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Abstract

Dimensionality reduction is considered as an important step for ensuring competitive
performance in unsupervised learning such as anomaly detection. Non-negative matrix
factorization (NMF) is a widely used method to accomplish this goal. But NMF do not have
the provision to include the neighborhood structure information and, as a result, may fail
to provide satisfactory performance in presence of nonlinear manifold structure. To address
this shortcoming, we propose to consider the neighborhood structural similarity information
within the NMF framework and do so by modeling the data through a minimum spanning
tree. We label the resulting method as the neighborhood structure-assisted NMF. We
further develop both offline and online algorithms for implementing the proposed method.
Empirical comparisons using twenty benchmark data sets as well as an industrial data
set extracted from a hydropower plant demonstrate the superiority of the neighborhood
structure-assisted NMF. Looking closer into the formulation and properties of the proposed
NMF method and comparing it with several NMF variants reveal that inclusion of the MST-
based neighborhood structure plays a key role in attaining the enhanced performance in
anomaly detection.
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1. Introduction

Matrix factorization (MF) is one popular framework for finding the low dimensional embed-
ding in a high dimensional data set. MF based approaches have been employed successfully
to represent and group high dimensional data for better learning capability. Traditional
matrix factorization produces low rank matrices consisting of negative values, and positive
and negative weights, which tend to cancel each other in reconstructing the original ma-
trix, and hence provide no intuitive meaning. The non-negative matrix factorization (Lee
and Seung, 1999, NMF) method, which imposes the non-negativity constraint in matrix
factorization and only allows additive linear combinations of components, comes out as a
better candidate for finding the low dimensional representation of high dimensional data.
NMF has the capability of generating both clustering assignments and meaningful attribute
distribution in two separate matrices. Immediately after its introduction, NMF not only
becomes a powerful tool for clustering (Xu et al., 2003), but it also shows enough potential
in anomaly detection (Allan et al., 2008; Tong and Lin, 2011; Liu et al., 2017).

In the presence of complicated manifolds, however, researchers notice that NMF starts
to lose its efficacy (Kuang et al., 2012; Cai et al., 2011) as it only tries to approximate
the data without trying to mimic the similarity among observations in the latent space. In
other words, the shortcoming of the original NMF is attributed to that it has no provision
to include the neighborhood structure information during the calculation of the factored
matrices and thus cannot approximate the manifold embedded in the data.

Our research finds it beneficial to include the structural similarity information of data
in the objective function of an NMF-based method, along with the original attribute in-
formation. Our specific approach is as follows. First, we convert the original data matrix
into a graph object where each node represents an observation and each edge represents
the virtual connection between a pair of data points. Then we apply a minimum spanning
tree (Prim, 1957, MST) on the graph to build a similarity matrix which is sparse, thus ren-
dering computational efficiency. This MST-based similarity matrix also has the advantage
to approximate the manifold structure of a local neighborhood (Costa and Hero, 2003),
better than simple Euclidean distances could.

We refer to the resulting method in this paper as the neighborhood structure-assisted
NMF (NS-NMF). We demonstrate the benefit of the neighborhood structure-assisted NMF
in the mission of anomaly detection. Our study shows that the proposed NS-NMF considers
the local invariance property of data points while clustering data in a low-dimensional space,
and doing so makes NS-NMF a powerful method for anomaly detection. Local invariance
property ensures that the data points maintain the same neighborhood structure in the
latent space, leading to better detection outcomes.

We want to note that two recent versions of the NMF method are closely related to
what we propose in this paper. One of them is the graph regularized NMF (Cai et al.,
2011, GNMF), which regularizes the original NMF formulation using a Laplacian matrix.
Different from the proposed NS-NMF, GNMF constructs the similarity matrix based on
simple Euclidean distances. Our numerical testing shows furthermore that GNMF, when
employed for anomaly detection, is rather sensitive to two of its tuning parameters—the
number of nearest neighbors and the regularization parameter. By contrast, NS-NMF does
not need the neighborhood parameter and its detection outcome appears to be much less
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sensitive to its regularization parameter. Due to the popularity of GNMF, there exists
multiple variants of the GNMF model (Huang et al., 2018, 2020). However, they are all
similar in terms of the strategy of capturing the neighborhood structure, which is using
Euclidean distances. Another NMF method that we want to specifically mention is the
symmetric NMF (Kuang et al., 2012, SNMF), which uses only the similarity information
while excluding the attribute information to generate the low rank matrices. In absence
of the attribute information, SNMF depends on a dense pairwise similarity measure which
leads to computational disadvantage. By abandoning the original attribute information in
its formulation, SNMF makes its detection outcomes less interpretable than NS-NMF or
GNMF. We conduct a comparison study in Section 5.1 among all the NMF-based detection
methods, i.e., the vanilla NMF, GNMF, SNMF, and NS-NMF, over 20 benchmark data
sets. The comparison study shows a clear and evident advantage of NS-NMF.

To root our development in the background of anomaly detection, we would like to note
that anomaly detection is related to clustering, as researchers argue that detecting anomalies
is to separate the data points into two classes—normal or regular versus abnormal, irregular,
or anomalous (Ester et al., 1996; Ertoz et al., 2004; Yu et al., 2002; Otey et al., 2003; He et al.,
2003; Amer and Goldstein, 2012). As the NMF-based methods (or rather, all MF-based)
try to cluster the data in the low-dimensional feature space, this branch of method falls
naturally under the framework of subspace-based methods for anomaly detection (Zhang
et al., 2004; Kriegel et al., 2009; Zimek et al., 2012; Müller et al., 2008; Keller et al.,
2012; Van Stein et al., 2016). We want to further note that NMF-based methods bear
some conceptual similarity with the deep neural network (DNN)-based anomaly detection
approaches (Zhou and Paffenroth, 2017; Zenati et al., 2018; Zong et al., 2018; Zhang et al.,
2019a), as the DNN-based approaches also utilize the low-dimensional representation of
data points for detecting anomalies. Unlike the linear low-dimensional transformation used
by NMF-based methods, DNN-based approaches reach to the latent space through multiple
steps of nonlinear transformation which could be more helpful in dealing with complex data
structure like images. We provide some additional results in the Appendix, comparing our
proposed approach with two DNN-based approaches.

The major contributions of our research reported here can be summarized as follows.
First, we use an MST-based similarity matrix to capture the neighborhood structure and
incorporate it into an NMF framework, so that the local structure is preserved during the
low-dimensional transformation. Second, we provide an in-depth understanding of how the
MST-based similarity measure makes a difference for anomaly detection through an analysis
of the formulations and properties of the NMF variants, including our own NS-NMF. Third,
we propose an online version of the NS-NMF approach which can be applied to streaming
data and help the practitioners in real-time anomaly detection. The take-home message is
that after dimensionality reduction via NMF, the performance of anomaly detection can be
much enhanced when a MST-based similarity measure is used.

Our previous effort (Ahmed et al., 2019a) also showed that making use of the neighbor-
hood structure through an MST model helps the objective of anomaly detection in general,
even without dimensionality reduction, as this previous effort, Ahmed et al. (2019a), works
as a stand alone anomaly detection approach and is applied to the original data. The method
in Ahmed et al. (2019a) falls under the framework of neighborhood methods, whereas the
NMF-based methods are under the framework of subspace methods. In the literature of
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anomaly detection, the two frameworks of methods are considered in parallel. There is no
general consensus to assert which framework is definitely better, and if a strategy works bet-
ter under one framework, there is no guarantee that it would work as well under the other
framework. We will nonetheless present a comparison between the NMF-based anomaly
detection and a non-NMF method in Section 5.2.

The rest of the paper unfolds as follows. Section 2 describes the detailed formulation
of the NS-NMF. Section 3 discusses the similarities and differences among the proposed
NS-NMF, GNMF and SNMF. Section 4 presents the proposed NS-NMF algorithm in a
structured way for both offline and online versions. Section 5 empirically compares the
proposed NS-NMF method with other NMF variants and a non-NMF approach using 20
benchmark data sets. We also apply these methods to a hydropower data set. Finally, we
summarize the paper in Section 6.

2. Incorporating Neighborhood Structure Information into NMF

Anomaly detection is by and large an unsupervised learning problem as the class labels
of data records are unknown in the training set. One has to depend on the structure of
the data to flag a potential anomaly. Anomalies could be global and lie far away from
most of the data points, thus making it easy to identify them, or it could be local, homoge-
neously co-exist around the regular data points, and only be found if compared with proper
neighboring sets/clusters. Nonetheless, to differentiate the anomalies from the normal data
points, one may need to solve two problems. The first is to find the appropriate local
contexts/communities as the latent feature groups and the second is to extract the charac-
teristics of these communities in terms of the features. We can reconstruct the original data
points using the combination of the two low-dimensional representations. The reconstruc-
tion can then be used to judge a data point for flagging and short listing potential anomalies.
NMF apparently provides an effective solution to both of these problems. However, as we
have pointed out earlier, the traditional NMF framework does not take into consideration
the neighborhood structure of data points while conducting clustering in the latent space. It
will thereby produce unsatisfactory results in the presence of complicated manifolds. We try
to bridge this gap by proposing a graph-based approach, to be used together with NMF,
to account for the existence of neighborhood structures. The new formulation considers
the local invariance property while obtaining the low-dimensional representation, and thus
works better than the traditional approaches.

2.1 Basic NMF Framework

In NMF (Lee and Seung, 1999), a data matrix A ∈ Rn×p
+ , of which columns and rows

represent the attributes and observations respectively, is factorized into two low rank ma-
trices, namely, W ∈ Rn×K

+ and H ∈ RK×p
+ , such that the inner product of these factorized

matrices approximate the original data matrix. Here, K represents the number of latent
feature groups and it is required to be equal or less than the smaller of n and p. NMF tries
to project the data with high dimensional features into a low dimensional latent space so
that the original observations can be seen as a weighted linear combination of the newly
formed basis vectors corresponding to each latent feature group. The rows of H, each of
which is a 1× p vector, represent the basis vectors, whereas the weights come from W. For
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example, any row i from the original matrix can be reconstructed as

ai =
K∑
k=1

Wikhk, (1)

where ai represents the i-th row of A, hk represents the k-th row of H, and Wik is the
(i, k)-th element of W.

To solve for the factored matrices, one needs to minimize the Frobenius norm of the
difference between the original data matrix and the inner product of the factored matrices,
as shown in Equation 2, i.e.,

min
W>0,H>0

‖A−WH‖2F . (2)

where ‖·‖F denotes the Frobenius norm and the constraints, W > 0 and H > 0, mean that
both W and H are non-negative matrices.

2.2 Capturing Neighborhood Structure Using MST

NMF finds its way in solving clustering problems when Ding et al. (2005) show that NMF
can be made equivalent to clustering approaches by reframing the problem slightly. While
doing clustering, however, NMF does not consider neighborhood structure information.
But the neighborhood structure information should have been considered for the benefit of
clustering or detection, as structurally similar observations in the original space ought to
maintain the similarity in the latent space. To tackle this problem, we propose to extract
the neighborhood structure information from the original data matrix via the modeling
of a minimum spanning tree and then incorporate the structure information during the
calculation of the NMF factored matrices.

To discover the intrinsic structure in data, a popular undertaking is to form a graph
object using the original data matrix A. Each observation is represented by a node, which
is connected with other nodes through a weighted edge with the weight being the pairwise
Euclidean distance between them. A simple graph like this has its disadvantage—the simi-
larity matrix thus generated would be too dense to be incorporated in the NMF setting for
large data sets. In our treatment, we instead use the MST for constructing the similarity
matrix among data points, and doing so leads to a sparse similarity matrix.

To understand the concept of MST, consider a connected undirected graph G = (V,E),
where V is the collection of nodes and E represents the collection of edges connecting these
vertices as pairs. For an edge e ∈ E, as mentioned above, a weight is associated with it,
which is the pairwise Euclidean distance between the chosen pair of nodes. A minimum
spanning tree is a subset of the edges in E that connects all the vertices together, without
any cycles and with the minimum possible total edge weight. Consider the example in Fig.1,
left panel, where there are 8 nodes and 15 edges connecting the nodes. Each of the edges
has a unique edge length associated with it which is represented by a numeric value. If we
want to connect all the nodes using the given edges without forming a cycle, there could
be many such combinations with only one having the minimum total edge length, which
is shown in the right panel. The edges in black color represent the selected 7 edges from
the 15 total edges. The resulting graph in the right panel, consisting of the black edges
only, is the MST for the initial connected graph. Apparently, MST compresses the original
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Figure 1: Formation of an MST: the left panel is the initial graph, and the black colored
edges form the minimum spanning tree in the right panel.

graph and preserves certain degree of information that we consider important for anomaly
detection purpose.

Once we apply MST on the graph object resulting from the original data matrix A
having n observations, what we get is a square matrix, M ∈ Rn×n

+ , showing the pairwise
connectedness and distance. A strictly positive value in M represents the distance between
two connected nodes in the resulting MST, whereas a zero implies that the nodes are not
adjacent. Unlike for a complete graph, M of MST is supposed to be a sparse matrix, rather
than a dense matrix. We further convert it into a pairwise similarity matrix, S, by inverting
only the positive entries of M, as following:

Sij =

{
1

Mij
, if Mij > 0,

0, otherwise,

where Sij and Mij are, respectively, the (i, j)-th elements of S and M. Note that Sii = 0
because Mii = 0. This S matrix is called a similarity matrix because a high value in S is
the result of two nodes close to each other in the resulting MST, implying their similarity
and likely the same cluster membership. On the other hand, a zero value means that two
nodes are not directly connected and less likely similar to each other. Whether or not they
may still belong to the same cluster depends largely on the two nodes’ association with the
common neighbors. Understandably, if two points have very low similarity and do not have
connections through any common neighbors, they most probably belong to two separate
clusters. We intend for S to guide the basic NMF process to group similar observations
into the same cluster, obtain the proper cluster centroids in the form of basis vectors, and
subsequently use both of them in the action of anomaly detections.
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2.3 The NS-NMF Formulation

By taking into account both the original attribute matrix A and the MST based neighbor-
hood similarity matrix S, we adopt the following generalized NMF formulation (Liu et al.,
2017):

min
W>0,H>0

∥∥S−WWT
∥∥2
F

+ α ‖A−WH‖2F + γ(‖W‖2F + ‖H‖2F ), (3)

where ‖W‖2F and ‖H‖2F are the regularization terms added to the objective function to avoid
overfitting, γ is the regularization parameter controlling the extent of overfitting. The first
term is apparently the newly added structure similarity term, whereas the second term is
the original NMF cost function, and the parameter α is used to trade off between these two
cost functions and typically takes values between 0 and 1. The reason that α is restricted to
be no greater than one is because a greater α pushes the resulting method towards the plain
version of NMF. Analogously, in Equation 6 below, the counterpart parameter in GNMF
is λ, which is generally assigned a value greater than one, although it can technically take
any nonnegative values.

As we will show in Section 3, the expression in Equation 3 is a generalized and unified
formulation for many variants of NMF methods. For instance, by setting α really large and
γ = 0, the generalized formulation reduces to the vanilla NMF. Section 3 provides details
regarding how GNMF and SNMF can also be derived from this formulation. While this
generalized formulation does provide a unified framework, allowing us to understand better
the relationship among several NMF methods, we want to stress that the uniqueness of
NS-NMF lies in the specific formation of its similarity matrix, S, as its S is derived from
an MST representing the underlying data structure.

This unique way of forming the similarity matrix in NS-NMF makes a profound differ-
ence. Recall the vanilla NMF only tries to find the basis vectors that best approximate
the data. While the vanilla NMF can achieve successes in the presence of simple Euclidean
structure, it does not appear effective in the presence of complicated intrinsic data struc-
ture. In the latter cases the vanilla NMF may achieve the data approximation objective
but the clustering weights may not be appropriate. But having proper clustering weights is
important for determining appropriate community association and anomaly identification.
As we will see in Equation 5 later, Wik plays a key role in computing the anomaly score
along with the basis vector hk.

In a curved space (like the surface of the earth), or more generally speaking, in a
structured space, geodesic distances measure the minimum possible distance between two
points. The MST-based neighborhood structure is able to approximate the geodesic dis-
tance between data instances via a multi-hop edge connection on the tree graph, which are
considered a much better representation of complicated data structures than simple Eu-
clidean distances (Yu et al., 2015; Tu et al., 2016; Costa and Hero, 2003). By incorporating
the MST-based similarity measure in NMF, the resulting method produces better cluster-
ing assignments with respective cluster centroids extracted from H; doing so, we believe,
enhances substantially the ability of anomaly detection.
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2.4 Anomaly Detection

Now, let us take a look at how the proposed NS-NMF can help us in distinguishing anomalies
from the normal observations. The low rank factored matrices generated from NS-NMF
provide us with the information pertinent to anomaly detection. Each entry of W measures
the extent of an observation’s association with all K latent groups/clusters, whereas a row
of H represents the average characteristics of one of the latent groups/clusters. Together,
they can reconstruct the original observations. Reconstruction error for each observation
measures the quality of the reconstruction, which can be in turn used as an indicator of the
degree of anomalousness associated with an observation.

If we represent the reconstruction as A′, then the reconstruction error is quantified as
the loss between A and A′, such as

L(A,A′) =
∥∥A−A′

∥∥
F

= ‖A−WH‖F . (4)

NMF variants, or even broadly, any dimensionality reduction approaches, are to encode the
observations in a lower-dimensional latent space while preserving the main characteristics of
the data. The quality of such preservation action is measured by the above reconstruction
error.

An anomaly detection procedure based on the reconstruction error assumes that anoma-
lies do not belong to the regular data distribution, and therefore, it is harder to reconstruct
them from their compressed low dimensional representation compared to the normal data
points. As a result, anomalies will most likely exhibit a higher reconstruction error. The
higher error associated with an observation, the higher chance for it being anomalous.

Specifically, the reconstruction error-based anomaly score is thus computed after ap-
plying the NS-NMF procedure. In NS-NMF, we try to encode the learning of an effective
low-dimensional representation into the two low-rank matrices, W and H. The second part
of the objective function in Equation 3 makes sure that the difference between the observa-
tions in A and its reconstruction WH remains as small as possible, whereas the first part
of Equation 3 makes sure that observations which are close in the original space maintains
the relative closeness in the latent space. At the end of the low-dimensional representation
learning, we compute the reconstruction error for individual observations as

Oi =
∥∥ai − ai

′∥∥
2

=

∥∥∥∥∥ai −
K∑
k=1

Wikhk

∥∥∥∥∥
2

, (5)

and then repeat this process for all observations. Finally, rank the scores, {Oi, i = 1, . . . , n},
in descending order. Those observations associated with high anomaly scores are flagged as
anomalous.

In the practice of anomaly detection, it is common that once applied to the data, a
method ranks the top N instances as potential anomalies and treats the rest of data in-
stances as normal instances. One main reason for such a decision process is that unsuper-
vised anomaly detection methods tend to have a lower detection capability and higher false
alarm rate. As a result, unsupervised detection methods are typically used as a screening
tool, flagging potential anomalies to be further analyzed by either a human operator or some
more expensive procedure. A cut-off is therefore used to ensure the subsequent step—more
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expensive or time consuming—practical and feasible. In this paper, we follow this practice
to declare the observations with top N scores as anomalies where the cut-off threshold, N ,
is prescribed based on the cost/feasibility considerations.

3. NS-NMF Relative to Other NMFs

In this section, we want to highlight the similarities and contrast of the proposed NS-NMF
with some of the related approaches, principally GNMF and SNMF so that the readers get
a better understanding of how the proposed method made the difference.

First, we present the formulations of the three methods in Equations 6–8. To capture the
essence of the NS-NMF method, we rewrite the formulation in Equation 3 by ignoring the
third component of the objective function, because the third term is a regularization term
to avoid overfitting, and as such, having it or not does not change the essence concerning
which piece of information is used in the matrix factorization. The new formulation of
NS-NMF in Equation 8 now has two terms—this can be viewed as setting γ = 0. We also
change the position of α for easiness of comparison.

GNMF : min
W,H>0

λ · tr(WTLW) + ‖A−WH‖2F . (6)

SNMF : min
W>0

∥∥S−WWT
∥∥2
F
. (7)

NS-NMF : min
W,H>0

1

α
·
∥∥S−WWT

∥∥2
F

+ ‖A−WH‖2F . (8)

Conceptually and formulation wise, GNMF is the closest to the proposed NS-NMF. We
notice that both NS-NMF and GNMF formulations have the same second component. This
second component comes from the vanilla NMF formulation and is used to obtain two factor
matrices from the original data matrix, one of which is the attribute matrix.

Admittedly, the authors of GNMF are the first to shed light on the necessity of consider-
ing neighborhood similarity information in the NMF process. According to Cai et al. (2011),
in order to incorporate the neighborhood similarity information, the low rank approximation
should be obtained as in Equation 6, rather than in Equation 2. The specific mechanism of
incorporating the neighborhood similarity information in Equation 6 is through the use of a
graph Laplacian matrix, denoted by L. The graph Laplacian matrix L can be obtained by
L = D− S̃, where D is a diagonal matrix also known as the degree matrix (Cai et al., 2011;
Ding et al., 2005) and S̃ is the adjacency matrix. The adjacency matrix is calculated using
the Euclidean structured neighborhood information after converting the original data into
a graph object. The model has two main parameters, namely, q, the number of the nearest
neighbors to be specified in order to form a similarity matrix, and, λ, the regularization
parameter. The value of λ can take any non-negative value. When it takes the value of
zero, the formulation ignores the neighborhood similarity completely and GNMF reduces
to the vanilla NMF.

SNMF, on the other hand, promotes the idea that one should probably consider the
neighborhood similarity information only while obtaining the factored matrices. On sur-
face, SNMF can be seen as a special case of the generalized formulation in Equation 3 that
sets α = 0 and γ = 0. The factorization of the similarity matrix S generates a clustering
assignment matrix W that is also constrained to be non-negative. The authors of SNMF
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believe that doing so captures the inherent cluster structure from the graph representation
of the original data matrix. Kuang et al. (2012) argue, and present case studies in support
of, that the traditional NMF is not ideal for handling data sets with nonlinear structures.
Compared to the vanilla NMF, SNMF can deal with complicated patterns and generate
more accurate clustering assignments. Kuang et al. (2012) also point out that the SNMF
formulation is in fact equivalent to some graph clustering methods including spectral clus-
tering (Ding et al., 2005). Kuang et al. (2012) present an example to show that adding the
non-negativity constraints help the clustering objective and also that SNMF performs more
robustly compared to other clustering methods, as SNMF does not depend on the eigenvalue
structure which tends to provide inaccurate results if certain conditions are violated.

SNMF formulation takes basically the first component of the NS-NMF formulation, while
ignoring the vanilla NMF portion. In this way, SNMF focuses on the accuracy of clustering
assignments. But for the mission of anomaly detection, we need something more. What we
need is to have a basis connecting the latent features with the original ones, so that we can
reconstruct observations from the low-dimensional representations and pinpoint anomalies
by looking at their deviation from the original form. The second portion of the NS-NMF
formulation helps us obtain a basis matrix which summarizes the attribute distribution of
the latent feature groups, thereby providing the means for detecting the anomalies from the
reconstruction. For this reason, NS-NMF, which keeps the second term, is more meaningful
for anomaly detection than SNMF. Even the first term, although appears the same in both
SNMF and NS-NMF formulations, is not really the same. The difference of SNMF and
NS-NMF in their first terms, less apparent but arguably more critical, is that they use the
different similarity matrix S (but the mathematical notation looks the same). SNMF uses
the traditional Euclidean distance-based similarity metric considering the full graph, while
that in NS-NMF comes from an MST. The similarity matrix in SNMF is too dense, making
SNMF to suffer in case of approximating complex structures. Unsurprisingly, SNMF is also
computationally more expensive than NS-NMF.

Coming back to GNMF, which has the same second term as NS-NMF and poised to
be more suitable for anomaly detection. The first term in both NS-NMF and GNMF
formulations has a strong connection. It can be shown that when using the same similarity
matrix S, GNMF and NS-NMF can be made (nearly) equivalent.

To facilitate the understanding of this connection, let us consider adding an orthogo-
nality constraint on W. This is not exactly required in the original formulations but Ding

et al. (2005) shows that minimizing
∥∥S−WWT

∥∥2
F

retains the orthogonality of W approx-
imately. Furthermore, suppose that a symmetric normalized Laplacian matrix is used, i.e.,
the original L is pre- and post-multiplied by D−

1
2 . Then we have

L = I−D−
1
2 S̃D−

1
2 ,

where without ambiguity, we still use L to denote the symmetric normalized Laplacian
matrix. Denote by S = D−

1
2 S̃D−

1
2 the newly generated normalized similarity/adjacency

matrix. As such, the first term in GNMF can be made equivalent to that of NS-NMF by
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considering the following minimization formulation.

min
W>0

tr(WTLW) = min
W>0

tr(WT (I−D−
1
2 S̃D−

1
2 )W)

= min
W>0

tr(WT (I− S)W)

= min
W>0

tr(WTW)− tr(WTSW)

= min
W>0;WTW=I

tr(I)− tr(WTSW).

(9)

At the last expression, we use the orthogonality constraint on W, as mentioned above. Min-
imizing Equation 9 with respective to a non-negative W does not change its minimization
outcome if we add a term that does not depend on W or if we multiply the W-depending
term by a constant. Let us then add one term, tr(STS), to the last expression of Equation
9 and multiply tr(WTSW) by two. As such, we end up with an equivalent minimization
problem as follows:

min
W>0

tr(WTLW) is equivalent to min
W>0;WTW=I

tr(I)− 2tr(WTSW) + tr(STS)

= min
W>0;WTW=I

tr[(S−WWT )T (S−WWT )]

= min
W>0;WTW=I

∥∥S−WWT
∥∥2
F
.

(10)

The above derivation makes it apparent that if one uses the same similarity matrix S in
both GNMF and NS-NMF formulations, then GNMF is practically the same as NS-NMF.
Of course, which S to use creates the difference between GNMF and NS-NMF. GNMF
uses only a fixed small subset of the neighborhood/adjacency information to obtain an
Euclidean distance-based similarity matrix and then convert it to a graph Laplacian form.
A prescribed neighborhood size, q, is one of the parameters used in GNMF. NS-NMF’s
similarity matrix, on the other hand, is based on an MST and differs from that of GNMF.
NS-NMF does not need the neighborhood size parameter, due to its use of MST. Both
methods use a regularization parameter, which is α (0 − 1) in NS-NMF and λ (≥ 0) in
GNMF; these regularization parameters are in fact equivalent. Our numerical analysis
shows that GNMF is sensitive to both of its parameters, q and λ, while the NS-NMF is
reasonably less sensitive to its parameter α. We believe that this is a benefit of using the
MST-based similarity matrix.

4. Algorithmic Implementation of NS-NMF

In this section, we discuss the implementation of the NS-NMF proposed in Section 2. We
provide two algorithmic procedures, one is an accelerated offline implementation and the
other is an online implementation, i.e., processing observations one at a time for real-time
anomaly detection.

4.1 Accelerated Offline Implementation

A number of algorithms have already been proposed to solve the original NMF problem
and its variants. However, most of them are computationally expensive and not ideal for
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handling big data scenarios. In this paper, we choose to utilize a distributed version of the
stochastic gradient descent (SGD) algorithm (Liu et al., 2017; Gemulla et al., 2011) which
enables us to achieve an accelerated and parallel optimization scheme. In the traditional
SGD, one updates the parameters at each round by going through a single training point at
a time, whereas in the distributed version, we update the parameters by processing multiple
independent blocks of training data in parallel and thereby take the computational advan-
tage. Here, independence means that the parameter update of one block will not affect the
parameter update of any other blocks. This property is also known as the interchangeable
property (Liu et al., 2017; Gemulla et al., 2011). To design a distributed SGD, we define
a loss function as in Equation 11, which is just the blockwise summation of the objective
function defined in Equation 3, such as

LS,A(W,H) =
∑
{i,j,k}

(∥∥∥Sij −WiWjT
∥∥∥2
F

+
γ

2B

∥∥Wi
∥∥2
F

+
γ

2B

∥∥Wj
∥∥2
F

+
α

2

∥∥∥Aik −WiHkT
∥∥∥2
F

+
α

2

∥∥∥Ajk −WjHkT
∥∥∥2
F

+
γ

B

∥∥∥Hk
∥∥∥2
F

)
=
∑
{i,j,k}

Li,j,k(Wi,Wj ,Hk),

(11)

where B represents the number of splits in each dimension and it controls the number of
blocks created in S and A. We essentially divide S and A into blocks and the position of
each block is represented by the superscripts, i, j, k. Suppose that we have a 100×100 matrix
and B = 5. Then we will have 5 blocks with each containing 400 (i.e., a 20 × 20 matrix)
training points. To process and approximate a block Sij , we need to update parameter
block Wi and Wj . Likewise, to approximate a block of Aik, we need to update Wi and
Hk. As we have to process blocks from two separate matrices S and A, with parameters
to be updated connecting each other, we define the blocks to be processed from these two
matrices as an instance set {Sij ,Aik,Ajk}.

To achieve distributed and parallel processing, we need to process in parallel the ran-
domly generated instance sets at each round. It is possible to do so only if they are inter-
changeable and do not affect the resulting parameter updates {Wi,Wj ,Hk} of one another.
According to Gemulla et al. (2011), the interchangeability occurs only when the superscripts
of the blocks do not coincide. For example, {S15,A13,A53} and {S23,A24,A34} are two
interchangeable instances as they have entirely different superscripts. Now, as we have
defined both the loss function and the instance sets, parameter update can be calculated
according to Equation 12, where θi,j,k = {Wi,Wj ,Hk} and εt is the step size at current
iteration.

θt+1
i,j,k = θt

i,j,k − εt∆Li,j,k(θt
i,j,k). (12)

The algorithm steps is summarized in Algorithm 1, including the construction of MST-
based similarity matrix, the NMF optimization procedure, and the detection of anomalies.

4.2 Online Implementation

The offline implementation discussed above has the advantage of parallel blockwise im-
plementation but lacks the ability of instantaneous update and real-time anomaly score
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Algorithm 1: Offline implementation of NS-NMF algorithm for anomaly detection

Input : A, α, N , γ, B, K
Output: List of anomalous nodes lfinal

1 Generate a set of vertices V , where each vertex represent a separate observation
from the data set;

2 Construct edges by calculating Euclidean distance between each pair of vertices
using their attribute values from the data set and store them in E;

3 Construct a MST using V and E and generate the pairwise similarity matrix S
from the resultant pairwise MST distance matrix;

4 Initialize W and H randomly;
5 Partition S and A and corresponding W and H into blocks;
6 while not converged do
7 Randomly generate a collection of instance sets from blocked S and A,

U = {{i1, j1, k1}, {i2, j2, k2}, {i3, j3, k3}, .....} such that any two are
interchangeable;

8 for (i, j, k) ∈ U in parallel do

9 W
′i ←Wi − εt∆WiLi,j,k;

10 W
′j ←Wj − εt∆WjLi,j,k (if i 6= j);

11 H
′k ← Hk − εt∆HkLi,j,k;

12 Wi ←W
′i,Wj ←W

′j ,Hk ← H
′k;

13 Non negativity projection for Wi,Wj and Hk;

14 end

15 end
16 Calculate the anomaly scores of the observations according to Equation 5 and store

them in Oi ;
17 Store the accumulated list of nodes with anomaly scores from all the clusters as

ltotal = {O1, O2, . . . , On};
18 Return the nodes associated with top N anomaly scores as final anomalies in lfinal;

computing. It requires to see the data all at once and builds the MST using all the in-
stances even before the execution of the algorithm. To evaluate an observation in real time,
we need to find a way to update both weight matrix W and basis matrix H incrementally
when new samples arrive in a streaming fashion. In addition, we need to make sure that
such an update will not require the entire data matrix.

There has been quite a few efforts in developing the online version of the vanilla
NMF (Guan et al., 2012; Zhao and Tan, 2016; Zhu and Honeine, 2017; Tu et al., 2018;
Guo and Zhang, 2019), although comparatively fewer attempts have been made for online
GNMF (Liu et al., 2016). It is so because adding geometric structures to guide the NMF
process makes the online update more difficult as we need to calculate the geometric weights
on the fly. In this section we layout the online implementation of NS-NMF.

Let us assume that the observations, A = [a1,a2, . . . ,ad−1,ad], are generated in a
streaming fashion, where ad represents the dth data sample just arrived and its attribute
information. Upon its arrival, the dth component of the weight matrix and basis matrix
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need to be updated so that the instantaneous anomaly score can be calculated. For this
dth data sample we can write our NS-NMF objective function as follows, which ignores the
regularization component.

Fd = α ‖Ad −WdHd‖2F +
∥∥Sd −WdW

T
d

∥∥2
F
,

which is equivalent to, (recall Equation 10)

α ‖Ad −WdHd‖2F + tr(WT
d LdWd)

= α

d∑
i=1

p∑
j=1

((Ad)ij − (WdHd)ij)
2 +

K∑
k=1

d∑
i=1

d∑
j=1

(WT
d )ki(Ld)ij(Wd)jk

=

[
α

d−1∑
i=1

p∑
j=1

((Ad−1)ij − (Wd−1Hd)ij)
2 +

K∑
k=1

d−1∑
i=1

d−1∑
j=1

(WT
d−1)ki(Ld)ij(Wd−1)jk

]

+

[
α

p∑
j=1

((ad)j − (wdHd)j)
2 +

K∑
k=1

d−1∑
i=1

(WT
d )ki(Ld)id(wd)k +

K∑
k=1

d−1∑
j=1

(wT
d )k(Ld)dj(Wd)jk

+
K∑
k=1

(wT
d )k(Ld)dd(wd)k

]
= Fd−1 + fd.

(13)
Appatently, the NS-NMF objective function in Equation 13 is divided into two parts—
Fd−1 denotes the cost up to the (d− 1)th sample and fd denotes the cost of the dth sample,
whereas wd and ad denote, respectively, the last row of Wd and Ad. This strategy is known
as the incremental NMF in the literature (Sun et al., 2018; Chen et al., 2018; Zhang et al.,
2019b). As the number of samples increases, new observations will have minor influence on
the basis matrix, so that updating only the weight vector of the last sample will suffice.

In light of this idea, we can consider the first d − 1 rows of Wd equal to Wd−1. To
compute the cost of dth sample, i.e., fd, we need to establish an updating policy for the
basis matrix component (Hd)kj and weight matrix component (wd)k. We can utilize the
gradient descent approach to derive the update policy as following:

(wd)t+1
k = (wd)tk − δk

∂Fd

∂(wd)tk
, (14)

(Hd)t+1
kj = (Hd)tkj − θkj

∂Fd

∂(Hd)tkj
. (15)

In Equations 14 and 15, δ and θ denote the step sizes, t denotes the iteration number,
k = 1, 2, . . . ,K, and j = 1, 2, . . . , p. The step sizes are chosen as in Equations 16 and 17,
following the work in Cai et al. (2011) and Guan et al. (2012), i.e.,

δk =
(wd)tk

2(α((wd)tHd
t(Hd

t)T +
∑d

i=1(Dd)idw
t
i)k

, (16)

θkj =
(Hd)tkj

2α(WT
d−1Wd−1H

t
d + (wt+1

d )Twt+1
d Ht

d)kj
. (17)
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Substituting Equations 16 and 17 into Equations 14 and 15, respectively, we obtain the
updating policy as follows:

(wd)t+1
k = (wd)tk

(αad(Ht
d)T +

∑d−1
i=1 (Sd)idw

t
i)k

(α(wd)tHt
d(Ht

d)T + (Dd)ddw
t
d)k

, (18)

(Hd)t+1
kj = (Hd)tkj

(WT
d−1Ad + (wt+1

d )Tad)kj

(WT
d−1Wd−1H

t
d + (wt+1

d )Twt+1
d Ht

d)kj
, (19)

where Sd and Dd represent, respectively, the MST-based weight matrix and degree matrix.
If we look at Equation 19, it requires all the data samples before the dth one to compute

the update. Doing so will obviously increase the memory requirements. To overcome the
problem, we can use the strategy of cumulative summation. Let us first introduce two
variables, Ud and Vd, with the initial values of U0 = V0 = 0. Then using Equations 20
and 21 below, we can rewrite the update policy for Hd as in Equation 22 which now no
longer needs to memorize all the samples.

Ud =

d∑
i=1

wT
i wi

= Ud−1 + wT
d wd.

(20)

Vd =
d∑

i=1

wT
i ai

= Vd−1 + wT
d ad.

(21)

(Hd)t+1
kj = (Hd)tkj

(Vd)kj
Ud(Ht

d)kj
. (22)

Another problem with Equation 18 is that in order to update (wd)k, we need to recon-
struct the MST with all the data samples every time as a new sample comes in. Again,
doing so slows down the online operation. To address this problem we adopt the combina-
tion of local MST (Ahmed et al., 2019a) and buffering strategy (Goldberg et al., 2008; Liu
et al., 2016). In a local MST, for each observation we construct a MST with its neighbors
only. These neighbors can be chosen in a temporal fashion. In other words, the neighbors
of the dth sample (which just arrives) are the samples having arrived in a specified time
window before it, say, in the window of dating back to time instance d− z, where z is the
size of the time window. If z =50, it means that the MST will be constructed based on the
dth sample and the most recent 50 samples arrived before the dth sample. The buffering
strategy states that instead of discarding all the old data samples, one maintains a buffer
of specified size, Q. After the buffer is full for the first time, any new sample will be added
to the buffer while the buffer drops the oldest one, thereby keeping its size the same. To
connect the two approaches, we set the time window size the same as the buffer size, i.e.,
Q = z. Consequently, we can rewrite the updating policy for (wd)k as

(wd)t+1
k = (wd)tk

(αad(Ht
d)T +

∑d−1
i=d−z(Sd)idw

t
i)k

(α(wd)tHt
d(Ht

d)T + (Dd)ddw
t
d)k

. (23)
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Algorithm 2: Online implementation of NS-NMF algorithm for anomaly detection

Input : Current observation, ad, trade-off parameter, α, buffer size, z, and the
number of clusters, K

Output: Current basis matrix, Hd, and anomaly score, Od

1 Initialize H0 with random values;
2 Initialize U0 = V0 = 0;
3 Initialize A0 = W0 = S0 = φ;
4 while a new observation ad arrives do
5 Draw the current sample ad;
6 Initialize weight coefficient wd with random values;
7 Append ad to Ad−1 and assign it to Ad;
8 Append wd to Wd−1 and assign it to Wd;
9 if d = z then

10 Construct MST using the observations in Ad and store the weights in Sd;
11 Apply offline NS-NMF to obtain Wd and Hd;
12 Calculate Ud and Vd using Equations 20 and 21;

13 end
14 if d > z then
15 Construct MST using the observations in Ad and obtain sd;
16 repeat

17 Use Equation 23 to update wt+1
d using sd and Hd;

18 Use Equations 20 and 21 to update Ud and Vd with wt+1
d ;

19 Use Equations 23 to update Ht+1
d ;

20 until Convergence;
21 Delete the first row vector from both Ad and Wd;
22 Calculate the anomaly score for the dth observation using Equation 24 and

store it in Od

23 end

24 end

The algorithm steps are summarized in Algorithm 2. There are three phases of the
algorithm after the initialization. Steps 5–8 summarizes the first phase, i.e., d < z, where
the new samples are added along with initialization of the weight vectors. When the buffer is
full for the first time, i.e., d = z, it starts the second phase, in which an MST is constructed
and the offline NS-NMF algorithm helps obtain the weights and basis vectors. Step 9–13
summarizes this phase. After that, the algorithm enters the third and final phase, i.e.,
d > z, where the update of the weight and basis vectors and calculation of the anomaly
scores are carried out in Steps 14–23. In this phase, a gradient descent approach is used to
obtain the updated weight and basis values for each new sample. Steps 16–20 summarizes
the iterations on t, which are required for the convergence of the gradient descent approach.
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Similar to the offline counterpart, we can compute the anomaly score of the dth obser-
vation as in Equation 24.

Od =
∥∥ad − ad

′∥∥
2

=

∥∥∥∥∥ad −
K∑
k=1

(wd)k(Hd)k

∥∥∥∥∥
2

. (24)

Now, we can either choose a threshold and mark the observation as anomaly on the fly if its
anomaly score crosses the threshold or we can store the anomaly scores to do the evaluation
later. In this work, we test both of the options. For the benchmark data sets, which do not
have any timestamps marking, we decide to go for the second option. What this means is
that while we run the algorithm to get the anomaly scores as the algorithm sieves through
the data sequence, the declaration of anomaly is based on selecting the top N scores as
anomalies, the same as we do in the offline scenario. For the hydropower data set, on the
other hand, we do have the associated timestamps, so we decide to go with the first option
and mark anomalies on the fly.

5. Comparative Performance Analysis of NS-NMF

We evaluate the performance of the proposed NS-NMF method for anomaly detection, as
compared to the vanilla NMF/GNMF/SNMF (in Section 5.1) and to a non-NMF method
(in Section 5.2). In Sections 5.1 and 5.2, we use 20 benchmark anomaly detection data sets
from the study of Campos et al. (2016) for our performance comparison study. In Table 1,
we summarize the basic characteristics of these 20 data sets. For all the benchmark data
sets, the label of the observations whether it is normal or anomalous is known beforehand.
There are several versions of these data sets available depending on the data cleaning and
preprocessing steps involved. For our analysis we choose to use the normalized version of
the data sets with all missing values removed and categorical variables are converted into
numerical format. In Section 5.3, we apply the competitive methods to a real-life data set
from a hydropower plant.

To evaluate the performance of the methods, the criterion we use is called precision
at N(Campos et al., 2016, P@N), which is a rather common performance metric used
in anomaly detection. As mentioned earlier, in a practical setting for anomaly detection,
researchers often set a cut-off threshold N and flag the observations with the top-N anomaly
scores, however it is defined and computed in respective methods. Ideally, N is chosen to be
the number of true anomalies. Practically, when the number of true anomalies is unknown,
N is chosen to be larger than the perceived number of anomalies but small enough to make
the subsequent identification operations feasible.

In the benchmark study, since we know the number of true anomalies, we therefore use
that value as our choice of N and treat it as the same cut-off for all methods in comparison.
Because N is the number of true anomalies, the number of false alarms is implied, which
is N −N × P@N . That is why in the benchmark study, we only present P@N . In reality,
when the number of true anomalies is not known, the main objective in anomaly detection
is still to increase P@N for a fixed N , i.e., to have a higher detection rate within the cut-off
threshold.

The P@N is defined as the proportion of correct anomalies identified in the top N ranks.
For a data set DB of size n, consisting of anomaly set O ⊂ DB and normal data sets I ⊆
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Table 1: Public benchmark data sets used in the performance evaluation study.

Data set
Number of Number of Number of
observations (n) anomalies (|O|) attributes (p)

Annthyroid 7,200 347 21

Arrhythmia 450 12 259

Cardiotocography 2,126 86 21

Heart 270 7 13

Page Blocks 5,473 99 10

Parkinson 195 5 22

PIMA 768 26 8

SpamBase 4,601 280 57

Stamps 340 16 9

WBC 454 10 9

Waveform 3,443 100 21

WPBC 198 47 33

WDBC 367 10 30

ALOI 50,000 1,508 27

KDD 60,632 200 41

Shuttle 1,013 13 9

Ionosphere 351 126 32

Glass 214 9 7

Pen digits 9,868 20 16

Lymphography 148 6 19

DB, such that DB = O ∪ I, P@N can be formulated as

P@N =
#{o ∈ O | rank(o) ≤ N}

N
, where N = |O|. (25)

5.1 Comparison with Other NMF Methods

First, let us take a look at the parameter selection policies for the competing methods within
the NMF framework. The number of latent features or clusters, K, is needed for all of the
NMF-based methods. In this study we use K = 5. We have also explored the possibility of
using K = 2, 10, 15, 20 and 25 and found that changing K in this range does not affect NMF-
methods a great deal. More importantly, the relative performance among the competing
NMF methods remain the same. Based on our experiments with different K’s, we observe
that the NMF-based anomaly detection methods perform better when K is in the range of
[5, 15]. We settle for K = 5 because it results in overall good detection performances for all
competing methods. The cut-off value, N , required to generate the final anomaly list for
both offline and online version, is taken as the number of true anomalies in the benchmark
data set studies, as discussed above. Other than these two parameters that are common to
all methods, the rest of the parameters are algorithm-specific. We summarize the parameter
choices in Table 2. For SNMF and GNMF, we adopt the best settings described in their
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Table 2: Parameter values and settings used for NS-NMF, GNMF and SNMF.
Competing Number of

Other settings
methods latent factors, K

Offline NS-NMF 5
Parameter controlling the influence of NMF, α = 0.8
Regularizer for controlling overfitting, γ = 0.2

Online NS-NMF 5
Parameter controlling the influence of NMF, α = 0.8
Buffer size, z = B = 20

GNMF 5
Manifold regularizer, λ = 100
Neighborhood graph construction parameter, q = 5
Weighting scheme for adjacency matrix: 0− 1

SNMF 5 Gaussian similarity measure for constructing S

Table 3: Performance comparison.
``````````````````````̀
Performance (number of data sets)

Anomaly detection methods

NS-NMF NMF GNMF SNMF

Better (uniquely best result) 16 1 0 0

Equal (equal to the existing best result) 3 2 2 2

Close (within 20% of the best result) 0 4 9 6

Worse (not within 20% of the best result) 1 13 9 12

Mean relative rank 1.2 3.1 2.6 3.1

original papers. For NS-NMF, as mentioned earlier, its performance is not sensitive to the
choice of α. We settle at α = 0.8 by conducting a few simple trials.

We present the comparison of detection performance of the four offline methods on the
20 benchmark data sets in Table 3. For this comparison, we only consider the offline version
of NS-NMF because the competitors are offline, so it is a bit unfair if we compare the online
version of NS-NMF. For this reason, NS-NMF means the offline NS-NMF in the comparison
shown in Table 3, Table 4, and Figure 2.

To better reflect the methods’ comparative edge, we break down the comparison into
four major categories in Table 3, namely Better, Equal, Close and Worse, as explained
in the table. NS-NMF outperforms other methods by showing uniquely best detection
performance on 16 out of 20 data sets and tying for the best in another three cases. Only
in one case NS-NMF is obviously worse than the best performer. The vanilla NMF achieves
the uniquely best performance in a single case, while GNMF and SNMF tie for some best
performance but never beat others outright. If we rank each of these four methods in a
scale of 1 (best) to 4 (worst), then the mean rank for NS-NMF is 1.2, which is far ahead of
other methods, with GNMF at 2.6 mean rank, SNMF and NMF both at 3.1 mean rank.

We apply the Friedman test, a non-parametric method (Demšar, 2006), to determine
whether NS-NMF achieves significant improvement over other competitors. Let na be the
number of anomaly detection methods and nd be the number of data sets. We define a
matrix Ra whose entries in each row represent the detection method’s rank for that specific
data set. If there are tied values, we assign to each tied value the average of the ranks that
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Table 4: The p-values of pairwise comparisons between the NS-NMF method with each of
the three competing methods.

Competing methods p-value

NS-NMF vs NMF 7.11× 10−21

NS-NMF vs GNMF 3.40× 10−15

NS-NMF vs SNMF 7.11× 10−21

would have been assigned without ties. For example, suppose we have two tied methods
both with rank 1. Had there been no tie, one should have been assigned rank 1 and the
other rank 2. An Friedman test then uses the average of the two ranks, which is 1.5, as the
rank value for both of these methods. Under the null hypothesis that all methods perform
the same, the Friedman statistic,

χ2
F =

12nd
na(na + 1)

(
na∑
l=1

Ra2l −
na(na + 1)2

4

)
, (26)

follows a Chi-squared distribution with na− 1 degrees of freedom, where Ral is the average
value of column l = 1, 2, . . . , na. We found the p-value (1.23 × 10−7) significant enough to
reject the null hypothesis.

We also perform a post hoc analysis of the four methods in terms of their ranking
performance. Fig. 2 presents the post hoc analysis on the ranking data and it indicates
that the ranking of NS-NMF is significantly better than the other three approaches at the
0.01 level of significance. The detailed pairwise comparisons between NS-NMF and each of
the three methods are presented in Table 4. The p-values are calculated using the Conover
post-hoc test (Conover, 1999). We employ the Bonferroni correction (Bland and Altman,
1995) to adjust the p-values for multiple comparisons. All the pairwise comparisons show
a sufficiently significant difference.

In Table 5, we summarize the number of true detections by the competing methods. We
notice that the offline NS-NMF either outperforms or is no worse than both GNMF and
SNMF in every single case. GNMF’s performance is better than that of NMF and SNMF,
although still overall worse than the offline NS-NMF. We use the best parameter setting for
GNMF as recommended by its authors. We do observe the sensitive nature of GNMF to its
parameters and acknowledge the possibility that some other parameter combinations might
produce a better outcome. However, parameter selection in unsupervised learning settings
is a difficult task, as the common approaches working well for supervised learning like cross
validation does not work in the unsupervised circumstances. Therefore, the sensitivity of
GNMF is certainly a shortcoming. SNMF’s performance is surprisingly not up to the mark
and produces worse results than the vanilla NMF in seven cases. SNMF is also the slowest in
terms of computational time and it does not appear scalable on big data sets. For example,
in the case of the “ALOI” data set that has 50,000 observations, SNMF takes almost eight
hours to generate the index of the anomalous observations, whereas offline NS-NMF takes
one quarter of that time to complete the task, with the majority of its time spent on MST
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Figure 2: Post hoc analysis on the ranking data obtained by the Friedman test.
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Table 5: Number of true positive detections of the competing methods. Bold entries repre-
sent the best detection performance in a respective data set.

Data set
Offline Online NMF GNMF SNMF Total
NS-NMF NS-NMF Anomalies

Glass 4 2 1 1 1 9

PIMA 8 4 2 2 2 26

WBC 9 7 2 8 8 10

Stamps 4 2 3 3 2 16

Shuttle 2 2 0 0 0 13

Pageblocks 21 27 30 19 14 99

Heart 5 4 0 4 4 7

Pendigits 0 1 0 0 0 20

Lymphography 5 4 4 4 2 6

Waveform 9 9 3 6 4 100

Cardiotocograpghy 29 15 27 29 29 86

Annthyroid 27 15 15 13 10 347

Parkinson 3 3 1 2 2 5

ALOI 193 145 78 117 87 1508

WDBC 7 6 1 6 6 10

Ionosphere 92 74 79 74 33 126

WPBC 11 9 11 8 9 47

KDD 102 97 49 93 75 200

Spambase 47 41 32 36 23 280

Arrhythmia 4 3 2 3 3 12

construction. NMF and GNMF are much faster and take around 12 mins and 35 mins,
respectively, in processing the same data set.

Here we also include the results from the online version of NS-NMF because we would like
to draw a comparison between the offline and online NS-NMF and see how much efficiency
the online NMF maintains while using a small subset of data to compute the anomaly
scores. Unsurprisingly, the offline version comes out superior in 15 out of the 20 cases.
On the other hand, for most of the cases, the online version does not perform that much
worse than the offline version. A bit surprisingly, the online version even beats its offline
counterpart in two cases. It seems to suggest that in some cases, having a longer memory
and global data connection may not always help the detection. It is also interesting to
note that online NS-NMF produces comparatively better results than other NMF variants,
excluding offline NS-NMF. For instance, once excluding offline NS-NMF, online NS-NMF
attains the best detection 14 times (some are ties), whereas GNMF seven times, SNMF five
times, and vanilla NMF six times. This detection performance is remarkable because the
main advantage of online NS-NMF lies in its considerable improvement in run time. For
example, for the “ALOI” data set, which has 50,000 data points, online NS-NMF achieves
an approximately 32-fold improvement over SNMF in terms of time expense. Overall we
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consider the online NS-NMF method a competent and promising online anomaly detection
algorithm.

5.2 Comparison with non-NMF Methods

As NS-NMF outperforms other NMF-based approaches quite comprehensively, we would
also like to see how it performs compared to non-NMF anomaly detection approaches. We
choose one particular non-NMF method as the representative in this comparison, which is
known as the Local MST (Ahmed et al., 2019a, LoMST). There are two reasons behind our
choice here: (1) LoMST has gone through a comparison study involving 14 methods over 20
data sets and emerged as the winner. (2) Comparing with NS-NMF, LoMST employs the
MST mechanism to form its similarity measure but does not go through a dimensionality
reduction process, whereas NS-NMF integrates the MST similarity measure while it creates
the low-dimensional embedding. The comparison in Section 5.1 establishes that having
MST almost always helps anomaly detection within the NMF framework. The question is
then whether using MST without NMF would be equally effective. In other words, does
one really need NMF in the first place or can one simply opt to do an MST-based detection
on the original data?

The parameter selection process for NS-NMF remains the same as in Section 5.1.
The LoMST approach requires the number of the nearest neighbors (k) as a user input.
In Ahmed et al. (2019a), two scenarios of how k is decided were discussed—the best k
scenario, in which the optimal k is selected after many choices of k were tried and the
detection outcomes were compared with the ground truth (recall the ground truth for the
benchmark data sets is known), and the practical k scenario, which is to choose the k value
that returns the maximum standard deviation of the LoMST scores, without knowing the
detection ground truth. In reality, the best k scenario is impractical. So in this comparison,
we use the practical k for LoMST. We also want to note a difference in terms of data use in
this comparison versus that in Ahmed et al. (2019a). When we apply the NS-NMF method
(in fact, any of the NMF variants) to the Waveform data set, because some of its entries
are negative, we use the normalized data set version, which scales the data to the range
of [0, 1]. This normalized version is what we continue using in this comparison, while the
Waveform data set used in Ahmed et al. (2019a) was without the normalization.

The comparative performance of NS-NMF and LoMST is listed in Table 6. From the
table, we see that NS-NMF overall outperforms LoMST. In 14 cases out of 20, NS-NMF
turns out to be a winner, whereas LoMST produces a better detection performance in five
cases. The two methods tie in one case.

If we further analyze the result, we see that NS-NMF performs consistently better than
LoMST when the number of attributes (4th column in Table 6) is relatively large. For
the 20 data sets, we can partition them into two roughly equal halves, where the upper
half has a relatively smaller number of attributes and the bottom half has relatively larger
attributes. The threshold used for partitioning the number of attributes is 20. Nine data
sets are in the upper half and 11 data sets are in the bottom half. Out of the 11 data sets
in the bottom half, NS-NMF won 10 cases and lost one, whereas for the nine cases in the
upper half, NS-NMF won four cases, LoMST won four cases, and they tied for one case
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Table 6: Comparison with the LoMST approach. Bold entries represent the best detection
performance in a respective data set.

Data set NS-NMF LoMST Number of attributes

Glass 4 3 7

PIMA 8 8 8

WBC 9 8 9

Stamps 4 2 9

Shuttle 2 6 9

Pageblocks 21 32 10

Heart 5 4 13

Pendigits 0 2 16

Lymphography 5 6 19

Waveform 9 1 21

Cardiotocograpghy 29 27 21

Annthyroid 27 16 21

Parkinson 3 2 22

ALOI 193 185 27

WDBC 7 6 30

Ionosphere 92 101 32

WPBC 11 9 33

KDD 102 39 41

Spambase 47 45 57

Arrhythmia 4 3 259

We believe that this pattern did not happen entirely by chance but it is related to the
anomaly detection mechanisms used by the two competing approaches. NS-NMF, because
of the inclusion of NMF, performs dimensionality reduction before it attempts to detect
anomalies, whereas LoMST, on the other hand, is a neighborhood-based method that detects
anomalies in the original space without dimensionality reduction. The difference between
NS-NMF and LoMST is really due to the need and benefit of dimensionality reduction.
While researchers consider dimensionality reduction generally helpful, there is no guarantee
that it always helps in every single case. It makes sense that the need of dimensionality
reduction is more acute and the benefit would be more likely and pronounced when the data
spaces are of higher dimensions. Our empirical analysis above appears to be consistent with
these general understandings.

5.3 Application to Power Plant Data

The industry data set used in this study comes from a hydropower plant. The same data
set has been analyzed in our previous work (Ahmed et al., 2019a, 2018). To quickly recap
the basic information of the data set, we have a total of seven months worth of data,
coming from different functional areas of the plant (turbines, generators, bearings etc.). We
combine all the data from different functional areas according to their time stamps and
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perform some simple cleaning, statistical analysis and pre-processing; additional details
about the data pre-processing can be found in Ahmed et al. (2018). In the end, we have
n = 9, 219 observations and p = 222 attributes. Then we apply NS-NMF, GNMF, SNMF
and the vanilla NMF algorithms to find out the anomalies in this data set. We use the same
parameter settings as we do in the benchmark data set study. The only difference is that
we no longer have the information of the number of true anomalies. After consulting the
operating manager who provided this data set, we are advised to report top 100 anomalous
time stamps to the manager. The manager would follow up and check the status of operation
in detail, for instance, by manually examining operational logs and physical conditions of
components, and then confirm us about the validity of the findings.

The top 100 anomalies identified by the four methods are shown in Table 7. We use both
online and offline version of NS-NMF. To detect anomalies on the fly, we use the threshold
update policy similar to that in Ahmed et al. (2019b) for the online algorithm. To save
space we skip some rows in the table. We observe that altogether these four methods have
27 common anomalous time stamps among the top 100 anomalies, whereas offline NS-NMF
and online NS-NMF produce similar outcomes and share 46 common time stamps. These
common findings serve as an indirect way of cross validating the sanity of the detection
outcomes.

We find that the anomalous time stamps belong to a few anomaly-prone days, which are
listed in Table 8. It is also noticeable that anomalies occur in chunks, and in most cases,
the observations in the close time vicinity of an anomalous time stamp are also returned as
anomalies. When we report these time stamps to the operating manager, he agrees, after
his own verification, that most of these findings present valid concerns and indeed require
trouble shooting.

While there is a good common ground shared by these methods, the competing methods
do perform differently at certain aspect. GNMF entirely misses the anomalous stamps on
September 13th, September 14th, January 2nd, and January 12th. SNMF likewise misses
those dates. The offline NS-NMF successfully identified all of those time stamps, but misses
some of the potential anomalous time stamps in the month of April. The online NS-NMF
misses all the April anomalies and the anomalies on September 13th and January 2nd. SNMF
successfully detects the April dates. All of them misses the January 9th anomalies which
are deemed as abnormal by the operating manager and his team. The operating manager
also indicate that July 7th, July 8th, September 17th do not appear to be anomalies, after
their extensive closer-look that yields no intelligible outcomes. These dates are identified
as anomalous by the NMF variants except NS-NMF. The operating manager registers the
offline version of NS-NMF as the most competitive method followed by its online counterpart
among the competitors.

Detecting the anomalies does not tell us directly the root cause behind the abnormal
behaviors. But anomaly detection outcomes can be used to assign class labels to the re-
spective data records. A simple follow-up is to build a classification and regression tree on
the labeled data sets, which can reveal which variable, or variable combination, is actually
leading to these anomalous conditions. Doing so injects the interpretability to an unsuper-
vised learning problem and can advise proper actions to address the anomalous condition
and prevent future damage, disruption, or even catastrophe. An example of such exercise
can be found in Ahmed et al. (2019a, 2018) and thus we will not repeat it here.
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Table 7: Summary of the top 100 anomalies.
Offline NS-NMF Online NS-NMF GNMF SNMF NMF

4/16/2015 2:40 7/4/2015 12:10 7/4/2015 11:30 4/15/2015 16:50 7/4/2015 11:30

4/16/2015 4:30 7/4/2015 12:20 7/4/2015 11:40 4/15/2015 18:30 7/4/2015 11:40

7/4/2015 11:30 7/4/2015 12:30 7/4/2015 11:50 4/15/2015 20:10 7/4/2015 11:50

7/4/2015 11:40 7/4/2015 12:40 7/4/2015 12:00 4/15/2015 22:30 7/4/2015 12:00

7/4/2015 11:50 7/4/2015 12:50 7/4/2015 12:10 4/16/2015 2:50 7/4/2015 12:10

7/4/2015 12:00 7/4/2015 1:00 7/4/2015 12:20 4/16/2015 4:30 7/4/2015 12:20

7/4/2015 12:10 7/4/2015 1:20 7/4/2015 12:30 4/16/2015 4:50 7/4/2015 12:30

.................. .................. .................. .................. ..................

9/13/2015 19:00 9/14/2015 7:30 7/7/2015 4:20 4/19/2015 3:40 7/4/2015 16:20

9/13/2015 19:10 9/14/2015 7:40 7/8/2015 12:20 4/19/2015 4:00 7/4/2015 16:30

9/14/2015 8:00 9/14/2015 7:50 7/8/2015 18:00 4/19/2015 21:40 7/4/2015 16:40

9/14/2015 8:10 9/14/2015 8:00 9/15/2015 21:20 4/19/2015 23:40 7/4/2015 16:50

9/14/2015 8:20 9/14/2015 8:20 9/15/2015 21:40 4/20/2015 8:20 7/4/2015 17:00

9/14/2015 8:30 9/14/2015 8:50 10/3/2015 18:50 7/4/2015 11:20 7/4/2015 17:20

9/14/2015 8:40 9/14/2015 13:00 10/3/2015 19:10 7/4/2015 11:30 7/4/2015 17:30

9/14/2015 13:00 9/14/2015 13:10 10/3/2015 19:20 7/4/2015 11:50 7/4/2015 17:40

.................. .................. .................. .................. ..................

10/3/2015 21:00 10/3/2015 20:10 10/3/2015 22:20 7/4/2015 15:10 10/3/2015 18:20

10/3/2015 21:10 10/3/2015 20:20 10/3/2015 22:30 7/4/2015 15:20 10/3/2015 18:50

10/3/2015 21:20 10/3/2015 20:30 10/3/2015 22:40 7/4/2015 15:30 10/3/2015 19:10

10/3/2015 21:30 10/3/2015 20:50 10/3/2015 22:50 7/4/2015 15:40 10/3/2015 19:20

10/3/2015 21:40 10/3/2015 21:00 10/3/2015 23:00 7/4/2015 15:50 10/3/2015 19:30

10/3/2015 21:50 10/3/2015 21:10 10/3/2015 23:10 7/4/2015 16:00 10/3/2015 19:40

10/3/2015 22:10 10/3/2015 21:20 10/3/2015 23:20 7/4/2015 16:20 10/3/2015 19:50

.................. .................. .................. .................. ..................

10/4/2015 0:10 10/3/2015 23:30 10/4/2015 17:40 7/4/2015 18:10 10/3/2015 23:10

10/4/2015 0:20 10/3/2015 23:50 10/4/2015 17:50 7/4/2015 18:20 10/3/2015 23:20

10/4/2015 0:30 10/4/2015 0:00 10/4/2015 18:00 7/8/2015 15:50 10/3/2015 23:30

10/4/2015 23:40 10/4/2015 0:10 10/4/2 015 18:10 7/8/2015 18:00 10/4/2015 0:00

10/4/2015 23:50 10/4/2015 0:20 10/4/2015 18:20 9/17/2015 4:30 10/4/2015 0:10

10/5/2015 1:00 10/4/2015 0:30 10/4/20 15 18:30 9/17/2015 4:40 10/4/2015 0:20

10/5/2015 1:30 10/4/2015 22:50 10/4/2015 18:40 9/17/2015 4:50 10/4/2015 0:30

.................. .................. .................. .................. ..................

10/5/2015 4:40 10/13/2015 17:25 10/5/2015 3:50 10/3/2015 19:10 10/5/2015 2:30

10/5/2015 4:50 10/13/2015 17:30 10/5/2015 4:00 10/3/2015 19:20 10/5/2015 3:00

10/13/2015 16:25 10/13/2015 17:35 10/5/2015 4:10 10/3/2015 19:30 10/5/2015 3:10

10/13/2015 16:35 10/13/2015 17:45 10/5/2015 4:20 10/3/2015 19:40 10/5/2015 3:20

10/13/2015 16:45 10/13/2015 18:20 10/5/2 015 4:30 10/3/2015 19:50 10/5/2015 3:30

10/13/2015 16:55 10/13/2015 18:30 10/5/2015 4:50 10/3/2015 20:40 10/5/2015 3:40

.................. .................. .................. .................. ..................

1/2/2016 21:20 1/11/2016 18:10 10/13/2015 17:05 10/13/2015 17:05 10/13/2015 17:25

1/2/2016 21:30 1/12/2016 11:20 10/13/2015 17:15 10/13/2015 17:15 10/13/2015 17:35

1/2/2016 21:40 1/12/2016 11:30 10/13/2015 17:25 10/13/2015 17:25 10/13/2015 17:45

1/12/2016 11:20 1/12/2016 11:40 10/13/2015 17:35 10/13/2015 17:35 10/13/2015 17:55

1/12/2016 11:30 1/12/2016 12:10 10/13/2015 17:45 10/13/2015 17:45 10/13/2015 18:20
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Table 8: Most anomaly prone days identified by the four methods.
July 4th, 2015

September 13th, 2015

September 14th, 2015

October 3rd, 2015

October 4th, 2015

October 5th, 2015

October 13th, 2015

October 14th, 2015

January 2nd, 2016

January 12th, 2016

6. Summary and Future Work

In this paper, we propose a neighborhood structure-assisted non-negative matrix factor-
ization method and demonstrate its application in anomaly detection. We argue that in
the absence of similarity information, the original NMF basis vectors are not enough to
represent and separate complicated clusters in the reduced feature space. To represent and
summarize the complex data structure information in a similarity matrix, we use a minimum
spanning tree to capture the neighborhood connectivity information and to approximate the
geodesic distance between data instances. By contrast, the alternative approaches that use
Euclidean distance-based similarity is not effective, whereas the approaches using complete
graphs become computationally expensive. We develop a joint optimization framework to
obtain the clustering indicator and attribute distribution matrix. Then, we devise a re-
construction error-based anomaly score to flag potential point-wise anomalies. We use a
parallel block stochastic gradient descent method to compute these factored matrices for
fast implementation. We also design an online algorithm to render the proposed method
applicable in analyzing streaming data. The specific action of modeling the neighborhood
structure appears to make an appreciable impact, as NS-NMF demonstrates a clear advan-
tage in an extensive empirical study that uses 20 benchmark data sets and one hydropower
plant data set.

We believe that an important future direction is to make this NS-NMF based anomaly
detection more practical in online detection. Our paper makes one of the first efforts in
enabling the method online compatible. But there are still many opportunities and needs
for improving the dynamic, adaptive, and robust strategies. For instance, how to decide
the optimal data buffer/block sizes, which affects the computation of anomaly scores, the
frequency of score update, as well as the decision threshold.
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Appendix

Here, we present additional performance results with respect to two DNN methods. We
choose an autoencoder with an embedding regularizer (AER) (Yu et al., 2013) and the Deep
Autoencoding Gaussian Mixture Model (DAGMM) (Zong et al., 2018). The comparison
result is listed in Table 9. NS-NMF outperforms the two DNN-based methods, producing
uniquely better detection performance in 15 cases out of the 20 total. DAGMM comes out
as the winner in three cases, whereas AER performs better in one case. NS-NMF and AER
are tied in one case.

Table 9: Comparison with the DNN-based approaches
Data set NS-NMF Autoencoder DAGMM Winner

Glass 4 0 0 NS-NMF

PIMA 8 4 1 NS-NMF

WBC 9 6 2 NS-NMF

Stamps 4 3 0 NS-NMF

Shuttle 2 0 0 NS-NMF

Pageblocks 21 19 19 NS-NMF

Heart 5 2 2 NS-NMF

Pendigits 0 0 5 DAGMM

Lymphography 5 3 3 NS-NMF

Waveform 9 3 4 NS-NMF

Cardiotocograpghy 29 29 27 Tie

Annthyroid 27 10 94 DAGMM

Parkinson 3 0 1 NS-NMF

ALOI 193 371 47 AER

WDBC 7 4 5 NS-NMF

Ionosphere 92 63 79 NS-NMF

WPBC 11 10 9 NS-NMF

KDD 102 83 82 NS-NMF

Spambase 47 31 61 DAGMM

Arrhythmia 4 2 2 NS-NMF

References

Imtiaz Ahmed, Aldo Dagnino, Alessandro Bongiovi, and Yu Ding. Outlier detection for
hydropower generation plant. In IEEE International Conference on Automation Science
and Engineering (CASE). IEEE, 2018.

Imtiaz Ahmed, Aldo Dagnino, and Yu Ding. Unsupervised anomaly detection based on min-
imum spanning tree approximated distance measures and its application to hydropower
turbines. IEEE Transactions on Automation Science and Engineering, 16(2):654–667,
2019a.

28



Neighborhood Structure Assisted NMF for Anomaly Detection

Imtiaz Ahmed, Travis Galoppo, and Yu Ding. O-LoMST: An online anomaly detection
approach and its application in a hydropower generation plant. In IEEE International
Conference on Automation Science and Engineering (CASE). IEEE, 2019b.

Edward G. Allan, Michael R. Horvath, Christopher V. Kopek, Brian T. Lamb, Thomas S.
Whaples, and Michael W. Berry. Anomaly detection using nonnegative matrix factoriza-
tion. In Survey of Text Mining II, pages 203–217. Springer, 2008.

Mennatallah Amer and Markus Goldstein. Nearest-neighbor and clustering based anomaly
detection algorithms for rapidminer. In RapidMiner Community Meeting and Conference,
pages 1–12. RCOMM, 2012.

John M. Bland and Douglas G. Altman. Multiple significance tests: The Bonferroni method.
BMJ, 310:170, 1995.

Deng Cai, Xiaofei He, Jiawei Han, and Thomas S. Huang. Graph regularized nonnegative
matrix factorization for data representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(8):1548–1560, 2011.

Guilherme O. Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello, Barbora Mi-
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