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Abstract

We consider the closely related problems of bandit convex optimization with two-point
feedback, and zero-order stochastic convex optimization with two function evaluations per
round. We provide a simple algorithm and analysis which is optimal for convex Lipschitz
functions. This improves on Duchi et al. (2015), which only provides an optimal result for
smooth functions; Moreover, the algorithm and analysis are simpler, and readily extend
to non-Euclidean problems. The algorithm is based on a small but surprisingly powerful
modification of the gradient estimator.

Keywords: zero-order optimization, bandit optimization, stochastic optimization, gradi-
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1. Introduction

We consider the problem of bandit convex optimization with two-point feedback Agarwal
et al. (2010). This problem can be defined as a repeated game between a learner and an
adversary as follows: At each round t, the adversary picks a convex function ft on Rd, which
is not revealed to the learner. The learner then chooses a point wt from some known and
closed convex set W ⊆ Rd, and suffers a loss ft(wt). As feedback, the learner may choose
two points w′t,w

′′
t ∈ W and receive1 ft(w

′
t), ft(w

′′
t ). The learner’s goal is to minimize

average regret, defined as

1

T

T∑
t=1

ft(wt)− min
w∈W

1

T

T∑
t=1

ft(w).

In this paper, we focus on obtaining bounds on the expected average regret (with respect
to the learner’s randomness).

A closely-related and easier setting is zero-order stochastic convex optimization. In
this setting, our goal is to approximately solve F (w) = minw∈W Eξ[f(w; ξ)], given limited
access to {f(·; ξt)}Tt=1 where ξt are i.i.d. instantiations. Specifically, we assume that each

1. This is slightly different than the model of Agarwal et al. (2010), where the learner only chooses w′t,w
′′
t

and the loss is 1
2

(ft(w
′
t) + ft(w

′′
t )). However, our results and analysis can be easily translated to their

setting, and the model we discuss translates more directly to the zero-order stochastic optimization
considered later.
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f(·, ξt) is not directly observed, but rather can be queried at two points. This models
situations where computing gradients directly is complicated or infeasible. It is well-known
(Cesa-Bianchi et al., 2004) that given an algorithm with expected average regret RT in the
bandit optimization setting above, if we feed it with the functions ft(w) = f(w; ξt), then
the average w̄T = 1

T

∑T
t=1wt of the points generated satisfies the following bound on the

expected optimization error:

E[F (w̄T )]− min
w∈W

F (w) ≤ RT .

Thus, an algorithm for bandit optimization can be converted to an algorithm for zero-order
stochastic optimization with similar guarantees.

The bandit optimization setting with two-point feedback was proposed and studied in
Agarwal et al. (2010). Independently, Nesterov (2011) and considered two-point methods
for stochastic optimization. Both papers are based on randomized gradient estimates which
are then fed into standard first-order algorithms (e.g. gradient descent, or more generally
mirror descent). However, the regret/error guarantees in both papers were suboptimal in
terms of the dependence on the dimension. Recently, Duchi et al. (2015) considered a similar
approach for the stochastic optimization setting, attaining an optimal error guarantee when
f(·; ξ) is a smooth function (differentiable and with Lipschitz-continuous gradients). Related
results in the smooth case were also obtained by Ghadimi and Lan (2013). However, to
tackle the general case, where f(·; ξ) may be non-smooth, Duchi et al. (2015) resorted to
a non-trivial smoothing scheme and a significantly more involved analysis. The resulting
bounds have additional factors (logarithmic in the dimension) compared to the guarantees
in the smooth case. Moreover, an analysis is only provided for Euclidean problems (where
the domain W and Lipschitz parameter of ft scale with the L2 norm).

In this note, we present and analyze a simple algorithm with the following properties:

• For Euclidean problems, it is optimal up to constants for both smooth and non-
smooth functions. This closes the gap between the smooth and non-smooth Euclidean
problems in this setting.

• The algorithm and analysis are readily applicable to non-Euclidean problems. We
give an example for the 1-norm, with the resulting bound optimal up to logarithmic
factors.

• The algorithm and analysis are simpler than those proposed in Duchi et al. (2015).
They apply equally to the bandit and zero-order optimization setting, and can be
readily extended using standard techniques, e.g. improved bounds for strongly-convex
functions; regret/error bounds holding with high-probability rather than just in ex-
pectation; and improved bounds if allowed k > 2 observations per round instead of
just two (Hazan et al., 2007; Shalev-Shwartz, 2007; Agarwal et al., 2010).

Like previous algorithms, our algorithm is based on a random gradient estimator, which
given a function f and point w, queries f at two random locations close to w, and computes
a random vector whose expectation is a gradient of a smoothed version of f . The papers
Nesterov (2011); Duchi et al. (2015); Ghadimi and Lan (2013) essentially use the estimator
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which queries at w and w + δu (where u is a random unit vector and δ > 0 is a small
parameter), and returns

d

δ
(f(w + δu)− f(w))u. (1)

The intuition is readily seen in the one-dimensional (d = 1) case, where the expectation of
this expression equals

1

2δ
(f(w + δ)− f(w − δ)) , (2)

which indeed approximates the derivative of f (assuming f is differentiable) at w, if δ is
small enough.

In contrast, our algorithm uses a slightly different estimator (also used in Agarwal et al.,
2010), which queries at w − δu,w + δu, and returns

d

2δ
(f(w + δu)− f(w − δu))u. (3)

Again, the intuition is readily seen in the case d = 1, where the expectation of this expression
also equals Eq. (2).

When δ is sufficiently small and f is differentiable at w, both estimators compute a
good approximation of the true gradient ∇f(w). However, when f is not differentiable, the
variance of the estimator in Eq. (1) can be quadratic in the dimension d, as pointed out by
Duchi et al. (2015): For example, for f(w) = ‖w‖2 and w = 0, the second moment equals

E

[∥∥∥∥dδ (f(δu)− f(0))u

∥∥∥∥2
2

]
= E

[
d2‖u‖42

]
= d2.

Since the performance of the algorithm crucially depends on the second moment of the
gradient estimate, this leads to a highly sub-optimal guarantee. In Duchi et al. (2015),
this was handled by adding an additional random perturbation and using a more involved
analysis. Surprisingly, it turns out that the slightly different estimator in Eq. (3) does not
suffer from this problem, and its second moment is essentially linear in the dimension d.

We note that in this work, we assume that u is a random unit vector, similar to previous
works. However, our results can be readily extended to other distributions, such as uniform
in the Euclidean unit ball, or a Gaussian distribution.

2. Algorithm and Main Results

We consider the algorithm described in Figure 1, which performs standard mirror descent
using a randomized gradient estimator g̃t of a (smoothed) version of ft at point wt. Fol-
lowing Duchi et al. (2015), we assume that one can indeed query ft at any point wt + δtut
as specified in the algorithm2.

The analysis of the algorithm is presented in the following theorem:

2. This may require us to query at a distance δt outside W. If we must query within W, then a standard
technique (see Agarwal et al., 2010) is to simply run the algorithm on a slightly smaller set (1 − ε)W,
where ε > 0 is sufficiently large so that wt + δtut must be in W. Since the formal guarantee in Thm. 1
holds for arbitrarily small δt, and each ft is Lipschitz, we can generally take δt (and hence ε) sufficiently
small so that the additional regret/error incurred is arbitrarily small.
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Algorithm 1 Two-Point Bandit Convex Optimization Algorithm

Input: Step size η, function r :W 7→ R, exploration parameters δt > 0
Initialize θ1 = 0.
for t = 1, . . . , T − 1 do

Predict wt = arg maxw∈W〈θt,w〉 − r(w)
Sample ut uniformly from the Euclidean unit sphere {w : ‖w‖2 = 1}
Query ft(wt + δtut) and ft(wt − δtut)
Set g̃t = d

2δt
(ft(wt + δtut)− ft(wt − δtut))ut

Update θt+1 = θt − ηg̃t
end for

Theorem 1 Assume the following conditions hold:

1. r is 1-strongly convex with respect to a norm ‖ · ‖, and supw∈W r(w) ≤ R2 for some
R <∞.

2. ft is convex and G2-Lipschitz with respect to the 2-norm ‖ · ‖2.

3. The dual norm ‖ · ‖∗ of ‖ · ‖ is such that 4
√

Eut‖ut‖4∗ ≤ p∗ for some p∗ <∞.

If η = R
p∗G2

√
dT

, and δt chosen such that δt ≤ p∗R
√

d
T , then the sequence w1, . . . ,wT

generated by the algorithm satisfies the following for any T and w∗ ∈ W:

E

[
1

T

T∑
t=1

ft(wt)−
1

T

T∑
t=1

ft(w
∗)

]
≤ c p∗G2R

√
d

T
,

where c is some numerical constant.

We note that condition 1 is standard in the analysis of the mirror-descent method (see
the specific corollaries below), whereas conditions 2 and 3 are needed to ensure that the
variance of our gradient estimator is controlled.

As mentioned earlier, the bound on the average regret which appears in Thm. 1 imme-
diately implies a similar bound on the error in a stochastic optimization setting, for the
average point w̄T = 1

T

∑T
t=1wt. We note that the result is robust to the choice of η, and

is the same up to constants as long as η = Θ(R/p∗G2

√
dT ). Also, the constant c, while

always strictly positive, shrinks as δt → 0 (see the proof below for details).
As a first application of the theorem, let us consider the case where ‖ ·‖ is the Euclidean

norm ‖·‖2. In this case, we can take r(w) = 1
2‖w‖

2
2, and the algorithm reduces to a standard

variant of online gradient descent, defined as θt+1 = θt−g̃t and wt = arg minw∈W ‖w−θt‖2.
In this case, we get the following corollary:

Corollary 2 Suppose ft for all t is G2-Lipschitz with respect to the Euclidean norm, and
W ⊆ {w : ‖w‖2 ≤ R}. Then using ‖ · ‖ = ‖ · ‖2 and r(w) = 1

2‖w‖
2
2, it holds for some

constant c and any w∗ ∈ W that

E

[
1

T

T∑
t=1

ft(wt)−
1

T

T∑
t=1

ft(w
∗)

]
≤ c G2R

√
d

T
,
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The proof is immediately obtained from Thm. 1, noting that p∗ = 1 in our case. This bound
matches (up to constants) the lower bound in Duchi et al. (2015), hence closing the gap
between upper and lower bounds in this setting.

As a second application, let us consider the case where ‖ · ‖ is the 1-norm, ‖ · ‖1, the
domain W is the simplex in Rd, d > 1 (although our result easily extends to any subset of
the 1-norm unit ball), and we use a standard entropic regularizer:

Corollary 3 Suppose ft for all t is G1-Lipschitz with respect to the L1 norm. Then using
‖ · ‖ = ‖ · ‖1 and r(w) =

∑d
i=1wi log(dwi), it holds for some constant c and any w∗ ∈ W

that

E

[
1

T

T∑
t=1

ft(wt)−
1

T

T∑
t=1

ft(w
∗)

]
≤ c G1

√
d log2(d)

T
.

This bound matches (this time up to a factor polylogarithmic in d) the lower bound in
Duchi et al. (2015) for this setting.

Proof The function r is 1-strongly convex with respect to the 1-norm (see for instance
Shalev-Shwartz, 2012, Example 2.5), and has value at most log(d) on the simplex. Also, if ft
is G1-Lipschitz with respect to the 1-norm, then it must be

√
dG1-Lipschitz with respect to

the Euclidean norm. Finally, to satisfy condition 3 in Thm. 1, we upper bound 4
√
E[‖ut‖4∞]

using the following lemma, whose proof is given in the appendix:

Lemma 4 If u is uniformly distributed on the unit sphere in Rd, d > 1, then 4
√
E[‖u‖4∞] ≤

c

√
log(d)
d where c is a positive numerical constant independent of d.

Plugging these observations into Thm. 1 leads to the desired result.

Finally, we make two additional remarks on possible extensions and improvements to
Thm. 1.

Remark 5 (Querying at k > 2 points) If the algorithm is allowed to query ft at k > 2,
then it can be modified to attain an improved regret bound, by computing bk/2c independent
estimates of g̃t at every round (using a freshly sampled ut each time), and using their
average. This leads to a new gradient estimator g̃kt , which satisfies E[‖g̃kt ‖2] ≤ 1

kE[‖g̃t‖2] +
‖E[g̃t]‖2. Based on the proof of Thm. 1, it is easily verified that this leads to an average

expected regret bound of cG2R√
T

(
1 + p∗

√
d/k
)

for some numerical constant c.

Remark 6 (Non-Euclidean Geometries) When considering norms other than the Eu-
clidean norm, it is tempting to conjecture that our algorithm and analysis can be improved,
by sampling ut from a distribution adapted to the geometry of that norm (not necessarily the
Euclidean ball), and assuming ft is Lipschitz w.r.t. the dual norm. However, adapting the
proof (and in particular getting appropriate versions of Lemma 8 and Lemma 9) does not
appear straightforward, and the potential performance improvement is currently unclear.
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3. Proof of Theorem 1

As discussed in the introduction, the key to getting improved results compared to previous
papers is the use of a slightly different random gradient estimator, which turns out to have
significantly less variance. The formal proof relies on a few simple lemmas listed below.
The key lemma is Lemma 10, which establishes the improved variance behavior.

Lemma 7 For any w∗ ∈ W, it holds that

T∑
t=1

〈g̃t,wt −w∗〉 ≤ 1

η
R2 + η

T∑
t=1

‖g̃t‖2∗.

This lemma is the canonical result on the convergence of online mirror descent, and the
proof is standard (see e.g. Shalev-Shwartz, 2012).

Lemma 8 Define the function

f̂t(w) = Eut [ft(w + δtut)] ,

over W, where ut is a vector picked uniformly at random from the Euclidean unit sphere.
Then the function is convex, Lipschitz with constant G2, satisfies

sup
w∈W

|f̂t(w)− ft(w)| ≤ δtG2,

and is differentiable with the following gradient:

∇f̂t(w) = Eut

[
d

δt
ft(w + δtut)ut

]
.

Proof The fact that the function is convex and Lipschitz is immediate from its definition
and the assumptions in the theorem. The inequality follows from ut being a unit vector
and that ft is assumed to be G2-Lipschitz with respect to the 2-norm. The differentiability
property follows from Lemma 2.1 in Flaxman et al. (2005).

Lemma 9 For any function g which is L-Lipschitz with respect to the 2-norm, it holds that
if u is uniformly distributed on the Euclidean unit sphere, then√

E
[
(g(u)− E[g(u)])4

]
≤ cL

2

d
.

for some numerical constant c.

Proof A standard result on the concentration of Lipschitz functions on the Euclidean unit
sphere implies that

Pr(|g(u)− E[g(u)]| > t) ≤ 2 exp
(
−c′dt2/L2

)
6
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for some numerical constant c′ > 0 (see the proof of Proposition 2.10 and Corollary 2.6 in
Ledoux, 2005). Therefore,

√
E
[
(g(u)− E[g(u)])4

]
=

√∫ ∞
t=0

Pr
(

(g(u)− E[g(u)])4 > t
)
dt

=

√∫ ∞
t=0

Pr
(
|g(u)− E[g(u)]| > 4

√
t
)
dt ≤

√∫ ∞
t=0

2 exp

(
−c
′d
√
t

L2

)
dt =

√
2
L4

(c′d)2
,

where in the last step we used the fact that
∫∞
x=0 exp(−

√
x)dx = 2. The expression above

equals cL2/d for some numerical constant c.

Lemma 10 It holds that E[g̃t|wt] = ∇f̂t(wt) (where f̂t(·) is as defined in Lemma 8), and
E[‖g̃t‖2|wt] ≤ cdp2∗G2

2 for some numerical constant c.

Proof For simplicity of notation, we drop the t subscript. Since u has a symmetric
distribution around the origin,

E[g̃|w] = Eu

[
d

2δ
(f(w + δu)− f(w − δu))u

]
= Eu

[
d

2δ
(f(w + δu))u

]
+ Eu

[
d

2δ
f(w − δu)(−u)

]
= Eu

[
d

2δ
(f(w + δu))u

]
+ Eu

[
d

2δ
f(w + δu)(u)

]
= Eu

[
d

δ
f(w + δu)u

]

which equals ∇f̂(w) by Lemma 8.

As to the second part of the lemma, we have the following, where α is an arbitrary
parameter and where we use the elementary inequality (a− b)2 ≤ 2(a2 + b2).

E[‖g̃‖2∗|w] = Eu

[∥∥∥∥ d2δ (f(w + δu)− f(w − δu))u

∥∥∥∥2
∗

]

=
d2

4δ2
Eu

[
‖u‖2∗ (f(w + δu)− f(w − δu))2

]
=

d2

4δ2
Eu

[
‖u‖2∗ ((f(w + δu)− α)− (f(w − δu)− α))2

]
≤ d2

2δ2
Eu

[
‖u‖2∗

(
(f(w + δu)− α)2 + (f(w − δu)− α)2

)]
=

d2

2δ2

(
Eu

[
‖u‖2∗ (f(w + δu)− α)2

]
+ Eu

[
‖u‖2∗ (f(w − δu)− α)2

])
.

7
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Again using the symmetric distribution of u, this equals

d2

2δ2

(
Eu

[
‖u‖2∗ (f(w + δu)− α)2

]
+ Eu

[
‖u‖2∗ (f(w + δu)− α)2

])
=
d2

δ2
Eu

[
‖u‖2∗ (f(w + δu)− α)2

]
.

Applying Cauchy-Schwartz and using the condition 4
√

Eu‖u‖4∗ ≤ p∗ stated in the theorem,
we get the upper bound

d2

δ2

√
Eu [‖u‖4∗]

√
Eu

[
(f(w + δu)− α)4

]
=

p2∗d
2

δ2

√
Eu

[
(f(w + δu)− α)4

]
.

In particular, taking α = Eu[f(w + δu)] and using Lemma 9 (noting that f(w + δu) is

G2δ-Lipschitz w.r.t. u in terms of the 2-norm), this is at most p2∗d
2

δ2
c (G2δ)2

d = cdp2∗G
2
2 as

required.

We are now ready to prove the theorem. Taking expectations on both sides of the
inequality in Lemma 7, we have

E

[
T∑
t=1

〈g̃t,wt −w∗〉

]
≤ 1

η
R2 + η

T∑
t=1

E
[
‖g̃t‖2∗

]
=

1

η
R2 + η

T∑
t=1

E
[
E
[
‖g̃t‖2∗|wt

]]
. (4)

Using Lemma 10, the right hand side is at most

1

η
R2 + ηcdp2∗G

2
2T

The left hand side of Eq. (4), by Lemma 10 and convexity of f̂t, equals

E

[
T∑
t=1

〈E[g̃t|wt],wt −w∗〉

]
= E

[
T∑
t=1

〈∇f̂t(wt),wt −w∗〉

]
≥ E

[
T∑
t=1

(
f̂t(wt)− f̂t(w∗)

)]
.

By Lemma 8, this is at least

E

[
T∑
t=1

(ft(wt)− ft(w∗))

]
− 2G2

T∑
t=1

δt.

Combining these inequalities and plugging back into Eq. (4), we get

E

[
T∑
t=1

(ft(wt)− ft(w∗))

]
≤ 2G2

T∑
t=1

δt +
1

η
R2 + cdp2∗G

2
2ηT.

Choosing η = R/(p∗G2

√
dT ), and any δt ≤ p∗R

√
d/T , we get

E

[
T∑
t=1

(ft(wt)− ft(w∗))

]
≤ (c+ 3)p∗G2R

√
dT .
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Dividing both sides by T , the result follows.
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Appendix A. Proof of Lemma 4

We note that the distribution of ‖u‖4∞ is identical to that of ‖n‖
4
∞

‖n‖42
, where n ∼ N (0, Id) is

a standard Gaussian random vector. Moreover, by a standard concentration bound on the
norm of Gaussian random vectors (e.g. Corollary 2.3 in Barvinok, 2005, with ε = 1/2):

max

{
Pr

(
‖n‖2 ≤

√
d

2

)
,Pr

(
‖n‖2 ≥

√
2d
)}
≤ exp

(
− d

16

)
.

Finally, for any value of n, we always have ‖n‖∞‖n‖2 ≤ 1, since the Euclidean norm is always
larger than the infinity norm. Combining these observations, and using 1A for the indicator
function of the event A, we have

E[‖u‖4∞] = E
[
‖n‖4∞
‖n‖42

]
= Pr

(
‖n‖2 ≤

√
d

2

)
E

[
‖n‖4∞
‖n‖42

∣∣∣∣∣ ‖n‖2 ≤
√
d

2

]

+ Pr

(
‖n‖2 >

√
d

2

)
E

[
‖n‖4∞
‖n‖42

∣∣∣∣∣ ‖n‖2 >
√
d

2

]

≤ exp

(
− d

16

)
∗ 1 + Pr

(
‖n‖2 >

√
d

2

)
E

 ‖n‖4∞(√
d/2
)4
∣∣∣∣∣∣∣ ‖n‖2 >

√
d

2


= exp

(
− d

16

)
+

(
2

d

)2

E
[
‖n‖4∞1‖n‖2>

√
d/2

]
≤ exp

(
− d

16

)
+

4

d2
E
[
‖n‖4∞

]
. (5)

Thus, it remains to upper bound E
[
‖n‖4∞

]
where n is a standard Gaussian random vari-

able. Letting n = (n1, . . . , nd), and noting that n1, . . . , nd are independent and identically

9
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distributed standard Gaussian random variables, we have for any scalar z ≥ 1 that

Pr(‖n‖∞ ≤ z) =
n∏
i=1

Pr(|ni| ≤ z) = (Pr(|n1| ≤ z))d

= (1− Pr(|n1| > z))d
(1)

≥ 1− dPr(|n1| > z)

= 1− 2dPr(n1 > z)
(2)

≥ 1− d exp(−z2/2),

where (1) is Bernoulli’s inequality, and (2) is using a standard tail bound for a Gaussian
random variable. In particular, the above implies that

Pr (‖n‖∞ > z) ≤ d exp(−z2/2).

Therefore, for an arbitrary positive scalar r ≥ 1,

E
[
‖n‖4∞

]
=

∫ ∞
z=0

Pr
(
‖n‖4∞ > z

)
dz

≤
∫ r

z=0
1dz +

∫ ∞
z=r

Pr
(
‖n‖∞ > 4

√
z
)
dz

≤ r +

∫ ∞
z=r

d exp

(
−
√
z

2

)
dz

= r + 4d(2 +
√
r) exp

(
−
√
r

2

)
.

In particular, plugging r = 4 log2(d) (which is larger than 1, since we assume d > 1), we get
4(2 + 2 log(d) + log2(d)). Plugging this back into Eq. (5), we get that

E[‖u‖4∞] ≤ exp

(
− d

16

)
+ 16

2 + 2 log(d) + log2(d)

d2
,

which can be shown to be at most c′
(
log(d)
d

)2
for all d > 1, where c′ < 150 is a numerical

constant. In particular, this means that 4
√

E[‖u‖4∞] ≤ 4
√
c′
√

log(d)
d as required.
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