
Journal of Machine Learning Research 2 (2001) 213-242 Submitted 3/01; Published 12/01

A New Approximate Maximal Margin Classification
Algorithm

Claudio Gentile gentile@dsi.unimi.it

Dipartimento di Scienze dell’Informazione
Universita’ di Milano
Via Comelico 39,
20135 Milano, Italy

Editors: Nello Cristianini, John Shawe-Taylor and Bob Williamson

Abstract

A new incremental learning algorithm is described which approximates the maximal margin
hyperplane w.r.t. norm p ≥ 2 for a set of linearly separable data. Our algorithm, called
almap (Approximate Large Margin algorithm w.r.t. norm p), takes O

(
(p−1)
α2 γ2

)
corrections

to separate the data with p-norm margin larger than (1 − α) γ, where γ is the (normal-
ized) p-norm margin of the data. almap avoids quadratic (or higher-order) programming
methods. It is very easy to implement and is as fast as on-line algorithms, such as Rosen-
blatt’s Perceptron algorithm. We performed extensive experiments on both real-world and
artificial datasets. We compared alma2 (i.e., almap with p = 2) to standard Support
vector Machines (SVM) and to two incremental algorithms: the Perceptron algorithm and
Li and Long’s ROMMA. The accuracy levels achieved by alma2 are superior to those
achieved by the Perceptron algorithm and ROMMA, but slightly inferior to SVM’s. On
the other hand, alma2 is quite faster and easier to implement than standard SVM training
algorithms. When learning sparse target vectors, almap with p > 2 largely outperforms
Perceptron-like algorithms, such as alma2.

Keywords: Binary Classification, Large Margin, Support Vector Machines, On-line
Learning

1. Introduction

Vapnik’s Support Vector Machines (SVM) are a statistical model of data that simultaneously
minimizes model complexity and data fitting error (Vapnik, 1998). SVM have attracted a
lot of interest and have spurred voluminous work in Machine Learning, both theoretical and
experimental. The remarkable generalization ability exhibited by SVM can be explained
through margin-based VC theory (e.g., Shawe-Taylor et al., 1998; Anthony and Bartlett,
1999; Vapnik, 1998; Cristianini and Shawe-Taylor, 2000, and references therein).

At the core of SVM lies the problem of finding the so-called maximal margin hyperplane.
Briefly, given a set linearly separable data, the maximal margin hyperplane classifies all
data correctly and maximizes the minimal distance (the margin) between the data and the
hyperplane. If euclidean norm is used to measure the distance then computing the maximal
margin hyperplane corresponds to the, by now classical, SVM training problem (Cortes
and Vapnik, 1995). This task is naturally formulated as a quadratic programming problem.

c©2001 Claudio Gentile.

Gentile

If an arbitrary norm p is used then such a task turns to a more general mathematical
programming problem (e.g., Mangasarian, 1997; Nachbar et al., 1993) to be solved by
general purpose (and computationally intensive) optimization methods. This more general
task naturally arises in feature selection problems when the target to be learned is sparse
(i.e., when the target has many irrelevant features). This is often the case in a number of
natural language processing problems (e.g., Golding and Roth, 1996; Dagan et al., 1997).

A fair amount of recent work on SVM centers on finding simple and efficient methods to
solve maximal margin hyperplane problems (e.g., Osuna et al., 1997; Joachims, 1998; Friess
et al., 1998; Platt, 1998; Kowalczyk, 1999; Keerthi et al., 1999; Li and Long, 1999). This
paper follows that trend, giving two main contributions. The first contribution is a new
efficient algorithm which approximates the maximal margin hyperplane w.r.t. norm p to
any given accuracy. We call this algorithm almap (Approximate Large Margin algorithm
w.r.t. norm p). almap is naturally viewed as an on-line algorithm, i.e., as an algorithm
which processes the examples one at a time. A distinguishing feature of almap is that its
relevant parameters (such as the learning rate) are dynamically adjusted over time. In this
sense, almap is a refinement of the on-line algorithms recently introduced by Auer et al.
(2001).

On-line algorithms are useful when the examples become available to the learning al-
gorithm one at a time, but also when the training set is too large to consider all examples
at once. alma2 (i.e., almap with p = 2) is a perceptron-like algorithm; the operations it
performs can be expressed as dot products, so that we can replace them by kernel functions
(Aizerman et al., 1964). alma2 approximately solves the SVM training problem, avoid-
ing quadratic programming. Unlike previous approaches (Cortes and Vapnik, 1995; Osuna
et al., 1997; Joachims, 1998; Friess et al., 1998; Platt, 1998), our algorithm operates di-
rectly on (an approximation to) the primal maximal margin problem, instead of its (Wolfe)
dual. almap is more similar to algorithms such as Li and Long’s ROMMA (Li and Long,
1999) and the one analyzed by Kowalczyk (1999) and Keerthi et al. (1999). However, it
seems those algorithms have been specifically designed for euclidean norm. Unlike those
algorithms, almap remains computationally efficient when measuring the margin through
a generic norm p.

As far as theoretical performance is concerned, alma2 achieves essentially the same
bound on the number of corrections as the one obtained by a version of Li and Long’s
ROMMA. In the case when p is logarithmic in the dimension of the instance space (Gentile
and Littlestone, 1999) almap yields results similar to multiplicative algorithms, such as
Littlestone’s Winnow (Littlestone, 1988) and the Weighted Majority algorithm (Littlestone
and Warmuth, 1994; Grove et al., 2001). The associated margin-dependent generalization
bounds are very close to those obtained by estimators based on linear programming (e.g.,
Mangasarian, 1968; Anthony and Bartlett, 1999, Chap. 14).

The second contribution of this paper is an experimental investigation of almap on
both real-world and artificial datasets. In our experiments we emphasized the accuracy
performance achieved by almap as a fully on-line algorithm, i.e., after just one sweep
through the training examples. Following Freund and Schapire (1999), the hypotheses
produced by almap during training are combined via Helmbold and Warmuth’s (1995)
leave-one out scheme to make a voted hypothesis. We ran alma2 with kernels on the
real-world datasets and almap with p > 2 without kernels on artificial datasets. The

214

Approximate Maximal Margin Classification

real-world datasets are well-known Optical Character Recognition (OCR) benchmarks. On
these datasets we followed the experimental setting described by Cortes and Vapnik (1995),
Freund and Schapire (1999), Li and Long (1999) and Platt et al. (1999). We compared
our algorithm to standard SVM, to the Perceptron algorithm and to ROMMA. We found
that alma2 generalizes quite better than both ROMMA and the Perceptron algorithm, but
slightly worse than SVM. On the other hand, alma2 is as fast and easy to implement as the
other Perceptron-like algorithms. Hence, compared to standard algorithms, training SVM
with alma2 saves a considerable amount of time.

In the experiments with the artificial datasets we have been mainly interested in com-
paring the accuracy of Perceptron-like algorithms, such as alma2, to the accuracy of non-
Perceptron-like algorithms, such as almap with p > 2. When learning sparse target vectors
with almap, the performance gap between p = 2 and p > 2 is big. This is mainly due to the
different convergence speed of the two kinds of algorithms (see also the paper by Kivinen
et al., 1997).

The next section defines our major notation and recalls some basic preliminaries. In
Section 3 we describe almap and claim its theoretical properties. Section 4 describes our
experiments. Concluding remarks and open problems are given in the last section.

2. Preliminaries and notation

This section defines our major notation and recalls some basic preliminaries.
An example is a pair (x, y), where x is an instance belonging to a given instance space

X ⊆ Rn and y ∈ {−1,+1} is the binary label associated with x. A weight vector w =
(w1, ..., wn) ∈ Rn represents an n-dimensional hyperplane passing through the origin. It
is natural to associate with w a linear threshold classifier with threshold zero: w : x →
sign(w ·x) = 1 if w ·x ≥ 0 and = −1 otherwise. When p ≥ 1 we denote by ||w||p the p-norm
of w, i.e., ||w||p = (

∑n
i=1 |wi|p)1/p (also, ||w||∞ = limp→∞ (

∑n
i=1 |wi|p)1/p = maxi |wi|). We

say that q is dual to p if 1
p + 1

q = 1 holds. For instance, the 1-norm is dual to the ∞-norm and
the 2-norm is self-dual. In this paper we assume that p and q are some pair of dual values,
with p ≥ 2. We use p-norms for instances and q-norms for weight vectors. For the sake
of simplifying notation throughout this paper we use normalized instances x̂ = x/||x||p,
where the norm p will be clear from the surrounding context. The (normalized) p-norm
margin (or just the margin, if p is clear from the context) of a hyperplane w with ||w||q ≤ 1
on example (x, y) is defined as yw · x̂. If this margin is positive1 then w classifies (x, y)
correctly. Notice that from Hölder’s inequality we have |w · x̂| ≤ ||w||q ||x̂||p ≤ 1. Hence
yw · x̂ ∈ [−1, 1].

Our goal is to approximate the maximal p-norm margin hyperplane for a set of examples
(the training set). For this purpose, we use terminology and analytical tools from the on-line
learning literature. We focus on an on-line learning model introduced by Littlestone (1988)
and Angluin (1988). An on-line learning algorithm processes the examples one at a time
in trials. In each trial, the algorithm observes an instance x and is required to predict the
label y associated with x. We denote the prediction by ŷ. The prediction ŷ combines the
current instance x with the current internal state of the algorithm. In our case this state

1. We assume that w · x = 0 yields a wrong classification, independent of y.

215

Gentile

is essentially a weight vector w, representing the algorithm’s current hypothesis about the
maximal margin hyperplane. After the prediction is made, the true value of y is revealed
and the algorithm suffers a loss, measuring the “distance” between the prediction ŷ and the
label y. Then the algorithm updates its internal state.

In this paper the prediction ŷ can be seen as the linear function ŷ = w · x and the loss
is a margin-based 0-1 Loss: the loss of w on example (x, y) is 1 if yw · x̂ ≤ (1 − α) γ and
0 otherwise, for suitably chosen α, γ ∈ [0, 1]. Therefore, if ||w||q ≤ 1 the algorithm incurs
positive loss if and only if w classifies (x, y) with (p-norm) margin not larger than (1−α) γ.
The on-line algorithms are typically loss driven, i.e., they do update their internal state
only in those trials where they suffer a positive loss. We call a correction a trial where this
happens. In the special case when α = 1 a correction is a mistaken trial and a loss driven
algorithm turns to a mistake driven (Littlestone, 1988) algorithm.

Throughout the paper we use the subscript t for x and y to denote the instance and
the label processed in trial t. We use the subscript k for those variables, such as the
algorithm’s weight vector w, which are updated only within a correction. In particular,
wk denotes the algorithm’s weight vector after k − 1 corrections (so that w1 is the initial
weight vector). The goal of the on-line algorithm is to bound the cumulative loss (i.e., the
total number of corrections or mistakes) it suffers on an arbitrary sequence of examples
S = ((x1, y1), ..., (xT , yT)). Consider the special case when S is linearly separable with
margin γ. If we pick α < 1 then a bounded loss clearly implies convergence in a finite number
of steps to (an approximation of) the maximal margin hyperplane for S. When a training
set is linearly separable with margin γ and hyperplane w is such that yw · x̂ ≥ (1 − α) γ
for any (x, y) in the training set we sometimes say that w is an α-approximation to the
maximal margin hyperplane (for that training set).

Remark 1 Our definition of margin is restricted to zero-threshold linear classifiers, i.e.,
to hyperplanes passing through the origin. The usual definition of margin in SVM literature
(Cortes and Vapnik, 1995) actually considers the more general non-zero threshold linear
classifiers. The threshold of an SVM maximal margin hyperplane is sometimes called the
bias term of the SVM. Restricting margin analyses to zero-threshold hyperplanes loses only
a constant factor (e.g., Cristianini and Shawe-Taylor, 2000). Nonetheless, in practical
applications such a constant factor might make a significant difference.

3. The approximate large margin algorithm almap

almap is a large margin variant of the p-norm Perceptron algorithm2 (Grove et al., 2001;
Gentile and Littlestone, 1999), and is similar in spirit to the variable learning rate algorithms
introduced by Auer et al. (2001). We analyze almap by giving upper bounds on the number
of corrections. We do not resort to the proof techniques developed by (Auer et al., 2001), as
they seem to give rise to suboptimal results when applied to the algorithm described here.

The theoretical contribution of this paper is Theorem 3 below. This theorem has two
parts. Part 1 bounds the number of corrections in the linearly separable case. In the special
case when p = 2 this bound is very similar to the one proven by Li and Long for a version of

2. The p-norm Perceptron algorithm is a generalization of the classical Perceptron algorithm (Rosenblatt,
1962; Block, 1962; Novikov, 1962): p-norm Perceptron is actually Perceptron when p = 2.

216

Approximate Maximal Margin Classification

Algorithm almap(α;B,C)
with α ∈ (0, 1], B, C > 0.
Initialization:
Initial weight vector w1 = 0; k = 1.
For t = 1, ..., T do:

• Get example (xt, yt) ∈ X × {−1,+1};
• Update weights as follows:

Set γk = B
√
p− 1

1√
k

;

If yt wk · x̂t ≤ (1 − α) γk then : ηk =
C√
p− 1

1√
k
,

w′
k = f−1(f(wk) + ηk yt x̂t),

wk+1 = w′
k/max{1, ||w′

k||q},
k ← k + 1.

Figure 1: The approximate large margin algorithm almap.

ROMMA (called aggressive ROMMA). Part 2 holds for an arbitrary sequence of examples.
A bound which is very close to the one proven by Grove et al. (2001) and Gentile and
Littlestone (1999) for the (constant learning rate) p-norm Perceptron algorithm is obtained
as a special case.

In order to define our algorithm, we need to recall the following mapping f (Gentile and
Littlestone, 1999) (a p-indexing for f is understood): f : Rn → Rn, f = (f1, ..., fn), where

fi(w) =
sign(wi) |wi|q−1

||w||q−2
q

, w = (w1, ..., wn) ∈ Rn.

Observe that p = q = 2 yields the identify function. The (unique) inverse f−1 of f is (Gentile
and Littlestone, 1999) f−1 : Rn → Rn, f−1 = (f−1

1 , ..., f−1
n), where

f−1
i (θ) =

sign(θi) |θi|p−1

||θ||p−2
p

, θ = (θ1, ..., θn) ∈ Rn,

namely, f−1 is obtained from f by replacing q with p. It is easy to check that f is the gradient
of the scalar function 1

2 || · ||2q , while f−1 is the gradient of the (dual) function 1
2 || · ||2p. The

following simple property of f will be useful.

Lemma 2 (Gentile and Littlestone, 1999) The function f maps vectors with a given q-
norm to vectors with the same p-norm, i.e., for any w ∈ Rn we have ||f(w)||p = ||w||q.

almap is described in Figure 1. The algorithm is parameterized by α ∈ (0, 1], B > 0
and C > 0. Parameter α measures the degree of approximation to the optimal margin

217

Gentile

wk w′
k

wk+1

yt x̂to

Figure 2: The update rule of almap when p = q = 2. The circle is a two-dimensional W.

hyperplane, while B and C might be considered as tuning parameters. Their use will be
made clear in Theorem 3. Let W be the q-norm unit ball, i.e., W = {w ∈ Rn : ||w||q ≤ 1}.
almap maintains a vector wk of n weights in W. It starts from w1 = 0. At time t the
algorithm processes example (xt, yt). If the current weight vector wk classifies (xt, yt) with
(normalized) margin not larger than (1−α) γk then a correction occurs. Here γk is intended
as the current approximation to the unknown maximal margin (denoted by γ∗ in Theorem
3) on the data. The update rule3 has two main steps. The first step gives w′

k through the
classical update of a (p-norm) perceptron-like algorithm (notice, however, that the learning
rate ηk scales with k, the number of corrections occurred so far). The second step gives wk+1

by projecting4 w′
k onto W: wk+1 = w′

k/||w′
k||q if ||w′

k||q > 1 and wk+1 = w′
k otherwise.

The projection step makes the new weight vector wk+1 belong to W. Figure 2 gives a
graphical representation of the update rule.

It is worth discussing at this point how almap is qualitatively different from previous on-
line algorithms, such as the (p-norm) Perceptron algorithm and ROMMA. First, we notice
that almap maintains bounded weight vectors, but it uses a decaying learning rate. This is
actually qualitatively similar to the standard (p-norm) Perceptron algorithm, where weight
vectors are unbounded but the learning rate is kept constant. In fact, in both cases later
updating instances have less influence on the direction of the current weight vector than
earlier instances. On the other hand, unlike the (p-norm) Perceptron algorithm, almap is
sensitive to margins, i.e., the current weight vector gets updated even if the current margin
is positive but smaller than desired. Compared to aggressive ROMMA, almap requires the
accuracy parameter α be fixed ahead of time; if α is not close to zero, this tends to make
almap’s corrections less frequent than aggressive ROMMA’s (see Section 4.2).

3. In the degenerate case that xt = 0 no update takes place.
4. From the proof of Theorem 3 the reader can see that the only way we exploit this projection step

is through the condition ||wk||q ≤ 1 for all k. Therefore if we replaced the update rule wk+1 =
w′

k/max{1, ||w′
k||q} in Figure 1 by the simpler rule wk+1 = w′

k/||w′
k||q Theorem 3 would still hold.

The advantage of using the former rule is computational, as it requires less weight updating.

218

Approximate Maximal Margin Classification

We now claim the theoretical properties of almap. The following theorem has two
parts. In part 1 we treat the separable case. Here we prove that a special choice of
parameters B and C gives rise to an algorithm which computes an α-approximation to the
maximal margin hyperplane, for any given accurary α. In part 2 we show that if a suitable
relationship between B and C is satisfied then a bound on the number of corrections can be
proven in the general (nonseparable) case. The bound of part 2 is in terms of the margin-
based quantity Dγ(u; (x, y)) = max{0, γ − yu · x̂}, γ > 0. (Here a p-indexing for Dγ is
understood). Dγ is called deviation by Freund and Schapire (1999) and linear hinge loss by
Gentile and Warmuth (2001).

Notice that B and C in part 1 do not meet the requirements given in part 2. On the
other hand, in the separable case B and C chosen in part 2 do not yield, for any small α,
an α-approximation to the maximal margin hyperplane.

Theorem 3 Let X = Rn, W = {w ∈ Rn : ||w||q ≤ 1}, S = ((x1, y1), ..., (xT , yT)) ∈
(X × {−1,+1})T , and M be the set of corrections of almap(α;B,C) running on S (i.e.,
the set of trials t such that yt wk · x̂t ≤ (1 − α) γk).

1. Let γ∗ = maxw∈W mint=1,...,T yt w · x̂t > 0. Then almap(α;
√

8/α,
√

2) achieves the
following bound5 on |M|:

|M| ≤ 2 (p− 1)
(γ∗)2

(
2
α
− 1

)2

+
8
α
− 4 = O

(
p− 1

α2 (γ∗)2

)
. (1)

Furthermore, throughout the run of almap(α;
√

8/α,
√

2) we have γk ≥ γ∗. Hence (1) is
also an upper bound on the number of trials t such that yt wk · x̂t ≤ (1 − α) γ∗.

2. Let the parameters B and C in Figure 1 satisfy the equation6

C2 + 2 (1 − α)BC = 1.

Then for any u ∈ W, almap(α;B,C) achieves the following bound on |M|, holding for any

γ > 0, where ρ2 =
p− 1
C2 γ2

:

|M| ≤ 1
γ

∑
t∈M

Dγ(u; (xt, yt)) +
ρ2

2
+

√
ρ4

4
+
ρ2

γ

∑
t∈M

Dγ(u; (xt, yt)) + ρ2.

Observe that when α = 1 the above inequality turns to a bound on the number of mistaken
trials. In such a case the value of γk (in particular, the value of B) is immaterial, while C
is forced to be 1.

Proof. We assume throughout this proof that the k-th correction occurs on example (xt, yt).
We use the following shorthand notation: θk = f(wk), θ′

k = f(w′
k) = θk + ηk yt x̂t and

Nk+1 = max{1, ||w′
k||q}. We now consider the two parts separately.

5. We did not optimize the constants here.
6. Notice that B and C in part 1 do not satisfy this equation.

219

Gentile

1. Let γ∗k = yt u · x̂t, where u is the maximal margin hyperplane for the whole sequence
S. We study how fast the quantity u · θk increases from correction to correction. From the
update rule of Figure 1 we have

u · θk+1 =
u · θk + ηk yt u · x̂t

Nk+1
=

u · θk + ηk γ
∗
k

Nk+1
. (2)

Observe that u · θk ≥ 0 for any k, since the data are linearly separable.
We need to find an upper bound on the normalization factor Nk+1. To this end, we

focus on the square N2
k+1. By virtue of Lemma 2 we can write

N2
k+1 = max{1, ||w′

k||2q}
= max{1, ||θ′

k||2p}
= max{1, ||θk + ηk yt x̂t||2p}.

Furthermore,

||θk + ηk yt x̂t||2p ≤ ||θk||2p + η2
k (p− 1) + 2 ηk yt f−1(θk) · x̂t

= ||wk||2q + η2
k (p− 1) + 2 ηk yt wk · x̂t

≤ 1 + η2
k (p− 1) + 2 (1 − α) ηk γk

= 1 + 2A/k,

where the first inequality is essentially proven by Grove et al. (2001) (see also Lemma 2
in the paper by Gentile and Littlestone, 1999), the first equality is again an application of
Lemma 2, the second inequality derives from Figure 1, and the last equality derives from
Figure 1 by setting A = 4/α− 3. Thus we conclude that

Nk+1 ≤
√

1 + 2A/k.

Now, we set for brevity m = |M|, ρk =
√

p−1
γ∗

k
and ρ =

√
p−1
γ∗ . Since γ∗k and γ∗ are p-norm

margins with γ∗ ≤ γk we have ρk ≥ ρ ≥ 1. We plug the bound on Nk+1 back into (2),
unwrap the resulting recurrence and take into account that w1 = θ1 = 0. We yield

u · θm+1 ≥
m∑

k=1

sk

m∏
j=k+1

rj ,

where

rj =
1√

1 + 2A/j
,

sk =
1
ρk

1√
A + k/2

and the product
∏m

j=k+1 rj is assumed to be 1 if k = m. From Hölder’s inequality and
Lemma 2 it follows that

u · θm+1 ≤ ||u||q ||θm+1||p = ||u||q ||wm+1||q ≤ 1.

220

Approximate Maximal Margin Classification

Therefore we have obtained:

1 ≥
m∑

k=1

sk

m∏
j=k+1

rj . (3)

We use this inequality to compute an upper bound on the number of corrections m. We
proceed by lower bounding the RHS of (3), as a function of m.

We first lower bound sk by 1
ρ

1√
A+m/2

. Next, considering the product
∏m

j=k+1 rj , we can

write

− ln
m∏

j=k+1

rj =
1
2

m∑
j=k+1

ln
(

1 +
2A
j

)

≤ 1
2

m∑
j=k+1

2A
j

≤ A

∫ m

k

1
j
d j

= A ln
m

k
.

This is equivalent to
∏m

j=k+1 rj ≥
(

k
m

)A
. Therefore (3) implies

ρ ≥
m∑

k=1

(k/m)A√
A + m/2

≥
∫ m

k=0

(k/m)A√
A + m/2

dk

=
1

A + 1
m√

A + m/2
.

Solving for m gives

m ≤ ρ2 (A + 1)2

4
+

√
ρ4 (A + 1)4

16
+ ρ2 (A + 1)2 A

≤ ρ2 (A + 1)2

4
+ ρ (A + 1)3/2

√
ρ2 (A + 1)

16
+ 1

≤ ρ2 (A + 1)2

4
+ ρ (A + 1)3/2

(√
ρ2 (A + 1)

4
+

2√
ρ2 (A + 1)

)

=
ρ2 (A + 1)2

2
+ 2 (A + 1) (4)

= 2ρ2

(
2
α
− 1

)2

+
8
α
− 4

=
2 (p− 1)

(γ∗)2

(
2
α
− 1

)2

+
8
α
− 4,

221

Gentile

where the third inequality uses
√
x + 1 ≤ √

x+ 1
2
√

x
, for x > 0. This proves that the number

of corrections m made by the algorithm is upper bounded as in (1). In order to show that
this is also an upper bound on the number of trials t such that yt wk · x̂t ≤ (1 − α) γ∗, it
suffices to prove that γk ≥ γ∗ for k = 1, ...,m. Recalling Figure 1, we see that

γk =
√

8 ρk γ
∗
k

α
√
k

≥
√

8 ρ γ∗

α
√
m

≥
√

8 ρ γ∗

α

√
ρ2 (A+1)2

2 + 2 (A + 1)

≥ γ∗

α

√
(A+1)2

16 + A+1
4

=
γ∗√

1 − α2

4

≥ γ∗,

where the second inequality is (4), the third inequality follows from ρ ≥ 1 and the last
equality follows from the definition of A. This concludes the proof of part 1.

2. The proof proceeds along the same lines as the proof of part 1. Thus we only sketch
the main steps. Let u be an arbitrary vector in W. We can write

Nk+1 u · θk+1 = u · θk + ηk ytu · xt, (5)

where

N2
k+1 = max{1, ||θk + ηk yt x̂t||2p}

≤ max{1, ||θk||2p + η2
k (p− 1) + 2 (1 − α) ηk γk

≤ max{1, 1 + η2
k (p− 1) + 2 (1 − α) ηk γk}

= 1 +
C2 + 2 (1 − α)BC

k

= 1 +
1
k
.

From (5) and the value of ηk we obtain

√
k + 1 u · θk+1 ≥

√
k u · θk +

C√
p− 1

yt u · x̂t.

Unwrapping, using the two inequalities u · θm+1 ≤ 1 and ytu · x̂t ≥ γ−Dγ(u; (xt, yt)), and
rearraning yields

√
m + 1

√
p− 1
C

+
∑
t∈M

Dγ(u; (xt, yt)) ≥ mγ,

222

Approximate Maximal Margin Classification

holding for any γ > 0 and any u ∈ W. Solving for m gives the desired inequality. This
concludes the proof.

Some remarks are in order at this point.

Remark 4 It is worth emphasizing that the difference between parts 1 and 2 in Theorem
3 is mainly theoretical. For instance, the condition C2 + 2 (1 − α)BC = 1 in Part 2 is
satisfied even by B = 1

2
√

α
and C =

√
α, for any α ∈ (0, 1]. It is not hard to see that in

the separable case this setting yields the bounds |M| ≤ 1+
√

5
2

p−1
(γ∗)2 α

and γk ≥ γ∗/3 for all
k (independent of α). Hence, if we set α = 1/2 we obtain a hyperplane whose margin on
the data is at least γ∗/6 after no more than (1 +

√
5) p−1

(γ∗)2
corrections. This degree of data

fitting could be enough for many practical purposes. In fact, one should not heavily rely on
Theorem 3 to choose the “best” tuning for B and C in almap(α;B,C), since many of the
constants occurring in the statement of that theorem are just an artifact of our analysis.

Remark 5 When p = 2 the computations performed by almap essentially involve only dot
products (recall that p = 2 yields q = 2 and f = f−1 = identity). Thus the generalization
of alma2 to the kernel case is quite standard (we just replace every dot product between
instances by a kernel dot product). In fact, the linear combination wk+1 ·x can be computed
recursively, since

wk+1 · x =
wk · x + ηk ytx̂t · x

Nk+1
.

Here the denominator Nk+1 equals max{1, ||w′
k||2} and the norm ||w′

k||2 is again computed
recursively by

||w′
k||22 = ||w′

k−1||22/N2
k + 2 ηk ytwk · x̂t + η2

k,

where the dot product wk · x̂t is taken from the k-th correction (the trial where the k-th
weight update did occur), and the normalization of instances x̂ = x/||x||2 is computed as
x̂ = x/

√
x · x.

Remark 6 almap with p > 2 is useful when learning sparse hyperplanes, namely those
hyperplanes having only a few relevant components. Gentile and Littlestone (1999) ob-
serve that setting p = 2 lnn makes a p-norm algorithm similar to a purely multiplica-
tive algorithm such as Winnow and the Weighted Majority algorithm (Littlestone, 1988;
Littlestone and Warmuth, 1994). The performance of such algorithms is ruled by a lim-
iting pair of dual norms, i.e., the infinity norm of instances and the 1-norm of weight
vectors. Likewise, almap with p = 2 lnn becomes a multiplicative approximate maxi-
mal margin classification algorithm, where the margin is meant to be an ∞-norm margin.
To see this, observe that ||x||p ≤ n1/p ||x||∞ for any x ∈ Rn. Hence p = 2 lnn yields
||x||(2 ln n) ≤

√
e ||x||∞. Also, ||w||1 ≤ 1 implies ||w||q ≤ 1 for any q > 1. Thus if ||w||1 ≤ 1

the (2 lnn)-norm margin y w·x
||x||(2 ln n)

is actually bounded from below by the ∞-norm margin
y w·x
||x||∞ divided by

√
e. The bound in part 1 of Theorem 3 becomes |M| = O

(
ln n

α2 (γ∗)2

)
, where

γ∗ = maxw : ||w||1≤1 mint=1,...,T
yt w·xt

||xt||∞ . The associated margin-based generalization bounds
are very similar to those obtained by classifiers based on linear programming (Mangasarian,
1968; Anthony and Bartlett, 1999, Chap. 14).

223

Gentile

Remark 7 almap and its analysis could be modified to handle the case when the margin
is not normalized, i.e., when the margin of hyperplane w on example (x, y) is defined to be
just yw ·x. We only need to introduce a new variable, call it Xk, which stores the maximal
norm of the instances seen in past corrections, and then normalize the new instance xt

in the update rule by Xk. The resulting algorithm and the corresponding analysis would
be slightly more complicated than the one we gave in Theorem 3. As a matter of fact,
our initial experiments with almap-like algorithms were performed with the unnormalized
margin version. Such experiments, which are not reported in this paper, show that the
unnormalized margin version of almap is fairly sensitive to example ordering (in particular,
the algorithm is quite sensitive to the position of outliers in the stream of examples). This
is one of the reasons why in this paper we only treat the normalized margin version.

4. Experimental results

To see how our algorithm works in practice, we tested it on a number of classification
datasets, both real-world and artificial. We used alma2 with kernels on the real datasets
and almap with p = 2, 6, 10 without kernels on the artificial ones. The real-world datasets
are well-known OCR benchmarks: the USPS dataset (e.g., Le Cun et al., 1995), the MNIST
dataset7, and the UCI Letter dataset (Blake et al., 1998). The artificial datasets consist
of examples generated by some random process according to the rules described in Section
4.4.

For the sake of comparison, we tended to follow previous experimental setups, such as
those described by Cortes and Vapnik (1995), Freund and Schapire (1999), Friess et al.
(1998), Li and Long (1999) and Platt et al. (1999). We reduced an N -class problem to
a set of N binary problems, according to the so-called one-versus-rest scheme. That is,
we trained the algorithms once for each of the N classes. When training on the i-th class
all the examples with label i are considered positive (labelled +1) and all other examples
are negative (labelled −1). Classification is made according to the maximum output of
the N binary classifiers. There are many other ways of combining binary classifiers into a
multiclass classifier. We refer the reader to the work by Dietterich and Bakiri (1995), Platt
et al. (1999), Allwein et al. (2000) and to references therein. Yet another method for facing
multiclass classification (which does not explicitly reduce to binary) is mentioned in Section
5.

Our experimental results are summarized in Tables 1 through 6 and in Figures 3, 4 and
5. Following Freund and Schapire (1999), the output of a binary classifier is based on either
the last hypothesis produced by the algorithms (denoted by “last” throughout this section)
or Helmbold and Warmuth’s (1995) leave-one-out voted hypothesis (denoted by “voted”).
In our experiments we actually used the variant called average by Freund and Schapire
(1999). We denote it by “average” or “avg”, for brevity. This variant gave rise to slight
accuracy improvements compared to “voted”.8 When using “last”, the output of the i-th

7. It can be downloaded from Y. LeCun’s home page: http://www.research.att.com/∼yann/ocr/mnist/.
8. Freund and Schapire (1999) seem to use the average variant without any theoretical justification. When

using margin sensitive classification algorithms, such as almap with α < 1, one can prove a bound on
the expected generalization error of “avg” by first proving a bound on the expected hinge loss (Gentile
and Warmuth, 2001) and then applying a simple convexity argument (Kivinen and Warmuth, 1997).

224

Approximate Maximal Margin Classification

binary classifier on a new instance x is

outputi(x) = w
(i)

m(i)+1
· x,

where w
(i)

m(i)+1
is the last weight vector produced during training by the i-th classification

algorithm (namely, after m(i) corrections); when using “voted” or “avg” we need to store
the sequence of prediction vectors w

(i)
1 , w

(i)
2 , ..., w

(i)

m(i)+1
, as well as the number of trials

the corresponding prediction vector survives until it gets updated. Let us denote by c
(i)
k

the number of trials the k-th weight vector of the i-th classifier survives. Then if we use
“voted” the output of the i-th classifier on instance x is

outputi(x) =
m(i)+1∑

k=1

c
(i)
k sign(w(i)

k · x);

if we use “avg” the output of the i-th classifier on instance x is

outputi(x) =


m(i)+1∑

k=1

c
(i)
k w

(i)
k


 · x.

In all cases the predicted label ŷ associated with x is

ŷ = argmaxi=1...N outputi(x).

We trained the algorithms by cycling up to 3 times (“epochs”) over the training set. All
the results shown in Tables 1–6 and in Figures 3–5 are averaged over 10 random permuta-
tions of the training sequences.

In Tables 1–6 the columns marked “TestErr” give the fraction of misclassified examples
in the test set. The columns marked “Correct” (or “Corr”, for brevity) give the total number
of corrections occurred in the training phase for the N labels (recall that for Perceptron
and almap with α = 1 a correction is the same as a mistaken trial).

In Figures 3–5 we plotted a number of margin distribution graphs (Schapire et al.,
1998) yielded when running almap on various datasets. For binary classification tasks the
margin distribution of a (binary) classifier w with ||w||q ≤ 1 is the fraction of examples
(x, y) ∈ X × {−1,+1} in the training set whose margin yw · x̂ is at most s, as a function
of s ∈ [−1,+1]. For an N -class problem solved via the one-versus-rest scheme, it is natural
to define the margin as the difference between the output of the classifier associated with
the correct label and the maximal output of any other classifier. This value lies in [−1,+1]
once weight vectors and instances are properly normalized. Also, the margin is positive if
and only if the example is correctly classified.

In our experiments no special attention has been paid to tune scaling factors and/or
noise-control parameters. As far as parameters B and C is concerned, we have set C =

√
2

(as in Theorem 3, part 1) and B = 1
α , where α is chosen in the set {1.0, 0.95, 0.9, 0.8, 0.5}.

Notice that with this parameterization the weight update condition yt wk · x̂t ≤ (1 − α) γk

in Figure 1 actually becomes yt wk · x̂t ≤ β
√

p−1√
k

, where β ∈ {0, 0.0526, 0.111, 0.25, 1}.

225

Gentile

1 Epoch 2 Epochs 3 Epochs
TestErr Correct TestErr Correct TestErr Correct

Perceptron last 6.03% 1148 5.45% 1395 5.30% 1515
avg 5.49% 1148 5.24% 1395 5.00% 1515

alma2(1.0) last 6.42% 1250 5.62% 1557 5.38% 1713
avg 5.51% 1250 4.93% 1557 5.06% 1713

alma2(0.95) last 5.72% 1752 5.05% 2087 4.85% 2239
avg 5.18% 1752 4.68% 2087 4.73% 2239

alma2(0.9) last 5.43% 2251 5.06% 2606 4.90% 2746
avg 5.06% 2251 4.72% 2606 4.77% 2746

Table 1: Experimental results on USPS database. We used Gaussian kernels with width
σ = 3.5. “TestErr” denotes the fraction of misclassified patterns in the test set, while
“Correct” denotes the total number of training corrections for the 10 labels. alma2(α) is
shorthand for alma2(α; 1

α ,
√

2). Recall that averaging takes place during the testing phase.
Thus the number of corrections of “last” is the same as the number of corrections of “avg”.

Below we are using the shorthand almap(α) to denote almap(α; 1
α ,

√
2). Thus, for example,

almap(1.0) denotes almap(1; 1,
√

2).
We made no preprocessing on the data (beyond the implicit preprocessing performed by

the kernels). All our experiments have been run on a PC with a single Pentium� III MMX
processor running at 447 Mhz. The running times we will be mentioning are measured on
this machine.

The rest of this section describes the experiments in some detail.

4.1 Experiments with USPS dataset

The USPS (US Postal Service) dataset has 7291 training patterns and 2007 test patterns.
Each pattern is a 16×16 vector representing a digitalized image of a handwritten digit,
along with a {0,1,...,9}-valued label. The components of such vectors lie in [−1,+1].

This is a well-known SVM benchmark. The accuracy results achieved by SVM range
from 4.2% (obtained by Cortes and Vapnik, 1995, after suitable data smoothing) to 4.4%
(reported by Schölkopf et al., 1999) to 4.7% (reported by Platt et al., 1999, with no data
preprocessing). The best accuracy results we are aware of are those obtained by Simard, et
al. (1993). They yield a test error of 2.7% by using a notion of distance between patterns
that encodes specific prior knowledge about OCR problems, such as invariance to translation
and rotation.

We ran both the Perceptron algorithm and alma2. Following Schölkopf et al. (1997,
1999), Platt et al. (1999) and Friess et al. (1998), we used the Gaussian kernel
K(x,y) = exp

(
− ||x−y||22

2 σ2

)
. To choose the best width σ, we ran the Perceptron algo-

rithm and alma2(1.0) for one epoch. We used 5-fold cross validation on the training set
across the range [0.5, 10.0] with step 0.5. The best σ for both algorithms turned out to be
σ = 3.5. In Tables 1 and 2 only the best (σ = 3.5) results are displayed. Observe that

226

Approximate Maximal Margin Classification

digit 0 1 2 3 4 5 6 7 8 9
alma2(1.0)
1 Epoch Corr 99 46 129 147 142 156 101 102 169 159

SV 99 46 129 147 142 156 101 102 169 159
2 Epochs Corr 121 58 164 183 174 195 127 128 206 201

SV 121 55 159 182 168 193 126 124 202 195
3 Epochs Corr 138 67 174 204 193 208 145 137 228 219

SV 138 61 173 197 184 205 142 132 224 210
alma2(0.95)
1 Epoch Corr 149 79 192 203 190 214 148 144 226 207

SV 149 79 192 203 190 214 148 144 226 207
2 Epochs Corr 176 94 226 242 226 255 174 168 277 249

SV 175 89 224 238 221 253 173 163 272 243
3 Epochs Corr 186 105 235 256 243 273 188 184 297 272

SV 185 94 233 250 234 268 184 173 288 254
alma2(0.9)
1 Epoch Corr 200 110 246 255 243 279 193 182 287 256

SV 200 110 246 255 243 279 193 182 287 256
2 Epochs Corr 224 128 284 294 286 320 224 209 331 306

SV 223 123 282 290 280 314 220 201 323 294
3 Epochs Corr 230 137 294 312 300 334 235 226 349 329

SV 229 126 288 305 289 328 227 214 337 309
SVM (SV) 219 91 316 309 288 340 213 206 304 250

Table 2: Experimental results on USPS database. “Corr” denotes the total number of
training corrections for the 10 labels, while “SV” denotes the number of “support vectors”
for the 10 labels. alma2(α) is shorthand for alma2(α; 1

α ,
√

2). Clearly, for one epoch “Corr”
= “SV”.

227

Gentile

using a Gaussian kernel makes the normalization of instances x̂ = x/||x||2 immaterial, since
K(x,x) = 1 for any x.

Table 1 gives test error and number of corrections for the Perceptron algorithm and
alma2 with different values of α. Table 2 gives statistics for alma2 on the ten digits.
Here “Corr” denotes the number of corrections while “SV” denotes the number of “support
vectors”, i.e., the number of examples that are actually involved in computing the prediction
function for each of the ten classes. For the sake of comparison, we also give the number
of support vectors yielded by SVM, as reported by Schölkopf et al. (1999). The standard
deviations related to our averages are reasonably small; those concerning test errors are
about 0.12%.

On this dataset alma2(1.0) and the Perceptron algorithm perform comparably. The
accuracy of alma2(α) improves significantly when we shrink the value of α, whereas the
computed solution gets less and less sparse.

As in the experiments performed by Freund and Schapire (1999) and Li and Long
(1999), the accuracy of the classifiers tends to get better as we increase the number of
training epochs. However, training alma2 “avg” for more than two epochs seems to hurt
performance somewhat. This might be due to the fast convergence of this algorithm (notice
that the accuracy obtained by SVM is quite close).

We found the accuracy of 5.06% for alma2(0.9) “avg” fairly remarkable, considering
that it has been obtained by sweeping through the examples just once for each of the ten
classes. Indeed, the algorithm is quite fast: training for one epoch the ten binary classifiers
of alma2(0.9) takes on average only 6.5 minutes.

The reader might want to compare this performance to the similar accuracy of 5.00%
achieved by the “average” Perceptron algorithm run for three epochs. Despite Perceptron’s
solution is sparser than alma2(0.9)’s, it is worth saying that running Perceptron for three
epochs takes about twice as long as training alma2(0.9) for one epoch.

We plot in Figure 3 some of the margin distribution graphs obtained. The value of the
curves at a given point s ∈ [−1,+1] gives the fraction of patterns in the training set whose
margin (after training) is at most s. alma2(0.9) tends to increase the number of examples
with a strictly positive margin. This is actually more evident with the “average” variant
(plots on the right) than with the “last” variant (plots on the left).

4.2 Experiments with the MNIST dataset

Each example in MNIST dataset is a 28×28 matrix, along with a {0,1,...,9}-valued label.
Each entry in this matrix is a value in {0,1,...,255}, representing a grey level. The database
has 60000 training examples and 10000 test examples.

The best accuracy results for this dataset are those obtained by Le Cun et al. (1995)
through boosting on top of the neural net LeNet4. They reported a test error rate of 0.7%.
A soft margin SVM achieved an error rate of 1.1% (Cortes and Vapnik, 1995).

In this subsection we are comparing to SVM, the Perceptron algorithm and the
Perceptron-like algorithm ROMMA (Li and Long, 1999). We followed closely the experi-
mental setting described by Cortes and Vapnik (1995), Freund and Schapire (1999), Li and
Long (1999). We used a polynomial kernel K of the form K(x,y) = (1 + x · y)d. At the
time of writing the conference version of this paper (Gentile, 2001) we set the degree d of

228

Approximate Maximal Margin Classification

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Perceptron 1 Ep
Perceptron 3 Eps

Alma(1.0) 1 Ep
Alma(1.0) 3 Eps

Alma(0.9) 1 Ep
Alma(0.9) 3 Eps

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Perceptron 1 Ep
Perceptron 3 Eps

Alma(1.0) 1 Ep
Alma(1.0) 3 Eps
Alma(0.9) 1 Ep

Alma(0.9) 3 Eps

“last” “average”

Figure 3: Some of the margin distribution functions yielded by the Perceptron algorithm
and by alma2, run for 1 and 3 epochs on USPS dataset.

the kernel to 4. According to Freund and Schapire (1999) this choice was best. The same
choice was made by Cortes and Vapnik (1995) and Li and Long (1999). Later on we found
that significant improvements could be obtained by a larger d.

We give results for alma2 with d = 4, 5, 6. We have not investigated any careful tuning
of scaling factors. In particular, we have not determined the best instance scaling factor s
for our algorithm (this corresponds to using the kernel K(x,y) = (1 + x · y/s)d). In our
experiments we set s = 255. This was actually the best choice made by Li and Long (1999)
for the Perceptron algorithm.

The experimental results are given in Tables 3 and 4. Table 3 gives test error and number
of corrections for the Perceptron algorithm, ROMMA and alma2(α) with α = 1.0, 0.9, 0.8.

The first four rows of Table 1 summarize some of the results obtained by Freund and
Schapire (1999), Li and Long (1999) and Li (2000). The first two rows refer to the Percep-
tron algorithm, while the third and the fourth rows refer to the original ROMMA9 and the
best noise-controlled version of ROMMA, called “aggressive ROMMA”. Both the Percep-
tron algorithm and ROMMA have been run with a degree 4 polynomial kernel. Our own
experimental results are given in the subsequent rows.

Table 4 is analogous to Table 2 and refers to alma2 with a degree 4 polynomial kernel.
In the last row of Table 4 we give the number of support vectors yielded by the soft-margin
SVM employed by Cortes and Vapnik (1995). Again, the standard deviations about the
averages we report in these tables are not large. Those concerning test errors range in
(0.03%, 0.09%).

Among these Perceptron-like algorithms, alma2 “avg” seems to be the most accurate.
Again, we would like to emphasize the good accuracy performance yielded by alma2 on the
first epoch. Notice that if d = 6 alma2(0.9) “avg” gets 1.48%.

9. According to Li and Long (1999), ROMMA’s last hypothesis seems to perform better than ROMMA’s
voted hypothesis.

229

Gentile

1 Epoch 2 Epochs 3 Epochs
TestErr Correct TestErr Correct TestErr Correct

Perceptron last 2.71% 7901 2.14% 10421 2.03% 11787
voted 2.23% 7901 1.86% 10421 1.76% 11787

ROMMA (last) 2.48% 7963 1.96% 9995 1.79% 10971
agg-ROMMA (last) 2.05% 30088 1.76% 44495 1.67% 58583
alma2(1.0)

d = 4 last 2.52% 7454 2.01% 9658 1.86% 10934
avg 1.77% 7454 1.52% 9658 1.47% 10934

d = 5 last 2.40% 7105 1.86% 9048 1.65% 10004
avg 1.67% 7105 1.46% 9048 1.39% 10004

d = 6 last 2.35% 7001 1.83% 8782 1.67% 9633
avg 1.64% 7001 1.48% 8782 1.36% 9633

alma2(0.9)
d = 4 last 2.10% 9911 1.74% 12711 1.64% 14244

avg 1.69% 9911 1.49% 12711 1.40% 14244
d = 5 last 1.93% 10373 1.64% 12700 1.49% 13820

avg 1.59% 10373 1.39% 12700 1.32% 13820
d = 6 last 1.84% 11652 1.53% 13712 1.45% 14598

avg 1.48% 11652 1.32% 13712 1.27% 14598
alma2(0.8)

d = 4 last 1.98% 12810 1.72% 16464 1.60% 18528
avg 1.68% 12810 1.44% 16464 1.35% 18528

Table 3: Experimental results on MNIST database. The results have been obtained through
the polynomial kernel K(x,y) = (1 + x ·y/255)d. The Perceptron algorithm and ROMMA
use d = 4, while alma2 uses d = 4, 5, 6. “TestErr” denotes the fraction of misclassified
patterns in the test set, while “Correct” denotes the total number of training corrections
for the 10 labels.

alma2 is quite fast. Training for one epoch the ten binary classifiers of alma2(1.0) with
d = 4 takes on average 2.3 hours and the corresponding testing time is on average about 40
minutes; training for one epoch the ten binary classifiers of alma2(0.9) with d = 6 takes on
average 4.3 hours, while testing takes on average 1.2 hours.

There seems to be no big difference in accuracy between alma2(0.9) and alma2(0.8)
when d = 4. This suggested us not to run alma2(0.8) with d > 4. Also, we have not
run alma2 for more than 3 epochs. But it seems reasonable to expect the accuracy of
alma2(0.9) “avg” and alma2(0.8) “avg” to get closer and closer to the one achieved by
SVM.

4.3 Experiments with UCI Letter dataset

The UCI Letter dataset has 20000 patterns divided into 26 classes (the letters ‘A’ through
’Z’). The instance vectors have 16 integer attributes (statistical moments and edge counts)

230

Approximate Maximal Margin Classification

digit 0 1 2 3 4 5 6 7 8 9
alma2(1.0)
1 Epoch Corr 441 373 738 914 715 792 504 727 1076 1174

SV 441 373 738 914 715 792 504 727 1076 1174
2 Epochs Corr 572 501 952 1181 915 1016 654 933 1412 1522

SV 549 467 932 1134 887 993 635 902 1353 1463
3 Epochs Corr 642 583 1071 1335 1024 1143 719 1076 1604 1737

SV 616 517 1016 1237 978 1087 697 995 1481 1616
alma2(0.9)
1 Epoch Corr 611 492 998 1206 970 1065 695 948 1420 1506

SV 611 492 998 1206 970 1065 695 948 1420 1506
2 Epochs Corr 776 656 1269 1548 1212 1353 876 1224 1829 1968

SV 741 597 1205 1434 1153 1282 821 1139 1719 1832
3 Epochs Corr 861 753 1401 1721 1354 1489 963 1384 2073 2245

SV 801 647 1301 1575 1247 1394 896 1252 1857 1986
alma2(0.8)
1 Epoch Corr 814 637 1303 1534 1271 1395 906 1214 1819 1917

SV 814 637 1303 1534 1271 1395 906 1214 1819 1917
2 Epochs Corr 1023 841 1652 1986 1585 1755 1152 1586 2370 2514

SV 953 742 1528 1817 1476 1627 1064 1423 2134 2273
3 Epochs Corr 1140 965 1846 2231 1768 1956 1279 1788 2684 2871

SV 1026 803 1642 1951 1593 1744 1135 1532 2318 2438
SVM (SV) 1379 989 1958 1900 1224 2024 1527 2064 2332 2765

Table 4: Experimental results on MNIST database, when using a polynomial kernel of
degree d = 4. “Corr” denotes the total number of training corrections for the 10 labels,
while “SV” denotes the number of “support vectors” for the 10 labels.

231

Gentile

1 Epoch 2 Epochs 3 Epochs
TestErr Correct TestErr Correct TestErr Correct

Perceptron last 6.18% 5010 4.50% 6131 4.15% 7001
avg 4.83% 5010 3.70% 6131 3.33% 7001

alma2(1.0) last 7.00% 5484 4.92% 6685 4.45% 7194
avg 4.82% 5484 3.87% 6685 3.47% 7194

alma2(0.9) last 4.90% 8312 3.85% 9644 3.50% 10178
avg 3.85% 8312 3.10% 9644 3.02% 10178

alma2(0.8) last 4.20% 11258 3.55% 13003 3.27% 13673
avg 3.60% 11258 2.97% 13003 2.80% 13673

Table 5: Experimental results on UCI Letter database. We used a “poly-Gaussian” kernel
(see main text). “TestErr” denotes the fraction of misclassified patterns in the test set,
while “Correct” denotes the total number of training corrections for the 26 labels.

extracted from raster scan images of machine printed letters of 20 different fonts. The
attributes have values in {0, 1, ..., 15}. A standard split is to consider the first 16000
patterns as training set and the remaining 4000 patterns as test set.

The best accuracy results we are aware of are those obtained by Schwenk and Bengio
(2000) by boosting suitable neural network architectures. They reported an error rate of
1.5%. According to Platt et al. (1999), a Gaussian kernel SVM achieves 2.2%. This
accuracy difference might actually be due to different preprocessing.

This is a dataset where Perceptron-like algorithms such as alma2 did not work as well as
we would have liked. We ran both the Perceptron algorithm and alma2. Both algorithms
exhibited a somewhat slow convergence. Besides, they both failed to converge to SVM’s
accuracy level. We tried to speed up convergence by using a “poly-Gaussian” kernel of the

form K(x,y) =
(
1 + exp

(
− ||x−y||22

2 σ2

))d
. This kernel corresponds to a linear combination

of d Gaussian kernels with different width parameters σ. We set d = 5 to make the kernel
flexible enough. Again, in order to determine the best σ, we ran the Perceptron algorithm
and alma2(1.0) for one epoch, using 4-fold cross-validation on the training set across the
range [0.5, 10.0], with step 0.5. The best σ for Perceptron was 4.0, while the best σ for
alma2 turned out to be 3.0. The experiments are summarized in Table 5, where only the
best results are shown.

The conclusions we can draw from this table are similar to those for Table 1 and Table 3.
The main difference is that the test error achieved by alma2 after one epoch (alma2(0.8)
“avg” achieves 3.60%) is significantly worse than SVM’s (2.2%). The accuracy of alma2

tends to improve after the first epoch (it reaches 2.80% after three epochs), but it stabilizes
around 2.7%, no matter how many epochs one trains the algorithm for. We observed a
similar behavior with the Perceptron algorithm (with an even slower convergence). This
phenomenon might be due to the lack of SVM’s bias term.

As far as running time is concerned, training alma2(1.0) for one epoch takes about 2.5
minutes, while training alma2(0.8) for one epoch takes about 5.2 minutes.

232

Approximate Maximal Margin Classification

4.4 Experiments with almap on artificial datasets

We tested almap, p ≥ 2, without kernels on medium-size artificial datasets. The datasets
are about binary classification tasks and have been generated at random according to the
following rules. We first generated a target vector u ∈ {−1, 0,+1}300, where the first s
components are selected independently at random in {−1,+1} and the remaining 300 − s
components are 0. The value s is intended as a measure of the sparsity of target vector u.
In our experiments we set s = 3, 10, 100, 300. We also added labelling noise with rate
ε. In our experiments ε = 0.0, 0.05, 0.10, 0.15. For a given target vector u and a given
noise rate ε, we randomly generated 10000 training examples and 10000 test examples. The
instance vectors xt have 300 components with values chosen in [−1,+1]. The training set
is generated as follows. We picked xt ∈ [−1,+1]300 at random. If u ·xt ≥ 1 then a +1 label
is associated with xt. If u · xt ≤ −1 then a −1 label is associated with xt. The labels so
obtained are then flipped with probability ε. If |u · xt| < 1 then xt is rejected and a new
vector xt is drawn. The test set instances xt are again chosen at random in [−1,+1]300, the
corresponding labels equal10 sign(u · xt). We did not force a large margin on the test set.

On each of these 4 × 4 = 16 datasets we ran almap(α) (both “last” and “avg”) for one
epoch, with p = 2, 6, 10 and α = 1.0, 0.9, 0.8, 0.5. The accuracy results (test errors)
are shown in Table 6. These experiments had the purpose of investigating the behavior of
almap on extreme scenarios. The differences in performance are big and sometimes even
huge. In Table 6 we report what we believe are some of the most interesting results. We
picked 6 out of the 16 datasets. The columns are marked according to the values of ε and
s.

On sparse target datasets (s = 3 in Table 6) alma6 and alma10 largely outperform
alma2. On these datasets the accuracy of all algorithms improves as α is made smaller.
Correspondingly, the number of corrections (not shown in Table 6) increases. Like in the
experiments of the previous subsections, there is a natural trade-off between the number of
corrections the algorithms make and the accuracy of the resulting hypotheses. To give an
idea of this trade-off, we report three results: on the “ε = 0.0, s = 3” dataset alma2(1.0)
makes on average 142 corrections, while alma2(0.5) makes 2720 corrections; on the same
dataset, alma10(1.0) makes on average only 14 corrections, whereas alma10(0.5) makes
1050; on the “ε = 0.15, s = 3” dataset alma10(1.0) makes on average 2656 corrections
while alma10(0.5) makes on average 3594 corrections. The reader might want to compare
the accuracy results for these three cases. For any given value of α, there is essentially
no difference between alma10(α) and alma6(α) (the test errors shown in Table 6 are
meaningful up to about 1%).

On dense target datasets (s = 300) almap(α) with p = 2 is best. Again, accuracy
improves by shrinking α, but it degrades as we increase p.

In Figure 4 we plot the margin distribution graphs obtained on 4 of the 16 datasets
generated. In these plots we put emphasis on the comparison between the two extreme
cases α = 1.0 and α = 0.5. The performance gap between alma2(α) and alma6(α) on
the two “s = 3” datasets (plots on the left) is clearly reflected by the different behavior
of the corresponding margin distribution functions. The plots on the right, on the other

10. Clearly, the absence of noise in the test examples is not a real loss of generality here, as an independent
noise rate ε in the test set would essentially be added to the noise-free test error rates of the algorithms.

233

Gentile

ε = 0.0 ε = 0.0 ε = 0.1 ε = 0.1 ε = 0.15 ε = 0.15
dataset s = 3 s = 300 s = 3 s = 300 s = 3 s = 300

(TestErr) (TestErr) (TestErr) (TestErr) (TestErr) (TestErr)
alma2(1.0)

last 11.9% 8.3% 26.6% 17.2% 29.6% 22.1%
avg 10.9% 5.0% 16.6% 10.6% 18.7% 12.5%

alma2(0.8)
last 7.0% 7.8% 21.4% 13.6% 23.7% 16.2%
avg 4.9% 4.4% 11.5% 8.0% 14.0% 9.7%

alma2(0.5)
last 4.9% 9.0% 12.7% 11.5% 15.0% 13.6%
avg 2.5% 4.9% 5.4% 7.1% 7.1% 8.2%

alma6(1.0)
last 9.6% 12.0% 28.4% 18.8% 28.6% 22.5%
avg 8.5% 9.4% 17.4% 14.7% 20.0% 17.1%

alma6(0.8)
last 1.5% 12.9% 17.0% 16.0% 19.5% 17.5%
avg 1.2% 8.7% 8.8% 12.2% 11.0% 14.5%

alma6(0.5)
last 0.5% 18.7% 5.6% 20.7% 7.8% 22.0%
avg 0.3% 15.9% 2.2% 18.6% 3.1% 20.2%

alma10(1.0)
last 10.7% 13.9% 26.1% 21.9% 30.2% 24.9%
avg 8.3% 14.1% 16.9% 18.0% 18.8% 19.8%

alma10(0.8)
last 1.2% 15.3% 16.1% 19.3% 18.3% 21.0%
avg 0.9% 13.8% 7.4% 16.9% 9.3% 19.0%

alma10(0.5)
last 0.8% 25.7% 4.6% 27.3% 6.8% 28.6%
avg 0.5% 25.0% 1.3% 26.2% 1.9% 26.9%

Table 6: Results of experiments on artificially generated datasets. Recall that ε denotes the
amount of labelling noise, while s is the number of nonzero components of target vector u.

hand, are somewhat less informative. When learning a dense (“s = 300”) target, a single
training epoch is probably not sufficient to differentiate algorithms’ performance through
their margin properties.

In all our experiments the average hypothesis vector “avg” is substantially more accu-
rate than “last”. This tends to be even more evident on the noisy datasets “ε = 0.15”.
Again, such a big performance difference after just one training epoch is hardly explained
via a margin analysis. Figure 5 contains a somewhat disappointing attempt to relate the
performance gap between “last” and “avg” to different margin properties. A better theo-
retical explaination for the resistance of an “avg”-like classifier to labelling noise is provided
by Servedio (1999).

234

Approximate Maximal Margin Classification

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 2, alpha = 1.0
p = 2, alpha = 0.5
p = 6, alpha = 1.0
p = 6, alpha = 0.5

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 2, alpha = 1.0
p = 2, alpha = 0.5
p = 6, alpha = 1.0
p = 6, alpha = 0.5

Noise rate ε = 0.0, sparsity s = 3. Noise rate ε = 0.0, sparsity s = 300.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 2, alpha = 1.0
p = 2, alpha = 0.5
p = 6, alpha = 1.0
p = 6, alpha = 0.5

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 2, alpha = 1.0
p = 2, alpha = 0.5
p = 6, alpha = 1.0
p = 6, alpha = 0.5

Noise rate ε = 0.1, sparsity s = 3. Noise rate ε = 0.1, sparsity s = 300.

Figure 4: Margin distributions yielded by almap(α) “avg” with p = 2, 6 and α = 1.0, 0.5,
run for one epoch on 4 of the 16 datasets generated.

235

Gentile

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 2, alpha = 0.5, "last"
p = 2, alpha = 0.5, "avg "

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 6, alpha = 1.0, "last"
p = 6, alpha = 1.0, "avg "

Sparsity s = 3, noise rate ε = 0.0. Sparsity s = 3, noise rate ε = 0.0.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 2, alpha = 0.5, "last"
p = 2, alpha = 0.5, "avg "

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 6, alpha = 0.5, "last"
p = 6, alpha = 0.5, "avg "

Sparsity s = 300, noise rate ε = 0.0. Sparsity s = 300, noise rate ε = 0.0.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 6, alpha = 1.0, "last"
p = 6, alpha = 1.0, "avg "

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 6, alpha = 0.5, "last"
p = 6, alpha = 0.5, "avg "

Sparsity s = 3, noise rate ε = 0.1. Sparsity s = 3, noise rate ε = 0.1.

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 2, alpha = 0.5, "last"
p = 2, alpha = 0.5, "avg "

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

p = 6, alpha = 0.5, "last"
p = 6, alpha = 0.5, "avg "

Sparsity s = 300, noise rate ε = 0.1. Sparsity s = 300, noise rate ε = 0.1.

Figure 5: Margin distributions yielded by almap(α) with p = 2, 6 and α = 1.0, 0.5, run for
one epoch on 4 of the 16 datasets generated. The plots compare “last” and “avg”
variants of almap.

236

Approximate Maximal Margin Classification

4.5 Discussion and summary

Our empirical results show how accuracy and running time (as well as sparsity) can be
traded-off against each other in a transparent way. In all our experiments the “avg” hy-
pothesis significantly outperforms the “last” hypothesis, though the accuracy levels of our
algorithm are in general slightly inferior to those achieved by SVM. On the other hand, our
algorithm is quite faster and easier to implement than previous implementations of SVM,
such as those given by Platt (1998), Joachims (1998) and Friess et al. (1998).

One of the most relevant features of alma2 is that its approximate solution relies on
fewer support vectors than SVM’s solution. As a matter of fact, it often happens that alma2

yields a good test error after just one training epoch. This obviously makes our algorithm
attractive for an on-line learning framework (notice that the N binary classifiers in the one-
versus-rest scheme can be trained “in parallel”). Still, a significant accuracy improvement
can be observed when we run Perceptron-like algorithms for more than one epoch. For
alma2(α) with α < 1 this improvement might be explained by observing that sweeping
through the training set more than once tends to increase the margin over the training
examples (this is also shown somewhat by the margin distributions plotted in Figure 3).
However, we do not have an explaination for this phenomenon when we run alma2(1.0) or
the simple Perceptron algorithm.

Finally, the experimental results in section 4.4 seem to be significantly captured by our
theoretical analysis (Theorem 3). On sparse target datasets, the performance gap between
alma2(α) and almap(α) with p > 2 is big. This gap tends to be magnified as α gets
smaller. There is again a trade-off between accuracy achieved on the test set and number of
corrections made during the training phase. This trade-off is ruled by the interplay between
the value of p in almap and the sparsity of the underlying target vector.

5. Conclusions and open problems

We have introduced a new incremental learning algorithm, called almap, which approxi-
mates the maximal p-norm margin hyperplane for a set of linearly separable data. almap

avoids quadratic or higher-order programming methods. Unlike previous approaches (Cortes
and Vapnik, 1995; Friess et al., 1998; Joachims, 1998 and Platt, 1998), our algorithm works
directly with (an approximation to) the primal maximal margin problem, instead of its dual.
Via this approach, we are able to avoid computationally intensive mathematical program-
ming methods. almap is more similar to algorithms such as ROMMA (Li and Long, 1999)
and the one analyzed by Kowalczyk (1999) and Keerthi et al. (1999). However, unlike those
algorithms, almap remains computationally efficient when measuring the margin through
a generic norm p. The theoretical properties of almap have been given in Theorem 3. We
have proven upper bounds on the number of corrections in both the separable and the non-
separable cases. alma2 is a Perceptron-like algorithm. All its operations essentially involve
only dot products. Hence one can replace those dot products by kernel dot products. We
have tested alma2 with kernel functions on three OCR benchmarks and have shown that
our algorithm has very interesting accuracy levels after just one training epoch. Compared
to SVM’s, alma2’s approximate solution is a bit less accurate, but it is also significantly
sparser. alma2’s training time is substantially shorter than SVM’s. This makes our algo-
rithm attractive for learning very large datasets. We have also tested almap with p ≥ 2 on

237

Gentile

artificial datasets. Setting p > 2 is useful when learning sparse target vectors (this is not
rare in text processing tasks). In such problems the practical superiority of almap with
p > 2 over alma2 is largely predicted by our theoretical analysis.

There are many directions in which this work could be extended. In the following we
briefly discuss four of them.

1. It is not clear to us whether the convergence analysis provided by Theorem 3, part
1, is optimal. In fact, in the case when the margin γ∗ is known to the algorithm we
can prove a bound on |M| which scales with α as 1

α ln 1
α (instead of 1

α2 occurring in
both the bound of Theorem 3 and in the analysis by Kowalczyk, 1999, and Li and
Long, 1999). We should stress that when γ∗ is known a direct on-line analysis based
on Bregman divergences (such as the one performed by Auer et al., 2001) still gives
dependence 1

α2 . This is actually the reason why in the proof of Theorem 3 we do not
use a Bregman divergence measure of progress.

2. We would like to see if a variant of almap exists which computes after a finite num-
ber of steps an α-approximation to the fixed (non-zero) threshold maximal margin
hyperplane. This is an important question, as a relevant practical drawback of our
algorithm is its inability to handle SVM’s bias term.

3. Running Perceptron-like algorithms, such as Freund and Schapire’s voted Perceptron
algorithm, Li and Long’s ROMMA, and our almap, for more than one epoch tends to
increase performance. This phenomenon does not seem to fully depend on the margin
properties of the algorithms. We would like to gain a deep theoretical understanding
of this experimental evidence.

4. The way we handle multiclass classification problems is to reduce to a set of binary
problems. As a matter of fact, natural multiclass versions Perceptron-like algorithms
do exist (e.g., Duda and Hart, 1973, Chap. 5). As in the one-versus-rest scheme,
these algorithms associate one weight vector classifier with each class and predict ac-
cording to the maximum output of these classifiers. Again, margin is defined as the
difference between the output of the classifier associated with the correct label and the
output of any other classifier. However, only two weight vectors are updated within
a correction. These are just the two weight vectors involved in computing the above
margin. These multiclass algorithms can be motivated (Gentile and Warmuth, 2001)
within Kivinen and Warmuth’s multidimensional regression framework (Kivinen and
Warmuth, 1998). The on-line analysis of such algorithms is a fairly straightforward
extension of the analysis for the binary case. We are not aware of any thorough exper-
imental investigation of these multiclass on-line algorithms. It would be interesting
to see how they do compare in practice to the other multiclass methods available in
the literature.

Acknowledgments

We would like to thank to Nicolò Cesa-Bianchi, Nigel Duffy, Dave Helmbold, Adam Kowal-
czyk, Yi Li, Nick Littlestone and Dale Schuurmans for valuable conversations and email

238

Approximate Maximal Margin Classification

exchange. We would also like to thank the anonymous reviewers for their comments which
helped us to improve the presentation of this paper. The author has been partially supported
by ESPRIT Working Group EP 27150, Neural and Computational Learning II (NeuroCOLT
II).

References

M. A. Aizerman, E. M. Braverman and L. I. Rozonoer. Theoretical foundations of the po-
tential function method in pattern recognition learning. Automation and Remote Control,
25:821–837, 1964.

E. L. Allwein, R. E. Schapire and Y. Singer. Reducing multiclass to binary: a unifying
approach for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2000.

D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations. CMU,
1999.

P. Auer, N. Cesa Bianchi and C. Gentile. Adaptive and self-confident on-line learning
algorithms. Journal of Computer and System Sciences, forthcoming. Preliminary version
in Proceedings of 13th Annu. Conf. on Comput. Learning Theory, pages 107–117, Palo
Alto, CA, 2000.

C. Blake, E. Keogh and C. Merz. Uci repository of machine learning databases. Technical
report, Dept. of Information and Computer Sciences, University of California, Irvine,
1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

H. D. Block. The perceptron: A model for brain functioning. Reviews of Modern Physics,
34:123–135, 1962.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines and other
kernel-based learning methods. Cambridge University Press, 2000.

I. Dagan, Y. Karov and D. Roth. Mistake-driven learning in text categorization. In Pro-
ceedings of 2nd Conference on Empirical Methods in Natural Language Processing, pages
55–63. Association for Computational Linguistics, Somerset, New Jersey, 1997.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.

Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.
Journal of Machine Learning, 37(3):277–296, 1999.

239

Gentile

T.-T. Friess, N. Cristianini and C. Campbell. The kernel adatron algorithm: a fast and
simple learning procedure for support vector machines. In Proceedings of 15th Interna-
tional Conference in Machine Learning, pages 188–196. Morgan Kaufmann, San Mateo,
CA, 1998.

C. Gentile and N. Littlestone. The robustness of the p-norm algorithms. In Proc. 12th
Annu. Conf. on Comput. Learning Theory, pages 1–11. ACM, 1999.

C. Gentile and M. K. Warmuth. Linear hinge loss and average margin. Unpublished.
Preliminary version in Proc. Advances in Neural Information Processing Systems 11,
pages 225–231, MIT Press, Cambridge, MA, 1999, 2001.

C. Gentile. A new approximate maximal margin classification algorithm. In T. K. Leen, T.
G. Dietterich, and V. Tresp editors, Advances in Neural Information Processing Systems
13, pages 500–506. MIT Press, Cambridge, MA, 2001.

A. R. Golding and D. Roth. Applying winnow to context-sensitive spelling correction.
In Proceedings of 13th International Conference in Machine Learning, pages 182–190.
Morgan Kaufmann, San Mateo, CA,, 1996.

A. J. Grove, N. Littlestone and D. Schuurmans. General convergence results for linear
discriminant updates. Journal of Machine Learning, 43(3):173–210, 2001.

D. P. Helmbold and M. K. Warmuth. On weak learning. Journal of Computer and System
Sciences, 50(3):551–573, 1995.

T. Joachims. Making large-scale support vector machines learning practical. In B. Scholkopf,
C. Burges and A. Smola (eds.): Advances in kernel methods: support vector machines.
MIT Press, Cambridge, MA, 2000.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya and K.R.K. Murthy. A fast iterative nearest
point algorithm for support vector machine classifier design. Technical report, Indian
Institute of Science, ISL-99-03, 1999.

J. Kivinen and M. K. Warmuth. Additive versus exponentiated gradient updates for linear
prediction. Information and Computation, 132(1):1–64, 1997.

J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regression prob-
lems. Journal of Machine Learning. forthcoming. Preliminary version in Proc. Advances
in Neural Information Processing Systems 10, pages 287–293, MIT Press, Cambridge,
MA, 1998.

J. Kivinen, M. K. Warmuth and P. Auer. The perceptron algorithm vs. winnow: linear vs.
logarithmic mistake bounds when few input variables are relevant. Artificial Intelligence,
97:325–343, 1997.

A. Kowalczyk. Maximal margin perceptron. MIT Press, Cambridge, MA, 1999.

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and L. J.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computa-
tion, 1:541–551, 1989.

240

Approximate Maximal Margin Classification

Y. Le Cun, L. J. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, I. Guyon,
U. Muller, S. Sackinger, P. Simard and V. Vapnik. Comparison of learning algorithms
for handwritten digit recognition. In Proceedings of ICANN 1995, pages 53–60, 1995.

Y. Li. From support vector machines to large margin classifiers. PhD thesis, School of
Computing, National University of Singapore, 2000.

Y. Li and P. Long. The relaxed online maximum margin algorithm. Journal of Machine
Learning. forthcoming. Preliminary version in S. A. Solla, T. K. Leen and K. R. Muller
editors, Advances in Neural Information Processing Systems 12, pages 498–504, MIT
Press, Cambridge, MA, 2000.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285–318, 1988.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

O. Mangasarian. Multi-surface method of pattern separation. IEEE Trans. on Information
Theory, 14:801–807, 1968.

O. Mangasarian. Mathematical programming in data mining. Data Mining and Knowledge
Discovery, 42(1):183–201, 1997.

P. Nachbar, J. A. Nossek and J. Strobl. The generalized adatron algorithm. In Proceedings
of 1993 IEEE ISCAS, pages 2152–2155, 1993.

A. B. J. Novikov. On convergence proofs on perceptrons. In Proc. of the Symposium on the
Mathematical Theory of Automata, vol. XII, pages 615–622, 1962.

E. Osuna, R. Freund and F. Girosi. An improved training algorithm for support vector
machines. In Proceedings of IEEE NNSP’97, 1997.

J. C. Platt. Fast training of support vector machines using sequential minimal optimization.
MIT Press, Cambridge, MA, 1998.

J. C. Platt, N. Cristianini and J. Shawe-Taylor. Large margin dags for multiclass classifica-
tion. In S. A. Solla, T. K. Leen and K. R. Muller editors, Advances in Neural Information
Processing Systems 12, pages 547–553. MIT Press, Cambridge, MA, 1999.

F. Rosenblatt. Principles of neurodynamics: Perceptrons and the theory of brain mecha-
nisms. Spartan Books, Washington, D.C., 1962.

R. E. Schapire, P. Bartlett, Y. Freund and W. S. Lee. Boosting the margin: A new expla-
nation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686,
1998.

B. Scholkopf, S. Mika, C.J.C. Burges, P. Knirsch, K. Muller, G. Ratsch and A. Smola. Input
space vs. feature space in kernel-based methods. IEEE Trans. on Neural Network, 10(5):
1000–1017, 1999.

241

Gentile

B. Scholkopf, K. Sung, C.J.C. Burges, F. Girosi, P. Niyogi, T. Poggio and V. Vapnik. Com-
paring support vector machines with gaussian kernels to radial basis function classifiers.
IEEE Trans. on Signal Processing, 45:2758–2765, 1997.

H. Schwenk and Y. Bengio. Boosting neural networks. Neural Computation, 12(8):1869–
1887, 2000.

R. A. Servedio. On pac learning using winnow, perceptron, and a perceptron-like algorithm.
In Proc. 12th Annu. Conf. on Comput. Learning Theory, pages 296–307. ACM, 1999.

J. Shawe-Taylor, P. Bartlett, R. Williamson and M. Anthony. Structural risk minimization
over data-dependent hierarchies. IEEE Trans. on Information Theory, 44(5):1926–1940,
1998.

P. Simard, Y. LeCun and J. Denker. Efficient pattern recognition using a new transformation
distance. In S. Hanson, J. Cowan, and L. Giles, editors, Advances in Neural Information
Processing Systems, volume 5. Morgan Kaufmann, 1993.

V. Vapnik. Statistical learning theory. J. Wiley & Sons, New York, 1998.

242

