Journal of Machine Learning Research 23 (2022) 1-6 Submitted 9/21; Revised 4/22; Published 5/22

ktrain: A Low-Code Library for
Augmented Machine Learning

Arun S. Maiya AMAIYAQIDA.ORG
Institute for Defense Analyses

Alexandria, VA, USA

Editor: Joaquin Vanschoren

Abstract

We present ktrain, a low-code Python library that makes machine learning more ac-
cessible and easier to apply. As a wrapper to TensorFlow and many other libraries
(e.g., transformers, scikit-learn, stellargraph), it is designed to make sophis-
ticated, state-of-the-art machine learning models simple to build, train, inspect, and apply
by both beginners and experienced practitioners. Featuring modules that support text
data (e.g., text classification, sequence tagging, open-domain question-answering), vision
data (e.g., image classification), graph data (e.g., node classification, link prediction), and
tabular data, ktrain presents a simple unified interface enabling one to quickly solve a
wide range of tasks in as little as three or four “commands” or lines of code.

Keywords: low-code machine learning, nlp, computer vision, graphs, tabular data

1. Introduction

Machine learning workflows can be quite involved and challenging for newcomers to master.
Consider the following steps.

1) Model-Building. The training data may reside in a number of different formats from
files in folders to CSVs or pandas dataframes. If the data is large, it must be wrapped in a
generator. Data must be preprocessed in specific ways depending on different factors such as
the language of training texts (e.g., English vs. Chinese) and whether or not transfer learn-
ing is being employed. Learning rates, learning rate schedules, number of epochs, weight
decay, and many other hyperparameters and settings must be selected or implemented.

2) Model-Inspection. Once trained, a model is inspected in terms of both its successes
and failures. This may include classification reports on validation performance, easily iden-
tifying examples that the model is getting the most wrong, and Explainable AT methods to
understand why mistakes were made.

3) Model-Application. Both the model and the potentially complex set of steps re-
quired to preprocess raw data into the format expected by the model must be easily saved,
transferred to, and executed on new data in a production environment.

ktrain is a Python library for machine learning with the goal of presenting a simple,
unified interface to easily perform the above steps regardless of the type of data (e.g., text
vs. images vs. graphs). Moreover, each of the three steps above can be accomplished in

(©2022 Arun S. Maiya.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are
provided at http://jmlr.org/papers/v23/21-1124 . html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-1124.html

MAIYA

as little as three or four lines of code, which we refer to as “low-code” machine learning.
ktrain can be used with any model implemented in TensorFlow Keras (tf.keras).
Unlike automatic machine learning (AutoML) solutions that place a strong emphasis
on automating subsets of the model-building process such as architecture search (e.g., He
et al. (2019)), ktrain instead focuses on either partially or fully automating other aspects
of the machine learning (ML) workflow such as data-preprocessing and human-in-the-loop
model tuning and inspection. Following inspiration from a blog post! by Rachel Thomas of
fast.ai (Howard and Gugger, 2020), we refer to this as Augmented Machine Learning.
Many supported tasks in ktrain allow users to either choose from a menu of state-of-the-
art models or employ a custom model. With respect to text classification, for example, avail-
able models include cutting-edge Transformer models like BERT (Devlin et al., 2018; Wolf
et al., 2019) in addition to fast models such as fastText (Joulin et al., 2016) and NBSVM
(Wang and Manning, 2012) that are amenable to being trained on a standard laptop CPU.
Other features include a learning-rate-finder to estimate an optimal learning rate (Smith,
2018), easy-to-access learning rate schedules like the 1lcycle policy (Smith, 2018) and
Stochastic Gradient Descent with Restarts (SGDR) (Loshchilov and Hutter, 2016), state-of-
the-art optimizers like AdamW (Loshchilov and Hutter, 2017), ability to easily inspect clas-
sifications through Explainable Al and other methods, and a simple prediction API for use
in deployment scenarios. ktrain is also bundled with pretrained, ready-to-use NER models
for English, Chinese, and Russian. ktrain is open-source, free to use under a permissive
Apache license, and available on GitHub at: https://github.com/amaiya/ktrain.

2. Building Models

Supervised learning tasks in ktrain follow a standard, easy-to-use template.

STEP 1: Load and Preprocess Data. This step involves loading data from different
sources and preprocessing it in a way that is expected by the model. In the case of text,
this may involve language-specific preprocessing (e.g., tokenization). In the case of images,
this may involve auto-normalizing pixel values in a way that a chosen model expects. In
the case of graphs, this may involve compiling attributes of nodes and links in the network
(Data61, 2018). All preprocessing methods in ktrain return a Preprocessor instance
that encapsulates all the preprocessing steps for a particular task, which can be employed
when using the model to make predictions on new, unseen data.

STEP 2: Create Model. Users can create and customize their own model using t £ . keras
or select a pre-canned model with well-chosen defaults (e.g., pretrained BERT text clas-
sifier (Devlin et al., 2018), models for sequence tagging (Lample et al., 2016), pretrained
Residual Networks (He et al., 2015) for image classification). In the latter case, the model
is automatically configured by inspecting the data (e.g., number of classes, multilabel vs.
multi-classification). At this stage, both the model and the datasets are wrapped in a
ktrain.Learner instance, which is an abstraction to facilitate training.

1. https://www.fast.ai/2018/07/16/auto-ml2/

https://github.com/amaiya/ktrain
https://www.fast.ai/2018/07/16/auto-ml2/

KTRAIN: A Low-CODE LIBRARY FOR AUGMENTED MACHINE LEARNING

STEP 3: Estimate Learning Rate. Users can employ the use of a learning rate range
test (Smith, 2018) to estimate the optimal learning rate given the model and data. Some
models like BERT have default learning rates that work well, so this step is optional.

STEP 4: Train Model. The ktrain package allows one to easily try different learn-
ing rate schedules. For instance, the fit_onecycle method employs a lcycle policy
(Smith, 2018). The autofit method employs a triangular learning rate schedule (Smith,
2018) with automatic early stopping and reduction of maximal learning rate upon plateau.
Thus, specifying the number of epochs is optional in autofit. The fit method, when
supplied with the cycle_len parameter, decays the learning rate each cycle using cosine
annealing. Users can easily experiment with what works best for a particular problem.

To illustrate ease of use, we provide fully-complete example for text classification. More
specifically, we train a Chinese-language sentiment-analyzer on a dataset of hotel reviews.?

Fine-Tuning a BERT Text Classifier for Chinese:

import ktrain

from ktrain text as txt

STEP 1: load and preprocess data

trn, val, preproc = txt.texts_from_folder('ChnSentiCorp', maxlen=75,
preprocess_mode='bert ")

STEP 2: load model and wrap in Learner

model = txt.text_classifier('"bert', trn, preproc=preproc)

learner = ktrain.get_learner(model,train_data=trn, val data=val)

STEP 3: estimate learning rate

learner.lr_find(show_plot=True)

STEP 4: train model

learner.fit_onecycle(2e—5, 4)

1

Note that there is nothing special we need to do to support Chinese versus other languages
like English. The language and character encoding are auto-detected. Moreover, models are
configured automatically through data inspection. For instance, the data is automatically
analyzed to determine the number of categories, whether or not categories are mutually-
exclusive or not, and if targets are numerical or categorical. The model is then auto-
configured appropriately. A similar set of steps can be used for a variety of other tasks such
as image classification. A unified interface to different and disparate machine learning tasks
reduces cognitive load and allows users to focus on more important tasks that may require
domain expertise or are less amenable to automation.

3. Non-Supervised ML Tasks

All the examples covered thus far involve supervised machine learning. Other tasks such as
training unsupervised topic models to discover latent themes in document sets or using pre-
trained NER models follow slightly different steps than those described previously. Despite
involving a different pipeline, these non-supervised tasks also employ a low-code API and
can be implemented in as little as three lines of code. To illustrate this, we provide a code
example for a fully-functional, end-to-end, open-domain question-answering system

2. https://github.com/Tony607/Chinese_sentiment_analysis

https://github.com/Tony607/Chinese_sentiment_analysis

MAIYA

using the well-studied 20 Newsgroups dataset.?> We will first load the dataset into a Python
list called docs using scikit-learn (Pedregosa et al., 2011). The basic idea here is to
use the document set as a knowledge base that can be issued natural language questions
to receive exact answers. In this case, we would like to issue questions about the subject
matter buried in the 20 Newsgroups dataset and receive exact answers. To accomplish this,
the following steps are performed:

1. Index documents to a search engine.
2. Use the search index to locate documents that contain words in the question.

3. Extract paragraphs from these documents for use as contexts and use a BERT model
pretrained on the SQuAD dataset to parse out candidate answers.
4. Sort and prune candidate answers by confidence scores and returns results.
This entire workflow to build an end-to-end, open-domain question-answering (QA) sys-
tem can be implemented with a surprisingly minimal amount of code with ktrain:

Building an End-to-End Open-Domain QA System in ktrain

build open—domain QA system

from ktrain.text.ga import SimpleQA
SimpleQA.initialize_index('/tmp/myindex")
SimpleQA.index_from_list(docs, '/tmp/myindex
ga = SimpleQA('/tmp/myindex")

', commit_every=len (docs))

ask a question
ga.ask('When did the Cassini probe launch?') # returns ”October of 1997~

As shown above, upon building the QA system in only 3 lines of code, we can submit
natural language questions and receive exact answers. In the example shown, we use the ask
method to submit the question, “When did the Cassini probe launch?”. The candidate
answer with the highest confidence score returned by the ask method is the correct answer
of “October of 1997.” Note that, for document sets that are too large to fit into a Python
list, one can index documents using index_from_folder instead of index_from_list.
Many additional code examples are available on the GitHub repository.4

4. Comparison to Related Libraries

Table 1 compares ktrain to popular low-code and AutoML libraries in their out-of-the-box
support for a variety of machine learning tasks. Related libraries such as fastai (Howard
and Gugger, 2020) and ludwig (Molino et al., 2019) in addition to AutoML tools like
AutoKeras (Jin et al., 2019) and AutoGluon (Erickson et al., 2020) lack some key “pre-
canned” features in ktrain, which has the strongest support for natural language processing
and graph-based data. Support for additional features is planned for the future.

5. Conclusion

This work presented ktrain, a low-code platform for machine learning. ktrain currently in-
cludes out-of-the-box support for training models on text, vision, graph, and tabular

3. http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
4. https://github.com/amaiya/ktrain/tree/master/examples

http://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://github.com/amaiya/ktrain/tree/master/examples

KTRAIN: A Low-CODE LIBRARY FOR AUGMENTED MACHINE LEARNING

Table 1: A comparison of ML tasks supported out-of-the-box in popular low-code
and AutoML libraries for tabular, image, audio, text and graph data.

Task ktrain fastai Ludwig AutoKeras AutoGluon
Tabular: Classification/Regression v v v v v
Tabular: Causal Machine Learning v

Tabular: Time Series Forecasting v v

Tabular: Collaborative Filtering v

Image: Classification/Regression v v v v v
Image: Object Detection prefitted* v v
Image: Image Captioning prefitted® v

Image: Segmentation v

Image: GANs v

Image: Keypoint/Pose Estimation v

Audio: Classification/Regression v

Audio: Speech Transcription prefitted* v

Text: Classification/Regression v v v v v
Text: Sequence-Tagging v v

Text: Unsupervised Topic Modeling v

Text: Semantic Search v

Text: End-to-End Question-Answering *

Text: Zero-Shot Learning v

Text: Language Translation prefitted* v

Text: Summarization prefitted® v

Text: Text Extraction v

Text: QA-Based Information Extraction /*

Text: Keyphrase Extraction v

Graph: Node Classification v

Graph: Link Prediction v

*Pre-fine-tuned models that can be applied with no training required are denoted as prefitted.
Question-answering models can also be applied with no training or may be further fine-tuned.

data. As a simple wrapper to TensorFlow Keras, it is also sufficiently flexible for use with
custom models and data formats, as well. Inspired by other low-code (and no-code) open-
source ML libraries such as fastai (Howard and Gugger, 2020) and 1udwig (Molino et al.,
2019), ktrain is intended to help further democratize machine learning by enabling begin-
ners and domain experts with minimal programming or data science experience to build
sophisticated machine learning models with minimal coding. It is also a useful toolbox for
experienced practitioners needing to rapidly prototype deep learning solutions.

References

CSIRO’s Data6l. Stellargraph machine learning library. https://github.com/
stellargraph/stellargraph, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and
Alexander Smola. Autogluon-tabular: Robust and accurate automl for structured data.
arXiv preprint arXiw:2003.06505, 2020.

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

MAIYA

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. arXiv
preprint arXiv:1908.00709, 2019.

Jeremy Howard and Sylvain Gugger. Fastai: A layered api for deep learning. Information,
11(2):108, Feb 2020. ISSN 2078-2489. doi: 10.3390/info11020108. URL http://dx.
doi.org/10.3390/inf011020108.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture
search system. arXiv preprint arXiv:1806.10282, 2019.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for
efficient text classification. arXiv preprint arXiv:1607.01759, 2016.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. Neural architectures for named entity recognition. arXiv preprint
arXiw:1603.01360, 2016.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXw preprint arXiw:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. Ludwig: a type-based declarative
deep learning toolbox. arXiv preprint arXiv:1909.07930, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 —
learning rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820,
2018.

Sida Wang and Christopher D. Manning. Baselines and bigrams: Simple, good sentiment
and topic classification. In Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers - Volume 2, ACL ’12, page 90-94, USA, 2012.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew.
Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

http://dx.doi.org/10.3390/info11020108
http://dx.doi.org/10.3390/info11020108

	Introduction
	Building Models
	Non-Supervised ML Tasks
	Comparison to Related Libraries
	Conclusion

