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Abstract

This paper presents LibMTL, an open-source Python library built on PyTorch, which pro-
vides a unified, comprehensive, reproducible, and extensible implementation framework for
Multi-Task Learning (MTL). LibMTL considers different settings and approaches in MTL,
and it supports a large number of state-of-the-art MTL methods, including 13 optimiza-
tion strategies and 8 architectures. Moreover, the modular design in LibMTL makes it
easy to use and well extensible, thus users can easily and fast develop new MTL meth-
ods, compare with existing MTL methods fairly, or apply MTL algorithms to real-world
applications with the support of LibMTL. The source code and detailed documentations
of LibMTL are available at https://github.com/median-research-group/LibMTL and
https://libmtl.readthedocs.io, respectively.
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1. Introduction

Multi-Task Learning (MTL) (Caruana, 1997; Zhang and Yang, 2022) is an important area
in both machine learning and industrial communities. By learning several related tasks
simultaneously, this learning paradigm could not only improve the generalization perfor-
mance but also reduce the storage cost and inference time, thus it has been applied to
many real-world scenarios such as autonomous driving, natural language processing, rec-
ommendation system, robotic control, bioinformation, and so on (Zhang and Yang, 2022).
Although many State-Of-The-Art (SOTA) MTL models have been proposed recently, most
of them are implemented in their respective frameworks with different experimental details
or there is no public implementation. Therefore, it is not easy to extend existing MTL
algorithms to real-world applications or make a fair comparison with them when designing
new MTL models.

To remedy such situation, we develop a Python library for MTL called LibMTL, which
has three key features. Firstly, LibMTL provides a unified code base to cover different MTL
settings such as the single-input and multi-input problems. Hence, it allows a convenient,
fair, and consistent comparison between different MTL algorithms in various application
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scenarios. Secondly, built on PyTorch (Paszke et al., 2019), LibMTL has supported lots of
SOTA MTL models, especially deep MTL models, including 13 optimization strategies and
8 MTL architectures. Thirdly, LibMTL follows modular design principles, which allows users
to flexibly and conveniently add customized components and make personalized modifica-
tions. Therefore, users can easily and fast develop new MTL models or apply existing MTL
algorithms to their own application scenarios with the support of LibMTL.

2. Settings and Approaches in MTL

Suppose there are T tasks and each the single-input case

task t has its corresponding data set Se“‘”gs{the multi-input case

Dy = {Xtht}' Let f(';eawlzT) de- rehitectur .

notes an MTL model with task-shared MTL arehriecures gradient exact gradients

parameters 6 and task-specific param- optimization | balancing approgjm?ted

eters Y1.p0. MTL aims to train a model approaches - strategies . gradients
loss balancing

f on all data sets Di.7 and expects f
to perform well on each task. There
are usually two settings in MTL: the
single-inp .Ut case Whe're each task has Figure 1: Categories of settings and approaches in
the same input data, i.e., X,,, = X,, for MTL.

any m # n, and the multi-input case

where each task has its own input data,

ie., X,y # X, for any m # n. Those two settings rely on concrete application scenarios
and they are different in the training implementation.

combinations of different architectures
and optimization strategies

There are two main lines of research for MTL. The first line is to design the architecture
in deep neural networks for MTL and it directly determines which parameters are shared
and how to share. The second line is to design the optimization strategy for MTL. Since how
to balance multiple training losses in MTL directly affects the update of the task-shared
parameters 6, several methods are proposed to balance the losses or gradients of all the
tasks in different ways, which are called loss balancing methods and gradient balancing
methods, respectively. Moreover, gradient balancing methods need to calculate the gradi-
ents of the task-shared parameters 6 for every task, which may be computationally intensive
when the number of shared parameters or tasks is large. Thus, Sener and Koltun (2018)
propose to use gradients of feature representations to approximate the exact gradients of
shared parameters, which significantly reduces the computational cost and is followed by
other gradient balancing methods such as GradDrop (Chen et al., 2020) and IMTL (Liu
et al., 2021b). Obviously, those two ways to calculate gradients are different in implemen-
tations. Noticeably, those two lines of research are almost orthogonal to each other as the
optimization methods are mainly related to the objective function, while the design of the
architecture is to learn relationships between tasks. Thus, optimization strategies can be
seamlessly combined with architectures to further improve the performance of MTL.

To summarize, as shown in Figure 1, MTL has two settings and its learning approaches
can be divided into three categories.
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3. The LibMTL Library

In this section, we introduce the LibMTL library, which provides a unified and easy-to-
use framework for MTL as mentioned in Section 2. In Section 3.1, we introduce MTL
methods implemented in LibMTL, which enables consistent and reproducible comparisons
between different MTL algorithms. In Section 3.2, we present the modular design in LibMTL,
which allows flexible and extensible customization for new MTL methods or potential MTL
applications. In Section 3.3, we compare different MTL models on a benchmark data set
based on the LibMTL library. In Section 3.4, we show that LibMTL is more comprehensive
and up-to-date than existing MTL libraries.

3.1 Supported MTL Methods

Currently, LibMTL supports 13 optimization strategies, namely, Equal Weighting (EW),
Gradient Normalization (GradNorm) (Chen et al., 2018), Uncertainty Weights (UW)
(Kendall et al., 2018), MGDA (Sener and Koltun, 2018), Dynamic Weight Average (DWA)
(Liu et al., 2019), Geometric Loss Strategy (GLS) (Chennupati et al., 2019), Projecting
Conflicting Gradient (PCGrad) (Yu et al., 2020), Gradient sign Dropout (GradDrop)
(Chen et al., 2020), Impartial Multi-Task Learning (IMTL) (Liu et al., 2021b), Gradi-
ent Vaccine (GradVac) (Wang et al., 2021), Conflict-Averse Gradient descent (CAGrad)
(Liu et al., 2021a), Nash-MTL (Navon et al., 2022), and Random Weighting (RW) (Lin
et al., 2022). Moreover, it supports 8 MTL architectures, i.e., Hard Parameter Sharing
(HPS) (Caruana, 1993), Cross-stitch Networks (Misra et al., 2016), Multi-gate Mixture-
of-Experts (MMOoE) (Ma et al., 2018), Multi-Task Attention Network (MTAN) (Liu et al.,
2019), Customized Gate Control (CGC) (Tang et al., 2020), Progressive Layered Extraction
(PLE) (Tang et al., 2020), Learning to Branch (LTB) (Guo et al., 2020), and DSelect-
k (Hazimeh et al., 2021). Besides, LibMTL supports combinations of each optimization
strategy and each architecture.

3.2 The Modular Design of LibMTL

Figure 2 shows the overall framework of LibMTL, which is divided into different functional
modules to allow users to flexibly and conveniently add customized designs or modifications
in any module.

In LibMTL, each module has different functionalities. The Dataloader module is respon-
sible for data pre-processing and loading. The LibMTL.1loss module defines loss functions
for each task. The LibMTL.metrics module defines evaluation metrics for all the tasks.
The above three modules are highly dependent on the MTL problem under investigation.
The LibMTL. config module is responsible for all the configuration parameters involved in
the training process, such as the MTL setting (i.e., the multi-input case or not), possible
hyper-parameters of optimization strategies and architectures, the training configuration
(e.g., the batch size, the running epoch, the random seed, and the learning rate), and so
on. This module adopts command-line arguments to enable users to set those configura-
tion parameters conveniently. The LibMTL.Trainer module provides a unified framework
for the training process under different MTL settings and for different MTL approaches as
introduced in Section 2. The LibMTL.utils module implements useful functionalities for
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Figure 2: The overall framework of LibMTL.

the training process such as calculating the total number of parameters in an MTL model.
The LibMTL.architecture and LibMTL.weighting modules contain the implementations
of various architectures and optimization strategies, respectively, as introduced in Section
3.1. The LibMTL.model module includes some popular backbone networks (e.g., ResNet).
The last three modules are highly related to MTL models.

Noticeably, such modular design makes LibMTL easy to use and well-extensible. For ex-
ample, when applying to new applications, users only need to prepare the new dataloaders
and select (or re-define) appropriate loss and metric functions, and they can use existing
MTL methods implemented in LibMTL. Besides, for researchers to develop new MTL meth-
ods such as new architectures, they can easily implement their new method with the support
of LibMTL, make a fair comparison with existing models, and combine the new architecture
with modern optimization methods based on LibMTL.

3.3 Performance Comparison

In Table 1, we compare different MTL methods on the NYUv2 data set (Silberman et al.,
2012) and set up a benchmark for MTL. The NYUv2 data set is an indoor scene un-
derstanding data set and has been used extensively in the MTL literature. It contains 3
tasks: semantic segmentation (denoted by Segmentation), depth estimation (denoted by
Depth), and surface normal prediction (denoted by Normal). The implementation details
and evaluation metrics are following Lin et al. (2022).

3.4 Comparison with Related Libraries

There are some libraries that have been developed for MTL recently. For example, RMTL
(Cao et al., 2019) is implemented in R to support shallow MTL methods such as linear
regularized methods. Another library, i.e., MTLV (Rahimi et al., 2021), only provides a
limited number of MTL architectures for natural language processing. Compared with
them, LibMTL is more comprehensive and up-to-date. Firstly, LibMTL covers more settings
and approaches as introduced in Section 2, which means that LibMTL can be applied to more
application scenarios. Secondly, LibMTL implements more SOTA MTL models, especially
those based on deep neural networks.
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Segmentation Depth Normal

Methods Angle Distance Within ¢°
mlIoUtT PAcct AErr| RErr|
Mean| MED| 11.2517 22.57 307

Different optimization strategies on HPS architecture

EW 53.93 75.53  0.3825 0.1577  23.57 17.01 35.04  60.99 72.05
GradNorm 53.91 75.38  0.3842 0.1571  23.17 16.62 35.80 61.90 72.84
Uw 54.29 75.64  0.3815 0.1583  23.48 16.92 3526  61.17 T72.21
MGDA 53.52 74.76  0.3852 0.1566  22.74 16.00 3712 63.22 73.84
DWA 54.06 75.64  0.3820 0.1564  23.70 17.11 3490 60.74 T71.81
GLS 54.59 76.06  0.3785  0.1555  22.71 16.07 36.89 63.11 73.81
PCGrad 53.94 75.62  0.3804 0.1578  23.52 16.93 35.19  61.17 72.19
GradDrop 53.73 75.54  0.3837 0.1580  23.54 16.96 35.17  61.06 72.07
IMTL 53.63 7544  0.3868 0.1592  22.58 15.85 3744  63.52 74.09
GradVac 54.21 75.67  0.3859 0.1583  23.58 16.91 35.34  61.15 72.10
CAGrad 53.97 75.54  0.3885 0.1588  22.47 15.71 37.77  63.82 74.30
Nash-MTL 53.41 74.95  0.3867 0.1612  22.57 15.94 37.30  63.40 74.09
RLW 54.04 75.58  0.3827 0.1588  23.07 16.49 36.12  62.08 72.94
Different architectures with EW strategy
HPS 53.93 75.53  0.3825 0.1577  23.57 17.01 35.04  60.99 72.05
Cross-stitch ~ 53.44 75.21  0.3818 0.1609  23.15 16.35 36.67 62.14 72.76
MMoE 53.14 75.07  0.3876 0.1613  23.02 16.36 36.45 6240 73.17
MTAN 54.64 75.99  0.3771 0.1557  23.12 16.48 36.15  62.12 72.99
CGC 53.27 75.14  0.3914 0.1632  22.14 15.33 38.67 64.61 74.85
PLE 52.75 74.78  0.3943 0.1609  22.10 15.34 38.51  64.79 75.08
LTB 52.58 74.75  0.3828 0.1607  23.31 16.51 36.34 61.84 72.52

DSelect-k 53.75 75.44  0.3802 0.1569 23.18 16.44 36.29  62.14 72.85

Table 1: Performance comparison on the NYUv2 data set with three tasks. Each experi-
ment is repeated over 3 random seeds and the average performance is reported.
1 ({) indicates that the higher (lower) the value, the better the performance.

4. Conclusion

We present LibMTL, a comprehensive and extensible library for MTL. Built on PyTorch,
it provides a unified training framework for different settings in MTL and possesses many
SOTA MTL algorithms. In our future work, we will continuously maintain this library to
incorporate newly proposed MTL models, update the documentation, add more applica-
tions from different areas, and provide more backbone models such as vision transformer
(Dosovitskiy et al., 2021) and N-grams (Brown et al., 1992).

Acknowledgments

This work is supported by NSFC key grant 62136005 and NSFC general grant 62076118.



LIN AND ZHANG

References

Peter F Brown, Vincent J Della Pietra, Peter V Desouza, Jennifer C Lai, and Robert L
Mercer. Class-based N-gram models of natural language. Computational Linguistics, 18
(4):467-480, 1992.

Han Cao, Jiayu Zhou, and Emanuel Schwarz. RMTL: An R library for multi-task learning.
Bioinformatics, 35(10):1797-1798, 2019.

Rich Caruana. Multitask learning: A knowledge-based source of inductive bias. In Inter-
national Conference on Machine Learning, 1993.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm:
Gradient normalization for adaptive loss balancing in deep multitask networks. In Inter-
national Conference on Machine Learning, 2018.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning
Chai, and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with
gradient sign dropout. In Neural Information Processing Systems, 2020.

Sumanth Chennupati, Ganesh Sistu, Senthil Kumar Yogamani, and Samir A. Rawashdeh.
MultiNet++: Multi-stream feature aggregation and geometric loss strategy for multi-task
learning. In IEEE Conference on Computer Vision and Pattern Recognition Workshop
on Autonomous Driving, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations,
2021.

Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task
learning. In International Conference on Machine Learning, 2020.

Hussein Hazimeh, Zhe Zhao, Aakanksha Chowdhery, Maheswaran Sathiamoorthy, Yihua
Chen, Rahul Mazumder, Lichan Hong, and Ed Chi. Dselect-k: Differentiable selection in
the mixture of experts with applications to multi-task learning. In Neural Information
Processing Systems, 2021.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. In IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W. Tsang. Reasonable effectiveness of random
weighting: A litmus test for multi-task learning. Transactions on Machine Learning
Research, 2022.



LiBMTL: A PYTHON LIBRARY FOR DEEP MULTI-TASK LEARNING

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient
descent for multi-task learning. In Neural Information Processing Systems, 2021a.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qing-
min Liao, and Wayne Zhang. Towards impartial multi-task learning. In International
Conference on Learning Representations, 2021b.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with
attention. In IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts. In ACM SIGKDD
International Conference on Knowledge Discovery € Data Mining, 2018.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch net-
works for multi-task learning. In IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik,
and Ethan Fetaya. Multi-task learning as a bargaining game. In International Conference
on Machine Learning, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, et al. PyTorch: An imperative style, high-
performance deep learning library. In Neural Information Processing Systems, 2019.

Fatemeh Rahimi, Evangelos E Milios, and Stan Matwin. MTLV: A library for building deep
multi-task learning architectures. In ACM Symposium on Document Engineering, 2021.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. In
Neural Information Processing Systems, 2018.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation
and support inference from RGBD images. In Furopean Conference on Computer Vision,
2012.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. Progressive layered extraction
(PLE): A novel multi-task learning (MTL) model for personalized recommendations. In
ACM Conference on Recommender Systems, 2020.

Zirui Wang, Yulia Tsvetkov, Orhan Firat, and Yuan Cao. Gradient vaccine: Investigating
and improving multi-task optimization in massively multilingual models. In International
Conference on Learning Representations, 2021.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea
Finn. Gradient surgery for multi-task learning. In Neural Information Processing Systems,
2020.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEFEE Transactions on Knowl-
edge and Data Engineering, 34(12):5586-5609, 2022.



	Introduction
	Settings and Approaches in MTL
	The LibMTL Library
	Supported MTL Methods
	The Modular Design of LibMTL
	Performance Comparison
	Comparison with Related Libraries

	Conclusion

