. The model is parsimonious, having just two parameters. As explained
at the top of this section, they will not be determined via supervised learning. Section 2.4
presents iterative methods for estimating them from {ŷ, z,ψ,π}.

2.2 Metric RVs in Terms of Common RVs

Here we demonstrate that each metric RV can be written in terms of two RVs that are
independent and approximately normal.

2.2.1 Metric RVs in Terms of Common RVs

We begin by considering a single metric, namely probability of detection. Given truthing
issues, it becomes an RV conditioned on ŷ, z, ψ, and (p̃D, p̃FA), which we write as

PD =
1
N

∑N
i=1 1(ŷi = 1 and Yi = 1)

1
N

∑N
i=1 1(Yi = 1)

.

In this expression, the predicted label is shown in lowercase because it is observed, and the
correct label is capitalized because it is an unobserved RV.

We define the RVs U and V , conditioned on {ŷ, z,ψ, p̃D, p̃FA}, as follows:

U =
1

N

N∑
i=1

1(ŷi = 1 and Yi = 1)

=
1

N

∑
i:ŷi=1

1(Yi = 1), (8)
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and

V =
1

N

N∑
i=1

1(ŷi = 0 and Yi = 1)

=
1

N

∑
i:ŷi=0

1(Yi = 1). (9)

The numerator of PD is exactly U . The denominator is

1

N

N∑
i=1

1(Yi = 1) =
1

N

∑
i:ŷi=1

1(Yi = 1) +
1

N

∑
i:ŷi=0

1(Yi = 1)

= U + V.

Thus,

PD =
U

U + V
.

By similar manipulations (see Appendix A), we can write each of the other metric RVs
in terms of the common RVs U and V . Table 8 summarizes the relationships.

2.2.2 Independence and Approximate Normality

We immediately conclude that U and V are independent since they involve summations
over disjoint subsets of ŷ. We now consider their distributions.

In (8) and (9), each 1(Yi = 1) is a Bernoulli RV with success probability equal to
pYi|Ŷi,Zi

(1|ŷi, zi;ψi, p̃D, p̃FA). Using Bayes’ rule, we obtain this probability from the testing
class posterior :

p(yi|ŷi, zi;ψi, p̃D, p̃FA) =
π(yi)p(ŷi, zi|yi;ψi, p̃D, p̃FA)∑
y′i∈Y

π(y′i)p(ŷi, zi|y′i;ψi, p̃D, p̃FA)

=
π(yi)p(ŷi|yi; p̃D, p̃FA)p(zi|yi;ψi)∑
y′i∈Y

π(y′i)p(ŷi|y′i; p̃D, p̃FA)p(zi|y′i;ψi)
, (10)

where the appropriate value for p(ŷi|yi; p̃D, p̃FA) can be determined from (3)–(6).

We denote a Bernoulli RV with success probability p ∈ [0, 1] by B(p), so each 1(Yi = 1)
in (8) is distributed B(pi) with

pi = pYi|Ŷi,Zi
(1|1, zi;ψi, p̃D, p̃FA), i = 1, . . . , N. (11)
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LetN (µ, σ2) denote a normal RV with mean µ and variance σ2. By the central limit theorem
(CLT), U is approximately distributed N (µU , σ

2
U |ŷ, z;ψ, p̃D, p̃FA) with

µU (ŷ, z;ψ, p̃D, p̃FA) =
1

N

∑
i:ŷi=1

pi

=
1

N

∑
i:ŷi=1

pYi|Ŷi,Zi
(1|1, zi;ψi, p̃D, p̃FA), (12)

σ2
U (ŷ, z;ψ, p̃D, p̃FA) =

1

N2

∑
i:ŷi=1

pi(1− pi)

=
1

N2

∑
i:ŷi=1

pYi|Ŷi,Zi
(1|1, zi;ψi, p̃D, p̃FA)

·
(
1− pYi|Ŷi,Zi

(1|1, zi;ψi, p̃D, p̃FA)
)
, (13)

where we have indicated the dependence on {ŷ, z,ψ, p̃D, p̃FA}.
Likewise, each 1(Yi = 1) in (9) is distributed B(qi) with

qi = pYi|Ŷi,Zi
(1|0, zi;ψi, p̃D, p̃FA), i = 1, . . . , N, (14)

so V is approximately distributed N (µV , σ
2
V |ŷ, z;ψ, p̃D, p̃FA) with

µV (ŷ, z;ψ, p̃D, p̃FA) =
1

N

∑
i:ŷi=0

qi

=
1

N

∑
i:ŷi=0

pYi|Ŷi,Zi
(1|0, zi;ψi, p̃D, p̃FA), (15)

σ2
V (ŷ, z;ψ, p̃D, p̃FA) =

1

N2

∑
i:ŷi=0

qi(1− qi)

=
1

N2

∑
i:ŷi=0

pYi|Ŷi,Zi
(1|0, zi;ψi, p̃D, p̃FA)

·
(
1− pYi|Ŷi,Zi

(1|0, zi;ψi, p̃D, p̃FA)
)
. (16)

These expressions readily accommodate some correctly-labeled samples. For the ith

sample, if yi is known or can be exactly recovered from zi, then pi = 1(yi = 1) if ŷi = 1,
and qi = 1(yi = 1) if ŷi = 0. Correctly-labeled samples add a constant to the summations
for µU and µV and contribute zero to the summations for σ2

U and σ2
V .

2.3 Posteriors of Metric RVs

We can now obtain the posteriors of the metric RVs.

2.3.1 Scalar Metric RVs

We immediately find that ACC is approximately normal with mean µU − µV − N̂1/N + 1
and variance σ2

U + σ2
V . Similarly, PREC is approximately normal with mean NµU/N̂1 and

variance N2σ2
U/N̂

2
1 .
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From the “Random-Variable Form” section of Table 8, we observe that each remaining
scalar metric RV is a ratio of jointly, approximately normal RVs. Closed-form expressions
for these posteriors are unavailable, but the work of Marsaglia (1965, 2006) explains how
the posteriors can be computed. Appendix B reviews the procedure, and Table 16 in the
appendix covers the necessary parameters for each of these metrics.

Moreover, Marsaglia (2006, §4) and Appendix B provide closed-form approximations for
the mean and variance of a ratio of jointly normal RVs. The approximations are valid if a
simple moment-approximation condition (MAC) is satisfied.7

In summary, for any scalar metric RV Q ∈ {ACC ,PREC ,PD,PFA, Fβ}, we can compute
the moments µU , σ2

U , µV , σ2
V from {ŷ, z,ψ, p̃D, p̃FA} and use them to get approximations

for p(q|ŷ, z;ψ, p̃D, p̃FA), E[Q|ŷ, z;ψ, p̃D, p̃FA], and var(Q|ŷ, z;ψ, p̃D, p̃FA).

2.3.2 Joint Metric RVs

For ROC analysis, we observe that PD and PFA are functions of two independent, approx-
imately normal RVs U and V . We apply the standard transformation for two functions of
two RVs (see Papoulis, 1991, §6-3) to obtain the joint posterior of (PD,PFA):

p(pD, pFA|ŷ, z;ψ, p̃D, p̃FA) ≈

∣∣∣∣∣(N̂1/N − pFA)(N̂1/N − pD)

(pD − pFA)3

∣∣∣∣∣ 1

2πσUσV

· exp

−1

2

(( N̂1/N−pFA
pD−pFA pD − µU

)2
σ2
U

+

( N̂1/N−pFA
pD−pFA (1− pD)− µV

)2
σ2
V

) ,
0 ≤ pD ≤ 1, 0 ≤ pFA ≤ 1, pD 6= pFA, (17)

where the moments of U and V are computed from (11)–(16).

Clearly, the posterior is non-Gaussian. This expression is well-defined except when pD =
pFA, which is the chance line in ROC space (see Saito and Rehmsmeier, 2015). Although
we have not succeeded in finding a closed-form expression for limpD→pFA p(pD, pFA|ŷ, z;ψ,
p̃D, p̃FA), we do not consider the lack of this limit to be problematic. First, Section 2.3.3
explains how we can use sampling to approximate the posterior of (PD,PFA) without us-
ing (17). Second, a binary classifier is only useful if it operates far from the chance line, so
one will likely only be interested in classifiers with negligible probability density near the
chance line. Finally, in Section 2.4.1, we present an estimation algorithm that only uses the
marginal posteriors of PD and PFA and does not require (17).

7. In general, the distribution of a ratio of jointly normal RVs cannot be approximated well by a nor-
mal distribution. However, Marsaglia (2006) and the appendix also provide a test for when a normal
approximation is reasonable.
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For P-R analysis, PREC and REC are also functions of U and V . We apply the
transformation of functions of RVs to obtain the joint posterior of (PREC ,REC ):

p(prec, rec|ŷ, z;ψ, p̃D, p̃FA) ≈

(
N̂1

N

)2
prec

rec2

1

2πσUσV

· exp

[
−1

2

((
N̂1
N prec − µU

)2
σ2
U

+

(
N̂1
N prec

(
1−rec
rec

)
− µV

)2
σ2
V

)]
,

0 < rec ≤ 1, 0 ≤ prec ≤ 1, (18)

with the moments of U and V computed from (11)–(16). This distribution is also non-
Gaussian. The chance line in P-R space is prec = π(1) (see Saito and Rehmsmeier, 2015),
and it poses no difficulties. L’Hôpital’s rule can be applied to show that limrec→0 p(prec, rec|
ŷ, z;ψ, p̃D, p̃FA) = 0, so this expression is well-defined over the entire unit square.

2.3.3 Posteriors via Sampling

We can also use sampling to approximate the posteriors. We generate M length-N realiza-

tions {y(m)}Mm=1 of the correct-label RVs Y . For each realization y(m), each y
(m)
i is drawn

B
(
pY |Ŷi,Zi

(1|ŷi, zi;ψi, p̃D, p̃FA)
)

using (10). For each y(m), we compute the desired empiri-

cal metric (scalar or joint), which yields M realizations of the metric RV. The approximate
posterior can then be computed as a one-dimensional or two-dimensional histogram.

2.4 Empirical Bayes Estimation of Operating-Point Parameters (MMSE
Testing)

The validity of the posteriors depends on how well we can estimate the moments of U and
V , which in turn depend upon the OP parameters (p̃D, p̃FA). We present two iterative algo-
rithms for finding the MMSE estimate of the OP parameters, so we refer to this approach as
MMSE testing. The algorithms belong to the class of empirical Bayes estimators. Standard
Bayesian estimation handles unknown nuisance variables by specifying a prior for them and
marginalizing them out to obtain the posterior estimate of the estimand. In contrast, em-
pirical Bayes estimation does not assume a prior;8 it instead consults the available data to
estimate nuisance variables (Casella, 1992), often using MAP or ML estimation. It alter-
nates between estimating the nuisance variables and the estimand. This iterative process
successively improves each estimate and is similar in spirit to the EM algorithm of Dempster
et al. (1977). In the proposed algorithms, the OP parameters are the nuisance variables,
the estimand consists of the probability-of-detection and probability-of-false alarm RVs,
and MMSE estimation is employed. Section 2.4.4 explores the relationship between these
algorithms and the EM algorithm.

2.4.1 Motivation

Suppose that, on the jth iteration, we have the previous OP parameters
(
p̃

(j−1)
D , p̃

(j−1)
FA

)
,

along with {ŷ, z,ψ,π}. The preceding results enable us to get the moments of U and

8. As a result, empirical Bayes methods are sometimes said not to be “fully Bayesian.”
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V conditioned on {ŷ, z,ψ, p̃(j−1)
D , p̃

(j−1)
FA } and then to get the approximate posterior of

(PD,PFA). We can improve on the OP parameters by updating
(
p̃

(j)
D , p̃

(j)
FA

)
with an optimal

estimate of (PD,PFA) given
(
p̃

(j−1)
D , p̃

(j−1)
FA

)
and {ŷ, z,ψ,π}. We can repeat this procedure

until the OP parameters converge.
We adopt the MMSE criterion from Bayesian estimation theory. Let h(Ŷ ,Z) = (hD(Ŷ ,

Z), hFA(Ŷ ,Z)) be an estimator of (PD,PFA) given Ŷ ,Z. The MSE of such an estimator

is E
[(
hD(Ŷ ,Z)− PD

)2]
+ E

[(
hFA(Ŷ ,Z)− PFA

)2]
, and the MMSE estimator is defined as

hMMSE = arg minh E
[(
hD(Ŷ ,Z)−PD

)2]
+ E

[(
hFA(Ŷ ,Z)−PFA

)2]
. The standard result is

that the MMSE estimator is the conditional mean (see (1) or Appendix C), so

hMMSE(Ŷ ,Z) = E
p(pD,pFA|ŷ,z;ψ,p̃

(j−1)
D ,p̃

(j−1)
FA )

[
PD,PFA

∣∣ Ŷ ,Z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

]
,

where the relevant distribution is shown as a subscript (cf. Cover and Thomas (1991, Equa-
tion 2.2)). Therefore, given Ŷ = ŷ and Z = z, we set

p̃
(j)
D = E

[
PD

∣∣ ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

]
,

p̃
(j)
FA = E

[
PFA

∣∣ ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

]
.

Each conditional mean involves a marginal posterior. For example,

E
[
PD

∣∣ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

]
=

∫ 1

0
pD p

(
pD

∣∣ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

)
dpD. (19)

Thus, as mentioned previously, the lack of a limit along the chance line in (17) does not
prevent us from calculating the conditional mean of (PD,PFA).

We can compute the conditional mean of PD or PFA in three ways. First, if the MAC is
satisfied, we can use the closed-form expression in Marsaglia (2006) or Appendix B. Second,
we can perform one-dimensional numerical integration. Third, we can use sampling, as
described in Section 2.3.3.

2.4.2 Choice of Initial Operating-Point Parameters

This section discusses the initial OP parameters
(
p̃

(0)
D , p̃

(0)
FA

)
. We take a Bayesian viewpoint

with initial OP RVs
(
P̃

(0)
D , P̃

(0)
FA

)
and a non-informative prior—namely, the uniform distri-

bution over the unit square. Then the initial OP parameters
(
p̃

(0)
D , p̃

(0)
FA

)
are given by the

conditional mean, which is just (1/2, 1/2).
Consequently, p(ŷi|yi; p̃D = 1/2, p̃FA = 1/2) equals 1/2 for any combination of ŷi and yi,

so the testing class posterior (10) reduces to

p(yi|ŷi, zi;ψi, p̃D = 1/2, p̃FA = 1/2) =
π(yi)p(zi|yi;ψi)∑
y′i∈Y

π(y′i)p(zi|y′i;ψi)
. (20)

The right-hand side matches the ordinary class posterior, which does not condition on ŷi,
p̃D, and p̃FA:

p(yi|zi;ψi) =
π(yi)p(zi|yi;ψi)∑
y′i∈Y

π(y′i)p(zi|y′i;ψi)
. (21)

Thus, choosing
(
p̃

(0)
D , p̃

(0)
FA

)
= (1/2, 1/2) has the same effect as if we had not included the

predicted label at all.
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Figure 3: Graphical model of iterative estimation for testing. The common RVs U and V
depend on separate partitions of Y and ŷ.

2.4.3 Estimation Algorithms

The recursive relationship between successive OP parameters leads to two iterative empirical
Bayes estimators for MMSE testing, namely Algorithms 1 and 2. Figure 3 depicts the
graphical model and the procedure. On each iteration, each algorithm updates its OP
parameters by computing the MMSE estimate—the conditional mean—of (PD,PFA) given
ŷ, z, ψ, and the previous OP parameters. On the next iteration, the MMSE estimate
provides the new OP parameters.

Algorithm 1 takes advantage of the fact that PD and PFA are both ratios of jointly
approximately normal RVs, so their conditional means can be computed without sampling.

It begins the jth iteration by using ŷi, zi, ψi, p̃
(j−1)
D , and p̃

(j−1)
FA to compute pi and qi for

i = 1, . . . , N , and then it computes the moments of U and V . To get the improved OP

parameters
(
p̃

(j)
D , p̃

(j)
FA

)
, it uses the closed-form approximation for the conditional mean of

PD or PFA if the MAC holds, and it falls back to numerical integration if not. To prevent
numerical degeneracy, the new OP parameters are clipped to [α, 1 − α]. The procedure
repeats until the maximum absolute difference between successive estimates falls below
some tolerance or a maximum number of iterations jmax is reached. It then returns the

final OP parameters (p̃D, p̃FA) =
(
p̃

(j)
D , p̃

(j)
FA

)
.

Algorithm 2 uses sample realizations of the correct-label RVs Y to approximate the
conditional means of PD and PFA. On the jth iteration, it generates M length-N realiza-

tions y(m), m = 1, . . . ,M , by drawing each y
(m)
i ∼ B

(
pY |Ŷi,Zi

(1|ŷi, zi;ψi, p̃(j−1)
D , p̃

(j−1)
FA )

)
using (10). Then it computes the empirical ROC operating point

(
p̃

(j,m)
D , p̃

(j,m)
FA

)
for each

realization. The conditional mean of (PD,PFA) is obtained by averaging the M operating

points, which yields the new OP parameters
(
p̃

(j)
D , p̃

(j)
FA

)
.
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Algorithm 1 MMSE testing with empirical Bayes estimation of (p̃D, p̃FA) via ratios of
jointly normal RVs.

1: function EmpiricalBayesViaRatios(ŷ, z,ψ,π)

2: Initialize p̃
(0)
D ← 0.5, p̃

(0)
FA ← 0.5, j ← 0,MAD ←∞

3: while j < jmax and MAD ≥ tol do
4: j ← j + 1
5: for i← 1 : N do
6: Compute pi and qi from ŷi, zi,ψi, p̃

(j−1)
D , and p̃

(j−1)
FA . Eqs. (10), (11), (14)

7: Use {pi}Ni=1 and
{
ŷ, z,ψ, p̃

(j−1)
D , p̃

(j−1)
FA

}
to compute µU , σ2

U . Eqs. (12), (13)

8: Use {qi}Ni=1 and
{
ŷ, z,ψ, p̃

(j−1)
D , p̃

(j−1)
FA

}
to compute µV , σ2

V . Eqs. (15), (16)
9: if mean approximation for PD from µU , σ

2
U , µV , σ

2
V is valid then
. Marsaglia (2006), App. B

10: p̃
(j)
D ← E

[
PD

∣∣ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

]
from mean approximation

11: else
12: Get p

(
pD

∣∣ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

)
from µU , σ

2
U , µV , σ

2
V

. Marsaglia (1965, 2006), App. B

13: p̃
(j)
D ← E

[
PD

∣∣ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

]
by 1-D numerical integration

14: if mean approximation for PFA from µU , σ
2
U , µV , σ

2
V is valid then

15: p̃
(j)
FA ← E

[
PFA

∣∣ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

]
from mean approximation

16: else
17: Get p

(
pFA

∣∣ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

)
from µU , σ

2
U , µV , σ

2
V

18: p̃
(j)
FA ← E

[
PFA

∣∣ŷ, z;ψ, p̃
(j−1)
D , p̃

(j−1)
FA

]
by 1-D numerical integration

19: Clip p̃
(j)
D and p̃

(j)
FA to [α, 1− α]

20: MAD ← max
{∣∣p̃(j)

D − p̃
(j−1)
D

∣∣, ∣∣p̃(j)
FA − p̃

(j−1)
FA

∣∣}
21: (p̃D, p̃FA)←

(
p̃

(j)
D , p̃

(j)
FA

)
. Final OP parameters

22: return (p̃D, p̃FA)

Both algorithms used tol = 10−3, jmax = 30, α = 10−3, and Algorithm 2 used M = 5000.
They also allow for some correctly-labeled samples. If yi is known or can be recovered exactly

from zi, then pi, qi, or pY |Ŷi,Zi
(1|ŷi, zi;ψi, p̃(j−1)

D , p̃
(j−1)
FA ) equals 1(yi = 1). Algorithm 1 will

add the proper constants to the moments of U and V , and Algorithm 2 will always draw
the proper realization of the correct-label RV.

2.4.4 Relation to EM Algorithm and Remarks on Convergence

Like many empirical Bayes methods, our iterative algorithms are similar to the EM algo-
rithm but differ in that the hidden or latent variables—namely, the correct labels—are RVs
instead of non-random quantities. The above relationships let us obtain the approximate
conditional means of PD and PFA directly, so our “E-step” does not employ an auxiliary
function like the EM algorithm does. Also, the other latent variables—namely the OP
parameters (p̃D, p̃FA)—are determined using MMSE rather than ML estimation, so our “M-
step” performs minimization of the MSE rather than maximization of an auxiliary function.
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Algorithm 2 MMSE testing with empirical Bayes estimation of (p̃D, p̃FA) via sampling.

1: function EmpiricalBayesViaSampling(ŷ, z,ψ,π,M)

2: Initialize p̃
(0)
D ← 0.5, p̃

(0)
FA ← 0.5, j ← 0,MAD ←∞

3: while j < jmax and MAD ≥ tol do
4: j ← j + 1
5: for m← 1 : M do . Generate M length-N realizations of Y
6: for i← 1 : N do . Generate mth realization y(m) of Y

7: Draw y
(m)
i ∼ B

(
pY |Ŷi,Zi

(1|ŷi, zi;ψi, p̃(j−1)
D , p̃

(j−1)
FA )

)
. Eq. (10)

8:
(
p̃

(j,m)
D , p̃

(j,m)
FA

)
← empirical metrics for {ŷ,y(m)}

9:
(
p̃

(j)
D , p̃

(j)
FA

)
← mean of

{(
p̃

(j,m)
D , p̃

(j,m)
FA

)}M
m=1

. Empirical conditional mean

10: Clip p̃
(j)
D and p̃

(j)
FA to [α, 1− α]

11: MAD ← max
{∣∣p̃(j)

D − p̃
(j−1)
D

∣∣, ∣∣p̃(j)
FA − p̃

(j−1)
FA

∣∣}
12: (p̃D, p̃FA)←

(
p̃

(j)
D , p̃

(j)
FA

)
. Final OP parameters

13: return (p̃D, p̃FA)

We speculate that, regardless of the initial OP parameters, the algorithms should
converge to the global optimum (p̃∗D, p̃

∗
FA), the minimum of the MSE E

[(
PD − p̃D

)2
+(

PFA − p̃FA

)2∣∣ŷ, z;ψ, p̃D, p̃FA

]
. The argument is based on the following reasoning: The

estimand (PD,PFA) is bounded; generally, the conditional mean of (PD,PFA) is unique

for any OP parameters
(
p̃

(j−1)
D , p̃

(j−1)
FA

)
; and the MSE decreases on each iteration, unless(

p̃
(j−1)
D , p̃

(j−1)
FA

)
is already at the global optimum. Therefore, the algorithms should con-

verge to the global optimum regardless of
(
p̃

(0)
D , p̃

(0)
FA

)
. This property contrasts with the

EM algorithm, which can only be said to converge to a local optimum, and this local opti-
mum may vary significantly depending on initialization (Koller and Friedman, 2009, §19.2).
We can also view the algorithms as seeking the unique fixed point

(
p̃∗D, p̃

∗
FA

)
such that

E[PD,PFA|ŷ, z;ψ, p̃∗D, p̃
∗
FA] =

(
p̃∗D, p̃

∗
FA

)
.

A technicality prevents us from making a stronger statement regarding convergence.
Both PD and PFA are approximated as ratios of jointly normal RVs, for which the mean and
variance do not exist (see Marsaglia (1965, 2006) and Appendix B). As a result, uniqueness
of the MMSE estimator of (PD,PFA) cannot be guaranteed, so a strict proof of convergence
or existence of a unique fixed point may not be possible.

This obstacle might mainly be a theoretical concern, and, except for a few pathological
situations, the algorithms might always converge in practice. Section 5.2.3 presents some
empirical evidence of global convergence.

2.5 Optimal Estimation of Metric RVs

Algorithms 1 and 2 each produce final OP parameters (p̃D, p̃FA). It still remains to calculate
optimal estimates of the metric RVs given {ŷ, z,ψ,π, p̃D, p̃FA}. We do so by computing the
moments of the common RVs U and V (Section 2.2.2), and then by using the estimated
posteriors of the metric RVs (Section 2.3). Given the approximate posteriors, optimal
estimation is a simple matter; we briefly discuss it for completeness.
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We consider two point estimates and one range estimate. The first point estimate is the
conditional mean, which is optimal in the MMSE sense. The accuracy and precision RVs
are approximately normal, so it is just the mean. For REC or PD, PFA, or Fβ, we can use
the mean approximation if the MAC holds or resort to numerical integration or sampling.
For P-R or ROC analysis, we can just use the conditional means of the individual elements.

The second point estimate is the MAP estimate, the most-probable value of the metric
RV. It can be obtained by computing the posterior at a fine resolution and finding the peak.

The optimal range estimate is the p%-credible region, which specifies a region such
that, with probability p/100, the metric RV lies inside the region. The credible region is
not necessarily unique, but one way to obtain a reasonable credible region is to apply binary
search to find a threshold c such that the numerical integral of the posterior over the points
where the posterior exceeds c is equal to p/100 within some tolerance.

Finally, we reiterate that Algorithms 1 and 2 and the subsequent optimal-estimation
calculations never attempt to estimate the correct-label RVs Y . Making a hard decision
about Y at any point could introduce errors into downstream processing, as remarked in
Section 1.4. Our approach avoids doing so while using all available information to produce
its estimates.9

2.6 Alternative Testing Approaches

For comparison purposes, we mention some alternative approaches to testing. We first
present four suboptimal methods, and then we describe a fully Bayesian approach, which
is optimal but handles the OP parameters differently than the empirical Bayes approach.

2.6.1 Suboptimal Testing Approaches

The first suboptimal approach is to estimate the correct labels and then treat the esti-
mates as if they were correct to improve on the OP parameters (p̃D, p̃FA). We present
an iterative method in Algorithm 3 and denote its estimate of the correct-label RVs Y
as y̌. On the jth iteration, the algorithm uses the previous OP parameters (p̃D, p̃FA) =(
p̃

(j−1)
D , p̃

(j−1)
FA

)
and estimates Y according to the MPE criterion. Let hi(Ŷi,Zi) be an esti-

mator of Yi given Ŷi, Zi, and parameters ψi, p̃
(j−1)
D , p̃

(j−1)
FA , which are suppressed because

they are not RVs. The probability of error of hi is perror(hi(Ŷi,Zi), Yi) = E[1(hi(Ŷi,Zi) 6=
Yi)] =

∑
ŷi,zi

∑
y 1(hi(ŷi, zi) 6= yi)p(ŷi, zi, yi). This approach seeks (hMPE

1 , . . . , hMPE
N ) =

arg min(h1,...,hN )N
−1
∑N

i=1 perror(hi(Ŷi,Zi), Yi).

The solution consists of finding the MPE estimator for each individual Yi, and the
standard result is that the MAP estimator minimizes the probability of error (see (2) or
Appendix D). Thus, the algorithm computes y̌(j) using:

y̌
(j)
i = arg max

y∈Y
p
(
y|ŷi, zi;ψi, p̃(j−1)

D , p̃
(j−1)
FA

)
, i = 1, . . . , N. (22)

The algorithm then uses these estimates to compute the empirical probabilities of de-

tection and false alarm p̃
(j)
D and p̃

(j)
FA. This approach is similar to Algorithms 1 and 2 except

9. If one wants to estimate Y , then one can do so using (10) after (p̃D, p̃FA) has been determined. However,
subsequently using this estimate to compute testing metrics runs counter to our approach.
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Algorithm 3 Suboptimal estimation of (p̃D, p̃FA) by estimating the correct-label RVs Y .

1: function EstimateOPParametersViaEstimatedCorrectLabels(ŷ, z,ψ,π)

2: Initialize p̃
(0)
D ← 0.5, p̃

(0)
FA ← 0.5, j ← 0,MAD ←∞

3: while j < jmax and MAD ≥ tol do
4: j ← j + 1
5: for i← 1 : N do
6: y̌

(j)
i ←arg maxy∈Y pYi|Ŷi,Zi

(
y|ŷi, zi;ψi, p̃D = p̃

(j−1)
D , p̃FA = p̃

(j−1)
FA

)
. Eq. (22)

7: Compute empirical p̃
(j)
D and p̃

(j)
FA from ŷ and y̌(j) =

(
y̌

(j)
i

)N
i=1

8: Clip p̃
(j)
D and p̃

(j)
FA to [α, 1− α]

9: MAD ← max
{∣∣p̃(j)

D − p̃
(j−1)
D

∣∣, ∣∣p̃(j)
FA − p̃

(j−1)
FA

∣∣}
10: (p̃D, p̃FA)←

(
p̃

(j)
D , p̃

(j)
FA

)
. Final OP parameters

11: return (p̃D, p̃FA)

that it makes a hard decision about the correct labels on every iteration. This approach
leverages the testing model and minimizes a well-defined penalty criterion, but it is subop-
timal according to Section 1.4 because it estimates Y when it should estimate (PD,PFA).
We make no claims about its convergence properties. We again used tol = 10−3, jmax = 30,
α = 10−3.

Like Algorithms 1 and 2, Algorithm 3 only estimates the final OP parameters (p̃D, p̃FA).
Following this step, this approach applies (22) to get the final MPE or MAP estimate y̌ of
Y given {ŷ, z,ψ, p̃D, p̃FA}. Final estimates of the metrics are obtained by treating y̌ as if
it were correct and computing empirical metrics for {ŷ, y̌}.

The second suboptimal approach neglects estimation theory completely; it just merges
the metrics calculated for each individual labeler’s labels. For each t ∈ T , it treats the
labels from the tth labeler as if they were correct, and it computes the empirical metric for
these samples only. Doing so produces T instances of a metric. The final estimate is then
obtained using a centrality statistic, such as the mean or median, of the T instances.

The third and fourth suboptimal approaches use the noisy-label conditional distribution
p(zi|yi;ψi) instead of the testing model (7), so they omit p(ŷi|yi; p̃D, p̃FA) and (p̃D, p̃FA).
They are suboptimal because they neglect the relationship between Ŷi and Yi and thus
fail to exploit the predicted labels ŷ fully. The third approach uses MMSE estimation
but replaces p(yi|ŷi, zi;ψi, p̃D, p̃FA) with p(yi|zi;ψi) in (11)–(16). The fourth approach
estimates the correct labels and makes the same substitution in (22). (Equivalently, one
can set jmax = 0 in Algorithm 1, 2, or 3, so (p̃D, p̃FA) = (1/2, 1/2) and (10) reduces to (21).)

2.6.2 Fully Bayesian Estimation

Another alternative is a fully Bayesian approach, which treats (p̃D, p̃FA) as an unobserved
realization of nuisance-parameter RVs (P̃D, P̃FA) with prior p(p̃D, p̃FA). A uniform distri-
bution over the unit square serves as a non-informative prior.

This approach estimates each metric RV by marginalizing out (P̃D, P̃FA), so the es-
timate is not conditioned on a particular instance of (p̃D, p̃FA), and no iteration is re-
quired. For example, consider MMSE estimation of the accuracy RV. For an estima-
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tor h(Ŷ ,Z) of ACC , the MSE is E
[(
h(Ŷ ,Z) − ACC

)2]
, and the MMSE estimator is

hMMSE = arg minh E
[(
h(Ŷ ,Z)− ACC

)2]
. The standard result (see (1) or Appendix C) is

that the solution is the conditional mean, so the fully Bayesian estimate of ACC is

Ep(p̃D,p̃FA)[ACC | ŷ, z;ψ] =

∫ 1

0

∫ 1

0
E[ACC | ŷ, z, p̃D, p̃FA;ψ] p(p̃D, p̃FA) dp̃D dp̃FA.

This estimate minimizes the MSE under the assumption that the OP parameters are RVs
(P̃D, P̃FA) rather than non-random quantities.

In contrast, the empirical Bayes approach does not view (p̃D, p̃FA) as realizations of
RVs; it treats them as unknown, non-random parameters of p(ŷi|yi; p̃D, p̃FA), so it does
not marginalize them out, and its estimates depend on them. For example, it computes
E
[
PD

∣∣ŷ, z;ψ, p̃D, p̃FA

]
in (19), where the moments of U and V are conditional on {ŷ, z, ψ,

p̃D, p̃FA}, which depends on the specific choice of (p̃D, p̃FA).
Both approaches are optimal according to Section 1.4, but they differ in their treatment

of the OP parameters. Marginalization over (P̃D, P̃FA) is a form of averaging, so the fully
Bayesian approach computes an average grade. The empirical Bayes approach is more faith-
ful to the grading analogy at the beginning of this section: The quiz has a particular grade,
represented by (p̃D, p̃FA), rather than an average grade. Nevertheless, experimentation is
required to compare the performance of these approaches; it appears in Section 5.2.1.

2.7 MMSE Testing for Multi-Class Classification

This section discusses the extension of MMSE testing to multi-class classification (C > 2)
and some of the challenges associated with it. An immediate challenge is that it might
be difficult to model p(z|y;ψ) or estimate ψ and π, but the related work described in
Sections 1.2.1 and 1.2.2 is very encouraging.

We begin by introducing the C×C conditional confusion matrix. We use Kemp to denote
its empirical form, and we indicate an element of it by Kemp

n|` to emphasize its conditional

nature.10 Then Kemp
n|` is defined as

Kemp
n|` =

no. of times ŷi = n and yi = `

no. of times yi = `
, `, n ∈ Y. (23)

The RV form of the matrix is K, with

Kn|` =
1
N

∑N
i=1 1(ŷi = n and Yi = `)

1
N

∑N
i=1 1(Yi = `)

, `, n ∈ Y.

2.7.1 Empirical Bayes via Sampling (Multi-Class Classification)

We make the same assumptions as for binary classification in Section 2.1. We are given
{z, ŷ,ψ,π}, each Zi has conditional distribution p(zi|yi;ψi), and the samples are indepen-
dent. A graphical model appears in Figure 4. Each predicted label ŷi is a realization of
an RV Ŷi, which for multi-class classification has conditional distribution p(ŷi|yi; K̃), where

10. We use non-standard, zero-based, column-major matrix indexing; Kemp
n|` corresponds to Kemp(`+1, n+1)

in standard matrix notation.
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Figure 4: Multi-class classification: Graphical model of iterative estimation for testing.

K̃ is a matrix of conditional confusion-matrix parameters that are analogous to the OP
parameters, and therefore

p(ŷi|yi; K̃) = K̃ŷi|yi . (24)

Each row of K must form a (C − 1)-probability simplex: For each ` ∈ Y, Kn|` ≥ 0,
n ∈ Y, and

∑
n∈YKn|` = 1. When C = 2, it was sufficient to consider a single element in

each row of K, and we used PFA = K1|0 and PD = K1|1; this property enabled us to use the
mean approximations or integrate the marginal posteriors of PD and PFA in Algorithm 1.
This technique is not viable for C > 2 because, for each row of K, we would have to
determine the joint posterior of (C − 1) RVs, and we would have to do (C − 1)-dimensional
numerical integration.

On the other hand, for moderate values of C and a class prior that is not highly skewed,
we can readily extend the empirical Bayes sampling procedure of Algorithm 2 to multi-class
classification. Pseudocode appears in Algorithm 4. Using the parameter matrix K̃, we draw
M realizations of Y according to the multi-class testing class posterior, which is obtained
in the same way as (10):

p(yi|ŷi, zi;ψi, K̃) =
π(yi)p(ŷi, zi|yi;ψi, p̃D, p̃FA)∑
y′i∈Y

π(y′i)p(ŷi, zi|y′i;ψi, K̃)

=
π(yi)p(ŷi|yi; K̃)p(zi|yi;ψi)∑
y′i∈Y

π(y′i)p(ŷi|y′i; K̃)p(zi|y′i;ψi)

(a)
=

π(yi) K̃ŷi|yi p(zi|yi;ψi)∑
y′i∈Y

π(y′i) K̃ŷi|y′i p(zi|y
′
i;ψi)

, (25)

where (a) is from (24). We compute the empirical conditional confusion matrix for each
length-N realization of Y , and we average the M matrices to get an estimate of the con-
ditional mean of K given {ŷ, z,ψ, K̃}. For Algorithm 4, we set tol = 10−3, jmax = 50,
α = 10−3, and M = 2500× C.
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Algorithm 4 MMSE testing for multi-class classification with empirical Bayes estimation
of K via sampling.

1: function MultiClassEmpiricalBayesViaSampling(ŷ, z,ψ,π,M)

2: Initialize K̃
(0)
n|` = 1/C for (n, `) ∈ Y × Y, and j ← 0

3: repeat
4: j ← j + 1
5: for m← 1 : M do
6: for i← 1 : N do
7: Draw y

(m)
i ∼ pY |Ŷi,Zi

(y|ŷi, zi;ψi, K̃(j−1)) . Eq. (25)

8: K̃(j,m) ← empirical matrix from {ŷ,y(m)} . Eq. (23)

9: K̃(j) ← mean of {K̃(j,m)}Mm=1

10: Adjust each row of K̃(j) so each element lies in [α, 1− α] and row sums to one
11: until

∣∣|K̃(j) − K̃(j−1)
∣∣|max < tol or j ≥ jmax

12: K̃← K̃(j) . Final estimate of K
13: return K̃

This method allows for some correctly-labeled samples. If the correct label for the ith

sample is known to be equal to `, then pY |Ŷi,Zi
(y|ŷi, zi;ψi, K̃(j−1)) = 1(y = `), and sampling

will always produce ` when drawing a realization for this sample.

The initial parameter matrix K̃(0) is the result of using a non-informative prior for
each row of the matrix—namely, a Dirichlet distribution of order C with all concentration
parameters equal to unity. The algorithm returns K̃, the approximate conditional mean of
K. The elements of K are bounded and MMSE estimation is employed, so the remarks in
Section 2.4.4 on convergence may also be applicable.

2.7.2 Posteriors of Metric RVs (Multi-Class Classification)

Once the estimate K̃ is available, we can obtain the posteriors of different metric RVs.

Accuracy is defined in the same way for binary and multi-class classification. Empirical
accuracy is acc = (no. of times ŷi = yi)/N , and its RV form is ACC = N−1

∑N
i=1 1(Yi =

ŷi). In the multi-class case, each 1(Yi = ŷi) is a Bernoulli RV with success probability
pYi|Ŷi,Zi

(ŷi|ŷi, zi;ψi, K̃). The Bernoulli RVs are independent, so ACC is approximately
normal by the CLT.

In addition, the ordinary C × C confusion matrix has empirical form Cemp with11

Cemp
n,` = (no. of times ŷi = n and yi = `) and RV form C with

Cn,` =

N∑
i=1

1(ŷi = n and Yi = `)

=
∑
i:ŷi=n

1(Yi = `).

11. Cemp
n,` corresponds to Cemp(` + 1, n + 1) in standard matrix notation.
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Hence, matrix elementCn,` is approximately normally distributed with E[Cn,`|ŷ, z;ψ, K̃] =∑
i:ŷi=n

pYi|Ŷi,Zi
(ŷi|ŷi, zi;ψi, K̃) and var(Cn,`|ŷ, z;ψ, K̃) =

∑
i:ŷi=n

pYi|Ŷi,Zi
(ŷi|ŷi, zi;ψi, K̃)

·
(
1−pYi|Ŷi,Zi

(ŷi|ŷi, zi;ψi, K̃)
)
. This result applies to the posterior of each individual element

of C; it does not describe the joint posterior of multiple elements of C.
Finally, we remark that one could apply the ratio-of-normals procedure to compute the

approximate posterior of Kn|`, an individual element of K.

3. Training with Truthing Issues: Learning from Noisy Labels

This section addresses training with truthing issues. Recall that we use g(x;θ) to denote a
classifier or predictive model with model parameters θ. Given x, the classifier calculates a
statistic s = g̃(x;θ), which contains the model’s calculation of the chance that x belongs to
each class, and then it applies a decision rule to s to select ŷ. In binary classification, s is
typically a scalar, and ŷ is selected by comparing s to a threshold τ ; i.e., ŷ = 1(s > τ). In
multi-class classification, s is a usually vector (s0, s1, . . . , sC−1), and ŷ corresponds to the
index of the largest element of s; i.e., ŷ = arg maxy′∈Y sy′ .

Training is the process of learning θ from the training set. In the ideal case, the training
set is {x,y}, and training seeks the parameters θ∗ that will produce the most accurate
predictions when the trained model is applied to as-yet-unseen samples. Training is usually
posed as an optimization problem:

θ∗ = arg min
θ
Jideal(θ;x,y) = arg min

θ

[
Jpri(θ;x,y) + λJreg(θ)

]
, (26)

where the primary term Jpri(θ;x,y) imposes a cost or penalty for differences between the
correct labels yi ∈ y and either g(xi;θ) or g̃(xi;θ), xi ∈ x; Jreg(θ) is a regularization term
that reduces overfitting to the training set and improves generalization to unseen samples;
and the weight λ ≥ 0 controls the level of regularization. The primary term depends on the
predictive model, and the regularization term depends on the choice of regularization, such
as L2 regularization: Jreg(θ) ∝

∑
j θ

2
j , or L1 regularization: Jreg(θ) ∝

∑
j |θj |.

3.1 Training Assumptions

In the presence of truthing issues, the correct labels are not available, and the training set
becomes {x, z,ψ,π}. With ψ and π given, the noisy-label model p(z|y;ψ)π(y) is known
for each sample. We make the usual assumption of independent samples, so p(z|y,x;ψ) =∏N
i=1 p(zi|yi,xi;ψi). Next, we assume that, given yi and ψi, the noisy-label RVs Zi do not

depend on the feature vector xi, which gives p(zi|yi,xi;ψi) = p(zi|yi;ψi). Thus,

p(z|y,x;ψ) =

N∏
i=1

p(zi|yi;ψi). (27)

This expression allows for conditionally dependent labelers.
We limit our attention to training that can be expressed as in (26). Then the optimiza-

tion problem for training given {x, z,ψ,π} becomes

θ∗ = arg min
θ
J(θ;x, z,ψ,π) = arg min

θ

[
Jpri(θ;x, z,ψ,π) + λJreg(θ)

]
, (28)

32



On Truthing Issues in Supervised Classification

where only the primary term has been modified to become Jpri(θ;x, z,ψ,π). Since the
regularization term is unchanged, we focus on the primary term below.

3.2 Unified View

We present a unified view of training with truthing issues that describes general approaches
for training probabilistic or non-probabilistic predictive models.

Unified View of Training with Truthing Issues

1. For probabilistic models, keep the optimality principle from ideal training,
and modify the primary term to account for {x, z,ψ,π} rather than {x,y}:
(a) For ML training, which would ideally maximize the likelihood function

p(y|x;θ) or p(y,x;θ), instead use p(z|x;ψ,θ) or p(z,x;ψ,θ), respec-
tively.

(b) For MAP training, which would ideally maximize the posterior distri-
bution p(θ|y,x), instead use p(θ|z,x;ψ).

2. For non-probabilistic models that use a loss function and would ideally min-
imize the empirical risk Remp(θ;x,y), perform MMSE training: retain the
loss function and minimize R̂MMSE(θ;x, z), the MMSE estimate of the
empirical-risk RV given {x, z,ψ,π}.

The unified view is simple, elegant, and intuitively appealing. For probabilistic models,
training remains true to the original optimality principle from ideal training. For non-
probabilistic models, training retains the original loss function from ideal training and
optimizes the MMSE estimate of the empirical risk.

Each approach is optimal according to Section 1.4. The estimands are appropriate:
Training for probabilistic models targets the likelihood function or posterior, and training
for non-probabilistic models targets the empirical risk. The use of the likelihood function,
posterior, or MMSE estimator means that all available information in {x, z,ψ,π} is fully
exploited. The penalty or utility criterion is clearly defined. None of the methods try to
estimate the correct labels.

The unified view also organizes some of the related work. The training method proposed
by Raykar et al. (2010) corresponds to Item 1a. Ratner et al. (2016, 2017) and Khetan
et al. (2018) proposed training approaches that are equivalent to Item 2, although they
did not arrive at them by applying MMSE estimation. We assume that p(z|y,ψ)π(y) is
known or has already been learned, but Raykar et al. (2010) and Khetan et al. (2018)
have demonstrated that one can employ these training approaches while jointly learning
the noisy-label model.

The next two sections derive the likelihood functions, posteriors, and MMSE estimator
that provide the modified primary terms. The derivations are much simpler than those
for testing because there are no predicted labels ŷ to consider. Indeed, the derivations
amount to marginalizing over the correct labels. Marginalization introduces some implicit
regularization by accounting for the uncertainty of the correct labels.12

12. The author thanks one of the anonymous reviewers for this observation.
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3.3 Probabilistic Predictive Models (ML or MAP Training)

Here, we address predictive models based on a probabilistic viewpoint. There are two
aspects to consider. One aspect is the form of the predictive model: discriminative or
generative. A discriminative model assumes a form for the posterior p(y|x;θ) and directly
uses g̃(x;θ) = p(y|x;θ). A generative model assumes a form for the joint distribution
p(y,x;θ) and uses g̃(x;θ) = p(y,x;θ)/p(x;θ) ∝ p(y,x;θ). Many generative models apply
the factorization p(y,x;θ) = p(x|y;θ)p(y;θ) and use g̃(x;θ) = p(x|y;θ)p(y;θ)/p(x;θ) ∝
p(x|y;θ)p(y;θ). The choice of g̃(x;θ) determines Jpri(θ;x,y). Logistic regression and
neural networks are common examples of discriminative models, and näıve Bayes is a classic
example of a generative model (see Ng and Jordan, 2001).

The other aspect is the treatment of the predictive-model parameters θ: non-random
or random. When the parameters are non-random, ML training is employed. For a dis-
criminative model, this means finding θ to maximize the likelihood function p(y|x;θ); for
a generative model, this means finding θ to maximize the likelihood function p(y,x;θ).
When the parameters are RVs Θ with prior p(θ), MAP training is used. This means find-
ing θ that maximizes the posterior p(θ|y,x); the posterior is expanded differently depending
upon whether the model is discriminative or generative.

By considering both of these aspects, we can derive the primary term—the likelihood
function or posterior—in the training objective function. The regularization term remains
unchanged since it does not involve the correct labels.

3.3.1 Example Case: Discriminative Model, Non-Random Parameters

To illustrate the approach, we consider a discriminative model with non-random parameters
θ. In the ideal case, we have access to {x,y} and use ML training to find θ to maximize
the likelihood function p(y|x;θ), which is

p(y|x;θ) =
N∏
i=1

p(yi|xi;θ). (29)

Equivalently, we can minimize the normalized negative log-likelihood function, which gives

Jpri(θ;x,y) = − 1

N
log p(y|x;θ)

= − 1

N

N∑
i=1

log p(yi|xi;θ). (30)
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With truthing issues, we seek θ to maximize p(z|x;ψ,θ), given by

p(z|x;ψ,θ) =

N∏
i=1

p(zi|xi;ψi,θ)

(a)
=

N∏
i=1

∑
yi∈Y

p(yi, zi|xi;ψi,θ)

=
N∏
i=1

∑
yi∈Y

p(zi|yi,xi;ψi,θ)p(yi|xi;ψi,θ)

(b)
=

N∏
i=1

∑
yi∈Y

p(zi|yi;ψi)p(yi|xi;θ), (31)

where (a) marginalizes over the correct labels, and (b) is because the noisy-label RVs do
not depend on the feature vector xi or the parameters θ and because the classifier makes
its prediction based only on xi and θ. We can equivalently minimize

Jpri(θ;x, z,ψ,π) = − 1

N
log p(z|x;ψ,θ)

= − 1

N

N∑
i=1

log
∑
yi∈Y

p(zi|yi;ψi)p(yi|xi;θ). (32)

Raykar et al. (2010) proposed (31) as part of joint estimation of p(z|y) and logistic regression
training.

3.3.2 All Cases

The top four rows of Table 9 summarize the results for all possible cases; derivations appear
in Appendices E.1, E.2, and E.3. The only difference between the ideal case and truthing
issues is that the latter marginalizes over the possible values of the correct-label RV Yi. The
other differences are the same as in the ideal case. Switching from non-random to random
parameters Θ introduces another factor for the parameter prior p(θ) and changes the op-
timization goal from ML to MAP. Switching from a discriminative model to a generative
model changes the function being maximized from one involving p(yi|xi;θ) to one involving
p(xi|yi;θ)π(yi) = p(xi, yi;θ).

3.4 Non-Probabilistic Predictive Models (Empirical Risk Minimization)

Some classifiers, like support vector machines, do not have a probabilistic formulation, and
sometimes the theoretical origins of a probabilistic model are not the main focus. In such
cases, ideal training applies the empirical risk minimization (ERM) principle (Vapnik, 1991)
and seeks θ to minimize the empirical risk or average loss

Jpri(θ;x,y) = Remp(θ;x,y) =
1

N

N∑
i=1

L(g̃(xi;θ), yi), (33)
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Pred. Par./ Labels and Training Set

Model Crit.* Ideal: Use {x,y} Noisy: Use {x, z,ψ,π}

NR/ Likelihood p(y|x;θ) Likelihood p(z|x;ψ,θ)

ML =
∏N
i=1 p(yi|xi;θ) =

∏N
i=1

∑
yi∈Y p(zi|yi;ψi)p(yi|xi;θ)

RV/ Posterior p(θ|y,x) Posterior p(θ|z,x;ψ)

D
is

cr
im

in
a
ti

ve

MAP ∝ p(θ)
∏N
i=1 p(yi|xi,θ) ∝ p(θ)

∏N
i=1

∑
yi∈Y p(zi|yi;ψi)p(yi|xi,θ)

NR/ Likelihood p(y,x;θ) Likelihood p(z,x;ψ,θ)

ML =
∏N
i=1 p(xi|yi;θ)π(yi) =

∏N
i=1

∑
yi∈Y p(xi|yi;θ)p(zi|yi;ψi)π(yi)

RV/ Posterior p(θ|y,x) Posterior p(θ|z,x;ψ)

G
en

er
at

iv
e

MAP ∝ p(θ)
∏N
i=1 p(xi|yi,θ)π(yi) ∝ p(θ)

∏N
i=1

∑
yi∈Y p(xi|yi,θ)p(zi|yi;ψi)π(yi)

NR/ Empirical risk Remp(θ;x,y)
MMSE estimate of empirical-risk RV

ERM = N−1
∑N
i=1 L(g̃(xi;θ), yi)

R̂MMSE(θ;x, z)

N
on

-
p

ro
b

ab
il

is
ti

c

= N−1
∑N
i=1

∑
yi∈Y L(g̃(xi;θ), yi)p(yi|zi;ψi)

*“Par./Crit.” indicates the treatment of the predictive-model parameters θ (NR: non-random, RV: random
variables) and the optimality criterion (ML: maximum likelihood, MAP: maximum a posteriori, ERM:
empirical risk minimization).

For discriminative or generative models, the primary term equals the negative normalized log-likelihood
or log-posterior; for example, the top-left entry corresponds to Jpri(θ;x,y) = −N−1 log p(y|x;θ). For
non-probabilistic models, the primary term appears in the bottom row.

Table 9: Comparison of training objective functions for predictive models.
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where L(s, y) is a loss function that penalizes deviations between s = g̃(x;θ) and the correct
label y. Examples for binary classification include support vector machines, which may be
trained with the hinge loss, and logistic regression, which corresponds to a linear model
trained with the logistic loss. As an example of multi-class classification, neural network
training often uses the output vector from the network’s final fully-connected layer for s
and applies the cross-entropy loss.

In this section, we assume that θ is not random, since random parameters would require
probabilistic modeling. As before, the regularization term is unaffected by truthing issues.

3.4.1 MMSE Estimation of the Empirical-Risk RV (MMSE Training)

With truthing issues, the correct-label RVs are not observed, and the loss functions and
empirical risk are functions of them, so their values are uncertain. Let L(g̃(xi;θ), Yi), i = 1,
. . . , N , be the ith loss-function RV, a function of the correct-label RV Yi, and from (33),
write the empirical-risk RV as

Jpri(θ;x,Y ) = R(θ;x,Y ) =
1

N

N∑
i=1

L(g̃(xi;θ), Yi). (34)

We reason that, if a good in-sample estimate of the empirical-risk RV can be obtained
for the training set {x, z,ψ,π}, then training that minimizes this estimate should perform
well. We therefore focus on estimating the empirical-risk RV.

Uncertainty about the empirical-risk RV arises because the correct-label RVs Y are
unobserved. The feature vectors x do not contribute to the uncertainty because they are
known. Given the noisy-label model form p(z|y;ψ)π(y), Bayes’ rule can provide p(y|z;ψ)
but not p(y|z,x;ψ). For these reasons, when estimating the empirical-risk RV, we treat Y
and Z as RVs, but not x. However, in the broader context of learning, the feature vectors
may be treated as RVs.

We adopt the MMSE criterion when estimating the empirical-risk RV. Denote an esti-
mator of R(θ;x,Y ) by R̂(θ;x,Z), where we omit ψ and π from R̂ for brevity. We set the
primary term equal to the MMSE estimator of the empirical-risk RV:

Jpri(θ;x,Z,ψ,π) = R̂MMSE(θ;x,Z) = arg min
R̂

E
[(
R̂(θ;x,Z)−R(θ;x,Y )

)2]
.

The standard result is that the MMSE estimator is the conditional mean of R(θ;x,Y ) given
Z (see (1) or Appendices C and E.4), so

R̂MMSE(θ;x,Z) = Ep(y|z;ψ)

[
R(θ;x,Y )

∣∣Z;ψ
]

(35)

=
1

N

N∑
i=1

Ep(yi|zi;ψi)[L(g̃(xi;θ), Yi)|Zi;ψi] (36)

=
1

N

N∑
i=1

∑
yi∈Y

L(g̃(xi;θ), yi)p(yi|Zi;ψi). (37)

The samples are independent, so R(θ;x,Y ) is approximately normally distributed by the
CLT. The MMSE estimator guesses the conditional mean of this normal RV given Z.
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Given Z = z, the MMSE estimate of the empirical-risk RV is

R̂MMSE(θ;x, z) = Ep(y|z;ψ)

[
R(θ;x,Y )

∣∣z;ψ
]

(38)

=
1

N

N∑
i=1

Ep(yi|zi;ψi)[L(g̃(xi;θ), Yi)|zi;ψi] (39)

=
1

N

N∑
i=1

∑
yi∈Y

L(g̃(xi;θ), yi)p(yi|zi;ψi), (40)

where p(yi|zi;ψi) is the training class posterior13:

p(yi|zi;ψi) =
π(yi)p(zi|yi;ψi)∑
y′i∈Y

π(y′i)p(zi|y′i;ψi)
. (41)

Having found the MMSE estimator of the empirical-risk RV, we can now speak of MMSE
training, which seeks θ∗ that minimizes (40), the MMSE estimate of the empirical-risk RV.
Equation (28) becomes

θ∗ = arg min
θ

[
R̂MMSE(θ;x, z) + λJreg(θ)

]
= arg min

θ

1

N

N∑
i=1

∑
yi∈Y

L(g̃(xi;θ), yi)p(yi|zi;ψi) + λJreg(θ).

MMSE training handles correctly-labeled samples in a natural way. For the ith sample, if
the correct label is known to be `, then p(yi|zi;ψi) = 1(yi = `), and the sample contributes
its usual loss-function value to the empirical-risk term.

The bottom row of Table 9 summarizes training for non-probabilistic models. Rat-
ner et al. (2016, 2017) employed (39) for discriminative models including binary logistic
regression and long short-term memory recurrent neural networks. Khetan et al. (2018,
§4) proposed (40) for arbitrary loss functions, used it for joint estimation of p(z|y) and
training, and provided performance guarantees for binary classification. Neither group of
authors demonstrated the link to MMSE estimation, so this section provides another way
to motivate and arrive at this result.

We close this section by considering the loss function for a single sample. In (36), each
term in the summation corresponds to the MMSE estimator of an individual loss-function
RV L(g̃(xi;θ), Yi), namely

L̂MMSE(g̃(xi;θ),Zi) = Ep(yi|zi;ψi)[L(g̃(xi;θ), Yi)|Zi;ψi], i = 1, . . . , N, (42)

=
∑
yi∈Y

L(g̃(xi;θ), yi)p(yi|Zi;ψi), i = 1, . . . , N. (43)

If the loss function has properties such as non-negativity or convexity, then (43) preserves
such properties because p(yi|zi;ψi) is a probability distribution. Not surprisingly, the
MMSE estimator of the empirical-risk RV is just the average of the MMSE estimators of
the individual loss-function RVs.

13. The training class posterior differs from the testing class posterior (10), which included the predicted
labels and OP parameters. It is the same as (21) in Section 2.4.2.

38



On Truthing Issues in Supervised Classification

3.4.2 Standard Properties

Standard properties of MMSE estimators apply to R̂MMSE(θ;x,Z); see Appendix C.1. It
is unbiased in the Bayesian sense:14

E
[
R̂MMSE(θ;x,Z)

]
= E

[
R(θ;x,Y )

]
. (44)

Likewise, the MMSE estimator of each loss function is also unbiased:

E
[
L̂MMSE(g̃(xi;θ),Zi)

]
= E[L(g̃(xi;θ), Yi)], i = 1, . . . , N. (45)

From (44), the mean of the estimation error is zero:

E
[
R̂MMSE(θ;x,Z)−R(θ;x,Y )

]
= 0,

and the variance of the estimation error equals the MSE:

var
(
R̂MMSE(θ;x,Z)−R(θ;x,Y )

)
= E

[(
R̂MMSE(θ;x,Z)−R(θ;x,Y )

)2]
(46)

=
1

N2

N∑
i=1

E
[
var
(
L(g̃(xi;θ), Yi)

∣∣Zi

)]
. (47)

Appendix E.4 derives (47) and shows that the estimation error converges to a normal RV
with the above moments. Note that the MSE of R̂MMSE(θ;x,Z) is the MMSE. Other
properties, such as the orthogonality principle, also hold but are not relevant here.

The MMSE estimator is a function of the RV Z, so it is also an RV, and (46) and (47)
describe the MMSE considering the distribution of Z. In contrast, the MMSE estimate is
the MMSE estimator evaluated at Z = z and is not random. The MSE that was realized
by (39) or (40) equals the conditional variance of the empirical-risk RV given Z = z:

E
[(
R̂MMSE(θ;x,Z)−R(θ;x,Y )

)2 ∣∣Z = z
]

= var
(
R(θ;x,Y )

∣∣Z = z
)

=
1

N2

N∑
i=1

var
(
L(g̃(xi;θ), Yi)

∣∣Zi = zi
)
.

3.4.3 Gradient Calculation

Training often employs some form of gradient descent to find θ∗. For example, deep neural
network training uses automatic differentiation to calculate the gradient of the empirical
risk. In the ideal case,

∂Jideal

∂θj
=

∂

∂θj

[
Remp(θ;x,y)

]
+ λ

∂Jreg

∂θj
, (48)

and from (33)

∂

∂θj

[
Remp(θ;x,y)

]
=

1

N

N∑
i=1

∂

∂θj

[
L(g̃(xi;θ), yi)

]
=

1

N

N∑
i=1

∂L

∂g̃
(g̃(xi;θ), yi)

∂g̃

∂θj
(xi;θ). (49)

14. Specifically, Ep(z;ψ)[R̂
MMSE(θ;x,Z)] = Ep(z;ψ)

[
Ep(y|z;ψ)[R(θ;x,Y )

∣∣Z;ψ]
]

= Ep(y)[R(θ;x,Y )].
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Training based on MMSE estimation replaces the partial derivative ∂
[
Remp(θ;x,y)

]
/∂θj

with ∂
[
R̂MMSE(θ;x, z)

]
/∂θj . From (40), this term is

∂

∂θj

[
R̂MMSE(θ;x, z)

]
=

1

N

N∑
i=1

∑
yi∈Y

p(yi|zi;ψi)
∂

∂θj

[
L(g̃(xi;θ), yi)

]
=

1

N

N∑
i=1

∑
yi∈Y

p(yi|zi;ψi)
∂L

∂g̃
(g̃(xi;θ), yi)

∂g̃

∂θj
(xi;θ). (50)

It is a convex combination of the partial derivatives of the loss function. It is also compatible
with automatic differentiation methods and inexpensive to compute. For a deep neural
network, calculating g̃(xi;θ) and ∂g̃/∂θj represents the vast majority of the computational
burden, and these quantities must only be computed once—the same burden as in the
ideal case. Calculating ∂L/∂g̃ requires a negligible amount of computation for a typical loss
function, so calculating it for each possible value of yi does not substantially increase the
computational burden.

An example of the partial derivatives for binary logistic regression appears in Section 5.4
and Appendix F.2.

3.4.4 Special Cases

We briefly consider two special cases at opposite extremes. First, suppose that the cor-
rect label can be perfectly recovered from the noisy labels; i.e., p(y′i|zi;ψi) = 1(y′i = yi).
Then MMSE estimation returns the correct values of the empirical risk and loss func-
tion. For example, (40) yields R̂MMSE(θ;x, z) = R(θ;x,y) = Remp(θ;x,y), and (43)
gives L̂MMSE(g̃(xi;θ),Zi) = L(g̃(xi;θ), Yi). Likewise, the partial derivative in (50) reduces
to (49): ∂

∂θj

[
R̂MMSE(θ;x, z)

]
= ∂

∂θj

[
Remp(θ;x,y)

]
.

Second, suppose that the noisy labels provide no information about the correct-label
RVs; i.e., p(z|y;ψ) = p(z;ψ). Then p(y|z;ψ) reduces to π(y), and (37) becomes

R̂MMSE(θ;x,Z) =
1

N

N∑
i=1

∑
yi∈Y

L(g̃(xi;θ), yi)π(yi) = Eπ(y)

[
R(θ;x,Y )

]
.

Regardless of the value of Z, the MMSE estimator always returns the mean of the empirical-
risk RV, taken with respect to the class prior π(y). The partial derivative in (50) behaves
similarly. The MMSE estimator remains unbiased, so (44) still holds. However, the estima-
tor is a constant, so its variance is zero. By the law of total variance, its MSE is as large as
possible and equals the variance of R(θ;x,Y ) (see Appendix C.1, Item 4).

3.4.5 Consistency of the MMSE Estimator

For ideal training, an important reason for minimizing the empirical risk (33) for a class of
predictive models is consistency of the ERM principle: The ideal empirical risk converges
in probability to the minimum achievable risk as N →∞, even though the true distribution
of (Xi, Yi)

N
i=1 is unknown (Vapnik, 1991). The relationship between MMSE estimation of

the empirical-risk RV and consistency of the ERM principle requires further study. In the
meantime, we consider the consistency of the MMSE estimator itself.
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The estimator R̂MMSE(θ;x,Z) is consistent if it converges in probability to R(θ;x,Y )
as N → ∞. In this way, it attains the true value of the empirical-risk RV. Also, an
estimator is mean-square consistent if its MSE goes to zero as N → ∞, and mean-square
consistency implies consistency. Hence, if R̂MMSE(θ;x,Z) is mean-square consistent, then
it is consistent.

From (46) and (47), the MSE of R̂MMSE(θ;x,Z) is

E
[(
R̂MMSE(θ;x,Z)−R(θ;x,Y )

)2]
=

1

N2

N∑
i=1

E
[
var
(
L(g̃(xi;θ), Yi)

∣∣Zi

)]
.

A sufficient condition for when the MMSE estimator is consistent is therefore:

lim
N→∞

1

N2

N∑
i=1

E
[
var
(
L(g̃(xi;θ), Yi)

∣∣Zi

)]
= 0. (51)

If there exists a constant b such that

E
[
var
(
L(g̃(xi;θ), Yi)

∣∣Zi

)]
< b, i = 1, . . . , N, (52)

then limN→∞N
−2
∑N

i=1 E
[
var
(
L(g̃(xi;θ), Yi)

∣∣Zi

)]
< limN→∞ b/N = 0, and (51) is satis-

fied. Hence, if the loss function is bounded, then clearly (52) is fulfilled. If the original loss
function is unbounded, then one may be able to modify it to make it bounded; for example,
once the original loss exceeds some threshold, it could be transformed to asymptotically
approach an upper limit.

3.5 Advantages of MMSE Training

Within the unified view of training, MMSE training for non-probabilistic models has a num-
ber of appealing benefits compared to ML or MAP training for probabilistic models. MMSE
training can continue to use the original loss function and involves a simple modification
to the empirical risk calculation. The MMSE estimator gains standard properties such as
Bayesian unbiasedness. Gradient descent and automatic differentiation can be used with
minor modifications. The MMSE estimator is a consistent estimator of the empirical-risk
RV if the loss function is bounded.

In contrast, the ML or MAP training approach can require new derivations, and it may
not be able to leverage existing loss functions and their gradients. The resulting expressions
could complicate theoretical analysis.

These differences are evident in the example for binary logistic regression, presented in
Section 5.4. Equations for the primary terms and gradients are given in Appendix F.

3.6 Alternative Training Approaches

The unified view does not cover all possible approaches to training, and here we discuss
some alternatives.
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3.6.1 Constructing Weak Losses for Partial Labels

An alternative Bayesian approach by Cid-Sueiro (2012) and Cid-Sueiro et al. (2014) studied
theoretical properties of weak losses for partial labels.15 Labeling used length-C binary-
encoded vectors. For class y, the correct label was one-hot encoded as ȳ = ēy, where the
vector ēj equals one at element j and zero elsewhere. The partial-label vector z̄ was similarly
encoded, but multiple elements could be set to one, so the noisy labeler could indicate more
than one class. The authors considered different constraints on the permitted partial-label
vectors, so the number of possible partial-label vectors, B, could be an integer between C
and 2C .

Recall that s = g̃(x;θ). The authors defined a weak loss Lwk (s, z̄) to be a loss function
designed to operate on partial labels rather than correct ones. They then introduced an
equivalent loss Leq(s, ȳ) for correct labels:

Leq(s, ȳ) = Ep(z̄|ȳ)[L
wk (s, Z̄)|Ȳ = ȳ], (53)

and they showed that

Ep(z̄)[L
wk (s, Z̄)] =

∑
z̄

p(z̄)Lwk (s, z̄)

=
∑
z̄

∑
ȳ

p(ȳ)p(z̄|ȳ)Lwk (s, z̄)

=
∑
ȳ

p(ȳ)
∑
z̄

p(z̄|ȳ)Lwk (s, z̄)

= Ep(ȳ)

[
Ep(z̄|ȳ)[L

wk (s, Z̄)|Ȳ ]
]

(54)

= Ep(ȳ)[L
eq(s, Ȳ )]. (55)

From this relationship they reasoned that training on partial labels with Lwk (s, z̄) will
behave like training on correct labels with Leq(s, ȳ).

Given an original loss function L(s, y) intended for correct labels, the equivalent loss is
Leq(s, ēy) = L(s, y), and one would like to find a corresponding weak loss. To this end, the
authors expanded (53) into a matrix equation:
Leq(s, ē0)
Leq(s, ē1)

...
Leq(s, ēC−1)

=


pZ̄|Ȳ (b̄0|ē0) pZ̄|Ȳ (b̄1|ē0) · · · pZ̄|Ȳ (b̄B−1|ē0)

pZ̄|Ȳ (b̄0|ē1) pZ̄|Ȳ (b̄1|ē1) · · · pZ̄|Ȳ (b̄B−1|ē1)
...

...
. . .

...
pZ̄|Ȳ (b̄0|ēC−1) pZ̄|Ȳ (b̄1|ēC−1) · · · pZ̄|Ȳ (b̄B−1|ēC−1)



Lwk (s, b̄0)
Lwk (s, b̄1)

...
Lwk (s, b̄B−1)

,
(56)

where b̄i denotes the ith possible partial-label vector, i = 0, 1, . . . , B − 1. The matrix
tabulates the conditional distribution p(z̄|ȳ), so it has dimensions C×B. Cid-Sueiro pointed
out that, for B > C, an infinite number of solutions for Lwk (s, z̄) exist.

The MMSE training approach proposed in Section 3.4.1 is also Bayesian, but rather
than design a new loss function for noisy labels, it uses the MMSE estimator L̂MMSE(s,Z)
of an original loss function L(s, Y ) meant for correct labels. MMSE training assumes that

15. Portions of the work by van Rooyen and Williamson (2018) are closely related to this approach.
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the noisy labels do not depend on the feature vector because the noisy-label model has the
form p(z|y)π(y).

From (42) and (43), the MMSE estimator is the conditional mean of the original loss
function given Z and is just a convex combination of the original loss function values for
each possible y, weighted by p(y|Z). For the approach taken by Cid-Sueiro et al., (53)
suggests that the equivalent loss could be interpreted as the MMSE estimate of the weak
loss given Ȳ = ȳ. To find a weak loss for a given equivalent loss, one must solve the matrix
equation (56).

From (45), the MMSE estimator is unbiased in the Bayesian sense, a standard result
obtained by iterated expectations:

Ep(z)[L̂
MMSE(s,Z)] = Ep(z)

[
Ep(y|z)[L(s, Y )|Z]

]
= Ep(y)[L(s, Y )].

Cid-Sueiro et al. obtain a similar relationship, but in the opposite order: (54) and (55) give

Ep(z̄)[L
wk (s, Z̄)] = Ep(ȳ)

[
Ep(z̄|ȳ)[L

wk (s, Z̄)|Ȳ ]
]

= Ep(ȳ)[L
eq(s, Ȳ )].

This relationship corresponds to Bayesian unbiasedness of the MMSE estimator of the weak
loss given Ȳ .

MMSE training conditions on the noisy-label RV Z. After Z = z is observed, it uses
p(y|z) to estimate the original loss function. The work of Cid-Sueiro et al. conditions on
the correct-label RV Ȳ . Before Z̄ is observed, they tabulate p(z̄|ȳ) for all combinations of
z̄ and ȳ, and they solve (56) to calculate the weak loss for every possible realization of Z̄
that might occur.

In summary, these two Bayesian approaches bear some similarities but address truthing
issues differently. Neither one estimates the correct labels. One could be interpreted as
operating in the reverse direction of the other. Cid-Sueiro et al. take the equivalent loss for
correct labels and construct a weak loss for noisy labels. MMSE training takes the noisy
labels and estimates the original loss function for correct labels.

3.6.2 Using Proxy Loss Functions

Another alternative, proposed by Natarajan et al. (2013, 2018), took a classical (i.e., fre-
quentist) view when replacing the original loss function L(s, y) of s = g̃(x;θ) and y with
a proxy loss function designed for noisy labels.16 They considered binary classification
with a single labeler and took the classical viewpoint, so y is unknown but non-random.
Assuming that p(z; y) is known, they devised a proxy loss function Lpr (s, Z) for the noisy-
label RV Z that is an unbiased estimator of L(s, y) in the classical sense, meaning that
Ep(z;y)[L

pr (s, Z)] = L(s, y), ∀y ∈ Y (see Papoulis 1991, §9-2; Kay 1993, §2.3). They then

trained models on z using Jpri(θ;x, z, p(z; y)) = N−1
∑N

i=1 L
pr (g̃(xi;θ), zi).

16. van Rooyen and Williamson (2018) generalized this approach to other situations where a loss function
for correct labels can be modified to account for noisy labels.
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The proxy loss function is the solution of a system of C linear equations in C unknowns:17
pZ;y(0; 0) pZ;y(1; 0) · · · pZ;y(C−1; 0)
pZ;y(0; 1) pZ;y(1; 1) · · · pZ;y(C−1; 1)

...
...

. . .
...

pZ;y(0;C−1) pZ;y(1;C−1) · · · pZ;y(C−1;C−1)




Lpr (s, 0)
Lpr (s, 1)

...
Lpr (s, C−1)

 =


L(s, 0)
L(s, 1)

...
L(s, C−1)

 ,
which is very similar to (56) in the approach by Cid-Sueiro (2012) and Cid-Sueiro et al.
(2014). The matrix is just the conditional distribution p(z; y); as long as it has full rank, a
unique solution for Lpr (s, Z) exists.

This approach exploits knowledge of p(z; y) and does not estimate the correct labels. As
a classical approach, it does not involve a class prior π. Extending it to multiple labelers and
varying combinations of labelers might be difficult. For T labelers, if every labeler provides a
label for every sample, then the proxy loss function must satisfy Ep(z;y)[L

pr (s,Z)] = L(s, y),
∀y ∈ Y, where Z = (Z1, Z2, . . . , ZT ). This requirement yields a system of C linear equations
in CT unknowns, which is underdetermined for T > 1. If the labelers can decline to provide
a label but at least one labeler must provide a label for every sample, then the number of
unknowns becomes (C + 1)T − 1.

In contrast, MMSE training in Section 3.4.1 is a Bayesian method that exploits the class
prior π as well as p(z|y). It employs the MMSE estimator of L(s, Y ), which from (42) is
L̂MMSE(s,Z) = Ep(y|z)[L(s, Y )|Z]. This estimator is unbiased in the Bayesian sense, mean-

ing Ep(z)[L̂
MMSE(s,Z)] = Ep(y)[L(s, Y )] (cf. (45)). The classical and Bayesian viewpoints

are fundamentally different (Kay, 1993, §10.3): The former treats y as an unknown, non-
random quantity, and the latter treats y as an unobserved realization of the RV Y . Classical
unbiasedness is thus not a paramount objective in Bayesian statistics (see Breiman 2001;
Gelman et al. 2013, §4.5). Our training approach uses the original loss function, so a proxy
loss function is unnecessary. Also, from (43), the MMSE estimator is a convex combination
of original loss function values; no system of linear equations must be solved. Finally, MMSE
training readily accommodates multiple labelers and different combinations of labelers for
different samples.

3.6.3 Predicting the Noisy Labels

In another alternative training approach, Sukhbaatar et al. (2015) and Jindal et al. (2016)
trained a composite neural network, which consists of a base network followed by an ad-
ditional layer, to predict the noisy labels z from a single labeler. The loss function is
unchanged, but y is replaced by z. During training, the authors regularized both compo-
nents of the composite network so that the base network learned p(y|x) and the additional
layer learned p(z|y). Following training, the base network can be extracted and used to
predict correct labels.

Let nnb(x;θ) denote the base network, and `a(nnb(x;θ);ψ) denote the additional layer,
where ψ is a C × C matrix representing the layer’s estimate of p(z|y). Then the primary
term for this approach is Jpri(θ,ψ;x, z) = 1

N

∑N
i=1 L

(
`a(nnb(x;θ);ψ), zi

)
.

This approach does not estimate the correct labels, and it jointly estimates both p(y|x)
and p(z|y). It does not consider the class prior π. For a single labeler, no changes to the

17. Natarajan et al. only considered binary classification; we offer the formulation for arbitrary C.
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loss function are necessary, but the loss function would have to be modified to account for
multiple labelers or different combinations of labelers.

3.6.4 Predicting the Noisy Labels with Trace Regularization

For multiple independent labelers, Tanno et al. (2019) proposed jointly training a CNN and
estimating the labelers’ confusion matrices. They used the confusion matrices to adjust
the softmax output of the CNN to obtain predicted scores for the noisy labels z. The
training objective combined a cross-entropy loss term and a trace-regularization term. The
cross-entropy loss was applied to the adjusted CNN outputs and noisy labels z, which
amounts to predicting the noisy labels like Sukhbaatar et al. (2015). Trace regularization
was introduced because, as the authors showed, doing so will drive the estimated confusion
matrices to their actual values, under certain conditions.18 Consequently, as the labelers’
confusion matrices are estimated, the CNN learns to predict the correct labels.

This method does not estimate the correct labels. The estimated confusion matrices can
be used to obtain estimates of p(zt, y) and p(zt|y) for each labeler, as well as π. Tanno et al.
also described some computational advantages of their method compared to the EM-based
methods of Raykar et al. (2010) and Khetan et al. (2018).

3.7 Suboptimal, Infrastructure-Compatible Training

There exists significant existing infrastructure, like software packages or machine-learning
frameworks, that expects correct—or assumed-to-be-correct—labels, and modifying it for
one of the preceding methods might be impractical or costly. Below, we describe some
training methods that are suboptimal but compatible with such infrastructure.

First, label estimation produces an estimate y̌ of the correct-label RVs Y and trains on
{x, y̌} instead of {x,y}. To estimate Y , one can use the related work or apply the MPE cri-
terion as in Section 2.6.1. The MPE estimator is given by hMPE

i = arg minhi E[1(hi(Zi) 6=
Yi)]. The standard result is that the solution is the MAP estimator (see (2) or Appendix D),
so y̌i = arg maxy∈Y p(y|zi;ψi), i = 1, . . . , N . Label estimation is suboptimal (cf. Sec-
tion 1.4) because training should estimate the primary term—e.g., the empirical-risk RV,
as in Section 3.4.1—rather than Y .

Second, voting trains T classifiers, where the tth classifier gt is trained on the samples
and noisy labels—treated as if correct—from the tth labeler only, namely {(xi, zi,t) : zi,t 6=
∅, i = 1, . . . , N}. Given an unlabeled sample x, the predicted label ŷ is chosen by a majority
vote among {gt(x;θt)}Tt=1. This technique ignores estimation theory so it is suboptimal,
and it multiplies training and deployment complexity by T .

Third, sample replication, which was suggested by Raykar et al. (2010), copies each xi
several times, assigns labels to its copies based on p(yi|zi;ψi), and trains on the copies
and their labels. For example, in binary classification, if pYi|Zi

(0|zi;ψi) = 0.2, then xi is
replicated 5 times, with one copy assigned label 0 and four copies assigned label 1. Direct
implementation could multiply the storage and computation requirements for training by
the number of copies made.

18. Sukhbaatar et al. (2015) mentioned this result but applied different regularization for implementational
reasons.
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Figure 5: Binary symmetric broadcast channel.

These methods offer different compromises between accounting for truthing issues and
modifying existing infrastructure. Label estimation makes a hard decision about Y before
training commences, which could introduce mistaken labels into training but requires no
other modifications. Voting considers different hard decisions about Y from the individual
labelers, multiplies deployment complexity by T , and requires a simple voting mechanism.
Sample replication never makes a hard decision about the correct-label RVs Y , offers a quan-
tized approximation of the approaches given in Sections 3.2, 3.3, and 3.4, and it multiplies
training resource requirements by the number of copies, but it does not affect deployment
complexity.

4. Comparing Combinations of Labelers: An Information-Theoretic View

The truthing issues have a simple information-theoretic interpretation. For a single sample,
the correct-label RV Y can be viewed as the input to a channel, and the noisy-label RVs Z =
(Z1, . . . , ZT ) can be viewed as the outputs from the channel.19 Then the mutual information
I(Z;Y ) =

∑
z,y p(z, y) log2

(
p(z, y)/p(z)π(y)

)
quantifies the amount of information that Z

conveys about Y and vice versa (see Cover and Thomas, 1991).

Here, we show that the interpretation allows us to compare different combinations of
labelers in terms of mutual information, at least in theory. In Section 5.5, we demonstrate
that the training and testing techniques of Sections 2 and 3 enable us to exploit that
information in practice.

4.1 Binary Symmetric Broadcast Channel

We illustrate this viewpoint for binary classification. For simplicity, we assume that the
labelers or noisy-label RVs are conditionally independent, although the interpretation ap-
plies for conditionally dependent labelers as well. We also assume that all labelers have the
same conditional distribution and that each labeler assigns a noisy label to every sample,
so it suffices to consider a single sample.

19. In a theoretical context, Lugosi (1992) presented such a channel interpretation for a single labeler.
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We can now introduce a binary symmetric broadcast channel (BSBC) (see Cover and
Thomas, 1991, §14.6), shown in Figure 5 and parameterized by the labeling-error probability
ε ∈ [0, 1]. For t ∈ T and y, zt ∈ {0, 1},

p(zt|y; ε) =

{
1− ε, if zt = y;

ε, if zt 6= y.
(57)

For ε ∈ [0, 1/2], this model is equivalent to setting C = 2, δi ≡ 0, ∀i, and φt ≡ 2ε in (59)
and (60).

The binomial theorem can be used to obtain I(Z;Y |T, ε), the mutual information for
T labelers, each with error probability ε:

I(Z;Y |T, ε) = π(0)

T∑
m=0

(
T

m

)
εm(1− ε)T−m log2

(
εm(1− ε)T−m

)
−

T∑
m=0

(
T

m

)(
π(0)εm(1− ε)T−m + π(1)(1− ε)mεT−m

)
· log2

(
π(0)εm(1− ε)T−m + π(1)(1− ε)mεT−m

)
.

For a fixed value of π(1), I(Z;Y |T, ε) is maximized if ε ∈ {0, 1}, in which case it equals
−π(0) log2 π(0) − π(1) log2 π(1) = H(Y ), the entropy of Y . If ε = 1/2, then the labelers
assign labels equiprobably, providing no information about Y , and I(Z;Y |T, ε) = 0. If
ε ∈ (0, 1/2) ∪ (1/2, 1), then limT→∞ I(Z;Y |T, ε) = H(Y ), and all information about Y
becomes available from Z.

Figure 6 shows I(Z;Y |T, ε) for different values of T and ε when π(1) = 0.1. The plot
is only shown for 0 ≤ ε ≤ 1/2. As ε decreases from 1/2 to zero, I(Z;Y |T, ε) increases from
zero to its maximum as one would expect. For ε 6= 0, I(Z;Y |T, ε) increases with T because
more noisy-label observations are available for estimating Y .

4.2 Equivalent Single Labeler

We can use I(Z1;Y |T1, ε1) and I(Z2;Y |T2, ε2) to compare the information provided by
two different groups of labelers, but it can be helpful to think in terms of a single labeler.
Let I(Z;Y |ε′) denote the mutual information for a single labeler with error probability ε′,
which corresponds to the standard (single-input, single-output) binary symmetric channel
(BSC) (see Cover and Thomas, 1991, §8.1). Given π, T , and ε, we can use binary search to
find ε′ such that I(Z;Y |ε′) = I(Z;Y |T, ε) and express the T labelers as an equivalent single
labeler with error probability ε′. Thus, we can compare different numbers of labelers with
different error probabilities in terms of their equivalent single-labeler mutual information.

Figure 7 shows the relationship between π, ε′, and I(Z;Y |ε′) for the standard BSC.
The mutual information is symmetric about π(1) = 1/2. For a fixed value of ε′, it decreases
as π(1) decreases from 1/2, which indicates that handling truthing issues becomes more
challenging as the classes become more imbalanced.
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Figure 6: Graph of the mutual informa-
tion I(Z;Y |T, ε) of BSBC for
π(1) = 0.1 as a function of T
and ε.

Figure 7: Mutual information I(Z;Y |ε′)
of standard BSC as a function
of class prior π(1) and error
probability ε′.

4.3 Multiple Mediocre Labelers or Single Expert Labeler

Figure 6 also indicates that, for 0 < ε′ < ε < 1/2, I(Z;Y |T, ε) can equal or exceed I(Z;Y |ε′)
if T is sufficiently large. Hence, multiple mediocre labelers can be as informative as—or
more informative than—a single expert labeler. This result helps justify crowdsourcing and
explain its successes. We can again use binary search to find the minimum value of T needed
to satisfy I(Z;Y |T, ε) ≥ I(Z;Y |ε′).

Figure 8 shows example curves for ε′ ∈ {0.01, 0.02, 0.05, 0.10} and π(1) = 0.4. The
curves rise steeply for small values of T before diminishing returns set in; as T → ∞, ε
approaches an asymptote at 1/2. Hence, a few mediocre labelers may suffice to obtain a
small equivalent error probability ε′. Alternatively, one might desire a very small value of
ε′ that no single expert can achieve, but a few human—not superhuman—labelers might
be able to attain it together.

This possibility is reminiscent of boosting (see Schapire, 1990; Freund and Schapire,
1997), in which multiple weak learners are leveraged to achieve the performance of a strong
learner. We have not explored this relationship further but make some brief remarks. In
boosting, the weak learners perform slightly better than random guessing, but the correct
labels are known, and this information is exploited to improve performance. With truthing
issues, the noisy labels might also be quite inaccurate and the correct labels are unobserved,
but the conditional distribution p(z|y;ψ) is known, and it provides information about the
correct labels for training and testing.

The information-theoretic implication of equivalent information is intriguing, but it does
not explain how to exploit the information that Z or Z conveys about Y . Fortunately, the
methods developed in Sections 2 and 3 provide a means to do so. They should produce
better estimates as T grows because the variance of an optimal estimator decreases as more
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Figure 8: Number of labelers needed to achieve the same mutual information as a single
labeler for π(1) = 0.4.

(independent) noisy observations become available.20 For T sufficiently large, the estimates
for the mediocre labelers should become comparable to those for the single expert labeler.
Section 5.5 presents a couple of experiments that verify the implication.

5. Experiments

We conducted a number of experiments to see how the different testing and training meth-
ods performed and to check the implication of equivalent mutual information for different
combinations of labelers.

5.1 Simulation

To exercise the testing methods, we need correct, noisy, and predicted labels. To study
the training methods, we only need correct and noisy labels. These can all be generated
via simulation. Of course, the methods do not use the correct labels, which would not be
available in the intended applications, but simulation lets us compare the results with the
ideal case.

5.1.1 Simulating Correct and Predicted Labels

Simulation for a desired class prior π is simple. For binary classification, the N correct-label
realizations y(0) are drawn independently B(π(1)). For multi-class classification, they are

20. This behavior relates to T , the number of noisy labels per sample, rather than N , the number of samples.
Increasing T means more noisy observations of Y are available to reduce the uncertainty about the correct
label for a sample. Merely increasing N does not provide any more observations for the previous samples.

49



Su

drawn independently from a categorical distribution with prior π and categories 0, 1, . . . ,
C − 1. Denote such a distribution as Cat

(
π, (0, 1, . . . , C − 1)

)
.

Experiments on the testing approaches of Section 2 require simulated predicted labels.
To simulate a binary classifier with desired operating point

(
pdes

D , pdes
FA

)
, the predicted-

label realizations ŷ are drawn independently, with ŷi drawn B(pdes
FA ) if y

(0)
i = 0, and ŷi

drawn B(pdes
D ) if y

(0)
i = 1. Likewise, the performance of a multi-class classifier can be

specified by a desired conditional confusion matrix Kdes, where matrix element Kdes
n|` con-

tains p(ŷ = n|y = `). Thus, each predicted-label realization ŷi is drawn independently
Cat

(
(Kdes

0|ŷi ,K
des
1|ŷi , . . . ,K

des
C−1|ŷi), (0, 1, . . . , C − 1)

)
.

5.1.2 Modeling and Simulating Noisy Labels

Since the samples are independent, we temporarily drop the sample index i while describing
the modeling and simulation of the noisy-label RVs. Until this point, p(z|y;ψ) has remained
completely general, so it allows for conditionally dependent labelers; that is, dependencies
between different noisy-label RVs Zt and Zt′ for the same sample. We have also left ψ
unspecified. For simulation, we need a more concrete model.

First, we assume that the noisy-label RVs for a sample are conditionally independent:

p(z|y;ψ) =
∏
t:zt 6=∅

p(zt|y;ψt), (58)

where ψ = (ψt)t∈T , and ψt contains parameters that determine how the tth labeler labels
the sample. This assumption is primarily for implementational convenience; we could have
used a model with dependent labelers like one of the models in Holodnak et al. (2018).

Second, we let ψt = (δ, φt), where δ ∈ [0, 1] is the sample difficulty, and φt ∈ [0, 1]
is the labeler fallibility. The sample difficulty represents the ambiguity about the correct
label inherent to the sample itself. For example, in image recognition, it could indicate the
amount of blur or noise. The labeler fallibility is an attribute of the tth labeler; it could
reflect an analyst’s experience or a crowdsourcing participant’s trustworthiness.

The model is then

p(z|y; δ, φt) =


1− ε(δ, φt), if z = y ∈ Y;
ε(δ,φt)
C−1 , if z 6= y ∈ Y, z ∈ Y;

0, if z 6∈ Y;

(59)

where the labeling-error probability ε(δ, φt) is a bilinear function:

ε(δ, φt) = (δ − δφt + φt)
C − 1

C
, 0 ≤ δ ≤ 1, 0 ≤ φt ≤ 1. (60)

The labeler chooses Zt to be the correct label with probability 1 − ε(δ, φt) and makes a
mistake with probability ε(δ, φt) ∈ [0, 1]. If a mistake occurs, then Zt is equiprobably
distributed over the C− 1 possible incorrect labels. If δ = φt = 0, then Zt ≡ y, but if either
parameter is non-zero, then ε(δ, φt) increases with both δ and φt. If either δ = 1 or φt = 1,
then Zt is equiprobably distributed over Y.
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Our model resembles the one by Whitehill et al. (2009), but our formulation is slightly
different, and our purpose is significantly different. Their model is for binary classification,
whereas our model applies to arbitrary C. Their model allows for adversarial labelers who
tend to choose the opposite of the correct binary label, but when C > 2, the “opposite” of the
correct label is not obvious. More important, Whitehill et al. concentrated on estimating
the model parameters, while we focus on exploiting the model when its parameters are
known. In the latter case, an adversarial labeler who is known to frequently choose the
opposite of the correct label is actually more informative than a sloppy labeler who assigns
labels equiprobably at random.21

Finally, we again consider all samples and let δ = (δi)
N
i=1 and φ = (φt)

T
t=1. Then

ψ = (δ,φ), and ψi = (δi,φ), so

p(z|y;ψ) =

N∏
i=1

p(zi|yi; δi,φ)

(a)
=

N∏
i=1

∏
t:zi,t 6=∅

p(zi,t|y; δi, φt), (61)

where (a) is from (58).

During simulation, we draw δi, i = 1, . . . , N , and φt, t = 1, . . . , T , independently
from beta or uniform distributions. We also draw a vector η = (ηt)

T
t=1, where ηt is the

approximate probability that the tth labeler provides a label for a sample. Each ηt is drawn
independently U(0, 1), where U(a, b) denotes a uniform distribution over (a, b). For the

ith sample, we repeatedly draw ηi ∼
(
B(ηt)

)T
t=1

with independent Bernoulli-distributed
elements until at least one element of ηi equals unity. We then simulate zi,t in accord
with (59) and (60) for t ∈ {t′ : ηi,t′ = 1}, and we set zi,t = ∅ for t ∈ {t′ : ηi,t′ = 0}.

5.2 Examples of Testing: Binary Classification

A variety of examples that illustrate aspects of the testing approaches for binary classifica-
tion appear here. We emphasize that, except for the ideal case, no correct labels were used
during testing.

5.2.1 Main Testing Example

A simulation was conducted with N = 103, T = 5, π(1) = 0.2,
(
pdes

D , pdes
FA

)
= (0.8, 0.3),

δi ∼ Beta(1, 5), ∀i, and φt ∼ U(0, 0.4), ∀t. The simulator produced δ = (0.098, 0.046,
0.347, . . . , 0.199, 0.221), φ = (0.249, 0.030, 0.387, 0.244, 0.154), and η = (0.727, 0.873,
0.286, 0.657, 0.232). The number of samples labeled by each labeler was 727, 879, 272, 667,
229, respectively; on average, there were about 2.8 noisy labels per sample.

Figure 9 shows the progression of the estimates p̃
(j)
D and p̃

(j)
FA for the iterative methods.

The dotted lines show the ideal values of pD and pFA if the correct labels were known;
the ideal values differ slightly from

(
pdes

D , pdes
FA

)
because they are the result of sampling and

simulation. For MMSE testing, both empirical Bayes methods (Algorithms 1 and 2), the

21. Ipeirotis et al. (2010, §3) made a similar observation in the context of assessing the cost of a labeler.
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estimates improved on each iteration, and both converged to nearly the same final OP
parameters after seven iterations. The suboptimal method of estimating the correct labels
(Algorithm 3) converged after nine iterations; its final OP parameter p̃FA was slightly more
accurate than those of the empirical Bayes methods, but its final OP parameter of p̃D was
considerably less accurate than theirs.

Table 10 summarizes the estimates of all metrics by the techniques presented in Sec-
tion 2, and Figure 10 shows the results for accuracy. Results for the suboptimal methods
that do not fully exploit the predicted labels appear in Section 5.2.2. For MMSE testing
with the empirical Bayes methods (“Ratios” and “Sampling”), the figure displays the es-
timated posterior density, conditional mean, MAP estimate, and 95%-credible region for
ACC . The figure also displays a gray histogram, which was created by taking the final OP
parameters (p̃D, p̃FA) from Algorithm 2, generating 5000 sample realizations of Y from (10),
and computing the empirical accuracy for each realization. The optimal estimates are fairly
close to the ideal accuracy, and the credible regions contain the ideal accuracy. The re-
sults for the two methods are very similar; this behavior was observed for all examples, so
subsequent figures do not include results for Algorithm 2 beyond the histograms.

The figure also shows the estimated accuracy for the suboptimal method in Algorithm 3
(“Estimate labels”). This estimate is reasonably good, but it does not provide any sense of
uncertainty like a credible region does. Also, this algorithm produced inaccurate estimates
of REC or PD (shown next in Figures 11 and 12).

Likewise, the figure displays the T instances of accuracy for each individual labeler
(“Labelers”). We also computed the mean and median of these instances; we applied the
algorithm by Vardi and Zhang (2000) to calculate the multi-dimensional median. The
instances are fairly inaccurate, so their mean and median also yield poor estimates.

The last set of results in the figure are for the fully Bayesian approach. Its estimated
density is very spread out as a result of marginalization over (P̃D, P̃FA), and its conditional
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Scalar Metrics Joint Metrics

Estimate ACC PREC
PD or
REC

PFA F1 (PREC ,REC ) (PD,PFA)

Ideal (correct labels known)
Ideal 0.712 0.421 0.810 0.316 0.554 (0.421, 0.810) (0.810, 0.316)

MMSE Testing: Empirical Bayes estimation
via ratios of jointly normal RVs (Alg. 1)

Conditional mean
0.700a 0.397a

0.795 0.328 0.534 (0.397, 0.795)b (0.795, 0.328)b

MAP estimate 0.795 0.325 0.529 (0.397, 0.795)c (0.796, 0.325)c

Credible (lower) 0.687 0.373 0.764 0.317 0.506 — —
region (upper) 0.713 0.420 0.828 0.335 0.553 — —

MMSE Testing: Empirical Bayes estimation via sampling (Alg. 2)
Conditional mean

0.701a 0.397a
0.796 0.327 0.535 (0.397, 0.796)b (0.796, 0.327)b

MAP estimate 0.796 0.325 0.530 (0.397, 0.796)c (0.796, 0.325)c

Credible (lower) 0.688 0.374 0.765 0.316 0.506 — —
region (upper) 0.714 0.421 0.829 0.334 0.554 — —

Estimation of correct labels (Alg. 3)
Estimate labels 0.720 0.402 0.868 0.316 0.550 (0.402, 0.868) (0.868, 0.316)

Combine metrics from individual labelers
Mean 0.636 0.431 0.615 0.354 0.506 (0.431, 0.615) (0.615, 0.354)
Median 0.622 0.421 0.605 0.354 0.504 (0.421, 0.605) (0.605, 0.354)
Labeler No. of Metrics from
index labels individual labelers

1 727 0.622 0.450 0.574 0.354 0.505 (0.450, 0.574) (0.574, 0.354)
2 879 0.653 0.414 0.643 0.343 0.504 (0.414, 0.643) (0.643, 0.343)
3 272 0.618 0.405 0.605 0.377 0.485 (0.405, 0.605) (0.605, 0.377)
4 667 0.619 0.421 0.587 0.366 0.490 (0.421, 0.587) (0.587, 0.366)
5 229 0.668 0.465 0.667 0.331 0.548 (0.465, 0.667) (0.667, 0.331)

Fully Bayesian estimation
Conditional mean 0.646 0.345 0.664 0.360 0.456 (0.345, 0.664)b (0.664, 0.360)b

MAP estimate 0.662 0.342 0.714 0.349 0.464 (0.347, 0.690)c (0.663, 0.360)c

aFor accuracy or precision, the empirical Bayes conditional mean and MAP estimate are identical.
bThe conditional means for the joint metrics are the same as those for the corresponding scalar metrics.
cThe MAP estimate of a joint metric can differ from the MAP estimates of its individual components.

Table 10: Testing metrics for main testing example.

mean and MAP estimate are not very accurate. This behavior occurred for other metrics,
so we do not show the fully Bayesian method in the subsequent figures.

Next, Figure 11 displays results for the other scalar metrics. MMSE testing using the
empirical Bayes method of Algorithm 1 produced estimates within about 0.025 of each
metric. For REC or PD, the credible region contains the ideal metric, and for the other
metrics, it lies outside the credible region by just 0.001. Table 10 indicates that the credible
regions of Algorithm 2 contained each ideal metric. The suboptimal method of estimating
the correct labels (Algorithm 3) was quite accurate for several metrics but off by 0.058 for
REC or PD. The use of the labelers’ labels often produced very inaccurate estimates.
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Figure 11: Main testing example: Estimates of scalar metric RVs.
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Figure 12: Main testing example: Estimates of joint metric RVs for ROC and P-R analysis.

Figure 12 presents results for P-R and ROC analysis. MMSE testing with empirical
Bayes estimation produced the best joint estimates; its point estimates are closest to the
ideal operating points, and its 95%-credible regions contain the ideal operating points. Es-
timating the correct labels yielded less accurate joint estimates, and it continues to provide
no sense of uncertainty. Using the labelers’ labels gave very poor estimates.

5.2.2 Exploitation of Predicted Labels

Full exploitation of the predicted labels ŷ and OP parameters (p̃D, p̃FA) is an important
characteristic of the most successful testing methods. Figure 13 shows results for the simu-
lation in Section 5.2.1 if the predicted labels are not fully exploited, which corresponds to
the third and fourth suboptimal testing approaches in Section 2.6.1. They use p(zi|yi;ψi)
rather than the testing model (7) with p(ŷi|yi; p̃D, p̃FA)p(zi|yi;ψi), which amounts to setting
jmax = 0 in Algorithm 1, 2, or 3. Compared to Figures 10 and 12, the estimated posterior
and the estimates are quite inaccurate, and the credible regions do not contain the ideal
metrics. These results illustrate the importance of including the predicted labels and OP
parameters during estimation.

5.2.3 Convergence Experiments for Iterative Algorithms

Section 2.4.4 speculated that, when estimating (p̃D, p̃FA) during MMSE testing, the empir-
ical Bayes methods (Algorithms 1 and 2) will converge to the global optimum regardless of
the initial OP parameters. To check this possibility, we conducted two experiments, which
also included the suboptimal correct-label estimation method (Algorithm 3).

First, we used the same simulation as in Section 5.2.1 but varied the initial OP parame-

ters
(
p̃

(0)
D , p̃

(0)
FA

)
over the 10× 10 grid {0.05, 0.15, . . . , 0.95}×{0.05, 0.15, . . . , 0.95}. Table 11

summarizes the results. The empirical Bayes methods converged to nearly the same final
OP parameters every time, with maximum absolute errors of about 0.015. In addition, the
MAC was always satisfied in Algorithm 1. The suboptimal method of Algorithm 3 had
larger pD errors but slightly smaller pFA errors than the empirical Bayes methods. For this
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Figure 13: Examples of estimates of metric RVs if the predicted labels ŷ and OP parameters
(p̃D, p̃FA) are not fully exploited. Compare with Figures 10 and 12. The plots
do not show the labelers’ results because they are unchanged from those figures.

Same Ideal Operating Point, Iterative Estimation Method
Different Initial OP Parameters Ratios Sampling Est. Labels

Error pD − p̃D

Mean 0.0149 0.0131 −0.0473
Std. dev. 3.20× 10−4 4.15× 10−4 1.61× 10−2

Max abs. 0.0153 0.0142 0.0715

Error pFA − p̃FA

Mean −0.0118 −0.0092 −0.0015
Std. dev. 6.34× 10−5 8.56× 10−5 1.49× 10−3

Max abs. 0.0119 0.0095 0.0033

Number of
Iterations

Mean 6.6 6.6 6.2
Std. dev. 1.08 1.05 2.35
Max 8 8 10

Table 11: Estimation error statistics for the final OP parameters (p̃D, p̃FA) for iterative es-
timation methods. For the same ideal operating point (pD, pFA) = (0.810, 0.316),
100 different initial OP parameters were used.

ideal operating point, all algorithms consistently converged to nearly the same final OP
parameters.

Second, we ran another set of simulations that always initialized the iterative algo-

rithms with the default initial OP parameters
(
p̃

(0)
D , p̃

(0)
FA

)
= (1/2, 1/2), but we varied the

desired operating point
(
pdes

D , pdes
FA

)
over the same 10 × 10 grid as above, which produced

100 different ideal operating points. These simulations used π(1) = 0.5, δi ∼ U(0, 1), ∀i,
φt ∼ U(0, 0.5), and ηt ∼ U(0, 1), ∀t. Results appear in Table 12. The empirical Bayes meth-
ods converged every time, with average errors near 0.012 and a maximum absolute error
below 0.045. Again, the MAC was always satisfied in Algorithm 1. The suboptimal method
of Algorithm 3 performed less well. Although its average errors are no more than 0.021, its
standard deviations are on the order of 0.200 and its maximum absolute error exceeds 0.333,
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Different Ideal Operating Points, Iterative Estimation Method
Same Default Initial OP parameters Ratios Sampling Est. Labels

Error pD − p̃D

Mean −0.0113 −0.0114 −0.0141
Std. dev. 1.04× 10−2 9.56× 10−3 1.95× 10−1

Max abs. 0.0314 0.0310 0.3590

Error pFA − p̃FA

Mean 0.0120 0.0122 0.0210
Std. dev. 1.36× 10−2 1.14× 10−2 2.03× 10−1

Max abs. 0.0442 0.0381 0.3369

Number of
Iterations

Mean 10.9 11.2 10.4
Std. dev. 3.15 3.46 3.39
Max 17 18 21

Table 12: Estimation error statistics for the final OP parameters (p̃D, p̃FA) for iterative
estimation methods. For 100 different ideal operating points, the same default
initial OP parameters was used.

indicating that it often became trapped near a local optimum. These results demonstrate
the substantial benefit of the empirical Bayes methods over estimating the correct labels.

5.2.4 Estimation Performance for Different Operating Points

The convergence experiments in the previous section only examine the estimation error of
the final OP parameters (p̃D, p̃FA). For the second set of simulations in that section, we
also compiled statistics on the estimation errors of the final estimates of the scalar and joint
metrics over the 10 × 10 grid {0.05, 0.15, . . . , 0.95} × {0.05, 0.15, . . . , 0.95} of

(
pdes

D , pdes
FA

)
;

i.e., over 100 different ideal operating points.

Figure 14 summarizes the error statistics for the estimated scalar metrics by the differ-
ent testing approaches. For MMSE testing, the point estimates from the empirical Bayes
methods (Algorithms 1 and 2) have average errors of about 0.012, with standard deviations
near 0.011. The scale changes between MMSE testing and the other methods. The other
methods have average errors between 0.001 and 0.043, but their standard deviations range
from about 0.100 to over 0.200, an order of magnitude greater than those for the empirical
Bayes methods.

Figures 15 and 16 display joint error statistics for P-R and ROC analysis. Results
for MMSE testing were similar for both the conditional mean and MAP estimate, so the
figures only show estimation errors for the conditional mean of Algorithm 1 and the MAP
estimate of Algorithm 2. The empirical Bayes methods have average errors near 0.015 in
each dimension. The square roots of the eigenvalues of the error covariance matrix fall
between 0.005 and 0.025. The scale changes between MMSE testing and the other methods.
The latter methods have average errors between 0.005 and 0.043, but the eigenvalues’ square
roots range from about 0.100 to over 0.430.

These results demonstrate the superior estimation performance of the MMSE testing
methods, whose estimates typically lie within 0.010 to 0.040 of the ideal metrics over a
wide range of ideal operating points. They significantly outperform the other methods,
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Figure 14: Scalar metric estimation errors for different testing approaches over 100 different
ideal operating points. The axis limits differ for MMSE testing with empirical
Bayes (upper plots: −0.05 to +0.05) and the other approaches (lower plots:
−0.5 to +0.5). Miniature scatterplots of the estimation errors appear as gray
dots. The average error is marked with a circle and as text above each circle.
Multiples of ±1 and ±2 times the standard deviation of the errors appear as
crosses, and text below the first cross gives the standard deviation.
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Figure 15: P-R analysis estimation errors for different testing approaches over 100 different
ideal operating points. The axis limits differ for MMSE testing with empirical
Bayes (top plots: −0.05 to +0.05) and the other approaches (middle and lower
plots: −0.5 to +0.5). Miniature scatterplots of the estimation errors appear as
gray dots. The average error is marked with a circle and listed as an ordered
pair. Ellipses denote areas that account for 0.6827 and 0.9545 of the density
of a bivariate normal distribution fitted to the errors, and text adjacent to the
semi-major and semi-minor axes gives the square roots of the eigenvalues of the
error covariance matrix.
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Figure 16: ROC analysis estimation errors for different testing approaches over 100 different
ideal operating points. The axis limits differ for MMSE testing with empirical
Bayes (top plots: −0.05 to +0.05) and the other approaches (middle and lower
plots: −0.5 to +0.5). Miniature scatterplots of the estimation errors appear as
gray dots. The average error is marked with a circle and listed as an ordered
pair. Ellipses denote areas that account for 0.6827 and 0.9545 of the density
of a bivariate normal distribution fitted to the errors, and text adjacent to the
semi-major and semi-minor axes gives the square roots of the eigenvalues of the
error covariance matrix.
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Figure 17: Testing example for a single labeler (T = 1) when a constant labeling-error
probability ε0 = 0.1 is assumed for all samples. The mean and median of the
labelers’ metrics are not shown because T = 1.

which frequently yield errors in excess of 0.100, 0.200, or more—unacceptable given that
the metrics lie in [0, 1]. The empirical Bayes approach is clearly more appropriate than the
fully Bayesian one.

5.2.5 Single Labeler and Constant Labeling-Error Probability

The testing methods can also be useful if there is a single labeler (T = 1), and one merely
wants to know how performance would be affected by some worst-case labeling-error prob-
ability ε0. One can simply set δi ≡ 0 and φt ≡ Cε0/(C − 1) in (60) and apply the methods.

Figure 17 shows an example for T = 1 and ε0 = 0.1; other simulation settings were
N = 103, π(1) = 0.6,

(
pdes

D , pdes
FA

)
= (0.90, 0.10), δi ≡ 0, and φt ≡ 0.2. MMSE testing

produces accurate estimates, and its estimated posteriors and credible regions allow one to
understand the possible variability caused by the assumed labeling-error probability. For
0 < ε0 < 1/2, the estimated correct label y̌i is identically equal to the noisy label zi,1, so the
markers for the estimated correct labels and the labelers’ labels lie in the same location.
These suboptimal estimates are much less accurate than those from the empirical Bayes
method.

5.2.6 Small Sample Size

The approximations behind MMSE testing are driven by the CLT, so they should hold for
small N as long as N̂1 and N − N̂1 are greater than or equal to thirty. We conducted
another simulation with N = 70, which produced N̂1 = 37 and N − N̂1 = 33; other
simulation settings were T = 3, π(1) = 0.5,

(
pdes

D , pdes
FA

)
= (0.85, 0.20), δi ∼ Beta(1, 2), ∀i,

and φt ∼ U(0.2, 0.5), ∀t.
Figure 18 displays results for PFA and (PD,PFA). The posteriors are clearly non-

Gaussian, and the 95%-credible regions are large because of the small sample size, but they
contain the ideal metrics. The suboptimal methods again provide less accurate estimates.
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Figure 18: Testing example for small sample size (N = 70), with N̂1 = 37.

5.3 Example of Testing: Multi-Class Classification

For the multi-class testing methods of Section 2.7, we present an example with C = 4,
N = 2000, π = (0.2, 0.3, 0.1, 0.4),

Kdes =


0.75 0.08 0.10 0.07
0.10 0.65 0.12 0.13
0.04 0.06 0.80 0.10
0.10 0.05 0.05 0.80

 ,
T = 5, δi ≡ 0, ∀i, and φt ∼ U(0, 0.4), ∀t. MMSE testing with the empirical Bayes sampling
method (Algorithm 4) used M = 2500 × C = 104. We also extended the method that
estimates the correct labels (Algorithm 3) to multi-class classification. Both algorithms
converged after six iterations. For the individual labelers, we computed their confusion
matrices, scaled the tth labeler’s confusion matrix by N/(no. of labels from tth labeler), and
calculated the mean and multi-dimensional median of the scaled matrices. Apart from the
ideal case, testing did not involve the correct labels.

First, Table 13 compares the estimates of the accuracy RV for the different estimation
methods. MMSE testing produced the most accurate estimates, and the ideal accuracy
value lies squarely inside the 95%-credible region. Estimating the correct labels yielded
a reasonably good estimate of accuracy but again without a sense of uncertainty. Using
the individual labelers’ labels gave accuracies of 0.6586, 0.5667, 0.6397, 0.6698, and 0.5504;
taking the mean or median of these values produces highly inaccurate estimates of the
accuracy.

Second, Table 14 shows the ideal confusion matrix and the estimated confusion matrices
from the different techniques. Ten matrix elements from MMSE testing are closest to the
corresponding elements in the ideal confusion matrix, six from the estimation of correct
labels are closest, one from the labelers’ mean is closest, and one from the labelers’ median
is closest. (There were two ties, so these numbers sum to eighteen rather than sixteen.)

Finally, Table 15 shows the 95%-credible regions of the confusion matrix elements from
MMSE testing. Every credible region contains the corresponding element in the ideal con-
fusion matrix.
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Estimation Method ACC

Ideal (correct labels known) 0.7350

MMSE testing: Estimate Conditional mean 0.7355
conditional confusion MAP estimate 0.7355
matrix via sampling 95%-credible region (0.7282, 0.7427)

Estimate correct labels 0.7390

Combine metrics from each
labeler

Mean 0.6170
Median 0.6397

Table 13: Estimated accuracy for 4-class classification example. Boldface indicates an es-
timate that was closest to the ideal accuracy or a credible region that contained
the ideal accuracy.

Ideal (Correct) Predicted Label
Labels Known) 0 1 2 3

0 290 40 40 39
Correct 1 58 391 68 68
Label 2 8 10 168 27

3 93 43 36 621

MMSE Predicted Label
Testing 0 1 2 3

0 284.8 41.3 36.6 33.9
Correct 1 63.7 391.7 67.0 67.6
Label 2 7.5 7.3 169.8 29.0

3 93.0 43.6 38.7 624.6

Est. Correct Predicted Label
Labels 0 1 2 3

0 288 43 35 37
Correct 1 61 395 70 68
Labels 2 7 4 170 25

3 93 42 37 625

Mean of Predicted Label
Labelers 0 1 2 3

0 238.9 60.7 65.3 54.2
Correct 1 60.7 335.5 66.3 86.3
Label 2 36.7 54.2 130.1 64.8

3 76.6 91.3 48.8 529.6

Median of Predicted Label
Labelers 0 1 2 3

0 254.1 57.4 46.8 56.2
Correct 1 71.1 343.4 67.2 86.9
Label 2 26.1 35.9 145.9 62.3

3 90.6 65.8 46.7 543.6

Table 14: Ideal and estimated confusion matrices for 4-class classification example. Bold-
face indicates that the element was closest to the corresponding element in the
ideal confusion matrix.
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95%-Credible Predicted Label
Regions 0 1 2 3

0 (277.72, 291.95) (35.80, 46.79) (32.27, 40.88) (28.54, 39.22)
Correct 1 (57.75, 69.56) (384.72, 398.77) (61.51, 72.46) (60.74, 74.43)
Label 2 ( 4.79, 10.23) (3.97, 10.67) (163.73, 175.83) (24.03, 33.93)

3 (86.74, 99.25) (38.47, 48.82) (34.34, 42.99) (615.90, 633.21)

Table 15: 95%-credible regions for individual elements of the confusion matrix estimated
by MMSE testing (Algorithm 4) for 4-class classification example.

5.4 Example of Training: Logistic Regression

This section uses logistic regression to illustrate the training approaches in Section 3. We
use the Ionosphere binary-classification data set from the UCI Machine Learning Repository
(see Dua and Graff, 2017), which containsN = 351 samples, each consisting of 34 real-valued
features. Class 0 corresponds to a good radar return and class 1 to a bad radar return.
Ionosphere contains 126 bad radar returns, so π(1) = 0.359. We employ 75%–25% stratified
hold-out validation since multi-fold cross-validation produced cluttered plots that were too
difficult to read. In practice, one could use cross-validation, of course.

Training and testing were conducted for T = 1, 5, 9, and 13. The data set provides
the correct labels; noisy labels were simulated as in Section 5.1.2; hence, the noisy-label
RVs are conditionally independent as in (58), ψi,t = (δi, φt), and (27) reduces to (61).
The settings were δi ∼ Beta(1, 5), ∀i; φt ∼ U(0, 0.5), ∀t; η1 ≡ 1 to force the first labeler
to label every sample; and ηt ∼ U(0.33, 1), t ∈ T \ {1}. The sample-difficulty realization
was δ = (0.367, 0.524, 0.115, 0.181, 0.021, . . . , 0.154), and the labeler-fallibility realization for
T = 13 was φ = (0.079, 0.440, 0.137, 0.207, 0.148, 0.314, 0.290, 0.300, 0.133, 0.142, 0.127,
0.164, 0.072). For each value of T , z consisted of the noisy labels for labeler indexes 1
through T . In fact, the introductory example in Table 1 is an excerpt of z for T = 5.

We consider five classifiers. The ideal classifier performs conventional ML training with
{x,y} and is included for reference. The ML-optimal classifier performs ML training given
{x, z,ψ,π} according to part 1a of the unified view in Section 3.2, and primary term (32)
from Section 3.3.1; details appear in Appendix F.1. The resulting objective function may no
longer be convex, but gradient descent can still be used to find a local optimum. The MMSE-
optimal classifier uses MMSE training according to part 2 of the unified view, primary
term (40) from Section 3.4.1, and gradient components in (50) of Section 3.4.3; details are
in Appendix F.2. The suboptimal, infrastructure-compatible label-estimation and voting
classifiers described in Section 3.7 are also included. We omitted sample replication since
it is essentially a quantized form of training with (32). For all classifier training, we used
L2 regularization and the standard Broyden-Fletcher-Goldfarb-Shanno method.

All testing metrics were calculated using the empirical Bayes method of Algorithm 1,
so, except for the ideal classifier, no correct labels were used during training or testing. Al-
though training could be optimal or suboptimal, testing always applied the same technique.
For each training method, the regularization weight λ was swept over {0.5, 1.0, . . . , 10.0},
producing twenty trained models. For the ideal classifier, we selected the model with the
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largest ideal area under the ROC curve on the held-out testing set. For the other classifiers,
we estimated the ROC curve on the testing set (explained shortly in Section 5.4.2) and
selected the model with the largest estimated area under the ROC curve.

5.4.1 Fixed Decision Threshold

A trained logistic regression model computes g̃(x;θ) ∈ [0, 1] as its estimate of p(y|x;θ) and
compares it against a threshold τ ; the predicted label ŷ is 1 if g̃(x;θ) > τ and 0 otherwise.
This section presents results for the single default threshold τ = 1/2.

Figure 19 displays P-R analysis plots for the held-out testing set as T increases. For
the classifiers trained with noisy labels, contours show the estimated joint posteriors of
(PREC ,REC ), circles show the conditional means, and solid lines indicate the 95%-credible
regions. Normally, the correct labels y would not be available, but since we have the luxury
of knowing them, inverted triangles mark each classifier’s actual performance. The upright,
solid black triangle shows the ideal classifier’s operating point, which is identical for all
values of T .

With T = 1, z conveys little information about y, so the posteriors are spread out,
and the credible regions are quite large. For each training method, the conditional mean
and actual operating point are not very close together, but the actual operating point lies
within the credible region. The suboptimal methods outperform the MMSE-optimal and
ML-optimal classifiers for this case, but the credible regions overlap so much that one could
not make this conclusion without access to the correct labels. This plot also demonstrates
that our training and testing approaches are applicable even for a single, imperfect labeler.

When T = 5, more information about y is available from z, so the credible regions be-
come smaller, and the conditional means become much closer to the actual operating points
for all classifiers. The ML-optimal classifier outperforms the ones that used suboptimal
training, and from the posteriors, one could reasonably expect it to do so. It also happens
to outperform the ideal classifier. The MMSE-optimal classifier performs comparably to
the label-estimation classifier.

For T = 9, the training methods provide similar estimated precisions, with the ML-
optimal classifier achieving greater recall. However, the posteriors overlap substantially, so
one could not claim this without access to the correct labels. The ML-optimal classifier
again slightly outperforms the ideal one. The MMSE-optimal and voting-trained classifier
have identical performance.

By the time T = 13, the posteriors and credible regions are much tighter, and the
conditional means give quite accurate estimates of the actual operating points. The ML-
optimal classifier and the classifier trained with label estimation slightly outperform voting
training, and their actual operating points coincide with that of the ideal classifier. For
this choice of the threshold τ , the MMSE-optimal classifier has the lowest recall. In the
next sections, the threshold is varied, and the MMSE-optimal classifier is seen to have
competitive performance.

5.4.2 Performance Curves

It is also common practice to sweep the threshold τ over its range of possible values to obtain
ROC or P-R curves. Figure 20 displays estimated ROC curves, which are the conditional
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Figure 19: Training example with different numbers of labelers T : Estimated testing results
from MMSE testing with Algorithm 1 on the held-out testing set. The chance
line appears as a black dotted line.
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means of (PD,PFA) from MMSE testing using Algorithm 1, for the different training meth-
ods and numbers of labelers. The estimated performance improves as T increases, although
it does not change much beyond T = 5. When T = 1, it is difficult to estimate perfor-
mance, which results in the jagged estimated ROC curves. As T increases, the estimated
ROC curves begin to display the stepwise shape of the ideal ROC curve.

For each value of T , all of the training methods perform comparably. This behavior
suggests that the regularized suboptimal training methods offer practical alternatives to
training methods that are optimal according to the unified view. This observation dif-
fers from the experiments on testing from Sections 5.2.1, 5.2.4, and 5.2.5, where MMSE
testing (Algorithms 1 and 2) outperformed the method of estimating the correct labels
(Algorithm 3). We posit that this difference reflects the inherently different goals of train-
ing and testing and the presence or absence of regularization. The goal of training is to
learn a predictive model that generalizes well to out-of-sample data beyond the training set
{x, z,ψ,π}. Therefore, training includes regularization, which helps a suboptimal training
method compensate for its inferior estimation ability. In contrast, the goal of testing is to
obtain the in-sample metrics for the testing set {ŷ, z,ψ,π}. Regularization is not called
for in this case, and MMSE testing can provide much better estimation performance over
suboptimal testing methods.

Figure 21 displays the actual ROC curves calculated against the correct labels. These
curves would not be available in practice if truthing issues are present. They show that the
training methods can achieve performance similar to the ideal case, and a comparison with
Figure 20 shows that the estimated ROC curves are reasonably good even when T = 1, and
they are very good for T = 9 or 13.

5.4.3 Performance Curve Posteriors

MMSE testing allows us to estimate the joint posterior of (PD,PFA) or (PREC ,REC ). We
can average the posteriors over all threshold values to obtain the posterior of a ROC or
P-R curve—an important capability when truthing issues are present. Figure 22 shows the
posteriors of the ROC curves for the ML-optimal classifier as T varies. Posterior values
over the range [10−3, 104] are shown using heat maps with a base-10 logarithmic color scale.
The figure also displays the estimated and actual ROC curves for this training method.
We could also compute credible regions for the curves, but we do not show them to avoid
cluttering the figure. Figure 19 already demonstrated the good containment of the credible
regions.

Similarly, Figure 23 shows P-R curve posteriors for the MMSE-optimal classifier. When
τ > 1, the classifier predicts ŷi = 0, ∀i, so recall is zero but precision is undefined, and none
of the curves show a point when rec = 0.

The figures also reveal another benefit of MMSE testing. Although actual performance
is similar to the ideal case when T = 1 or 5, the estimated curves display some large
deviations from the actual ones, and the posteriors have broad support, which indicates
substantial uncertainty about performance. For T = 9 or 13, the estimated curves coincide
closely with the actual ones, and the posteriors have more concentrated support, which
reflects less uncertainty about performance. In the presence of truthing issues, the actual
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Label-est.: Cond. mean from est. posterior
Voting among labelers: Cond. mean from est. posterior

Figure 20: Training example with different numbers of labelers T : Estimated ROC curves
from MMSE testing with Algorithm 1 on the held-out testing set. The chance
line appears as a black dotted line.
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Figure 21: Training example with different numbers of labelers T : Actual ROC curves on
the held-out testing set. The chance line appears as a black dotted line.
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Figure 22: Training example with different numbers of labelers T for ML-trained classifiers:
Estimated ROC curve posteriors from Algorithm 1 on the held-out testing set.
The posteriors appear as heat maps with a base-10 logarithmic color scale; the
color bar ticks correspond to the exponents of the scale. The chance line appears
as a black dotted line.

performance curve will not be available, but the support of the performance curve posterior
can help one understand the potential variability in performance that might occur.

5.5 Examples of Equivalent Mutual Information

In Section 4, the use of mutual information as a basis for comparing different combinations
of labelers implied that multiple mediocre labelers could be as informative as a single expert
labeler. To check the implication, we revisited the Ionosphere data set and simulated noisy
labels with the model of (57), both for a single good labeler with ε′ = 0.05 and for nine
mediocre labelers, each with ε = 0.25. Every labeler provided a noisy label for every
sample. Then I(Z;Y |ε′ = 0.05) = 0.667 bits, and I(Z;Y |T = 9, ε = 0.25) = 0.758 bits.
As in Section 5.4, we trained ML-optimal and MMSE-optimal classifiers using regularized
logistic regression and estimated the testing metric RVs with Algorithm 1 for MMSE testing.
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Figure 23: Training example with different numbers of labelers T for MMSE-trained classi-
fiers: Estimated P-R curve posteriors from Algorithm 1 on the held-out testing
set. The posteriors appear as heat maps with a base-10 logarithmic color scale;
the color bar ticks correspond to the exponents of the scale. The chance line
appears as a black dotted line.
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Figure 24 shows ROC analysis plots for the held-out testing set. The results show that
the classifier trained with the mediocre labelers’ noisy labels performs better than the one
trained with the single good labeler’s noisy labels, which confirms the implication.

As an extreme example, we simulated a single expert labeler with ε′ = 0.01 and 399 poor
labelers, each with ε = 0.45, so I(Z;Y |ε′ = 0.01) = 0.863 bits and I(Z;Y |T = 399, ε =
0.45) = 0.859 bits. The estimated P-R curve posteriors appear in Figure 25; when τ > 1,
both classifiers predict ŷi = 0, ∀i, so recall is zero but precision is undefined, and no points
for rec = 0 are plotted. The curves indicate comparable performance and again confirm the
implication.

6. Summary, Conclusions, and Future Directions

In supervised classification, a number of truthing issues may arise: noisy labels; missing
labels; multiple, conflicting labels for the same sample; and different combinations of labelers
for different samples. This situation involves three components, each of which requires a
model: truthing warrants a noisy-label model, training learns a predictive model, and testing
calls for a testing model. We did not study the problem of formulating and learning a noisy-
label model, which is the subject of much of the related work. Instead, we concentrated on
testing and training, and we began by assuming that a good noisy-label model p(z|y,ψ)π(y)
was available, which makes our work compatible with and complementary to the related
work. Our methods support models with dependent labelers.

6.1 Summary and Conclusions

By applying principles from Bayesian estimation theory, we succeeded in obtaining some
promising and insightful answers to the questions posed in the introduction.

1. How can one test a classifier in the presence of truthing issues?

Given noisy labels z, predicted labels ŷ, noisy-label model parameters ψ, and class
prior π, we developed testing methods that are optimal: they estimate the metric
RVs rather than the correct-label RVs, they fully exploit all available information, and
they optimize a well-defined criterion (MMSE). Our approach is completely separate
from training and applicable beyond the realm of machine learning. For example, it
could be used to reconcile diagnoses made by clinicians or categorizations assigned by
scientists.

To arrive at the methods, we proposed a novel testing model (7), and we used it
to derive approximate marginal posteriors for several scalar metrics, as well as joint
posteriors for ROC and P-R analysis. We then introduced MMSE testing and de-
veloped empirical Bayes algorithms (Algorithms 1 and 2) for iteratively finding the
MMSE estimate of the testing-model parameters from {z, ŷ,ψ,π}. After estimating
the parameters, we calculated Bayesian optimal estimates (MMSE or MAP point es-
timates, or credible regions) of the metric RVs. Finally, we extended the approach to
multi-class classification.

In our experiments, MMSE testing provided excellent estimates of many binary-
classification metrics. Their estimation errors were an order of magnitude smaller
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Figure 24: ROC analysis for a single good labeler (left) and multiple mediocre labelers
(right). The upper graphs show performance for the single threshold τ = 1/2.
The middle graphs show the estimated ROC curve posteriors for ML-trained
classifiers. The lower graphs show the estimated ROC curve posteriors for
MMSE-trained classifiers. The posteriors appear as heat maps with a base-
10 logarithmic color scale; the color bar ticks correspond to the exponents of the
scale. The chance line appears as a black dotted line.
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Figure 25: Estimated P-R curve posteriors for a single expert labeler (left) and many poor
labelers (right). The upper graphs show results for ML-trained classifiers; the
lower graphs show results for MMSE-trained classifiers. The posteriors appear as
heat maps with a base-10 logarithmic color scale; the color bar ticks correspond
to the exponents of the scale. The chance line appears as a black dotted line.
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than those for suboptimal methods like estimating the correct labels or averaging the
metrics from individual labelers. For multi-class classification, MMSE testing outper-
formed the suboptimal methods at estimating accuracy and individual elements of
the confusion matrix.

2. How can one train a classifier in the presence of truthing issues?

With z, ψ, π, and the feature vectors x given, we presented a unified view of training
that is elegant and intuitive. The unified view explains how to train a broad range
of classifiers, and it organizes some of the related work. Each one of our training
approaches is optimal: it employs an appropriate likelihood function, posterior, or
estimator; it fully exploits the available information; and it optimizes a well-defined
penalty or utility criterion. None of the approaches estimates the correct labels.

For probabilistic (i.e., generative or discriminative) models with parameters θ, we
showed that the optimization principle from ideal training can be retained. In ML
training, the likelihood function p(y|x;θ) or p(y,x;θ) is replaced with p(z|x;ψ,θ)
or p(z,x;ψ,θ), respectively. In MAP training, the posterior p(θ|y,x) is replaced
by p(θ|z,x;ψ). For non-probabilistic models, we proposed MMSE training, which
retains the original loss function and minimizes the in-sample MMSE estimate of the
empirical-risk RV. Some related work has proposed the same form of training but
did not use estimation theory to motivate it. We discussed properties of the MMSE
estimator and provided a condition for when the MMSE estimator is a consistent
estimator.

Experiments using binary logistic regression demonstrated the effectiveness of our
training approach, as well as the competitiveness of some suboptimal methods, like
estimating the correct labels or voting among labelers, which are compatible with
existing machine-learning infrastructure. We reasoned that regularization helps the
suboptimal methods compensate for their estimation deficiencies. The experiments
employed our testing methods, thus demonstrating the feasibility of training and test-
ing with noisy labels only. Moreover, they showed that our testing methods can provide
approximate posteriors and optimal estimates of ROC and P-R curves.

3. How can one compare different combinations of labelers with different abilities?

The noisy-labeling process can be viewed as a broadcast channel, so mutual informa-
tion quantifies the amount of information about the correct label conveyed by a group
of labelers, and it facilitates comparison between different combinations of labelers.
As another basis for comparison, any combination of labelers can be represented as an
equivalent single labeler with some corresponding error probability. This observation
implies that multiple mediocre labelers can convey information greater than or equal
to that from a single expert labeler.

The preceding statement is theoretical; it does not explain how to extract this infor-
mation in practice. Fortunately, our training and testing methods provide a way to
do so. The work in this paper culminated in training and testing experiments that
confirmed the implication and showed that our methods can realize its benefits.
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6.2 Expanded Workflow

Truthing issues are a reality in many applications. To address them, we advocate an ex-
panded workflow that combines this work and the complementary related work. Training
must learn two models: a noisy-label model and the desired predictive model. The models
can be learned separately, using methods like those in Section 1.2.1 to learn the noisy-label
model and then using the training techniques from Section 3 to learn the predictive model.
Alternatively, the models can be learned jointly, using techniques like those by Raykar et al.
(2010), Khetan et al. (2018), or Tanno et al. (2019). After both models have been learned,
the predictive model can be tested using Algorithm 1, 2, or 4 from MMSE testing.

6.3 Future Directions

We close with a discussion of areas for future work.

6.3.1 Directly-Related Topics

A number of aspects of MMSE testing merit further study. First, Section 2.2 applied the
CLT to the common RVs U and V , and subsequent manipulations produced the approximate
posteriors of the metric RVs in Section 2.3; it would be useful to consider the case when one
or both of the summations in (8) and (9) contain an insufficient number of terms to justify
the CLT. Second, it would be fulfilling to obtain an expression for the joint posterior (17) of
(PD,PFA) along the chance line pD = pFA. Third, closed-form expressions for the maximum
of (17) and (18) would simplify MAP estimation of the ROC and P-R operating points.
Fourth, Section 2.4.4 discussed convergence of the empirical Bayes methods, but more
detailed study is called for. Finally, Section 2.7 examined multi-class classification, and it
considered accuracy and individual elements of the confusion matrix. One could investigate
other multi-class classification metrics, the joint distribution of the confusion matrix, the
effect of a highly imbalanced class prior, and tactics when the number of classes is large.

Regarding training of a probabilistic predictive model, Section 3.3 showed that ML or
MAP training could be modified for noisy labels. One could apply the forms given in Table 9
to adapt training from the ideal case to the case of truthing issues.

For MMSE training of non-probabilistic predictive models, Section 3.4.3 explained that
its gradient is amenable to automatic differentiation (cf. (50)), so it would be exciting to see
MMSE training applied to deep neural networks. Section 3.4.5 considered consistency of the
MMSE estimator of the empirical-risk RV and gave the simplest of sufficient conditions. One
could derive other conditions or bounds on the estimation error. One could also investigate
conditions under which MMSE training preserves consistency of the ERM principle. The
work of Khetan et al. (2018), Cid-Sueiro (2012), and Cid-Sueiro et al. (2014) could be useful
in this regard.

The information-theoretic view was illustrated with the BSBC in Section 4.1. One
could examine an asymmetric channel (i.e., a channel with different miss and false-alarm
probabilities), a channel with dependent labelers, or a multi-class channel.
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6.3.2 Learning and Labeler Allocation

This paper has assumed that the noisy-label model is known, but in many cases it must
be learned. This requirement creates a variety of allocation problems. As an example of
learning allocation, suppose that one has a small set {x′,y′, z′} with both correct and noisy
labels and a much larger set {x, z} with only noisy labels. How should one partition the sets
for learning the noisy-label model, training the predictive model, and testing the learned
predictive model?

Two examples of labeler allocation follow. Given a labeling budget and costs for labelers
with different abilities, what is the most cost-effective way to acquire labels?22 Similarly,
given a set of samples with different labeling difficulties (e.g., images under a variety of
lighting conditions), how should the labeling effort be distributed across the set?

6.3.3 Extension to Weak Supervision

The ideas in the related work and this paper could be adapted to other forms of supervised
learning that involve noisy annotation, also known as weak supervision. Per Section 1.4, it
would require three models: the usual predictive model, a noisy-annotation model for the
imperfect annotation process, and a testing model that relates the predictions and noisy
annotations. The noisy-annotation model is like the noisy-label model p(z|y)π(y) and pro-
vides estimated probabilities. It should generalize to unseen, out-of-sample realizations of
(Z, Y ), so it will be learned with machine-learning methods. The testing model is analogous
to p(ŷ,z|y) = p(ŷ|y)p(z|y) in (7); it characterizes in-sample performance on the testing set,
so it will be learned with estimation-theoretic methods.

For training, many aspects of MMSE training are likely applicable to weak supervision.
Section 3.4 and Appendix E.4 allow for a generic loss function and noisy-annotation model.
If the annotation set Y is continuous rather than finite, then the summations over Y must
be replaced by integrals (cf. (37), (40), (41), (43), (50)), and techniques for computing or
approximating the integrals will be needed.

For testing of the predictive model, work tailored to the particular metrics will be
required; the MMSE testing approach can provide a general strategy. Testing should follow
the principle of estimating the in-sample metric RV rather than the correct annotation.
First, one should identify a suitable testing model and parameters23 (cf. Section 2.1) and
express the metrics as RVs (Section 2.2). Second, one should obtain the posteriors of
the parameters and metric RVs (Section 2.3); if the samples are independent, then the
CLT may be helpful. Third, one should develop algorithms for estimating the parameters
(Section 2.4). Finally, once the parameters have been estimated, the posteriors of the metric
RVs can be used to find optimal estimates of the metrics (Section 2.5).
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Appendix A. Metrics in Terms of Common RVs

For probability of false alarm, its RV form is

PFA =
1
N

∑N
i=1 1(ŷi = 1 and Yi = 0)

1
N

∑N
i=1 1(Yi = 0)

.

The numerator is

1

N

N∑
i=1

1(ŷi = 1 and Yi = 0) =
1

N

∑
i:ŷi=1

1(Yi = 0)

=
1

N

∑
i:ŷi=1

(1− 1(Yi = 1))

=
1

N

∑
i:ŷi=1

1− 1

N

∑
i:ŷi=1

1(Yi = 1)

=
N̂1

N
− U,

and the denominator is

1

N

N∑
i=1

1(Yi = 0) =
1

N

N∑
i=1

(1− 1(Yi = 1))

= 1− 1

N

N∑
i=1

1(Yi = 1)

= 1− (U + V ).

78



On Truthing Issues in Supervised Classification

The RV form of accuracy is

ACC =
1

N

N∑
i=1

1(Yi = ŷi)

=
1

N

∑
i:ŷi=0

1(Yi = 0) +
1

N

∑
i:ŷi=1

1(Yi = 1)

=
1

N

∑
i:ŷi=0

(1− 1(Yi = 1)) + U

=
1

N
(N − N̂1)− V + U

= U − V − N̂1/N + 1.

The RV form of precision is

PREC =
1
N

∑N
i=1 1(ŷi = 1 and Yi = 1)

1
N

∑N
i=1 1(ŷi = 1)

=
1
N

∑
i:ŷi=1 1(Yi = 1)

1
N N̂1

=
N

N̂1

U.

Fβ is obtained by taking

Fβ = (1 + β2)
PREC · REC

β2PREC + REC
,

substituting the expressions for PREC and REC in Table 8, and performing a little algebra.

Appendix B. Ratios of Jointly Normal Random Variables

This section summarizes the procedure from Marsaglia (2006, 1965) for calculating the
distribution or approximating the moments of the ratio of jointly normal RVs Z ′ and W ′.
Let E[Z ′] = µZ′ , var(Z ′) = σ2

Z′ , E[W ′] = µW ′ , var(W ′) = σ2
W ′ , and ρ = cov(Z ′,W ′)/σZ′σW ′ .

The density of Z ′/W ′ is obtained as follows:

1. Let h = ±σZ′
√

1− ρ2; the sign of h will be determined momentarily. Also let r =
σW ′/h, s = ρσZ′/σW ′ , b = µW ′/σW ′ , and a = ±(µZ′ − sµW ′)/h.

2. Choose the sign of h so that a and b have the same sign. Then the RV T ′ = r(Z ′/W ′−
s) can be expressed in the form (a+X ′)/(b+ Y ′), where X ′ and Y ′ are independent
N (0, 1) RVs. The density of T ′ is

p(t′) =
e−(a2+b2)/2

π(1 + t′2)

(
1 + q(t′)e(q(t′))2/2

∫ q(t′)

0
e−x

2/2 dx,

)
,

where q(t′) = (b+ at′)/
√

(1 + t′2), and the integral can be calculated using the error

function erf(y) = (2/
√
π)
∫ y

0 e
−τ2 dτ .

79



Su

Symbol PD, REC PFA Fβ

Z ′ U (N̂1/N)− U (1 + β2)U

W ′ U + V 1− (U + V ) β2(U + V ) + N̂1/N

µZ′ µU (N̂1/N)− µU (1 + β2)µU

σ2
Z′ σ2

U σ2
U (1 + β2)2σ2

U

µW ′ µU + µV 1− (µU + µV ) β2(µU + µV ) + N̂1/N

σ2
W ′ σ2

U + σ2
V σ2

U + σ2
V β4(σ2

U + σ2
V )

cov(Z ′,W ′) σ2
U σ2

U β2(1 + β2)σ2
U

ρ
σU√
σ2
U+σ2

V

σU√
σ2
U+σ2

V

σU√
σ2
U+σ2

V

Table 16: Parameters for scalar metric RVs with posteriors equal to the ratio Z ′/W ′ of
jointly approximately normal RVs Z ′ and W ′.

3. It follows that Z ′/W ′ = T ′/r + s, so pZ′/W ′(ζ) = |r| · pT ′(r(ζ − s)).

The density p(t′) includes the standard Cauchy density 1/
(
π(1 + t′2)

)
, so technically,

the moments of T ′ of order greater than zero do not exist; i.e.,
∫∞
−∞ t

′ip(t′) dt′ is infinite
for i ∈ {1, 2, . . .}. However, Marsaglia (2006, §4) points out that, in practice, one might
be able to assume that the denominator b+ Y ′ approaches zero with negligible probability,
enabling one to compute the moments (conditioned on this assumption).

For example, if b = 4, then Pr(b + Y ′ ≤ 0) = Pr(Y ′ ≤ −4) ≈ 3.17 × 10−5. Marsaglia
reports that, conditioned on b > 4 (or Y ′ > −4), the mean and variance of T ′ are approxi-
mately µT ′ = a/(1.01 b− 0.2713) and σ2

T ′ = (a2 + 1)/(b2 + 0.108 b− 3.795)− µ2
T ′ .

Finally, Marsaglia also observes that, if a < 2.256 and b > 4, then T ′ can be reasonably
approximated by a normal distribution.

Appendix C. Review of MMSE Estimation

LetA be the unobserved RV,B be the observed RV, and let f(A) =
[
f1(A) · · · fD(A)

]T
be a D-dimensional vector of scalar functions of A, with E[f2

j (A)] < ∞, j = 1, . . . , D.

Define an estimator of f(A) from B as h(B) =
[
h1(B) · · · hD(B)

]T
, and define the

MSE of h(B) by mse
(
h(B),f(A)

)
=
∑D

j=1 E
[(
hj(B) − fj(A)

)2]
. The goal is to find the

MMSE estimator hMMSE = arg minh mse
(
h(B),f(A)

)
.

For Section 2.4.1, A = (PD,PFA), B = (Ŷ ,Z), and f(A) is the identity function

f(A) ≡ A. The estimators are h1(B) = hD

(
Ŷ ,Z,ψ, p̃

(j−1)
D , p̃

(j−1)
FA

)
and h2(B) = hFA

(
Ŷ ,

Z,ψ, p̃
(j−1)
D , p̃

(j−1)
FA

)
, where ψ, p̃

(j−1)
D , and p̃

(j−1)
FA are non-random parameters. In Sec-

tion 2.6.2 on fully Bayesian estimation of a metric RV like accuracy,A = ACC ,B = (Ŷ ,Z),
f(A) is the identity function, and ψ is a non-random parameter. For estimation of
the empirical-risk RV in Section 3.4.1 and Appendix E.4, A = Y , B = Z, f(A) =
Jpri(θ;x,Y ) = J(Y ), and an estimator is h(B) = Ĵ(θ;x,Z,ψ,π) = Ĵ(Z). For estimating
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the ith loss-function RV in Appendix E.4, A = Yi, B = Zi, f(A) = L(g̃(xi;θ), Yi) = `i(Yi),
and an estimator is h(Zi) = ˆ̀

i(xi,θ,Zi) = ˆ̀
i(Zi).

C.1 Standard Results

1. The MMSE estimator is hMMSE(B) = E[f(A)|B], or hMMSE
d (B) = E[fd(A)|B], d =

1, . . . , D; that is, the MMSE estimator is the conditional mean. The MMSE estimator
is an RV because it is a function of B. Given B = b, the MMSE estimate is the non-
random quantity hMMSE(b) = E[f(A)|B = b], or hMMSE

d (b) = E[fd(A)|B = b],
d = 1, . . . , D. See (Van Trees, 1968, §2.4.1), (Papoulis, 1991, §7-5, §8-3), (Kay, 1993,
§10.3), (Kamen and Su, 1999, Theorems 3.1, 3.4), (Oppenheim and Verghese, 2015,
§8.1, §8.2).

2. The MMSE estimator is unbiased: E[hMMSE(B)] = E[f(A)]; see (Papoulis, 1991,
§7-4), (Kay, 1993, §11.6), (Kamen and Su, 1999, §3.3).

3. The estimation error hMMSE(B)− f(A) has the following properties.

(a) The mean is zero: E
[
hMMSE(B)− f(A)

]
= 0 from Result 2.

(b) The total variance equals the MMSE, which is the MSE of the MMSE estimator:∑D
j=1 var

(
hMMSE
j (B)−fj(A)

)
= mse

(
hMMSE(B),f(A)

)
; see (Kay, 1993, §11.6).

(c) (Orthogonality principle) The error is orthogonal to every function w(B) =[
w1(B) · · · wD(B)

]T
: E

[(
hMMSE(B) − f(A)

)T
w(B)

]
= 0; see (Papoulis,

1991, §8-3), (Kamen and Su, 1999, Theorems 3.2, 3.3), (Oppenheim and Vergh-
ese, 2015, §8.2.1).

4. The MMSE estimator can be related to the law of total variance, which states that, for
any RV G with finite variance, var(G) = E[var(G|B)]+var(E[G|B]), and E[var(G|B)]
and var(E[G|B]) are the unexplained and explained variances of G, respectively; see
(Blitzstein and Hwang, 2019, §9.5).

(a) The MMSE is equal to the total unexplained variance of f(A): mse
(
hMMSE(B),

f(A)
)

=
∑D

j=1 E[var(fj(A)|B)]; see (Van Trees, 1968, §2.4), (Kay, 1993, §10.4).

(b) The total variance of the MMSE estimator equals the total explained variance of
f(A):

∑D
j=1 var

(
hMMSE
j (B)

)
=
∑D

j=1 var( E[fj(A)|B] ), which means the MMSE
estimator accounts for as much of the variation of f(A) as possible given B.

(c) Hence, the total variance of f(A) equals the sum of the MMSE (the unexplained
variance) and the variance of the MMSE estimator (the explained variance):

D∑
j=1

var(fj(A)) = mse(hMMSE(B),f(A))︸ ︷︷ ︸∑D
j=1 E[ var(fj(A)|B) ]

+
D∑
j=1

var(hMMSE
j (B))︸ ︷︷ ︸∑D

j=1 var( E[fj(A)|B] )

.

5. Results 2 through 4 apply to the MMSE estimator. For the MMSE estimate given
B = b, the MSE equals the sum of the conditional variances of the functions being es-
timated: mse

(
hMMSE(B),f(A)

∣∣B = b
)

=
∑D

j=1 var(fj(A)|B = b); see (Oppenheim
and Verghese, 2015, §8.1).
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C.2 Proofs and Derivations of Standard Results

The derivation of Result 1 assumes B is continuous but is easily modified if B is discrete.
Expand the MSE as

mse
(
h(B),f(A)

)
=

D∑
j=1

{
E[h2

j (B)]− 2E[hj(B)fj(A)] + E[f2
j (A)]

}
(a)
=

D∑
j=1

{
E[h2

j (B)]− 2E
[

E[hj(B)fj(A)|B]
]

+ E[f2
j (A)]

}
=

D∑
j=1

{∫
p(b)h2

j (b) db− 2

∫
p(b)E[hj(B)fj(A)|B = b] db+ E[f2

j (A)]

}
(b)
=

D∑
j=1

{∫
p(b)h2

j (b) db− 2

∫
p(b)hj(b)E[fj(A)|B = b] db+ E[f2

j (A)]

}
,

where (a) is from iterated expectations, and (b) is because hj(B) is non-random and equal
to hj(b) when conditioned on B = b. For d = 1, . . . , D, take the partial derivative of the
above equation with respect to hd, set it equal to zero, and solve for hd. Doing so gives

∂mse

∂hd
= 2

∫
p(b)hd(b) db− 2

∫
p(b)E[fd(A)|B = b] db, d = 1, . . . , D,

= 2

∫
p(b)

[
hd(b)− E[fd(A)|B = b]

]
db, d = 1, . . . , D.

Since p(b) is a probability distribution, this expression is zero when hd(b) = E[fd(A)|B = b]
for any valid b, which is just the definition of the conditional mean. Also, ∂2mse/∂h2d =
2
∫
p(b) db = 2 > 0, d = 1, . . . , D, so the solution is the unique minimum. Thus, the MMSE

estimator is hMMSE(B) = E[f(A)|B], or hMMSE
d (B) = E[fd(A)|B], d = 1, . . . , D; and the

MMSE estimate given B = b is hMMSE(b) = E[f(A)|B = b], or hMMSE
d (b) = E[fd(A)|B =

b], d = 1, . . . , D. This proves Result 1.

For Result 2, write E[hMMSE(B)] = E
[
E[f(A)|B]

] (a)
= E[f(A)], where (a) applies iter-

ated expectations.

For Result 3a, unbiasedness means E
[
hMMSE(B)− f(A)

]
= 0. For Result 3b, the pre-

ceding relation means
∑D

j=1 var
(
hMMSE
j (B)− fj(A)

)
=
∑D

j=1 E
[(
hMMSE
j (B)− fj(A)

)2]
=

mse
(
hMMSE(B),f(A)

)
. To obtain Result 3c, for any valid j and b, write E

[
(hMMSE
j (B)−

fj(A))wj(B)
∣∣B = b

]
= hMMSE

j (b)wj(b)− E[fj(A)|B = b]wj(b) = E[fj(A)|B = b]wj(b)−
E[fj(A)|B = b]wj(b) = 0. Then E

[(
hMMSE(B)− f(A)

)T
w(B)

]
=
∑D

j=1 E
[(
hMMSE
j (B)−

fj(A)
)
wj(B)

]
=
∑D

j=1 E
[

E
[(
hMMSE
j (B) − fj(A)

)
wj(B)

∣∣B] ] =
∑D

j=1

∫
E
[(
hMMSE
j (B) −

fj(A)
)
wj(B)

∣∣B = b
]
p(b) db =

∑D
j=1

∫
0 · p(b) db = 0.

For Result 4a, write mse
(
hMMSE(B),f(A)

) (a)
=
∑D

j=1 E
[
E
[(
hMMSE
j (B)−fj(A)

)2]∣∣B] =∑D
j=1 E

[
E
[(
fj(A) − E[fj(A)|B]

)2∣∣B]] (b)
=
∑D

j=1 E[ var(fj(A)|B) ], where (a) uses iterated
expectations and (b) applies the definition of conditional variance. Result 4b is because
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hMMSE
j (B) = E[fj(A)|B], so their variances are equal. Applying the law of total variance

to each term in
∑D

j=1 var(fj(A)) yields Result 4c.

For Result 5, conditioning the MSE on B = b gives mse
(
hMMSE(B),f(A)

∣∣B = b
)

=∑D
j=1 E

[(
fj(A) − E[fj(A)|B]

)2∣∣B = b
]

=
∑D

j=1 E
[(
fj(A) − E[fj(A)|B = b]

)2∣∣B = b
] (a)

=∑D
j=1 var(fj(A)|B = b), where (a) uses the definition of conditional variance given B = b.

Appendix D. Review of MPE and MAP Estimation

Additional derivations appear in Van Trees (1968, §2.4.1) and Kay (1998, Ch. 3). Let
Y be a finite RV with domain Y, and let B be the observed, discrete RV. Denote an
estimator of Y given B as h(B). The probability of error of h(B) is perror(h(B), Y ) =
Pr(h(B) 6= Y ) = Ep(y,b)[1(h(B) 6= Y )]. The goal is to find the MPE estimator, namely

hMPE = arg minh perror(h(B), Y ).

For Section 2.6.1, Y = Yi, and B = (Ŷi,Zi) with additional conditioning parameters(
ψi, p̃

(j−1)
D , p̃

(j−1)
FA

)
. For Section 3.7, Y = Yi, and B = Zi with additional parameter ψi.

Write perror(h(B), Y ) = E[1−1(h(B)=Y )] = 1−E
[
E[1(h(B)=Y ) |B]

]
= 1−

∑
b p(b) ·

E[1(h(B) =Y ) |B= b]. The last form is minimized by maximizing the conditional expec-
tation for each b. Then E[1(h(B)=Y ) |B=b] =

∑
y∈Y p(y|b)1(h(b)=y) = pY |B(h(b) | b),

and the maximum occurs when h(b) is the MAP estimate of Y given B = b; i.e., when
h(b) = hMAP(b) = arg maxy∈Y p(y|b). Define the MAP estimator hMAP(B) as the function
of B that returns hMAP(b) when B = b; then the MPE estimator is hMPE(B) = hMAP(B).

Appendix E. Training with Truthing Issues

E.1 Discriminative Model, Random Parameters

Ideal case: Find θ to maximize the posterior p(θ|y,x), given by p(θ|y,x)
(a)
∝ p(y|x,θ)

· p(θ|x)
(b)
= p(θ)

∏N
i=1 p(yi|xi,θ), where (a) uses Bayes’ rule, and (b) is from (29).

Truthing issues: Find θ to maximize p(θ|z,x;ψ), and write p(θ|z,x;ψ)
(a)
∝ p(z|x,θ;ψ)

· p(θ|x;ψ)
(b)
= p(θ)

∏N
i=1

∑
yi∈Y p(zi|yi;ψi)p(yi|xi,θ), where (a) uses Bayes’ rule, and (b) ap-

plies (31).

E.2 Generative Model, Non-Random Parameters

Ideal case: Find θ to maximize the likelihood function p(y,x;θ), which can be written as
p(y,x;θ) = p(x|y;θ)p(y) =

∏N
i=1 p(xi|yi;θ)π(yi).

Truthing issues: Instead, find θ to maximize p(z,x;ψ,θ) =
∏N
i=1 p(zi,xi;ψi,θ)

(a)
=∏N

i=1

∑
yi∈Y p(zi, yi,xi;ψi,θ) =

∏N
i=1

∑
yi∈Y p(xi | zi, yi;ψi,θ)p(zi | yi;ψi,θ)p(yi;ψi,θ)

(b)
=∏N

i=1

∑
yi∈Y p(xi|yi;θ)p(zi|yi;ψi)π(yi), where (a) uses marginalization and (b) applies non-

dependencies.
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E.3 Generative Model, Random Parameters

Ideal case: Find θ to maximize the posterior p(θ|y,x); then p(θ|y,x)
(a)
∝ p(y,x|θ)p(θ)

(b)
=

p(θ)
∏N
i=1 p(xi|yi,θ)π(yi), where (a) uses Bayes’ rule and (b) substitutes the expression for

p(y,x|θ) from the ideal case in Appendix E.2.

Truthing issues: Find θ to maximize p(θ|z,x;ψ). Write p(θ|z,x;ψ)
(a)
∝ p(z,x|θ;ψ)p(θ)

(b)
= p(θ)

∏N
i=1

∑
yi∈Y p(xi|yi,θ)p(zi|yi;ψi)π(yi), where (a) applies Bayes’ rule and (b) obtains

p(z,x|θ;ψ) in the same way that Appendix E.2 obtained p(z,x;ψ,θ).

E.4 Non-Probabilistic Models: MMSE Estimation of Empirical-Risk RV

As shorthand, denote the ith loss-function RV by `i(Yi) = L(g̃(xi;θ), Yi) and the empirical-
risk RV by R(Y ) = R(θ;x,Y ) = N−1

∑N
i=1 `i(Yi), which is (34). Also let R̂(Z) =

R̂(θ;x,Z) be an estimator of R(Y ) with mse(R̂(Z), R(Y )) = E[(R̂(Z) − R(Y ))2]. The
MMSE estimator is Jpri(θ;x,Z,ψ,π) = R̂MMSE(Z) = arg minR̂ mse(R̂(Z), R(Y )).

The standard result (see Appendix C) is that the MMSE estimator is the conditional
mean of R(Y ) given Z: R̂MMSE(Z) = E[R(Y )|Z], which is (35). Then R̂MMSE(Z) =
N−1

∑N
i=1 E[`i(Yi)|Z] = N−1

∑N
i=1 E[`i(Yi)|Zi] = N−1

∑N
i=1

ˆ̀MMSE
i (Zi), which is (36).

The last expression is because, for an estimator ˆ̀
i(Zi) = ˆ̀

i(xi,θ,Zi) of the ith loss-
function RV `i(Yi), the MMSE estimator is ˆ̀MMSE

i (Zi) = arg minˆ̀
i
mse(ˆ̀

i(Zi), `i(Yi)) =

arg minˆ̀
i
E[(ˆ̀

i(Zi) − `i(Yi)2] = E[`i(Yi)|Zi]. Thus, R̂MMSE(Z) equals the average of the
MMSE estimators of the individual loss-function RVs.

Likewise, the estimation error is R̂MMSE(Z)−R(Y ) = N−1
∑N

i=1

(
ˆ̀MMSE
i (Zi)− `i(Yi)

)
,

the average of the estimation errors of the MMSE loss-function estimators. The estimation
error of each of these estimators has E[ˆ̀MMSE

i (Zi) − `i(Yi)] = 0 and var(ˆ̀MMSE
i (Zi) −

`i(Yi)) = mse(ˆ̀MMSE
i (Zi), `i(Yi)) = E[var(`i(Yi)|Zi)]. The samples are independent, so

the estimation errors of the MMSE loss-function estimators are independent, too. By the
CLT, the estimation error of R̂MMSE(Z) converges in distribution to a normal RV with
mean zero and variance var(R̂MMSE(Z) − R(Y )) = N−2

∑N
i=1 var(ˆ̀MMSE

i (Zi) − `i(Yi)) =

N−2
∑N

i=1 mse(ˆ̀MMSE
i (Zi), `i(Yi)) = N−2

∑N
i=1 E[var(`i(Yi)|Zi)], which is (47).

Appendix F. Regularized Logistic Regression Training Equations

Let the feature dimensionality be D, so θ has dimensionality D+ 1. Define x̃T
i =

[
1 xT

i

]
,

and index x̃i and θ from zero rather than one. Logistic regression uses the model Yi|xi,θ ∼
B(g̃(xi;θ)), where g̃(xi;θ) = 1/(1 + e−x̃

T
i θ), so the model assumes p(yi|xi;θ) = (1 −

g̃(xi;θ))1−yi g̃(xi;θ)yi . We use the L2-regularization term Jreg(θ) = 1
2N

∑D
j=1 θ

2
j ; the inter-

cept weight θ0 is not subject to regularization and is omitted from the summation.
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F.1 ML Training

From (26) and (30), ML training in the ideal case seeks θ to minimize

Jideal(θ;x,y) = − 1

N
log p(y|x;θ)︸ ︷︷ ︸
Jpri(θ;x,y)

+λJreg(θ) = − 1

N

N∑
i=1

log p(yi|xi;θ) +
λ

2N

D∑
j=1

θ2
j ,

and some algebra yields

Jideal(θ;x,y) = − 1

N

N∑
i=1

(
(1− yi) log

1

1 + e+x̃T
i θ

+ yi log
1

1 + e−x̃
T
i θ

)
+

λ

2N

D∑
j=1

θ2
j . (62)

For the gradient, the partial derivatives with respect to θj are

∂Jideal

∂θj
=

1

N

N∑
i=1

(
1

1 + e−x̃
T
i θ
− yi

)
x̃i(j) +

λ

N
θj1(j 6= 0), j = 0, 1, . . . , D. (63)

From (28) and (32), ML training with truthing issues means minimizing

JML(θ;x, z,ψ,π) = − 1

N
log p(z|x;ψ,θ)︸ ︷︷ ︸
Jpri(θ;x,z,ψ,π)

+λJreg(θ)

= − 1

N

N∑
i=1

log
1∑

yi=0

p(yi|xi;θ)p(zi|yi;ψi) +
λ

2N

D∑
j=1

θ2
j

(a)
= − 1

N

N∑
i=1

log

 1∑
yi=0

p(yi|xi;θ)
∏

t:zi,t 6=∅

p(zi,t|yi; δi, φt)

+
λ

2N

D∑
j=1

θ2
j

(b)
= − 1

N

N∑
i=1

log

(
1

1 + e+x̃T
i θ

∏
t:zi,t 6=∅

pZi,t|Yi(zi,t|0; δi, φt)

+
1

1 + e−x̃
T
i θ

∏
t:zi,t 6=∅

pZi,t|Yi(zi,t|1; δi, φt)

)
+

λ

2N

D∑
j=1

θ2
j ,

where (a) applies ψi = (δi,φ) along with (61), and (b) is because pY (0|xi;θ) = 1− g̃(xi;θ)
and pY (1|xi;θ) = g̃(xi;θ).

For the gradient, differentiation and some algebra yield

∂JML

∂θj
=

1

N

N∑
i=1

∏
t:zi,t 6=∅ pZi,t|Yi(zi,t|0; δi, φt)−

∏
t:zi,t 6=∅ pZi,t|Yi(zi,t|1; δi, φt)∏

t:zi,t 6=∅ pZi,t|Yi(zi,t|0; δi, φt) + e+x̃T
i θ
∏
t:zi,t 6=∅ pZi,t|Yi(zi,t|1; δi, φt)

· 1

1 + e−x
T
i θ
x̃i(j) +

λ

N
θj1(j 6= 0), j = 0, 1, . . . , D.
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F.2 MMSE Training

For ideal training, rewrite the first term in (62) as the empirical risk (33) by setting s =

g̃(x;θ) = 1/(1 + e−x̃
T
i θ) and defining L(s, y) = −(1− y) log(1− s)− y log s. Then

∂

∂θj

[
L(g̃(x;θ), y)

]
=

(
1

1 + e−x̃Tθ
− y
)
x̃(j). (64)

For the gradient, plugging this equation into (48) and (49) again yields (63).

For MMSE training with truthing issues, we apply (40) and minimize

JMMSE(θ;x, z,ψ,π) = − 1

N

N∑
i=1

(
pY |Z(0|zi;ψi) log

1

1 + e+x̃T
i θ

+ pY |Z(1|zi;ψi) log
1

1 + e−x̃
T
i θ

)
+

λ

2N

D∑
j=1

θ2
j .

For the gradient, plugging (64) into (50) and simplifying yields

∂JMMSE

∂θj
=

1

N

N∑
i=1

(
pY |Z(0|zi;ψi)

1

1 + e−x̃
T
i θ
− pY |Z(1|zi;ψi)

1

1 + e+x̃T
i θ

)
x̃i(j)

+
λ

N
θj1(j 6= 0), j = 0, 1, . . . , D.
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