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Abstract

Recent work on variational autoencoders (VAEs) has enabled the development of generative
topic models using neural networks. Topic models based on latent Dirichlet allocation (LDA)
successfully use the Dirichlet distribution as a prior for the topic and word distributions
to enforce sparseness. However, there is a trade-off between sparsity and smoothness in
Dirichlet distributions. Sparsity is important for a low reconstruction error during training
of the autoencoder, whereas smoothness enables generalization and leads to a better log-
likelihood of the test data. Both of these properties are encoded in the Dirichlet parameter
vector. By rewriting this parameter vector into a product of a sparse binary vector and
a smoothness vector, we decouple the two properties, leading to a model that features
both a competitive topic coherence and a high log-likelihood. Efficient training is enabled
using rejection sampling variational inference for the reparameterization of the Dirichlet
distribution. Our experiments show that our method is competitive with other recent VAE
topic models.

Keywords: variational autoencoders, topic models, Dirichlet distribution, reparameteri-
zation, generative models

1. Introduction

Generative models have been successfully employed for the modeling of text data since they
allow to learn a model of the data and thus are highly interpretable. The arguably most
successful model of this kind has been latent Dirichlet allocation (LDA, Blei et al., 2003),
which represents each document as a mixture of different topics. This model is typically
trained using either Markov chain Monte Carlo (Griffiths and Steyvers, 2004) or variational
Bayes (Blei et al., 2003). Recently, several approaches were put forward to train LDA
using variational autoencoder neural networks (Miao et al., 2016; Srivastava and Sutton,
2017), thus making them more easily adaptable and extendable by using advances from deep
learning research.

Using a Dirichlet distribution as a prior for the latent variables has advantages and
disadvantages. The biggest advantage is the sparsity that it encourages in the latent
variables. However, we find that the desired sparsity is at odds with the generalization
performance of the model. This was previously noticed by Wang and Blei (2009) who
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tried to decouple sparsity and smoothness in the discrete hierarchical Dirichlet process. In
the case of variational autoencoders (VAEs), the problem can be analyzed in terms of the
KL-divergence between two Dirichlet distributions, which diverges if the prior parameter
is close to zero. Therefore, we are faced with a trade-off: Either the model is sparse and
achieves a good reconstruction error, but has a high KL-divergence term and thus a low
log-likelihood of the model, or, it avoids low settings of the prior and thereby achieves a
better log-likelihood at the cost of a higher reconstruction error. A similar observation
was made by Srivastava and Sutton (2018) who observe that a slow minimization of the
KL-divergence leads to better topics. In this paper we will discuss how this trade-off can
be avoided to achieve both sparsity and smoothness in a variational autoencoder Dirichlet
topic model.

One remaining problem with the training of generative models using variational autoen-
coders is the need for a differentiable non-centered reparameterization function (Kingma and
Welling, 2014a) for the distribution of the latent variables. Unfortunately such a function is
not available for the most widely used probability distribution in topic modeling, the Dirichlet
distribution. A model that does not directly reparameterize the Dirichlet distribution is
ProdLDA (Srivastava and Sutton, 2017) which employs a Laplace approximation for the
Dirichlet distribution, thus enabling the training of a Dirichlet variational autoencoder.
Other recent solutions include implicit reparameterization gradients (Figurnov et al., 2018),
using an approximation for the inverse CDF (Joo et al., 2019) and using the Weibull distri-
bution as a replacement (Zhang et al., 2018). In this work we will instead apply rejection
sampling variational inference (Naesseth et al., 2017) to autoencoders.

The contributions of our paper are as follows:

1. We introduce a Dirichlet variational autoencoder based on RSVI (DVAE, see Fig-
ure 1a), which is as powerful and efficient as the Gaussian variational autoencoders
except it uses the Dirichlet distribution as a prior on the latent variables.

2. We identify the trade-off between sparsity and smoothness as the main factor that
prevents successful training of DVAE topic models and identify the KL-divergence
between two Dirichlet distributions as the crucial factor influencing model performance.

3. We provide an adapted neural network architecture to decouple sparsity and smooth-
ness.

4. We show that our Dirichlet variational autoencoder has an improved topic coher-
ence, whereas the adapted sparse Dirichlet variational autoencoder has a competitive
perplexity.

5. We propose to use the new topic redundancy measure to obtain further information
on topic quality when topic coherence scores are high.

6. We perform an extensive experimental comparison with state-of-the-art VAE topic
models to show that our model achieves the highest topic coherence.
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2. Related Work

Variational autoencoders (VAEs) were first introduced by Kingma and Welling (2014b) and
Rezende et al. (2014). These type of deep neural networks combine ideas from approximate
Bayesian inference and deep neural networks, yielding generative models that can be
trained by neural networks. Models are trained by stochastic backpropagation using the
reparameterization trick. This trick allows the gradient to be backpropagated through the
stochastic latent variables efficiently if a reparameterization is available as is the case for the
Gaussian distribution.

Topic models based on latent Dirichlet allocation (LDA) (Blei et al., 2003) are directed
generative models, which makes it possible to train such topic models using variational
autoencoders. The first such neural variational document model (NVDM) was developed
by Miao et al. (2016). This model successfully uses the idea of variational autoencoders to
train a topic model with a Gaussian prior for the latent variables. This work was extended
by Miao et al. (2017), who introduce Gaussian stick breaking priors in a model which is able
to let the number of topics grow dynamically.

Another model using Dirichlet stick-breaking priors is SB-VAE (Nalisnick and Smyth,
2017), however, it requires Taylor expansion to compute the KL-divergence and a Ku-
maraswamy distribution to approximate the posterior. Since it uses a nonparametric
stick-breaking prior instead of a parametric Dirichlet it is not directly comparable to our
model.

LDA topic models use a Dirichlet distribution as a prior for the latent variables since it
promotes sparsity and leads to more interpretable topics. Therefore, Srivastava and Sutton
(2017) propose a VAE topic model called ProdLDA that employs a Laplace approximation for
modeling a Dirichlet prior of the latent variables. As their results show, while the perplexity
is not as good as that of previous models, the topic coherence is significantly improved over
Gaussian VAEs. They also show that the Dirichlet prior leads to more sparseness in the
document-topic distributions. This work is extended by Srivastava and Sutton (2018) who
introduce a hierarchical VAE topic model. Their analysis shows that batch normalization
leads to a slower minimization of the KL-divergence which improves the topic quality.

The reason that VAEs cannot be directly trained using a Dirichlet prior is that there is
no simple variable transformation for the Dirichlet distribution. Whereas a Gaussian variable
z ∼ N(µ, σ2) can be reparameterized as z = µ+ εσ, ε ∼ N(0, 1) thus allowing the gradient
to be backpropagated through the latent variable z, there is no such reparameterization for
the Dirichlet distribution. However, there is a method to solve this problem which is based
on rejection samplers (Naesseth et al., 2017), called RSVI. The Dirichlet distribution can
be represented by gamma distributions for which there exists an efficient rejection sampler.
The proposal function of this rejection sampler can be used for reparameterization with one
minor difference: A correction term has to be added to the gradient that accounts for the
difference between the proposal function and the true gamma distribution. In this paper we
show how this elegant method can be used for efficient and effective training of Dirichlet
variational autoencoders.

A different approach was taken by Zhang et al. (2018), who used the Weibull distribution
as an approximation to the gamma distribution. This takes advantage of the fact that the
Weibull and Gamma distributions have similar probability density functions and the Weibull
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distribution is reparameterizable. Zhang et al. (2018) also compare their model with a model
trained using RSVI. Overall, their model structure is different however, with a hierarchical
generative distribution and a hybrid training algorithm.

Other recent solutions include implicit reparameterization gradients by Figurnov et al.
(2018) who introduce a trick to avoid inverting the CDF by differentiating it instead.
Furthermore, Joo et al. (2019) use an approximation for the inverse CDF of the gamma
distribution. We compare to both of these methods (see Section 5.3 for details).

Our work draws significant inspiration from Wang and Blei (2009). This work is
concerned with the HDP-LDA topic model which corresponds to a hierarchical Dirichlet
process (HDP) applied to text, resulting in the nonparametric version of latent Dirichlet
allocation (Blei et al., 2003). The model represents topics by multinomial distributions over
words β ∼ Dir(γ), where β is the parameter vector of the multinomial distribution which
is drawn from a Dirichlet distribution with parameter γ. The decoupling of sparsity and
smoothness is applied to these probability distributions β, such that first the words are
identified that contribute to the topic and then the Dirichlet distribution is only over the
sparse word vector, i.e. a reduced probability simplex. The sparsity is modeled by assuming
the topics are generated as β ∼ Dir(b · γ), where b is a vector of Bernoulli variables with a
Beta prior. In contrast, we apply the decoupling to the document-topic distributions instead
of the word-topic distributions.

3. Background

In this section, we first introduce LDA topic models. We then explain how topic models are
trained with variational autoencoders and how the variational autoencoders can be adapted
to use the Dirichlet distribution as a prior for the latent variables.

3.1. LDA

Please note that the notation in this subsection follows the established conventions in topic
modeling work. The rest of the paper may use the same variable names in different contexts.

Topic models based on latent Dirichlet allocation (LDA) describe each document in a
collection of text documents as a mixture of topics. This means that each document d is
associated with a document-topic distribution θd ∼ Dir(α) with a Dirichlet prior. For each
word wi, a topic zi is drawn from θd and the word wi is drawn from a topic-word distribution
φzi associated with the topic zi. The joint distribution of the latent variables z, θ and φ
is then optimized to maximize the marginal log-likelihood of the data D under the given
model,

L(D|θ, φ, z) =
∑
d∈D

log p(d|z, θ, φ). (1)

3.2. Variational Autoencoders

The notation for variational autoencoders (VAEs) unfortunately does not correspond well to
the common notation in the context of LDA. In VAEs the document-topic distribution is
generated by the encoder network parameterized by φ, whereas the topic-word distribution
is given through the decoder network parameterized by θ. Since this paper mainly focuses
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on VAEs, we adopt the notation common to VAEs here, although it is exactly reversed
compared to the topic model notation.

Following Kingma and Welling (2014b), we define a generative model with a latent variable
z and an observed input x that are generated from a generative distribution pθ(z)pθ(x|z)
with parameters θ. This generative model corresponds to the reconstruction/decoder part
of the VAE, whereas the encoder corresponds to the variational approximation qφ(z|x)
parameterized by φ.

VAEs are generative models similar to LDA topic models. Accordingly, the input data x
is assumed to be generated from a conditional distribution pθ(x|z). The latent topic vectors
z are generated from a prior distribution pθ(z). Generally, it is assumed that the integral of
the marginal likelihood pθ(x) =

∫
pθ(z)pθ(x|z)dz is intractable as well as the posterior and

the integrals required for mean-field variational Bayes. In the case of LDA, it is possible to
train the model using mean-field variational Bayes, however, this restricts the model and
does not easily allow for certain modifications. For example, using VAEs, it is easily possible
to lift the restriction of the mixture model by removing the constraint on the parameters θ,
which makes the model more expressive (Srivastava and Sutton, 2017).

The marginal log-likelihood of the model is given by

log p(x) =
N∑
i=1

log p(xi) =
N∑
i=1

(KL[q(zi|xi) ‖ p(zi|xi)] + L(θ, φ;xi)) ,

where N is the number of documents in the data set.
Since the KL-divergence is always positive, the second term is the variational lower

bound L, which can be written as

log p(xi) ≥ L(θ, φ;xi) = Eq(z|xi)[− log q(z|xi)] + Eq(z|xi)[log p(xi, z)] =

−KL[q(zi|xi) ‖ p(zi)] + Eq(zi|xi)[log p(xi|zi)],

where the first term in the second line corresponds to the entropy and the second term in the
last line corresponds to the negative reconstruction error, whereas the KL-divergence acts as
a regularizer that keeps the variational distribution close to the prior. To form an estimate
of the ELBO, we need to sample z from qφ and calculate the ELBO by accumulating the
contributions of the samples

L̃(θ, φ;xi) =
1

L

L∑
l=1

(log p(xi, zi,l)− log q(zi,l|xi)),

where L denotes the number of samples.

3.3. Rejection Sampling Variational Inference

The idea of rejection sampling variational inference (RSVI) is to use the proposal function
of a rejection sampler as the reparameterization function. This makes it possible to use
probability distributions that do not have non-central differentiable reparameterizations
such as the Dirichlet distribution. It also utilizes statistical research into efficient rejection
samplers.
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The Dirichlet distribution can be simulated using gamma random variables since if
zi ∼ Γ(αi) then z̃1:K = z1:K∑

i zi
∼ Dirichlet(α1:K). This is relevant because for the gamma

distribution there exists an efficient rejection sampler

z = hΓ(ε, α) := (α− 1

3
)(1 +

ε√
9α− 3

)3, ε ∼ N(0, 1). (2)

However, using this proposal function is not equivalent to using a gamma distribution
because some samples are rejected. Therefore we need the distribution of an accepted sample
ε ∼ s(ε), which is obtained by marginalizing over the uniform variable u of the rejection
sampler,

π(ε; θ) =

∫
π(ε, u; θ)du = s(ε)

q(h(ε, θ))

Mθr(h(ε, θ))
,

where r is the proposal function for the rejection sampler, z = h(ε, θ), ε ∼ s(ε) is the
reparameterization of the proposal distribution and Mθ is a constant used in the rejection
sampler. Using this, the ELBO can be rewritten as

Eq(z|xi)[− log q(z|xi)] + Eq(z|xi)[log p(xi, z)] =

Eq(z|xi)[− log q(z|xi)] + Eπ(ε;θ)[log p(xi, h(ε, θ))]

As Naesseth et al. (2017) show, the gradient can then be decomposed into three parts

∇θL(θ) = grep + gcor +∇θEq(z|xi)[− log q(z|xi)], (3)

where grep and gcor for the case of a one-sample Monte Carlo estimator are given as

grep = ∇z log p(xi, z)∇θh(ε, θ),

gcor = log p(xi, z)∇θ log
q(h(ε, θ))

r(h(ε, θ))
,

and the entropy can be calculated analytically. grep corresponds to the gradient assuming
that the proposal is exact and always accepted and gcor corresponds to a correction part of
the gradient that accounts for not using an exact proposal.

3.4. Shape Augmentation for Gamma Distribution

The rejection sampler for the gamma distribution has higher acceptance rates for higher
values of the parameter α. Naesseth et al. (2017) use this fact to augment the shape of the
gamma distribution and thereby achieve a lower variance gradient. As they show, a Γ(α, 1)

distributed variable z can be expressed as z = z̃
∏B
i=1 u

1
α+i−1

i for a positive integer B and
i.i.d. uniform random variables u, where z̃ ∼ Γ(α+B, 1). This makes it possible to use the
rejection sampler for α < 1 and also decreases the correction term for increasing α+B.

4. Method

In this section, the proposed method is described. We first discuss the trade-off between
sparsity and smoothness, then put forward the adapted VAE topic model, explain how the
KL-divergence is is minimized and cover the neural network architecture in detail. Finally,
the issue of component collapsing is discussed.
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4.1. Sparsity and Smoothness

The trade-off between sparsity and smoothness is a known issue in the topic modeling
literature (Wang and Blei, 2009). Aspects of it were also discussed in recent literature by
Srivastava and Sutton (2017, 2018). According to them, batch normalization and dropout
slow down the minimization of the KL-divergence in the beginning of training. This has the
effect of increasing the smoothness and thereby increases the topic coherence because the
model generalizes better. A fast minimization puts a greater emphasis on sparseness which
ensures a lower perplexity, but is prone to overfitting. A minimization that is too fast leads
to maximal smoothness which means the Dirichlet parameter is equal to the prior. In this
case no meaningful topics can be learned since the latent variables are only sampling noise.
This problem is known as component collapsing.

But influencing the training process through e.g. batch normalization or dropout is only
one way to control this trade-off. By decoupling both aspects explicitly we can allow both,
a good generalization performance and a good fit to the data at hand. To do this, first, the
topics are selected that represent the current document. Second, a distribution is sampled
for the selected topics. The details are described in the next section.

4.2. DVAE Sparse

A schematic view of our methods is depicted in Figures 1a and 1c. We will now describe the
sparse Dirichlet variational autoencoder (DVAE Sparse) depicted in Figure 1c. The DVAE
model works analogously except that the vector b is set to a vector of only ones. The model
equation is given by p(x, z, θ) = p(x|z, θ) · p(z|θ) · p(θ). The input x is transformed to the
Dirichlet parameter α and a sparsity parameter b by a neural network, the latent variables z
are sampled from Dir(b · α) and the decoder network reconstructs the original input. This
is in contrast to the Gaussian autoencoder shown in Figure 1b, where the latent variables
are drawn from a Gaussian distribution. To be able to backpropagate the gradients through
the latent variables z, we use rejection sampling variational inference.

The parameter b is inspired by Wang and Blei (2009), who use a Bernoulli distributed
variable. In contrast, we simply use a sigmoid function and subsequently round the result
to zero or one. The distribution Dir(b · α) is a degenerate Dirichlet distribution over the
sub-simplex specified by

b = l2(λ) = round(
1

1 + e−λ
).

If the vector b only consists of ones, this reduces to the normal Dirichlet distribution Dir(α).

We optimize α in an unconstrained domain by letting

α = log(1 + exp(a)), (4)

where a = l1(λ) is a linear transformation of λ and λ is the transformation of the input
through the neural network λ = fMLP(x).

The ELBO is given by

L(θ, φ;xi) = −KL[q(z|xi) ‖ p(z)] + Eq(z|xi)[log p(xi|z)] = (5)

−KL[q(z|xi) ‖ p(z)] + Eπ(ε;φ)[log p(xi|hΓ(ε, φ))]. (6)
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x qφ(z|x) α z ∼ Dir(α) z pθ(x|z) x′

(a) Dirichlet VAE (DVAE)

x

µ

σ

z ∼ N(µ, σ2) z x′

(b) Gaussian VAE (NVDM)

x

b

α

z ∼ Dir(b · α) z x′

(c) Sparse Dirichlet VAE (DVAE Sparse)

Figure 1: Schematic figure of Dirichlet VAE, Gaussian VAE and the proposed Sparse Dirichlet
VAE. For the Dirichlet VAE the input is transformed by a neural network to
yield parameter α. The latent variables z are subsequently sampled from Dir(α).
Finally the input is reconstructed as x′. The Gaussian VAE has parameters µ and
σ instead and uses a Gaussian distribution.

Here, the expectation representing the negative reconstruction error is rephrased with respect
to the distribution of the accepted sample π and the latent variables z are reparameterized by
hΓ(ε, φ) given in Equation 2. π(ε;φ), the distribution of the accepted sample ε, is obtained
by marginalizing over the uniform variable u,

π(ε;φ) =

∫
π(ε, u;φ)du = s(ε)

q(hΓ(ε, φ))

r(hΓ(ε, φ))
.
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x

λ = RELU(linear(x))

λ = Dropout(λ)

λ

l1 = linear(λ)

l1

l1 = Batchnorm(l1)

α = Max(0.00001, softplus(l1))

α

z ∼ Dirichlet(α)

z

l2 = linear(z)

l2

l2 = Batchnorm(l2)

x′ = Log Softmax(l2)

x′

Figure 2: Illustration of the neural network architecture used for DVAE, ProdLDA, the
implicit reparameterization gradient method, the Weibull VAE method and the
inverse CDF gradient method. The architecture was proposed by Srivastava and
Sutton (2017) because it allows to train topic models with a high learning rate,
thus avoiding local minima and converging quickly.
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Here, we use the parameter φ since our encoder network is parameterized by φ.
The gradient of the ELBO for the generative/decoder network is given as follows:

∇θL(θ, φ;xi) = ∇θEq(z|xi) [log p(xi|z)] .

This corresponds to the logarithm of the reconstruction probability. Gradient backpropaga-
tion for this term is unproblematic since the samples used to estimate L depend on q which
is parameterized by φ. Therefore we do not need to take care of reparameterization for this
term. The gradients of the ELBO for the the variational/encoder network are as follows:

∇φL(θ, φ;xi) = ∇φ −KL[q(z|xi) ‖ p(z)] +∇φEπ(ε;θ) [log p(xi|hΓ(ε, φ))] (7)

Here, we need to reparameterize the latent variables z. The gradient of the KL-divergence
will be discussed in Section 4.3 and the rest of the gradient is given analogously to Equation 3.
Note that we now use the expectation of the conditional distribution p(xi|z) instead of the
joint distribution p(xi, z), since we write the ELBO in a different way which is more common
for VAEs. The gradient based on a one-sample Monte Carlo estimator is given as

∇φL(θ, φ;xi) = ∇φ −KL[q(z|xi) ‖ p(z)] + gφrep + gφcor. (8)

gφrep = ∇z log p(xi|z)∇φh(ε, φ)

gφcor = log p(xi|z)∇φ log
q(h(ε, φ))

r(h(ε, φ))

To understand the step from Equation 7 to Equation 8, we refer to the derivation by Naesseth
et al. (2017),

Eπ(ε;θ)[f(h(ε, φ))] =

∫
s(ε)∇φ

(
f(h(ε, φ))

q(h(ε, φ);φ)

r(h(ε, φ);φ)

)
dε =∫

s(ε)
q(h(ε, φ);φ)

r(h(ε, φ);φ)
∇φf(h(ε, φ))dε+

∫
s(ε)f(h(ε, φ))∇φ

(
q(h(ε, φ);φ)

r(h(ε, φ);φ)

)
dε =

Eπ(ε;θ) [∇φf(h(ε, φ))] + Eπ(ε;θ)

[
f(h(ε, φ))∇φ log

q(h(ε, φ);φ)

r(h(ε, φ);φ)

]
,

(9)

where in the last step the log-derivative trick was used and f(h(ε, φ)) in our case corresponds
to log p(xi|h(ε, φ)).

4.3. The KL-Divergence

The KL-divergence can be calculated analytically, meaning that we do not have to use
any samples and thus do not need to take care of reparameterization in the gradient back
propagation for this term. p(z) is a Dirichlet with prior α0, whereas q(z|x) is the Dirichlet
parameterized by α as given by the variational network parameterized by φ.

KL[q(z|x) ‖ p(z)] = log(Γ(
∑
k

αk))− log(Γ(
∑
k

α0
k))+∑

k

log Γ(α0
k)−

∑
k

log Γ(αk) +
∑
k

(αk − α0
k)(Ψ(α)−Ψ(

∑
k

αk)),
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where Ψ is the digamma function.

In our experiments we found that the analytical calculation of the KL-divergence, even
though it is theoretically more appealing, does not lead to optimal results. We therefore
resort to using a simple sampling approximation of the KL-divergence by calculating the
KL-divergence as KL[q(z|x) ‖ p(z)] = q(z|x) log q(z|x)

p(z) . Note that test results are calculated
using the analytical KL-divergence to enable a fair comparison. Sampling the KL-divergence
leads to more stable gradients, however, it introduces a second correction term for the
gradient of the encoder network, since we are now using the rejection sampler again to
produce z.

We therefore rewrite the ELBO as

L(θ, φ;xi) =−KL[q(z|xi) ‖ p(z)] + Eq(z|xi)[log p(xi|z)] =

Eπ(ε;φ)

[
log

p(hΓ(ε, φ))

q(hΓ(ε, φ)|x)

]
+ Eπ(ε;φ)[log p(xi|hΓ(ε, φ))].

The gradient of the KL-divergence is now given as

∇φKL[q(hΓ(ε, φ))|x) ‖ p(hΓ(ε, φ))] = ∇φ log
p(hΓ(ε, φ))

q(hΓ(ε, φ)|x)
+ gφ

kl-cor
, (10)

where gφ
kl-cor

is defined as

gφ
kl-cor

= log
p(hΓ(ε, φ))

q(hΓ(ε, φ)|x)
∇φ log

q(hΓ(ε, φ))

r(hΓ(ε, φ))
.

The log fraction in this correction term is the same as the one for gφcor, however, it is
weighted by the KL-divergence instead of the reconstruction probability. The derivation is
again done using Equation 9 except now f(h(ε, φ)) corresponds to log p(z)

q(h(ε,φ)|x) . Note, that
the two terms in Equation 10 correspond to a reparameterization part and a score function
part. If the proposal is equal to the distribution and always accepted this reduces to the
reparameterization gradient, whereas if the proposal is always rejected, this reduces to the
score function gradient, also known as REINFORCE.1

4.4. Neural Network Architecture

The architecture of the neural network for the DVAE variational autoencoder is illustrated
in Figure 2.

1. Encoder: The input is transformed using a RELU-layer with dropout. The result is
linearly transformed and batch normalization is applied. Batch normalization is crucial
for the convergence of the model. VAEs are prone to so-called component collapsing, a
well-known problem (Bowman et al., 2016). Using batch normalization in combination
with a relatively high learning rate (10−2–10−4), helps to avoid component collapsing
and leads to a fast convergence (Srivastava and Sutton, 2017). A softplus transformation
is applied because the Dirichlet parameter needs to be positive. Furthermore, a

1. https://casmls.github.io/general/2017/04/25/rsvi.html
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minimum value of 0.00001 is used for the Dirichlet parameter α which is necessary
for stability of the gradients. The latent variables z are sampled from the Dirichlet
distribution.

2. Decoder: The decoder is structured as follows: The latent variables z are transformed
linearly. Again, batch normalization is applied. The final result is obtained through a
log-softmax transformation. Note that the decoder weights are not restricted to be
on the probability simplex as would be necessary if a Dirichlet prior was put on the
topic-word distributions. This lifts the restriction of the mixture model as proposed by
Srivastava and Sutton (2017) (The same was done in the NVDM model by Miao et al.
(2016), although it was not explicitly discussed.). This is why in our experiments we
compare to the ProdLDA model of Srivastava and Sutton (2017) and not to AVITM,
which puts the simplex constraint on the decoder weights. Nevertheless, we can use the
decoder weights to infer our topics since it is sufficient to rank the words according to
the respective weights for each topic. The weights do not have be given a probabilistic
interpretation as in LDA models. The words with the largest weights for each latent
topic, are usually representative for that topic. It was shown by Srivastava and Sutton
(2017) and is confirmed in our experiments that the non-mixture version yields lower
perplexity but higher topic coherence. The reason for this is suspected to be the lifting
of the mixture model contraint which makes the model more expressive.

4.5. Component Collapsing

As mentioned in the previous section, VAEs often suffer from the well-known issue of
component collapsing (Bowman et al., 2016). This is the problem of a local minimum that
is usually encountered early on in the training process and which the model cannot escape
as the training continues. It occurs because it is often easier for the model to minimize the
KL-divergence than to minimize the reconstruction error. This leads to parameters that are
equal to the prior and thus, many or all topics are the same. This means that there are a lot
of redundant topics, but the perplexity is relatively low. To prevent this from happening, a
common method is annealing of the KL-divergence (Bowman et al., 2016) to slowly introduce
it into the loss function. Other methods include batch normalization and dropout (Srivastava
and Sutton, 2017, 2018). In our experiments, we found that batch normalization had the
largest effect. None of the implemented Dirichlet autoencoders learn meaningful topics
without batch normalization. NVDM does not employ batch normalization, but has to use
a lower learning rate to prevent component collapsing.

5. Experiments

Here, we first describe the experimental settings, the data sets, baseline methods and
the evaluation measures. Finally we describe the experimental results on the different
performance measures.

5.1. Experimental Settings

The number of neurons was set to 100 for all hidden layers in the neural network models.
We used a single sample for all methods. A batch size of 200 was used for the training of all
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models. Training was monitored on a validation set with early stopping and a look-ahead of
30 iterations. We used the Adam optimizer for training. For NVDM each training iteration
spans ten iterations for the decoder and ten iterations for the encoder. DVAE and ProdLDA
optimize decoder and encoder jointly. Since we noticed that DVAE has no difference in
performance between using the correction part of the gradient when shape augmentation is
used, we omitted that part in the experiments to save unnecessary computation. Similar to
Srivastava and Sutton (2017), we employ batch normalization to improve the convergence of
our model. The learning rate is optimized for all neural network methods using Bayesian
optimization.

5.2. Data Sets

• 20news: We used the same version of this data set as Srivastava and Sutton (2017).
It is a widely used text data set consisting of news articles that are grouped into 20
different categories. It has 11,000 training instances and a 2,000 word vocabulary.

• NIPS: The NIPS data set was retrieved in a preprocessed format from the UCI Machine
Learning Repository (Perrone et al., 2017). It consist of 5,812 documents and has
11,463 features. It contains text data from NIPS conference papers published between
1987 and 2015. Compared to the other data sets, individual documents are large. 1,000
documents were separated as a test set.

• KOS: The 3,430 blog entries of this data set were originally extracted from http:

//www.dailykos.com/, the data set is available in the UCI Machine Learning Repos-
itory https://archive.ics.uci.edu/ml/datasets/Bag+of+Words. The number of
features is 6,906.

• Rcv1:2 This corpus contains 810,000 documents of Reuters news stories. We separated
10,000 documents as a testset and pruned the vocabulary to 10,000 words after stopword
removal following Miao et al. (2016).

5.3. Methods

5.3.1. Dirichlet Autoencoders

We compare to four different autoencoders that all have exactly the same architecture and
hyperparameters as DVAE. They are only different with respect to the modeling of the
Dirichlet prior on the latent variables.

1. ProdLDA: This method uses a Laplace approximation to approximate the Dirichlet
prior. We use the implementation provided by the authors.3

2. Inverse CDF (Joo et al., 2019): This method builds on previous work by Knowles (2015).
If X ∼ Γ(α, β) and F (x;α, β) is a CDF of the random variable X, the inverse CDF can
be approximated by F−1(u;α, β) ≈ β−1(uαΓ(α))1/α, where u ∼ Uniform(0,1). The
approximated inverse CDF can then be used as a reparameterization function.

2. http://trec.nist.gov/data/reuters/reuters.html
3. https://github.com/akashgit/autoencoding_vi_for_topic_models
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3. Implicit reparameterization gradients (Figurnov et al., 2018): This method introduces
a trick to avoid inverting the CDF by differentiating it instead. It is integrated into
the tensorflow library and can be used out-of-the-box.

4. Weibull autoencoder (Zhang et al., 2018): This method uses the Weibull distribution
instead of the Gamma distribution because it has a similar PDF and the Weibull
distribution can be reparameterized easily. The Weibull PDF is given as

P (x|k, λweibull) =
k

λk
weibull

xk−1 exp (x/λweibull)
k.

The reparameterization for x ∼Weibull(k, λweibull) is

x = λ(− ln(1− ε))1/k, ε ∼ Uniform(0,1),

and the KL-divergence from the gamma distribution is analytically computed as

KL[Weibull(k, λweibull) ‖Gamma(α, β)] =

α lnλweibull −
γα

k
− ln k − βλweibullΓ

(
1 +

1

k

)
+ γ + 1 + α lnβ − ln Γ(α).

The parameters λweibull and k are computed through the neural network as

λweibull = log(1 + exp(b)), k = log(1 + exp(c)),

where b = l2(λ) and c = l3(λ), where l2 and l3 are linear transformations of λ which is
the same as in Equation 4.

Additionally, k is restricted to be greater or equal to 0.1 because for values of k that are
lower than that the method becomes unstable.

5.3.2. Other Comparison Methods

Additionally, we compare to two other algorithms:

1. NVDM: This is the Gaussian VAE topic model. We used the code provided by the
authors.4

2. SCVB: As a representative of the original LDA models, we compare to SCVB (Foulds
et al., 2013), a stochastic variant of collapsed variational Bayes. This method is trained
online using minibatches in the same way as the neural networks. Therefore the
method is applicable to large data sets. We used our own Java reimplementation.

4. https://github.com/ysmiao/nvdm
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5.4. Evaluation

All models are evaluated on three measures, perplexity, topic redundancy and topic coherence.
The per-word perplexity is calculated from the ELBO as exp(− 1

Nw

∑D
d log p(d)), where Nw

is the number of words in the corpus. We use the analytical KL-divergence for all models to
calculate the perplexity to allow a fair comparison.

The topic coherence is calculated following Srivastava and Sutton (2017) using the
normalized pointwise mutual information (NPMI), averaged over all pairs of words of all
topics, where the NPMI is set to zero for the case that a word pair does not occur together.
We calculate the topic coherence on the test set using the 10 first words of each topic, i.e.
the 10 words with the highest probability for that topic. The NPMI for topic t is given as
follows:

NPMI(t) =

N∑
j=2

j−1∑
i=1

log
P (wj ,wi)
P (wi)P (wj)

− logP (wi, wj)
,

where N is the number of words in topic t, wi is the ith word of topic t and P (wi, wj) is the
probability of words wi and wj occurring together in the test set, which is approximated by
counting the number of documents where both words appear together5 and dividing the
result by the total number of documents.

The topic redundancy corresponds to the average probability of each word to occur in
one of the other topics of the same model. The redundancy for topic k is thus given as

R(k) =
1

K − 1

N∑
i=1

∑
j 6=k

P (wik, j),

where P (wik, j) is one if the ith word of topic k, wik, occurs in topic j and otherwise zero,
and K − 1 is the number of topics excluding the current topic.

5.5. Experimental Results

5.5.1. Perplexity

We compare our models, DVAE and DVAE Sparse, to the Laplace approximation ProdLDA,
the Gaussian VAE NVDM and the online LDA model SCVB in Tables 1 and 2. Additional
results are in the Appendix in Tables 4 and 5. The overall best perplexity is achieved by
NVDM as can be seen from the average ranks in each table, whereas the Weibull VAE
has the worst perplexity, closely followed by DVAE. Implicit gradients VAE and inverse
CDF VAE are worse than NVDM and DVAE Sparse, but a little bit better than DVAE
and Weibull VAE. The reason for the high perplexity of DVAE is the KL-divergence part
of the ELBO (Equation 6). The KL-divergence between two Dirichlet distributions can
have extreme values as shown in Figure 3. If the Dirichlet parameter is close to zero, the
KL-divergence and therefore also the perplexity is high. As Tables 1 and 2 show, the DVAE
Sparse model successfully circumvents this problem by decoupling sparsity and smoothness.
The perplexity of DVAE Sparse, while not as good as that of NVDM, is mostly better or at
least comparable to that of the ProdLDA model.

5. We do not use a window size but always consider the whole document as a unit.
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data set DVAE DVAE Sp. Impl. Inv. Weibull ProdLDANVDMSCVB

Perplexity
50 topics

KOS 7872 2408 2894 2598 7795 2811 2097 2365
NIPS 2779 2197 2327 2141 3.55E+52 2303 1933 3973
20news 5009 1066 1842 1533 5209 1128 813 817
Rcv1 5885 1464 1635 1547 2344 2265 907 2034

200 topics
KOS 2.59E+05 2397 3238 3233 3.11E+04 3161 2216 2222
NIPS 3110 2152 2250 2135 8.50E+167 2532 1957 5787
20news 4.93E+05 1075 3021 3033 1.82E+08 1271 875 951
Rcv1 8.66E+04 1614 1471 1.07E+10 4426 2559 891 2779

av. rank 7.125 2.875 4.750 4.375 7.375 4.500 1.000 4.000

Topic Coherence
50 topics

KOS 0.194 0.050 0.131 0.130 0.067 0.218 0.070 0.145
NIPS 0.313 0.295 0.276 0.224 0.167 0.293 0.070 0.116
20news 0.324 0.248 0.322 0.304 0.271 0.223 0.140 0.244
Rcv1 0.381 0.293 0.340 0.162 0.216 0.140 0.110 0.239

200 topics
KOS 0.212 0.072 0.118 0.076 0.086 0.071 0.060 0.107
NIPS 0.280 0.234 0.227 0.208 0.176 0.277 0.060 0.105
20news 0.307 0.174 0.298 0.281 0.258 0.150 0.140 0.204
Rcv1 0.373 0.115 0.237 0.138 0.069 0.370 0.051 0.263

av. rank 1.125 4.875 3.000 4.625 5.375 4.500 7.750 4.750

Topic Redundancy

50 topics
KOS 0.017 0.014 0.024 0.011 0.020 0.040 0.012 0.110
NIPS 0.016 0.013 0.008 0.003 0.123 0.019 0.003 0.088
20news 0.026 0.025 0.022 0.018 0.039 0.020 0.007 0.037
Rcv1 0.009 0.269 0.002 0.001 0.095 0.017 0.002 0.039

200 topics
KOS 0.026 0.013 0.016 0.010 0.020 0.006 0.010 0.088
NIPS 0.021 0.010 0.012 0.008 0.022 0.018 0.003 0.058
20news 0.030 0.016 0.030 0.027 0.044 0.013 0.011 0.046
Rcv1 0.007 0.017 0.104 0.817 0.668 0.253 0.004 0.024

av. rank 4.875 4.125 4.375 2.750 6.875 4.375 1.625 7.000

Table 1: Perplexity, topic coherence and topic redundancy for Dirichlet prior 0.02.
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data set DVAE DVAE Sp. Impl. Inv. Weibull ProdLDA NVDM SCVB

Perplexity
50 topics

KOS 4190 2314 2399 2242 4274 2555 2097 2579
NIPS 2686 2185 2263 2064 1.83E+141 2250 1933 4290
20news 2158 1080 2505 2443 1546 1041 813 903
Rcv1 3449 1646 1506 1355 1815 2165 907 1986

200 topics
KOS 2.06E+04 2758 2713 3807 1.21E+12 3127 2216 2500
NIPS 2744 2072 2076 1936 1.70E+249 2422 1957 5911
20news 1.71E+04 1100 2257 1678 1.13E+09 1294 875 874
Rcv1 1.01E+04 1196 1356 1675 2463 2146 891 3317

av. rank 6.875 3.250 4.500 3.625 7.000 4.750 1.250 4.750

Topic Coherence
50 topics

KOS 0.185 0.117 0.134 0.127 0.051 0.220 0.070 0.137
NIPS 0.313 0.284 0.284 0.233 0.306 0.312 0.070 0.111
20news 0.337 0.248 0.318 0.258 0.243 0.286 0.140 0.234
Rcv1 0.389 0.345 0.325 0.083 0.311 0.194 0.110 0.249

200 topics
KOS 0.204 0.104 0.113 0.137 0.133 0.140 0.060 0.110
NIPS 0.281 0.243 0.240 0.208 0.186 0.224 0.060 0.101
20news 0.303 0.222 0.302 0.270 0.264 0.216 0.140 0.188
Rcv1 0.364 0.121 0.321 0.187 0.147 0.200 0.051 0.257

av. rank 1.125 4.875 3.125 4.875 5.125 3.500 7.750 5.625

Topic Redundancy
50 topics

KOS 0.021 0.024 0.010 0.007 0.016 0.055 0.012 0.111
NIPS 0.014 0.014 0.009 0.002 0.075 0.018 0.003 0.086
20news 0.027 0.035 0.033 0.063 0.032 0.027 0.007 0.035
Rcv1 0.007 0.011 0.005 0.004 0.012 0.023 0.002 0.036

200 topics
KOS 0.030 0.033 0.019 0.031 0.032 0.014 0.010 0.084
NIPS 0.018 0.010 0.009 0.003 0.033 0.014 0.003 0.062
20news 0.024 0.033 0.039 0.034 0.050 0.022 0.011 0.065
Rcv1 0.008 0.023 0.017 0.023 0.262 0.019 0.004 0.021

av. rank 3.750 5.500 3.500 3.750 6.125 4.500 1.375 7.500

Table 2: Perplexity, topic coherence and topic redundancy for Dirichlet prior 0.1.

17



Burkhardt and Kramer

0.0 0.2 0.4 0.6 0.8 1.0
Dirichlet parameter

0

2

4

6

8

10

12

14

KL
D

prior 0.1
prior 0.7

Figure 3: This plot shows the KL-divergence between two Dirichlet distributions with
identical parameters, where only one element of one parameter vector is varied
between zero and one. All other elements are fixed to 0.1 (blue line) or 0.7 (orange
line). We can see that the KL-divergence diverges for small parameter values.

5.5.2. Topic Coherence

In terms of topic coherence (see Tables 1 and 2, middle section, as well as additional results
in the Appendix), DVAE has consistently high values as compared to all other methods with
the best average rank for all settings of the Dirichlet parameter. A slight decrease in the
average rank (1.125,1.125,1.250,1.750) can be observed for increasing values of the Dirichlet
parameter which indicates that DVAE is especially good at modeling the sparseness implied
by small parameter settings. DVAE Sparse is slightly worse than ProdLDA, but generally
still better than NVDM and SCVB in terms of the average rank in topic coherence. This
shows a trade-off between perplexity and topic coherence which can be influenced through
the sparseness of the model. While DVAE Sparse has a far better perplexity than DVAE,
its topic coherence is generally worse. While increased sparseness may thus lead to a lower
topic coherence, this is not the only indicator for the topic quality (see Section 5.5.3).

Taking a closer look at the topic outputs, it is not always the case that a higher topic
coherence corresponds to better topics. In Table 3 we listed all the topics that ProdLDA
learned on the KOS data set that have the words “iraq” and “war” in the most frequent
words. This concerns ten out of fifty topics. ProdLDA often learns topics of relatively high
quality that are redundant. This way, it is able to achieve a high topic coherence, but the
diversity of the topics is not accounted for by this measure. DVAE in contrast learned
only one topic containing the words “iraq” and “war” (see also Table 3), whereas DVAE
Sparse only learned five topics containing these two terms. While NVDM only learned a
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Figure 4: This figure compares the performance of DVAE trained with the analytical
KL-divergence with the performance of DVAE trained with the sampled KL-
divergence on the 20news data set using a Dirichlet prior of 0.02. Reported
is the perplexity using the analytical KL-divergence as well as the analytical
KL-divergence. We can see that the final perplexity and KL-divergence for the
sampled version are lower even though the convergence is slower in the beginning.

single topic on the Iraq war, the quality of this topic is subjectively bad as none of the
other words are closely related to the war. Nevertheless, ProdLDA has a topic coherence of
0.22 and DVAE and DVAE Sparse only reach 0.19 and 0.12, respectively. This shows that,
while topic coherence is considered to be closely related to human judgement about topic
quality (Lau et al., 2014), it is not a good indicator of topic quality in the case where topic
redundancy is a problem.

Comparing the implicit gradients VAE, inverse CDF VAE and Weibull VAE in term of
topic coherence, Tables 1 and 2 show that the implicit gradients method achieves the second
best topic coherence overall and is only worse than DVAE. The inverse CDF and Weibull
methods however, show a topic coherence that is in general comparable to the DVAE Sparse
method. Judging from the topic coherence results, the approximations that are made by
the Weibull and inverse CDF autoencoders are not as good as the implicit gradients and
RSVI methods. We can therefore conclude that the RSVI and implicit gradients methods
are preferable for Dirichlet parameter settings < 1 as are typical in topic modeling. The
difference between the DVAE and the implicit gradients VAE method is minimal according
to Figurnov et al. (2018), however, the used Dirichlet parameter is not reported since it
was optimized during training. We therefore hypothesize that our improved performance is
due to the sampled KL-divergence as well as a better approximation for low settings of the
Dirichlet parameter.

5.5.3. Topic Redundancy

To quantify the redundancy of the topics we also reported the average probability of each
word to occur in one of the other topics of the same model. The results reported in Tables 1
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DVAE
1 iraq hussein war destruction weapons saddam bush bin mass ladens

DVAE Sparse
1 iraq war iraqi soldiers military sunni pleasure forces insurgency kurdish
2 war iraq baghdad juan cole soldiers helicopter iraqi killed troops
3 occupation license war iraq reid freeway iraqi ministries forces idiot
4 iraq bush war president administration billion house fiscal bushs cost
5 iraq weapons administration intelligence war bush saddam united clarke destruction

ProdLDA
1 war iraq iraqi military baghdad juan administration bush mortar gulf
2 war iraq baghdad juan iraqi cole moqtada insurgency sunni soldiers
3 war fatalities authorities cow uniform barnes iraq administration ashamed mps
4 war iraq jury emotional assertions ice melanie film rationing studies
5 war iraq baghdad iraqi uniform prisoners military occupation saddam noble
6 iraq war iraqi moqtada kurdish baghdad shiite sunni kurds shia
7 bush patriot war aclu counterterrorism oversight iraq provisions allday sunset
8 iraq war interrogation pentagon apples ghraib abu guantanamo intelligence weapons
9 iraq war iraqi juan sistani baghdad kufa duration forces cole
10 bush gwb contracts ownership london defence iraq amazingly war infamous

NVDM
1 senate chemical war races voted iraq barbero return qaqaa materiel

Table 3: 10 out of 50 topics for ProdLDA are about the Iraq war on the KOS data set
with a Dirichlet prior of 0.1. The topic coherence is 0.22 for this run, since topic
coherence does not account for the diversity of topics. The topic coherence for
DVAE Sparse is only 0.12, however, the topic quality is higher as can be seen from
the topic redundancy score and qualitatively from this example. For DVAE, only
one topic is about the Iraq war and the topic redundancy score is lower than that
of ProdLDA and DVAE Sparse while the topic coherence is still high.

and 2 show that the lowest redundancy scores were achieved by NVDM, however, NVDM
has a far worse topic coherence. In our experience the overall topic quality of all other
models was mostly better than that of NVDM. If the topic coherence is low, however, the
redundancy score is not that meaningful, since a low redundancy can also be expected from
a model that assigns words to topics randomly. If a model achieves a high topic coherence
as can be seen in Table 5 for the implicit gradients method with the Rcv1 data set and 200
topics, this can still be associated with a very hight topic redundancy (0.45 in this case)
which points to component collapsing and devalues the high topic coherence score. DVAE
almost always has a low topic redundancy except for a prior of 0.6 and 200 topics on the
KOS data set. The topic coherence is also low in this case. We can therefore conclude that
topic redundancy is an important measure if the topic coherence is also high. This is because
it helps to differentiate models with a diverse set of high quality topics and models where
component collapsing led to a single topic being repeated several times.
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6. Discussion

DVAE, DVAE Sparse, implicit gradients VAE, inverse CDF VAE and Weibull VAE are
most closely related to the ProdLDA model. All of these models can be trained with
relatively high learning rates (10−3–10−2) as compared to NVDM, which is trained with
much lower learning rates (around 10−5). This speeds up the training process considerably.
The efficiency of ProdLDA, DVAE and DVAE Sparse and the other Dirichlet autoencoders
is comparable as long as the correction term is disregarded for the DVAE models. This can
safely be done as long as the shape augmentation parameter is chosen high enough (≥ 5). The
training efficiency might also be affected by other architectural decisions that warrant further
investigation in the future. NVDM trains the encoder and decoder networks separately,
whereas DVAE and ProdLDA update both networks at once. DVAE and ProdLDA use
dropout and batch normalization, which enable the high learning rates. All these details
need to be taken into consideration and their potential influence will be investigated in
future work.

All models with a Dirichlet latent parameter vector are characterized by a relatively high
topic coherence as compared to the Gaussian model NVDM. This shows that it is worth
considering to use the Dirichlet distribution in cases where interpretable topics are important.
Nevertheless, topic coherence alone is not a good indicator of topic quality and should be
viewed in conjunction with our newly introduced measure of topic redundancy. This is
especially important in VAE topic models due to the problem of component collapsing,
which is more prevalent in VAEs than in other LDA topic models.

Comparing our two models DVAE and DVAE Sparse, DVAE clearly leads to topics of
higher quality. The perplexity, however, is bad in comparison. According to our analysis
this is due to the KL-divergence term in the ELBO that leads to high values when the
parameter is predicted to be close to zero. By modeling the sparseness in a separate vector,
this problem is alleviated, leading to lower perplexities. DVAE Sparse therefore serves as a
test to show that our original hypothesis is correct, namely that the coupling of sparsity
and smoothness is responsible for the high perplexity scores. Furthermore, this shows that
perplexity scores are not always meaningful when comparing different topic models, as in
our experiments the topic quality has nothing to do with the perplexity a model achieves.

The KL-divergence can be sampled or calculated analytically. In our experiments
we chose to sample the KL-divergence during training. The comparison methods all use
analytical KL-divergence terms. For the KL-divergence of the Dirichlet distribution it can
make a big difference whether the KL-divergence is sampled or not. In the case where the
parameter is close to zero, the analytical KL-divergence takes on very large values (see
Figure 3), whereas in this case the sampled KL-divergence is often negative in fact. This can
lead to much lower perplexity scores when the sampled KL-divergence is used. Therefore,
we chose to calculate the testing perplexity using the analytical KL-divergence. (In the
other case, when the parameter is larger, the analytical KL-divergence is often lower than
the sampled KL-divergence, although the difference is not as big as in the first case.) This
stability issue has a large influence on the perplexity and our sparse method avoids it to a
certain extent, but not completely. A related method avoids this by preconditioning the
gradient in a Hamiltonian MCMC method with the inverse of the Fisher information matrix
(Cong et al., 2017; Patterson and Teh, 2013). According to Cong et al. (2017), this makes
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the stability problem completely disappear. How such a method could be applied to the
variational autoencoder however, remains open.

Our experiments show that DVAE is superior to other state-of-the-art topic models in
terms of topic coherence. This further underlines the argument by Srivastava and Sutton
(2017) that the sparsity induced by the Dirichlet indeed leads to higher topic coherence.
The comparison with other Dirichlet autoencoders shows that while our version of the RSVI
autoencoder works best, the implicit gradients VAE is the most competitive method, whereas
the inverse CDF and Weibull autoencoders are even worse than the Laplace approximation
of ProdLDA in terms of topic coherence.

We discussed the trade-off between sparsity and smoothness in Section 4.1. This trade-off
can be influenced using the DVAE Sparse model with the additional Bernoulli variable.
Furthermore, the sampling of the KL-divergence is an important factor for increasing the
topic coherence. As shown in Figure 4, while the convergence of perplexity and KL-divergence
seems to be slower in the beginning, this may lead to a lower perplexity and KL-divergence
in the final stages of training. For the shown comparison the final topic coherence score was
0.33 for the training method with the analytical KL-divergence, whereas training with the
sampled KL-divergence led to a topic coherence of 0.35 after 100 iterations of training. This
effect is similar to the effect of batch normalization as reported by Srivastava and Sutton
(2018) who did a similar experiment. They show that batch normalization slows down the
convergence of the KL-divergence in the beginning of training. This reduces the component
collapsing and enables the learning of more meaningful topics.

When talking about a trade-off, this implies that there is a continuum of models between
extreme sparseness and extreme smoothness. This can in principle be explored using our
DVAE Sparse model. While at the moment, the parameter for our Bernoulli variables is
p = 0.5, this parameter could also be set to other values and thereby increase or decrease
the sparseness of the model. On the one hand, a value of p = 0 would mean that the vector
b will always consist of only ones. This would reduce the model to the original DVAE
model, which is a smooth model. On the other hand, for p = 1 the vector b would consist of
only zeros, which entails maximal sparseness and only topics with zero values, preventing
any topics from being learned. Intermediary values can be used to adjust the degree of
sparseness and interpolate between the sparse and the smooth model.

7. Conclusion

We have introduced a variational autoencoder with a Dirichlet prior called DVAE. A trade-off
between sparsity and smoothness was identified, leading to high perplexity as well as topic
coherence scores. To test our hypothesis about the reason for the high perplexity scores,
a new model called DVAE Sparse was introduced. DVAE Sparse decouples sparsity and
smoothness and thus enables lower perplexity scores on the one hand while on the other
hand the topic coherence is still competitive. The topic quality was also measured in terms
of topic redundancy which is a good indicator for component collapsing as opposed to topic
coherence. Overall, this shows that, despite the bad perplexity scores, DVAE is an effective
model. An extensive comparison with all known training methods for Dirichlet VAEs shows
that our DVAE using the RSVI method achieves the highest topic coherence scores.
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To conclude, we think that this work is an important step towards making VAEs with
Dirichlet priors more widely used. In the future we would like to extend our model to work
with hierarchical Dirichlet priors.
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data set DVAE DVAE Sp. Impl. Inv. Weibull ProdLDA NVDM SCVB

Perplexity
50 topics

KOS 2858 2322 2232 2056 2923 2537 2097 2501
NIPS 2666 2142 2223 4858 1.46E+26 2239 1933 8137
20news 1345 1030 1678 1484 1212 1076 813 961
Rcv1 2542 1234 1458 1480 1397 1788 907 1990

200 topics
KOS 4503 2443 2611 2395 4839 3739 2216 2404
NIPS 2551 2043 1983 2155 inf 2313 1957 6627
20news 2869 1123 1734 2120 4.66E+04 1496 875 925
Rcv1 2913 1052 1337 1519 1613 2206 891 4573

av. rank 6.625 2.875 4.125 4.375 6.625 5.125 1.125 5.125

Topic Coherence
50 topics

KOS 0.202 0.151 0.132 0.135 0.146 0.232 0.070 0.147
NIPS 0.330 0.263 0.284 0.144 0.120 0.281 0.070 0.093
20news 0.342 0.265 0.280 0.276 0.243 0.291 0.140 0.218
Rcv1 0.402 0.121 0.326 0.150 0.308 0.094 0.110 0.246

200 topics
KOS 0.218 0.070 0.143 0.098 0.152 0.124 0.060 0.114
NIPS 0.295 0.213 0.236 0.244 0.088 0.260 0.060 0.074
20news 0.334 0.197 0.300 0.260 0.215 0.297 0.140 0.183
Rcv1 0.286 0.113 0.386 0.138 0.256 0.078 0.051 0.227

av. rank 1.250 5.250 3.000 4.750 4.500 3.750 7.875 5.625

Topic Redundancy
50 topics

KOS 0.024 0.015 0.015 0.007 0.032 0.051 0.012 0.094
NIPS 0.018 0.012 0.010 0.030 0.068 0.014 0.003 0.095
20news 0.029 0.028 0.073 0.048 0.033 0.023 0.007 0.041
Rcv1 0.007 0.001 0.005 0.009 0.002 0.033 0.002 0.034

200 topics
KOS 0.029 0.006 0.051 0.047 0.013 0.081 0.010 0.168
NIPS 0.017 0.010 0.005 0.015 0.029 0.016 0.003 0.096
20news 0.042 0.025 0.042 0.036 0.034 0.043 0.011 0.151
Rcv1 0.010 0.002 0.098 0.015 0.025 0.024 0.004 0.025

av. rank 4.625 2.125 5.000 4.625 4.875 5.500 1.625 7.625

Table 4: Perplexity, topic coherence and topic redundancy for Dirichlet prior 0.3.
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data setDVAEDVAE Sp. Impl. Inv. Weibull ProdLDANVDMSCVB

Perplexity
50 topics

KOS 2362 2259 2206 1988 2744 2623 2097 2515
NIPS 2626 2115 2219 2005 3.60E+47 2247 1933 4806
20news 1053 954 1531 1182 1369 1139 813 853
Rcv1 2154 1191 1460 7.09E+201 1294 1765 907 2525

200 topics
KOS 2943 2116 2378 2688 4821 4263 2216 2171
NIPS 2450 1981 1971 1848 7.73E+112 2261 1957 1.13E+04
20news 1035 1065 2073 1357 4997 2104 875 943
Rcv1 2681 971 1942 7.11E+201 1433 2393 891 3295

av. rank 5.250 2.875 4.500 4.500 6.625 5.750 1.500 5.000

Topic Coherence
50 topics

KOS 0.205 0.192 0.144 0.128 0.057 0.160 0.070 0.139
NIPS 0.313 0.254 0.294 0.261 0.287 0.312 0.070 0.093
20news 0.371 0.250 0.303 0.245 0.206 0.324 0.140 0.214
Rcv1 0.425 0.285 0.327 0.130 0.294 0.260 0.110 0.230

200 topics
KOS 0.110 0.081 0.153 0.155 0.141 0.137 0.060 0.123
NIPS 0.296 0.232 0.255 0.234 0.139 0.263 0.060 0.061
20news 0.319 0.235 0.285 0.261 0.192 0.313 0.140 0.180
Rcv1 0.291 0.186 0.333 0.165 0.274 0.077 0.051 0.196

av. rank 1.750 4.750 2.625 4.750 5.000 3.375 7.875 5.875

Topic Redundancy
50 topics

KOS 0.025 0.030 0.012 0.006 0.018 0.054 0.012 0.092
NIPS 0.015 0.012 0.010 0.004 0.081 0.020 0.003 0.105
20news 0.033 0.027 0.080 0.029 0.029 0.033 0.007 0.055
Rcv1 0.007 0.004 0.007 0.142 0.002 0.027 0.002 0.032

200 topics
KOS 0.216 0.012 0.019 0.042 0.023 0.070 0.010 0.253
NIPS 0.014 0.013 0.009 0.008 0.079 0.014 0.003 0.103
20news 0.039 0.025 0.044 0.044 0.026 0.035 0.011 0.231
Rcv1 0.046 0.002 0.453 0.223 0.009 0.013 0.004 0.056

av. rank 5.500 3.000 4.750 4.250 4.125 5.375 1.500 7.500

Table 5: Perplexity, topic coherence and topic redundancy for Dirichlet prior 0.6.
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