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Appendix A. Formal Investigation of Optimal Exploratory Algorithms
for Binary Classification – Preliminary Results

This appendix is structured as follow: Section A.1 introduces new notation for some special
sets of potential solutions and tests and refined notation for some quantities introduced in
the main text; then Section A.2 formally re-derives quantities concerning optimal output
mechanisms; Section A.3 does the same for optimal exploration mechanisms and presents
preliminary results towards how it might be made feasible in the form of two Theorems;
Section A.4 presents the proofs for these results.

A.1 Notation

Let S, T = X, Y , M , D and H as introduced in the main text in sections 3.1.2 and
3.2. We are interested in the optimal aggregate (expected) performance of an exploratory
binary classification algorithm given data D and a budget of n evaluations of the metric
M . Typically we think of such algorithms as starting from an empty history of measured
evaluations, but to determine such performance it is necessary to explicitly represent the
starting history. Thus we introduce the notation Φmin

a (D,H, n) to denote optimal aggregated
performance (minimum expected error) for data D, budget n and starting history H. H must
be valid with respect to D, in that the measured interactions it contains can only involve
tests (data points) present in D.
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To derive a formula for Φmin
a (D,H, n), we introduce several preliminary notions:

TD = {t ∈ T | ∃y ∈ Y : 〈t, y〉 ∈ D} ⊆ T, // the tests that appear in the data D

E(H) = {〈s, t〉 ∈ S × T | ∃v ∈ {0, 1} : 〈〈s, t〉, v〉 ∈ H},
// the distinct interactions measured as part of the history H

// | E(H)| is denoted by η in Section 3.2.2 of main text

SH = {s ∈ S | ∃t ∈ T : 〈s, t〉 ∈ E(H)},
// the distinct potential solutions appearing at least once in the history H

// |SH| is denoted by α in sections 3.2.1 and 3.2.2 of main text

TH = {t ∈ T | ∃s ∈ S : 〈s, t〉 ∈ E(H)},
// the distinct tests appearing at least once in the history H

// |TH| is denoted by γ in Section 3.2.2 of main text

T s
H = {t ∈ T | 〈s, t〉 ∈ E(H)} ⊆ TH,

// the tests that have interacted with potential solution s as part of H

St
H = {s ∈ S | 〈s, t〉 ∈ E(H)} ⊆ SH,

// the potential solutions that have interacted with test t as part of H

// |St
H| is denoted by β in sections 3.2.2 and 3.3 of main text

n1,tH = |{s ∈ St
H|M (s, t) = 1}|,

// number of 1s seen by t, denoted by β1 in Section 3.2.2 of main text

n0,tH = |{s ∈ St
H|M (s, t) = 0}| = |St

H| − n
0,t
H =

∑
s∈St

H

M (s, t).

// number of 0s seen by t, denoted by β − β1 in Section 3.2.2 of main text

For H to be valid with respect to D we must have TH ⊆ TD. Note that this validity
constraint is the only way in which the definitions of the other sets above depend (indirectly)
on the data D. We also have ∀s ∈ S, t ∈ T :

s ∈ St
H ⇔ t ∈ T s

H ⇔ 〈s, t〉 ∈ E(H),

s ∈ S \ St
H ⇔ t ∈ T \ T s

H ⇔ 〈s, t〉 /∈ E(H),

St
H = ∅ ⇔ t ∈ T \ TH,
T s
H = ∅ ⇔ s ∈ S \ SH.

A.2 Optimal Output Mechanisms

The optimal aggregated performance when the remaining budget is 0 is simply the optimal
expected g-value possible across potential solutions that could be outputted, with expec-
tation across all possible metrics, conditioned on the history H and data D; it can also be
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thought of as the optimal aggregated performance for output mechanisms and is given by

Φmin
a (D,H, 0) = min

s∈S
E(g(s)|D,H).

where E(g(s)|D,H) is the expected g-value for a potential solution s ∈ S, as described in
Section 3.2.2 of the main text. Unless otherwise specified, whenever we use E notation
it is implied that the expectation is over metrics consistent with the data D. E(g(s)|D,H)
can be expressed as the sum of two components:

E(g(s)|D,H) =
∑
t∈T s

H

M (s, t) // actual sum on tests seen by s, gH(s) from Section 3.2.1

+
∑

t∈T\T s
H

E(M (s, t)|D,H). // expected sum on tests unseen by s.

We have t ∈ T \ T s
H ⇔ 〈s, t〉 /∈ E(H) and

∀〈s, t〉 /∈ E(H) : E(M (s, t)|D,H) = P (M (s, t) = 1|D,H) · 1 + P (M (s, t) = 0|D,H) · 0
= P (M (s, t) = 1|D,H).

These probabilities are in fact independent of s, relying only on properties of t as follows:

∀〈s, t〉 /∈ E(H) : P (M (s, t) = 0|D,H) =
2m−1 − n0,tH

2m − |St
H|

, // probability of outcome 0

P (M (s, t) = 1|D,H) =
2m−1 − n1,tH

2m − |St
H|

. // probability of outcome 1

We can therefore use the simplified notation E(t|D,H) (introduced in Section 3.2.2
of main text) to denote the expected value for evaluating a new interaction for test t,

E(t|D,H) =
2m−1 − n1,tH

2m − |St
H|

,

resulting in

E(g(s)|D,H) =
∑
t∈T s

H

M (s, t) +
∑

t∈T\T s
H

E(t|D,H).

The set T \ T s
H can be further partitioned into T \ TH and TH \ T s

H. For t ∈ T \ TH we

have St
H = ∅, so |St

H| = 0 = n1,tH = n0,tH . So:

∀t ∈ T \TH : E(t|D,H) = P (M (s, t) = 1|D,H) =
2m−1 − 0

2m − 0
= 0.5 = P (M (s, t) = 0|D,H).

Consequently:

∀s ∈ S : E(g(s)|D,H) =
∑
t∈T s

H

M (s, t) +
∑

t∈TH\T s
H

2m−1 − n1,tH

2m − |St
H|

+ |T \ TH| · 0.5.
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As before, note that this expression is independent of D, except for the constraint on
H validity. Therefore we can drop the D parameter from the notation. We name the three
components of E(g(s)|H) as follows:

σ(s,H) =
∑
t∈T s

H

M (s, t), // just easier notation to work with

ε(s,H) =
∑

t∈TH\T s
H

E(t|H), where E(t|H) =
2m−1 − n1,tH

2m − |St
H|

,

ρ(H) = |T \ TH| · 0.5, and

E(g(s)|H) = σ(s,H) + ε(s,H) + ρ(H).

For a given H, the ρ(H) term is the same for all s ∈ S, and it is never 0, since TH ⊆
TD ⊂ T (in other words there is always some unseen data). If s is a completely unevaluated
potential solution from S \ SH, i.e., one that has not taken part in any of the measured
interactions in H, then T s

H = ∅ and the σ(s,H) term is 0. Moreover, when T s
H = ∅, the

ε(s,H) term is a summation over all of TH of quantities that do not depend on s; and since
the ρ(H) term does not depend on s either, it follows that the estimate for all completely
unevaluated potential solutions is the same:

∀snew ∈ S \ SH : E(g(snew)|H) = ε(H) + ρ(H), where

ε(H) =
∑
t∈TH

E(t|H).

Thus the expression of Φmin
a can be re-written as

Φmin
a (D,H, 0) = min

s∈SH∪{snew}
E(g(s)|H),with arbitrary snew ∈ S \ SH.

As a side note, the ε(s,H) term can be 0 if TH \ T s
H = ∅, i.e., if T s

H = TH, which means s
has already seen all the tests present in the history.

A.3 Optimal Exploration Mechanisms

To express optimal aggregated performance for budget greater than 0, we must take into
account the exploration-mechanism component of the algorithm.

The set of possible interactions an exploration mechanism could evaluate next is

E ′(D,H) = S′H × T ′H \ E(H), where

S′H =

{
S if SH = S (unlikely)

SH ∪ {snew} otherwise, where snew ∈ S \ SH 6= ∅
and

T ′H =

{
TD if TH = TD

TH ∪ {tnew} otherwise, where tnew ∈ TD \TH 6= ∅.

For any interaction 〈s, t〉 ∈ E ′(D,H), an outcome v ∈ {0, 1} will be observed, with respective
probabilities for the two values given by P (M (s, t) = 0|D,H) and P (M (s, t) = 1|D,H)
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as previously described. The history would be lengthened by the measured interaction
〈〈s, t〉, v〉 and the remaining budget would be decreased by 1. Following the same reasoning
as presented by Popovici and Winston (2015) and Popovici (2017), the value of Φmin

a (D,H, n)
can be expressed recursively as described in Section 3.3 of the main text:

Φmin
a (D,H, n) = min

〈s,t〉∈E ′(D,H)
E

v∈{0,1}
Φmin
a (D,H⊕〈〈s, t〉, v〉, n− 1)

= min
〈s,t〉∈E ′(D,H)

∑
v∈{0,1}

P (M (s, t) = v|D,H) · Φmin
a (D,H⊕〈〈s, t〉, v〉, n− 1),

where ⊕ denotes adding a measured interaction to a history. Thus the operation of an
optimal exploration mechanism consists of selecting an interaction 〈s, t〉 that minimizes the
above sum (expectation). However determining this interaction by exhaustive expansion of
the recursive optimization can be computationally infeasible even for moderate values of
the budget n.

For their respective solution concepts, the aforementioned works mathematically proved
how under certain conditions the solution is an interaction 〈s, t〉 that can be identified
without the need for the expensive expansion (e.g, , one for snew or one such that s has the
best g-value for the given H; for these solution concepts the test is irrelevant, as long as it
is one the selected potential solution has not seen before). Whether similar results could be
proven generally for binary classification is an open question. Here we present the formal
derivations of the preliminary results for n = 1 described in Section 3.2 of the main
text.

Since the data D is fixed at all steps of the algorithm, from here on, to simplify notation,
we leave D implicit and drop it from the parameter list for all our quantities of interest.
To further facilitate presentation, we introduce the notation Q(H, n, 〈s, t〉) to denote the
optimal expected performance from evaluating interaction 〈s, t〉, given current history H
and remaining budget (after evaluating M (s, t)) of n:

Q(H, n, 〈s, t〉) = E
v∈{0,1}

Φmin
a (H⊕〈〈s, t〉, v〉, n).

With that we have

Φmin
a (H, n) = min

〈s,t〉∈E ′(H)
Q(H, n− 1, 〈s, t〉).

Our first result consists of the ability to prune some of the exploration choices involving
a previously unseen test, if one exists in the data:

Theorem 1 For any history H, if TH 6= TD then

∀sa, sb ∈ S, sa 6= sb, ∀tnew ∈ TD \TH :

E(g(sa)|H) ≤ E(g(sb)|H) ⇒ Q(H, 0, 〈sa, tnew〉) ≤ Q(H, 0, 〈sb, tnew〉).

The consequence of this Theorem is that if sbest ∈ S is a potential solution with the
best (minimum) expected g-value (i.e., E(g(sbest)|H) = min

s∈S
E(g(s)|H)), then we need not

evaluate Q(H, 0, 〈s, tnew〉) for any s 6= sbest, as we know they will be worse than or equal to
Q(H, 0, 〈sbest, tnew〉).
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Our second result consists of the ability to prune some of the exploration choices involv-
ing a previously unseen potential solution:

Theorem 2 For any history H and test t ∈ T , let

F (t|H) = E(t|H) ·
(
1− E(t|H)

)
·

2m − |St
H|

2m − |St
H| − 1

.

If H is such that |S \ SH| ≥ 2 and min
s∈S

E(g(s)|H) = min
s∈S\SH

E(g(s)|H) then

∀snew ∈ S \ SH, ta, tb ∈ T :

F (ta|H) ≥ F (tb|H) ⇒ Q(H, 0, 〈snew, ta〉) ≤ Q(H, 0, 〈snew, tb〉).

The consequence of this Theorem is that if the best (minimum) expected g-value is ob-
tained for completely unevaluated potential solutions (i.e., for any snew ∈ S\SH, E(g(snew)|H) =
min
s∈S

E(g(s)|H)), and t∗ is a test with the maximum F (·|H) value, then we need not

evaluate Q(H, 0, 〈snew, t〉) for any t 6= t∗, as we know they will be worse than or equal
to Q(H, 0, 〈snew, t∗〉). Combining this with Theorem 1, we have that for any s ∈ S,
Q(H, 0, 〈s, tnew〉) ≥ Q(H, 0, 〈snew, tnew〉) ≥ Q(H, 0, 〈snew, t∗〉), so out of |SH| + |TH| + 1
exploration choices involving snew, tnew or both, we only need to evaluate Q(H, 0, ·) for one
such choice, namely 〈snew, t∗〉. Further research is needed to determine if such pruning can
be performed for larger budget n, or whether any pruning of choices 〈s, t〉 ∈ SH × TH is
possible.

A.4 Proofs

To prove Theorem 1, we need an intermediary result about the expression of Q for previously
unseen tests:

Proposition 3 For any history H, if TH 6= TD then

∀s∗ ∈ S, tnew ∈ TD \TH :

Q(H, 0, 〈s∗, tnew〉) = Φmin
a (H, 0) +

1

2
min

(
0,
∣∣E(g(s∗)|H)− min

s∈S\{s∗}
E(g(s)|H)

∣∣− 2m−1

2m − 1

)
.

And to prove this Proposition we first show the following generic equality:

Lemma 4 For any A,B, γ ≥ 0:

1

2
·
[

min(A,B + γ) + min(A,B − γ)
]

= min(A,B) +
1

2
min(0, |A−B| − γ).

Proof of Lemma 4.

Let Z denote the left hand side expression. We distinguish 2 cases:

Case I: A ≥ B
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Then min(A,B) = B and |A − B| = A − B. Also, since γ ≥ 0, A ≥ B − γ, so
min(A,B − γ) = B − γ. With that we have

Z =
1

2
·
[

min(A,B + γ) + (B − γ)
]

=
1

2
·
[(
B + γ + min(0, A− (B + γ))

)
+ (B − γ)

]
= B +

1

2
min

(
0, (A−B)− γ

)
= min(A,B) +

1

2
min(0, |A−B| − γ).

Case II: A ≤ B
Then min(A,B) = A and |A − B| = B − A. Also, since γ ≥ 0, A ≤ B + γ, so

min(A,B + γ) = A. With that we have

Z =
1

2
·
[
A+ min(A,B − γ)

]
=

1

2
·
[
A+

(
A+ min(0, (B − γ)−A)

)]
= A+

1

2
min

(
0, (B −A)− γ

)
= min(A,B) +

1

2
min(0, |A−B| − γ).

This concludes the proof of Lemma 4.

Proof of Proposition 3.

We have:

Q(H, 0, 〈s∗, tnew〉) =
∑

v∈{0,1}

P (M (s∗, tnew) = v|H) · Φmin
a (H⊕〈〈s∗, tnew〉, v〉, 0).

Since tnew ∈ TD \TH ⊂ T \ TH, we have P (M (s∗, tnew) = 0|H) = P (M (s∗, tnew) = 1|H) =
0.5. Let

Hv = H⊕〈〈s∗, tnew〉, v〉.

Then

Q(H, 0, 〈s∗, tnew〉) =
1

2
·
∑

v∈{0,1}

Φmin
a (Hv, 0)

Φmin
a (Hv, 0) = min

s∈S
E(g(s)|Hv)

= min
(
E(g(s∗)|Hv), min

s∈S\{s∗}
E(g(s)|Hv)

)
.
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The estimate for s∗ is obtained via:

E(g(s∗)|Hv) = σ(s∗,Hv) + ε(s∗,Hv) + ρ(Hv);

ρ(Hv) = |T \ THv | · 0.5 = |T \ (TH ∪ {tnew})| · 0.5 = (|T \ TH| − 1) · 0.5
= ρ(H)− 0.5;

σ(s∗,Hv) =
∑

t∈T s∗
Hv

M (s∗, t) =
∑

t∈T s∗
H ∪{tnew}

M (s∗, t) = M (s∗, tnew) +
∑
t∈T s∗

H

M (s∗, t)

= v + σ(s∗,H);

ε(s∗,Hv) =
∑

t∈THv\T s∗
Hv

E(t|Hv) =
∑

t∈(TH∪{tnew})\(T s∗
H ∪{tnew})

E(t|Hv)

=
∑

t∈TH\T s∗
H

E(t|Hv);

∀t ∈ TH : E(t|Hv) =
2m−1 − n1,tHv

2m − |St
Hv |

=
2m−1 − n1,tH

2m − |St
H|

= E(t|H);

ε(s∗,Hv) =
∑

t∈TH\T s∗
H

E(t|H)

= ε(s∗,H);

E(g(s∗)|Hv) =
(
v + σ(s∗,H)

)
+ ε(s∗,H) +

(
ρ(H)− 0.5

)
= E(g(s∗)|H) + v − 0.5.

And the estimate for any s ∈ S \ {s∗} is obtained via:

E(g(s)|Hv) = σ(s,Hv) + ε(s,Hv) + ρ(Hv);

σ(s,Hv) =
∑

t∈T s
Hv

M (s, t) =
∑
t∈T s

H

M (s, t)

= σ(s,H);

ε(s,Hv) =
∑

t∈THv\T s
Hv

E(t|Hv) =
∑

t∈(TH∪{tnew})\T s
H

E(t|Hv)

= E(tnew|Hv) +
∑

t∈TH\T s
H

E(t|Hv) = E(tnew|Hv) +
∑

t∈TH\T s
H

E(t|H)

= E(tnew|Hv) + ε(s,H);

E(tnew|Hv) =
2m−1 − n1,tnew

Hv

2m − |Stnew
Hv |

=
2m−1 − v
2m − 1

= γv;

E(g(s)|Hv) = σ(s,H) +
(
γv + ε(s,H)

)
+
(
ρ(H)− 0.5

)
= E(g(s)|H) + γv − 0.5.
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Plugging these estimates back into Φmin
a we get:

Φmin
a (Hv, 0) = min

(
E(g(s∗)|H) + v − 0.5, min

s∈S\{s∗}
E(g(s)|H) + γv − 0.5

)
= −0.5 + min

(
E(g(s∗)|H) + v, min

s∈S\{s∗}
E(g(s)|H) + γv

)
;

Q(H, 0, 〈s∗, tnew〉) =
1

2
·
(

Φmin
a (H0, 0) + Φmin

a (H1, 0)
)

=
1

2
·
(
− 0.5 + min

(
E(g(s∗)|H), min

s∈S\{s∗}
E(g(s)|H) + γ0

)
− 0.5 + min

(
E(g(s∗)|H) + 1, min

s∈S\{s∗}
E(g(s)|H) + γ1

))
;

γ0 =
2m−1

2m − 1
;

γ1 =
2m−1 − 1

2m − 1
=

2m−1 − 2m + 2m − 1

2m − 1
= 1− 2m − 2m−1

2m − 1
= 1− γ0;

Q(H, 0, 〈s∗, tnew〉) =
1

2
·
(
− 0.5 + min

(
E(g(s∗)|H), min

s∈S\{s∗}
E(g(s)|H) + γ0

)
− 0.5 + 1 + min

(
E(g(s∗)|H), min

s∈S\{s∗}
E(g(s)|H)− γ0

))
=

1

2
·
(

min
(
E(g(s∗)|H), min

s∈S\{s∗}
E(g(s)|H) + γ0

)
+ min

(
E(g(s∗)|H), min

s∈S\{s∗}
E(g(s)|H)− γ0

))
.

By applying Lemma 4 with A = E(g(s∗)|H), B = min
s∈S\{s∗}

E(g(s)|H), γ = γ0 we get

Q(H,0, 〈s∗, tnew〉) = min
(
E(g(s∗)|H), min

s∈S\{s∗}
E(g(s)|H)

)
+

1

2
min

(
0,
∣∣E(g(s∗)|H)− min

s∈S\{s∗}
E(g(s)|H)

∣∣− γ0)
= min

s∈S
E(g(s)|H) +

1

2
min

(
0,
∣∣E(g(s∗)|H)− min

s∈S\{s∗}
E(g(s)|H)

∣∣− γ0)
= Φmin

a (H, 0) +
1

2
min

(
0,
∣∣E(g(s∗)|H)− min

s∈S\{s∗}
E(g(s)|H)

∣∣− 2m−1

2m − 1

)
.

This concludes the proof of Proposition 3.
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Proof of Theorem 1

Let history H such that TH 6= TD, tnew ∈ TD \TH and sa, sb ∈ S, sa 6= sb such that
E(g(sa)|H) ≤ E(g(sb)|H). By applying Proposition 3 to sa and sb we have:

Q(H, 0, 〈sa, tnew〉) = Φmin
a (H, 0) +

1

2
min

(
0,
∣∣E(g(sa)|H)− min

s∈S\{sa}
E(g(s)|H)

∣∣− 2m−1

2m − 1

)
,

Q(H, 0, 〈sb, tnew〉) = Φmin
a (H, 0) +

1

2
min

(
0,
∣∣E(g(sb)|H)− min

s∈S\{sb}
E(g(s)|H)

∣∣− 2m−1

2m − 1

)
.

To show that Q(H, 0, 〈sa, tnew〉) ≤ Q(H, 0, 〈sb, tnew〉), it suffices to show∣∣E(g(sa)|H)− min
s∈S\{sa}

E(g(s)|H)
∣∣ ≤ ∣∣E(g(sb)|H)− min

s∈S\{sb}
E(g(s)|H)

∣∣.
Let Za denote the expression on the left and Zb the expression on the right. We must show
Za ≤ Zb. Since |T | = m > 1, |S| = 2m > 2, so there must be potential solutions in S that
are neither sa nor sb. Thus we can write

Za =
∣∣∣E(g(sa)|H)−min

(
E(g(sb)|H), min

s∈S\{sa,sb}
E(g(s)|H)

)∣∣∣
=
∣∣∣E(g(sa)|H)−

(
E(g(sb)|H) + min

(
0, min

s∈S\{sa,sb}
E(g(s)|H)− E(g(sb)|H)

))∣∣∣
=
∣∣∣E(g(sa)|H)− E(g(sb)|H)−min

(
0, min

s∈S\{sa,sb}
E(g(s)|H)− E(g(sb)|H)

)∣∣∣
=
∣∣∣− (E(g(sb)|H)− E(g(sa)|H)

)
−min

(
0,Wa,b − E(g(sb)|H)

)∣∣∣ //notation

=
∣∣∣(E(g(sb)|H)− E(g(sa)|H)

)
+ min

(
0,Wa,b − E(g(sb)|H)

)∣∣∣
and

Zb =
∣∣∣E(g(sb)|H)−min

(
E(g(sa)|H), min

s∈S\{sa,sb}
E(g(s)|H)

)∣∣∣
=
∣∣∣E(g(sb)|H)−

(
E(g(sa)|H) + min

(
0, min

s∈S\{sa,sb}
E(g(s)|H)− E(g(sa)|H)

))∣∣∣
=
∣∣∣(E(g(sb)|H)− E(g(sa)|H)

)
−min

(
0,Wa,b − E(g(sa)|H)

)∣∣∣
=
(
E(g(sb)|H)− E(g(sa)|H)

)
−min

(
0,Wa,b − E(g(sa)|H)

)
.

// since E(g(sb)|H)− E(g(sa)|H) ≥ 0 and min(0, ·) ≤ 0

We show that the expression whose absolute value is equal to Za is less than Zb and its
negative is greater than −Zb, as follows. Since E(g(sa)|H) ≤ E(g(sb)|H), we have(
E(g(sb)|H)− E(g(sa)|H)

)
+ min

(
0,Wa,b − E(g(sb)|H)

)
≤
(
E(g(sb)|H)− E(g(sa)|H)

)
+ min

(
0,Wa,b − E(g(sa)|H)

)
≤
(
E(g(sb)|H)− E(g(sa)|H)

)
−min

(
0,Wa,b − E(g(sa)|H)

)
// since min(0, ·) ≤ 0

= Zb

10
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and

−
(
E(g(sb)|H)− E(g(sa)|H)

)
−min

(
0,Wa,b − E(g(sb)|H)

)
≥ −

(
E(g(sb)|H)− E(g(sa)|H)

)
−min

(
0,Wa,b − E(g(sa)|H)

)
≥ −

(
E(g(sb)|H)− E(g(sa)|H)

)
+ min

(
0,Wa,b − E(g(sa)|H)

)
// min(0, ·) ≤ 0

= −Zb.

Consequently Za =
∣∣∣(E(g(sa)|H)−E(g(sb)|H)

)
−min

(
0,Wa,b −E(g(sb)|H)

)∣∣∣ ≤ |Zb| = Zb,

which concludes the proof of Theorem 1.

To prove Theorem 2, we first show an intermediary result about the value of Q when
using a previously seen test.

Proposition 5 For any history H, test t∗ ∈ TH such that |St∗
H | ≤ 2m − 2 and potential

solution s∗ ∈ S such that 〈s∗, t∗〉 /∈ E(H):

Q(H, 0, 〈s∗, t∗〉) = (1− E(t∗|H)) ·min

(
E(g(s∗)|H)− E(t∗|H), min

s∈St∗
H

E(g(s)|H),

min
s∈S\St∗

H \{s∗}
E(g(s)|H) +

E(t∗|H)

2m − |St∗
H | − 1

)
+ E(t∗|H) ·min

(
E(g(s∗)|H) + 1− E(t∗|H), min

s∈St∗
H

E(g(s)|H),

min
s∈S\St∗

H \{s∗}
E(g(s)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

)
.

Proof of Proposition 5.

Let s∗ ∈ S and t∗ ∈ TH such that 〈s∗, t∗〉 has not yet been evaluated, i.e., 〈s∗, t∗〉 /∈ E(H).
This implies s∗ /∈ St∗

H (s∗ is not amongst the potential solutions seen by t∗) and t∗ /∈ T s∗
H

(t∗ is not amongst the tests seen by s∗). Let Hv = (H⊕〈〈s∗, t∗〉, v〉. We have:

Q(H, 0, 〈s∗, t∗〉) =
∑

v∈{0,1}

P (M (s∗, t∗) = v|H) · Φmin
a (Hv, 0)

= P (M (s∗, t∗) = 0|H) · Φmin
a (H0, 0) + P (M (s∗, t∗) = 1|H) · Φmin

a (H1, 0)

= (1− E(t∗|H)) · Φmin
a (H0, 0) + E(t∗|H) · Φmin

a (H1, 0);

Φmin
a (Hv, 0) = min

s∈S
E(g(s)|Hv)

= min
(
E(g(s∗)|Hv), min

s∈S\{s∗}
E(g(s)|Hv)

)
.

11
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The estimate for s∗ is obtained as follows:

E(g(s∗)|Hv) = σ(s∗,Hv) + ε(s∗,Hv) + ρ(Hv);

ρ(Hv) = |T \ THv | · 0.5 = |T \ TH| · 0.5 // since t∗ ∈ TH
= ρ(H);

σ(s∗,Hv) =
∑

t∈T s∗
Hv

M (s∗, t) =
∑

t∈T s∗
H ∪{t∗}

M (s∗, t) = M (s∗, t∗) +
∑
t∈T s∗

H

M (s∗, t)

= v + σ(s∗,H);

ε(s∗,Hv) =
∑

t∈THv\T s∗
Hv

E(t|Hv) =
∑

t∈TH\(T s∗
H ∪{t∗})

E(t|Hv);

∀t ∈ TH \ {t∗} : E(t|Hv) =
2m−1 − n1,tHv

2m − |St
Hv |

=
2m−1 − n1,tH

2m − |St
H|

= E(t|H);

ε(s∗,Hv) =
∑

t∈TH\(T s∗
H ∪{t∗})

E(t|H) =
∑

t∈TH\T s∗
H

E(t|H)− E(t∗|H)

= ε(s∗,H)− E(t∗|H);

E(g(s∗)|Hv) =
(
v + σ(s∗,H)

)
+
(
ε(s∗,H)− E(t∗|H)

)
+ ρ(H)

= E(g(s∗)|H) + v − E(t∗|H).

And the estimate for s 6= s∗ is obtained via:

E(g(s)|Hv) = σ(s,Hv) + ε(s,Hv) + ρ(Hv);

σ(s,Hv) =
∑

t∈T s
Hv

M (s, t) =
∑
t∈T s

H

M (s, t)

= σ(s,H);

ε(s,Hv) =
∑

t∈THv\T s
Hv

E(t|Hv) =
∑

t∈TH\T s
H

E(t|Hv).

At this point we have to differentiate between those potential solutions s 6= s∗ that have
seen t∗ (i.e., s ∈ St∗

H ) and ones that haven’t (i.e., s ∈ S \ St∗
H \ {s∗}). Since t∗ ∈ TH, t∗ has

been seen by at least one potential solution (but not s∗), thus St∗
H 6= ∅. The set S \St∗

H \{s∗}
cannot be empty, since it would mean t∗ has already seen 2m − 1 potential solutions.

For potential solutions s 6= s∗ that have seen t∗, recall that s ∈ St∗
H is equivalent to

t∗ ∈ T s
H, so for any t ∈ TH \ T s

H we must have t 6= t∗ and therefore E(t|Hv) = E(t|H).
Consequently:

∀s ∈ St∗
H : ε(s,Hv) =

∑
t∈TH\T s

H

E(t|H)

= ε(s,H);

E(g(s)|Hv) = σ(s,H) + ε(s,H) + ρ(H)

= E(g(s)|H).

12
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For potential solutions s 6= s∗ that have not seen t∗, i.e., s ∈ S \ St∗
H \ {s∗} 6= ∅, we have

t∗ ∈ TH \ T s
H. Consequently:

∀s ∈ S \ St∗
H \ {s∗} : ε(s,Hv) =

∑
t∈TH\T s

H\{t∗}

E(t|Hv) + E(t∗|Hv)

=
∑

t∈TH\T s
H\{t∗}

E(t|H) + E(t∗|Hv)

=
∑

t∈TH\T s
H

E(t|H)− E(t∗|H) + E(t∗|Hv)

= ε(s,H)− E(t∗|H) + E(t∗|Hv);

E(g(s)|Hv) = σ(s,H) +
(
ε(s,H)− E(t∗|H) + E(t∗|Hv)

)
+ ρ(H)

= E(g(s)|H)− E(t∗|H) + E(t∗|Hv);

E(t∗|Hv) =
2m−1 − n1,t

∗

Hv

2m − |St∗
Hv |

=
2m−1 −

(
n1,t

∗

H + v
)

2m −
(
|St∗

H |+ 1
) ;

E(t∗|H) =
2m−1 − n1,t

∗

H

2m − |St∗
H |

;

E(t∗|Hv) =
E(t∗|H) ·

(
2m − |St∗

H |
)
− v

2m − |St∗
H | − 1

= E(t∗|H) +
E(t∗|H)− v

2m − |St∗
H | − 1

;

E(g(s)|Hv) = E(g(s)|H) +
E(t∗|H)− v

2m − |St∗
H | − 1

.

Since S \ St∗
H \ {s∗} 6= ∅, we have:

Φmin
a (Hv, 0) = min

(
E(g(s∗)|H) + v − E(t∗|H)

, min
s∈St∗

H

E(g(s)|H)

, min
s∈S\St∗

H \{s∗}
E(g(s)|H) +

E(t∗|H)− v
2m − |St∗

H | − 1

)
;

Q(H, 0, 〈s∗, t∗〉) = (1− E(t∗|H)) ·min

(
E(g(s∗)|H)− E(t∗|H), min

s∈St∗
H

E(g(s)|H),

min
s∈S\St∗

H \{s∗}
E(g(s)|H) +

E(t∗|H)

2m − |St∗
H | − 1

)
+ E(t∗|H) ·min

(
E(g(s∗)|H) + 1− E(t∗|H), min

s∈St∗
H

E(g(s)|H),

min
s∈S\St∗

H \{s∗}
E(g(s)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

)
.

This concludes the proof of Proposition 5.
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Proof of Theorem 2
Let H such that |S \SH| ≥ 2 and min

s∈S
E(g(s)|H) = min

s∈S\SH

E(g(s)|H). We will show that

for any t∗ ∈ T we have

Q(H, 0, 〈snew, t∗〉) = E(g(snew)|H)− F (t∗|H),

from which the Theorem immediately follows.
Let snew ∈ S \ SH a completely unevaluated potential solution. Since for all completely

unevaluated potential solutions the g-value estimate E is the same, we have that

∀s′ ∈ S \ SH : E(g(s′)|H) = E(g(snew)|H) = min
s∈S

E(g(s)|H).

We first prove the formula for Q for t∗ ∈ TH. Since there are at least two potential
solutions in S \ SH, t∗ has seen at most 2m − 2 potential solutions, thus we can apply
Proposition 5 and obtain:

Q(H, 0, 〈snew, t∗〉) =
(
1− E(t∗|H)

)
· Φmin

a (H0, 0) + E(t∗|H) · Φmin
a (H1, 0);

Φmin
a (H0, 0) = min

(
E(g(snew)|H)− E(t∗|H), min

s∈St∗
H

E(g(s)|H)

, min
s∈S\St∗

H \{snew}
E(g(s)|H) +

E(t∗|H)

2m − |St∗
H | − 1

)
;

Φmin
a (H1, 0) = min

(
E(g(snew)|H) + 1− E(t∗|H), min

s∈St∗
H

E(g(s)|H)

, min
s∈S\St∗

H \{snew}
E(g(s)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

)
.

Since |S \ SH| ≥ 2, there is at least one s′ ∈ S \ SH \ {snew} ⊆ S \ St∗
H \ {snew}, so

min
s∈S\St∗

H \{snew}
E(g(s)|H) ≤ E(g(s′)|H) = E(g(snew)|H).

We also have

E(g(snew)|H) = min
s∈S

E(g(s)|H) ≤ min
s∈S\St∗

H \{snew}
E(g(s)|H),

so
min

s∈S\St∗
H \{snew}

E(g(s)|H) = E(g(snew)|H)

and

min
s∈S\St∗

H \{snew}
E(g(s)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

= E(g(snew)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

≤ E(g(snew)|H) + 1− E(t∗|H).

// since E(t∗|H) ∈ [0, 1]
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We also have

E(g(snew)|H) = min
s∈S

E(g(s)|H) ≤ min
s∈St∗

H

E(g(s)|H),

so

min
s∈S\St∗

H \{snew}
E(g(s)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

= E(g(snew)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

≤ E(g(snew)|H) // E(t∗|H) ∈ [0, 1]

≤ min
s∈St∗

H

E(g(s)|H).

Consequently,

Φmin
a (H1, 0) = E(g(snew)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

.

We also have:

E(g(snew)|H)− E(t∗|H) ≤ E(g(snew)|H) ≤ min
s∈St∗

H

E(g(s)|H),

E(g(snew)|H)− E(t∗|H) ≤ E(g(snew)|H)

≤ E(g(snew)|H +
E(t∗|H)

2m − |St∗
H | − 1

// E(t∗|H) ∈ [0, 1]

= min
s∈S\St∗

H \{snew}
E(g(s)|H) +

E(t∗|H)

2m − |St∗
H | − 1

,

so

Φmin
a (H0, 0) = E(g(snew)|H)− E(t∗|H).

Consequently,

Q(H, 0, 〈snew, t∗〉) = E(t∗|H) ·
(
E(g(snew)|H)− 1− E(t∗|H)

2m − |St∗
H | − 1

)
+
(
1− E(t∗|H)

)
·
(
E(g(snew)|H)− E(t∗|H)

)
= E(g(snew)|H)− E(t∗|H) ·

(
1− E(t∗|H)

)
·
(

1 +
1

2m − |St∗
H | − 1

)
= E(g(snew)|H)− F (t∗|H).

Now let tnew ∈ T \ TH. We have

F (tnew) = E(tnew|H) ·
(
1− E(tnew|H)

)
·

2m − |Stnew
H |

2m − |Stnew
H | − 1

= 0.5 · (1− 0.5) · 2m − 0

2m − 0− 1
=

1

4
· 2m

2m − 1
=

2m−2

2m − 1
.
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We can also apply Proposition 3 with s∗ = snew and obtain

Q(H, 0, 〈snew, tnew〉) = Φmin
a (H, 0)+

+
1

2
min

(
0,
∣∣E(g(snew)|H)− min

s∈S\{snew}
E(g(s)|H)

∣∣− 2m−1

2m − 1

)
.

As before, since |S \ SH| ≥ 2, there is at least one s′ ∈ S \ SH \ {snew} ⊆ S \ {snew} and
since min

s∈S
E(g(s)|H) = min

s∈S\SH

E(g(s)|H), we have

min
s∈S\{snew}

E(g(s)|H) = E(g(s′)|H) = E(g(snew)|H) = Φmin
a (H, 0).

Consequently,

Q(H, 0, 〈snew, tnew〉) = E(g(snew)|H) +
1

2
min

(
0,− 2m−1

2m − 1

)
= E(g(snew)|H)− F (tnew|H),

so the formula for Q holds for all t ∈ T , which in turn concludes the proof of Theorem 2.
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