
Journal of Machine Learning Research 22 (2021) 1-6 Submitted 1/21; Revised 6/21; Published 8/21

sklvq: Scikit Learning Vector Quantization

Rick van Veena rick.van.veen@rug.nl

Michael Biehla,b m.biehl@rug.nl
aBernoulli Institute for Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, The Netherlands,
bSMQB, Institute of Metabolism and Systems Research,
College of Medical and Dental Sciences, Birmingham, UK

Gert-Jan de Vries gj.de.vries@philips.com

Philips Research, Healthcare, Eindhoven, The Netherlands

Editor: Andreas Mueller

Abstract

The sklvq package is an open-source Python implementation of a set of learning vector
quantization (LVQ) algorithms. In addition to providing the core functionality for the
GLVQ, GMLVQ, and LGMLVQ algorithms, sklvq is distinctive by putting emphasis on its
modular and customizable design. Not only resulting in a feature-rich implementation for
users but enabling easy extensions of the algorithms for researchers. The theory behind this
design is described in this paper. To facilitate adoptions and inspire future contributions,
sklvq is publicly available on Github (under the BSD license) and can be installed through
the Python package index (PyPI). Next to being well-covered by automated testing to
ensure code quality, it is accompanied by detailed online documentation. The documenta-
tion covers usage examples and provides an in-depth API including theory and scientific
references.

Keywords: Python, scikit-learn, learning vector quantization, matrix relevance learning

1. Introduction

Learning vector quantization (LVQ) has, since its introduction by Kohonen (1990), become
an important family of supervised learning algorithms. In the training phase, the algorithms
determine prototypes that represent the classes in the presented data. Predictions about
novel samples are made based on the receptive fields of the prototypes. In other words, a
novel sample is classified by computing the distance from the sample to all prototypes and
assigning it to the label of the closest prototype. The computation of the prototypes and
the definition of their receptive fields can be achieved in different ways. A comprehensive
review of the most relevant LVQ algorithms is given by Nova and Estévez (2014).

Here we present “sklvq”1, an open-source, Python based, and “scikit-learn” (Pedregosa
et al., 2011) compatible2 LVQ framework, including the following three variants: General-
ized LVQ (GLVQ) by Sato and Yamada (1995), generalized matrix LVQ (GMLVQ), and
localized GMLVQ (LGMLVQ) by Schneider et al. (2009); Bunte et al. (2012). Although

1. https://github.com/rickvanveen/sklvq/releases/0.1.2
2. https://scikit-learn.org/stable/developers/develop.html

c©2021 Rick van Veen, Michael Biehl, Gert-Jan de Vries.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/21-0029.html.

https://github.com/rickvanveen/sklvq/releases/0.1.2
https://scikit-learn.org/stable/developers/develop.html
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/21-0029.html


van Veen, Biehl, and de Vries

other variants of LVQ exist (Nova and Estévez, 2014) the focus on these specific algorithms
is motivated by our own research interests and their successful practical application, see
e.g. van Veen et al. (2018, 2020); de Vries et al. (2015); Biehl (2017).

A key property of the LVQ family is that the prototypes are interpretable in feature
space. However, even if the feature space is complex and unfeasible to understand, the
prototypes can still be transformed into the original space under certain conditions (van
Veen et al., 2020). In addition to the prototypes, the GMLVQ and LGMLVQ variants
employ and construct a “relevance matrix” that can be used to generate low dimensional
discriminant visualizations (Bunte et al., 2012; Biehl et al., 2012). These discriminant plots
can help find potential sources of variation by visualizing the data within the decision space
of the models (van Veen et al., 2020). These properties in combination with proved success,
for instance, discussed by Nova and Estévez (2014); Biehl (2017) in numerous applications
in the biomedical field, medicine, and industry3, makes LVQ a valuable and popular tool.

2. Implementation

Here we discuss the theoretical concepts and link them with the reasoning behind the
implementation in the code repository2. In the following, a dataset is referred to as D ={

(~xi, yi) | ~xi ∈ RN , yi ∈ {1, . . . , C}
}P
i=1
, where P represents the number of samples ~xi, with

labels yi that represent C mutually exclusive classes. At the center of any LVQ model are
the prototypes, which define the model. The definition of a set of Q prototypes is given

by W =
{

(~wj , zj) ∈ RN × {1, . . . , C}
}Q
j=1

, with Q ≥ C and at least one prototype ~wj

with label zj representing each class. Within the code, LVQ algorithms are referred to as
models, each with an objective function quantifying how well it has been adapted to the
data in terms of prototypes (W) and single or multiple relevance matrices in GMLVQ and
LGMLVQ, respectively. In order to explain the architecture and idea behind the code, we
focus on GLVQ here and refer the reader to the work of Schneider et al. (2009); Bunte et al.
(2012) for details about GMLVQ and LGMLVQ. Hence, the model parameter, denoted by
~θ only contains prototypes. All algorithms in the sklvq package share the same objective
function, i.e., the GLVQ objective function as introduced by Sato and Yamada (1995):

E(~θ,D) =
∑P

i=1 e(
~θ, ~xi), with e(~θ, ~xi) = f

[
µ(dL(~xi), dK(~xi))

]
. (1)

The sklvq package extracts the components found in (Equation 1) and locates them in
their own sub-packages, with the activation function f(·) and the discriminant function
µ(·). The discriminant function takes the two distances dL(·) and dK(·) as arguments. If
we define ~wL(~xi) to be the prototype closest to ~xi with the same label then the distance
between this prototype and the sample would be given by dL(~xi) = d(~xi, ~wL(~xi)). Similarly,
dK(~xi) = d(~xi, ~wK(~xi)) denotes the distance between ~xi and the prototype closest to it
~wK(~xi) that has a different label. The objective function in Equation (1) quantifies how
close prototypes are to data samples with the same label compared to how far away they
are from samples with a different label. Lower values imply a better model fit than higher
values. Hence, the goal is to change prototypes (W) in such a way that the objective value

3. http://www.cis.hut.fi/research/som-bibl/

2

http://www.cis.hut.fi/research/som-bibl/


sklvq: Scikit Learning Vector Quantization

is minimized. The minimization is based on gradients as obtained by the chain rule:

∂e(~θ, ~xi)
/
∂ ~wL(~xi) = ∂f/ ∂µ · ∂µ/ ∂dL(~xi) · ∂dL(~xi)/ ∂ ~wL(~xi). (2)

The structure of the objective function shows that a “modular” code design is possible:
Substituting the activation, discriminant, or distance functions with another variant does
not alter the form of the objective function (Equation 1) or its derivatives (Equation 2). The
realization of the objective function and the resulting models follow this structure where
each component can be provided as a hyper-parameter4. This ability to implement each
component separately, with the support of “base” classes to ensure the right interface4, is
the key design difference distinguishing sklvq from other LVQ packages.

How the model parameters are exactly updated depends on the solver, which comes
into play whenever the model’s fit method is called and the objective function and its
components are initialized. The general structure of the implementation can be understood
by looking at a single example, i.e., stochastic steepest gradient descent. The stochastic
gradient descent updates the model parameter ~θ in the following way

~θ = ~θ − η(t) · ∇e(~θ, ~xi), (3)

where ∇ei(~θ, ~xi) denotes the gradient of the objective function with respect to the model
parameters given a single random sample ~xi from the dataset D. The step size η(t) controls
the size of the update step taken and decreases after each epoch t, see the work by (LeKander
et al., 2017) for details. The process is repeated for all other samples in the dataset after
which the epoch (t) is incremented. One can see that this structure extends to other solvers
without having to adapt the objective function or its components. Thus, in sklvq solvers and
objectives are separated from each other, making it easier to add multiple solvers (see Table
1b). For instance, batch gradient descent replaces the single sample update in (Equation
3) with ∇E(~θ) =

∑P
i ∇ei(~θ, ~xi), i.e., the full gradient based on all the samples.

3. Comparison

In the previous section, we have shown the theory behind the design and implementation of
sklvq and the resulting advantages. This section, particularly Table 1, provides a comparison
of the resulting functionality with that of other LVQ toolboxes.

Table 1a shows that a user has multiple choices depending on the required programming
language and LVQ variant. The key differentiator between sklvq and the single other choice
when one needs a scikit-learn compatible Python implementation (Jensen and Paassen,
2018) is its modular design, as described in Section 2. Together with the inclusion of the
work of LeKander et al. (2017) on different solvers for LVQ and Villmann et al. (2020) for
the comparison of activation functions, this results in a more feature-rich (Table 1b) and
easier to customize implementation4 of, currently, GLVQ, GMLVQ, and LGMLVQ.

4. Conclusion and Future Work

We have provided an overview of the resulting benefit (Table 1b) and reasoning behind
sklvq’s modular and customizable design (Section 2). Together with the open and online

4. https://sklvq.readthedocs.io/en/0.1.2/

3

https://sklvq.readthedocs.io/en/0.1.2/


van Veen, Biehl, and de Vries

(Jensen and
Paassen, 2018)

(Bunte,
2012)

(Biehl and
Westermann, 2019)

(Leberecht
et al., 2018)

sklvq

Algorithms

GLVQ 3 3 3 7 3

GRLVQ 3 3 3 7 7

GMLVQ 3 3 3 3 3

LGMLVQ 3 3 7 7 3

RSLVQ 3 7 7 7 7

MRSLVQ 3 7 7 7 7

LMRSLVQ 3 7 7 7 7

Language Python Matlab Matlab Java Python

(a) Overview of implemented algorithms in sklvq and other toolboxes.

Distance Functions

Euclideana 7 7 3 7 3

Squared Euclideana 3 3 7 7 3

Adaptive Squared Euclideanb 3 3 3 3 3

Local Squared Euclideanc 3 3 3 3 3

Objective Functions

Generalized Learning Objective 3 3 3 3 3

Discriminant Functions

Relative Distance 3 3 3 3 3

Activation Functions

Identity 7 7 3 7 3

Sigmoid 3 3 7 3 3

Soft+ 7 7 7 7 3

Swish 7 7 7 7 3

Solvers

Steepest Gradient Descent 7 3 7 3 3

Waypoint Gradient Descent 7 7 3 7 3

Adaptive Moment Estimation 7 7 7 7 3

LBFGS 3 3 7 7 3

BFGS 7 7 7 7 3

(b) Overview of GLVQ, GMLVQ, LGMLVQ specific functionality compared to other LVQ toolboxes.
Note that small differences in the implementations may exist. Distance functions compatibility: a:
GLVQ. b: GMLVQ. c: LGMLVQ. All other functions are compatible with all three algorithms.

Table 1: Algorithm and component level functionality overview. The 3 and 7 indicate if
an algorithm or component has or has not been implemented, respectively.

setup, we expect to facilitate high-quality contributions. Future work will focus on LVQ
variants not yet available in sklvq (Table 1a). In particular, variants that provide probability
estimates such as RSLVQ (Seo and Obermayer, 2003; Schneider, 2010) require different
objective and discriminant functions. In addition, the inclusion of reject options (Fischer
et al., 2014; Brinkrolf and Hammer, 2017) will be considered.

4



sklvq: Scikit Learning Vector Quantization

Acknowledgments

This work was supported by the Michael J. Fox Foundation through grant ID 17081.

References

M. Biehl. Biomedical applications of prototype based classifiers and relevance learning. In
International Conference on Algorithms for Computational Biology, pages 3–23. Springer,
2017.

M. Biehl and F. Westermann. A collection of no-nonsense GMLVQ demo code, March 2019.
URL https://www.cs.rug.nl/~biehl/gmlvq. Version 3.0.

M. Biehl, K. Bunte, F. Schleif, P. Schneider, and T. Villmann. Large margin linear discrim-
inative visualization by Matrix Relevance Learning. In International Joint Conference
on Neural Networks, pages 1–8, 2012. doi: 10.1109/IJCNN.2012.6252627.

J. Brinkrolf and B. Hammer. Probabilistic extension and reject options for pairwise LVQ.
In Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and
Data Visualization, pages 1–8, 2017. doi: 10.1109/WSOM.2017.8020028.

K. Bunte. Matrix Relevance LVQ, 2012. URL http://matlabserver.cs.rug.nl/

gmlvqweb/web/. Direct download: https://www.cs.rug.nl/~biehl/LVQ%5Ftoolbox.

tar.gz.

K. Bunte, P. Schneider, B. Hammer, F.M. Schleif, T. Villmann, and M. Biehl. Limited rank
matrix learning, discriminative dimension reduction and visualization. Neural Networks,
26:159–173, February 2012. ISSN 08936080. doi: 10.1016/j.neunet.2011.10.001.

J.J.G. de Vries, S.C. Pauws, and M. Biehl. Insightful stress detection from physiology modal-
ities using Learning Vector Quantization. Neurocomputing, 151:873–882, 2015. ISSN
0925-2312. doi: 10.1016/j.neucom.2014.10.008.

L. Fischer, D. Nebel, T. Villmann, B. Hammer, and H. Wersing. Rejection strategies
for learning vector quantization – A comparison of probabilistic and deterministic ap-
proaches. In T. Villmann, F.M. Schleif, M. Kaden, and M. Lange, editors, Advances in
Self-Organizing Maps and Learning Vector Quantization, pages 109–118. Springer Inter-
national Publishing, 2014. ISBN 978-3-319-07695-9.

J. Jensen and B. Paassen. Sklearn-lvq, 2018. URL https://github.com/MrNuggelz/

sklearn-lvq. Version v1.1.0.

T. Kohonen. The Self-Organizing Map. Proceedings of the IEEE, 78(9):1464–1480, 1990.
doi: 10.1109/5.58325.

C. Leberecht, S. Bittrich, and F. Kaiser. GMLVQ WEKA plug-in, August 2018. URL
https://doi.org/10.5281/zenodo.1326272. Version v0.1.0.

5

https://www.cs.rug.nl/~biehl/gmlvq
http://matlabserver.cs.rug.nl/gmlvqweb/web/
http://matlabserver.cs.rug.nl/gmlvqweb/web/
https://www.cs.rug.nl/~biehl/LVQ%5Ftoolbox.tar.gz
https://www.cs.rug.nl/~biehl/LVQ%5Ftoolbox.tar.gz
https://github.com/MrNuggelz/sklearn-lvq
https://github.com/MrNuggelz/sklearn-lvq
https://doi.org/10.5281/zenodo.1326272


van Veen, Biehl, and de Vries

M. LeKander, M. Biehl, and H. de Vries. Empirical evaluation of gradient methods for
matrix learning vector quantization. In Workshop on Self-Organizing Maps and Learning
Vector Quantization, Clustering, and Data Visualization, pages 1–8, 2017. doi: 10.1109/
wsom.2017.8020027.

D. Nova and P.A. Estévez. A review of learning vector quantization classifiers. Neural
Computing and Applications, 25(3-4):511–524, 2014. doi: 10.1007/s00521-013-1535-3.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

A. Sato and K. Yamada. Generalized learning vector quantization. In Conference on Neural
Information Processing Systems, NIPS’95, page 423–429, Cambridge, MA, USA, 1995.
MIT Press.

P. Schneider. Advanced methods for prototype-based classification. PhD the-
sis, University of Groningen, 2010. URL http://hdl.handle.net/11370/

71c6861f-edc6-4030-908e-19e87e3fc2ad.

P. Schneider, M. Biehl, and B. Hammer. Adaptive relevance matrices in learning vector
quantization. Neural Computation, 21(12):3532–3561, December 2009. ISSN 0899-7667.
doi: 10.1162/neco.2009.11-08-908.

S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation, 15(7):
1589–1604, 2003. doi: 10.1162/089976603321891819.

R. van Veen, L. Talavera Martinez, R.V. Kogan, S.K. Meles, D. Mudali, J.B.T.M. Roerdink,
F. Massa, M. Grazzini, J.A. Obeso, M.C. Rodriguez-Oroz, K.L. Leenders, R.J. Renken,
J.J.G. de Vries, and M. Biehl. Machine learning based analysis of FDG-PET image
data for the diagnosis of neurodegenerative diseases, volume 310 of Frontiers in Artificial
Intelligence and Applications, pages 280–289. Amsterdam, Netherlands: IOS Press, 2018.
ISBN 978-1-61499-928-7. doi: 10.3233/978-1-61499-929-4-280.

R. van Veen, V. Gurvits, R.V. Kogan, S.K. Meles, J.J.G. de Vries, R.J. Renken, M.C.
Rodriguez-Oroz, R. Rodriguez-Rojas, D. Arnaldi, S. Raffa, B.M. de Jong, K.L. Leenders,
and M. Biehl. An application of generalized matrix learning vector quantization in neu-
roimaging. Computer Methods and Programs in Biomedicine, 197:105708, 2020. ISSN
0169-2607. doi: 10.1016/j.cmpb.2020.105708.

T. Villmann, J. Ravichandran, A. Villmann, D. Nebel, and M. Kaden. Investiga-
tion of activation functions for generalized learning vector quantization. In A. Vel-
lido, K. Gibert, C. Angulo, and J.D. Mart́ın Guerrero, editors, Advances in Self-
Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization,
pages 179–188. Springer International Publishing, 2020. ISBN 978-3-030-19642-4. doi:
10.1007/978-3-030-19642-4 18.

6

http://hdl.handle.net/11370/71c6861f-edc6-4030-908e-19e87e3fc2ad
http://hdl.handle.net/11370/71c6861f-edc6-4030-908e-19e87e3fc2ad

	Introduction
	Implementation
	Comparison
	Conclusion and Future Work

