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Abstract

Linear bandit algorithms yield Õ(n
√
T ) pseudo-regret bounds on compact convex action

sets K ⊂ Rn and two types of structural assumptions lead to better pseudo-regret bounds.
When K is the simplex or an `p ball with p ∈]1, 2], there exist bandits algorithms with

Õ(
√
nT ) pseudo-regret bounds. Here, we derive bandit algorithms for some strongly convex

sets beyond `p balls that enjoy pseudo-regret bounds of Õ(
√
nT ). This result provides new

elements for the open question in (Bubeck and Cesa-Bianchi, 2012, §5.5.). When the action
set is q-uniformly convex but not necessarily strongly convex (q > 2), we obtain pseudo-
regret bounds Õ(n1/qT 1/p) with p s.t. 1/p + 1/q = 1. These pseudo-regret bounds are
competitive with the general Õ(n

√
T ) for a time horizon range that depends on the degree

q > 2 of the set’s uniform convexity and the dimension n of the problem.

Keywords: Linear Bandits, Uniformly Convex Sets, Strongly Convex Sets, Pseudo-
Regret

1. Introduction

We consider online linear learning with partial information, a.k.a. the linear bandit problem.
At each round t ≤ T , the player (the bandit algorithm) chooses at ∈ K ⊂ Rn and an
adversary simultaneously decides on a loss vector ct ∈ Rn (the loss function is linear). The
player then observes 〈ct; at〉, the loss function evaluated at the player’s action at, but does
not have access to the entire loss function, i.e., the player does not know ct. The goal
of the player is to minimize its cumulative loss

∑T
t=1〈ct; at〉. The regret Rt compares this
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cumulative loss against the cumulative loss of the best single action in hindsight, i.e.,

RT (K) ,
T∑
t=1

〈ct; at〉 −min
a∈K

T∑
t=1

〈ct; a〉. (Regret)

Bandit algorithms use internal randomization to obtain sub-linear regret upper bounds.
There exist several notions of regret to monitor the performance of bandit algorithms. The
expected regret or an upper bound on (Regret) with high-probability are the most meaning-
ful, yet challenging to obtain. Hence, the weaker notion of pseudo-regret is often considered
as a good proxy for measuring the bandit performance (Bubeck and Cesa-Bianchi, 2012).
It serves as a motivation to design new bandit algorithms. Let us write E the expectation
w.r.t. the randomness of the bandit action only, we have

R̄T (K) , E
T∑
i=1

〈ct; at〉 −min
a∈K

E
T∑
i=1

〈ct; a〉. (Pseudo-Regret)

We make the bounded scalar loss assumption, i.e., ct is such that 〈ct; a〉 ≤ 1 for any a ∈ K.
In particular, it means that ct belongs to the polar K◦ , {d ∈ Rn | 〈d;x〉 ≤ 1,∀x ∈ K} of
K.

There exist bandit algorithms with Õ(n
√
T ) upper bounds on the pseudo-regret for

general compact convex sets K (Bubeck and Cesa-Bianchi, 2012). However, since the loss
is linear, it is not possible to leverage the curvature (e.g., the strong convexity) of the loss
function to obtain improved pseudo-regret bounds. Instead, the bandit algorithm can only
leverage the specific structure of the action set K. To the best of our knowledge, only
two structures are known to induce faster pseudo-regret bounds of Õ(

√
nT ): when K is a

simplex or an `p ball with p ∈]1, 2] (Bubeck et al., 2018). In each of these cases, the analysis
relies on explicit analytical formulas of the action set rather than on generic quantitative
properties, e.g., the strong convexity of the set.

Our goal here is to design bandit algorithms that achieve pseudo-regret of Õ(
√
nT ) (resp.

Õ(n1/qT 1/p)) when the set K is strongly convex (resp. q-uniformly convex with q ≥ 2 and p
s.t. 1/p+ 1/q = 1). The uniform convexity of a set is a measure of the set upper curvature
that subsumes strong convexity. For instance, the `p balls (or also the p-Schatten balls) are
strongly convex (Definition 3) for p ∈]1, 2] and uniformly convex (Definition 4) for p > 1.

Related Work. Linear bandit algorithms are applied in a variety of applications. We
detail one of them, which was our initial research motivation. Linear Bandit algorithms
are instrumental in solving minimax problems with convex-linear structure stemming from
learning applications, see, e.g., SVMs (Hazan et al., 2011; Clarkson et al., 2012) or Dis-
tributional Robust Optimization (Namkoong and Duchi, 2016; Curi et al., 2020). In these
settings, the minimax variable’s linear part is a probability distribution over the dataset of
size n. The linear bandit algorithms provide a principled framework to adaptively sample a
fraction of the dataset per iteration while ensuring the convergence to a minimax optimum.
The iterations’ cost of the minimax algorithm is then favorably dependent on the size n
of the dataset. However, the dimension dependency of the linear bandit algorithm’s regret
bound now appears in the minimax method’s convergence rate, making it crucial to design
linear bandit algorithms with favorable dimension-dependent regret bounds.
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Significant focus has been dedicated to designing efficient algorithms (in the full and par-
tial feedback setting) leveraging additional properties of the loss functions such as smooth-
ness or strong convexity (Saha and Tewari, 2011; Hazan and Levy, 2014; Garber and Kretzu,
2020, 2021) with arguably much less attention to the corresponding structural assumptions
on the action sets. By studying the effect of uniform convexity of the action set in the
bandit setting, we contribute to filling this gap. Note that some works recently relied on
smoothness (Levy and Krause, 2019) or uniform convexity assumptions on the set in online
linear learning (Huang et al., 2016, 2017; Molinaro, 2020; Kerdreux et al., 2021a) or “online
learning with a hint” (Dekel et al., 2017; Bhaskara et al., 2020a,b).

At a high level, our work shares some similarities with (d’Aspremont et al., 2018) for
affine-invariant analysis of accelerated first-order methods or with (Srebro et al., 2011;
Rakhlin and Sridharan, 2017) in the full-information setting. Indeed, they link regret
bounds of online mirror descent algorithms with the Martingale type of the ambient space.
Here, we instead rely on the uniform convexity of the action set. In general, it is a more
intuitive yet stronger requirement, for an explanation see, e.g., (Donahue et al., 1997). It
is a stronger requirement since James (1978) provides an example of space of type 2 that is
non-reflexive, and hence not uniformly convex (Pettis, 1939).

Contribution. Our contribution are three-fold.

1. We propose a barrier function FK for the bandit problem with strongly convex sets
(more generally uniformly convex sets), i.e., for x ∈ int(K)

FK(x) , − ln(1− ‖x‖K)− ‖x‖K, (Barrier)

where ‖ · ‖K is the gauge function to K. For x ∈ Rn, it is defined as

‖x‖K = inf
{
λ > 0 | x ∈ λK

}
. (Gauge)

2. In Theorem 11, we provide a pseudo-regret upper bound Õ(
√
nT ) for a linear bandit

algorithm on some strongly convex sets. To the best of our knowledge, this setting has
never been studied except in the case of the `p balls with p ∈]1, 2]. Importantly, this
drastically extends the family of actions sets, i.e., besides the simplex and the `p balls
with p ∈]1, 2], with such improved dimension dependency of the pseudo-regret bound
in O(

√
n). This result provides new elements for the open question from (Bubeck and

Cesa-Bianchi, 2012, §5.5.).

3. When the action set is (α, q)-uniformly convex with q ≥ 2, we prove in Theorem 12 a
pseudo-regret bound of Õ(n1/qT 1/p) with p ∈]1, 2] s.t. 1/p+ 1/q = 1. These pseudo-
regret bounds are competitive with the general Õ(n

√
T ) for a time horizon range that

depends on the degree q of the set’s uniform convexity and the dimension n of the
problem, see Remark 14. The possibility for such intermediate pseudo-regret bounds
was acknowledged in Bubeck et al. (2018). However, we are not aware of any existing
quantitative upper bounds on the pseudo-regret in that setting.

Outline. In Section 2, we introduce the structural assumptions on the action sets K and
provide some elementary results linking these structures with important quantities in the
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analysis. In Section 3.1, we describe the classical Mirror Descent type algorithm for bandits
and our design of barrier function for uniformly convex sets, which is a generalization of the
one used in Bubeck et al. (2012) by replacing the Euclidean norm with the gauge function
of the action set. In Section 3.2, we then provide the convergence rates when the action
sets are strongly convex (Theorem 11) and uniformly convex (Theorem 12). In Section 3.3,
we present the main technical lemmas. Finally, in Appendix A, we prove the main link
between uniform convexity of the set K and upper bounds of the Bregman Divergence of a
specific function.

Notations. Let Rn be the ambient space and (ei) its canonical basis. We write 〈·; ·〉 for
the dot product. For a norm ‖ · ‖, we write ‖d‖? = sup‖x‖≤1〈x; d〉 for its dual norm. For a

convex function f , we write f∗(d) , supx∈Rn〈x; d〉 − f(x) its Fenchel conjugate. Let `∞(R)
be the infinity ball with radius R > 0 and `1(r) the norm ball of ‖x‖1 =

∑n
i=1 |xi| with radius

r > 0. For an open set D ⊂ Rn, we write D̄ its closure. For a compact convex set K, we
write ∂K its boundary and Int(K) its interior. NK(x) ,

{
d ∈ Rn | 〈x− y; d〉 ≥ 0 ∀y ∈ K

}
is the normal cone of K at x. A compact convex set K is strictly convex when for any
x1, x2 ∈ ∂K s.t. (x1 + x2)/2 ∈ ∂K, we have x1 = x2. We consider fully-dimensional
compact convex sets K ⊂ Rn s.t. `1(r) ⊂ K ⊂ `∞(R) for some r,R > 0 which are a priori
numerical constant, in particular not depending on the dimension n. We will consider sets
K centrally symmetric with respect to zero with non-empty interiors. In particular, the
gauge function ‖ · ‖K of such a set is a norm (Rockafellar, 2015). For d ∈ Rn, we write
σK(d) , supx∈K〈x; d〉 the support function σK of K. We have ‖ · ‖?K = σK. Besides, we
write K◦ = {d ∈ Rn | 〈d;x〉 ≤ 1, ∀x ∈ K} the polar of K and we have ‖ · ‖K◦ = σK. We
write X ∼ Ber(p) (resp. Rademacher(p)) a random variable X following a Bernoulli (a
Rademacher), i.e., with values in {0, 1} (resp. {−1, 1}) and P(X = 1) = p.

2. Preliminaries

In this section, we introduce the structural assumption on K we will consider. Note that we
will assume set smoothness (Definition 1) simply to ensure that (Barrier) is differentiable.
On the contrary, the strong convexity (Definition 3) is the structure that allows for the

√
n

acceleration in the pseudo-regret bounds. Then we review the link between the structure of
K and the differentiability of the set gauge function (Gauge) which then allows us to study
the properties of the proposed barrier. Finally, we link upper bounds on some Bregman
distance with the strong convexity of some set in Lemma 7. This will be a key inequality
in our analysis.

A convex differentiable function f is L-smooth on K w.r.t. ‖ · ‖ if and only if for any
(x, y) ∈ K ×K

f(y) ≤ f(x) + 〈∇f(x); y − x〉+
L

2
‖y − x‖2. (Smoothness)

The Hölder smoothness of a function is a relaxation of (Smoothness). For p ∈]1, 2], a
convex differentiable function f is (L, p)-Hölder smooth w.r.t. ‖ · ‖ if and only if for any
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(x, y) ∈ K ×K

f(y) ≤ f(x) + 〈∇f(x); y − x〉+
L

p
‖y − x‖p. (Hölder-Smoothness)

On the other hand, a set K is smooth when there is exactly one supporting hyperplane at
each point of its boundary ∂K (Schneider, 2014). This can be defined as follows by requiring
the normal cone at each boundary element to be a half-line.

Definition 1 (Smooth Set) A compact convex set K is smooth if and only if |NK(x) ∩
∂K◦| = 1 for any x ∈ ∂K.

One should be cautious not to confuse the smoothness of f as defined in (Smoothness) and
the smoothness of K as defined in Definition 1. Indeed, the smoothness of the set is a much
weaker notion as, for instance, it implies only the differentiability of σK(·), see Lemma 5.
Note that not all strongly convex set are smooth. For instance, the `p or the p-Schatten
balls for p ∈]1, 2] are smooth and strongly convex but the elastic-net ball is strongly convex
but not smooth. Also, the smoothness and strict convexity of a set are dual properties to
each other in the following sense (Köthe, 1983, §26).

Lemma 2 (Duality Set Smoothness and Strict Sonvexity) Consider a compact con-
vex set K ⊂ Rn with non-empty interior. Then, K is strictly convex if and only if K◦ is
smooth.

Proof Let us recall the proof for completeness. Assume K is strictly convex and let
d ∈ ∂K◦. Let x1, x2 ∈ ∂K ∩ NK◦(d). By definition of the normal cone NK◦(d), we have
〈d;xi〉 ≥ 〈d′;xi〉 for any d′ ∈ K◦ and i = 1, 2. Hence, by definition of the support function
and because xi ∈ ∂K, we have 〈d;xi〉 = supd′∈K◦〈d′;xi〉 = σK◦(xi) = ‖xi‖K = 1, so that

1 = 〈d; (x1 + x2)/2〉 ≤ ‖d‖K◦‖(x1 + x2)/2‖K = ‖(x1 + x2)/2‖K.

Hence, we conclude that (x1 +x2)/2 ∈ ∂K. Then, by strict convexity of K we have x1 = x2

which concludes on the smoothness of K (Definition 1).
Alternatively, assume that K◦ is smooth. Assume by contradiction that K is not strictly

convex, i.e., that there exist different x1, x2 ∈ ∂K s.t. (x1 + x2)/2 ∈ ∂K and let d ∈
NK((x1 +x2)/2)∩∂K◦. We have that 〈d; (x1 +x2)/2〉 = supy∈K〈d; y〉 = ‖d‖K◦ = 1. Besides,
since 〈d; (x1 +x2)/2−y〉 ≥ 0 for any y ∈ K, we obtain that 〈d;x1−x2〉 = 0, hence 〈d;xi〉 = 1
for i = 1, 2. Then, for y ∈ K, we have

〈d;x1 − y〉 = 〈d; (x1 − x2)/2〉+ 〈d; (x1 + x2)/2− y〉 ≥ 0,

which concludes that d ∈ NK(xi) for i = 1, 2. Hence, this means that xi ∈ NK◦(d)∩ ∂K for
i = 1, 2 and contradicts the smoothness of K◦ (Definition 1).

Definition 3 (Set Strong Convexity) Let K be a centrally symmetric set with non-
empty interior and α > 0. K is α-strongly convex w.r.t. ‖ · ‖K if and only if for any
x, y, z ∈ K and γ ∈ [0, 1] we have(

γx+ (1− γ)y +
α

2
γ(1− γ)‖x− y‖2Kz

)
∈ K. (Set Strong Convexity)
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More generally, we can define the uniform convexity of a set K which subsumes the
strong convexity. For instance the `p balls with p > 2 are uniformly convex but not strongly
convex.

Definition 4 (Set Uniform Convexity) Let K be a centrally symmetric set with non-
empty interior, α > 0, and q ≥ 2. K is (α, q)-uniformly convex w.r.t. ‖ · ‖K if and only if
for any x, y, z ∈ K and γ ∈ [0, 1] we have(

γx+ (1− γ)y +
α

q
γ(1− γ)‖x− y‖qKz

)
∈ K. (Set Uniform Convexity)

We now recall the geometrical condition on K that is equivalent to differentiability of K
(Schneider, 2014, Corollary 1.7.3.).

Lemma 5 (Gauge Differentiability) A gauge function ‖ · ‖K (Gauge) is differentiable
at x ∈ Rn \ {0} if and only if its support set

S(K◦, x) , {d ∈ K◦ : 〈d;x〉 = sup
d′∈K◦

〈d′;x〉}, (Support Set)

contains a single point d. If this is the case, we have ∇‖ · ‖K(x) = d. Besides, the following
assertions are true

(a)
∥∥(∇‖ · ‖K(x)

)∥∥
K◦ = 1, i.e., ∇‖ · ‖K(x) ∈ K◦.

(b) For λ > 0, ∇‖ · ‖K(λx) = ∇‖ · ‖K(x).

(c) If K◦ is strictly convex then ‖ · ‖K is differentiable on Rn \ {0}.

Proof The differentiability result for ‖ · ‖K comes from (Schneider, 2014, Corollary 1.7.3.),
where we used that ‖·‖K = σK◦ . (a) follows from the fact that the supremum in (Support Set)
is attained at ∂K◦. For λ > 0, we have S(K◦, λx) = S(K◦, x) and hence (b). Now as-
sume that K◦ is strictly convex and consider x ∈ Rn \ {0}. First remark as for (a) that
S(K◦, x) ⊂ ∂K◦. Assume that |S(K◦, x)| 6= 1. Then, for d1, d2 distinct in S(K◦, x), we
have [d1, d2] ⊂ S(K◦, x) ⊂ ∂K◦ which then contradicts the strict convexity of K◦. Hence
|S(K◦, x)| = 1 which concludes (c).

Definition 6 (Bregman Divergence) The Bregman divergence of F : D → R is defined
for (x, y) ∈ D̄ × D by

DF (x, y) = F (x)− F (y)− 〈x− y;∇F (y)〉. (Bregman Divergence)

The strong-convexity assumption on K appears in the analysis of Algorithm 1 via an upper
bound on the (Bregman Divergence) of 1

2‖ · ‖K◦ . Indeed, when K is strongly convex, then
K◦ is strongly smooth and hence σ2

K is L-smooth with respect to ‖ ·‖K, see (Kerdreux et al.,
2021b, Theorem 4.1.) that we recall in Theorem 20 in the Appendix A. It then implies the
following upper bound on its Bregman Divergence.
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Lemma 7 (Upper-bound on the Bregman Divergence of 1
2‖ · ‖

2
K◦) Let q ≥ 2 and

p ∈]1, 2] s.t. 1/p + 1/q = 1. Let K be a centrally symmetric set with non-empty inte-
rior. Assume K is (α, q)-uniformly convex with respect to ‖ · ‖K. Then, for any (u, v) ∈ Rn,
we have

D 1
2
‖·‖2K◦

(u, v) ≤ 2p
(
1 + (q/(2α))1/(q−1)

)
‖u− v‖pK◦ . (1)

Proof For a (L, r)-Hölder smooth function f w.r.t. to ‖·‖ we immediately have Df (u, v) ≤
L
r ‖u − v‖

r. Theorem 20 implies that 1
2‖ · ‖

2
K◦ is (L, p)-Hölder Smooth on K◦ w.r.t. ‖ · ‖K◦

where L = 2p
(
1 +

( q
2α

)1/(q−1))
. This concludes the proof.

We immediately obtain the following corollary for the strongly convex case with p = q = 2.

Corollary 8 (Strongly Convex Case) Let K be a centrally symmetric set with non-
empty interior. Assume K is α-strongly convex with respect to ‖ · ‖K. Then for any
(u, v) ∈ Rn, we have

D 1
2
‖·‖2K◦

(u, v) ≤ 4
(α+ 1

α

)∥∥u− v∥∥2

K◦ .

3. Pseudo-Regret Bounds of Linear Bandit on Strongly Convex Sets

In Section 3.1, we first present the algorithm and barrier function for linear bandits on
uniformly convex sets. In Section 3.2, we then present the main pseudo-regret bounds and
the proofs of the technical lemmas are relegated in Section 3.3.

3.1 Mirror Descent for Bandits

We propose to use a similar bandit algorithm to the one developed in (Bubeck and Cesa-
Bianchi, 2012) for linear bandits over the Euclidean ball. Namely, Algorithm 1 is an in-
stantiation of Online Stochastic Mirror Descent (OSMD) with a carefully designed barrier
function FK : Int(K)→ R+. For any x ∈ Int(K) we defined in (Barrier)

FK(x) = − ln(1− ‖x‖K)− ‖x‖K.

Algorithm 1 keeps track of a sequence of vectors xt ∈ (1−γ)K and at each iteration samples
an action at ∈ K as described in Lines 4-8. For some r > 0, we assume `1(r) ⊂ K so that
rei ∈ K. After playing action at ∈ K, the bandit receives the loss 〈ct; at〉 associated to its
action without observing the full vector ct ∈ K◦. In Line 10, it then proposes an unbiased
estimation c̃t of ct. Indeed, we have (because P(ξt = 0) = 1− ‖x‖K)

Eξt,it,εt(c̃t) = P(ξt = 0)

n∑
i=1

n

r2

1

n

[ 〈rei; ct〉
2(1− ‖x‖K)

rei +
〈−rei; ct〉

2(1− ‖x‖K)
(−rei)

]
= ct.

The bandit then provides the vector c̃t to an online learning algorithm that updates the xt
vector in Line 11. Importantly, because xt ∈ (1 − γ)K with γ ∈]1, 2[ we have ‖xt‖ < 1 so
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that ∇FK(xt) is well defined.

Algorithm 1: Bandit Mirror Descent (BMD) on some Curved Sets K ⊂ Rn

Input: η > 0, γ ∈]0, 1[, K smooth and strictly convex s.t. `1(r) ⊂ K.
1 Barrier: FK(·) = − ln(1− ‖ · ‖K)− ‖ · ‖K.
2 Initialize: x1 ∈ argminx∈(1−γ)KFK(x).

3 for t← 1, . . . , T do
4 Sample ξt ∼ Ber(‖xt‖K), it ∼ Uniform(n) and εt ∼ Rademacher(1

2).
5 if ξt = 1 then
6 at ← xt/‖xt‖K. B Define bandit action.
7 else
8 at ← rεteit .
9 end

10 c̃t ←
n

r2
(1− ξt)

〈at; ct〉
1− ‖xt‖K

at. B Estimate full loss vector ct.

11 xt+1 ← argmin
y∈(1−γ)K

DFK

(
y,∇F ∗K(∇FK(xt)− ηc̃t)

))
. B Mirror Descent step.

12 end

Output: 1
T

∑T
t=1 at

To ensure that Line 11 of Algorithm 1 is well defined, we need to check, e.g., that all xt
belongs of Int(K) (which we know is the case because xt ∈ (1−γ)K) or that ∇FK(xt)−ηc̃T
belongs to D∗K the domain where F ∗K is defined. In Lemma 10 below, we guarantee that
Algorithm 1 is well defined. We also prove that FK is Legendre (Definition 9) which allows
us to invoke classical convergence results as in Bubeck and Cesa-Bianchi (2012).

Definition 9 (Legendre Function) A continuous function F : D̄ → R is Legendre if
and only if

(a) F is strictly convex and admits continuous first partial derivatives on D.

(b) lim
x→D̄\D

‖∇F (x)‖ = +∞.

Lemma 10 (Barrier FK for K) Consider a compact, smooth and strictly convex K. We
consider for x ∈ DK ,

{
x ∈ Rn | ‖x‖K < 1

}
the following barrier function as defined in

(Barrier)

FK(x) = − ln(1− ‖x‖K)− ‖x‖K.

Then F is Legendre (Definition 9) with D∗K = Rn and K ⊂ D̄K.

Proof From Lemma 15, because K is smooth and strictly convex, FK (resp. F ∗K) is differ-
entiable on Int(K) (resp. Rn). Besides, we have D∗K = Rn. Finally, the strict convexity of
F comes from the strict convexity of ‖·‖K when K is strictly convex. Hence F is Legendre.
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3.2 Main Result

Although uniform convexity subsumes strong convexity, for the sake of clarity, we first state
in Theorem 11 the pseudo-regret upper bounds of Algorithm 1 when the set is strongly
convex. In Theorem 12, we then extend these convergence results to the case where the
action set is more generally uniformly convex.

Theorem 11 (Linear Bandit on Strongly Convex Set) Consider a compact convex
set K that is centrally symmetric with non-empty interior. Assume K is smooth and α-
strongly convex set w.r.t. ‖ · ‖K and `2(r) ⊂ K ⊂ `∞(R) for some r,R > 0. Consider
running BMD (Algorithm 1) with the barrier function FK(x) = − ln

(
1−‖x‖K

)
−‖x‖K, and

η =
1√
nT

, γ =
1√
T
. (2)

For T ≥ 4n
(
R
r

)2
we then have

R̄T ≤
√
T +
√
nT ln(T )/2 + L

√
nT = Õ(

√
nT ), (Pseudo-Regret Upper-Bound)

where R̄T is defined in (Pseudo-Regret) and L = (R/r)2(5α+ 4)/α.

Proof First note that with T ≥ 4n(R/r)2 and η = 1/
√
nT , we have that η ≤ r/(2Rn) which

allows to invoke Lemma 17. The proof follows that of (Bubeck and Cesa-Bianchi, 2012,
Theorem 5.8) but importantly leverages on our novel Lemma 17 that carefully upper bounds
the terms DF ∗K

(∇FK(xt)−ηc̃t,∇FK(xt)) for the barrier function we designed. Because FK is
Legendre and c̃t is an unbiased estimate of ct, by (Bubeck and Cesa-Bianchi, 2012, Theorem
5.5) applied on K′ , (1− γ)K, we have

R̄T (K′) ≤
supx∈(1−γ)KFK(x)− FK(x1)

η
+

1

η

T∑
t=1

E
[
DF ∗K

(
∇FK(xt)− ηc̃t,∇FK(xt)

)]
.

Also, by definition of the Pseudo-Regret, we have

R̄T (K) = R̄T (K′) + min
a∈K′

T∑
i=1

〈ct; a〉 −min
a∈K

T∑
i=1

〈ct; a〉.

Write a∗ ∈ K for which mina∈K
∑T

i=1〈ct; a〉 is attained. We have that the mina∈K′
∑T

i=1〈ct; a〉
is attained at (1− γ)a∗, hence because |〈ct; a∗〉| ≤ 1 for any t, we have

R̄T (K) = R̄T (K′) +

T∑
i=1

〈ct; (1− γ)a∗〉 −
T∑
i=1

〈ct; a∗〉 = R̄T (K′)− γ
T∑
i=1

〈ct; a∗〉 ≤ R̄T (K′) + γT.

By the initialization of x1 in Line 2 of Algorithm 1, we have FK(x1) = 0. Besides, by
definition of FK, supx∈KFK(x) ≤ ln(1/γ), so that supx∈KF (x)−FK(x1) ≤ ln(1/γ). Overall,
we have

R̄T (K) ≤ γT +
ln(1/γ)

η
+

1

η

T∑
t=1

E
[
DF ∗K

(
∇FK(xt)− ηc̃t,∇FK(xt)

)]
.
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We have η ≤ r/(2Rn) and hence Lemma 17 implies that

R̄T (K) ≤ γT +
ln(1/γ)

η
+ η
(

1 +
4(α+ 1)

α

) T∑
t=1

E
(

(1− ‖x‖K)‖c̃t‖2K◦
)
.

Then, let us explicit E
(

(1 − ‖x‖K)‖c̃t‖2K◦
)

. Recall that K ⊂ `∞(R), so that `◦∞(R) =

`1(1/R) ⊂ K◦ and ei/R ∈ K◦. Hence, we have that ‖rei‖K◦ = rR‖ei/R‖K◦ ≤ rR. We
obtain

E
(

(1− ‖x‖K)‖c̃t‖2K◦
)

= P(ξt = 0)
n∑
i=1

1

n
(1− ‖xt‖K)

n2

r4

( 〈rei; ct〉
1− ‖xt‖K

)2
‖rei‖2K◦

≤ (1− ‖xt‖K)
n∑
i=1

nR2
c2
t,i

1− ‖xt‖K
= nR2‖ct‖22.

We have `2(r) ⊂ K. This implies K◦ ⊂ `2(r)◦ = `2(1/r) so that with ct ∈ K◦, we have
‖ct‖22 ≤ 1/r2. Hence

R̄T (K) ≤ γT +
ln(1/γ)

η
+ η
(

1 +
4(α+ 1)

α

)
n
(R
r

)2
T,

and we immediately obtain (Pseudo-Regret Upper-Bound) with the prescribed choice of η
and γ.

Theorem 12 (Linear Bandit on Uniformly Convex Sets) Let α > 0, q ≥ 2, and p ∈
]1, 2] s.t. 1/p+ 1/q = 1. Consider a compact convex set K that is centrally symmetric with
non-empty interior. Assume K is smooth and (α, q)-uniformly convex set w.r.t. ‖ · ‖K and
`q(r) ⊂ K ⊂ `∞(R) for some r,R > 0. Consider running BMD (Algorithm 1) with the
barrier function FK(x) = − ln

(
1− ‖x‖K

)
− ‖x‖K, and

η = 1/(n1/qT 1/p), γ = 1/
√
T . (3)

Then we have for T ≥ 2pn
(
R
r

)p
R̄T ≤

√
T + n1/qT 1/p ln(T )/2 + ((1/2)2−p + L)

(R
r

)p
n1/qT 1/p = Õ(n1/qT 1/p),

where R̄T is defined in (Pseudo-Regret) and L = 2p(1 + (q/(2α))1/(q−1)).

Proof The proof is similar to Theorem 11 and hence to (Bubeck and Cesa-Bianchi, 2012,
Theorem 5.8). The difference is that we now leverage Corollary 18. Note that with T ≥
2pn(R/r)p and η = n−1/qT−1/p, we have 0 ≤ η ≤ 1/(2n)(r/R). As in the proof of Theorem
11, we have

R̄T (K) ≤ γT +
ln(1/γ)

η
+

1

η

T∑
t=1

E
[
DF ∗K

(
∇FK(xt)− ηc̃t,∇FK(xt)

)]
.
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Now applying Corollary 18, we have with L = 2p(1 + (q/(2α))1/(q−1))

DF ∗K
(∇FK(xt)− ηc̃t,∇FK(xt)) ≤ (1− ‖xt‖K)ηp‖c̃t‖pK◦((1/2)2−p + L).

This hence implies

R̄T (K) ≤ γT +
ln(1/γ)

η
+ ηp−1((1/2)2−p + L)

T∑
t=1

E
[
(1− ‖x‖K)‖c̃t‖pK◦

]
.

Let us now upper bound E
[
(1 − ‖x‖K)‖c̃t‖pK◦

]
. Since K ⊂ `∞(R), we have `1(1/R) ⊂ K◦

and ei/R ∈ K◦ so that ‖rei‖K◦ ≤ rR. Hence, we have

E
(

(1− ‖x‖K)‖c̃t‖pK◦
)

= P(ξt = 0)

n∑
i=1

1

n
(1− ‖xt‖K)

( n
r2

)p( |〈rei; ct〉|
1− ‖xt‖K

)p
‖rei‖pK◦

≤ (1− ‖xt‖K)2−p
n∑
i=1

np−1Rpcpt,i ≤ n
p−1Rp‖ct‖pp.

Then since `q(r) ⊂ K, we have K◦ ⊂ `q(r)
◦ = `p(1/r) so that ‖ct‖p ≤ 1/r because ct ∈ K◦.

We ultimately obtain

R̄T (K) ≤ γT +
ln(1/γ)

η
+ ηp−1((1/2)2−p + L)Tnp−1

(R
r

)p
.

Here, we choose η of the form T−βn−ν with β and ν such that the terms 1/η and ηp−1Tnp−1

exhibit the same asymptotic rate in n and T respectively. In particular, we choose η =
1/(n1/qT 1/p) and obtain (with γ = 1/

√
T )

R̄T (K) ≤
√
T + n1/qT 1/p ln(T )/2 + ((1/2)2−p + L)

(R
r

)p
n1/qT 1/p.

Instantiating the regret bound in Theorem 12 with p = q = 2 results in the same regret
bound as in Theorem 11. Indeed, the parameters in (3) with q = 2 correspond to (2).

Remark 13 Consider two compact convex sets K1 and K2. Their relative width is defined
as follows

w(K1,K2) , sup
x∈K1,y∈K2

〈x; y〉. (Relative-Width)

Note that w(K1,K2) = supx∈K1
‖x‖K◦2 and `q(r)

◦ = `p(1/r), using the (Relative-Width) we
could replace the condition `q(r) ⊂ K by w(K◦, `q(1)) ≤ 1/r.

Remark 14 (Bubeck et al., 2018, Theorem 4) proves that for a sufficiently large time-

horizon T ≥ nmax
(

2; q−1
q−2

)
the pseudo-regret of linear bandit when the action set is an `q ball

with q > 2 is lower bounded by n
√
T . Similarly, our pseudo-regret bound Õ(n1/qT 1/p) is

competitive w.r.t. the general Õ(n
√
T ) for some intermediate regime of the time horizon,

11
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i.e., when T = Ω(nα) with α ∈ [1, 2/(2 − p)[ and 1/p + 1/q = 1. In particular, when q
converges to 2, the pseudo-regret bounds is better to the general Õ(n

√
T ) for increasingly

large time horizon regimes T . This is consistent with the fact that the pseudo-regret bound
Õ(
√
nT ) on strongly convex is competitive with a Õ(n

√
T ) for any time horizon T ≥ Ω(n).

However, note that the time horizon regime at which our lower bound is not anymore com-
petitive with the general Õ(n

√
T ) differs from that of (Bubeck et al., 2018). Indeed, the

lower bound of (Bubeck et al., 2018, Theorem 4) is valid with less stringent requirements
on the range of the losses. Namely, we require the loss to belong to the polar of the action
set, i.e., the `p ball. In contrast, (Bubeck et al., 2018, Theorem 4) only requires the expected
loss vector to belong to the `p ball.

3.3 Technical Lemmas

We now detail the lemmas invoked in the proofs of Theorems 11 and 12. Lemma 15
provides the expression for ∇FK and ∇F ∗K and their differentiability domain. Lemma 16 is
a technicality that notably explains why we constrain η in [0, r/(2nR)]. Lemma 17 (resp.
Corollary 18) are instrumental in upper-bounding the terms DF ∗K

(∇FK(xt)− ηc̃t,∇FK(xt))
when the set is strongly convex (resp. uniformly convex). Technically, we build the link
between the uniform convexity of the set and upper bounds on the regret in these lemmas.
Although uniform convexity is a weaker assumption than strong convexity, we distinguish
the cases to stress the convergence results when the action sets are strongly convex. All
lemmas are self-contained and stated independently from Algorithm 1.

Lemma 15 (Some Identities) Assume K ⊂ Rn is strictly convex compact and smooth
set. Let x ∈ K s.t. ‖x‖K < 1 and d ∈ Rn \ {0}. With FK(x) = − ln

(
1− ‖x‖K

)
− ‖x‖K, FK

(resp. F ∗K) is differentiable on Int(K) (resp. Rn) and we have
∇FK(x) =

‖x‖K
1− ‖x‖K

∇‖ · ‖K(x)

F ∗K(d) = ‖d‖K◦ − ln(1 + ‖d‖K◦)

∇F ∗K(d) =
‖d‖K◦

1 + ‖d‖K◦
∇‖ · ‖K◦(d).

(4)

Proof Let us first compute F ∗K. We have FK(d) = g ◦ ‖x‖K with g(r) = − ln(1− r)− r for
r ∈ [0, 1[. Note that g(0) = 0 and g is convex. Write g∗(y) , supr∈[0,1]yr+ ln(1− r) + r for
y ≥ 0. With simple analysis, we have g∗(y) = y − ln(1 + y). Then, with, e.g., (Schneider,
2014, 1.47), we have that F ∗K(d) = g∗ ◦ ‖d‖K◦ = ‖d‖K◦ − ln(1 + ‖d‖K◦).

The gradient identities (4) are then immediate at points (x, d) s.t. ‖ · ‖K and ‖ · ‖K◦
are differentiable. From Lemma 2 since K is smooth, K◦ is strictly convex. For (x, d) ∈
K \ {0} × Rn \ {0}, by Lemma 5 (c), we have that ‖ · ‖K and ‖ · ‖K◦ are differentiable. FK
and FK◦ are then also differentiable at {0} because ‖∇FK(x)‖ and ‖∇FK◦(d)‖ converges to
zero as x and d converge to zero (since ∇‖ · ‖K(x) is of norm one).

Lemma 16 (Lower Bound on Θ) Assume `1(r) ⊂ K ⊂ `∞(R) for some r,R > 0. Let
x ∈ K with ‖x‖K < 1, η > 0 and c ∈ K◦. Consider the realizations of random variable

12
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ξ ∼ Ber(‖x‖K), i ∼ 1
n1n, and ε ∼ Rad(1

2). We define a ∈ K (resp. c̃) similarly to at (resp.
c̃t) in Algorithm 1 with

a =

{
x/‖x‖K if ξ = 1

rε ei otherwise,
and c̃ =

n

r2
(1− ξ) 〈a; c〉

1− ‖x‖K
a. (5)

Write u = ∇FK(x)− ηc̃ and v = ∇FK(x). Then, we have

‖u‖K◦ − ‖v‖K◦
1 + ‖v‖K◦

≥ −ηnR
r
. (6)

Proof Note that because `1(r) ⊂ K, we have ±rei ∈ K and in particular a ∈ K. We now
follow the argument of Bubeck and Cesa-Bianchi (2012). With the expression of ∇FK(x)
in Lemma 15 and that

∥∥∇‖ · ‖K(x)
∥∥
K◦ = 1 in Lemma 5, we have 1

1+‖∇FK(x)‖K◦
= 1−‖x‖K.

So with the triangle inequality, we have ‖v − ηc̃‖K◦ ≥ ‖v‖K◦ − η‖c̃‖K◦ so that we obtain

‖v − ηc̃‖K◦ − ‖v‖K◦
1 + ‖v‖K◦

≥ −η‖c̃‖K◦(1− ‖x‖K).

Then, since c̃ =
n

r2
(1− ξ) 〈a; c〉

1− ‖x‖K
a, we have

‖v − ηc̃‖K◦ − ‖v‖K◦
1 + ‖v‖K◦

≥ −η n
r2

(1− ξ)|〈a; c〉| · ‖a‖K◦ .

Because ‖·‖K and ‖·‖K◦ are dual norms and (a, c) ∈ K×K◦ we have |〈a; c〉| ≤ ‖a‖K‖c‖K◦ ≤ 1,
which leads to

‖v − ηc̃‖K◦ − ‖v‖K◦
1 + ‖v‖K◦

≥ −η n
r2
‖a‖K◦ .

When ξ = 1, (6) is already satisfied. Otherwise, ξ = 0 and by definition of a, we have
a = εrei with i ∈ [n] and ε ∈ {−1, 1}. Since K ⊂ `∞(R), we have `∞(R)◦ = `1(1/R) ⊂ K◦
and ei/R ∈ K◦. Hence, ‖rei‖K◦ = rR‖ei/R‖K◦ ≤ rR. So finally, we obtain

‖v − ηc̃‖K◦ − ‖v‖K◦
1 + ‖v‖K◦

≥ −ηnR
r
.

The following lemma is instrumental to obtaining the pseudo-regret bounds. Note that
the distance of xt to K is controlled by γ, see Line 11 in Algorithm 1. Finally, the sole
difference with the bound obtained with the Euclidean ball is with the extra factor 1 +
4(α + 1)/α and the constraint in η that now depends on the ratio r/R which, e.g., equals
1 for any `q(1) ball.

Lemma 17 (One Term Upper Bound Strong Convexity) Consider K a α-strongly
convex and centrally symmetric set with non-empty interior. Assume that `1(r) ⊂ K ⊂
`∞(R) for some r,R > 0. Let x ∈ K s.t. ‖x‖K < 1 and c̃ as defined in (5). If 0 < η ≤ 1

2n
r
R ,

then we have

DF ∗K
(∇FK(x)− ηc̃,∇FK(x)) ≤ (1− ‖x‖K)

(
1 +

4(α+ 1)

α

)
η2‖c̃‖2K◦ .

13
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Proof Let us write u = ∇FK(x) − ηc̃, v = ∇FK(x), and Θ = ‖u‖K◦−‖v‖K◦
1+‖v‖K◦

. Elementary
manipulations combined with Lemma 15 give

DF ∗K
(u, v) = F ∗K(u)− F ∗K(v)− 〈∇F ∗K(v);u− v〉

= ‖u‖K◦ − ‖v‖K◦ − ln
(1 + ‖u‖K◦

1 + ‖v‖K◦

)
− ‖v‖K◦

1 + ‖v‖K◦
〈
∇‖ · ‖K◦(v);u− v

〉
= ‖u‖K◦ − ‖v‖K◦ − ln

(
1 + Θ

)
− ‖v‖K◦

1 + ‖v‖K◦
〈
∇‖ · ‖K◦(v);u− v

〉
=

1

1 + ‖v‖K◦

[
(1 + ‖v‖K◦)(‖u‖K◦ − ‖v‖K◦)− (1 + ‖v‖K◦) ln

(
1 + Θ

)
−‖v‖K◦

〈
∇‖ · ‖K◦(v);u− v

〉]
= Θ− ln

(
1 + Θ

)
+

1

1 + ‖v‖K◦

[
‖v‖K◦(‖u‖K◦ − ‖v‖K◦)− ‖v‖K◦

〈
∇‖ · ‖K◦(v);u− v

〉]
︸ ︷︷ ︸

H,

.

Let us add and subtract −1
2‖u‖

2
K◦ in H. We obtain

H = ‖v‖K◦‖u‖K◦ −
1

2
‖v‖2K◦ −

1

2
‖u‖2K◦ +

1

2
‖u‖2K◦ −

1

2
‖v‖2K◦ −

〈
‖v‖K◦∇‖ · ‖K◦(v);u− v

〉
.

We note that∇1
2‖·‖

2
K◦(v) = ‖v‖K◦∇‖·‖K◦(v). It is then crucial to observe that the Bregman

divergence of 1
2‖ · ‖K◦ appears as follows

H = ‖v‖K◦‖u‖K◦ −
1

2
‖v‖2K◦ −

1

2
‖u‖2K◦ +D 1

2
‖·‖2K◦

(u, v)

= −1

2

(
‖u‖K◦ − ‖v‖K◦

)2
+D 1

2
‖·‖2K◦

(u, v).

Overall, with careful rewriting, we obtain that for any (u, v) ∈ Rn

DF ∗K
(u, v) = Θ− ln

(
1 + Θ

)
− 1

2

(
‖u‖K◦ − ‖v‖K◦

)2
1 + ‖v‖K◦

+
1

1 + ‖v‖K◦
D 1

2
‖·‖2K◦

(u, v).

With 1
1+‖v‖K◦

= 1
1+‖∇FK(x)‖K◦

= 1− ‖x‖K (Lemma 15 and ∇‖ · ‖K(x) is norm 1) it follows

DF ∗K
(u, v) ≤ Θ− ln

(
1 + Θ

)
+ (1− ‖x‖K)D 1

2
‖·‖2K◦

(u, v).

Then, to upper bound Θ − ln
(
1 + Θ

)
, we note that ln(1 + θ) ≥ θ − θ2 for all θ ≥ −1

2 .

Hence, we need to choose η such that Θ ≥ −1
2 . If −ηnRr ≥ −

1
2 , i.e., for η ≤ 1

2n
r
R , Lemma

16 implies that Θ ≥ −1
2 . Thus,

DF ∗K
(u, v) ≤

(‖u‖K◦ − ‖v‖K◦
1 + ‖v‖K◦

)2
+ (1− ‖x‖K)D 1

2
‖·‖2K◦

(u, v).

Then, by the triangle inequality, and 1/(1 + ‖v‖K◦) = 1− ‖x‖K, we have

DF ∗K
(u, v) ≤ (1− ‖x‖K)2‖u− v‖2K◦ + (1− ‖x‖K)D 1

2
‖·‖2K◦

(u, v). (7)
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Then, with Corollary 8, we have D 1
2
‖·‖2K◦

(u, v) ≤ 4(α+1)
α ‖u − v‖2K◦ . Hence by combining it

with (7), we obtain

DF ∗K
(u, v) ≤ (1− ‖x‖K)‖u− v‖2K◦

[
1 +

4(α+ 1)

α

]
.

With the very same technique, we obtain another form of upper bound when the set is
uniformly convex. For the sake of clarity we write it as a corollary of Lemma 17 although
it is an extension.

Corollary 18 (One Term Upper Bound Uniform Convexity) Let q ≥ 2 and p ∈
]1, 2] s.t. 1/p + 1/q = 1. Consider K an (α, q)-uniformly convex and centrally symmet-
ric with non-empty interior set. Assume that `1(r) ⊂ K ⊂ `∞(R) for some r,R > 0. Let
x ∈ K s.t. ‖x‖K < 1 and c̃ as defined in (5). If 0 < η ≤ 1

2n
r
R , then we have

DF ∗K
(∇FK(x)− ηc̃,∇FK(x)) ≤ (1− ‖x‖K)ηp‖c̃‖pK◦((1/2)2−p + L),

with L , 2p(1 + (q/(2α))1/(q−1)).

Proof The proof is exactly the same as Lemma 17 until (7). Here, by (1) in Lemma 7, we
have D 1

2
‖·‖2K◦

(u, v) ≤ 2p
(
1 + (q/(2α))1/(q−1)

)
‖u− v‖pK◦ . Hence, we now have

DF ∗K
(u, v) ≤ (1− ‖x‖K)2‖u− v‖2K◦ + (1− ‖x‖K)2p

(
1 + (q/(2α))1/(p−1)

)
‖u− v‖pK◦

≤ (1− ‖x‖K)‖u− v‖pK◦
[
(1− ‖x‖K)‖u− v‖2−pK◦ + 2p

(
1 + (q/(2α))1/(q−1)

)]
.

We now simply need to bound the term (1−‖x‖K)‖u− v‖2−pK◦ . We have u− v = ηc̃, and by
definition of c̃ in (5), when ξ = 0, we have

(1− ‖x‖K)‖u− v‖2−pK◦ = (1− ‖x‖K)p−1
[nη
r2
|〈c; rei〉| · ‖rei‖K◦

]2−p
.

Then, since `1(r) ⊂ K, rei ∈ K and c ∈ K◦, we have |〈c; rei〉| ≤ 1. Also, since K ⊂ `∞(R),
we have `∞(R)◦ = `1(1/R) ⊂ K◦ and ei/R ∈ K◦, hence ‖rei‖K◦ ≤ rR. Besides, by the
choice of η, we have nη ≤ r/(2R). We now have (case ξ = 1 is immediate) with η ≤ r/(2nR)
and because (1− ‖x‖K) ≤ 1 and p− 1 > 0

(1− ‖x‖K)‖u− v‖2−pK◦ ≤ 1 ·
[
nη
rR

r2

]2−p
≤
[ r

2R

rR

r2

]2−p
= 1/22−p.

Finally, we obtain

DF ∗K
(u, v) ≤ (1− ‖x‖K)‖u− v‖pK◦

[
(1/2)2−p + 2p

(
1 + (q/(2α))1/(q−1)

)]
.
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4. Conclusion

When the action set is strongly convex, we design a barrier function leading to a bandit
algorithm with pseudo-regret in Õ(

√
nT ). We hence drastically extend the family of action

sets for which such pseudo-regret hold, which provides new elements for the open question
from (Bubeck and Cesa-Bianchi, 2012, §5.5.). To our knowledge, a Õ(

√
nT ) bound was

known only when the action set is a simplex or an `p ball with p ∈]1, 2].

When the set is (α, q)-uniformly convex with q ≥ 2, in Theorems 11 and 12 we assume
that `q(r) is contained in the action set K. It is restrictive but allows us to first prove
improved pseudo-regret bounds outside the explicit `p case. Removing this assumption
is an interesting research direction. However, it is not clear that the current classical
algorithmic scheme with a barrier function is best adapted to practically leverage the strong
convexity of the action set. Indeed, in the case of online linear learning, Huang et al. (2017)
show that the simple FTL allows obtaining accelerated regret bounds. Such projection-free
schemes have several benefits, e.g., computational efficiency (Combettes and Pokutta, 2021)
but in the case of FTL they also do not require smoothness of the action set (Molinaro,
2020) as opposed to Algorithm 1 which requires it to ensure differentiability of FK and
FK◦ simultaneously. Besides, they also exhibit adaptive properties to unknown structural
assumptions, e.g., unknown parameters of Hölderian Error Bounds (Kerdreux et al., 2019;
Kerdreux, 2020).

At a high level, this work is an example of the favorable dimension-dependency of the
sets’ uniform convexity assumptions for the pseudo-regret bounds. It is crucial for large-
scale machine learning. Such observations have already been made, e.g., in constrained
optimization (Polyak, 1966; Demyanov and Rubinov, 1970; Dunn, 1979; Kerdreux et al.,
2021a,c), when the sets’ α-strong convexity leads to linear convergence rates of the Frank-
Wolfe methods with a conditioning on the set that does not depend on the dimension. On the
contrary, the linear convergence regimes for corrective versions of Frank-Wolfe on polytope
with strongly convex functions suffer large dimension dependency, see, e.g., (Lacoste-Julien
and Jaggi, 2015; Diakonikolas et al., 2020; Garber, 2020; Carderera et al., 2021). This differ-
ence between polytope structures and uniform convexity assumption is even more apparent
with infinite-dimensional constraints. Besides, to our knowledge, the uniform convexity
structures for the sets are much less developed and understood than their functional coun-
terpart, see, e.g., (Kerdreux et al., 2021b). Arguably, this stems from a tendency in machine
learning to consider that constraints are theoretically interchangeable with penalization. It
is often not quite accurate in terms of convergence results and the algorithmic strategies
developed differ. The linear bandit setting is a simple example where such symmetry is
structurally not relevant.
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J. Borwein, A. Guirao, Petr. Hájek, and J. Vanderwerff. Uniformly convex functions on
Banach spaces. Proceedings of the American Mathematical Society, 137(3):1081–1091,
2009.
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sciences et lettres, 2020.

Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. Restarting Frank-
Wolfe. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 1275–1283. PMLR, 2019.

Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. Projection-free opti-
mization on uniformly convex sets. In Proceedings of The 24th International Conference
on Artificial Intelligence and Statistics. PMLR, 2021a.

Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. Local and global uni-
form convexity conditions. arXiv:2102.05134, 2021b.

19



Kerdreux, Roux, d’Aspremont and Pokutta

Thomas Kerdreux, Lewis Liu, Simon Lacoste-Julien, and Damien Scieur. Affine invariant
analysis of frank-wolfe on strongly convex sets. In International Conference on Machine
Learning, pages 5398–5408. PMLR, 2021c.
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Appendix A. Consequences of Set Strong Convexity

We provide here a simplification of (Kerdreux et al., 2021b, Theorem 4.1.), see also (Borwein
et al., 2009). Let us first recall the scaling inequality that provides an equivalent character-
ization of uniformly convex sets (Kerdreux et al., 2021b, Theorem 4.1.). These inequalities
quantify the behavior of the normal cone directions at the boundary of K. As such, they
offer a geometrical intuition on uniform convex as opposed to the algebraic Definition 4.
Also, they are useful to prove Theorem 20.

Lemma 19 (Scaling Inequality) Let α > 0 and q ≥ 2. Assume K is (α, q)-uniformly
convex. Then, for any x, y ∈ K × ∂K and d ∈ NK(y), we have

〈d; y − x〉 ≥ α

q
‖x− y‖qK‖d‖K◦ . (8)

Proof We repeat the proof for completeness. Let (x, y, d) as in the lemma. In particular,
y ∈ argmaxv∈K〈d; v〉. By optimality of y and uniform convexity of K, for any γ ∈]0, 1[ and
z with ‖z‖K ≤ 1 we have

〈d; y〉 ≥ 〈d; γx+ (1− γ)y +
α

q
γ(1− γ)‖x− y‖qKz〉.

After simplification, we obtain for any γ ∈]0, 1[, z ∈ K

〈d; y − x〉 ≥ α

q
(1− γ)‖y − x‖qK〈d; z〉.

Hence, by definition of the dual norm of ‖ · ‖K and ‖ · ‖?K = ‖ · ‖K◦ , we obtain

〈d; y − x〉 ≥ α

q
‖y − x‖qK‖d‖K◦ .

Theorem 20 is slightly different from (Kerdreux et al., 2021b, Theorem 4.1.) because
we are interested in the smoothness property of 1

2‖ · ‖
2
K◦ instead of 1

q‖ · ‖
q
K◦ when the set K

is (α, q)-uniformly convex. The proof is however very similar. The main different is that in
(Kerdreux et al., 2021b, Theorem 4.1.) the smoothness property was ensured on Rn while
here it is only true on bounded domains like K◦.

Theorem 20 Let α > 0, q ≥ 2 and p ∈]1, 2] s.t 1/p + 1/q = 1. Consider K ⊂ Rn a
centrally symmetric compact convex with non-empty interior. Assume K is smooth and
(α, q)-uniformly convex w.r.t. ‖ · ‖K (Definition 4), then

1

2
‖ · ‖2K◦ is (L, p)-Hölder Smooth on K◦,

with

L = 2p
(

1 +
( q

2α

)1/(q−1))
.

Proof The proof follows (Kerdreux et al., 2021b, Theorem 4.1). We repeat it to obtain
quantitative results. The proof proceed is two steps: first prove the Hölder-smoothness of
‖ · ‖K◦ on ∂K◦ and then prove the Hölder-smoothness of 1

2‖ · ‖
2
K◦ on K◦.
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Smoothness of ‖ · ‖K◦ on ∂K◦. Let (d1, d2) ∈ ∂K◦ × ∂K◦ and (x1, x2) ∈ ∂K × ∂K
s.t. xi ∈ argmaxx∈K〈di;x〉 for i = 1, 2. Because K is strictly convex (uniform convexity
implies strict convexity), the xi are unique and by Lemma 5, ∇‖ · ‖K◦(di) = xi for i = 1, 2.
Note that equivalently we have di ∈ NK(xi). Applying the scaling inequalities (8) we have
for any x ∈ K {

〈d1;x1 − x〉 ≥ α/q‖d1‖K◦ · ‖x1 − x‖qK = α/q‖x1 − x‖qK
〈d2;x2 − x〉 ≥ α/q‖d2‖K◦ · ‖x2 − x‖qK = α/q‖x2 − x‖qK.

Then, by summing the two inequalities evaluated respectively at x = x2 and x = x1, we
have

〈d1 − d2;x1 − x2〉 ≥ 2α/q‖x1 − x2‖qK.

By Cauchy-Schwartz, we obtain∥∥d1 − d2

∥∥
K◦ ·

∥∥∇‖ · ‖K◦(d1)−∇‖ · ‖K◦(d2)
∥∥
K ≥ 2α/q

∥∥∇‖ · ‖K◦(d1)−∇‖ · ‖K◦(d2)
∥∥q
K,

and conclude that∥∥∇‖ · ‖K◦(d1)−∇‖ · ‖K◦(d2)
∥∥
K ≤

1

(2α/q)1/(q−1)

∥∥d1 − d2

∥∥1/(q−1)

K◦ . (9)

Smoothness of 1
2‖ · ‖

2
K◦ on K◦. Let us first note that ∇1

2‖ · ‖
2
K◦(d) = ‖d‖K◦∇‖ · ‖K◦(d).

Hence, since ‖ · ‖K◦(d) is norm 1, when d approaches 0n, the limit of ∇1
2‖ · ‖

2
K◦(d) is 0 and

hence 1
2‖ · ‖

2
K◦ is differentiable on Rn (as opposed to ‖ · ‖K◦ that is not differentiable at 0).

Similarly, consider non-zeros (d1, d2) ∈ K◦ × K◦ and the (x1, x2) ∈ ∂K × ∂K s.t. xi ∈
argmaxx∈K〈di;x〉 for i = 1, 2. Because of (b) in Lemma 5, we have ∇‖ · ‖K◦(d1) = ∇‖ ·
‖K◦(d1/‖d1‖K◦). Hence, with (9), we obtain∥∥∇‖ · ‖K◦(d1)− ‖ · ‖K◦(d2)

∥∥
K ≤

1

(2α/q)1/(q−1)

∥∥d1/‖d1‖K◦ − d2/‖d2‖K◦
∥∥1/(q−1)

K◦ .

Write C , 1/(2α/q)1/(q−1) and I ,
∥∥∇1

2‖ · ‖
2
K◦(d1)− 1

2∇‖ · ‖
2
K◦(d2)

∥∥
K. Let us now consider

I =
∥∥‖d1‖K◦∇‖ · ‖K◦(d1)− ‖d2‖K◦∇‖ · ‖K◦(d2)

∥∥
K

≤ ‖d1‖K◦
∥∥∇‖ · ‖K◦(d1)−∇‖ · ‖K◦(d2)

∥∥+
∥∥∇‖ · ‖K◦(d2)

∥∥ · ∣∣‖d1‖K◦ − ‖d2‖K◦
∣∣

≤ C‖d1‖1+1/(q−1)
K◦ ‖d1‖1/(q−1)

K◦
∥∥d1/‖d1‖K◦ − d2/‖d2‖K◦

∥∥1/(q−1)

K◦ + ‖d1 − d2‖K◦

≤ C‖d1‖q/(q−1)
K◦

∥∥d1 − d2‖d1‖K◦/‖d2‖K◦
∥∥1/(q−1)

K◦ + ‖d1 − d2‖q/(q−1)
K◦ ‖d1 − d2‖1/(q−1)

K◦ .

For i = 1, 2, di ∈ K◦ so that ‖di‖K◦ ≤ 1. We then obtain

I ≤ C
∥∥d1 − d2‖d1‖K◦/‖d2‖K◦

∥∥1/(q−1)

K◦ + 2‖d1 − d2‖1/(q−1)
K◦ .

Also, with the triangle inequality

∥∥d1−d2
‖d1‖K◦
‖d2‖K◦

∥∥ ≤ ‖d1−d2‖K◦+
∥∥d2−d2

‖d1‖K◦
‖d2‖K◦

∥∥ ≤ ‖d1−d2‖K◦+‖d2‖K◦−‖d1‖K◦ ≤ 2‖d1−d2‖K◦ .
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Hence, we finally obtain∥∥∇1

2
‖ · ‖2K◦(d1)− 1

2
∇‖ · ‖2K◦(d2)

∥∥
K ≤ 2(C + 1)

∥∥d1 − d2

∥∥1/(q−1)

K◦ .

This equivalently means that 1
2‖ ·‖

◦
K is

(
2(C+1), 1+1/(q−1)

)
-Hölder smooth as defined in

(Hölder-Smoothness). Hence, since q − 1 = 1/(p− 1), we get that 1
2‖ · ‖

◦
K is

(
2p(C + 1), p

)
-

Hölder smooth.
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