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Abstract

We consider a firm that sells a large number of products to its customers in an online
fashion. Each product is described by a high dimensional feature vector, and the market
value of a product is assumed to be linear in the values of its features. Parameters of the
valuation model are unknown and can change over time. The firm sequentially observes a
product’s features and can use the historical sales data (binary sale/no sale feedbacks) to
set the price of current product, with the objective of maximizing the collected revenue.
We measure the performance of a dynamic pricing policy via regret, which is the expected
revenue loss compared to a clairvoyant that knows the sequence of model parameters in
advance.

We propose a pricing policy based on projected stochastic gradient descent (PSGD) and
characterize its regret in terms of time T , features dimension d, and the temporal variability
in the model parameters, δt. We consider two settings. In the first one, feature vectors are
chosen antagonistically by nature and we prove that the regret of PSGD pricing policy is of
order O(

√
T +

∑T
t=1

√
tδt). In the second setting (referred to as stochastic features model),

the feature vectors are drawn independently from an unknown distribution. We show that
in this case, the regret of PSGD pricing policy is of order O(d2 log T +

∑T
t=1 tδt/d).

Keywords: Dynamic Pricing, Revenue Management, Varying-Coefficient Models, Regret,
Stochastic Gradient Descent, Hypothesis Testing

1. Introduction

Motivated by the prevalence of online marketplaces, we consider the problem of a firm
selling a large number of products, that are significantly differentiated from each other, to
customers that arrive over time. The firm needs to price the products in a dynamic manner,
with the objective of maximizing the expected revenue.

The majority of work in dynamic pricing assume that a retailer sells identical items to its
customers (Besbes and Zeevi, 2009; Farias and Van Roy, 2010; Broder and Rusmevichien-
tong, 2012; den Boer and Zwart, 2013; Wang et al., 2014). Recently, feature-based models
have been used to model the products differentiation by assuming that each product is
described by vectors of high-dimensional features. These models are suitable for business
settings where there are an enormous number of distinct products. One important example
is online ad markets. In this context, products are the impressions (user view) that are
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sold by the web publisher to advertisers. Due to the ever-growing amount of data that is
available on the Internet, for each impression there is large number of associated features,
including demographic information, browsing history of the user, and context of the web-
page. Many other online markets, such as Airbnb, eBay and Etsy also have a similar setting
in which products to be sold are highly differentiated. For example, in the case of Aribnb,
the products are “stays” and each is characterized by a large number of features including
space properties, location, amenities, house rules, as well as arrival dates, events in the area,
availability of near-by hotels, etc (Airbnb Documentation, 2015).

Here, we consider a feature-based model that postulates a linear relation between the
market value of each product and its feature values. Further, from the firm’s perspective, we
treat distinct buyers independently, and hereafter focus on a single buyer. Put it formally,
we start with the following model for the buyer’s valuation:

v(xt) = 〈xt, θ〉+ zt , (1)

where xt ∈ Rd denotes the product feature vector, θ represents the buyer’s preferences and
zt, t ≥ 1 are idiosyncratic shocks, referred to as noise, which are drawn independently and
identically from a zero mean distribution. For two vectors a, b, we write 〈a, b〉 to refer to
their inner product. Feature vectors xt are observable, while model parameter θ is a-priori
unknown to the firm (seller). Therefore, the buyer’s valuation v(xt) is also hidden from the
firm.

Parameters of the above model represents how different features are weighted by the
buyer in assessing the product. Considering such model, a firm can use historical sales data
to estimate parameters of the valuation model, while concurrently collecting revenue from
new sales. In practice, though, the buyer’s valuation of a product will change over time and
this raises the concern of perishability of sales data.

In order to capture this point, we consider a richer model with varying coefficients:

vt(xt) = 〈xt, θt〉+ zt . (2)

Model parameters θt may change over time and as a result, valuation of a product depends
on both the product feature vector and the time index.

We study a dynamic pricing problem, where at each time period t, the firm has a product
to sell and after observing the product feature vector xt, posts a price pt. If the buyer’s
valuation is above the posted price, vt(xt) ≥ pt, a sale occurs and the firm collects a revenue
of pt. If the posted price exceeds the buyer’s valuation, pt > vt(xt), no sale occurs. Note
that at each step, the firm has access to the previous feedbacks (sale/no sale) from the
buyer and can use this information in setting the current price.

In this paper, we will analyze the varying-coefficient model (2) and answer two funda-
mental questions:

First, what is the value of knowing the sequence of model parameters θt; in other
words, what is the expected revenue loss (regret) compared to the clairvoyant
policy that knows the parameters of the valuation model in advance? Second,
what is a good pricing policy?

The answer to the first question intrinsically depends on the temporal variability in
the sequence θt. If this variation is very large, then there is not much that can be learnt
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from previous feedback on the buyer’s behavior and the problem turns into a random price
experimentation. On the other hand, if all of the parameters θt are the same, then this
feedback information can be used to learn the model parameters, which in turn helps in
setting the future prices. In this case, an algorithm that performs a good balance between
price exploration and best-guess pricing (exploitation) can lead to a small regret. In this
work, we study this trade-off through a projected stochastic gradient descent algorithm and
investigate the effect of variations of the sequence of θt on the regret bounds.

Feature-based models have recently attracted interest in dynamic pricing. (Amin et al.,
2014) studied a similar model to (1) (without the noise terms zt), where the features xt
are drawn from an unknown i.i.d distribution. A pricing strategy was proposed based on
stochastic gradient descent, which results in a regret of the form O(T 2/3

√
log T ). This

work also studied the problem of dynamic incentive compatibility in repeated posted-price
auctions. Subsequently, (Cohen et al., 2016) studied model (1), wherein the feature vectors
xt are chosen antagonistically by nature and not sampled i.i.d. This work proposes a pricing
policy based on the ellipsoid method from convex optimization (Boyd and Vandenberghe,
2004) with a regret bound of O(d2 log(T/d)), under a low-noise setting. More accurately, the
regret scales as O(d2 log(min{T/d, 1/δ}) + dδT ), where δ measures the noise magnitude: in
case of bounded noise, δ represents the uniform bound on noise and in case of gaussian noise
with variance σ2, it is defined as δ = 2σ

√
log(T ). In (Lobel et al., 2016), the regret bound

of this policy was improved to O(d log T ), under the noiseless setting. In (Javanmard and
Nazerzadeh, 2016), authors study and highlight the role of the structure of demand curve
in dynamic pricing. They introduce model (1), and assume that the feature vectors xt are
drawn i.i.d. from an unknown distribution. Further, motivated by real-world applications, it
is assumed that the parameter vector θ is sparse in the sense that only a few of its entries are
nonzero. A regularized log-likelihood approach is taken to get an improved regret bound of
order s0(log(d)+log(T )). We add to this body of work by considering feature-based models
for valuation of products whose parameters vary over time.

Time-varying demand environments have also been studied recently by (Keskin and
Zeevi, 2016). Explicitly, they consider a firm that sells one type of product to customers
that arrive over a time horizon. After setting price pt, the firm observes demand Dt given
by Dt = αt + βtpt + εt, where αt, βt ∈ R are the unknown parameters of the demand model
and εt are the unobserved demand shocks (noise). By contrast, in this work we consider
different products, each characterized by a high-dimensional feature vector. Further, the
seller only receives a binary feedback (sale/no sale) of the customer’s behavior at each step,
rather than observing the customer’s valuation.

1.1 Organization of paper and our main contributions

The remainder of this paper is structured as follows. In Section 2, we formally define the
model and formulate the problem. Technical assumptions and the notion of regret will be
discussed in this section. We next propose a pricing policy based on projected stochastic
gradient descent (PSGD) applied to the log-likelihood function. At each time period t, it
returns an estimate θ̂t. The price pt is then set to the optimal price as if θ̂t was the actual
parameter θt. We next analyze the regret of our PSGD algorithm. Let δt = ‖θt+1 − θt‖
be the variation in model parameters at time period t. In Section 3.1, we consider the

3



Adel Javanmard

setting where the product feature vectors xt are chosen antagonistically by nature and
show that the regret of PSGD algorithm is of order O(

√
T +

∑T
t=1

√
tδt). Interestingly,

this bound is independent of the dimension d, which is a desirable property of our policy
for high-dimensional applications. We next, in Section 4, consider a stochastic features
model, where the feature vectors xt are drawn independently from an unknown distribution
(cf. Assumption 6). Under this setting, we show that the regret of PSGD is of order
O(d2 log T +

∑T
t=1 tδt/d). Note that setting δt = 0 corresponds to model (1) and our PSGD

pricing obtains a logarithmic regret in T . Section 7 is devoted to the proof of main theorems
and the main lemmas are proved in Section 8. Finally, proof of several technical steps are
deferred to Appendices.

1.2 Related literature

Our works is at the intersection of dynamic pricing, online optimization and high-dimensional
statistics. In the following, we briefly discuss the work most related to ours from these con-
texts.

Feature-based dynamic pricing. Recent papers on dynamic pricing consider models
with features/covariates, motivated in part by new advances in big data technology that
allow firms to collect large amount of fine-grained information. In the introduction, we
discussed the work (Amin et al., 2014; Javanmard and Nazerzadeh, 2016; Cohen et al., 2016)
which are closely related to our setting. Another recent work on feature-based dynamic
pricing is (Qiang and Bayati, 2016). In this work, authors consider a model where the seller
observes the demand entirely, rather than a binary feedback as in our setting. A greedy
iterative least squares (GILS) algorithm is proposed that at each time period estimates the
demand as a linear function of price by applying least squares to the set of prior prices and
realized demands. The work underscores the role of feature-based approaches and show
that they create enough price dispersion to achieve a regret of O(log(T )). This is closely
related to the work of (den Boer and Zwart, 2013) and (Keskin and Zeevi, 2014) in dynamic
pricing (without demand covariates) that demonstrate the GILS is suboptimal and propose
methods to integrate forced price-dispersion with GILS to achieve optimal regret.

Online optimization. This field offers a variety of tools for sequential prediction, where
an agent measures its predictive performance according to a series of convex functions.
Specifically, there is a sequence of a priori unknown reward functions f1, f2, f3, . . . and an
agent must make a sequence of decisions: at each time period t, he selects a point zt and
a loss ft(zt) is incurred. Note that the function ft is not known to agent at step t, but he
has access to all previous functions f1, . . . , ft−1. First order methods, like online gradient
descent (OGD) or online mirror descent (OMD) only use the gradient of previous function
at the selected points, i.e., ∂ft(zt). The notion of regret here is defined by comparing the
agent with the best fixed comparator (Shalev-Shwartz, 2011).

(Hall and Willett, 2015) proposed dynamic mirror descent that is capable of adapting
adapts to a possibly non-stationary environment. In contrast to OMD (Beck and Teboulle,
2003; Shalev-Shwartz, 2011), the notion of regret is defined more generally with respect to
the best comparator “sequence”.

It is worth noting that the general framework of online learning does not directly apply to
our problem. To see this, we define the the loss ft to be the negative of the revenue obtained
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in time period t, i.e., ft = −ptI(pt ≥ vt). Then (i) the loss functions are not convex; (ii) the
(first order information) of previous loss functions depend on the corresponding valuations
v1, . . . , vt−1 which are never revealed to the seller. That said, we borrow some of the
techniques from online optimization in proving our results. (See proof of Lemma 3.)

High-dimensional statistics. Among the work in this area, perhaps the most related one
to our setting is the problem of 1-bit compressed sensing (Plan and Vershynin, 2013a,b; Ai
et al., 2014; Bhaskar and Javanmard, 2015). In this problem, a set of linear measurements
are taken from an unknown vector and the goal is to recover this vector having access to
the sign of these measurements (1-bit information). This is related to the dynamic pricing
problem on model (1), as the seller observes 1-bit feedback (sale/no sale from previous time
periods). However, there are a few important differences between these two problem that
are worth noting: 1) In dynamic pricing, the crux of the matter is the decisions (prices)
made by the firm. Of course this task entails learning the model parameters and therefore
the firm gets into the realm of exploration (learning) and exploitation (earning revenue).
By contrast, 1-bit compressed sensing is only a learning task; 2) In dynamic pricing, the
prices are set based on the previous (sale/no sale) feedbacks. Therefore, the feedbacks
are inherently correlated and this makes the learning task challenging. However, in 1-bit
compressed sensing it is assumed that the measurements (and therefore the observed signs
) are independent; 3) The majority of work on 1-bit compressed sensing consider an offline
setting, while in the dynamic pricing, decision are made in an online manner.

2. Model

We consider a pricing problem faced by a firm that sells products in a sequential manner.
At each time period t = 1, 2, · · · , T the firm has a product to sell and the product is
represented by an observable vector of features (covariates) xt ∈ X ⊆ Rd. The length of the
time horizon, denoted by T , is unknown the to the firm and the set X is bounded.

The product at time t has a market value vt = vt(xt), depending on both t and xt, which
is unobservable. At each period t, the firm (seller) posts a price pt. If pt ≤ vt, a sale occurs,
and the firm collects revenue pt. If the price is set higher than the market value, pt > vt, no
sale occurs and no revenue is generated. The goal of the firm is to design a pricing policy
that maximizes the collected revenue.

We assume that the market value of a product is a linear function of its covariates,
namely

vt(xt) = 〈θt, xt〉+ zt . (3)

Here, θt and xt are d-dimensional and {zt}t≥1 are idiosyncratic shocks, referred to as noise,
which are drawn independently and identically from a zero-mean distribution over R. We
denote its cumulative distribution function by F , and the corresponding density by f(x) =
F ′(x). Note that the noise can account for the features that are not measured. We refer
to (Keskin and Zeevi, 2014; den Boer and Zwart, 2014; Qiang and Bayati, 2016) for a similar
notion of demand shocks.

The sequence of parameters θ = (θ1, θ2, . . . ) is unknown to the firm and it may vary
across time. This paper focuses on arbitrary sequences θ and propose an efficient algorithm
whose regret scale gracefully in time and the temporal variability in the sequences of θt.

5



Adel Javanmard

The regret is measured with respect to the clairvoyant policy that knows the sequence θ in
advance. We will formally define the regret in Section 2.2.

Let yt be the response variable that indicates whether a sale has occurred at period t:

yt =

{
+1 if vt ≥ pt ,
−1 if vt < pt .

(4)

Note that the above model for yt can be represented as the following probabilistic model:

yt =

{
+1 with probability 1− F (pt − 〈θt, xt〉)
−1 with probability F (pt − 〈θt, xt〉)

(5)

2.1 Technical assumptions and notations

For a vector v, we write ‖v‖p for the standard `p norm of a vector v, i.e., ‖v‖p = (
∑

i |vi|p)1/p.
Whenever the subscript p is not mentioned it is deemed as the `2 norm. For a matrix A,
‖A‖ denotes its `2 operator norm. For two vectors a, b, we use the notation 〈a, b〉 to refer
to their inner product.

To simplify the presentation, we assume that ‖xt‖ ≤ 1, for all xt ∈ X , and ‖θt‖ ≤ W
for a known constant W . We denote by Θ the d-dimensional `2 ball of radius W (In fact,
we can take Θ to be any convex set that contains parameters θt. The size of Θ effects our
regret bounds up to a constant factor.)

We also make the following assumption on the distribution of noise F .

Assumption 1 The function F (v) is strictly increasing. Further, F (v) and 1 − F (v) are
log-concave in v.

Log-concavity is a widely-used assumption in the economics literature (Bagnoli and
Bergstrom, 2005). Note that if the density f is symmetric and the distribution F is log-
concave, then 1−F is also log-concave. Assumption 1 is satisfied by several common proba-
bility distributions including normal, uniform, Laplace, exponential, and logistic. Note that
the cumulative distribution function of all log-concave densities is also log-concave (Boyd
and Vandenberghe, 2004).

We use the standard big-O notation. In particular f(n) = O(g(n)) if there exists a
constant C > 0 such that |f(n)| ≤ Cg(n) for all n large enough. We also use R≥0 to refer
to the set of non-negative real-valued numbers.

2.2 Benchmark policy and regret minimization

For a pricing policy, we measures its performance via the notion of regret, which is the
expected revenue loss compared to an oracle that knows the sequence of model parameters
in advance (but not the realizations of {zt}t≥1).We first characterize this benchmark policy.

Using Eq. (3), the expected revenue from a posted price p is equal to p × P(vt ≥ p) =
p(1− F (p− θt · xt)). First order condition for the optimal price p∗(xt, θt) reads

p∗(xt, θt) =
1− F (p∗(xt, θt)− 〈θt, xt〉)
f (p∗(xt, θt)− 〈θt, xt〉)

. (6)
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To lighten the notation, we drop the arguments xt, θt and denote by p∗t the optimal price
at time t.

We next recall the virtual valuation function, commonly used in mechanism design (My-
erson, 1981):

ϕ(v) ≡ v − 1− F (v)

f(v)
.

Writing Eq. (6) in terms of function ϕ, we get

〈θt, xt〉+ ϕ (p∗t − 〈θt, xt〉) = 0 .

In order to solve for p∗t , we define the pricing function g as follows:

g(v) ≡ v + ϕ−1(−v) . (7)

By Assumption 1, ϕ is injective and hence g is well-defined. Further, it is easy to verify
that g is non-negative. Using the definition of g and rearranging the terms we obtain

p∗t = g(〈θt, xt〉) . (8)

The performance metric we use in this paper is the worst-case regret with respect to a
clairvoyant policy that knows the sequence θ in advance. Formally, for a policy π to be the
seller’s policy that sets price pt at period t, the worst-case regret is defined over T periods
is defined as:

Regretπ(T ) ≡ sup
{

∆π
θ,x : θt ∈ Θ, xt ∈ X

}
, (9)

where for T ≥ 1, θ = (θ1, . . . , θT ) and x = (x1, x2, . . . , xT ),

∆π
θ,x(T ) = Eθ,x

[
T∑
t=1

(
p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt)

)]
. (10)

Here the expectation Eθ,x is with respect to the distributions of idiosyncratic noise, zt. Note
that vt, pt, and p∗t depend on θ and x.

3. Pricing policy

Our dynamic pricing policy consists of a projected gradient descent algorithm to predict
parameters θ̂t. With each new product, it computes the negative gradient of the loss and
shirts its prediction in that direction. The result is projected onto set Θ to produce the
next prediction. The policy then sets the prices as pt = g(〈xt, θ̂t〉). Note that by Eq. (7),
pt is the optimal price if θ̂t was the true parameter θt. Also, by log-concavity assumption
on F and 1− F , the function `t(θ) is convex.

In projected gradient descent, the sequence of step sizes {ηt}t≥1 is an arbitrary sequence
of non-increasing values. In Sections 3.1 and 4, we analyze the regret of our pricing policy
and provide guidelines for choosing step sizes.
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PSGD (Projected stochastic gradient descent) pricing policy

Input: (at time 0) function g, set Θ,
Input: (arrives over time) covariate vectors {xt}t∈N
Output: prices {pt}t∈N
1: p1 ← 0 and initialize θ̂1 ∈ Θ
2: for t = 1, 2, 3, . . . do
3: Set θ̂t+1 according to the following rule:

θ̂t+1 = ΠΘ(θ̂t − ηt∇`t(θ̂t)) (11)

with

`t(θ) = −I(yt = 1) log(1− F (pt − 〈xt, θ〉))− I(yt = −1) log(F (pt − 〈xt, θ〉)) (12)

4: Set price pt+1 as

pt+1 ← g(〈xt+1, θ̂t+1〉) (13)

3.1 Regret analysis

We first define a few useful quantities that appear in our regret bounds. Define

M ≡ W + ϕ−1(0) , (14)

uM ≡ sup
|x|≤M

{
max

{
− d

dx
logF (x),− d

dx
log(1− F (x))

}}
, (15)

`M ≡ inf
|x|≤M

{
min

{
− d2

dx2
logF (x),− d2

dx2
log(1− F (x))

}}
, (16)

where the derivatives are with respect to x. We note that M is an upper-bound on the
maximum price offered and also, by the log-concavity property of F and 1− F , we have

uM = max
{
− d

dx
logF (−M),− d

dx
log(1− F (M))

}
.

Further, by log-concavity property of F and 1− F , we have `M > 0.
We also let B = maxv f(v) and B′ = maxv f

′(v), respectively denote the maximum
value of the density function f and the its derivative f ′.

The following theorem bounds the regret of our PSGD policy.

Theorem 2 Consider model (3) for the product market values and let Assumption 1 hold.
Set M = 2W + ϕ−1(0), with ϕ being the virtual valuation function w.r.t distribution F .
Then, the regret of PSGD pricing policy using a non-increasing sequence of step sizes {ηt}t≥1

is bounded as follows:

Regret(T ) ≤ 2(2B +MB′)

`M
max

{
16

`M
log T,

2W 2

ηT+1
+
u2
M

2

T∑
t=1

ηt + 2W
T∑
t=1

δt
ηt

}
+
M

T
, (17)

where δt ≡ ‖θt+1 − θt‖.
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In particular, if ηt ∝ 1√
t
, then there exists a constant C = C(B,M,W, `M , uM ) > 0,

independent of T , such that

Regret(T ) ≤ C
(√

T +
T∑
t=1

√
tδt

)
. (18)

At the core of our regret analysis (proof of Theorem 2) is the following Lemma that
provides a prediction error bound for the customer’s valuations.

Lemma 3 Consider model (3) for the product market values and let Assumption 1 hold.
Set M = 2W + ϕ−1(0), with ϕ being the virtual valuation function w.r.t distribution F .
Let {θ̂t}t≥1 be generated by PSGC pricing policy, using a non-increasing positive series
ηt+1 ≤ ηt. Then, with probability at least 1− 1

T 2 the following holds true:

T∑
t=1

〈xt, θt − θ̂t〉2 ≤
4

`M
max

{
16

`M
log T,

2W 2

η1
+

T∑
t=1

( 1

2ηt+1
− 1

2ηt

)
‖θt+1 − θ̂t+1‖2 +

u2
M

2

T∑
t=1

ηt + 2W
T∑
t=1

δt
ηt

}
,

(19)

where uM , `M are given by Equations (15), (16), respectively.

Lemma 3 is presented in a form that can also be used in proving our next results under
the stochastic features model. For proving Theorem 2, we simplify bound (19) as follows.
Given that θt+1, θ̂t+1 ∈ Θ, we have ‖θt+1− θ̂t+1‖ ≤ 2W . Using the non-increasing property
of sequence ηt, we write

2W 2

η1
+

T∑
t=1

(
1

2ηt+1
− 1

2ηt

)
‖θt+1 − θ̂t+1‖2 ≤

2W 2

η1
+

T∑
t=1

(
2W 2

ηt+1
− 2W 2

ηt

)
≤ 2W 2

ηT+1
.

Therefore, bound (19) simplifies to:

T∑
t=1

〈xt, θt − θ̂t〉2 ≤
4

`M
max

{
16

`M
log T,

2W 2

ηT+1
+
u2
M

2

T∑
t=1

ηt + 2W

T∑
t=1

δt
ηt

}
, (20)

The regret bound (17) is derived by relating regret at each time period to the prediction
error at that time. We refer to Section 7 for the proof of Theorem 2.

Remark 4 The regret bound (17) does not depend on the dimension d, which makes our
pricing policy desirable for high-dimensional applications. Also, note that the temporal
variation δt appears in our bound with coefficient

√
t. Therefore, variations at later times

are more impactful on the regret of PSGD pricing policy. This is expected because at later
times, the pricing policy is more relied on the accumulated information about the valuation
model and an abrupt change in the model parameters can make this information worthless.
On the other side, temporal changes at the beginning steps are not that effective since the
policy is still experimenting different prices to learn the customer’s behavior.
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Remark 5 While the regret bound is dimension-free, the computational complexity of PSGD
pricing policy scales with dimension d. Specifically, the complexity of each step is O(d). To
see this, we note that the gradient ∇`t(θ) can be computed in O(d) by Equations (70)
and (71). Projection onto set Θ (`2 projection) is also O(d).

4. Stochastic features model

In Theorem 2, we showed that our PSGD pricing policy achieves regret of order O(
√
T +∑T

t=1

√
tδt). Let us point out that in Theorem 2 the arrivals (feature vectors xt) are modeled

as adversarial. In this section, we assume that features xt are independent and identically
distributed according to a probability distribution on Rd. Under such stochastic model, we
show that the regret of PSGD pricing scales at most of order O(d2 log T +

∑T
t=1 tδt/d).

We proceed by formally defining the stochastic features model.

Assumption 6 ( Stochastic features model). Feature vectors xt are generated indepen-
dently according to a probability distribution Px, with a bounded support in Rd. We denote
by Σ the covariance matrix of distribution Px and assume that Σ has bounded eigenvalues.
Specifically, there exist constants Cmin and Cmax such that for every eigenvalue σ of Σ, we
have 0 < 1

dCmin ≤ σ < 1
dCmax.

Without loss of generality and to simplify the presentation, we assume that Px is sup-
ported on the unit `2 ball in Rd. The rationale behind the above assumption on the scaling
of eigenvalues is that Trace(Σ) = E(‖xt‖2) ≤ 1. Therefore, the assumption above on the
eigenvalues of Σ states that all the eigenvalues are of the same order.

Under the stochastic features model, we define the notion of worst-case regret as follows.
For a policy π be the seller’s policy that sets price pt at period t, the T -period regret is
defined as:

Regretπ(T ) ≡ sup
{

∆π
θ,Px

: θt ∈ Θ, Px ∈ Q
}
, (21)

where Q denotes the set of probability distribution supported on `2 unit ball satisfying
Assumption 6 (bounded eigenvalues). Further, for T ≥ 1, θ = (θ1, . . . , θT ) and probability
measure Px, we define

∆π
θ,Px

(T ) = Eθ,Px

[
T∑
t=1

(
p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt)

)]
. (22)

where the expectation is with respect to the distributions of idiosyncratic noise, zt, and Px,
the distribution of feature vectors. Note the subtle difference with definition (9), in that
the worst case is computed over Q rather than X .

We propose a similar PSGD pricing policy for this setting, with a specific choice of the
step sizes. Ideally, we want to set ηt = 6/(`MCt), where C is an arbitrary fixed constant such
that 0 < C < σmin, with σmin being the minimum eigenvalue of population covariance Σ. Of
course, Σ is unknown and therefore we proceed as follows. We let Qt = (1/t)

∑t
`=1 x`x

T
` be

the empirical covariance based on the first t features. Denote by σt the minimum eigenvalue
of Qt. We then use the sequence σt, and set the step size ηt as

ηt =
1

λt · t
, λt =

`M
6

{
1

t

(
1 +

t∑
`=1

σ`

)}
.

10
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PSGD pricing policy for stochastic features model

Input: (at time 0) function g, set Θ,
Input: (arrives over time) covariate vectors {xt}t∈N
Output: prices {pt}t∈N
1: p1 ← 0 and initialize θ̂1 ∈ Θ
2: Q1 ← x1x

T
1

3: for t = 1, 2, 3, . . . do
4: Define σt as the minimum eigenvalue of Qt.
5: Set

λt =
`M
6t

(1 +

t∑
`=1

σ`) . (23)

6: Set

ηt =
1

λt · t
(24)

7: Set θ̂t+1 according to the following rule:

θ̂t+1 = ΠΘ(θ̂t − ηt∇`t(θ̂t)) (25)

with

`t(θ) = −I(yt = 1) log(1− F (pt − 〈xt, θ〉))− I(yt = −1) log(F (pt − 〈xt, θ〉)) (26)

8: Qt+1 ← ( t
t+1)Qt + ( 1

t+1)xt+1x
T
t+1

9: Set price pt+1 as

pt+1 ← g(〈xt+1, θ̂t+1〉) (27)

Description of the PSGD pricing policy is given in Table above.

4.1 Logarithmic regret bound

The following theorem bounds the regret of our dynamics pricing policy.

Theorem 7 Consider model (3) for the product market values and suppose Assumption 1
holds. Let M = 2W +ϕ−1(0), with ϕ being the virtual valuation function w.r.t distribution
F . Under the stochastic features model (Assumption 6), the regret of PSGD pricing policy
is bounded as follows:

Regret(T ) ≤ C1d
2 log T + C2

T∑
t=1

t

d
δt , (28)

11
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where δt ≡ ‖θt+1−θt‖ and C1, C2 are constants that depend on Cmax, Cmin, uM , `M ,M,B,W
but are independent of dimension d.

Proof of Theorem 7 relies on the following lemma that is analogous to Lemma 3 and estab-
lishes a prediction error bound for the customer’s valuations.

Lemma 8 Consider model (3) for the product market values and the stochastic features
model (Assumption 6). Suppose that Assumption 1 holds and set M = 2W + ϕ−1(0), with
ϕ being the virtual valuation function w.r.t distribution F . Let {θ̂t}t≥1 be generated by
PSGD pricing policy. Then,

Cmin

T∑
t=1

E(‖θt − θ̂t‖2) ≤
[

128

`2M
+

24u2
M

`2M

(
c̃+

4

Cmind

)]
· d3 log T

+ 8W 2d

(
1

T
+

12

`2M
+

1

c2d

)
+ 4W

T∑
t=1

tδt .

Here σmin denotes the minimum eigenvalue of covariance Σ. (See Assumption 6.)

4.2 A lower bound on regret

In this section, we provide a theoretical lower bound on the minimum achievable regret of
any pricing policy under the stochastic features model. Prior to that, we need to adopt a
few notations.

For a given time horizon T and a sequence of valuations parameters θ = (θ1, . . . , θT ),
let

Vθ(T ) ≡
T∑
t=1

t‖θt+1 − θt‖ . (29)

We also define, for ν ∈ [1/2, 2],

V(T,B, ν) ≡ {θ : θt ∈ Θ, Vθ(T ) ≤ BdT ν} . (30)

By assuming θ ∈ V(T,B, ν) for all T , we are assuming that nature has a finite temporal
variation budget to use in changing the valuation parameters throughout the time horizon.
Of course, different variation metrics can be considered such as total variation

∑T
t=1 δt

or the maximum temporal variation sup1≤t≤T δt and the performance of a pricing policy
can be studied under different variation budget constraints. The specific choice of (29) is
putting higher weights at later variations in the sequence θ and is reasonable for applications
where one expects the buyer’s preferences (valuation parameters) become stable over time.
Note that designing favorable pricing policy for applications with gradual changes in buyer’s
preferences is more challenging than that for environments with bursty changes. This might
look counterintuitive at first glance because at any time, the accumulated information about
valuations can become useless by an abrupt change in the valuation model. However, as
noticed and analyzed in (Keskin and Zeevi, 2016), this is not that case because, intuitively,
gradual changes can be undetectable and lead to significant revenue loss, while for bursty

12
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changes, the policy can be designed in a way to detect the changes and reset its estimate
of the valuation model after each change to avoid large estimation error and revenue loss.
For a pricing policy π, consider the T -period regret, defined as

Regretπ(T,B, ν) ≡ max
{

∆π
θ,Px

(T ) : θ ∈ V(T,B, ν), Px ∈ Q
}

(31)

where we recall that

∆π
θ,Px

(T ) ≡
T∑
t=1

Eθ,Px

(
p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt)

)
. (32)

Note that this is the same regret notion defined in (21), where we just make the variation
budget constraint explicit in the notation.

Rephrasing the statement of Theorem 7, for PSGD pricing policy we have Regretπ(T,B, ν) ≤
C1d

2 log T + C2BT
ν . We next provide a lower bound on the regret of any pricing policy.

Indeed this lower bound applies to a powerful clairvoyant who fully observes the market
values after the price is either accepted or rejected.

Theorem 9 Consider linear model (3) where the market values vt(xt), 1 ≤ t ≤ T , are
fully observed. We further assume that market value noises are generated as zt ∼ N(0, σ2).
There exists a constant c, depending on σ, Cmax, such that

Regretπ(T,B, ν) ≥ cmin
( (
B2dT 2ν−1

)1/3
, T/d

)
,

for any pricing policy π and time horizon T .

The high-level intuition behind this result is that the nature can change the valuation
parameters in a gradual manner such that the seller should pay a revenue loss in order
to detect the changes and learn the new valuation parameter after a change. To be more
specific, we divide the time horizon into cycles of length N periods, where N is of order
(T 4−2ν/d)1/3 and consider a setting where the value of θt can change to one of two options
θ0, θ1, only in the first period of a cycle. We choose the parameter change δ = ‖θ1 − θ0‖
of order

√
d/N to ensure that (i) no policy can identify the change without incurring a

revenue loss of order Nδ2/d (ii) The variation metric Vθ(T ) remains below the allowable
limit of BdT ν . Therefore, the total regret over T periods works out at Tδ2/d. In particular,
for proving point (i) we quantify the likelihood of valuations under the probability measures
corresponding to θ0 and θ1, using Kullback-Leibler divergence. We use Pinsker inequality
form probability theory and hypothesis testing results from information theory to show that
there is a significant probability of not detecting the (potential) change, which consequently
yields a revenue loss of order Nδ2/d, over each cycle.

We refer to Section 7.3 for the proof of Theorem 9.

5. Numerical experiments

We numerically study the performance of our PSGD pricing policy on synthetic data. In our
experiments, we set W = 5 and set θ1 = (W/2)(Z/‖Z‖), with Z ∼ N(0, Id) a multivariate
normal variable. We then generate a sequence of parameters θt as follows:

θt+1 = θt + rt ,

13



Adel Javanmard
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Figure 1: Cumulative regret of PSGD pricing policy for the synthetic data in Section 5.
Temporal variations are δt = t−b and the curves are obtained by averaging across 80 trials.
Shaded region around each curve is the 95% confidence interval.

where rt = t−b(Z̃/‖Z̃‖), with Z̃ ∼ N(0, Id). Note that δt = ‖θt+1 − θt‖ = ‖rt‖ = t−b.

Next, at each time t, product covariates xt are independently sampled from a Gaussian
distribution N(0, Id) and normalized so that ‖xt‖ = 1. Further, the market shocks are
generated as zt ∼ N(0, σ2), with σ = 1. We run the PSGD pricing policy for stochastic
features model.

Results. Figure 1 compares the cumulative regret (averaged over 80 trials) of the PSGD
policy, for b = 0.5, 1, 2, on the aforementioned synthetic data for T = 50, 000 steps. The
shaded region around each curve correspond to the 95% confidence interval across the 80
trials. As expected, increase in b results in larger temporal variations and larger regret.

To better understand the behavior of regret for different values of b, we plotted the regret
bounds in various scales in Figure 2. For b = 0.5, we have Regret(T ) ∼ T 2/3, and for b = 1, 2,
we have Regret ∼ log(T ). Comparing with Theorem 7, we see that the empirical regret
in case of b = 0.5, 1, is smaller than the upper bound given by Equation (28), order-wise.
However, it is worth noting that bound given in Theorem 7 applies to any adversarial choice
of temporal variations rt, while in our experiments we generated these terms independently
at random.

6. Extension to nonlinear model

Throughout the paper, we exclusively focused on linear models for buyer’s valuation with
varying coefficients. In order to generalize our results to nonlinear models, we consider a
setting where the market value of a product with feature vector xt is given by

vt(xt) = ψ(〈xt, θt〉+ zt) . (33)
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Figure 2: Cumulative regrets of PSGD for different values of b. For b = 0.5, Regret(T ) ∼
T 2/3; for b = 1, 2, Regret(T ) ∼ log(T ).
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This model is often referred to as generalized linear model and captures nonlinear depen-
dencies on features to some extent. We assume that the link function ψ : R 7→ R is a general
log-concave function and is strictly increasing.

We next compute the pricing function. Since ψ is strictly increasing, the expected
revenue at a price p amounts to p

(
1− F

(
ψ−1(p)− 〈xt, θt〉

))
. First order condition for the

optimal price p∗t (xt) reads as

ψ′(ψ−1(p∗t )) =
pf
(
ψ−1(p∗t )− 〈xt, θt〉

)
1− F (ψ−1(p∗t )− 〈xt, θt〉)

. (34)

Define λ(v) = f(v)/(1 − F (v)) the hazard rate function for distribution F , and let p̃ =
ψ−1(p). Writing (34) in terms of λ function, we get

〈xt, θt〉 = p̃∗t − λ−1

(
ψ′(p̃∗t )

ψ(p̃∗t )

)
. (35)

For real-valued v, define

g−1
ψ (v) ≡ v − λ−1

(
ψ′(v)

ψ(v)

)
. (36)

Note that by log-concavity of 1 − F , the hazard function λ is increasing. Also, by log-
concavity of ψ, the term d

dv logψ(v) = ψ′(v)/ψ(v) is decreasing. Putting these together,
we obtain that −λ−1(ψ′(v)/ψ(v)) is increasing. Therefore, the right-hand side of (36) is
strictly increasing and the function gψ is well-defined. Invoking Equation (35), we derive
the optimal price as

p∗t = ψ (gψ(〈xt, θt〉)) . (37)

As noted before, since ψ is increasing, at each period t, a sale happens if zt ≥ ψ−1(pt) −
〈xt, θt〉. Hence, the log-likelihood function reads as

`t(θ) = −I(yt = 1) log
(
1− F

(
ψ−1(pt)− 〈xt, θ〉

))
− I(yt = −1) log

(
F
(
ψ−1(pt)− 〈xt, θ〉

))
.

(38)

In PSGD pricing policy, we run gradient step with this log-likelihood function and then set
price pt+1 at next step as pt+1 = ψ (gψ(〈xt+1, θt+1〉)).

The results on the regret of PSGD pricing policy carries over to the generalized linear
model as well. The analysis goes along the same lines and is omitted.

7. Proof of main theorems

7.1 Proof of Theorem 2

Lemma 10 Set M = 2W + ϕ−1(0), and for θ ∈ Θ define ut(θ) = pt − 〈xt, θ〉, where
pt = g(〈xt, θ̂t〉) is the posted price at time t. Then |ut(θ)| ≤M for all t ≥ 1.

Define function h(;u) from R≥0 to R≥0 as

h(p;u) = p(1− F (p− u))
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This is the expected revenue at price p when the noiseless valuation is u, i.e., 〈xt, θt〉 = u.
We let

Rt ≡ p∗t I(vt ≥ p∗t )− ptI(vt ≥ pt) (39)

be the regret incurred at time t, and define Ft as the history up to time t (Formally, Ft is
the σ-algebra generated by market noise {z`}t`=1.) Then,

E(Rt|Ft−1) = p∗tP(vt ≥ p∗t )− ptP(vt ≥ pt) = h(p∗t ; 〈xt, θt〉)− h(pt; 〈xt, θ̂t〉) . (40)

The optimal price p∗t is the maximizer of h(p; 〈xt, θt〉) and thus h′(p∗t ; 〈xt, θt〉) = 0. By
Taylor expansion of function h, there exists a value p between pt and p∗t , such that,

h(pt; 〈xt, θt〉)− h(p∗t ; 〈xt, θt〉) =
1

2
h′′(p; 〈xt, θt〉)(pt − p∗t )2 . (41)

We next show that |h′′(p; 〈xt, θt〉)| ≤ C with C = 2B+MB′. Recall that B = maxv f(v)
and B′ = maxv f

′(v). To see this, we write

|h′′(p; 〈xt, θt〉)| =
∣∣∣2f(p− 〈xt, θt〉) + pf ′(p− 〈xt, θt〉)

∣∣∣ ≤ 2B +MB′ . (42)

Putting Equations (39), (41), (42) and using the 1-Lipschitz property of price function g,
we conclude:

E[Rt|Ft−1] = h(p∗t ; 〈xt, θt〉)− h(pt; 〈xt, θ̂t〉) ≤
2B +MB′

2
(pt − p∗t )2

=
2B +MB′

2

(
g(〈xt, θ̂t〉)− g(〈xt, θt〉)

)2
≤ 2B +MB′

2
〈xt, θt − θ̂t〉2 (43)

To ease the presentation, define the shorthand

A(T ) ≡ 4

`M
max

{
16

`M
log T,

2W 2

ηT+1
+
u2
M

2

T∑
t=1

ηt + 2W

T∑
t=1

δt
ηt

}
.

We further let G be the probabilistic event that
∑T

t=1〈xt, θt − θ̂t〉2 ≤ A(T ). Employing

Lemma 3 and using the fact that ‖θt+1 − θ̂t+1‖2 ≤ 4W 2, we obtain that P(G) ≥ 1− 1
T 2 .

We continue by bounding E(Rt) as follows:

E[Rt] = E[E[Rt|Ft−1]] = E
[
E[Rt|Ft−1] ·

(
I(G) + I(Gc)

)]
=

2B +MB′

2
E
[
〈xt, θt − θ̂t〉2 · I(G)

]
+MP(Gc) .

Consequently,

Regret(T ) ≤
T∑
t=1

E[Rt] ≤
2B +MB′

2
E
[ T∑
t=1

〈xt, θt − θ̂t〉2 · I(G)
]

+MT P(Gc) ≤ 2B +MB′

2
A(T ) +

M

T
.

The proof is complete.
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7.2 Proof of Theorem 7

Proof of Theorem 7 follows along the same lines as proof of Theorem 2. Let F̃t be the
σ-algebra generated by market noises {z`}t`=1 and feature vectors {x`}t`=1. Further, let Ft
be the σ-algebra generated by F̃t ∪ {xt+1}. For term Rt defined by (39) and following the
chain of inequalities as in (43),

E[Rt|Ft−1] ≤ 2B +MB′

2
〈xt, θt − θ̂t〉2 . (44)

For brevity in notation, let B̄ = (2B+MB′)/2. Since, Ft ⊇ F̃t, by iterated law of iteration,

E(Rt|F̃t−1) = E(E(Rt|Ft−1)|F̃t−1) ≤ B̄〈θt − θ̂t,Σ(θt − θ̂t)〉 ≤
1

d
B̄Cmax‖θt − θ̂t‖2 (45)

Applying Lemma 8, we get

Regret(T ) ≤
T∑
t=1

E[Rt] ≤
1

d
B̄Cmax

T∑
t=1

E(‖θt − θ̂t‖2)

≤ B̄Cmax

Cmin

[
128

`2M
+

24u2
M

`2M

(
c̃+

4

Cmind

)]
· d2 log T

+ 8W 2B̄
Cmax

Cmin

(
1

T
+

12

`2M
+

1

c2d

)
+ B̄

Cmax

Cmin

(4W

d

) T∑
t=1

tδt .

The result follows by taking

C1 = B̄
Cmax

Cmin

[
8W 2

(
1

T
+

12

`2M
+

1

c2d

)
+

128

`2M
+

24u2
M

`2M

(
c̃+

4

Cmind

)]
,

C2 = 4WB̄
Cmax

Cmin
.

7.3 Proof of Theorem 9

The proof methodology is similar to the proof of (Keskin and Zeevi, 2016, Theorem 1).

We first propose a setting for constructing the sequence of valuation parameters θ =
(θ1, . . . , θT ). Divide the time horizon into cycles of length N = dm0T

(4−2ν)/3e, where m0 =

( σ2

CmaxB2d
)1/3. Consider a setting wherein the noise markets are generated as zt ∼ N(0, σ2)

and the value of θt can change only in the first period of a cycle, taking one of the two
values {θ0, θ1}. Here, θ0, θ1 ∈ Rd are two arbitrary vectors such that ‖θ0 − θ1‖ = δ, with
δ = min(σ

√
d/(CmaxN),

√
c2). Note that for this sequence of θ, we have

Vθ(T ) ≤
dT/Ne∑
k=1

(kN)δ ≤ T 2

N
δ ≤ BdT ν (46)

We consider a clairvoyant who fully observes the market values vt(xt). Focus on a single
cycle and let Pπ0 (resp. Pπ1 ) denote the probability distribution of valuations (v1, v2, . . . , vN )
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when all the parameters θt are equal to θ0 (resp. θ1), for 1 ≤ t ≤ N . The KL divergence
between Pπ0 and Pπ1 amounts to

DKL(Pπ0 ,Pπ1 ) ≡ Eπ0 log


∏N
t=1 φ

(
vt − 〈xt, θ0〉

σ

)
∏N
t=1 φ

(
vt − 〈xt, θ1〉

σ

)
 . (47)

where Eπ0 denotes expectation w.r.t Pπ0 and φ(s) = 1/(
√

2π)e−s
2/2 is the standard Gaussian

density. After simple algebraic manipulation, we obtain

DKL(Pπ0 ,Pπ1 ) = − 1

2σ2
Eπ0
{ N∑
t=1

(2zt − 〈xt, θ1 − θ0〉)〈xt, θ1 − θ0〉
}

=
1

2σ2

N∑
t=1

Eπ0 (〈xt, θ1 − θ0〉2) ≤ 1

2σ2d

N∑
t=1

Cmax‖θ1 − θ0‖2

=
1

2σ2
Cmax

δ2N

d
.

We next relate the expected regret to the KL divergence between Pπ0 and Pπ1 .

Lemma 11 Let Rt be the regret incurred at time t, defined as Rt ≡ p∗t I(vt ≥ p∗t )− ptI(vt ≥
pt). Then, there exist constants c1, c2 depending on σ, W , and Cmin, such that

E(Rt) ≥
c1

d
E
{

min
(
‖θ̂t − θt‖22, c2

)}
. (48)

Proof of Lemma 11 goes along the proof of (Javanmard and Nazerzadeh, 2016, Equation
(55)) and is omitted.

By applying Lemma 11, we have

∆π
θ,Px

(N) =
N∑
t=1

Eθ(Rt) ≥
c1

d

N∑
t=1

E
{

min
(
‖θ̂t − θt‖22, c2

)}
. (49)

For brevity in notations, for the sequence θ = (θ1, . . . , θN ), we define da(θ) = c1
∑N

t=1 min(‖θt−
θa‖22, c2), for a = 1, 2. Define two sets Ja, for a = 1, 2 as follows:

Ja =

{
θ = (θ1, . . . , θN ) : θi ∈ Rd , da(θ) <

1

4
Nδ2

}
. (50)

Then,
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max
(
∆π

0,Px
(N),∆π

1,Px
(N)

)
≥ 1

d
max

(
Eπ0 (d0(θ)),Eπ1 (d1(θ))

)
≥ N

4d
δ2 max

(
Pπ0 (θ /∈ J0),Pπ1 (θ /∈ J1)

)
(a)

≥ N

4d
δ2 max

(
Pπ0 (θ /∈ J0),Pπ1 (θ ∈ J0)

)
≥ N

8d
δ2
(
Pπ0 (θ /∈ J0) + Pπ1 (θ ∈ J0)

)
≥ N

8d
δ2
(

1− Pπ0 (θ ∈ J0) + Pπ1 (θ ∈ J0)
)

≥ N

8d
δ2
(

1−
√

1

2
DKL(Pπ0 ,Pπ1 )

)
(By Pinsker inequality)

≥ N

8d
δ2

(
1− 1

2σ
δ

√
Cmax

N

d

)
≥ Nδ2

16d
.

Here (a) holds because θ ∈ J0 implies θ /∈ J1. Otherwise, d0(θ) < Nδ2/4 and d1(θ) <
Nδ2/4. Using the inequality min(a + b, c) ≤ min(a, c) + min(b, c) for a, b, c ≥ 0, and
applying triangle inequality, we get

N min(‖θ0 − θ1‖2, c2) ≤ 2d0(θ) + 2d1(θ) < Nδ2 , (51)

which is a contradiction because δ2 = ‖θ0 − θ1‖2 ≤ c2. Therefore, we conclude that

Regretπ(T,B, ν) ≥
⌊ T
N

⌋
max

(
∆π

0,Px
(N),∆π

1,Px
(N)

)
≥ Tδ2

16d
=

T

16
min

( σ2

CmaxN
,
c2

d

)
=

1

16
min

{( σ2

Cmax

)2/3
(B2dT 2ν−1)1/3,

c2T

d

}
. (52)

The result follows.

8. Proof of main lemmas

8.1 Proof of Lemma 3

We prove Lemma 3 by developing an upper bound and a lower bound for the quantity∑T
t=1 `t(θ̂t)−

∑T
t=1 `t(θt). The result follows by combining these two bounds.

Lemma 12 (Upper bound) Suppose {θt}t≥1 is an arbitrary sequence in Θ, and ‖θ‖ ≤W
for all θ ∈ Θ. Set M = 2W + ϕ−1(0), with ϕ being the virtual valuation function w.r.t
distribution F . Further, let {θ̂t}t≥1 be generated by PSGD policy using a non-increasing
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positive series ηt+1 ≤ ηt. Then

T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt) ≤
2W 2

η1
+

T∑
t=1

( 1

2ηt+1
− 1

2ηt

)
‖θt+1 − θ̂t+1‖2

+
u2
M

2

T∑
t=1

ηt + 2W

T∑
t=1

δt
ηt
− `M

2

T∑
t=1

〈xt, θt − θ̂t〉2 , (53)

where δt ≡ ‖θt+1 − θt‖ and we recall uM from Equation (15).

The proof of Lemma 12 uses similar ideas to the regret bounds established in (Hall and
Willett, 2015), but uses the log-concavity of F and 1 − F and also definition of uM and
`M as per Equations (15) and (16) to get a more refined bound including quadratic terms
〈xt, θ̂t − θt〉2. We refer to Appendix B for the proof of Lemma 12.

Our next Lemma provides a probabilistic lower bound on
∑T

t=1 `t(θ̂t)−
∑T

t=1 `t(θt).

Lemma 13 (Lower bound) Consider model (3) for the product market values and sup-
pose Assumption 1 holds. Let {θ̂t}t≥1 be an arbitrary sequence in Θ. Then with probability
at least 1− 1

T 2 the following holds true

T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt) ≥ −2
√

log T
{ T∑
t=1

〈xt, θt − θ̂t〉2
}1/2

. (54)

Proof of Lemma 13 is given in Appendix C. It uses convexity of `t(θ̂) and an application of
a concentration bound on martingale difference sequences.

Combining Equations (53) and (54) we obtain that with probability at least 1− 1
T 2 the

following holds true

−2
√

log T
{ T∑
t=1

〈xt, θt − θ̂t〉2
}1/2

≤2W 2

η1
+

T∑
t=1

( 1

2ηt+1
− 1

2ηt

)
‖θt+1 − θ̂t+1‖2

+
u2
M

2

T∑
t=1

ηt + 2W
T∑
t=1

δt
ηt
− `M

2

T∑
t=1

〈xt, θt − θ̂t〉2 (55)

Rearranging the terms, we get

`M
2

T∑
t=1

〈xt, θt − θ̂t〉2 − 2
√

log T
{ T∑
t=1

〈xt, θt − θ̂t〉2
}1/2

≤ 2W 2

η1
+

T∑
t=1

( 1

2ηt+1
− 1

2ηt

)
‖θt+1 − θ̂t+1‖2 +

u2
M

2

T∑
t=1

ηt + 2W

T∑
t=1

δt
ηt

(56)

Define A ≡
∑T

t=1〈xt, θt − θ̂t〉2 and denote by B the right-hand side of Equation (56).
Writing in terms of A and B, we have

A− 4

`M

√
A log T ≤ 2B

`M
. (57)
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We next upper bound A as follows. Consider two cases:

Case 1: Assume that √
A log T ≤ `M

8
A .

Using this in Equation (57), we get A ≤ 4B/`M .

Case 2: Assume that √
A log T >

`M
8
A .

Then, A < (64/`2M ) log T .

Combining the above two cases, we obtain

A ≤ 4

`M
max

( 16

`M
log T,B

)
.

Substituting for A and B, we have

T∑
t=1

〈xt, θt − θ̂t〉2 ≤
4

`M
max

{
16

`M
log T,

2W 2

η1
+

T∑
t=1

( 1

2ηt+1
− 1

2ηt

)
‖θt+1 − θ̂t+1‖2 +

u2
M

2

T∑
t=1

ηt + 2W
T∑
t=1

δt
ηt

}

The proof is complete.

8.2 Proof of Lemma 8

theorem 8.1 Let σt denote the minimum eigenvalue of Qt ≡ (1/t)
∑t

`=1 x`x
T
` . Further,

let σmin be the minimum eigenvalue of Σ, where Σ is the population covariance of feature
vectors as in Assumption 6. Then, there exist constants c1, c2 > 0, such that

∀t ≥ c1d : P
(1

2
σmin ≤ σt ≤

3

2
σmin

)
≥ 1− 2e−c2t/d . (58)

Further, σt ≤ 1, for all t ≥ 1.

Let Ft be the σ algebra generated by market shocks {z`}t`=1 and features {x`}t`=1. We

further define Dt = 〈xt, θ̂t− θt〉2−‖Σ1/2(θ̂t− θt)‖2. Note that θ̂t is Ft−1 measurable and xt
is independent of Ft−1, which implies E(Dt|Ft−1) = 0. Hence, E(Dt) = 0 by iterated law
of expectation and therefore

∑T
t=1 E(Dt) = 0. Equivalently,

E

[
T∑
t=1

〈xt, θ̂t − θt〉2
]

=
T∑
t=1

E
[
‖Σ1/2(θ̂t − θt)‖2

]
≥ σmin E

[
T∑
t=1

‖θ̂t − θt‖2
]

(59)
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Define GT the event that bound (19) holds true. Then,

E

[
T∑
t=1

〈xt, θ̂t − θt〉2
]

= E

[
T∑
t=1

〈xt, θ̂t − θt〉2 · (IG + IGc)

]

≤ E

[
T∑
t=1

〈xt, θ̂t − θt〉2 · IG

]
+ 4W 2T P(Gc)

≤ E

[
T∑
t=1

〈xt, θ̂t − θt〉2 · IG

]
+

4W 2

T
. (60)

Further, using inequality max(a, b) ≤ |a|+ |b|, we get

E

[
T∑
t=1

〈xt, θ̂t − θt〉2 · IG

]
≤ 4

`M

{
16

`M
log T +

12W 2

`M
+

1

2

T∑
t=1

E
[(

(t+ 1)λt+1 − tλt
)
· ‖θt+1 − θ̂t+1‖2

]

+
u2
M

2

T∑
t=1

E
[

1

tλt

]
+ 2W

T∑
t=1

E[tλt]δt

}
. (61)

We next bound the terms on the right-hand side individually.

T∑
t=1

E
[(

(t+ 1)λt+1 − tλt
)
· ‖θt+1 − θ̂t+1‖2

]
≤ `M

6

T∑
t=1

E
[
σt+1 · ‖θt+1 − θ̂t+1‖2

]

≤ `M
6

T∑
t=1

E
[
σt+1‖θt+1 − θ̂t+1‖2 I(σt+1 < 3σmin/2)

]
+
`M
6

T∑
t=1

E
[
σt+1 ‖θt+1 − θ̂t+1‖2 I(σt+1 > 3σmin/2)

]

≤ `M
4
σmin

T∑
t=1

E
(
‖θt+1 − θ̂t+1‖2

)
+

T∑
t=1

2`MW
2e−c2t/d

≤ `M
4
σmin

T∑
t=1

E
(
‖θt+1 − θ̂t+1‖2

)
+

2`M
c2d

W 2 , (62)

where in the last inequality, we used P(σt+1 > 3σmin/2) ≤ 2e−c2dt, σt ≤ 1 and ‖θ̂t − θt‖ ≤
2W , according to Proposition 8.1.

The next term on the right-hand side of (61) is bounded in the following proposition.

theorem 8.2 Using rule (23) for λt, we have

E
[

1

tλt

]
≤ 6

`M

(
c̃d2 log T +

4d

Cmin
log T

)
, (63)

where c̃ = max(c1, 1/c2) and constants c1 and c2 are defined in Proposition 8.1 .

Finally, for the last term, we note that Qt is rank deficient for t ≤ d and hence σt = 0, for
1 ≤ t ≤ d. Further, the minimum eigenvalue of a matrix is a concave function over PSD
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matrices. By Jensen inequality, we have

E(λt) =
`M
6t

(1 +

t∑
`=1

E(σ`)) =
`M
6t

(
1 +

t∑
`=d+1

E(σ`)
)

≤ `M
6t

(
1 +

t∑
`=d+1

σmin

)
≤ `M

6t

(
1 +

t− d
d

)
=
`M
6d

. (64)

In the last inequality, we used the fact that Trace(Σ) = E(‖xt‖2) = 1, and thus σmin ≤ 1/d.
Hence,

T∑
t=1

E[tλt]δt ≤
`M
6d

T∑
t=1

tδt , (65)

Using Equations (62), (63), (65) to bound the right-hand side of (61), we get

E

[
T∑
t=1

〈xt, θ̂t − θt〉2 · IG

]
≤
[

64

`2M
+

12u2
M

`2M

(
c̃+

4

Cmind

)]
· d2 log T

+
48W 2

`2M
+

4W 2

c2d
+

2W

d

T∑
t=1

tδt +
σmin

2

T∑
t=1

E(‖θt − θ̂t‖2) . (66)

Combining bounds (59),(60) and (65), we obtain

σmin

2

T∑
t=1

E(‖θt − θ̂t‖2) ≤
[

64

`2M
+

12u2
M

`2M

(
c̃+

4

Cmind

)]
· d2 log T

+ 4W 2

(
1

T
+

12

`2M
+

1

c2d

)
+

2W

d

T∑
t=1

tδt .

The result follows by recalling that σmin ≥ Cmin/d as stated by Assumption 6.
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Appendix A. Proof of Lemma 10

We first state some properties of the the virtual valuation function ϕ and the price function
g, given by Equation (7).

theorem A.1 If 1 − F is log-concave, then the virtual valuation function ϕ is strictly
monotone increasing and the price function g satisfies 0 < g′(v) < 1, for all values of
v ∈ R.

We refer to (Javanmard and Nazerzadeh, 2016) (Lemmas 1 and 2 in Appendix A therein)
for a proof of Proposition A.1.

For θ ∈ Θ we have ‖θ‖ ≤ W and hence |〈xt, θ〉| ≤ ‖xt‖‖θ‖ ≤ W for all t. Applying
Proposition A.1 (1-Lipschitz property of g),

pt = g(〈xt, θt〉) ≤ g(0) + |〈xt, θt〉| ≤ ϕ−1(0) +W .

Therefore,

|ut(θ)| ≤ |pt|+ |〈xt, θ〉| ≤ ϕ−1(0) + 2W . (67)

Appendix B. Proof of Lemma 12

We note that the update rule (11) can be recast as θ̂t+1 = arg minθ∈Θ Ct(θ), where

Ct(θ) = ηt〈∇`t(θ̂t), θ〉+
1

2
‖θ − θ̂t‖2 .

By convexity of Ct and optimality of θ̂t+1, we have 〈θ − θ̂t+1,∇Ct(θ̂t+1)〉 ≥ 0 for all θ ∈ Θ.
Setting θ = θt,

〈θt − θ̂t+1, ηt∇`t(θ̂t) + θ̂t+1 − θ̂t〉 ≥ 0 . (68)

Expanding `t(θ) around θ̂t, we have

`t(θ̂t)− `(θt) = 〈∇`t(θ̂t), θ̂t − θt〉 −
1

2
〈θt − θ̂t,∇2`t(θ̃)(θt − θ̂t)〉 , (69)

for some θ̃ on the line segment between θ̃t and θ̂t. Recalling (12), the gradient and the
hessian of `t read as

∇`t(θ) = µt(θ)xt , ∇2`t(θ) = ηt(θ)xtx
T
t , (70)

with,

µt(θ) = − f(ut(θ))

F (ut(θ))
I(yt = −1) +

f(ut(θ))

1− F (ut(θ))
I(yt = +1)

= − d

dx
logF (ut(θ))I(yt = −1)− d

dx
log(1− F (ut(θ)))I(yt = +1) (71)
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ηt(θ) =

(
f(ut(θ))

2

F (ut(θ))2
− f ′(ut(θ))

F (ut(θ))

)
I(yt = −1) +

(
f(ut(θ))

2

(1− F (ut(θ)))2
+

f ′(ut(θ))

1− F (ut(θ))

)
I(yt = +1)

= − d2

dx2
logF (ut(θ))I(yt = −1)− d2

dx2
log(1− F (ut(θ)))I(yt = +1) . (72)

Here, ut(θ) = pt − 〈xt, θ〉, and d
dx logF (x) and d2

dx2
logF (x) represent first and second

derivative w.r.t x, respectively. In addition, using Equation (73)

|ut(θ)| ≤ ϕ−1(0) + 2W = M , ∀θ ∈ Θ . (73)

Hence, invoking the definition of `M , as per Equation (16), we get that ηt(θ) ≥ `M and
hence ∇2`t(θ̃) � `MxtxTt .

Continuing from Equation (69), we get

`t(θ̂t)− `(θt) ≤ 〈∇`t(θ̂t), θ̂t − θt〉 −
`M
2
〈xt, θt − θ̂t〉2

= 〈∇`t(θ̂t), θ̂t+1 − θt〉+ 〈∇`t(θ̂t), θ̂t − θ̂t+1〉 −
`M
2
〈xt, θt − θ̂t〉2

≤ 1

ηt
〈θt − θ̂t+1, θ̂t+1 − θ̂t〉+ 〈∇`t(θ̂t), θ̂t − θ̂t+1〉 −

`M
2
〈xt, θt − θ̂t〉2

=
1

2ηt

{
‖θt − θ̂t‖2 − ‖θt − θ̂t+1‖2 − ‖θ̂t+1 − θ̂t‖2

}
+ 〈∇`t(θ̂t), θ̂t − θ̂t+1〉 −

`M
2
〈xt, θt − θ̂t〉2

=
1

2ηt

{
‖θt − θ̂t‖2 − ‖θt+1 − θ̂t+1‖2

}
+

1

2ηt

{
‖θt+1 − θ̂t+1‖2 − ‖θt − θ̂t+1‖2

}
− 1

2ηt
‖θ̂t+1 − θ̂t‖2 + 〈∇`t(θ̂t), θ̂t − θ̂t+1〉 −

`M
2
〈xt, θt − θ̂t〉2 (74)

We next note that the second term above can be bounded as

1

2ηt

{
‖θt+1 − θ̂t+1‖2 − ‖θt − θ̂t+1‖2

}
=

1

ηt
〈θt+1 − θ̂t+1, θt+1 − θt〉 ≤

2

ηt
Wδt , (75)

because θt+1, θ̂t+1 ∈ Θ and hence ‖θt+1 − θ̂t+1‖ ≤ 2W by triangle inequality.
Further,

〈∇`t(θ̂t), θ̂t − θ̂t+1〉 ≤
1

2ηt
‖θ̂t+1 − θ̂t‖2 +

ηt
2
‖∇`t(θ̂t)‖2

≤ 1

2ηt
‖θ̂t+1 − θ̂t‖2 +

ηt
2
|µ(θ̂t)|2‖xt‖2 ≤

1

2ηt
‖θ̂t+1 − θ̂t‖2 +

ηt
2
u2
M , (76)

where we used the inequality 2ab ≤ a2 + b2 and the characterization of gradient (70). Note
that by (73), |ut(θ̂)| ≤ M and by definition (15), |µt(θ̂t)| ≤ uM . Plugging in bounds
from (75) and (76) in Equation (74), we arrive at

`t(θ̂t)− `(θt) ≤
1

2ηt

{
‖θt − θ̂t‖2 − ‖θt+1 − θ̂t+1‖2

}
+

2

ηt
Wδt +

ηt
2
u2
M −

`M
2
〈xt, θt − θ̂t〉2

(77)
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We use the shorthand Dt = 1
2‖θt − θ̂t‖

2. The result follows by summing the above bound
over time:

T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt) =
T∑
t=1

(Dt

ηt
− Dt+1

ηt+1

)
+

T∑
t=1

Dt+1

( 1

ηt+1
− 1

ηt

)
+
u2
M

2

T∑
t=1

ηt + 2W

T∑
t=1

δt
ηt
− `M

2

T∑
t=1

〈xt, θt − θ̂t〉2 .

The proof is concluded because D1 ≤ 2W 2 as θ̂1, θ1 ∈ Θ; therefore

T∑
t=1

(Dt

ηt
− Dt+1

ηt+1

)
=
D1

η1
− DT+1

ηT+1
≤ D1

η1
≤ 2W 2

η1
.

Appendix C. Proof of Lemma 13

By convexity of `t(θ), we have

`t(θt)− `t(θ̂t) ≤ 〈∇`t(θt), θ̂t − θt〉 = µt(θt)〈xt, θt − θ̂t〉 . (78)

We denote Dt = µt(θt)〈xt, θt − θ̂t〉 and let Ft be the σ-algebra generated by {zt}Tt=1. Since

θ̂t is Ft−1 measurable, we have

E(Dt|Ft−1) = E(µt(θt)|Ft−1)〈xt, θt − θ̂t〉 = 0 , (79)

where E(µt(θt)|Ft−1) = 0 follows readily from Equation (71). Therefore, D(T ) ≡
∑T

t=1Dt

is a martingale adapted to the filtration Ft.
We next bound E[eλDt |Ft−1] for any λ ∈ R. Conditional on Ft−1, we have |Dt| ≤ βt,

with βt ≡ uM |〈xt, θt − θ̂t〉|. Since eλz is convex,

E[eλDt |Ft−1] ≤ E
[
βt −Dt

2βt
e−λβt +

βt +Dt

2βt
eλβt

∣∣∣∣Ft−1

]
= E

[
e−λβt + eλβt

2

]
+ E[Dt|Ft−1]

(
e−λβt + eλβt

2βt

)
= cosh(λβt) ≤ eλ

2β2
t /2 .

(80)

We are now ready to apply the following Bernstein-type concentration bound for martingale
difference sequences, whose proof is given in Appendix D for the reader’s convenience.

theorem C.1 Consider a martingale difference sequence Dt adapted to a filtration Ft, such
that for any λ ≥ 0, E[eλDt |Ft−1] ≤ eλ2σ2

t /2 . Then, for D(T ) =
∑T

t=1Dt, the following holds
true:

P(D(T ) ≥ ξ) ≤ e−ξ2/(2
∑T

t=1 σ
2
t ) . (81)

Combining Equation (78) and the result of Proposition C.1 we obtain

P
( T∑
t=1

`t(θ̂t)−
T∑
t=1

`t(θt) ≤ −2
√

log T
{ T∑
t=1

〈xt, θt − θ̂t〉2
}1/2

)
≤ 1

T 2
. (82)

The result follows.
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Appendix D. Proof of Proposition C.1

We follow the standard approach of controlling the moment generating function ofD(T ).Conditioning
on Ft−1 and applying iterated expectation yields

E[eλD(T )] = E
[
eλ

∑T−1
t=1 Dt · E[eλDT |FT−1]

]
≤ E

[
eλ

∑T−1
t=1 Dt

]
eλ

2σ2
T /2 . (83)

Iterating this procedure gives the bound E[eλ
∑T

t=1Dt ] ≤ eλ2
∑T

t=1 σ
2
t /2, for all λ ≥ 0.

Now by applying the exponential Markov inequality we get

P(D(T ) ≥ ξ) = P(eλD(T ) ≥ eλξ) ≤ e−λξE[eλ
∑T

t=1Dt ] ≤ e−λξeλ2(
∑T

t=1 σ
2
t )/2 . (84)

Choosing λ = ξ/(
∑T

t=1 σ
2
t ) gives the desired result.

Appendix E. Proof of Proposition 8.1

We prove the result in a more general case, namely when the features are independent
random vectors with bounded subgaussian norms.

Definition 14 For a random variable z, its subgaussian norm, denoted by ‖z‖ψ2 is defined
as

‖z‖ψ2 = sup
p≥1

p−1/2(E|z|p)1/p . (85)

Further, for a random vector z its subgaussian norm is defined as

‖z‖ψ2 = sup
‖u‖≥1

‖〈z, u〉‖ψ2 . (86)

We next recall the following result from (Vershynin, 2012) about random matrices with
independent rows.

theorem E.1 Suppose x` ∈ Rd are independent random vectors generated from a distri-
bution with covariance Σ and their subgaussian norms are bounded by K. Further, let
Qt = (1/t)

∑t
`=1 x`x

T
` . Then for every s ≥ 0, the following inequality holds with probability

at least 1− 2 exp(−cs2):

∥∥∥Qt − Σ
∥∥∥ ≤ max(δ, δ2) where δ = C

√
d

t
+

s√
t
. (87)

Here C and c > 0 are constants that depend solely on K.

We next show that the feature vectors in our problem have bounded subgaussian norm.
Given that ‖x`‖ ≤ 1, for ‖u‖ ≤ 1, we have

‖〈x`, u〉‖ψ2 = sup
p≥1

p−1/2(E|〈x`, u〉|p)1/p ≤ sup
p≥1

p−1/2(E[‖x`‖‖u‖]p)1/p ≤ 1 .
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Applying Proposition (E.1) with K = 1, there exist constants c1, c2 (depending on Cmin),
such that for t ≥ c1d

2, we have

‖Qt − Σ‖ ≤ 1

2d
Cmin ≤

1

2
σmin , (88)

with probability at least 1 − 2e−c2t/d. Weyl’s inequality then implies that |σt − σmin| ≤
σmin/2.

Also note that for t ≥ 1,

σt ≤ ‖Qt‖ ≤
1

t

t∑
`=1

‖x`xT` ‖ =
1

t

t∑
`=1

‖x`‖2 = 1 .

The proof is complete.

Appendix F. Proof of Lemma 8.2

The way we set λt (see Equation (23)), we have

1

tλt
=

(
6

`M

)
1

1 + σ1 + σ2 + . . .+ σt

Clearly, for t ≥ 1, 1/(tλt) ≤ 6/`M . Let t0 = c̃d2 log T , with c̃ = max(c1, 1/c2). For
T ≥ t0, define the event ET as follows

ET = {σt ≥ σmin/2, for t0 ≤ t ≤ T} . (89)

By applying Proposition 8.1 and union bounding over t, we get

P(ET ) ≥ 1−
T∑
t=t0

2e−c2t/d ≥ 1− 2d

c2
e−c2t0/d (90)

Therefore,

T∑
t=t0

E
[

1

tλ

]
≤ E

[(
T∑
t=t0

1

tλ

)
I(ET )

]
+

6T

`M
P(EcT )

=
6

`M
E

[(
T∑
t=t0

1

1 + σ1 + . . .+ σt

)
· I(ET )

]
+

6T

`M
P(EcT )

≤ 6

`M

(
T∑
t=1

1

1 + t
2σmin

+
2d

c2
T 1−c2c̃d

)

≤ 12

`M

(
1

σmin
log T +

d

c2
T 1−d

)
≤ 24d

`MCmin
log T . (91)

For t ≥ 1, we use the bound 1/(tλt) ≤ 6/`M . Hence,

T∑
t=1

E
[

1

tλ

]
≤ 6

`M

(
t0 +

4d

Cmin
log T

)
≤ 6

`M

(
c̃d2 log T +

4d

Cmin
log T

)
(92)

The proof is complete.
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