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Abstract

In this article we study the generalization abilities of several classifiers of support vector
machine (SVM) type using a certain class of kernels that we call universal. It is shown
that the soft margin algorithms with universal kernels are consistent for a large class of
classification problems including some kind of noisy tasks provided that the regularization
parameter is chosen well. In particular we derive a simple sufficient condition for this
parameter in the case of Gaussian RBF kernels. On the one hand our considerations are
based on an investigation of an approximation property—the so-called universality—of the
used kernels that ensures that all continuous functions can be approximated by certain
kernel expressions. This approximation property also gives a new insight into the role of
kernels in these and other algorithms. On the other hand the results are achieved by a
precise study of the underlying optimization problems of the classifiers. Furthermore, we
show consistency for the maximal margin classifier as well as for the soft margin SVM’s in
the presence of large margins. In this case it turns out that also constant regularization
parameters ensure consistency for the soft margin SVM’s. Finally we prove that even
for simple, noise free classification problems SVM’s with polynomial kernels can behave
arbitrarily badly.
Keywords: Computational learning theory, pattern recognition, PAC model, support
vector machines, kernel methods

1. Introduction

Support vector machines comprise a class of learning algorithms originally introduced for
pattern recognition problems. Although their development was motivated by results of sta-
tistical learning theory the known bounds on their generalization performance are not fully
satisfactory. In particular, the influence of the chosen kernel is far from being completely
understood. The aim of this paper is to give a new insight into the role of the kernels. Our
considerations are mainly based on a certain approximation property of various standard
kernels that generate function classes with infinite VC-dimension. Since in this case clas-
sical Vapnik-Chervonenkis theory fails to be applicable for support vector machines, other
concepts such as data dependent structural risk minimization, e.g. in terms of the observed
margin, were introduced (cf. Shawe-Taylor et al., 1998; Bartlett & Shawe-Taylor, 1999;
Cristianini & Shawe-Taylor, 2000, chap. 2). The latter usually needs large margins on the
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training sets to provide good bounds. It is, however, open which distributions and kernels
guarantee this assumption. A systematical study of this question is the starting point of
this paper. The resulting techniques allow us to show new bounds for the generalization
performance of several standard support vector classifiers.

We begin with a description of the problem of pattern recognition (cf. Vapnik, 1998;
Cristianini & Shawe-Taylor, 2000). Let (X, d) be a compact metric space1, Y := {−1, 1}
and P be a probability measure on X×Y , where X is equipped with the Borel σ-algebra. By
disintegration (cf. Dudley, 1989, Lem. 1.2.1.) there exists a map x 7→ P ( . |x) from X into
the set of all probability measures on Y such that P is the joint distribution of (P ( . |x))x
and of the marginal distribution PX of P on X. We call P ( . |.), which is in fact a regular
conditional probability, the supervisor. A classifier is an algorithm that constructs to every
training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n a decision function fT : X → Y . In our
context it is always assumed that T is i.i.d. according to P , which itself is unknown. Then
the decision function fT : X → Y constructed by the classifier should guarantee a small
probability for the misclassification of an example (x, y) randomly generated according to
P . Here, misclassification means f(x) 6= y. To make this precise, for a measurable function
f : X → {−1, 1} we define the risk of f by

RP (f) :=
∫

X×Y

1{f(x) 6=y} P (dx, dy) = P
(
{(x, y) : f(x) 6= y}

)
.

When considering noisy supervisors we cannot expect that we obtain zero risk. Indeed, for

B1(P ) :=
{
x ∈ X : P (y = 1|x) > P (y = −1|x)

}
B−1(P ) :=

{
x ∈ X : P (y = 1|x) < P (y = −1|x)

}
B0(P ) :=

{
x ∈ X : P (y = 1|x) = P (y = −1|x)

}
and a function f0 : X → {−1, 1} with f0(x) = 1 if x ∈ B1(P ) and f0(x) = −1 if x ∈ B−1(P )
we have (cf. Devroye et al., 1997, Thm. 2.1.)

RP (f0) = inf
{
RP (f) : f :X → {−1, 1} measurable

}
=
∫
X

p(x)PX(dx) , (1)

where the noise level p : X → R is defined by p(x) := P (y = −1|x) for x ∈ B1(P ),
p(x) := P (y = 1|x) for x ∈ B−1(P ) and p(x) = 1/2 otherwise. Equation (1) shows that no
function can yield less risk than f0. The function f0 is called an optimal Bayes decision rule
and we write RP := RP (f0). Now, a classifier C should guarantee with high probability
that RP (fT ) is close to RP provided that T is large enough. Here, fT denotes the decision
function constructed by C on the basis of T . Asymptotically, this means that

RP (fT )→ RP

should hold in probability if |T | → ∞. In this case the algorithm C is called consistent for
P (cf. Devroye et al., 1997, Def. 6.1). If a classifier is consistent for all distributions on

1. For mathematical notions see Section 2.
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X × Y it is said to be universally consistent. Although several algorithms such as the k-
nearest neighbour classifier for k →∞ and k/|T | → 0 (cf. Devroye et al., 1997, Thm. 6.4) are
universally consistent it is an open question whether support vector machines are universally
consistent for a particular choice of the free parameters.

In this article we show that at least for a restricted class of distributions SVM’s are
consistent provided that the parameters are chosen in a specific manner. In particular
our results cover both the noise free case and the case of constant noise level, i.e p ≡ p∗,
p∗ ∈ [0, 1/2). Our results are based on an investigation of a certain approximation property
of kernels. Recall that the ansatz of SVM’s is to solve specific optimization problems over
the class of functions {〈w,Φ(.)〉 : w ∈ H} (or {〈w,Φ(.)〉 + b : w ∈ H, b ∈ R}), where
Φ : X → H is a feature map of the used kernel. If this function class is dense in C(X)
we shall call the corresponding kernel universal (cf. Def. 4). Roughly speaking this notion
enables us to approximate the Bayes decision rule in probability, a fact that is frequently
used in our proofs of consistency. Using the approximation theorem of Stone-Weierstraß
we show that kernels that can be expanded in certain types of Taylor or Fourier series are
universal (cf. Cor. 10 and Cor. 11). In particular it turns out that the Gaussian RBF kernel
is universal (cf. Ex. 1). Besides the importance of the notion of universality in the context
of consistency it also turns out that this concept has strong implications for the geometric
interpretation of the shape of the feature map (cf. Cor. 6 and the following remark).

Since the class of functions implemented by an SVM with universal kernel is very rich the
problem of overfitting can always occur in the presence of noise. Thus it is very important to
know how to chose the regularization parameter. The second part of this work is devoted to
this question. Here, we show in particular that for a soft margin SVM with Gaussian RBF
kernel on X ⊂ Rd the regularization sequence cn = nβ−1, 0 < β < 1/d, yields consistency
for all problems with constant noise level (cf. Cor. 17 and Cor. 23). These results are
of special interest since they show at the first time that SVM’s are able to learn noisy
problems arbitrarily well. Moreover, we prove that for problems that ensure a large margin
it suffices to use universal kernels and a regularization parameter that is independent of the
training set size (cf. Thm. 18, Thm. 19 and Thm. 24). For this class of problems we also
prove consistency for the maximal margin classifier (cf. Thm. 25). Finally, it turns out that
even for these simple, noise free classification problems SVM’s with polynomial kernels can
behave arbitrarily badly (cf. Prop. 20).

This work is organized as follows: we introduce some mathematical notions in Section
2. In the third section we study the concept of universal kernels. The following sections
are devoted to applications of these kernels to support vector machines. We begin with the
2-soft margin classifier in Section 4. Here, consistency results for both noisy distributions
and problems ensuring a large margin are proved. In the fifth section we show that these
results also hold for the 1-soft margin algorithm. In the last section we discuss the maximal
margin classifier in the presence of large margins.

2. Preliminaries

For a set X, a metric d on X is a function d : X×X → [0,∞) such that for all x, y, z ∈ X we
have d(x, y) = d(y, x) and d(x, y) ≤ d(x, z)+d(z, y) as well as d(x, y) = 0 if and only if x = y.
We denote the closed ball with radius ε and centre x by Bd(x, ε) := {y ∈ X : d(x, y) ≤ ε}.
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The covering numbers of X are defined by

N ((X, d), ε) := min
{
n ∈ N ∪ {∞} : ∃x1, . . . , xn with X ⊂

n⋃
i=1

Bd(xi, ε)
}

for all ε > 0. The space (X, d) is precompact if and only if N ((X, d), ε) is finite for all ε > 0.
Moreover, X is called compact if every open covering of X has a finite subcovering. If the
space (X, d) is complete, i.e. every Cauchy sequence converges in X, then X is compact if
and only if X is precompact. For given A,B ⊂ X we denote the distance of A and B by

d(A,B) := inf
x∈A
y∈B

d(x, y).

We often use that if A is closed, B is compact and both sets are disjoint then d(A,B) > 0
holds.

A σ-algebra on a set X is a set of subsets of X that contains ∅ and is closed under
elementary, countable set operations such as complements and countable intersections. For
a metric space (X, d) the Borel σ-algebra is the smallest σ-algebra that contains all open
sets. Let A be a σ-algebra on X. A subset A of X is called measurable if A ∈ A. We
say that a function f : X → R is measurable if the pre-image of every Borel measurable
B ⊂ R is in A. Basic examples are the functions 1A, where A ∈ A and 1A(x) = 1 if x ∈ A
and 1A(x) = 0 otherwise. A probability measure P : A → R

+ is a σ-additive function with
P (∅) = 0 and P (X) = 1. If A is a Borel σ-algebra we call P a Borel probability measure.
In this case P is said to be regular, if for all Borel measurable B ⊂ X we have

P (B) = sup{P (K) : K ⊂ B, K compact} .

If (X, d) is compact, then every Borel probability measure on X is regular (cf. Dudley, 1989,
p. 176).

In this paper H always denotes a Hilbert space, i.e. a complete, normed vector space
endowed with a dot product 〈., .〉 giving rise to its norm via ‖x‖ =

√
〈x, x〉. Let BH :=

{x ∈ H : ‖x‖ ≤ 1} be the closed unit ball of H and SH := {x ∈ H : ‖x‖ = 1} be its sphere.
Recall, that every separable Hilbert space is isometrically isomorphic to the space of all
2-summable sequences `2.

A commutative algebra A is a vector space equipped with an additional associative and
commutative multiplication · : A×A→ A such that

x·(y + z) = x·y + x·z
λ(x·y) = (λx)·y

holds for all x, y, z ∈ A and λ ∈ R. A classical example of an algebra is the space C(X) of
all continuous functions f : X → R on the compact metric space (X, d) endowed with the
usual supremum norm

‖f‖∞ := sup
x∈X
|f(x)| .

The following well-known approximation theorem of Stone-Weierstraß (cf. Pedersen, 1988,
Cor. 4.3.5.) states that certain subalgebras of C(X) generate the whole space. This result
will be the key tool when considering approximation properties of kernels in the next section:
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Theorem 1 Let (X, d) be a compact metric space and A ⊂ C(X) be an algebra. Then A
is dense in C(X) if both A does not vanish, i.e. for all x ∈ X there exists an f ∈ A with
f(x) 6= 0, and A separates points, i.e. for all x, y ∈ X with x 6= y there exists an f ∈ A
with f(x) 6= f(y).

3. Kernels

In the following let (X, d) be a metric space. A function k : X ×X → R is called a kernel
on X if there exists a Hilbert space H and a map Φ : X → H with

k(x, y) = 〈Φ(x),Φ(y)〉

for all x, y ∈ X. We call Φ a feature map and H a feature space of k. Note, that both H and
Φ are far from being unique. However, for a given kernel there exists a canonical feature
space (with associated feature map), which is the so-called reproducing kernel Hilbert space
(RKHS) (cf. Cristianini & Shawe-Taylor, 2000, Ch. 3). Since our ansatz is mainly based on
specific series expansions of certain kernels we do not need to consider these spaces.

Let k be a kernel on X and Φ : X → H be a feature map of k. A function f : X → R

is induced by k if there exists an element w ∈ H such that f = 〈w,Φ(.)〉. The next lemma
shows that this definition is independent of Φ and H:

Lemma 2 Let k : X ×X → R be a kernel and Φ1 : X → H1, Φ2 : X → H2 be two feature
maps of k. Then for all w1 ∈ H1 there exist w2 ∈ H2 with ‖w2‖ ≤ ‖w1‖ and

〈w1,Φ1(x)〉 = 〈w2,Φ2(x)〉 for all x ∈ X.

Proof Let H∗1 := span Φ1(X) and H̃1 its orthogonal complement in H1. Then w1 ∈ H1

can be written as w1 = w∗1 + w̃1 with w∗1 ∈ H∗1 and w̃1 ∈ H̃1. Given an x ∈ X we have
〈w̃1,Φ1(x)〉 = 0 and therefore we obtain 〈w∗1,Φ1(x)〉 = 〈w1,Φ1(x)〉 for all x ∈ X. Now by the
definition of H∗1 there exists a sequence (w(1)

n ) ⊂ span Φ1(X) with w(1)
n =

∑mn
m=1 λ

(n)
m Φ1(x(n)

m )
and w∗1 =

∑∞
n=1w

(1)
n . Then for w(2)

n :=
∑mn

m=1 λ
(n)
m Φ2(x(n)

m ) and l2 ≥ l1 ≥ 1 we obtain

∥∥∥ l2∑
n=l1

w(1)
n

∥∥∥2
=

l2∑
n=l1

mn∑
m=1

l2∑
i=l1

mi∑
j=1

λ(n)
m λ

(i)
j 〈Φ1(x(n)

m ),Φ1(x(i)
j )〉

=
l2∑

n=l1

mn∑
m=1

l2∑
i=l1

mi∑
j=1

λ(n)
m λ

(i)
j 〈Φ2(x(n)

m ),Φ2(x(i)
j )〉

=
∥∥∥ l2∑
n=l1

w(2)
n

∥∥∥2
.

Therefore, (
∑m

n=1w
(2)
n )m≥1 is a Cauchy sequence and hence converges to w2 :=

∑∞
n=1w

(2)
n ∈

H2. Clearly, we then have ‖w2‖ = ‖w∗1‖ ≤ ‖w1‖. Moreover, an easy calculation similar to
the consideration above shows 〈w1,Φ1(x)〉 = 〈w2,Φ2(x)〉 for all x ∈ X.
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In the following we only consider continuous kernels. The following lemma provides some
useful properties of this class:

Lemma 3 Let k be a kernel on the metric space (X, d) and Φ : X → H be a feature map
of k. Then k is continuous if and only if Φ is continuous. In this case

dk(x, y) := ‖Φ(x)− Φ(y)‖

defines a semi-metric on X such that the identity map id : (X, d)→ (X, dk) is continuous.
If Φ is injective dk is even a metric.

Proof Let us first suppose that k is continuous. Since

dk(x, y) =
√
k(x, x)− 2k(x, y) + k(y, y)

we observe that dk(x, .) : (X, d)→ R is continuous for every x ∈ X. In particular, {y ∈ X :
dk(x, y) < ε} is open with respect to d and therefore id : (X, d) → (X, dk) is continuous.
Furthermore, Φ : (X, dk)→ H is continuous and hence Φ : (X, d)→ H is also continuous.
Conversely, assume that Φ is continuous. Since for all x, x′, y, y′ ∈ X we have

|k(x, y)− k(x′, y′)| ≤ |〈Φ(x),Φ(y)− Φ(y′)〉|+ |〈Φ(x)− Φ(x′),Φ(y′)〉|
≤ ‖Φ(x)‖·

∥∥Φ(y)−Φ(y′)
∥∥+

∥∥Φ(y′)
∥∥·∥∥Φ(x)−Φ(x′)

∥∥
it is easily verified that k is also continuous.

The metric dk enjoys the property that every induced function 〈w,Φ(.)〉 is Lipschitz con-
tinuous with respect to dk and the Lipschitz constant is bounded from above by ‖w‖. This
fact turns out to be very important in the proof of Theorem 12 since it allows us to control
the behaviour of solutions of SVM’s on subsets of small diameters.

From the last lemma we know in particular that for a continuous kernel every induced
function is continuous. The following definition plays a central role throughout this paper:

Definition 4 A continuous kernel k on a compact metric space (X, d) is called universal if
the space of all functions induced by k is dense in C(X), i.e. for every function f ∈ C(X)
and every ε > 0 there exists a function g induced by k with

‖f − g‖∞ ≤ ε .

We also need a weaker concept. Let Φ : X → H be a feature map of k and A, B be disjoint
subsets of X. We say that k separates A and B with margin γ ≥ 0 if Φ(A) and Φ(B) can
be separated by a hyperplane with margin γ, i.e. if there exists a pair (w, b) ∈ SH ×R such
that

〈w,Φ(x)〉+ b > γ for all x ∈ A and
〈w,Φ(y)〉+ b < −γ for all y ∈ B .

If γ = 0 we simply say that k separates A and B. In this case the restriction w ∈ SH is
superfluous. By Lemma 2 both definitions are independent of the feature map Φ. We say
that the kernel k separates all finite, resp. compact subsets if it separates all finite, resp.
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compact disjoint subsets of X. Note, that if k separates compact sets A and B then it
automatically separates them with a suitable margin γ > 0. Moreover, it was shown in
Steinwart (2001a, Ex. 3.13) that there exists a continuous kernel that separates all finite
subsets but fails to separate all compact subsets.

Before we investigate which kernels are universal we collect some useful properties of
these kernels. Firstly, let (X, d) and (X ′, d′) be compact metric spaces, k be a universal
kernel on X and ι : X ′ → X be a continuous and injective map. Then one easily checks
that k(ι(.), ι(.)) is a universal kernel on X ′. Moreover, we have k(x, x) > 0 for all x ∈ X
since k(y, y) = 0 implies g(y) = 0 for all induced functions g. Since all feature maps of k are
continuous and X is compact we may also restrict ourselves to separable feature spaces of
k. The next proposition is fundamental for our considerations of support vector machines:

Proposition 5 Let (X, d) be a compact metric space and k be a universal kernel on X.
Then for all compact and mutually disjoint subsets K1, . . . ,Kn ⊂ X, all α1, . . . , αn ∈ R and
all ε > 0 there exists a function g induced by k with ‖g‖∞ ≤ maxi |αi|+ ε such that

∥∥∥g|K − n∑
i=1

αi1Ki
∥∥∥
∞
≤ ε ,

where K :=
⋃n
i=1Ki and g|K denotes the restriction of g to K.

Proof Since d(Ki,Kj) > 0 for all i 6= j we obtain
∑n

i=1 αi1Ki ∈ C(K). Since this
function can be extended to a continuous function f on X with ‖f‖∞ ≤ maxi |αi| (by
the Lemma of Urysohn or by a direct construction with the help of d) the assertion follows.

Corollary 6 Every universal kernel separates all compact subsets.

Proof Let (X, d) be a compact metric space and k be a universal kernel on X with feature
map Φ : X → H. Given two compact and disjoint subsets K1 and K−1 of X there exists
an induced function g = 〈w,Φ(.)〉 with

∥∥g|K−1∪K1
− (1K1 − 1K−1)

∥∥
∞ < 1/2. This implies

that (‖w‖−1w, 0) separates K1 and K−1 with margin 1
2‖w‖ .

Although the previous corollary is an almost trivial consequence of the notion of universality
it has surprising implications for the geometric interpretation of the shape of the feature
map: let us suppose that we have a finite subset {x1, . . . , xn} of X. Then the above
corollary ensures that for every sequence of signs y1, . . . , yn the corresponding training set
can be correctly separated by a hyperplane in the feature space. Moreover, this can even
be done by a hyperplane that has almost the same distance to every point of {x1, . . . , xn}.
Therefore, any finite dimensional interpretation of the geometric situation in a feature space
of a universal kernel must fail. In particular this holds for 2- or 3-dimensional drawings.
(Actually, the shape of the feature map is even more complicated since not only all finite
subsets but every pair of compact disjoint subsets can be separated.)

The following corollary ensures in particular that the semi-metric dk induced by a uni-
versal kernel k is in fact a metric:
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Corollary 7 Every feature map of a universal kernel is injective.

Proof Finite subsets are compact and thus the assertion follows by the previous corollary.

Proposition 8 Let (X, d) be a compact metric space and k be a universal kernel on X.
Then

k∗(x, y) :=
k(x, y)√

k(x, x)k(y, y)

defines a universal kernel on X.

Proof Let Φ : X → H be a feature map of k and α(x) := k(x, x)−1/2. Clearly, αΦ : X → H
is a feature map of k and thus k is a kernel. To show that k∗ is universal we fix a function
f ∈ C(X) and ε > 0. For a := ‖α‖∞ we then get an induced function g = 〈w,Φ(.)〉 with∥∥α−1f − g

∥∥
∞ ≤

ε
a . This yields

‖f − 〈w,αΦ(.)〉‖∞ ≤ ‖α‖∞
∥∥α−1f − g

∥∥
∞ ≤ ε

and thus the assertion is proved.

Up to now we do not know whether there exist universal kernels. To attack this question
we begin with a simple criterion that makes it possible to check whether a given kernel is
universal:

Theorem 9 Let (X, d) be a compact metric space and k be a continuous kernel on X with
k(x, x) > 0 for all x ∈ X. Suppose that we have an injective feature map Φ : X → `2 of k
with Φ(x) = (Φn(x))n∈N. If A := span {Φn : n ∈ N} is an algebra then k is universal .

Proof Because of k(x, x) > 0 for all x ∈ X the algebra A does not vanish. Since k is
continuous every Φn : X → R is continuous by Lemma 3 and hence A ⊂ C(X). Moreover,
A is even dense in C(X) since the injectivity of Φ implies that A separates points and thus
Theorem 1 can be applied. Now we fix f ∈ C(X) and ε > 0. Then there exists a function

g =
n∑
j=1

λj · (Φnj ) ∈ A

such that ‖f − g‖∞ ≤ ε. However, if we define wn := λj for n = nj and wn := 0 otherwise,
we have w := (wn) ∈ `2 and 〈w,Φ(.)〉 = g.

The following corollaries give various examples of universal kernels. We begin with kernels
that can be expressed by a Taylor series:

Corollary 10 Let 0 < r ≤ ∞ and f : (−r, r)→ R be a C∞-function that can be expanded
into its Taylor series in 0, i.e.

f(x) =
∞∑
n=0

anx
n for all x ∈ (−r, r) .
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Let X := {x ∈ Rd : ‖x‖2 <
√
r}. If we have an > 0 for all n ≥ 0 then k(x, y) := f(〈x, y〉)

defines a universal kernel on every compact subset of X.

Proof Since |〈x, y〉| ≤ ‖x‖2‖y‖2 < r for all x, y ∈ X we see that k is well-defined. We also
have

k(x, y) =
∞∑
n=0

an

( d∑
k=1

xkyk

)n
=

∞∑
n=0

an
∑

k1+···+kd=n
k1,...,kd≥0

ck1,...,kd

d∏
i=1

(xiyi)ki

=
∑

k1,...,kd≥0

ak1+···+kdck1,...,kd

d∏
i=1

xkii

d∏
i=1

ykii ,

where ck1,...,kd := (
∏d
i=1 ki!)

−1(
∑d

i=1 ki)! (cf. also Poggio, 1975, Lem. 2.1). Note, that the
series can be rearranged since it is absolutely summable. In particular, for x = y we obtain
that Φ : X → `2(Nd0) is well defined by

Φ(x) :=
(√

ak1+···+kdck1,...,kd

d∏
i=1

xkii

)
k1,...,kd≥0

.

The above equation also shows that k(x, y) = 〈Φ(x),Φ(y)〉 holds for all x, y ∈ X and hence
k is indeed a kernel. Moreover, a0 > 0 implies k(x, x) > 0 for all x ∈ X and trivially, Φ
is injective. Since A := span {Φk1,...,kd : k1, . . . , kd ≥ 0} is an algebra we thus obtain by
Theorem 9 that k is universal.

Instead of Taylor series one can also consider Fourier expansions. The result reads as follows:

Corollary 11 Let f : [0, 2π] → R be a continuous function that can be expanded in a
pointwise absolutely convergent Fourier series of the form

f(t) =
∞∑
n=0

an cos(nt) . (2)

If an > 0 holds for all n ≥ 0 then k(x, y) :=
∏d
i=1 f(|xi − yi|) defines a universal kernel on

every compact subset of [0, 2π)d.

Recall, that every function f : [0, 2π]→ R that can be extended to a continuous, symmetric,
periodic and piecewise continuously differentiable function on R has a Fourier series of the
form (2).

Proof By induction and the Cauchy product of series we may restrict ourselves to d = 1.
Then

k(x, y) = a0 +
∞∑
n=1

an sin(nx) sin(ny) +
∞∑
n=1

an cos(nx) cos(ny)
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holds for all x, y ∈ [0, 2π) and hence Φ = (Φn)n≥0 defined by Φ0(x) := a0 and
Φ2n−1(x) :=

√
an sin(nx), Φ2n(x) :=

√
an cos(nx) for n ≥ 1 is an injective feature map of k

with image in `2. Moreover, A := span
(
{√an sin(n · .) : n ≥ 1} ∪ {√a0 cos(n · .) : n ≥ 0}

)
is

an algebra and since a0 > 0 implies k(x, x) > 0 for all x ∈ X we obtain that k is universal.

The following examples show that various well-known kernels are universal:

Example 1 The kernels exp(−σ2‖.− .‖22) and exp(〈., .〉) are universal on every compact
subset of Rd.

Proof The universality of exp(〈., .〉) is due to Corollary 10. Therefore, by Proposition
8 and exp(−σ2‖x− y‖22) = exp(−‖σx‖22) exp(−‖σy‖22) exp(〈

√
2σx,

√
2σy〉) the assertion

follows for the RBF kernel.

Example 2 Let X := {x ∈ Rd : ‖x‖2 < 1} and α > 0. Then V. Vovk’s (cf. Saunders et
al., 1998, p. 15) infinite polynomial kernel k(x, y) := (1 − 〈x, y〉)−α, x, y ∈ X, is universal
on every compact subset of X.

Proof To check the assertion we use that (1− t)−α =
∑∞

n=0

(−α
n

)
(−1)ntn holds for |t| < 1.

Since
(−α
n

)
(−1)n > 0 for all n ≥ 0, the assertion then follows by Corollary 10.

Example 3 Let 0 < q < 1 and f(t) := (1 − q2)/(2− 4q cos t+ 2q2), t ∈ R. Then the
stronger regularized Fourier kernel k(x, y) :=

∏d
i=1 f(xi − yi) considered by Vapnik (1998,

p. 470) and Saunders et al. (1998, p. 15) is universal on every compact subset of [0, 2π)d.

Proof The assertion can be seen using Corollary 11 and f(t) = 1/2 +
∑∞

n=1 q
n cos(nt) (cf.

Gradstein & Ryshik, 1981, p. 68).

Example 4 Let 0 < q < ∞ and f(t) := π cosh
(
(π − |t|)/q

)
/
(
2q sinh(π/q)

)
for all t with

−2π ≤ t ≤ 2π. Then the weaker regularized Fourier kernel k(x, y) :=
∏d
i=1 f(xi − yi)

considered by Vapnik (1998, p. 470/1) and Saunders et al. (1998, p. 15) is universal on
every compact subset of [0, 2π)d.

Proof To obtain the assertion we use f(t) = 1/2 +
∑∞

n=1 cos(nt)/(1 + q2n2) (cf. Gradstein
& Ryshik, 1981, p. 68).

4. The 2-norm soft margin classifier

Let k be a kernel on X and Φ : X → H be a feature map of k. For a training set
T = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n and cn > 0 we denote the unique solution of the
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optimization problem

minimize W(w, b, ξ) := 〈w,w〉+ cn
n∑
i=1

ξ2
i over w, b, ξ

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n
(3)

by (w2,k,cn
T , b2,k,cnT ) ∈ H × R. An algorithm C2,(cn)

k that provides the decision function

f2,k,cn
T (x) := sign(〈w2,k,cn

T ,Φ(x)〉+ b2,k,cnT ) , x ∈ X

for every training set T is called a 2-norm soft margin classifier (2-SMC) with kernel k and
parameter sequence (cn). Note, that in order to have a small set of free parameters one
usually fixes cn := c for all n ≥ 1. In this section it turns out that this is not suitable for
problems that do no guarantee a large margin. Instead one should use sequences cn = cnβ−1

where β > 0 is a parameter a-priori determined by the kernel and c is a new free parameter
(cf. Cor. 17). Of course, for fixed training set sizes both parameterizations are equivalent,
i.e. they can be transformed into each other.

By Lemma 2 the decision function is independent of the choice of the feature map Φ.
Moreover, f2,k,cn

T can be expressed by

f2,k,cn
T (x) =

n∑
i=1

yiαik(xi, x) + b2,k,cnT ,

where αi ≥ 0 are suitable constants depending on T and b2,k,cnT can also be computed with
the help of the kernel (cf. Cristianini & Shawe-Taylor, 2000; Vapnik, 1998; Schölkopf et al.,
2001). Note, that if k is a kernel on X which separates all finite sets and X has infinitely
many elements then the function class represented by the 2-SMC has infinite VC-dimension.
For more information on this we refer to Vapnik (1998, Ch. 4), Cristianini & Shawe-Taylor
(2000, Ch. 4) and van der Vaart & Wellner (1996, Ch. 2.6).

Given a Borel probability measure P on X × Y with noise level p we denote the nonde-
terministic part of the supervisor by X+ := {x ∈ X : p(x) > 0}. If PX(X+) > 0 we write
q∗ := infx∈X p(x) and p∗ := supx∈X p(x). Due to technical reasons we define q∗ := p∗ := 1/4
otherwise. We begin with a preliminary result:

Theorem 12 Let (X, d) be a compact metric space and k be a universal kernel on X. Then
for all Borel probability measures P on X×Y with q∗, p∗ ∈ (0, 1/2) and all ε > 0 there exist
c∗ > 0 and δ∗ > 0 such that for all c ≥ c∗, 0 < δ ≤ δ∗ and all n ≥ 1 we have

Pr∗
({
T ∈ (X × Y )n : RP (f2,k,c/n

T ) ≤ RP + 4
p∗ − q∗

1− 2q∗
PX(X+) + ε

})
≥ 1− 3Me−2( δ

M )2
n ,

where M := N
(
(X, dk), δ√

c

)
is the covering number of X with respect to the metric dk which

is induced by the kernel k. Moreover, Pr∗ denotes the outer probability measure of Pn.

Note, that in order to avoid the (probably very difficult) question whether the sets{
T ∈ (X × Y )n : RP (f2,k,c/n

T ) ≤ α
}
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are measurable we consider the outer probability measure, only.
Since the proof of Theorem 12 is very technical we like to explain the basic idea of the

proof firstly. Let us suppose that the supervisor has a constant level of noise p ∈ [0, 1/2).
Moreover, we assume that we have an induced function 〈w∗,Φ(.)〉 which has the constant
values 1− 2p, resp. −(1− 2p) on B1(P ), resp. B−1(P ). Now let us take a “representative”
training set T of length n. Then one easily checks (cf. estimate (4)) that

〈wk,c/nT , w
k,c/n
T 〉+

c

n

n∑
l=1

ξ2
l . 〈w∗, w∗〉+ 4cp(1− p)

holds. Here . means that the relation ≤ only holds “approximately”. On the other hand,
by the continuity of the decision function wk,c/nT a misclassified (compared with the optimal
Bayes decision rule) element z forces the sum of those slack variables, which belong to
samples in the “neighbourhood” of z, to be “approximately” greater than their cardinality
(cf. inequality (6)). Conversely, for a correctly classified element the corresponding sum
of the slack variables is “approximately” larger than 4p(1 − p) times their cardinality (cf.
inequality (7)). Combining these considerations we obtain

c(1− 2p)2PX(E) + 4cp(1− p) = c
(
PX(E) + 4p(1− p)PX(X \ E)

)
. 〈wk,c/nT , w

k,c/n
T 〉+

c

n

n∑
l=1

ξ2
l

. 〈w∗, w∗〉+ 4cp(1− p) ,

where E denotes the set of misclassified (compared with the optimal Bayes decision rule)
elements. Thus PX(E) must be “small” if we have chosen c “large enough”.

The difficulty of the proof below is firstly, to transfer the idea to the general case and
secondly, to give exact formulations of “representative”, “neighbourhood” and “approxi-
mately”.

Proof of Theorem 12 Without loss of generality we may assume ε ∈ (0, 1]. Let X0 := X\
X+ be the deterministic part of the supervisor and X0

−1 := X0∩B−1(P ), X0
1 := X0∩B1(P )

be the parts of the classes B−1(P ), B1(P ) in X0. Furthermore, let X+
−1 := X+ ∩ B−1(P )

and X+
1 := X+ ∩ B1(P ) be the parts of the classes B−1(P ) and B1(P ) in X+. We define

δ∗ := min{2p∗, ε74q
∗(1 − 2q∗)} and fix δ ≤ δ∗. Since PX is regular (cf. Dudley, 1989,

p. 176) there exist compact subsets Kj
i of Xj

i with PX(Xj
i \K

j
i ) ≤ δ/4 for i ∈ {−1, 1} and

j ∈ {0,+}. Moreover, for a fixed feature map Φ : X → H of k Proposition 5 ensures the
existence of an element w∗ ∈ H with

〈w∗,Φ(x)〉 ∈



[1, 1 + δ] if x ∈ K0
1

[−(1 + δ),−1] if x ∈ K0
−1

[1− 2p∗ − δ, 1− 2p∗] if x ∈ K+
1

[−(1− 2p∗),−(1− 2p∗ − δ)] if x ∈ K+
−1

[−(1 + δ), 1 + δ] otherwise.
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We define c∗ := 2
ε(1−2q∗)‖w

∗‖22 and for fixed c ≥ c∗ let σ := δ√
c
. By Lemma 13 we then

obtain partitions P̃ji of Kj
i with diamdk(A) ≤ σ for all A ∈ P̃ji and∣∣∣ ⋃
i∈{−1,1}
j∈{0,+}

P̃ji
∣∣∣ ≤ N ((X, dk), σ) = M .

Let Pji := {A ∈ P̃ji : PX(A) ≥ δ
q∗M } for i ∈ {−1, 1} and j ∈ {0,+}. To construct

“representative” training sets we define

Fn,A :=
{(

(x1, y1), . . . , (xn, yn)
)

:
∣∣{l : xl ∈ A}

∣∣ ≥ (PX(A)− δ

M

)
n
}

for all A ∈ Pji , i ∈ {−1, 1} and j ∈ {0,+}. Moreover, for A ∈ P+
i , i ∈ {−1, 1} let

F+
n,A :=

{(
(x1, y1), . . . , (xn, yn)

)
:
∣∣{l : xl ∈ A and yl = i}

∣∣ ≥ ((1− p∗)PX(A)− δ

M

)
n
}

F−n,A :=
{(

(x1, y1), . . . , (xn, yn)
)

:
∣∣{l : xl ∈ A and yl 6= i}

∣∣ ≥ (q∗PX(A)− δ

M

)
n
}

Fn :=
⋂

A∈P0
−1∪P0

1

Fn,A ∩
⋂

A∈P+
−1∪P

+
1

(
Fn,A ∩ F+

n,A ∩ F
−
n,A

)
.

Lemma 14 yields Pn(Fn) ≥ 1− 3Me−2( δ
M )2

n and thus it suffices to show that

RP (f2,k,c/n
T ) ≤ RP + 4

p∗ − q∗

1− 2q∗
PX(X+) + ε

holds for all T ∈ Fn. Therefore, let us fix a training set T =
(
(x1, y1), . . . , (xn, yn)

)
∈ Fn.

For cn := c/n we denote the solution of (3) by (wT , bT , ξT ). Our first step is to estimate
W(wT , bT , ξT ) from above by comparing it with W(w∗, 0, ξ∗), where ξ∗ is an admissible
slack vector of (w∗, 0). Hence we have to construct ξ∗. For this let us first assume that we
have a sample (xl, yl) ∈ K0

1 . Then we observe that

yl〈w∗,Φ(xl)〉 = 〈w∗,Φ(xl)〉 ≥ 1

and thus we may define ξ∗l := 0. Analogous considerations yield

ξ∗l :=


0 if xl ∈ K0

i

2p∗ + δ if xl ∈ K+
i , yl = i

2− 2p∗ if xl ∈ K+
i , yl 6= i

2 + δ otherwise.

Moreover, our construction of Fn guarantees that there are at most

n− n
∑

i∈{−1,1}
j∈{0,+}

∑
A∈Pji

(
PX(A)− δ

M

)
≤ n

(
1−

∑
i∈{−1,1}
j∈{0,+}

PX(Xj
i ) +

(
2 +

1
q∗

)
δ
)

=
2
q∗
δn
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samples which are not elements of a suitable Kj
i . Furthermore, since there are at most

n− n
∑

i∈{−1,1}

∑
A∈P0

i

(
PX(A)− δ

M

)
≤ n

(
PX(X+) +

2
q∗
δ
)

samples in K+ := K+
1 ∪K

+
−1 we also obtain that there are at most

n
(
PX(X+) +

2
q∗
δ
)
− n

∑
i∈{−1,1}

∑
A∈P+

i

(
(1− p∗)PX(A)− δ

M

)
≤ n

(
p∗PX(X+) +

4
q∗
δ
)

samples in K+ which have incorrect labels. Since these have larger slack variables with
respect to (w∗, 0) than the correctly labeled samples in K+ we obtain

W(wT , bT , ξT )
≤ W(w∗, 0, ξ∗)

≤ 〈w∗, w∗〉+
c

n

∑
i∈{−1,1}

∑
xl∈K+

i
yl=i

(ξ∗l )2 +
c

n

∑
i∈{−1,1}

∑
xl∈K+

i
yl 6=i

(ξ∗l )2 + 2δc(2 + δ)2

≤ 〈w∗, w∗〉+ c(1− p∗)PX(X+)(2p∗ + δ)2 + c
(
p∗(PX(X+) +

4
q∗
δ
)

(2− 2p∗)2 + 2δc(2 + δ)2

≤ 〈w∗, w∗〉+ c
(

4p∗(1− p∗)PX(X+) +
27
q∗
δ
)
. (4)

For later purposes we note that we also have W(wT , bT , ξT ) ≤ W
(
0, 0, (1, . . . , 1)

)
≤ c and

thus ‖wT ‖2 ≤
√
c. In the second step of the proof we estimate W(wT , bT , ξT ) from below.

For this let us denote the set of misclassified points in Xj
i by

Eji := {x ∈ Xj
i : fT (x) 6= i} .

For brevity’s sake we also write Ej := Ej1 ∪ E
j
−1 and E := E0 ∪ E+. Let us first consider

an A ∈ P0
i with A∩E 6= ∅. Without loss of generality we may assume that i = 1. Then for

xl ∈ A and z ∈ A ∩ E we obtain

1− ξT (l) ≤ yl
(
〈wT ,Φ(xl)〉+ bT

)
= 〈wT ,Φ(xl)− Φ(z)〉+ 〈wT ,Φ(z)〉+ bT

≤ ‖wT ‖ dk(xl, z)
≤ δ,

i.e. ξ2
T (l) ≥ (1 − δ)2 ≥ 1 − 2δ. Since the same estimate holds in the case i = −1 our

construction of Fn implies

1
n

∑
i∈{−1,1}

∑
A∈P0

i
A∩E 6=∅

∑
xl∈A

ξ2
T (l) ≥

∑
i∈{−1,1}

∑
A∈P0

i
A∩E 6=∅

(1−2δ)
(
PX(A)− δ

M

)
≥ PX(E0)− 3

q∗
δ . (5)
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Now let us consider an A ∈ P+
i with A∩E 6= ∅. Without loss of generality we may assume

that i = 1 again. Then for fixed z ∈ A ∩ E and a := −
(
〈wT ,Φ(z)〉+ bT

)
≥ 0 we obtain

ξT (l) ≥

{
1− δ + a for xl ∈ A with yl = 1
max{0, 1− δ − a} for xl ∈ A with yl = −1

analogously to the above considerations. We first treat the case 1− δ − a ≥ 0. Since there
are at least

(
PX(A)− δ/M

)
n samples in A and at least

(
(1− p∗)PX(A)− δ/M

)
n correctly

labeled samples in A we get

1
n

∑
xl∈A

ξ2
T (l) ≥ (1− δ + a)2

(
(1− p∗)PX(A)− δ

M

)
+ (1− δ − a)2p∗PX(A)

≥ PX(A)
(
(1− δ + a)2(1− p∗) + (1− δ − a)2p∗

)
− 4δ
M

.

Now an easy minimization with respect to a ∈ [0, 1− δ] yields

1
n

∑
xl∈A

ξ2
T (l) ≥ PX(A)

(
(1− δ)2(1− p∗) + (1− δ)2p∗

)
− 4δ
M
≥ (1− 2δ)PX(A)− 4δ

M
.

On the other hand, if 1− δ− a < 0 we have 1− δ+ a > 2− 2δ and thus the same inequality
follows:

1
n

∑
xl∈A

ξ2
T (l) ≥ (1− δ + a)2

(
(1− p∗)PX(A)− δ

M

)
≥ (1− 2δ)PX(A)− 4δ

M
.

Therefore, we obtain

1
n

∑
i∈{−1,1}

∑
A∈P+

i
A∩E 6=∅

∑
xl∈A

ξ2
T (l) ≥

∑
i∈{−1,1}

∑
A∈P+

i
A∩E 6=∅

(
(1− 2δ)PX(A)− 4δ

M

)
. (6)

Finally, an analogous consideration yields

1
n

∑
i∈{−1,1}

∑
A∈P+

i
A∩E=∅

∑
xl∈A

ξ2
T (l) ≥

∑
i∈{−1,1}

∑
A∈P+

i
A∩E=∅

(
(1− 2δ)4q∗(1− q∗)PX(A)− 4δ

M

)
. (7)
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Now, the estimates (6) and (7) imply

1
n

∑
i∈{−1,1}

∑
A∈P+

i
A∩E 6=∅

∑
xl∈A

ξ2
T (l) +

1
n

∑
i∈{−1,1}

∑
A∈P+

i
A∩E=∅

∑
xl∈A

ξ2
T (l)

≥
∑

i∈{−1,1}

∑
A∈P+

i
A∩E 6=∅

(
(1− 2δ)PX(A)− 4δ

M

)
+
∑

i∈{−1,1}

∑
A∈P+

i
A∩E=∅

(
(1− 2δ)4q∗(1− q∗)PX(A)− 4δ

M

)

≥
∑

i∈{−1,1}

∑
A∈P+

i
A∩E 6=∅

(1− 2δ)(1− 2q∗)2PX(A) +
∑

i∈{−1,1}
A∈P+

i

(1− 2δ)4q∗(1− q∗)PX(A)− 4δ

≥ (1− 2δ)(1− 2q∗)2PX(E+) + (1− 2δ)4q∗(1− q∗)PX(X+)− 6δ − 2
q∗
δ

≥ (1− 2q∗)2PX(E+) + 4q∗(1− q∗)PX(X+)− 7
q∗
δ .

The latter inequality together with (5) yields

1
n

n∑
l=1

ξ2
T (l) ≥ PX(E0) + (1− 2q∗)2PX(E+) + 4q∗(1− q∗)PX(X+)− 10

q∗
δ .

Combining this estimate with (4) we now obtain

〈w∗, w∗〉

≥ c
(
PX(E0) + (1− 2q∗)2PX(E+) + 4q∗(1− q∗)PX(X+)− 4p∗(1− p∗)PX(X+)− 37

q∗
δ
)

≥ c∗
(
PX(E0) + (1− 2q∗)2PX(E+)− 4(p∗ − q∗)PX(X+)− 37

q∗
δ
)
. (8)

Moreover, a simple calculation shows

RP (f2,k,c/n
T ) = RP +

∫
E

(1− 2p) dPX ≤ RP +
1

1− 2q∗
(
PX(E0) + (1− 2q∗)2PX(E+)

)
and thus PX(E0) + (1 − 2q∗)2PX(E+) ≥ (1 − 2q∗)(RP (f2,k,c/n

T ) −RP ). With this and (8)
we find

〈w∗, w∗〉 ≥ 2 〈w∗, w∗〉
ε(1− 2q∗)

(
(1− 2q∗)

(
RP (f2,k,c/n

T )−RP
)
− 4(p∗ − q∗)PX(X+)− 37

q∗
δ
)
.

The latter inequality finally implies

RP (f2,k,c/n
T )−RP ≤ ε

2
+ 4

p∗ − q∗

1− 2q∗
PX(X+) +

37
(1− 2q∗)q∗

ε(1− 2q∗)q∗

74

= 4
p∗ − q∗

1− 2q∗
PX(X+) + ε .

Thus the assertion follows.
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We have to prove the remaining lemmas now. We begin with the lemma that constructs
the partitions Pji of the above proof:

Lemma 13 Using the notations of the proof of Theorem 12 there exist partitions Pji of Kj
i ,

i ∈ {−1, 1}, j ∈ {0,+}, such that diamdk(A) ≤ σ for all A ∈ Pji , i ∈ {−1, 1}, j ∈ {0,+},
and ∣∣∣ ⋃

i∈{−1,1}
j∈{0,+}

Pji
∣∣∣ ≤ N ((X, dk), σ) . (9)

Proof By the definition of the covering numbers there exists a partition P of X with
diamdk(A) ≤ σ for all A ∈ P and |P| ≤ N

(
(X, dk), σ

)
. Let us define P̃ji := {A ∈ P :

A ∩Kj
i 6= ∅} and Pji := {A ∩Kj

i : A ∈ P̃ji }. Therefore, to prove (9) we have to show that
the P̃ji ’s are mutually disjoint. Assume the converse, i.e. there exists A ∈ P̃ji ∩ P̃

j′

i′ with
i 6= i′ or j 6= j′. By the definition of the partitions there exist z1, z2 ∈ A with z1 ∈ Kj

i and
z2 ∈ Kj′

i′ . Now on the one hand, we obtain

|〈w∗,Φ(z1)− Φ(z2)〉| ≤ ‖w∗‖ dk(z1, z2) ≤ ‖w∗‖σ ≤ ‖w∗‖ δ√
c∗

< δ

but on the other hand we also have

|〈w∗,Φ(z1)− Φ(z2)〉| = |〈w∗,Φ(z1)〉 − 〈w∗,Φ(z2)〉| ≥ 1− (1− 2p∗) ≥ δ∗ ≥ δ .

Therefore the assertion follows.

Lemma 14 Using the notations of the proof of Theorem 12 we have

Pn(Fn) ≥ 1− 3Me−2( δ
M )2

n .

Proof Let us recall Hoeffding’s inequality (cf. Devroye et al., 1997, Thm. 8.1) which in
particular states that for all i.i.d. random variables zi : (Ω,A, Q) → {0, 1} and all ε > 0,
n ≥ 1 we have

Qn
( n∑
i=1

zi ≤ n(q − ε)
)
≤ e−2ε2n ,

where q := Q(zi = 1). Thus for A ∈ P+
i we get

Pn(F+
n,A)

≥ Pn
({(

(x1, y1), . . . , (xn, yn)
)

:
∣∣{l : xl ∈ A, yl = i}

∣∣ ≥ (∫
A

(1− p) dPX −
δ

M

)
n
})

≥ 1− Pn
({(

(x1, y1), . . . , (xn, yn)
)

:
∣∣{l : xl ∈ A, yl = i}

∣∣ ≤ (∫
A

(1− p) dPX −
δ

M

)
n
})

≥ 1− e−2( δ
M )2

n ,
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i.e. Pn(Zn\F+
n,A) ≤ e−2( δ

M )2
n, where Z := X×Y . Analogously, we obtain Pn(Zn\F−n,A) ≤

e−2( δ
M )2

n for all A ∈ P+
i and Pn(Zn \ Fn,A) ≤ e−2( δ

M )2
n for all A ∈ Pji . These estimates

yield

Pn(Fn)

= Pn
( ⋂
A∈P0

−1∪P0
1

Fn,A ∩
⋂

A∈P+
−1∪P

+
1

(
Fn,A ∩ F+

n,A ∩ F
−
n,A

))
= 1− Pn

( ⋃
A∈P0

−1∪P0
1

(
Zn \ Fn,A

)
∪

⋃
A∈P+

−1∪P
+
1

((
Zn \ Fn,A

)
∪
(
Zn \ F+

n,A

)
∪
(
Zn \ F−n,A

)))
≥ 1−

∑
A∈Pj−1∪P

j
1

j∈{0,+}

Pn
(
Zn \ Fn,A

)
−

∑
A∈P+

−1∪P
+
1

Pn
(
Zn \ F+

n,A

)
−

∑
A∈P+

−1∪P
+
1

Pn
(
Zn \ F−n,A

)

≥ 1− 3Me−2( δ
M )2

n .

With the help of Theorem 12 we can now investigate how to choose the parameter sequence
(cn) for a given universal kernel:

Theorem 15 Let (X, d) be a compact metric space and k be a universal kernel on X
such that the covering numbers of (X, dk) fulfill N

(
(X, dk), ε

)
∈ O(ε−α) for some α > 0.

Suppose that we have a positive sequence (cn) with (cn) ∈ O(nβ−1) for some 0 < β < 1
α and

ncn → ∞. Then for all Borel probability measures P on X × Y with q∗, p∗ ∈ (0, 1/2) and
all ε > 0 we have

lim
n→∞

Pr∗
({
T ∈ (X × Y )n : RP (f2,k,cn

T ) ≤ RP + 4
p∗ − q∗

1− 2q∗
PX(X+) + ε

})
= 1 .

Proof Let γ := 1−αβ
4(1+α) > 0 and δn := n−γ . By Theorem 12 there exist c∗ > 0 and δ∗ > 0

such that for all c ≥ c∗, 0 < δ ≤ δ∗ and all n ≥ 1 we have

Pr∗
({
T ∈ (X × Y )n : RP (f2,k,c/n

T ) ≤ RP + 4
p∗ − q∗

1− 2q∗
PX(X+) + ε

})
≥ 1− 3Me−2( δ

M )2
n ,

where M := N
(
(X, dk), δ√

c

)
. Since δn → 0 and ncn → ∞ we may fix an n0 ≥ 1 such that

for all n ≥ n0 we have both δn ≤ δ∗ and ncn ≥ c∗. This yields

Pr∗
({
T ∈ (X ×Y )n : RP (f2,k,cn

T ) ≤ RP + 4
p∗ − q∗

1− 2q∗
PX(X+) + ε

})
≥ 1− 3Mne

−2
(
δn
Mn

)2
n
,

where Mn := N
(
(X, dk), δn√

ncn

)
. This implies Mn ∈ O(nα(γ+β/2)) and hence we easily check

that Mne
−
(
δn
Mn

)2
n ∈ O(e−n

2(1+α)γ
) holds. Thus the assertion follows.
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Corollary 16 Under the assumptions of Theorem 15 the 2-SMC with sequence (cn) is
consistent for all Borel probability measures P on X × Y with q∗ = p∗ < 1/2. In particular
this holds for all Borel probability measures with constant noise level.

Corollary 17 Let X ⊂ Rd be compact and k be a Gaussian RBF kernel on X. Let 0 <
β < 1

d and (cn) be a positive sequence with (cn) ∈ O(nβ−1) and ncn →∞. Then the 2-SMC
with kernel k and sequence (cn) is consistent for all Borel probability measures P on X ×Y
with q∗ = p∗ < 1/2.

Proof Let σ > 0 and k(x, y) := exp(−σ2‖x− y‖22). Since 1 − e−t ≤ t for all t ≥ 0 we
observe

dk(x, y) =
√

2− 2 exp(−σ2‖x− y‖22) ≤
√

2σ‖x− y‖2 .

This yields N
(
(X, dk), ε

)
≤ N

(
(X, ‖.‖2), ε√

2σ

)
and thus N

(
(X, dk), ε

)
∈ O(ε−d) (cf. Carl

& Stephani, 1990, p. 9).

For the classification problems we have considered up to now we usually may not expect
that we obtain a large margin for sample sizes growing to infinity. In the following we
restrict ourselves to distributions that guarantee a fixed and strictly positive margin for all
training sets. Of course, these classification problems must have a deterministic supervisor,
i.e. a noise level that vanishes (almost) everywhere. In general, additional assumptions are
required. Using universal kernel these reduce to a simple geometric condition:

Theorem 18 Let (X, d) be a compact metric space and k be a universal kernel on X. Sup-
pose that we have a Borel probability measure P on X×Y with a deterministic supervisor and
with classes B−1(P ), B1(P ) which have strictly positive distance, i.e. d

(
B−1(P ), B1(P )

)
>

0. Then k separates B−1(P ) and B1(P ) with margin γ > 0 and for all c > 0, ε > 0 and
n ≥ mM we have

Pr∗
(
{T ∈ (X × Y )n : RP,S(f2,k,c

T ) ≤ ε}
)
≥ 1−M e−

εn
2M

+m .

Here, M := N
(
(X, dk), γ/2

)
is the covering number of (X, dk) and m :=

⌊
4
cγ2

⌋
+ 1.

Proof Since (X, dk) is precompact and d
(
B−1(P ), B1(P )

)
> 0 both Bi(P ) are compact,

too. Thus they can be separated with margin γ > 0 by Corollary 6. In analogue to Lemma
13 we now construct partitions P̃ i of Bi(P ), i ∈ {−1, 1} such that diamdk(A) ≤ γ/2 for all
A ∈ P̃ i and

∣∣P̃−1 ∪ P̃1

∣∣ ≤ M . We define Pi := {A ∈ P̃i : PX(A) > ε
M } for i ∈ {−1, 1}.

Moreover, for n ≥ mM and A ∈ P−1 ∪ P1 let

Fn,A :=
{(

(x1, y1), . . . , (xn, yn)
)
∈ (X × Y )n :

∣∣{l : xl ∈ A}
∣∣ ≥ m}

Fn :=
⋂

A∈P−1∪P1

Fn,A .
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For n ≥ mM the Chernoff-Okamoto inequality (see e.g. Dudley, 1978) then yields

Pn
(
(X × Y )n \ Fn,A

)
≤ exp

(
−
(
n ε
M − (m− 1)

)2
2n ε

M

(
1− ε

M

) )
≤ exp

(
−
n2
(
ε
M

)2 − 2n ε
M (m− 1) + (m− 1)2

2n ε
M

)
≤ exp

(
− εn

2M
+m

)
and thus Pn(Fn) ≥ 1 − M e−

εn
2M

+m for all n ≥ mM . Hence it suffices to show that
for all T =

(
(x1, y1), . . . , (xn, yn)

)
∈ Fn the decision function f2,k,c

T classifies
⋃
A∈P1

A and⋃
A∈P−1

A correctly. To see this we fix a feature map Φ : X → H of k. For brevity’s sake the
unique solution of problem (3) is denoted by (wT , bT , ξT ). Furthermore, (w∗, b∗) ∈ SH × R
is a hyperplane that separates Φ

(
B1(P )

)
and Φ

(
B−1(P )

)
with margin γ > 0. Then we have

yl
(
〈w∗,Φ(xl)〉+ b∗

)
≥ γ for all l = 1, . . . , n and therefore we obtain

〈wT , wT 〉+ c

n∑
l=1

ξ2
l ≤

〈w∗
γ
,
w∗

γ

〉
=

1
γ2

.

In particular this implies ‖wT ‖ ≤ 1/γ. Now, let us suppose that there exists a misclassified
point z. Without loss of generality we may assume that z ∈

⋃
A∈P1

A. Hence there is an A ∈
P1 with z ∈ A and for this there exist mutually different indexes l1, . . . , lm such that xlj ∈ A.
In particular this yields dk(xlj , z) ≤ γ/2 for all j = 1, . . . ,m. Since 〈wT ,Φ(z)〉+ bT ≤ 0 we
thus obtain

1−ξlj ≤ 〈wT ,Φ(xlj )〉+bT = 〈wT ,Φ(xlj )−Φ(z)〉+〈wT ,Φ(z)〉+bT ≤ ‖wT ‖ dk(xlj , z) ≤
1
2
.

Hence we have ξlj ≥ 1/2 and this leads to the contradiction

1
γ2
≥ 〈wT , wT 〉+ c

n∑
l=1

ξ2
l ≥ c

m∑
j=1

ξ2
lj
≥ cm

4
=

c

4

(⌊ 4
cγ2

⌋
+ 1
)
>

1
γ2

.

Therefore the assertion follows.

Theorem 18 shows that the 2-SMC works well with fixed weight factor c whenever it treats
a classification problem that ensures a large margin. We believe that these distributions are
also the only ones for which a fixed c is suitable. Our conjecture is based on the observation
that the constant c controls the Lipschitz constant of the solution of (3) with respect to
the metric dk: if we have a classification problem that does not guarantee a large margin
the Lipschitz constant may grow like n. The proofs of this section indicate that this may
be too fast since for large sample sizes the solution need not be “almost” constant on each
element of the partitions, i.e. overfitting may occur.

In the proof of the above theorem we only used elements of the partitions P i whose
probability was larger than or equal to ε

M . If we extend our considerations to all elements
with strictly positive probability we obtain the following theorem:
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Theorem 19 Let (X, d) be a compact metric space and k a universal kernel on X. Suppose
that we have a Borel probability measure P on X×Y with a deterministic supervisor and with
classes B−1(P ), B1(P ) which have strictly positive distance, i.e. d

(
B−1(P ), B1(P )

)
> 0.

Then k separates B−1(P ) and B1(P ) with margin γ > 0 and for all c > 0 there exists a
constant ρ > 0 such that for all n ≥

(⌊
4
cγ2

⌋
+ 1
)
N
(
(X, dk), γ/2

)
we have

Pr∗
(
{T ∈ (X × Y )n : RP,S(f2,k,c

T ) = 0}
)
≥ 1− e−ρn ,

Up to now we have only treated universal kernels. One may ask whether other classes of
kernels are also suitable to treat with the classification problems considered in this work.
One type often used are polynomial kernels of the form (〈., .〉 + c)m, c ≥ 0, m ∈ N, on a
subset X of Rn. For these kernels the functions generated by the 2-SMC are polynomials
on X of degree up to m. Thus the next proposition shows that these kernels are not even
capable to solve the problems of Theorems 18 and 19:

Proposition 20 Let Pdn be the set of all polynomials on X := [0, 1]d whose degree is less
than n + 1. Then for all ε > 0 there exists a Borel probability measure P on X × Y with
d
(
B1(P ), B−1(P )

)
> 0, RP = 0 and

inf{RP (sign f) : f ∈ Pdn} ≥
1
2
− ε .

Proof We first treat the case d = 1. We fix an integer m ≥ (3n + 2)/ε and let Ii :=
[(i + ε)/m, (i + 1 − ε)/m], i = 0, . . . ,m − 1. Denoting the Lebesgue measure on Ii by λIi
let PX := (1− 2ε)−1

∑m−1
i=0 λIi . Moreover, we define a deterministic supervisor P (.|.) by

P (y = 1|x) := 1 for x ∈ I2i, i = 0, . . . , b(m+ 1)/2c, and P (y = −1|x) := 1 otherwise. For
a fixed polynomial f ∈ Pdn we denote its mutually different and ordered zeroes in (0, 1)
by x1 < . . . < xk, k ≤ n. For brevity’s sake let x0 := 0 and xk+1 := 1. Finally, we
define aj :=

∣∣{i : Ii ⊂ [xj , xj+1]
}∣∣ for j = 0, . . . , k. Then by an easy observation we get∑k

j=0 aj ≥ m − k ≥ m − n. Moreover, at most b(aj + 1)/2c intervals Ii are correctly
classified on [xj , xj+1] by the function sign f . Hence at least

k∑
j=0

⌊aj
2

⌋
≥

k∑
j=0

(aj
2
− 1
)
≥ m− n

2
− (k + 1) ≥ m− 3n− 2

2

intervals Ii are not correctly classified on [0, 1] by sign f . Since PX(Ii) = 1/m we thus
obtain

RP (sign f) ≥ 1
m

k∑
j=0

⌊aj
2

⌋
≥ 1

2
− 3n+ 2

m
≥ 1

2
− ε .

To treat the case d > 1 we have to embed [0, 1] into [0, 1]d via t 7→ (t, 0, . . . , 0). Considering
the above distribution P embedded into [0, 1]d we then get the assertion since polynomials
in d variables on [0, 1] embedded into [0, 1]d as above are essentially polynomials in one
variable.
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5. The 1-norm soft margin classifier

We now consider the 1-norm soft margin classifier. Again we fix a kernel k on X with
feature map Φ : X → H. For a training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n and
cn > 0 we denote a solution of the optimization problem

minimize 〈w,w〉+ cn
n∑
i=1

ξi over w, b, ξ

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n

(10)

by (w1,k,cn
T , b1,k,cnT ) ∈ H × R. An algorithm C1,(cn)

k that provides the decision function

f1,k,c
T (x) := sign(〈w1,k,cn

T ,Φ(x)〉+ b1,k,cnT ) , x ∈ X

for every training set T is called a 1-norm soft margin classifier (1-SMC) with kernel k and
parameter sequence (cn). For an introduction to the 1-SMC as well as for implementation
techniques we refer to Cristianini & Shawe-Taylor (2000, Ch. 6 and 7) and Vapnik (1998,
Ch. 10)

Burges & Crisp (2000) proved that in general the optimization problem (10) has no
unique solution. Although the 1-SMC only has to construct an arbitrary solution we show
in this section that it enjoys all the properties of the 2-SMC proven in this work. We begin
with a statement which is analogous to Theorem 12:

Theorem 21 Let (X, d) be a compact metric space and k be a universal kernel on X. Then
for all Borel probability measures P on X×Y with q∗, p∗ ∈ (0, 1/2) and all ε > 0 there exist
c∗ > 0 and δ∗ > 0 such that for all c ≥ c∗, 0 < δ ≤ δ∗ and all n ≥ 1 we have

Pr∗
({
T ∈ (X × Y )n : RP (f1,k,c/n

T ) ≤ RP + 4
p∗ − q∗

1− 2q∗
PX(X+) + ε

})
≥ 1− 3Me−2( δ

M )2
n ,

where M := 4N
(
(X, dk), δ√

c

)
is essentially the covering number of X with respect to the

metric dk which is induced by the kernel k.

Sketch of the proof Since the proof is very similar to that of Theorem 12 we only point
out the main differences besides adjusting the constants: Firstly the vector w∗ ∈ H has to
be chosen in a different manner, namely it has to fulfill

〈w∗,Φ(x)〉 ∈

{
i [1, 1 + δ] if x ∈ Kj

i

[−(1 + δ), 1 + δ] otherwise.

This condition also enforces the second modification since Lemma 13 does not hold anymore
in this setting. Indeed, we cannot guarantee that the definition of the P̃ji ’s in Lemma 13
implies that they are mutually disjoint. Instead, we only obtain |P̃ji | ≤ N

(
(X, dk), δ√

c

)
and

thus ∣∣∣ ⋃
i∈{−1,1}
j∈{0,+}

Pji
∣∣∣ ≤ 4N

(
(X, dk), σ

)
.
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The latter explains the definition of M , which is different to that of Theorem 12.

Following the proof of Theorem 15 we obtain an analogous result for the 1-SMC:

Theorem 22 Let (X, dk) be a compact metric space and k be a universal kernel on X
such that the covering numbers of (X, dk) fulfill N

(
(X, dk), ε

)
∈ O(ε−α) for some α > 0.

Suppose that we have a positive sequence (cn) with (cn) ∈ O(nβ−1) for some 0 < β < 1
α and

ncn → ∞. Then for all Borel probability measures P on X × Y with q∗, p∗ ∈ (0, 1/2) and
all ε > 0 we have

lim
n→∞

Pr∗
({
T ∈ (X × Y )n : RP (f1,k,cn

T ) ≤ RP + 4
p∗ − q∗

1− 2q∗
PX(X+) + ε

})
= 1

To complete our considerations of noisy problems we mention that for the 1-SMC with
Gaussian RBF kernel we obtain the following consistency result which has already been
proved for the 2-SMC:

Corollary 23 Let X ⊂ Rd be compact and k be a Gaussian RBF kernel on X. Let 0 <
β < 1

d and (cn) be a positive sequence with (cn) ∈ O(nβ−1) and ncn →∞. Then the 1-SMC
with kernel k and sequence (cn) is consistent for all Borel probability measures P on X ×Y
with q∗ = p∗ < 1/2.

In the presence of large margins it turns out that we may fix the weight factor analogously
to the 2-SMC. For brevity’s sake we only state a result that is similar to Theorem 18.
However, a result that is analogous to Theorem 19 also holds.

Theorem 24 Let (X, d) be a compact metric space and k a universal kernel on X. Suppose
that we have a Borel probability measure P on X×Y with a deterministic supervisor and with
classes B−1(P ), B1(P ) which have strictly positive distance, i.e. d

(
B−1(P ), B1(P )

)
> 0.

Then k separates B−1(P ) and B1(P ) with margin γ > 0 and for all c > 0, ε > 0 and
n ≥ mM we have

Pr∗
(
{T ∈ (X × Y )n : RP,S(f1,k,c

T ) ≤ ε}
)
≥ 1−M e−

εn
2M

+m ,

where M := N
(
(X, dk), γ/2

)
is the covering number of (X, dk) and m :=

⌊
2
cγ2

⌋
+ 1.

Sketch of the proof The proof is completely analogous to that of Theorem 18. However,
since the slack variables are not squared we obtain

c

m∑
j=1

ξlj ≥
cm

2

in the last estimate of the proof of Theorem 18 and this yields the slightly better value of
m.

Finally we mention that using polynomial kernels Proposition 20 can also be applied. Thus
problems that cannot be treated well with a fixed polynomial kernel and the 2-SMC cannot
be treated well with the 1-SMC and the same kernel, either (and vice versa).
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6. The maximal margin hyperplane classifier

We finally consider the maximal margin classifier. Again we fix a kernel k on X with feature
map Φ : X → H. For a training set T = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n we denote the
unique solution of the optimization problem

minimize 〈w,w〉 over w, b
subject to yi(〈w,Φ(xi)〉+ b) ≥ 1, i = 1, . . . , n

(11)

by (wkT , b
k
T ) ∈ H × R. An algorithm Ck that provides the decision function

fkT (x) := sign(〈wkT ,Φ(x)〉+ bkT ) , x ∈ X

for every training set T is called a maximal margin classifier (MMC) with kernel k. For
an introduction to the MMC as well as for implementation techniques and a geometric
motivation we again refer to Cristianini & Shawe-Taylor (2000, Ch. 6 and 7) and Vapnik
(1998, Ch. 10).

The MMC is assumed to work poorly in the absence of large margins (cf. Tong Zhang,
2001). Thus we only consider the setting of Theorem 18. We begin with a result similar to
Theorem 18 and Theorem 24:

Theorem 25 Let (X, d) be a compact metric space and k a universal kernel on X. Suppose
that we have a Borel probability measure P on X×Y with a deterministic supervisor and with
classes B−1(P ), B1(P ) which have strictly positive distance, i.e. d

(
B−1(P ), B1(P )

)
> 0.

Then k separates B−1(P ) and B1(P ) with margin γ > 0 and for all ε > 0 and n ≥ M :=
N
(
(X, dk), γ/2

)
we have

Pr∗
(
{T ∈ (X × Y )n : RP,S(fkT ) ≤ ε}

)
≥ 1−M en ln(1− ε

2M ) .

Sketch of the proof We repeat the construction of the proof of Theorem 18 with m := 1.
An easy calculation then shows

Pn(Fn) ≥ 1−M en ln(1− ε
2M ) .

Now suppose that for T ∈ Fn we have an element z ∈
⋃
A∈P1

A misclassified by fkT . Hence
there exist an A ∈ P1 with z ∈ A and a sample (xl, yl) of T with xl ∈ A. Then the following
estimate yields a contradiction:

0 ≥ 〈wkT ,Φ(z)〉+bkT = 〈wkT ,Φ(z)−Φ(xlj )〉+〈w
k
T ,Φ(xlj )〉+b

k
T ≥ ‖wkT ‖ dk(xlj , z)+1 ≥ 1

2
.

Therefore the assertion follows.

The above result and its proof indicate that in the presence of large margins it may be more
suitable to use the MMC instead of a soft margin algorithm. We mention that an estimate
which is very similar to Theorem 25 can be obtained using data-dependent margin-based
bounds of Shawe-Taylor et al. (1998). To compare both we first state a corollary:
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Corollary 26 Let kσ be the Gaussian RBF kernel with parameter σ on the unit ball X :=
B`d2

of the d-dimensional Euclidean space. Let P be a Borel probability measure on X × Y
which can be separated by kσ with margin γ > 0. Then for all δ ∈ (0, 1) and all n ≥ 2

(
16σ
γ

)d
we have

Pr∗
({
T ∈ (X × Y )n : RP,S(fkT ) ≤ 4d

n

(16σ
γ

)d(
d ln

16σ
γ

+ ln
2
δ

)})
≥ 1− δ .

Proof As already shown in the proof of Corollary 17 we have

N
(
(X, dk), ε

)
≤ N

(
(X, ‖.‖2),

ε√
2σ

)
≤ 2 · 5d

( ε√
2σ

)−d
≤ 2(8σ)dε−d

and thus M := N
(
(X, dk), γ/2

)
≤ 2(16σ)dγ−d. Now let ε := 2M(1 −

(
δ
M

)1/n) for
n ≥ 2(16σ)dγ−d, i.e. δ = M

(
1− ε

2M

)n. Since ε < 2M
n ln M

δ Theorem 25 yields the assertion.

Corollary 26 shows that the learning curve of the MMC is of order O(n−1) provided that
P guarantees a large margin. These conditions also allow the application of margin-based
bounds on generalization proved by Shawe-Taylor et al. (1998) (cf. also Bartlett & Shawe-
Taylor, 1999; Cristianini & Shawe-Taylor, 2000). We then obtain that the learning curve
is of order O(n−1(log n)2). However, to compare both results one also has to consider the
constants that arise since the sample size n only varies in a typical range. Here we observe
that the influence of the margin γ is essentially of order O(γ−2) in the estimates of Shawe-
Taylor et al. (1998) while the Corollary 26 shows that our estimates are essentially influenced
by order O(γ−d), where d is the dimension of the input space X. We thus suppose that
only for small input dimensions d our estimates are more suitable to treat realistic sample
sizes.

7. Conclusions

The aim of this paper has been to investigate which kind of distributions could be classified
well by support vector machines (SVM’s). It has turned out that the ability of the kernel
to approximate arbitrary continuous functions plays a fundamental role for this question.
Since the resulting function classes represented by the classifier are very large there always
exists the risk of overfitting. However, using soft margin support vector machines with
specific sequences of regularization parameters this risk can be controlled at least for simple
noise models, e.g. models with constant noise level. In particular, the restriction to large
margin problems in Tong Zhang (2001, p. 442) has been significantly weakened.

Since the ansatz of this paper is new many questions remain open, and are worth for
further investigations. Firstly it is interesting whether the soft margin algorithms yield
arbitrarily good generalization for all distributions. Up to now our results only provide
consistency if the noise level is constant. However, approximating an arbitrary noise level
by step functions it seems possible that the soft margin algorithms with certain parameter
sequences are universally consistent. Of course, the universality of kernels, which roughly
speaking enables us to do “almost everything” with induced functions on compact subsets
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would play a crucial role for this ansatz, too. However, a solution is certainly also based
on a deeper investigation of the underlying optimization problems in order to remove
the restriction q∗, p∗ ∈ (0, 1/2). Moreover, we suppose that the universality of kernels is
also very important for related algorithms such as ν-SVM’s, linear programming SVM’s
and leave-one-out SVM’s as well as all kind of SVM’s used for regression, distribution
estimation, etc.. However, since each treatment of one of these algorithms needs its own
investigation of the corresponding optimization problem many open questions remain.

Remark Using the techniques of this work the author was recently able to prove universal
consistency for the 1-SMC (cf. Steinwart, 2001b).
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