
Journal of Machine Learning Research 22 (2021) 1-6 Submitted 4/20; Revised 11/20; Published 1/21

giotto-tda : A Topological Data Analysis Toolkit
for Machine Learning and Data Exploration

Guillaume Tauzin† gtauzin@prontonmail.com

Umberto Lupo§ umberto.lupo@gmail.com

Lewis Tunstall§ lewis.c.tunstall@gmail.com

Julian Burella Pérez‡ julian.burellaperez@heig-vd.ch

Matteo Caorsi§ m.caorsi@l2f.ch

Anibal M. Medina-Mardones† anibal.medinamardones@epfl.ch

Alberto Dassatti‡ alberto.dassatti@heig-vd.ch

Kathryn Hess† kathryn.hess@epfl.ch
†Laboratory for Topology and Neuroscience, EPFL
§L2F SA
‡School of Management and Engineering Vaud, HES-SO

Editor: Alexandre Gramfort

Abstract

We introduce giotto-tda, a Python library that integrates high-performance topological
data analysis with machine learning via a scikit-learn–compatible API and state-of-the-art
C++ implementations. The library’s ability to handle various types of data is rooted in
a wide range of preprocessing techniques, and its strong focus on data exploration and
interpretability is aided by an intuitive plotting API. Source code, binaries, examples, and
documentation can be found at https://github.com/giotto-ai/giotto-tda.

Keywords: Topological Data Analysis, Persistent Homology, Mapper, Machine Learning,
Data Exploration, Python

1. Introduction

Topological data analysis (TDA) uses tools from algebraic and combinatorial topology to
extract features that capture the shape of data (Carlsson, 2009). In recent years, algorithms
based on topology have proven very useful in the study of a wide range of problems. In
particular, persistent homology has had significant impact on data intensive challenges in-
cluding the classification of porous materials (Lee et al., 2018), the study of structures in the
weight space of CNNs (Gabrielsson and Carlsson, 2018), and the discovery of links between
structure and function in the brain (Reimann et al., 2017). The mapper algorithm has
also received considerable attention after its use in the identification of a highly treatable
subgroup of breast cancers (Nicolau et al., 2011).

Despite its power and versatility, TDA has remained outside the toolbox of most machine
learning (ML) practitioners, largely because current implementations are developed for
research purposes and not in high-level languages. The aim of giotto-tda is to fill this
gap by making TDA accessible to the Python data science community, while supporting
research. To this end, giotto-tda inherits the flexibility of scikit-learn, the most popular all-

c©2021 Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo Caorsi, Anibal M.
Medina-Mardones, Alberto Dassatti, and Kathryn Hess.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-325.html.

https://github.com/giotto-ai/giotto-tda
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-325.html


Tauzin, Lupo, Tunstall, Burella Pérez, Caorsi, Medina-Mardones, Dassatti, and Hess

purpose ML framework (Pedregosa et al., 2011), and extends it with TDA capabilities that
include a wide range of persistent homology and Mapper-type algorithms. It enables TDA
to be applied to univariate and multivariate time series, images, graphs, and their higher
dimensional analogues, simplicial complexes. This makes giotto-tda the most comprehensive
Python library for topological machine learning and data exploration to date.

2. Architecture

To use topological features in machine learning effectively, techniques such as hyperparam-
eter search and feature selection need to be applied at a large scale. Facilitating these
processes is one of the reasons why giotto-tda maintains and extends compatibility with
the scikit-learn API. giotto-tda provides users with full flexibility in the design of TDA
pipelines via modular estimators, and the highly visual nature of topological signatures
is harnessed via a plotting API based on plotly. This exposes a set of external functions
and class methods to plot and interact with intermediate results represented as standard
NumPy arrays (Harris et al., 2020).

To apply TDA techniques to time series, one must first embed the input data into a
higher-dimensional space. To support flexible embedding options while maintaining high
levels of integration with scikit-learn, giotto-tda defines a TransformerResamplerMixin

base class. It provides a resample method that modifies the target’s sample number to
align it with the transformed input data. For users to be able to combine scikit-learn–
based estimators and giotto-tda’s transformer-resamplers, an extended version of scikit-
learn’s Pipeline is provided.

3. Persistent Homology

Persistent homology is one of the main tools in TDA. It extracts and summarises, in so-called
persistence diagrams, multi-scale relational information in a manner similar to hierarchical
clustering, but also considering higher-order connectivity. To fully take advantage of it in
ML and data exploration tasks, giotto-tda offers scikit-learn–compatible components that
enable the user to a) transform a wide variety of data input types into forms suitable
for computing persistent homology, b) compute persistence diagrams according to a large
selection of algorithms, and c) extract a rich set of features from persistence diagrams. The
result is a framework for constructing end-to-end Pipeline objects to generate carefully
crafted topological features from each sample in an input raw data collection. At a more
technical level, features are often extracted from persistence diagrams by first representing
them as curves or images, or by defining kernels. Each method for doing so typically comes
with a set of hyperparameters that must be tuned to the problem at hand. giotto-tda
exposes a large selection of such algorithms and, by tightly integrating with the scikit-learn
API for hyperparameter search, cross-validation and feature selection, allows for simple
data-driven tuning of the many hyperparameters involved. A feature comparison between
giotto-tda and other Python persistence homology libraries is shown in Table 1.

Our library matches the code and documentation standards set by scikit-learn, and relies
on state-of-the-art external C++ libraries (The GUDHI Project, 2020; Bauer, 2019; Kerber

1. GUDHI (The GUDHI Project, 2020), scikit-tda (Saul and Tralie, 2019), Dionysus 2 (Morozov, 2018).

2



giotto-tda: A TDA Toolkit for Machine Learning and Data Exploration

ML framework
integration

Preprocessing Persistent homology Diagrams
features

Plotting
Point
clouds

Time
series

Networks Images
Persistent
diagrams

Simplicial
(undirected)

Simplicial
(directed)

Cubical

giotto-tda 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

GUDHI 3 3 3 3 7 7 3 3 3 3 7 3 3 3 3 3

scikit-tda 3 7 7 7 7 7 3 7 7 3 3

Dionysus 2 7 7 7 7 7 7 3 7 7 3 3

Table 1: Relative degree of support in the main Python persistent homology libraries.1

et al., 2017; Lütgehetmann et al., 2020) using new performance-oriented bindings based on
pybind11 (Jakob et al., 2017).2 Whenever possible, we contributed with bug fixes and other
improvements to giotto-tda’s C++ and Python dependencies. For flagser (Lütgehetmann
et al., 2020), no Python API was available prior to giotto-tda’s sibling project pyflagser.3

An example of a giotto-tda persistent homology Pipeline for images of handwritten digits
is shown in Figure 1.

Grayscale Binarized Radial filtration Pers. diagram Heat kernel

A
m

p
li
tu

d
e

2
2
3
.5

sc
ik
it
-l
ea
rn

e
s
t
i
m
a
t
o
r

Figure 1: Example of a giotto-tda pipeline processing a MNIST image.4

4. Mapper

Mapper is a representation technique of high-dimensional data that, combining the applica-
tion of filter functions and partial clustering, creates a simple and topologically meaningful
description of the input as an unweighted graph (or, more generally, as a simplicial complex).
It is primarily used as a data visualization tool to explore substructures of interest in data.
In giotto-tda, this algorithm is realised as a sequence of steps in a scikit-learn Pipeline,
where the clustering step can be parallelized. The resulting graph is visualized through an
interactive plotting API. This design choice provides a great deal of interoperability and
computational efficiency, allowing users to a) realize relevant steps of the Mapper algorithm
through any scikit-learn estimator, b) integrate Mapper pipelines as part of a larger ML
workflow, and c) make use of memory caching to avoid unnecessary re-computations. Mem-
ory caching is especially useful for interactive plotting, where giotto-tda allows users to tune
mapper’s hyperparameters and observe how the resulting graph changes in real time. An
example is shown in Figure 2.

To the best of our knowledge, KeplerMapper (van Veen et al., 2019) is the only alter-
native open-source implementation of Mapper in Python that provides general-purpose func-
tionality. Although KeplerMapper also provides the flexibility to use scikit-learn estimators

to generate mapper graphs, it does not implement all steps of the algorithm in a single class

2. In the case of ripser (Bauer, 2019), bindings from ripser.py (Tralie et al., 2018) were adapted.
3. Source code available at https://github.com/giotto-ai/pyflagser.
4. Figure adapted from Garin and Tauzin (2019).

3

https://github.com/giotto-ai/pyflagser


Tauzin, Lupo, Tunstall, Burella Pérez, Caorsi, Medina-Mardones, Dassatti, and Hess

and is only partially compatible with scikit-learn pipelines. Moreover, it does not imple-
ment memory caching or provide real-time hyperparameter interactivity in the visualization.

Figure 2: Mapper graph generated by giotto-tda based on the height of a 3D model.5

5. Project Management

Installation: Binary packages are available for all major operating systems on the PyPI
package repository and can be installed using python -m pip install -U giotto-tda.
Code quality: The code is unit-tested throughout using pytest and hypothesis and test
coverage is at 98%. The code follows PEP8 standards and adheres to the Python coding
guideline and NumPy-style documentation.
Community-based development: We base giotto-tda’s development on collaborative tools
such as Git, GitHub, and Slack. Contributions are encouraged, and we actively make use
of GitHub’s issue tracker to provide support and discuss ideas. The library is distributed
under the GNU AGPLv3 license.
Documentation and learning resources: A detailed API reference is provided to the user
using sphinx.6 To lower the entry barrier, we provide a theory glossary and a wide range of
tutorials and examples that help new users explore how TDA-based ML pipelines can be
applied to data sets of various sorts.
Project relevance: As of v0.3.1, the GitHub repository has attracted over 300 stars and
between 500 and 1000 visits per week. The PyPI package is downloaded 350 times per
month. The library appears in scikit-learn’s curated list of related projects.

6. Concluding Remarks

The very active research field of TDA provides algorithms that can be used at any step of
a ML pipeline. giotto-tda aims to make these algorithms available in a form that is useful
to both the research and data science communities, thus allowing them to use TDA as a
part of large-scale ML tasks. We have written giotto-tda under the code and documentation
standards of scikit-learn and, alongside further performance optimization of the existing C++

code, future developments will include the first implementation of novel TDA algorithms
such as persistence Steenrod diagrams (Medina-Mardones, 2018).

5. Example adapted from Murugan and Robertson (2019).
6. Currently hosted at https://giotto-ai.github.io/gtda-docs/latest/modules/index.html

4

https://giotto-ai.github.io/gtda-docs/latest/modules/index.html


giotto-tda: A TDA Toolkit for Machine Learning and Data Exploration

Acknowledgments

We thank Roman Yurchak, Philippe Nguyen, Philipp Weiler, and Wojciech Reise for their
ideas and contributions, and Innosuisse (grant number 32875.1 lP-ICT) for its support.

References

Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence barcodes, August
2019. Preprint.

Gunnar Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009.

Rickard Brüel Gabrielsson and Gunnar Carlsson. Exposition and interpretation of the
topology of neural networks, 2018.

Adélie Garin and Guillaume Tauzin. A topological “reading” lesson: Classification of
MNIST using TDA. In Proceedings of the 19th International Conference on Machine
Learning and Applications (ICMLA 2020). IEEE, December 2019.

Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, et al. Array programming
with NumPy. Nature, 585:357–362, 2020.

Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless operability
between c++11 and python, 2017. URL https://github.com/pybind/pybind11.

Michael Kerber, Dmitriy Morozov, and Arnur Nigmetov. Geometry helps to compare per-
sistence diagrams. Journal of Experimental Algorithmics, 22:1–20, 09 2017.

Yongjin Lee, Senja D Barthel, Pawe l D lotko, et al. High-Throughput Screening Approach for
Nanoporous Materials Genome Using Topological Data Analysis: Application to Zeolites.
Journal of chemical theory and computation, 14(8):4427–4437, August 2018.

Daniel Lütgehetmann, Dejan Govc, Jason P. Smith, et al. Computing persistent homology
of directed flag complexes. Algorithms, 13(1), 2020.

A. M. Medina-Mardones. Persistence Steenrod modules, 2018. URL https://arxiv.org/

abs/1812.05031.

Dmitriy Morozov. Dionysus 2 – library for computing persistent homology, 2018. URL
https://github.com/mrzv/dionysus.

Jeff Murugan and Duncan Robertson. An introduction to topological data analysis for
physicists: From lgm to frbs, 2019.

Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile and excellent
survival. Proceedings of the National Academy of Sciences, 108(17):7265–7270, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

5

https://github.com/pybind/pybind11
https://arxiv.org/abs/1812.05031
https://arxiv.org/abs/1812.05031
https://github.com/mrzv/dionysus


Tauzin, Lupo, Tunstall, Burella Pérez, Caorsi, Medina-Mardones, Dassatti, and Hess

Michael W. Reimann, Max Nolte, Martina Scolamiero, et al. Cliques of neurons bound into
cavities provide a missing link between structure and function. Frontiers in Computational
Neuroscience, 11:48, 2017.

Nathaniel Saul and Chris Tralie. Scikit-tda: Topological data analysis for python, 2019.
URL https://doi.org/10.5281/zenodo.2533369.

The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 3.1.1
edition, 2020. URL https://gudhi.inria.fr/doc/3.1.1/.

Christopher Tralie, Nathaniel Saul, and Rann Bar-On. Ripser.py: A lean persistent ho-
mology library for python. Journal of Open Source Software, 3(29):925, 2018. doi:
10.21105/joss.00925. URL https://doi.org/10.21105/joss.00925.

Hendrik van Veen, Nathaniel Saul, David Eargle, et al. Kepler Mapper: A flexible Python
implementation of the mapper algorithm. Journal of Open Source Software, 4(42):1315,
2019. URL https://github.com/scikit-tda/kepler-mapper.

6

https://doi.org/10.5281/zenodo.2533369
https://gudhi.inria.fr/doc/3.1.1/
https://doi.org/10.21105/joss.00925
https://github.com/scikit-tda/kepler-mapper

	Introduction
	Architecture
	Persistent Homology
	Mapper
	Project Management
	Concluding Remarks

