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Abstract

In this paper, we discuss round robin classification (aka pairwise classification), a tech-
nique for handling multi-class problems with binary classifiers by learning one classifier for
each pair of classes. We present an empirical evaluation of the method, implemented as
a wrapper around the Ripper rule learning algorithm, on 20 multi-class datasets from the
UCI database repository. Our results show that the technique is very likely to improve
Ripper’s classification accuracy without having a high risk of decreasing it. More impor-
tantly, we give a general theoretical analysis of the complexity of the approach and show
that its run-time complexity is below that of the commonly used one-against-all technique.
These theoretical results are not restricted to rule learning but are also of interest to other
communities where pairwise classification has recently received some attention. Further-
more, we investigate its properties as a general ensemble technique and show that round
robin classification with C5.0 may improve C5.0’s performance on multi-class problems.
However, this improvement does not reach the performance increase of boosting, and a
combination of boosting and round robin classification does not produce any gain over
conventional boosting. Finally, we show that the performance of round robin classification
can be further improved by a straight-forward integration with bagging.

Keywords: pairwise classification, inductive rule learning, multi-class problems, class
binarization, ensemble techniques

1. Introduction

Although real-world problems often have multiple classes, many learning algorithms are
inherently binary, i.e., they are only able to discriminate between two classes. The reasons
for this may be constraints imposed by the hypothesis language (e.g., linear discriminants
or support vector machines), the learning architecture (e.g., neural networks with single
output nodes), or the learning framework (e.g., many rule learning algorithms are tailored
towards concept learning, i.e., the problem of learning a concept description from positive
and negative examples). There are two principal approaches for applying such algorithms to
multi-class problems: one approach is to generalize the algorithm—as has, e.g., been done
for support vector machines (Weston and Watkins, 1999; Mayoraz and Alpaydin, 1999) or
boosting (Freund and Schapire, 1997)—the other is to employ class binarization techniques
(Section 2), which reduce the multi-class problem into a series of binary problems.
One of the most common class binarization approaches is to learn separate concept de-

scriptions for each individual class, i.e., to form a series of problems, one for each class,
where all examples of this class are regarded as positive examples, while all other exam-
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ples are regarded as negative. Pairwise classification is an alternative class binarization
technique, which has lately received some attention in the neural networks and support
vector machines communities (Section 8). Its basic idea is to reduce a multi-class problem
to multiple two-class problems by learning one classifier for each pair of classes, using only
training examples for these two classes and ignoring all others (Section 3).
In this paper, we will, on the one hand, evaluate the technique—which we name round

robin binarization—for inductive rule learning algorithms and show that it is significantly
more accurate than the ordered and unordered (one-against-all) techniques that are cur-
rently used for rule learning algorithms like Ripper (Section 4). On the other hand, we
provide a detailed analysis of the complexity of the approach and show that the c(c − 1)/2
learning problems of a single round robin can be learned more efficiently than the c learning
problems of the conventional one-against-all technique (Section 5). This analysis is inde-
pendent of the base learning algorithm, but we show that the advantage increases with more
expensive learners. The theoretical results are confirmed by our experimental evaluation.
In Section 6, we will investigate the properties of round-robin classification as a general
ensemble technique with mixed results: while the technique is able to reduce C5.0’s error
on average, the gains do not approach those of boosting. On the other hand, a straight-
forward combination of round robin learning with bagging does lead to additional gains for
Ripper. Finally, we will discuss a few other relevant properties of round-robin classification,
including its suitability for parallel implementations, possible remedies for its inefficiency
at classification time, and its comprehensibility (Section 7).

2. Class Binarization

Many machine learning algorithms are inherently designed for binary (two-class) decision
problems. Prominent examples are perceptrons, support vector machines, the original Ad-
aBoost algorithm, and separate-and-conquer rule learning. In addition, all regression al-
gorithms can, in principle, be used for binary decision problems, but not for multi-class
problems (unless, maybe, if the class values can be ordered). On the other hand, real-world
problems often have multiple classes. Fortunately, there exist several simple techniques for
turning multi-class problems into a set of binary problems. We will call such techniques
class binarization techniques.

Definition 1 (class binarization, decoding, base learner) A class binarization is a
mapping of a multi-class learning problem to several two-class learning problems in a way
that allows a sensible decoding of the prediction, i.e., it allows the derivation of a predic-
tion for the multi-class problem from the predictions of the set of two-class classifiers. The
learning algorithm used for solving the two-class problems is called the base learner.

The most popular class binarization technique is the unordered or one-against-all class
binarization, where one takes each class in turn and learns binary concepts that discriminate
this class from all other classes. It has been independently proposed for rule learning (Clark
and Boswell, 1991), neural networks (Anand et al., 1995), and support vector machines
(Cortes and Vapnik, 1995).
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Definition 2 (unordered/one-against-all class binarization) The unordered class bi-
narization transforms a c-class problem into c two-class problems. These are constructed
by using the examples of class i as the positive examples and the examples of classes j
(j = 1 . . . c, j �= i) as the negative examples.

The name “unordered” originates from Clark and Boswell (1991), who proposed this
approach as an alternative to the decision-list learning approach that was originally used
in CN2 (Clark and Niblett, 1989; Rivest, 1987). As our main concern is rule learning, we
will primarily stick to the terminology used there, but will also occasionally refer to it as
one-against-all, which seems to be predominant in other fields.

Definition 3 (ordered class binarization) The ordered class binarization transforms a
c-class problem into c− 1 binary problems. These are constructed by using the examples of
class i (i = 1 . . . c − 1) as the positive examples and the examples of classes j > i as the
negative examples.

Note that ordered class binarization imposes an order on the induced classifiers, which
has to be adhered to at classification time: the classifier learned for discriminating class 1
from classes 2 . . . c has to be called first. If this classifier classifies the example as belonging
to class 1, no other classifier is called; if not, the example is passed on to the next classifier.
Unordered class binarization, on the other hand, has to call each of its constituent binary
classifiers and requires some external criterion for combining the individual predictions into
a final prediction. Typical decoding rules vote the predictions of the individual classifiers,
possibly by taking into account the confidences of the predictions (cf. Section 7).

3. Round Robin Classification

In this section, we will discuss a more complex class binarization procedure, the pairwise
classifier. The basic idea is quite simple, namely to learn one classifier for each pair of classes.
In analogy to round robin tournaments in sports and games, in which each participant is
paired with each other participant, we call this procedure round robin binarization.1

Definition 4 (round robin/pairwise binarization) The round robin or pairwise class
binarization transforms a c-class problem into c(c− 1)/2 two-class problems <i, j>, one for
each set of classes {i, j}, i = 1 . . . c − 1, j = i + 1 . . . c. The binary classifier for problem
<i, j> is trained with examples of classes i and j, whereas examples of classes k �= i, j are
ignored for this problem.

1. The etymology of this phrase is interesting and unclear. According to The Shorter Oxford English
Dictionary (1973), the phrase has at one time or another referred to the fish decapterus punctatus, to
the Holy Sacrament (in a blasphemous way), and to written complaints that were signed in a circular
way to disguise the order in which the subscribers have signed the petition. A posting on the usenet
group uk.culture.language.english (thanks to Foster Provost for this information) claims that its
current use in games and sports goes back to these circular signatures, and that the phrase originates
from the French word ruban, ribbon. Finally—on a Web-site that is dedicated to analyzing lyrics from
the Grateful Dead—Psychology Professor Tom Malloy (Rhode Island College) points out that the use of
round robin in the song The Wheel might also refer to a research design used in biology and psychology
where pairwise reactions of a group of subjects to each other’s behaviors (e.g., smiling) are measured.
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(a) Multi-class learning
one classifier that separates all classes.
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(b) Unordered learning
c classifiers, each separates one class
from all other classes. Here: + against

all other classes.
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(c) Round robin learning
c(c − 1)/2 classifiers, one for each pair of

classes. Here: + against ∼.

Figure 1: Unordered and round robin binarization for a 6-class problem.

Round robin binarization is illustrated in Figure 1. For the 6-class problem shown in
Figure 1(a), the round robin procedure learns 15 classifiers, one for each pair of classes.
Figure 1(c) shows the classifier <+,∼>. In comparison, Figure 1(b) shows one of the clas-
sifiers for the unordered class binarization, namely the one that pairs class + against all
other classes. It is obvious that in the round robin case, the base classifier uses fewer ex-
amples and thus has more freedom for fitting a decision boundary between the two classes.
In fact, in our example, all binary classification problems of the round robin binarization
could be solved with a simple linear discriminant, while neither the multi-class problem nor
its unordered binarization have a linear solution. The phenomenon that pairwise decision
boundaries can be considerably simpler than those originating from unordered binarization
has also been observed in real-world domains. For example, Knerr et al. (1992) observed
that the classes of a digit recognition task were pairwise linearly separable, while the corre-
sponding one-against-all task was not amenable to single-layer networks. The results of Hsu
and Lin (2002), who obtained a larger advantage of round robin binarization over unordered
binarization for support vector machines with a linear kernel than for support vector ma-
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chines with a non-linear kernel on several benchmark problems, could also be explained by
simpler decision boundaries in the round robin case.
A crucial point, of course, is how to decode the predictions of the pairwise classifiers

to a final prediction. We implemented a simple voting technique: when classifying a new
example, each of the learned base classifiers determines to which of its two classes the
example is more likely to belong to. The winner is assigned a point, and in the end,
the algorithm will predict the class that has accumulated the most points. We break ties
by preferring the class that is more frequent in the training set (or flipping a coin if the
frequencies are equal). Note that some examples will be forced to be classified erroneously
by some of the binary base classifiers because each classifier must label all examples as
belonging to one of the two classes it was trained on. Consider the classifier shown in
Figure 1(c): it will arbitrarily assign all examples of class o to either + or ∼ (depending on
which side of the decision boundary they are). In principle, such “unqualified” votes may
lead to an incorrect final classification. However, the votes of the five classifiers that contain
examples of class o should be able to overrule the votes of the other ten classifiers, which pick
one of their two constituent classes for each o example. If the class values are independent,
it is unlikely that all classifiers would unanimously vote for a wrong class. However, the
likelihood of such a situation could increase if there is some similarity between the correct
class and some other class value (e.g., in problems with a hierarchical class structure). In any
case, if the five o classifiers unanimously vote for o, no other class can accumulate five votes
(because they lost their direct match against o). Nevertheless, this simple voting procedure
is certainly suboptimal. We will discuss alternative decoding techniques in Section 7.
In the above definition, we assume that the problem of discriminating class i from class

j is identical to the problem of discriminating class j from class i. This is the case if the base
learner is class-symmetric. Rule learning algorithms, however, need not be class-symmetric.
Many of them choose one of the two classes as the default class, and learn only rules to
cover the other class. In such a case, <i, j> and <j, i> may be two different classification
problems, if j is used as the default class in the former, and i in the latter. A straightforward
approach for addressing this problem is to play a so-called double round robin, in which
separate classifiers are learned for both problems, <i, j> and <j, i>.2

Definition 5 (double round robin) The double round robin class binarization trans-
forms a c-class problem into c(c− 1) two-class problems <i, j>, one for each pair of classes
(i, j), i, j = 1 . . . c, j �= i. The examples of class i are used as the positive examples and the
examples of class j as the negative examples.

In the following section, we will evaluate a double round robin as an alternative bina-
rization strategy for the rule learner Ripper.

4. Accuracy

In this section, we will briefly present an experimental evaluation of round robin binarization
in a rule learning context. We chose Ripper (Cohen, 1995) as the base classifier, which—
in our view—is the most advanced algorithm of the family of separate-and-conquer (or
covering) rule learning algorithms (Fürnkranz, 1997; 1999b).
2. Another approach to tackle this problem could be to ensure that each class is used as the default class

in approximately half of the classification problems.
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Table 1: Datasets used. The first two columns show the training and test set sizes (as spec-
ified in the description of the datasets), the next three columns show the number
of symbolic and numeric attributes as well as the number of classes. The last
column shows the default error, i.e., the error one would get by always predicting
the majority class.

name train test sym num classes def. error
abalone 3133 1044 1 7 29 83.5
car 1728 — 6 0 4 30.0
covertype 15,120 565,892 44 10 7 51.1
glass 214 — 0 9 7 64.5
image 2310 — 0 19 7 85.7
letter 16,000 4000 0 16 26 95.9
lr spectrometer 531 — 1 101 48 89.6
optical 5620 — 0 64 10 89.8
page-blocks 5473 — 0 10 5 10.2
sat 4435 2000 0 36 6 76.2
shuttle 43,500 14,500 0 9 7 21.4
solar flares (c) 1389 — 10 0 8 15.7
solar flares (m) 1389 — 10 0 6 4.9
soybean 683 — 35 0 19 94.1
thyroid (hyper) 3772 — 21 6 5 2.7
thyroid (hypo) 3772 — 21 6 5 7.7
thyroid (repl.) 3772 — 21 6 4 3.3
vehicle 846 — 0 18 4 74.2
vowel 528 462 0 10 11 90.9
yeast 1484 — 0 8 10 68.8

The unordered and ordered binarization procedures were used as implemented within
Ripper. Ordered binarization is Ripper’s default mode, and unordered binarization can be
invoked using the option -a unordered. The round robin binarization was implemented
as a wrapper around Ripper, which provided it with the appropriate training sets. The
wrapper was implemented in perl and had to communicate with Ripper by writing the
training sets to and reading Ripper’s results from the disk. This implementation is referred
to as R3 (round robin ripper).
In principle, Ripper is a class-symmetric learner. It will treat the larger class of a two-

class problem as the default class and learn rules for the smaller class. Although this
procedure is class-symmetric (problem <i, j> is converted to <j, i> if |ci| > |cj |), we felt
that it would not be fair. For example, the largest class in the multi-class problem would
be used as the default class in all round robin problems. This may be an unfair advantage
(or disadvantage) to this class.3 For this reason, R3 implements a double round robin
binarization which calls Ripper with the option -a given on each binary problem <i, j>

3. The situation can be compared to a chess player that has to play all of his games with the same color or
a football team that is allowed to play all (or none) of its games in the home stadium. This can make a
decisive difference and may invalidate the final result of the tournament.
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Table 2: Error rates: The first two column pairs show the results of Ripper (in unordered
and in default, ordered mode). For both, we show the absolute error rate, and the
improvement rate of R3 over the algorithm. R3’s error rates are shown in the 5th
column. The last column shows whether the difference between R3 and default
Ripper (ordered) is significant (++ if p > 0.99, + if p > 0.95, McNemar test). The
first part of the table shows the results for cross-validation (17 sets). To allow a
comparison with previous works, the last 6 lines show hold-out estimates for the
six datasets with a designated test set (3 datasets occur in both blocks). The line
in the middle shows the geometric averages of the improvement ratios.

Ripper R3 McNemar
dataset unord. ratio ordered ratio test
abalone 81.64 0.911 81.18 0.916 74.34 ++
car 5.79 0.390 12.15 0.186 2.26 ++
glass 35.51 0.724 34.58 0.743 25.70 ++
image 4.15 0.823 4.29 0.808 3.46 +
lr spectrometer 64.22 0.827 61.39 0.865 53.11 ++
optical 7.79 0.479 9.48 0.394 3.74 ++
page-blocks 2.85 0.968 3.38 0.816 2.76 ++
sat 13.18 0.785 13.04 0.794 10.35 ++
solar flares (c) 15.91 0.991 15.91 0.991 15.77 =
solar flares (m) 4.90 1.029 5.47 0.921 5.04 =
soybean 8.79 0.717 8.79 0.717 6.30 ++
thyroid (hyper) 1.25 0.893 1.49 0.749 1.11 +
thyroid (hypo) 0.64 0.833 0.56 0.955 0.53 =
thyroid (repl.) 1.17 0.863 0.98 1.026 1.01 =
vehicle 28.25 1.029 30.38 0.957 29.08 =
vowel 30.50 0.633 27.07 0.690 18.69 ++
yeast 44.00 0.949 42.39 0.986 41.78 =
average 0.787 0.747
abalone 81.03 0.901 82.18 0.888 72.99 ++
covertype 35.37 0.939 38.50 0.862 33.20 ++
letter 15.22 0.516 15.75 0.498 7.85 ++
sat 14.25 0.782 17.05 0.654 11.15 ++
shuttle 0.03 0.667 0.06 0.375 0.02 =
vowel 64.94 0.823 53.25 1.004 53.46 =

(i, j = 1 . . . c, i �= j). This instructs Ripper to use the classes in the order specified by the
user (i.e., the order in which they appear in the names file). Hence, <i, j> and <j, i> are
two different problems, which ensures that each class is the default class in exactly half of
its binary classification problems. Note, that this procedure is basically identical to the one
that is employed by Ripper if it is used in unordered mode on a two-class problem except
that Ripper would tie-break immediately between the theories learned for <i, j> and <j, i>,
while we first collect all votes from all c(c − 1) binary problems.
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Table 1 shows the 20 datasets we used in this study. They were chosen arbitrarily
among datasets with ≥ 4 classes available at the UCI repository (Blake and Merz, 1998).4
The implementation of the algorithm was developed independently and not tuned on these
datasets. On the six sets with a dedicated test set, we report the error rate on these test
sets. On the other 14 sets, we estimated the error rate using paired, stratified 10-fold
cross-validations. For abalone, sat and vowel we performed both a test set evaluation and
a cross-validation.5

Table 2 shows the accuracies of Ripper (unordered and ordered) and R3 on the selected
datasets. On half of the 20 experiments (not counting the cross-validated trials of the
three sets the re-appear at the bottom), R3 is significantly better (p > 0.99 on a McNemar
test6) than Ripper’s default mode (ordered binarization). There were only two experiments
(thyroid (repl.) and the test-set version of vowel), where R3 is worse than Ripper, both
differences being insignificant. On the 17 cross-validated problems, R3 reduces the average
error to 75% of the error of Ripper’s error.7 The comparison to unordered Ripper is similar
(the significance levels for this case are not shown).
We can safely conclude that round robin binarization may result in significant improve-

ments over ordered or unordered binarization without having a high risk of decreasing
performance.

5. Efficiency

At first sight, it appears to be a questionable idea to replace c binary learning tasks (un-
ordered binarization) with c(c − 1)/2 binary learning tasks (round robin binarization) be-
cause the quadratic complexity seems to be prohibitive for tasks with more than a few
classes. This section will illustrate that this is not the case.

5.1 Theoretical Considerations

In this section, we will see that although (single) round robin classification turns a single
c-class learning problem into c(c − 1)/2 two-class problems, the total training effort is
only linear in the number of classes and smaller than the effort needed for an unordered
binarization. The analysis is independent of the type of base learning algorithm used,
although we will show that the advantage increases with the computational complexity
of the algorithm. Some of the ideas have already been sketched in a short paragraph by
Friedman (1996), but we go into considerably more detail and, in particular, focus on the
comparison to conventional class binarization techniques.

4. The restriction to 4 or more classes was made because on 3-class problems, we would expect frequent
3-way ties, which are not yet handled very cleverly. The issue of ties is discussed further below in the
paper (Section 7).

5. As we can see in Table 2, there are no qualitative differences between hold-out and cross-validation for
abalone and sat. For vowel the performance of all algorithms was significantly better in the case of
cross-validation, which may indicate that the 528 examples in the original training set are insufficient
for learning a good concept.

6. The McNemar test (McNemar, 1947) tests for significant differences of proportions in paired sample
designs. It is appropriate for comparing classifiers because it does not assume independent samples and
has a comparably low Type I error (Feelders and Verkooijen, 1995; Dietterich, 1998).

7. As these are relative performance measures, we use a geometric average so that x and 1/x average to 1.
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In the following, we assume a base learner with a time complexity function f(n), i.e., the
time needed for learning a classifier from a training set with n examples is f(n). Note that we
interpret this as an exact function, and not as an asymptotically tight bound as in Θ(f(n))
because we are not interested in asymptotic behavior, but in the exact complexity at a given
training set size n.8 We will consider functions of the form f(n) = λnp (p ≥ 1, λ > 0) and
denote such a function with fp. We use b|f to denote a class binarization with algorithm
b, where an base learner with complexity f(n) is applied to each binary problem. Unless
mentioned otherwise, all results refer to single round robin binarizations of problems with
more than two classes (c > 2).

Definition 6 (class penalty) Let gb|f (c, n) be the total complexity for using a learner
with complexity f(n) on a problem with c > 2 classes that has been class-binarized using
binarization algorithm b. We then define the class penalty function πb|f as

πb|f (c, n) =
gb|f (c, n)

f(n)

Intuitively, the class penalty πb|f (c, n) measures the performance of an algorithm on a
class binarized c-class problem relative to its performance on a single two-class problem the
same size n. In the following, it will turn out that in some cases the class penalty function
is independent of n or f . In such cases, we will abbreviate the notation as πb(c).

Lemma 7 (class penalty for unordered class binarization)
πu(c) = c

Proof There are c learning tasks, each using the entire training set of n examples. Hence
the total complexity gu|f (c, n) = cf(n), and πu(c) = c.

Lemma 8 (class penalty for single round robin, linear base algorithm)
For a base learner with a linear run-time complexity f1(n) = λn: πr|f1

(c) = c − 1.

Proof Each example of the original training set will occur exactly once in each of the c−1
binary tasks where its class is paired against one of the other c − 1 classes. As there are n
examples in the original training set, the total number of examples is (c − 1)n.
As f is linear, the sum of the complexities on all individual training sets is equal to the

complexity of the algorithm on the sum of all training set sizes, i.e.,
∑

f1(ni) = f1(
∑

ni).
Hence,

gr|f1
(c, n) = f1((c − 1)n) = λ(c − 1)n = (c − 1)(λn) = (c − 1)f1(n)

8. This is a very strong assumption that will in general not hold up in practice. Strictly speaking, the
time needed for training a classifier does not only depend on the sample size, but also on the domain
and the “difficulty” of the sample for the learner. Even in the same domain, samples of equal sizes may
yield theories of different complexities, and more complex theories will in general require longer training
times. One way to incorporate this aspect could be to interpret our complexity functions as average
run-times over all possible subsets of this size (in a given domain). However, we believe that making the
simplifying assumption of an exact complexity function does not invalidate our claims, which are also
backed up by empirical results (Section 5.2).
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Therefore πr|f1
(c) = c − 1.

This analysis ignores a possible constant overhead of the algorithm, which potentially
affects c(c− 1)/2 function calls in the round robin case, while it only affects c function calls
in the unordered case. However, some significant overhead costs, like reading in the training
examples (and similar initialization steps) need, of course, only be performed once if the
round robin procedure is performed in memory (which was not the case in the implemen-
tation which we used for the experimental results reported in the next section). If there
is an overhead µ to be considered (i.e., f(n) = λn + µ), the total costs will be increased
by µc(c − 1)/2. For very large values of c, these quadratic costs may outweigh the savings,
but under reasonable assumptions (e.g., c2 < n) these additive costs should not matter, in
particular—as we shall see in the following—not in the case of super-linear base algorithms.

Lemma 9 (class penalty for single round robin, super-linear base algorithm)

For p > 1: πr|fp
(c, n) <

{
c − 1 if c is even

c if c is odd

Proof
Assume we have c classes, class i has ni examples,

∑c
i=1 ni = n.

c is even:
In this case, we can arrange the learning tasks in the form of c − 1 rounds. Each round
consists of c/2 disjoint pairings, i.e., each class occurs exactly once in each round, and it has
a different partner in each round. Such a tournament schedule is always possible.9 Without
loss of generality, consider a round where classes 2i are paired against classes 2i − 1. The
complexity of this round is

∑c/2
i=1 fp(n2i + n2i−1). As for p > 1 and ai > 0, i = 1 . . . N it

holds that
∑

i a
p
i < (

∑
i ai)p, and because we assumed c > 2, we get

c
2∑

i=1

fp(n2i + n2i−1) < fp(

c
2∑

i=1

n2i + n2i−1) = fp(
c∑

i=1

ni) = fp(n)

Analogously, we can derive the same upper bound for each of the c−1 rounds. Thus the total
complexity of the round robin binarization gr|fp

(c, n) < (c− 1)fp(n) and πr|fp
(c, n) < c− 1.

c is odd:
we add a dummy class with nc+1 = 0 examples, and perform a tournament as above. As
this tournament has c rounds, πr|fp

(c, n) < c.

Note that the upper bounds in Lemma 9 are not tight (see also Theorems 11 and 12 below).

9. A simple algorithm for constructing such a tournament is to fix one player, say the one with index c
(assume c is even, add a dummy player if it is not). Then construct a tournament schedule for the first
round by pairing player i with player (c + 1) − i, i = 1 . . . c/2. Subsequent rounds are played with the
same pairings, but before each round, the first c − 1 entries rotate places, i.e., player i takes over the
place of i+1 (i = 1 . . . c−2) and c−1 moves to 1. It is both, fairly trivial to see that this is correct, and
quite easy to put into practice when organizing a round robin chess tournament for kids (let one stick
to its seat and all others move around one seat at a time).
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In particular, the bound of c − 1 should also hold for odd numbers but the proof for that
case seems to be considerably more tricky.10 However, the current version suffices to prove
the following theorem:

Theorem 10 (efficiency of round-robin and unordered binarization)
For algorithms with at least linear complexity (p ≥ 1): πr|fp

(c, n) < πu|fp
(c, n), i.e., single

round robin is more efficient than unordered binarization.

Proof Follows immediately from Lemmas 7, 8 and 9.

As mentioned above, the bounds used for proving the lemmas are certainly not tight.
This becomes obvious, if we look at problems with a uniform class distribution.

Theorem 11 (class penalty for class-balanced problems)
For a class-balanced problem, πr|fp

(c) = (c − 1)(2c )p−1

Proof In the (single) round robin case, we have c(c − 1)/2 problems with 2n/c examples
each. Hence the total complexity is

gr|fp
(c, n) =

c(c − 1)
2

fp

(
2
n

c

)
= (c − 1) c

2
λ

(
2
n

c

)p
= (c − 1)

(
2
c

)p−1

λnp =

= (c − 1)
(
2
c

)p−1

fp(n)

Therefore πr|fp
(c) = (c − 1)(2c )p−1.

From this result, it is easy to see that πr|fp
(c, n) decreases with increasing complexity

order p of the base learner (assuming c > 2). Likewise, for p > 2, πr|fp
(c, n) can be made

arbitrarily small by increasing the number of classes c. While the latter property is hard
to generalize for arbitrary class distributions—it is not the case that every problem with
more than c classes has a smaller class penalty than an arbitrary c-class problem (and vice
versa)—it is easy to prove the following theorem:

Theorem 12 (class penalty ratio for increasing order of base algorithm)

For c > 2, the class penalty ratio
πr|fp (c,n)

πu|fp (c,n)
is monotonically decreasing with p and

lim
p→∞

πr|fp
(c, n)

πu|fp
(c, n)

= 0

10. The straightforward proof idea of deriving an upper bound for all regular pairings of each round (ex-
cluding the pairing with the dummy class) does not go through because the inequality

∑c
i=1(n−ni)

p <
(c − 1)np does not hold in general.
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Proof The total effort for the single round robin is
∑c−1

i=1

∑c
j=i+1 fp(ni + nj). Hence the

class penalty ratio is:

πr|fp
(c, n)

πu|fp
(c, n)

=
gr|fp
(c, n)

gu|fp
(c, n)

=

∑c−1
i=1

∑c
j=i+1 fp(ni + nj)
cfp(n)

=
1
c

c−1∑
i=1

c∑
j=i+1

fp(ni + nj)
fp(n)

Consequently,

lim
p→∞

πr|fp
(c, n)

πu|fp
(c, n)

= lim
p→∞

1
c

c−1∑
i=1

c∑
j=i+1

λ(ni + nj)p

λnp
=
1
c

c−1∑
i=1

c∑
j=i+1

lim
p→∞

(
ni + nj

n

)p

= 0

The last equation holds because c > 2 and 0 < ni + nj < n (i, j = 1 . . . c ; i �= j), hence
ni+nj

n < 1. For the same reasons
(

ni+nj

n

)p
>

(
ni+nj

n

)p+ε
for all ε > 0 and

πr|fp (c,n)

πu|fp (c,n)
is

monotonically decreasing with p.

As the decrease with increasing order p is strictly monotonic, this theorem implies that
the more expensive a learning algorithm is, the larger will be the efficiency gain for using
round robin binarization instead of unordered binarization. In particular, it may be the
case that for expensive algorithms, even a double round robin is faster than unordered
binarization (in fact, it is easy to see that Theorem 12 also holds for double round robin
binarization) or may be even faster than ordered binarization. Assume, e.g., an algorithm
with a quadratic complexity on a class-balanced eight-class problem (i.e., p = 2 and c = 8).
According to Theorem 11 and Lemma 7:

πr|fp
(c)

πu|fp
(c)
=
(c − 1)(2c )p−1

c
=
7(14)

1

8
=
7
32

<
1
4

Thus, under these circumstances, the single round robin is more than four times faster than
the unordered approach. Considering that the double round robin is twice as slow as the
single round robin, and assuming that the ordered approach is twice as fast as the unordered
approach (see the following section for empirical values on that), the double round robin
may in this case be faster than the ordered approach. This scenario will be empirically
evaluated in the following section.

5.2 Empirical Evaluation

Contrary to the theoretical analysis in the previous section, where we focussed on the
“friendly” case of pairing unordered binarization vs. single round robin, our empirical re-
sults compare the performance of a double round robin binarization with Ripper as a base
learner against both ordered binarization (Ripper’s default mode) and unordered binariza-
tion (Ripper with the parameters -a unordered). In the case of a linear algorithm com-
plexity, the double round robin should be about two times slower than the unordered bina-
rization and four times slower than the ordered binarization. As discussed in the previous
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Table 3: Runtime results: The first column shows the average run-times (in CPU secs. user
time) of R3. The subsequent columns show the ratio of R3 over unordered and
ordered Ripper. The reported run-times are average training time over all folds of
a 10-fold cross-validation. The line at the bottom shows the geometric average of
the 17 cross-validated performance ratios.

dataset R3 vs. unordered vs. ordered
abalone 140.28 3.14 3.27
car 6.71 1.55 1.47
glass 2.03 2.26 3.80
image 25.84 0.90 1.98
lr spectrometer 489.67 4.40 6.93
optical 275.69 0.63 1.34
page-blocks 36.66 1.43 1.93
sat 186.89 0.69 1.25
solar flares (c) 6.65 6.03 7.57
solar flares (m) 3.98 5.62 7.49
soybean 21.07 6.29 13.24
thyroid (hyper) 19.71 2.68 3.46
thyroid (hypo) 14.91 2.39 3.63
thyroid (repl.) 15.35 2.26 3.33
vehicle 7.66 1.22 2.10
vowel 16.22 0.87 2.16
yeast 16.90 1.77 3.12
average 2.02 3.19

section, Ripper’s super-linear run-time11 might improve the relative performance of round
robin learning.
Table 3 shows the run times in CPU secs. user time (measured on a Sparc Ultra-2 under

Sun Solaris) of R3 and its performance ratios against Ripper in unordered and ordered
mode. The reported times are average training times,12 i.e., the performance ratios can be
interpreted as empirical estimates of the class penalty ratios πr

πu
and πr

πo
. On average, R3 is

about two times slower than Ripper in unordered mode, and about three times slower than
Ripper in default, ordered mode, while Ripper’s ordered mode is about 1.5 times faster than
unordered mode (as opposed to the factor 2 we were assuming in the theoretical analysis
at the end of Section 5.1). This means that despite the inefficient implementation, the
empirical values are fairly close to the estimates we made at the end of the previous section:
for a linear algorithm, we expected the double round-robin procedure to be about twice as
slow as the unordered approach and about four times as slow than the ordered approach.

11. The complexity of Ripper’s initial rule learning and pruning phase is O(n log2(n)) (Fürnkranz and Wid-
mer, 1994; Cohen, 1995). Thereafter Ripper performs two phases of optimization, which—according to
the experimental evidence shown in (Cohen, 1995)—only add a constant factor to the overall complexity.

12. Note that the performance ratios for testing times would in general be considerably worse; in some cases,
we observed increases in the factors of up to 50%. We will briefly discuss the problem of classification
efficiency (and some proposals for solving it) in Section 7.
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Apparently, the additional savings—based on the fact that simpler concepts are learned for
the pairwise tasks and that Ripper’s run-time is super-linear—make up for the losses due to
the sub-optimal implementation as a wrapper. For more expensive base learning algorithms
(like support vector machines), the analysis in the previous section lets us expect bigger
savings.
Moreover, there are several cases where R3 is even faster than Ripper in unordered mode

and comes close to Ripper in ordered mode. This is despite the fact that R3 is implemented
as a perl-script that communicates to Ripper by writing the training and test sets of the new
tasks to the disk, while unordered and ordered binarization are native in Ripper’s efficient
implementation in C. Clearly, a tight integration of round robin binarization into Ripper’s
C-code would be more efficient.13

6. Round Robin Learning as an Ensemble Technique

Ensemble techniques have received considerable attention within the recent machine learn-
ing literature (Dietterich, 1997; 2000a; Opitz and Maclin, 1999; Bauer and Kohavi, 1999).
The idea to obtain a diverse set of classifiers for a single learning problem and to vote or
average their predictions is both simple and powerful, and the obtained accuracy gains often
have a sound theoretical foundation (Freund and Schapire, 1997; Breiman, 1996). Averag-
ing the predictions of these classifiers helps to reduce the variance and often increase the
reliability of the predictions. There are several techniques for obtaining a diverse set of
classifiers. The most common technique is to use subsampling to diversify the training sets
as in bagging (Breiman, 1996) and boosting (Freund and Schapire, 1997). Other techniques
include the use of different feature subsets (Bay, 1999), to exploit the randomness of the base
algorithms (Kolen and Pollack, 1991), possibly by artificially randomizing their behavior
(Dietterich, 2000b), or to use multiple representations of the domain objects, for example by
using information originating from different hyperlinks pointing to a web page (Fürnkranz,
1999a; 2002). Finally, classifier diversity can be ensured by modifying the output labels,
i.e., by transforming the learning tasks into a collection of related learning tasks that use
the same input examples but a different assignments of the class labels. Error-correcting
output codes are the most prominent example for this type of ensemble method (Dietterich
and Bakiri, 1995).
Clearly, round robin classification may also be interpreted as a member of this last group,

and its performance gain may be seen in this context. Obviously, the final prediction is made
by exploiting the redundancy provided by multiple models, each of them being constructed
from a subset of the original data. However, contrary to subsampling approaches like
bagging and boosting, these datasets are constructed deterministically.14 In this respect
pairwise classification shares more similarities with error-correcting output codes, but differs
from it through the fixed procedure for setting up the new binary problems and the fact

13. The effect is somewhat compensated by the fact that we only report user time (which ignores time for
disk access and system time). For example, on the 26-class letter dataset, where R3 writes 26×25 = 650
files to the disk, its total run-time is about 15% higher than the reported user time, while there is almost
no difference for Ripper.

14. Boosting is also deterministic if the base learner is able to use weighted examples. Often, however, the
example weights are interpreted as probabilities which are used for drawing a random sample as the
training set for the next boosting iteration.
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Table 4: Boosting: A comparison between round robin binarization and boosting, both
with C5.0 as a base learner. The first column shows the results of C5.0, while the
next three column pairs show the results of round robin learning, boosting, and
the combination of both, all with C5.0 as a base learner. For these, we give both
the absolute error rate and the performance ratio relative to the base learner C5.0.
The last line shows the geometric average of these ratios.

dataset C5.0 round robin boosting both
abalone 78.48 75.08 0.957 77.88 0.992 74.67 0.951
car 7.58 5.84 0.771 3.82 0.504 1.85 0.244
glass 35.05 24.77 0.707 27.57 0.787 22.90 0.653
image 3.20 2.90 0.905 1.60 0.500 1.73 0.541
lr spectrometer 51.22 51.79 1.011 46.70 0.912 51.98 1.015
optical 9.20 5.04 0.547 2.46 0.267 2.54 0.277
page-blocks 3.09 2.98 0.964 2.58 0.834 2.78 0.899
sat 13.82 13.16 0.953 9.32 0.675 9.00 0.651
solar flares (c) 15.77 15.69 0.995 16.41 1.041 16.70 1.059
solar flares (m) 4.90 4.90 1.000 5.90 1.206 5.83 1.191
soybean 9.66 6.73 0.697 6.59 0.682 6.44 0.667
thyroid (hyper) 1.11 1.14 1.024 1.03 0.929 1.33 1.190
thyroid (hypo) 0.58 0.69 1.182 0.32 0.545 0.53 0.909
thyroid (repl.) 0.72 0.74 1.037 0.90 1.259 0.90 1.259
vehicle 26.24 29.20 1.113 24.11 0.919 23.17 0.883
vowel 21.72 19.49 0.898 8.89 0.409 14.75 0.679
yeast 43.26 40.63 0.939 41.85 0.967 40.77 0.942
average 0.909 0.735 0.757

that each of the new problems is smaller than the original problem. In particular the latter
fact may often cause the sub-problems in pairwise classification to be conceptually simpler
than the original problem (as illustrated in Figure 1).

In previous work (Fürnkranz, 2001), we observed that the improvements in accuracy
obtained by R3 over Ripper were quite similar to those obtained by C5.0-boost over C5.0 on
the same problems. Round robin binarization seemed to work whenever boosting worked,
and vice versa. The correlation coefficient r2 of the the error ratios of C5.0-boost/C5.0 and
R3/Ripper on the 20 datasets was about 0.618, which is in the same range as correlation
coefficients for bagging and boosting (Opitz and Maclin, 1999). We interpreted this as weak
evidence that the performance gains of round robin learning may be comparable to that
of other ensemble methods and that it could be used as a general method for improving
a learner’s performance on multi-class problems. We will further investigate this question
in this section and will in particular focus upon a comparison of round robin learning with
boosting (Section 6.1) and bagging (Section 6.2), and upon the potential of combining it
with these techniques.
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6.1 Boosting

As a first step, we performed a direct comparison of the performance of C5.0 and C5.0-boost
(C5.0 called with the parameter -b, i.e., 10 iterations of boosting) to C5.0-rr, a single round
robin procedure with C5.0 as the base learning algorithm. Table 4 shows the results of a
10-fold cross-validation on 17 datasets.
The first thing to note is that the performance of C5.0 does indeed improve by about

10% on average if round robin binarization is used as a pre-processing step for multi-class
problems. This is despite the fact that C5.0 can handle multi-class problems and does not
depend on a class binarization routine. However, the gain is not as consistent and not as big
as the gain for Ripper (Table 2), possibly because Ripper’s average error on the multi-class
problems in our study is in general above that of C5.0 (by a factor of 1.122), and therefore
allows for larger improvements. A possible explanation for this is that the unordered and
ordered binarization schemes used by Ripper are not very good. This is confirmed by the
fact that in a direct comparison (which can easily be computed from Tables 2 and 4), R3

decreases the average error of C5.0 by a factor of 0.838, and the error of C5.0-rr by a factor
of 0.923. From this, we can conclude that robin binarization helps Ripper to outperform
C5.0 on multi-class problems.
The direct comparison between round robin classification and boosting shows that the

improvement of C5.0-rr over C5.0 is not as large as the improvement provided by boosting:
although there are a few cases where round robin outperforms boosting, C5.0-boost is much
more reliable than C5.0-rr, producing an average error reduction of more than 26% on these
17 datasets. The correlation between the error reduction rates of C5.0-boost and C5.0-rr
is very weak (r2 = 0.276), which refutes our earlier hypothesis and brings up the question
whether there is a fruitful combination of boosting and round robin classification. The
last column of Table 4 answers this question negatively: the results of using round robin
classification with C5.0-boost as a base learner does—on average—not lead to performance
improvements over boosting.
These results are analogous to the results of Schapire (1997) who compared AdaBoost.OC

(error-correcting output codes as a binarization scheme for conventional two-class AdaBoost)
with AdaBoost.M1 (Freund and Schapire, 1997), AdaBoost’s straightforward adaptation for
multi-class base learners (a version of which is presumably also implemented in C5.0; Quin-
lan 1996), and found no significant differences for the base learner C4.5 (Quinlan, 1993),
C5.0’s predecessor. Similar to our comparison between C5.0-boost and round robin bi-
narization, Schapire (1997) also found that boosting outperformed binarization via error-
correcting output codes. In subsequent work, Allwein et al. (2000) showed that the per-
formance gain of pairwise classification using AdaBoost as a base learner is on average
indiscernible from the performance gain of alternative binarization schemes, including some
employing error-correcting output codes (such as AdaBoost.OC).

6.2 Bagging

So far we were only concerned with single and double round robins. A natural extension
to this procedure is to consider cases where more than two classifiers are trained for each
binary problem. For algorithms with random components (such as Ripper’s internal split
of the training examples or the random initialization of back-propagation neural networks)
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Table 5: Bagging: A comparison of round robin learning versus bagging and of the com-
bination of both using Ripper as the base classifier. At the bottom, the average
error ratios of the ensemble techniques over the respective base learner are shown
for the base learners Ripper, C5.0, and C5.0-boost (we omitted the detailed results
for the latter two). Note that the average performance ratios are relative to the
base learner (i.e., they are only comparable within a line not between lines).

Ripper base round robin bagging both
abalone 81.18 74.34 0.916 78.36 0.965 73.14 0.901
car 12.15 2.26 0.186 9.38 0.771 1.79 0.148
glass 34.58 25.70 0.743 29.44 0.851 25.70 0.743
image 4.29 3.46 0.808 2.51 0.586 2.99 0.697
lr spectrometer 61.39 53.11 0.865 57.82 0.942 52.92 0.862
optical 9.48 3.74 0.394 2.86 0.302 2.81 0.296
page-blocks 3.38 2.76 0.816 2.65 0.784 2.54 0.751
sat 13.04 10.35 0.794 10.18 0.781 8.92 0.684
solar flares (c) 15.91 15.77 0.991 15.91 1.000 15.69 0.986
solar flares (m) 5.47 5.04 0.921 5.26 0.961 5.18 0.947
soybean 8.79 6.30 0.717 8.20 0.933 6.00 0.683
thyroid (hyper) 1.49 1.11 0.749 1.41 0.945 1.09 0.731
thyroid (hypo) 0.56 0.53 0.955 0.58 1.050 0.42 0.764
thyroid (repl.) 0.98 1.01 1.026 0.98 0.999 0.85 0.864
vehicle 30.38 29.08 0.957 26.12 0.860 26.83 0.883
vowel 27.07 18.69 0.690 16.26 0.601 18.79 0.694
yeast 42.39 41.78 0.986 40.63 0.959 39.89 0.941
average (Ripper) 0.747 0.811 0.685
average (C5.0) 0.909 0.864 0.838
average (C5.0-boost) 1.029 0.977 1.019

this could simply be performed by running the algorithm on the same dataset with different
random seeds. For other algorithms there are two options: randomness could be injected
into the algorithm’s behavior (Dietterich, 2000b) or random subsets of the available data
could be used for training the algorithm. The latter procedure is more or less equivalent to
bagging (Breiman, 1996). We will evaluate this option in this section.

Table 5 shows the results of a comparison of round robin learning, bagging, and a com-
bination of both. Bagging was implemented by drawing 10 samples with replacement from
the available data. Ties were broken in the same way as for the round robin binarization,
i.e., by simple voting using the a priori class probability as a tie breaker. Similarly, bagging
was integrated with round robin binarization by drawing 10 independent samples of each
pairwise classification problem. Thus we obtained a total of 10c(c− 1) predictions for each
c-class problem, which again were simply voted. The number of 10 iterations was chosen
arbitrarily (to conform to C5.0-boost’s default number of iterations) and is certainly not
optimal (in both cases).
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The results show clearly that the performance of the simple round robin (second column)
can be improved considerably by integrating it with bagging (last column). The bagged
round robin procedure reduces Ripper’s error on the datasets to about 68.5% of the original
error (third line from the bottom). For comparison, we also show the results of bagging
only, which seems to give the least improvement. The results of bagging are not included to
compare it to the round robin, but to show that the reduction in error rate for the bagged
round robin robin outperforms both its constituents.
We also repeated these experiments using C5.0 and C5.0-boost as the base learners. We

only show the average performance for these cases. Again, the advantage of the use of
round robin learning is less pronounced for the multi-class learner C5.0 (it is even below the
improvement given by our simple bagging procedure), and the combination of C5.0-boost
and round robin learning does not produce an additional gain. It is worth mentioning that
the combination of boosting and bagging outperforms boosting, which confirms previous
good results with such algorithms (Pfahringer, 2000; Krieger et al., 2001).
In order to compare the absolute performances of the algorithms we can normalize all

relative results on the performance of one algorithm (say Ripper). C5.0’s performance was
better than Ripper’s by a factor of about 0.891. Multiplying this with the improvement of
0.735 of boosting (Table 4) and of an additional 0.977 for adding bagging (Table 5) yields
that bagged C5.0-boost has about 64% of the error rate of basic Ripper, which makes it the
best performing combination. In comparison, the combination of round robin and bagging
for Ripper (68.5%) is relatively close behind, in particular if we consider the bad performance
of Ripper in comparison to C5.0. An evaluation of a boosting variant of Ripper (such as
Slipper; Cohen and Singer, 1999) would be of interest.

7. Other Properties and Open Questions

In the following, we briefly discuss further important aspects of round robin binarization.

Decoding: We have mostly ignored the issue of decoding techniques for combining the
predictions of the pairwise classifiers into a final prediction for the multi-class problem. The
technique we used in this paper (simple voting using the a priori probability of the class as
a tie breaker), is quite likely to be suboptimal. First, one could improve the tie breaking by
exploring techniques that are commonly used for breaking ties in tournament cross tables
in games and sports (such as the Sonneborn-Berger ranking in chess tournaments). A
further step ahead would be to weight each vote with a confidence estimate provided by the
base classifier, or to allow a classifier only to vote for a class if it has a certain minimum
confidence in its prediction. Several studies in various contexts have compared different
voting techniques for combining the predictions of the individual classifiers of an ensemble
(e.g., Mayoraz and Moreira, 1997; Allwein et al., 2000; Fürnkranz, 2002). Although the
final word on this issue remains to be spoken, it seems to be the case that techniques that
include confidence estimates into the computation of the final predictions are preferable (cf.
also Schapire and Singer, 1999). Along similar lines, there have been several proposals for
combining the class probability estimates of the pairwise classifiers into class probability
distributions for the multi-class problems (Price et al., 1995; Hastie and Tibshirani, 1998).
More elaborate proposals suggest learning separate classifiers for deciding whether a given
example belongs to one of the two classes used to train a certain member of the pairwise
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ensemble (Moreira and Mayoraz, 1998), or organizing the classifiers into an efficient graph
structure that can derive a prediction in at most c − 1 steps (Platt et al., 2000).
Classification Efficiency: Our efficiency analysis is only concerned with training time.
At testing time, one has to test a quadratic number of classifiers in order to make the final
prediction. Even though the constituent classifiers are quite likely to be simpler (which
often means that they can make faster predictions) it can be expected that classification
takes considerably longer for a round robin ensemble than for unordered binarization. This
situation is particularly bad for lazy learners, which defer most of their training effort to
the classification phase.
Next to the straightforward solution of testing all theories in parallel (see below), a

solution for this problem could be found in the proposal of Platt et al. (2000) who suggest
organizing pairwise classifiers in a decision graph where each node represents a binary
classifier. They show that this structure allows obtainment of a prediction for a c-class
problem by consulting only c − 1 pairwise classifiers without loss of accuracy on three
benchmarks problems. In some sense, this technique may be viewed as the “ordered”
version of round robin classification.
Finally, we could once more take a look at sports and game tournaments, where elaborate

pairing schemes allow determination of a reliable ranking in cases where a round robin
tournament is infeasible due to the high number of players. The frequently used knock-out
tournament (where players are paired randomly and only the winner advances into the next
round) is probably too brittle. An interesting alternative might be provided by swiss system
tournaments, which are frequently used in competitive chess. In this type of tournament, all
players play a fixed number of rounds, typically of the order log(c). The trick is that in each
round players of about equal strength (i.e., players that are ranked close to each other in
the current standings of the tournament) are paired against each other. Such schemes could
improve classification time for problems with very high numbers of classes, in particular if
classification is very expensive (e.g., in the case of lazy learners).

Comprehensibility: While boosting seems to provide larger gains in accuracy, the price
to pay is that the learned ensemble of classifiers is no longer easy to comprehend. While
round robin rule learning also learns an ensemble of classifiers, we think that it has the
advantage that each element of the ensemble has a well-defined semantics (separating two
classes from each other). In fact, Pyle (1999, p.16) proposes a very similar technique called
pairwise ranking in order to facilitate human decision-making in ranking problems. He
claims that it is easier for a human to determine an order between n items if one makes
pairwise comparisons between the individual items and then adds up the wins for each item,
instead of trying to order the items right away.15

Parallel Implementations: It should be noted that—contrary to boosting, where the
individual runs depend on each other and have to be performed in succession—pairwise
classification can be easily parallelized by assigning the binary classification problems to
different processors, as already noted by Friedman (1996) and Lu and Ito (1999). As each
binary task will be smaller than the original task, the total training time of a multi-class
15. The aspect of being able to rank the available classifications for each example (as an intermediate version

between predicting only a class value and providing a full probability distribution) is another interesting
aspect of round robin binarization, which might be worth exploring in more depth.

739



Fürnkranz

problem of size n will be significantly below that of a binary problem of the same size, if each
binary classifier can be trained on a separate processor. Naturally, a parallel implementation
would also provide a trivial solution to the problem with classification efficiency discussed
above.

Memory Requirements: It is also clear that each individual binary task in a round-
robin binarization has fewer training examples than the original tasks. For multi-class tasks
that are too large to be performed in memory, pairwise classification may provide a simple
means to reduce the size of the learning task without resorting to subsampling. Note that
this is not the case for unordered class binarization or error-correcting output codes.

Imbalanced Class Distributions: It would also be interesting to investigate the effect
of round robin binarization on minority classes, in particular in problems where several
large classes appear next to a few small classes. We think that the fact that separate
classifiers are trained to discriminate the small classes from each other (and not only from
all remaining examples as would be the case for unordered binarization or for treating the
multi-class problem as a whole) may help to improve the focus in the case of imbalanced
class distributions. On the other hand, if the base learner tends to prefer large classes, one
dominant large class will tend to win against all minority classes and will be more frequently
predicted. The evidence from Table 4 seems to confirm this: it is primarily sets with skewed
class distributions where round robin classification does not perform well (consider, e.g., the
three thyroid datasets). However, this evidence is certainly not conclusive and we believe
that a closer investigation of this issue is a rewarding topic for future research.

8. Related Work

The idea of pairwise classification has been known in the neural networks and statistics
communities for some time. For example, Witten and Frank (2000, p.113) refer to it as a
technique for making linear regression applicable to multi-class problems but do not cite a
source. The earliest reference we could find is Knerr et al. (1990) who propose a stepwise
procedure for linearizing non-linear multi-class problems by first trying to identify classes
that can be solved by a one-against-all approach, then a pairwise approach, and finally
a piece-wise linear technique. The motivation behind this and other works in the neural
networks community is that it is often better to have a modular network, i.e., a network
that consists of several simpler and independently trained sub-networks, rather than a
single, complex multi-layer neural network, which usually requires a large hidden layer and
significant training times. Unordered (Anand et al., 1995) and pairwise (Lu and Ito, 1999)
binarization techniques have also been investigated in this context.
Friedman (1996) evaluates pairwise classification on two versions of CART (Breiman

et al., 1984) and a nearest neighbor algorithm on 50 randomly generated problems. He
observed improvements for the CART version which uses a linear function for splitting a
node and for the nearest neighbor rule. For CART with axis parallel splits, the performance
of the pairwise class binarization was similar to that of the standard techniques. The author
also provided a brief discussion of the complexity of the approach.
Naturally, pairwise classification was also investigated within the support vector ma-

chine community. A comparison of unordered and round robin binarization on a speaker

740



Round Robin Classification

identification problem can be found in (Schmidt, 1996; Schmidt and Gish, 1996), without
providing a clear conclusion about the preferable approach. Kreßel (1999) discusses the
technique in some detail and presents empirical results on a digit recognition task, where
the author notes the unexpected efficiency of the approach without providing an explanation
for it. Recently, Hsu and Lin (2002) conducted an excellent empirical comparison between
unordered binarization, pairwise classification with both the simple voting technique we
used and with the more efficient proposal for organizing the classifiers into an efficient DAG
(Platt et al., 2000), as well as two approaches for directly generalizing the support vector al-
gorithm to multi-class problems. In their experiments, round robin binarization performed
best, both in terms of accuracy and training time. Interestingly, the advantage over com-
peting methods was more pronounced for a linear kernel than for a non-linear RBF kernel.
We interpret this as evidence that round robin binarization simplifies the individual binary
decision problems as motivated in Figure 1.
Angulo and Català (2000) suggest a related technique where multi-class problems are

mapped to 3-class problems. Like with pairwise classification, the idea is to generate one
training set for each pair of classes, but in addition to encoding the two class values with
target values +1 and −1, examples of all other classes are added with a target value of 0,
which gives up some of the advantages that result from the reduction of the training set
sizes on the binary problems. They do not evaluate their approach. A similar idea was
used by Kalousis and Theoharis (1999) for the meta-learning task of predicting the most
suitable learning algorithm(s) for a given dataset. A nearest-neighbor learner was trained
to predict the better algorithm for each pair of learning algorithms, where each of these
pairwise problems had three classes: one for each algorithm and a third class “tie” if both
algorithms performed indistinguishably.
Error-correcting output codes (Dietterich and Bakiri, 1995) are a popular and powerful

class binarization technique. The basic idea is to encode a c-class problem as c̄ binary
problems (c̄ > c), where each binary problem uses a subset of the classes as the positive class
and the remaining classes as a negative class. It may thus be viewed as a generalization
of unordered binarization, where only single classes are used as positive examples. As a
consequence, each original class is encoded as a c̄-dimensional binary vector, one dimension
for each prediction of a binary problem (by convention +1 for positive and −1 for negative).
The resulting matrix of the form {−1,+1}c×c̄ is called the coding matrix. New examples are
classified by determining the row in the matrix that is closest to the binary vector obtained
by submitting the example to the c̄ classifiers. If the binary problems are chosen in a way
that maximizes the distance between the class vectors, the reliability of the classification
can be significantly increased. Error-correcting output codes can also be easily parallelized,
but each subtask requires the total training set. As typically c̄ > c, the penalty function
πecoc > c, i.e., pairwise and unordered binarization are more efficient.
Allwein et al. (2000) show that a generalization of error-correcting output codes can

be used as a general framework for class binarization techniques. Their basic idea is to
generalize the coding matrices in a way that allows examples to be ignored in the binary
problems, i.e., to allow the coding matrices to be of the form {−1, 0,+1}c×c̄. Clearly,
pairwise classification is a special case in this framework. For example, the coding matrix for
a double round robin has c̄ = c(c−1) columns, where the column corresponding to the binary
problem <i, j> has +1 in the i-th row, −1 in the j-th row and 0 in all other rows. Thus, each
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row is a vector of the form {−1, 0,+1}c̄. Note, however, that the vector of predictions is of
the form {−1,+1}c̄ because every binary classifier will make a prediction (either +1 or −1)
for every example. Nevertheless, the simple voting procedure we used is equivalent to finding
the row that is most similar to the prediction vector (if similarity is measured with the
Hamming distance), which is equivalent to the decoding technique suggested by Dietterich
and Bakiri (1995). Allwein et al. (2000) criticize this simple Hamming decoding and suggest
the use of loss-based decoding techniques that take into account the confidence of the base
learner into its own predictions. In a theoretical analysis, which relates the training error of
decoding methods to the error on the binary problems and to the minimum distance between
entries in the coding matrix, the authors derive upper bounds for the training error of loss-
based decoding that are lower than those for Hamming decoding. In an experimental study
with five different class binarization techniques and three decoding techniques (two of them
loss-based and one Hamming decoding), the loss-based techniques seemed to produce lower
generalization errors. Their results also showed that for support vector machines unordered
binarization is inferior to all other techniques, among them pairwise classification. Among
these alternatives, no clear winner emerged. However, for boosted decision trees, unordered
binarization performed on the same level as all other approaches.
Finally, we note the relation of round robin classification to comparison training (Tesauro,

1989; Utgoff and Clouse, 1991), which has been proposed as a training procedure in evalu-
ation function learning. In this framework, the learner is not trained with the target values
of the evaluation function in certain states, but instead is trained on state pairs where the
preferable state is marked. Thus, this training procedure is somewhere between supervised
learning (where the function is trained on examples of target values) and reinforcement
learning (where it only receives indirect feedback about the value of states). Tesauro (1989)
demonstrated a particularly interesting technique, where he enforced a symmetric neural
network architecture and showed that with this architecture, one only has to perform n
network evaluations to determine the best of n moves. It is an interesting open question,
whether a similar technique could be employed for speeding up pairwise classification.

9. Conclusions

This paper has investigated the use of round robin binarization (or pairwise classification)
as a technique for handling multi-class problems with separate-and-conquer rule learning
algorithms (aka covering algorithms). Our experimental results show that, in comparison
to conventional ordered or unordered binarization, the round robin approach may yield
significant gains in accuracy without risking a bad performance. In particular, round robin
binarization helps Ripper to outperform C5.0 on multi-class problems, whereas C5.0 outper-
forms the original version of Ripper on the same problems. We think that the reason for this
improvement lies on the one hand in the exploitation of diverse predictions in an ensemble
of classifiers and, on the other hand, in the fact that the resulting binary problems may be
considerably simpler and can thus be learned more reliably (Figure 1).
Moreover, we demonstrated both empirically and theoretically that the resulting qua-

dratic growth in the number of learning problems is compensated by the reduction in size for
each of the individual problems. For base algorithms with linear or super-linear run-time,
round robin binarization is faster than the conventional unordered technique. Furthermore,
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we have proven that this advantage increases with the complexity of the base algorithm.
Note that these theoretical results are not restricted to rule learning, but are also applicable
to perceptrons, support vector machines, boosting, and other learning algorithms that need
binarization techniques for solving multi-class problems. Our experimental results confirm
the efficiency of round robin binarization for rule learning, but for a true evaluation of the
performance of this technique, an efficient, tight integration into a separate-and-conquer
rule learning algorithm would be needed.
Finally, we investigated the properties of round robin learning as a general ensemble

technique, in particular in comparison to bagging and boosting. For C5.0 and even less
so for C5.0-boost, round robin classification did not seem to work as well as it did for
Ripper, which is consistent with previous similar results on error-correcting output codes.
Similarly, a straightforward integration of pairwise classification with bagging outperformed
both constituent techniques, when using Ripper (and to some extent when using C5.0) as a
base learner, but not in combination with boosting. It remains to be seen whether round
robin learning does not work well for boosting in general, or whether this is a specific
phenomenon for C5.0 and its boosting procedure. In any case, we can conclude that round
robin classification provides a more efficient and more accurate alternative to the class
binarization procedures that are currently in use in inductive rule learning.
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