
Journal of Machine Learning Research 23 (2022) 1-5 Submitted 2/21; Revised 6/22; Published 9/22

JsonGrinder.jl: automated differentiable neural architecture
for embedding arbitrary JSON data

Šimon Mandĺık simon.mandlik@gmail.com
AIC, FEE, Czech Technical University in Prague
Avast Software s.r.o.

Matěj Račinský racinsky.matej@seznam.cz
Avast Software s.r.o.

Viliam Lisý viliam.lisy@avast.com
AIC, FEE, Czech Technical University in Prague
Avast Software s.r.o.

Tomáš Pevný pevnak@protonmail.ch

AIC, FEE, Czech Technical University in Prague

Avast Software s.r.o.

Editor: Andreas Mueller

Abstract

Standard machine learning (ML) problems are formulated on data converted into a suitable
tensor representation. However, there are data sources, for example in cybersecurity, that
are naturally represented in a unifying hierarchical structure, such as XML, JSON, and
Protocol Buffers. Converting this data to a tensor representation is usually done by manual
feature engineering, which is laborious, lossy, and prone to bias originating from the human
inability to correctly judge the importance of particular features. JsonGrinder.jl is a
library automating various ML tasks on these difficult sources. Starting with an arbitrary
set of JSON samples, it automatically creates a differentiable ML model (called HMILnet
), which embeds raw JSON samples into a fixed-size tensor representation. This embedding
network can be naturally extended by an arbitrary ML model expecting tensor inputs in
order to perform classification, regression, or clustering.

1. Motivation { "mac": "00:04:4b:a9:c1:f3",

"ip": "192.168.1.122",

"services": [{ "protocol": "udp", "port": 5353 },

{ "protocol": "tcp", "port": 6466 }],

"upnp": [{ "model_name": "AirReceiver",

"manufacturer": "SoftMedia Inc.",

"model_description": "AirReceiver - Media Renderer",

"services": ["urn:upnp-org:serviceId:AVTransport",

"urn:upnp-org:serviceId:RenderingControl"]},

{ "model_name": "SHIELD Android TV",

"manufacturer": "NVIDIA",

"services": []}],

"mdns_services": ["_airplay._tcp.local.",

"_nv_shield_remote._tcp.local."]}

Fig. 1: A part of JSON sample from the De-
vice ID challenge (CSP, 2019).

The last decade has witnessed a depar-
ture from feature engineering to end-to-end
systems taking raw data as an input. It
substantially reduced the human effort and
increased performance for example in im-
age recognition (Krizhevsky et al., 2017),
natural language processing (Devlin et al.,
2019), or game-playing tasks (Silver et al.,
2017). There is a plethora of algorithms (and libraries) for creating classifiers, regressors,
and other models when thr raw input is a fixed-dimensional tensor (images), sequences
(text) or general graphs. In contrast, a lot of data used in the enterprise sector (e.g., data

c©2022 Šimon Mandĺık, Matěj Račinský, Viliam Lisý, Tomáš Pevný.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-0174.html.

https://github.com/CTUAvastLab/JsonGrinder.jl
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-0174.html


Mandĺık, Račinský, Lisý, Pevný

exchanged by web services) are stored in a hierarchically structured serialization formats
like JSON, XML, Protocol Buffer (Varda, 2008), or Message Pack (Furuhashi, 2010). Its
structure resembles a tree with leaves being strings, numbers, or other primitive types; and
internal nodes forming either arbitrarily long lists of subtrees (e.g. services in Fig. 1) or
possibly incomplete sets of key-value pairs (e.g., elements of upnp in Fig. 1). Let us call
them Hierarchical Multiple Instance Learning (HMIL) data, which refers to the hierarchi-
cal structure and to multiple instance learning problems, as introduced in Dietterich et al.
(1997). HMIL data cannot be naturally represented as fixed vectors without the laborious
and lossy feature engineering, and it cannot be represented as plain sequences without losing
the key information captured by its structure (e.g., leaf data types, irrelevance of ordering
of key-value pairs).

Sample Accuracy
Dataset Size Default Tunned Comp.
Device ID 0.1k-0.3M 0.935 0.971 0.967
EMBER 2018 3k-6M 0.951 0.968 0.969
Mutagenesis 4k-8k 0.886 0.909 0.912

Table 1: Accuracy of HMILnet with parameters from tu-
torial (Default), with tuned hyperparameters
(Tuned), and that of SOTA solution (Comp.).

The proposed framework solves this in
a very general way. This is demonstrated
on a range of uncurated datasets, mod-
ifying only the path to the input data.
In the Device ID challenge (CSP, 2019)
hosted by kaggle.com, the samples orig-
inate from a network scanning tool. In
EMBER (Anderson and Roth, 2018), the samples were produced by a binary file ana-
lyzer. Mutagenesis (Debnath et al., 1991) describes molecules trialed for mutagenicity on
Salmonella typhimurium. Table 1 shows that the default setting of our framework, where
the JSON embedding is followed by a simple feed-forward classification network, reaches a
very good performance off-the-shelf (Default), while further tuning (Tunned) allows reach-
ing the performance of competing approaches (Comp.) taken from CSP (2019) and Loi
et al. (2021). Experimental details can be found at https://github.com/CTUAvastLab/

JsonGrinderExamples. Woof and Chen (2020) also describe a framework for hmil data,
but, according to limited comparison therein JsonGrinder.jl performs better.

2. Background on Hierarchical Multiple Instance Learning

The set of all possible HMIL data samples, H, is defined recursively. Any data type that
can be conveniently represented as a fixed-size vector (i.e., integer, float, string categorical
value) is an atomic HMIL sample from a set A ⊆ H. More complex HMIL samples are
created using two constructions: sets – {x1, x2, . . . , xn} ∈ H for xi ∈ H; and dictionaries
– {(ki, vi)|i ∈ 1 . . . k} ∈ H for ki ∈ A, vi ∈ H. Keys ki in the dictionaries are identifiers
of properties with a semantic meaning (e.g., mac, ip, services) rather than plain carriers
of information. In other words complex HMIL samples contain other HMIL samples as
children.

y

"00:04:4b:a9:c1:f3"

f1
"192.168.1.122"

f2

g1
1
n

∑
5353"udp"

f3f4

6466"tcp"

f3f4 g2

1
n

∑
"AirReceiver"

"SHIELD Android TV"

. . .
f6

. . .

f6

Fig. 2: A sketch of a suitable model for pro-
cessing the document in Figure 1.

It is common to assume that samples
in one dataset obey a fixed schema, which
means that if data in a particular set are
atoms, they are of the same type and if they
are more complex samples, they follow the
same sub-schema. The same should hold
for values under a specific dictionary key in

2

kaggle.com
https://github.com/CTUAvastLab/JsonGrinderExamples
https://github.com/CTUAvastLab/JsonGrinderExamples
https://github.com/CTUAvastLab/JsonGrinder.jl


JsonGrinder

different samples. These assumptions are not necessary for our framework, but they are
needed for the generalization to unseen samples. Some data formats enforce a schema, e.g.
ProtocolBuffer and to some extent XML, otherwise the schema can be derived automatically
from a dataset.

3. Overview and Design create a schema from samples

create an extractor from the schema

prepare the data using the extractor

create the model

train the model

Fig. 3: Steps to create a model.

The key idea of processing HMIL data is creating
a hierarchy of trainable embeddings, which gradually
project atoms, sets, and dictionaries to fixed-sized vectors
(see Pevný and Kovař́ık (2019) for the extension of the
universal approximation theorem). By knowing that child
data-nodes are always projected by the child-embeddings
to vectors, the embeddings can be arbitrarily nested ac-
cording to the structure of data. For computational ef-
ficiency, once data are converted into internal structures, they are packed to continuous
tensors.

While the model for given HMIL data can be constructed manually from primitives,
doing so is tedious and prone to errors. Therefore JsonGrinder.jl automatizes this process
without sacrificing the flexibility. Models are constructed in five steps as shown in Figure 31

and briefly described below. In the following walkthrough, it is assumed that jsons is an
array of parsed JSON documents.

Step 1 Create a schema of a given dataset consisting of a set of jsons, using the function
sch = JsonGrinder.schema(jsons). The returned structure, sch, contains basic statistics
at the nodes within the data, e.g., types nodes (dictionary, array, leaf), how often is a
particular element present, the distribution of lengths of lists at a specific position, the
distribution of leaf values, and names of the keys of the dictionaries. sch can be visualized
in HTML, which helps to understand the data.

Step 2 The schema facilitates the creation of an extractor, converting raw JSON data to
internal structures derived from AbstractDataNodes. JSON lists (e.g., services in Fig. 1)
are converted into BagNodes2 and JSON dictionaries (elements of upnp in Fig. 1) are mapped
to ProductNodes. We acknowledge that there are many ways to represent JSON leaves and
the flexibility of their representation is preserved. By default, JsonGrinder.jl represents
numbers directly, diverse collections of strings as n-gram histograms, and small collections
of unique values as one-hot encoded categorical variables. The extractor can be created
automatically from a schema as ex = JsonGrinder.suggestextractor (sch), which uses
heuristics to decide how to represent individual leaves. If the default extractors are not
satisfactory, they can be easily replaced by custom implementations.

1. The complete example is available at https://github.com/CTUAvastLab/JsonGrinder.jl/blob/

master/examples/mutagenesis.jl. The code building the model consists of 25 lines of code, the rest
are mostly comments.

2. This ignores the information contained in the list’s ordering, but results in much more computationally
efficient training. Support for sequences can be achieved by recurrent neural networks or transformers
as shown in one of the examples in Mill.jl , but this never achieved performance gains worth the
computational cost in our experiments.

3

https://github.com/CTUAvastLab/JsonGrinder.jl
https://github.com/CTUAvastLab/JsonGrinder.jl
https://github.com/CTUAvastLab/JsonGrinder.jl/blob/master/examples/mutagenesis.jl
https://github.com/CTUAvastLab/JsonGrinder.jl/blob/master/examples/mutagenesis.jl
https://github.com/CTUAvastLab/Mill.jl


Mandĺık, Račinský, Lisý, Pevný

Step 3 Use the extractor, ex, to convert raw JSONs into internal structures using, e.g,
map function as dss = map(ex, jsons).

Step 4 Define a neural network model reflecting the schema. For the basic functional-
ity, three types of nodes are sufficient. ArrayNode is the data node for atomic data and
the corresponding to ArrayModel wraping a trainable function, e.g., a feed-forward neu-
ral networks (FNN). BagNode for sets and the corresponding BagModel implements various
permutation invariant aggregation functions (a concatenation of coordinate-wise mean and
maximum seems to be most effective in practice). ProductNode for dictionaries and the
corresponding ProductModel containing a trainable function for each key. It applies them
to the corresponding values, concatenates the outputs, and executes an additional trainable
function on the concatenation. The model can be created automatically from the schema,
sch, and the extractor, ex, as model = JsonGrinder.reflectinmodel(sch, ex). The
creation of the model is fully customizable, allowing to insert a particular FNNs and an
aggregation function at each location. model(ex(json)) projects a single json to a vector.

Step 5 Train and then use the model as any other model constructed by adopting the
Flux.jl library and arbitrary associated libraries facilitating data handling.

The model handles missing data (e.g., missing keys in dictionaries) that can be present
at all levels of the structure. Missing atomic value is expressed as a missing value (a feature
of Julia) at the level of atomic values. During the inference, such values are replaced by
trainable imputations that are unique for each node.

Integration with the ecosystem

The framework is written in the Julia language (Bezanson et al., 2017), and it is fully inte-
grated with the Julia ecosystem. It uses Flux.jl for the implementation of neural networks
and allows to use any automatic differentiation engine interfacing with ChainRulesCore.jl.
Extracted JSON documents can be freely concatenated and divided, which facilitates the
creation of minibatches during the training. JsonGrinder.jl is registered and can be
added by typing Pkg.add("JsonGrinder") command. For Python users who want to use
the library, we provide an example notebook demonstrating the interface.

4. Conclusion

JsonGrinder.jl facilitates the automated creation of models from HMIL data, which de-
spite being ubiquitous in the industry are rarely considered in the ML literature. The library
is flexible, extensible, and well-integrated into the Julia ecosystem, allowing to benefit from
its improvement. The authors have used it in practical applications on large problems con-
taining 108 samples of size up to 1GB each, frequently achieving better performance than
with hand-designed features. We are not aware of any other software package that would
allow the processing of JSON data without feature engineering, and therefore we consider
the library to be an essential contribution to automating ML.

4

https://github.com/CTUAvastLab/JsonGrinder.jl
https://github.com/CTUAvastLab/JsonGrinder.jl


JsonGrinder

References

Hyrum S Anderson and Phil Roth. Ember: an open dataset for training static pe malware
machine learning models. arXiv preprint arXiv:1804.04637, 2018.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM Review, 59(1):65–98, 2017. doi: 10.1137/141000671.

CSP. Device identification challenge. https://www.kaggle.com/c/

cybersecprague2019-challenge, 2019. Accessed: 2021-01-18.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Han-
sch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro com-
pounds. Correlation with molecular orbital energies and hydrophobicity. Journal of medic-
inal chemistry, 34(2):786–797, 1991. ISSN 0022-2623. doi: 10.1021/jm00106a046.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, 2019.

Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving the multiple
instance problem with axis-parallel rectangles. Artificial intelligence, 89(1-2):31–71, 1997.

Sadayuki Furuhashi. Messagepack, 2010. URL https://msgpack.org//. Accessed: 2021-
01-18.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Nicola Loi, Claudio Borile, and Daniele Ucci. Towards an automated pipeline for detecting
and classifying malware through machine learning. arXiv preprint arXiv:2106.05625,
2021.

Tomáš Pevný and Vojtěch Kovař́ık. Approximation capability of neural networks on spaces
of probability measures and tree-structured domains. arXiv preprint arXiv:1906.00764,
2019.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Master-
ing the game of go without human knowledge. nature, 550(7676):354–359, 2017.

Kenton Varda. Protocol buffers: Google’s data interchange format. Technical re-
port, Google, 6 2008. URL http://google-opensource.blogspot.com/2008/07/

protocol-buffers-googles-data.html.

William Woof and Ke Chen. A framework for end-to-end learning on semantic tree-
structured data. arXiv preprint arXiv:2002.05707, 2020.

5

https://www.kaggle.com/c/cybersecprague2019-challenge
https://www.kaggle.com/c/cybersecprague2019-challenge
https://msgpack.org//
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html

	Motivation
	Background on Hierarchical Multiple Instance Learning
	Overview and Design
	Conclusion

