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Abstract

There is a large literature explaining why AdaBoost is a successful classifier. The literature
on AdaBoost focuses on classifier margins and boosting’s interpretation as the optimiza-
tion of an exponential likelihood function. These existing explanations, however, have been
pointed out to be incomplete. A random forest is another popular ensemble method for
which there is substantially less explanation in the literature. We introduce a novel per-
spective on AdaBoost and random forests that proposes that the two algorithms work for
similar reasons. While both classifiers achieve similar predictive accuracy, random forests
cannot be conceived as a direct optimization procedure. Rather, random forests is a self-
averaging, interpolating algorithm which creates what we denote as a “spiked-smooth”
classifier, and we view AdaBoost in the same light. We conjecture that both AdaBoost and
random forests succeed because of this mechanism. We provide a number of examples to
support this explanation. In the process, we question the conventional wisdom that sug-
gests that boosting algorithms for classification require regularization or early stopping and
should be limited to low complexity classes of learners, such as decision stumps. We con-
clude that boosting should be used like random forests: with large decision trees, without
regularization or early stopping.

Keywords: AdaBoost, random forests, tree-ensembles, overfitting, classification

1. Introduction

In the “boosting” approach to machine learning, a powerful ensemble of classifiers is formed
by successively refitting a weak classifier to different weighted realizations of a data set.
This intuitive procedure has seen a tremendous amount of success. In fact, shortly, after
its introduction, in a 1996 NIPS conference, Leo Brieman crowned AdaBoost (Freund and
Schapire, 1996) (the first boosting algorithm) the “best off-the-shelf classifier in the world
(Friedman et al., 2000).” AdaBoost’s early success was immediately followed by efforts
to explain and recast it in more conventional statistical terms. The statistical view of
boosting holds that AdaBoost is a stage-wise optimization of an exponential loss function
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(Friedman et al., 2000). This realization was especially fruitful leading to new “boosting
machines” (Friedman, 2001; Ridgeway, 2006) that could perform probability estimation
and regression as well as adapt to different loss functions. The statistical view, however,
is not the only explanation for the success of AdaBoost. The computer science literature
has found generalization error guarantees using VC bounds from PAC learning theory and
margins (Guestrin, 2006). While some research has cast doubt on the ability of any one of
these to fully account for the performance of AdaBoost they are generally understood to be
satisfactory (Schapire, 2013).

This paper parts with traditional perspectives on AdaBoost by concentrating our anal-
ysis on the implications of the algorithm’s ability to perfectly fit the training data in a wide
variety of situations. Indeed, common lore in statistical learning suggests that perfectly
fitting the training data must inevitably lead to “overfitting.” This aversion is built into
the DNA of a statistician who has been trained to believe, axiomatically, that data can
always be decomposed into signal and noise. Traditionally, the “signal” is always modeled
smoothly. The resulting residuals represent the “noise” or the random component in the
data. The statistician’s art is to walk the balance between the signal and the noise, ex-
tracting as much signal as possible without extending the fit to the noise. In this light,
it is counterintuitive that any classifier can ever be successful if every training example is
“interpolated” by the algorithm and thus fit without error.

The computer scientist, on the other hand, does not automatically decompose problems
into signal and noise. In many classical problems, like image detection, there is no noise
in the classical sense. Instead there are only complex signals. There are still residuals,
but they do not represent irreducible random errors. If the task is to classify images into
those with cats and without, the problem is hard not because it is noisy. There are no cats
wearing dog disguises. Consequently, the computer scientist has no dogmatic aversion to
interpolating training data. This was the breakthrough.

It is now well-known that interpolating classifiers can work, and work well. The Ad-
aBoost classifier created a huge splash by being better than its established competitors (for
instance, CART, neural networks, logistic regression) (Breiman, 1998) and substantively
better than the technique of creating an ensemble using the bootstrap (Breiman, 1996).
The statistics community was especially confounded by two properties of AdaBoost: 1)
interpolation (perfect prediction in sample) was achieved after relatively few iterations, 2)
generalization error continues to drop even after interpolation is achieved and maintained.

The main point of this paper is to demonstrate that AdaBoost and similar algorithms
work not in spite, but because of interpolation. To bolster this claim, we will draw a constant
analogy with random forests (Breiman, 2001), another interpolating classifier. The random
forests algorithm, which is also an ensemble-of-trees method, is generally regarded to be
among the very best commonly used classifiers (Manuel Fernández-Delgado and Amorim,
2014). Unlike AdaBoost, for which there are multiple accepted explanations, random for-
est’s performance is much more mysterious since traditional statistical frameworks do not
necessarily apply. The statistical view of boosting, for example, cannot apply to random
forests since the algorithm creates decision trees at random and then averages the results—
there is no stage-wise optimization. In this paper, we will put forth the argument that both
algorithms are effective for the same reason. We consider AdaBoost and random forests
as canonical examples of “interpolating classifiers,” which we define to be a classifier’s al-
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gorithmic property of fitting the training data completely without error. Each of these
interpolating classifiers also exhibits a self-averaging property. We attempt to show that
these two properties together make for a classifier with low generalization error. While it
is easy to see that random forests has both of these mechanisms by design, it is less clear
that this is true for AdaBoost.

It is worth noting that Breiman noticed the connection between random forests and
AdaBoost as well, although his notion of a random forest was more general, including
other types of large ensembles of randomly grown trees (Breiman, 2001). In his 2001
Random Forests paper, he conjectured that the weights of AdaBoost might behave like
an ergodic dynamic system, converging to an invariant distribution. When run for a long
time, the additional rounds of AdaBoost were equivalent to drawing trees randomly grown
according to this distribution, much like a random forest. Recent work has followed up on
this idea, proving that the weights assigned by AdaBoost do indeed converge to a invariant
distribution 1 (Belanich and Ortiz, 2012). In this work, the authors also show that functions
of these weights, such as the generalization error and margins, also converge. This work
certainly complements ours, but we focus on the similarity between AdaBoost and random
forests through the lens of the type of decision surfaces both classifiers produce, and ability
of both algorithms to achieve zero error on the training set.

One of our key contributions will be to present a decomposition of AdaBoost as the
weighted sum of interpolating classifiers. Another contribution will be to demonstrate the
mechanism by which interpolation combined with averaging creates an effective classifier.
It turns out that interpolation provides a kind of robustness to noise: if a classifier fits the
data extremely locally, a “noise” point in one region will not affect the fit of the classifier
at a nearby location. When coupled with averaging, the result is that the fit stabilizes
at regions of the data where there is signal, while the influence of noise points on the fit
becomes even more localized. It will be easy to see this point holds true for random forests.
For AdaBoost, it is less clear, however, and a decomposition of AdaBoost and simulation
results in Section 4 will demonstrate this crucial point. We will observe that the error of
AdaBoost at test points near noise points will continue to decrease as AdaBoost is run for
more iterations, demonstrating the localizing effect of averaging interpolating classifiers.

We will begin in Section 2 by critiquing some of the existing explanations of AdaBoost.
In particular, we will discuss at length some of the shortcomings of the statistical optimiza-
tion view of AdaBoost. In Section 3, we will discuss the merits of classification procedures
that interpolate the training data, that is, that fit the training data set with no error.
The main conclusion from this section is that interpolation, done correctly, can provide
robustness to a fit in the presence of noise. This discussion will be augmented with simu-
lations discussing the performance of random forests, AdaBoost, and other algorithms in a
noisy environment. We will then derive our central observation in Section 4, namely that
AdaBoost can be decomposed as a sum of classifiers, each of which fits the training data
perfectly. The implication from this observation is that for the best performance, we should
run AdaBoost for many iterations with deep trees. The deep trees will allow the component
classifiers to interpolate the data, while a large number of iterations will lend to a bagging

1. More specifically, they consider the so called “Optimal AdaBoost” algorithm, which is assume to pick
the base classifier with lowest weighted error at each round. They show that the per round average of
any measurable function of the training weights converges under mild conditions.
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effect. We will then demonstrate this intuition in a real data example in Section 5. Finally,
we conclude with a brief discussion in Section 6.

2. Competing Explanations for the Effectiveness of Boosting

In this section we will present an overview of some of the most popular explanations for the
success of boosting, with analysis of both the strengths and weaknesses of each approach.
Our emphasis will focus on the margins view of boosting and the statistical view of boosting,
each of which has a large literature and has led to the development of variants of boosting
algorithms. For a more extensive review of the boosting literature, one is well-advised to
consult Schapire and Freund (2012).

Before we begin, we will briefly review the AdaBoost algorithm not only to refresh the
reader’s mind, but also to establish the exact learning algorithm this paper will consider,
as there are many variants of AdaBoost. To this end, the reader is invited to review
Algorithm 1. In our setting, we are given N training points (xi, yi) where xi ∈ X and
yi ∈ {−1,+1}. On round m, where m = 1, . . . ,M , we fit a weak classifier Gm (x) to a
version of the data set reweighted by some weighting vector wm. We then calculate the
weighted misclassification rate of our chosen learner, and update the weighting measure
used in the next round, wm+1. The final classifier is output as the sign of a weighted
linear combination of classifiers produced from each stage of the algorithm. In practice,
one sometimes limits the number of rounds of boosting as a form of regularization. We will
discuss this point more in the next section, and challenge its usefulness in later parts of the
paper.

Algorithm 1: AdaBoost Hastie et al. (2009)

1. Initialize the observation weights wi =
1

N
, i = 1, 2, . . . , N .

2. For m = 1 to M :
(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute errm =

∑N
i=1wiI (yi 6= Gt (xi))∑N

i=1wi

.

(c) Compute am = log

(
1− errt

errt

)
.

(d) Set wi ← wi · exp (at · I (yi 6= Gt (xi)))

(e) Set fi(x) =
∑M

m=1 amGm (x)

3. Output f(x) = sign (fM (x))

2.1 Margin View of Boosting

Some of the earliest attempts to understand AdaBoost’s performance predicted that its
generalization error would increase with the number of iterations: as AdaBoost is run for
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more rounds, it is able to fit the data increasingly well which should lead to overfitting.
However, in practice we observe that running boosting for many rounds does not overfit
in most cases. One of the first attempts to resolve this paradox was explored by Schapire
et al. (1998), who focused on the margins of AdaBoost. The margins can be thought of
as a measure of how confident a classifier is about how it labels each point, and one would
hypothetically desire to produce a classifier with margins as large as possible. Schapire et al.
(1998) proved that AdaBoost’s generalization error decreases as the size of the margins
increase. Indeed, in practice one observes that as AdaBoost is run for many iterations, test
error decreases while the size of the empirical margins increase. In fact, recent research has
demonstrated that AdaBoost can be reformulated exactly as mirror descent applied to the
problem of maximizing the smallest margin in the training set under suitable separability
conditions (Freund et al., 2013).

One could take these observations to suggest that a more effective algorithm might
be designed to explicitly optimize margins. However, one can find evidence against this
hypothesis in Breiman’s arc-gv algorithm (Breiman, 1999). Breiman designed the arc-gv
algorithm to maximize the minimum margin in a data set, and he found that this algorithm
actually had worse generalization error than AdaBoost. Moreover, he developed generaliza-
tion error bounds based on the minimum margin of a classifier which were tighter than those
established by Shapire, casting doubt on the existing margin explanation. Other algorithms
designed to maximize margins, such as LP-Boost have also been found to perform worse
than AdaBoost in practice (Wang et al., 2011). Critics of these supposed counterexamples
to the margin view of boosting note that AdaBoost’s success likely depends on the entire
distribution of margins on the data, not just the smallest margin. More recent work has
improved upon the Breiman’s generalization bound by taking into account other aspects
of the margin that more closely reflect its distribution, adding new life to the margin ex-
planation of AdaBoost (Gao and Zhou, 2013). While the margin explanation of AdaBoost
is certainly intuitive, its role in producing low generalization error is still an area of active
research.

2.2 Statistical Optimization View of Boosting

Friedman et al. (2000) take great strides to clear up the mystery of boosting to provide
statisticians with a statistical view of the subject. The heart of their article is the recasting
of boosting as a statistically familiar program for finding an additive model by means of a
forward stage-wise approximate optimization of an exponential criterion. In short, this view
places boosting firmly in classical statistical territory by clearly defining it as a procedure
to search through the space of convex combinations of weak learners or base classifiers. This
explanation has been widely assimilated and has reappeared in the statistical literature as
well as in a plethora of computer science articles. Subsequent to the seminal publication of
Friedman et al. (2000) there has been a flurry of activity dedicated to theoretical analysis
of the algorithm. This was made possible by the identification of boosting as optimization,
which therefore admits of a mathematically tractable representation. Research on the op-
timization properties of AdaBoost and the exponential loss function is still an active area
of research, see Mukherjee et al. (2013), for example.
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Although the statistical optimization perspective of AdaBoost is surely interesting and
informative, there remain problems. First, we observe that the fact that AdaBoost mini-
mizes an exponential loss may not alone account for its performance as a classifier. Wyner
(2003) introduces a variant of AdaBoost called Beta-Boost which is very similar to AdaBoost
except that by design the exponential loss function is constant throughout the iterations.
Despite this, Beta-Boost was able to demonstrate similar performance to AdaBoost on
simulated data sets. Furthermore, among many similar examples in the literature, Mease
and Wyner (2008) present a simulation example in which the the exponential loss is mono-
tonically increasing with the number of iterations of AdaBoost on a test set, while the
generalization error decreases. In this example, the value of the exponential loss is uninfor-
mative about how well the classifier generalizes. Freund et al. (2013) also provide evidence to
this end. They conduct an experiment that compares AdaBoost to two AdaBoost variants
that minimize the exponential loss function at differing rates: one performs the minimiza-
tion very quickly through gradient descent, while the other performs the minimization quite
slowly. They find that AdaBoost performed significantly better than these two competitors,
suggesting that AdaBoost’s strong performance cannot be tied exclusively to its action on
the exponential loss function.

We also contend that some of the mathematical theory connected with the statistical
optimization view of boosting has a disconnect with the types of boosting algorithms that
work in practice. The optimization theory of boosting insists that overfitting can be avoided
by requiring the set of weak learners, to be just that: weak. Bühlmann and Yu (2003)
argues that one can avoid overfitting by employing regularization with weak base learners.
However, empirical evidence points to quite the opposite: boosting deep trees for many
iterations tends to produce a better classifier than boosted stumps with regularization
(Mease and Wyner, 2008). The use of early-stopping as a form of regularization has also
been called into question (Mease and Wyner, 2008). The thrust of our paper will be to
demonstrate why we should actually expect boosting with deep trees run for many iterations
to have better generalization error. Recent work also suggests that boosting low complexity
classifiers may not be able to achieve good accuracy in difficult classification tasks such
as speech recognition or image recognition (Cortes et al., 2014). This paper proposes an
algorithm called “DeepBoost” which encourages boosting high complexity base classifiers—
such as very deep decision trees—but in a “capacity-conscious” way. One last problem
with theory associated with the statistical view of boosting is that by its very nature it
suggests that we should be able to extract conditional class probability estimates from the
boosted fit, as the procedure is apparently maximizing a likelihood function. Mease and
Wyner (2008), however, point out a number of examples where the implied conditional class
estimates from the boosting fit diverge to zero and one. While boosting appears to do an
excellent job as a classifier, it apparently fails to estimate probability quantiles correctly.

We can now summarize the main empirical contradictions with existing theoretical ex-
planations of boosting, which motivates the view we present in this paper:

1. Boosting works well, perhaps best in terms of performance if not efficiency, with
“strong learners” like C4.5 and CART (Niculescu-Mizil and Caruana, 2005).

2. The value of exponential loss does not always bear a clear relationship to generalization
error (Mease and Wyner, 2008).
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3. The optimization theory offers no explanation as to why the training error can be
zero, yet the test error continues to descend (Freund and Shapire, 2000)

This paper will squarely depart from the statistical optimization view by asserting that
AdaBoost may be best thought of as a (self) smoothed, interpolating classifier. We will
see that unlike the statistical optimization view, this perspective suggests that for best
performance once should run many iterations of AdaBoost with deep trees. This will allow
us to draw a number of analogies between AdaBoost and random forests. A key component
to this argument will consist of explaining the success of interpolating classifiers in noisy
environments. We will pursue this line of thought in the following section.

3. Interpolating Classifiers

Algorithm 2: Random Forests Hastie et al. (2009)

1. For b = 1 to B:
(a) Draw a bootstrap sample X∗ of size N from the training data
(b) Grow a decision tree Tb to the data X∗ by doing the following recursively

until the minimum node size nmin is reached:
i. Select m of the p variables
ii. Pick the best variable/split-point from the m variables and partition

2. Output the ensemble {Tb}Bb

Let Ĉb(x
∗) be predicted class of tree Tb. Then ĈB

rf (x∗) = majority vote{Ĉb(x
∗)}B1 .

It is a widely held belief by statisticians that if a classifier interpolates all the data, that
is, it fits all the training data without error, then it cannot be consistent and should have a
poor generalization error rate. In this section, we demonstrate that there are interpolating
classifiers that defy this intuition: in particular, AdaBoost and random forests will serve
as leading examples of such classifiers. We argue that these classifiers achieve good out
of sample performance by maintaining a careful balance between the complexity required
to perfectly match the training data and a general semi-smoothness property. We begin
with a quick review of the random forests classifier, which will be in constant analogy with
AdaBoost.

3.1 Random Forests

Random forests has gained tremendous popularity due to robust performance across a wide
range of data sets. The algorithm is often capable of achieving best-in-class performance
with respect to low generalization error and is not highly sensitive to choice of tuning
parameters, making it the off-the-shelf tool of choice for many applications.

Algorithm 2 reviews the procedure for constructing a random forests model. Note that in
many popular implementations, such as R implementation randomForest Liaw and Wiener
(2002) built from Breiman’s CART software, nmin is set to one for classification. This
implies that each decision tree is designed to be grown to maximal depth and therefore
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necessarily interpolates the data in its bootstrap sample (assuming as least one continuous
predictor). This results in each tree being a low bias but high variance estimator. Variance
is then reduced by averaging across trees, resulting in a “smoothing” of the estimated
response surface. The random predictor selection within each tree further reduces variance
by lowering the correlation across the trees. The final random forest classifier still fits the
entire training data set perfectly, at least with very high probability. To see this is true,
consider any given training point. As the number of trees increases, with probability close
to one, that point will be present in the majority of the bootstrap samples used to fit the
trees in the forest. Thus the point will get the correct training set label when the votes are
tabulated to determine the final class label.

We wish to emphasize that despite its success, random forests is not directly optimizing
any loss function across the entire ensemble; each tree is grown independently of the other
trees. While each tree may optimize a criteria such as the Gini index, the full ensemble is
not constructed in any optimization-driven fashion such as is the case for AdaBoost. While
there has been recent theoretical work describing the predictive surface of random forests
(Wager and Walther, 2015), the analysis required unnatural assumptions that are hard to
justify in practice (such as the growth rate of minimum leaf size). Rather, we postulate
that the success of the algorithm is due to its interpolating nature plus the self-averaging
mechanism. We next consider the implications of interpolating classifiers more broadly.

3.2 Local Robustness of Interpolating Classifiers

Let us begin with a definition of interpolation:

Definition: Let Xi be vector observations of predictor variables a let Yi be the observed
class label. A classifier f(X) is said to be an interpolating classifier if for every training set
example, the classifier assigns the correct class label; that is for every i, f(Xi) = Yi.

The term “interpolation” is likely jarring for some readers. In many contexts, one
often thinks about interpolating a set of points with classically smooth functions, such as
polynomial splines. However, strictly speaking, there are many other ways that one might
interpolate a set of points—through the fit of an AdaBoost classifier, for instance! Since
the notion of fitting a set of points without error is central to this paper, and since the
common definition of interpolation does not preclude the kinds of fits we consider, we felt
it appropriate to proceed with the term.

Many statisticians are not comfortable with classifiers that interpolate the training data:
common wisdom suggests that any classifier which fits the training data perfectly must have
poor generalization error. Indeed, one of the first interpolating classifiers that might come
to one’s mind, the one-nearest neighbor, can be shown to be inconsistent and have poor
generalization error in environments with noise. Specifically, Cover and Hart (1967) have
shown that the asymptotic generalization error for the one-nearest neighbor classifier is at
least as large as the Bayes error rate. However, the claim that all interpolating classifiers
overfit is problematic, especially in light of the demonstrated success of classifiers that
perfectly fit the training data, such as random forests.
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One of our key insights reverses the common intuition about classifiers: interpolation can
prevent overfitting. An interpolated classifier, if sufficiently local, minimizes the influence
of noise points in other parts of the data. In order to make this point conceptually clear, it
is helpful to put ourselves in familiar territory with a regression example.

Suppose we are trying to predict a continuous response y based on real-valued x obser-
vations. Let us assume that the true underlying model is y = x + ε, where ε is a mixture
of a point mass at zero and some heavy-tailed distribution. In other words, we’ll assume
that most points in a given training set reflect the true linear relationship between y and
x, but a few observations will be noise points. This is analogous to the types of probability
models we typically consider in classification settings, such as those found in later sections
of the paper. Figure 1 shows hypothetical training data: note that the only “noise” point
is found at x = 0.4. We then consider fitting three models to this data: two interpolating
functions, given by the blue and black lines, and an ordinary regression fit given by the
red line. The first thing to notice is that the two interpolating fits differ only from the
true target mean model y = x only at the noise point x = 0.4. In contrast, the fit of the
regression line deviates from the underlying target over the entire range of x. The one noise
point corrupted the entire fit of the regression line, while the interpolating lines were able to
minimize the influence of the noise point by adapting to it only very locally. Moreover, one
should note that between the two interpolating fits, the blue line interpolates more locally
than the black line, and thus its overall fit is even less influenced by the noise point. This
simplified example is of course meant to be didactic, but we will show throughout the rest
of this paper that in practice AdaBoost and random forest do indeed produce fits similar
to the blue line.
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Figure 1: Three estimated regression functions with two interpolating fits (black and blue)
and an ordinary least squares fit (red).
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While it is conceptually clear that it is desirable to produce fits like the blue interpolating
line in the previous example, one may wonder how such fits can be achieved in practice.
In the classification setting, we will argue throughout this paper that this type of fit can
be realized through the process of averaging interpolating classifiers. We will refer to the
decision surface produced by this process as being spiked-smooth. The decision surface is
spiked in the sense that it is allowed to adapt in very small regions to noise points, and it
is smooth in the sense that it has been produced through averaging. A technical definition
of a spiked-smooth decision surface would lead us too far astray. It may be helpful instead
to consider the types of classifiers that do not produce a spiked-smooth decision surface,
such as a logistic regression. Logistic regression separates the input space into two regions
with a hyperplane, making a constant prediction on each region. This surface is not spiked-
smooth because it does not allow for local variations: in large regions (namely, half-spaces),
the classifier’s predictions are constrained to be the same sign. Figure 2 provides a graphical
illustration of this intuition.

(a) (b)

Figure 2: An illustration of the robustness to noise of interpolating classifiers. In 2a a
classifier (such as a logistic regression) is fit to a set of training data, and the decision
boundary produced by this classifier is shown as a solid line. In 2b, the same type of
classifier is fit to the training data, except a noise point is added to the data (the blue point
marked by the arrow). The one noise point shifts the entire decision boundary, which is
shown as the dotted line. On the other hand, the decision boundary produced by a classifier
which interpolates very locally is shown as a solid line. It is clear that this classifier is able
to adapt locally to the noise point, and the overall fit does not get corrupted.

Intuitively, we expect ensembles of interpolating classifiers to generalize well because
they are flexible enough to fit a complex signal, and “local” enough to prevent the undue
influence of noise points. It is clear that random forests are averaged collections of inter-
polating classifiers, and we will show in section 4 that AdaBoost may be thought of in
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the same way. Classically smooth classifiers—such as logistic regression or pruned CART
trees—are forced to produce fits that are locally constant. It is harder for such classifiers
to “recover” from making a mistake at a noise point since the surface of the fit will affect
the fit at nearby points. Interpolating classifiers are flexible enough to make mistakes in
“small regions.” When averaged over many such classifiers, the influence of the noise point
can be easily smoothed out. Later examples in the paper will visualize this process, and will
demonstrate that the later iterations of AdaBoost have a smoothing effect which shrinks
down the influence of noise points on the overall fit of the classifier.

With this discussion in mind, let us consider another conceptual example, this time
in the classification setting. Suppose we have have two predictors x1 and x2 distributed
independently and uniformly on [0, 1]2 and y ∈ {−1,+1}. Further suppose that the true
conditional class probability function is

P (x) = P (y = 1|x) = p = .75

for all x. This is a pure noise model with no signal, but in general one could view this as a
subspace of a more complex model in which the P (x) function is approximately constant.
Since the Bayes decision rule is to classify every point as a “+1”, we would desire an
algorithm that will match the Bayes rule as close as possible. Again, we stress that this
closeness should be judged with respect to the population or a hold-out sample. On this
training data, any interpolating classifier will necessarily differ from the Bayes rule for
1− p = 25% of the points on average.

Figure 3 shows a possible sample of training data from this model of size n = 20.
The blue points represent the “+1”’s and the red points represent the “-1”’s. There are
5/20 = 25% red points. The training data was sampled according to a Latin Hypercube
design using the midpoints of the squares so that the points would be evenly spaced, but
that is not essential.

Figure 4 shows four hypothetical classifiers that could result from fitting boosted decision
tree models to the training data in Figure 3. When decision trees are used as base learners
for data with continuous predictors, it is a common convention to restrict the split points
of the trees to be the midpoints of the predictors in the training data. Consequently, the
classifier in each small square shown in Figure 3 will necessarily be constant throughout;
this is the finest resolution of the classifier resulting from boosting decision tress assuming
no sub-sampling. Thus, Figure 4a represents the interpolating classifier closest to the Bayes
rule. (In these plots, pink squares represent “-1”’s and light blue squares represent “+1”’s.)
Note that the interpolation is in fact quite local; the estimated function varies rapidly in
the small neighborhoods of the pink squares. For such a classification rule the percentage
of points in a hold-out sample that would differ from the Bayes rule (in expectation over
training sets) would be (1 − p)n/nd where p = P (y = 1|x) and d is the dimensionality of
the predictor space (for our example, d = 2). We will present evidence later that in noisy
environments boosting sufficiently large trees does actually tend to find such rules as that
in Figure 4a. Interestingly, since

lim
n→∞

(1− p)n/nd = 0

such rules are in fact consistent. This illuminates the point that interpolation does not rule
out consistency. By allowing the decision boundary to be “mostly” smooth, with spikes of
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Figure 3: Training Data

vanishing measure, it is possible to obtain consistency in the limit as n → ∞, even while
classifying every training point correctly. This stands in direct contrast to the conclusion
of others such as Bickel et al. (2006) who have observed that the “empirical optimization
problem necessarily led to rules which would classify every training set observation correctly
and hence not approach the Bayes rule whatever be n.”

While a classifier such as that in Figure 4a would preform well and is even consistent,
many possible interpolators exist, such as the others displayed in Figure 4. Figure 4b shows
the (hypothetical) result of allowing the boosting algorithm to use trees involving only x1
and not x2. It is interesting to note that this classifier has severely overfit, even though it is
a simpler model, depending on only one of the two predictors. The classifier in Figure 4c has
an even worse error rate, while the classifier in Figure 4d differs from the Bayes rule with
rate ((1− p)n)2/n2. This final example illustrates the type of structure and error rate that
occurs when stumps are used as the weak learner. In fact, Mease and Wyner (2008) show
that the additive nature of stumps results in boosted classifiers that differ from the Bayes
rule at a rate of at least (1−p)d(1−1/d)d and hence is not consistent. The reason for this is
that using linear combinations of stumps does not provide enough flexibility to interpolate
locally around points for which the observed class differs from the Bayes rule. In contrast,
boosting larger trees, such as those grown in random forests interpolating with spikes of
increasingly smaller size. Some simulations demonstrating the superior performance of
larger trees over stumps are given in Mease and Wyner (2008) and here in Section 4.3.

The different classification rules represented by the four plots all interpolate the training
data; however, their performances on the population vary considerably due to different
degrees of local interpolations of noise. In the sequel, we will show how random forests
and boosted ensembles of large trees results in classifiers that are robust to noise. The
classifiers behave in noisy regions as in Figure 4a. AdaBoost and random forests average
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(a) Hypothetical Classifier 1

 

1.0 0.8 0.6 0.4 0.2 0.0 

0
.0

 
0
.2

 
0
.4

 
0
.6

 
0
.8

 
1
.0

 

(b) Hypothetical Classifier 2
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(d) Hypothetical Classifier 4

Figure 4: Four different hypothetical classifiers on a pure noise response surface where
P (y = 1|x) = 0.75.
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many individually overfit classifiers, similar to the one in Figure 4b. The final result is a
robust classifier, that is spiked-smooth; it fits the noise but only extremely locally.

3.3 A Two-Dimensional Example with Pure Noise

We will begin with an easy to visualize example that demonstrates how fine interpolation
can provide robustness in a noisy setting. In particular, we compare the performance of
AdaBoost, random forests and one-nearest neighbors, which are all interpolating classifiers.
We will see see graphically that AdaBoost and random forests interpolate more locally
around error points in the training data than the one-NN classifier. Consequently, AdaBoost
and random forests are less affected by noise points as one-NN and have lower generalization
error. We will show that the self-averaging property of AdaBoost and random forests is
crucial. This property will be discussed in subsequent sections.

The implementation of AdaBoost is carried out according to the algorithm described
earlier. The base learners used are trees fit by the rpart package (Therneau and Atkinson,
1997) in R. The trees are grown to a maximum depth of 8, meaning they may have at most
28 = 256 terminal nodes. This will be the implementation of AdaBoost we will consider
throughout the remainder of this paper.

We will consider again the “pure noise” model as described in the previous section,
where the probability that y is equal to +1 for every x is some constant value p > .5. For
the training data we will take n = 400 points uniformly sampled on [0, 1]2 according to a
Latin Hypercube using the midpoints as before. For the corresponding y values in training
data we will randomly choose 80 points to be −1’s so that P (y = 1|x) = .8.

Figure 5 displays the results for the following: (a) one-NN, (b) AdaBoost , and (c)
random forests. Regions classified as +1 are colored light blue and regions classified as
−1 are colored pink. The training data is displayed with blue points for y = +1 and
red points for y = −1. Since the Bayes’ rule would be to classify every point as +1, we
judge the performance of the classifiers by the fraction of the unit square that matches the
Bayes’ rule. The nearest neighbor rule in this example classifies 79% of the region as +1
(we expect p = 80% on average for the one-NN) while AdaBoost performs substantially
better classifying 87% of the square as +1 after 100 iterations (which is long after the
training error equals zero). This is evidence of boosting’s robustness to noise discussed in
the previous section. The random forests (with 500 trees) does even better, classifying 94%
of the figure as +1. Visually, it is obvious that the random forests and AdaBoost classifier
is more spiked-smooth than one-nearest neighbors, which allows it to be less sensitive to
noise points. AdaBoost and random forests do in fact overfit the noise—but only the noise.
They do not allow the overfit to metastasize to modestly larger neighborhoods around the
errors. It is interesting to note that there seems to be a large degree of overlap between the
regions classified as -1 by both the random forests and AdaBoost; one-NN does not seem
to visually follow a similar pattern.

As we will see in the Section 3.6, by increasing the sample size, number of dimensions and
iterations the performance is even better. The agreement with the Bayes rule for AdaBoost
and random forests converge to practically 100% despite the fact that both algorithms still
interpolate the training data without error.
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(a) one-NN (b) AdaBoost

(c) Random Forests

Figure 5: Performance of one-NN, AdaBoost, and random forests on a pure noise response
surface with P (y = 1|x) = .8 and n = 400 training points.
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3.4 A Visualization of Spiked-Smoothing

We have argued that local interpolation such as in Figure 4c is desirable, and we have
demonstrated that AdaBoost and random forest classifiers can achieve such a fit in the
previous simulation. Now, we turn to the crucial point of how these classifiers achieve such
a fit. To this end, we will graphically display the process of spiked-smoothing in the case
of the random forest classifier from the previous simulation. Each of the first six plots in
Figure 6 shows the classification rule fit by different decision trees in the random forest. We
have restricted each plot to a subset of the unit square to aide in visual ease. The bottom
plot, Figure 6g shows the classifier created from a majority vote of each of the six random
forest decision trees. As in the previous sections, the light blue regions indicate where a
classifier returns y = +1, and the pink regions indicate where a classifier returns y = −1.

As before, we remark that the Bayes rule in this case would be to classify every point as
y = +1, and so agreement with the Bayes rule in the plots below can be visualized as the
proportion of the figure that is light blue. The first thing to notice is that each decision tree
fails to reproduce the Bayes rule. Indeed, since each tree interpolates its bootstrap sample,
each figure is bound to contain regions of pink, since most bootstrap samples will contain
at least a few noise points. However, one will also notice that these regions of pink tend to
be localized into thin strips (this is especially apparent in trees one, three, five, and six). In
other words, noise points tend not to ruin the fit of the decision tree at nearby points.. The
magic of spiked-smoothing is revealed in the classifier 6g created by a majority vote of the
six decision trees. By itself, each decision tree is a poor classifier (evinced by relatively large
regions of pink). However, when voted these regions of pink get shrunk down into smaller
regions, indicating better agreement with the Bayes rule. One can easily imagine that if
these “thin strips” were actually much wider, as in the case of fitting stumps, averaging
would not be able to reduce the influence of these noise points enough. The end effect of
averaging is to create a decision surface which is affected only very minimally by the noise
points in the training set. A simulation in Section 4 will demonstrate that the additional
iterations of AdaBoost serve to “shrink” the fit around noise points, much as the regions of
pink in this example became more localized after averaging.

3.5 A Two-Dimensional Example with Signal

In light of the example in the previous section, one might note that certain non-interpolating
algorithms, such as a pruned CART tree, would recover the Bayes error rate exactly. In
this section, we consider an example where a much more complex classifier is required to
recover the signal, yet the self-averaging property is still needed to prevent over-fitting to
noise.

We consider n = 1000 training points sampled uniformly on [0, 1]2 with the Latin Hy-
percube design. In this simulation, there is signal present. Inside of a circle of radius 0.4
centered in the square, the probability that y = +1 is set to 0.1, while the probability that
y = +1 outside the circle is set to 0.9.

This simulation setting is similar to the previous one, except that the probability that
y = +1 varies at different points over the unit square. One can see in Figure 7 that the
Bayes rule in this setting is just to label every point inside the circle y = +1 and every
point outside the circle y = −1, which gives a Bayes error rate of 0.1. We can then compare
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Figure 6: First six trees from a random forest, along with the classifier created by a majority
vote over the trees.
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the performance of AdaBoost, random forests, and CART as in the previous section by
examining how much of the circle gets classified as y = +1 and how much of the outer
region is classified as y = −1. We run AdaBoost for 500 iterations, fit a random forests
model with 500 trees, and build a CART tree that is pruned using cross-validation. Note
that we prune the CART tree in order to show how a “classical” statistical model of limited
complexity performs on the classification task.

We find that AdaBoost and random forests have an overall error rate of around 0.13,
one-nearest neighbor has an overall error rate of 0.20, and CART has an error rate of 0.18.
CART fails to perform well in this example because it is not allowed enough complexity to
capture the circular pattern. To do so via only the splits parallel to the axes allowed by
the algorithm would require a very deep tree (as allowed in random forests and AdaBoost),
which pruning does not afford. Rather, a shallow tree can only recover a simple rectangular
pattern due to its shallow depth. One-NN, on the other hand, again suffers from its inability
to keep the interpolation localized. Outside of the circle, one can observe small “islands”
of pink surrounding noise points: by failing to localize the fit, test points near these noise
points get classified incorrectly. Again, one finds that random forests and AdaBoost have
superior performance because they tend to finely interpolate the training data, and the
process of spiked-smoothing shrinks down the influence of noise points.

3.6 A Twenty-Dimensional Example

We now repeat the simulation in Section 3.3 with a larger sample size and in 20 dimensions
instead of 2. Specifically, the training data now has n = 5000 observations sampled accord-
ing to the midpoints of a Latin Hypercube design uniformly on [0, 1]20. We again randomly
select 20% or 1000 of these points to be −1’s with the remaining 4000 to be +1’s.

Since in 20 dimensions it is difficult to display the resulting classification rules graphically
we instead examine the rules on a hold out sample of 10,000 points sampled uniformly and
independently on [0, 1]20. Figure 8 plots the proportion of points in the hold out sample
classified by AdaBoost as +1 as a function of the number of iterations. This proportion
peaks at .1433 at nine iterations but then gradually decreases to .0175 by 100 iterations and
is equal to .0008 by 1,000 iterations. The fact that by 1,000 iterations only 8 of the 10,000
points in the hold out sample are classified as +1 means there is very little overfitting. The
large number of iterations has the effect of smoothing out the classifier resulting in a rule
that agrees with the Bayes rule for 99.92% of the points. Recall that AdaBoost fits the
training data perfectly, and thus differs from the Bayes rule on 20% of this sample. We see
clearly here that AdaBoost overfits with respect to the training data but not with respect
to the population. Again, this is a result of extremely local interpolation of the points in
the training data for which the observed class differs from the Bayes rule. A random forests
model fit to the training data agrees with the Bayes rule at every point except for one, and
hence has exceptional generalization error.
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(a) One-NN (b) AdaBoost

(c) Random Forests (d) CART

Figure 7: Performance of AdaBoost, random forests, and CART on a response surface where
P (y = 1|x) = 0.10 inside the circle and P (y = 1|x)) = 0.90 outside of the circle. There are
n = 1000 training points and the Bayes error is 0.10.
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Figure 8: This plot shows the proportion of points in a test set for which the predictions
made by AdaBoost and the Bayes rule differ, as a function of the number of boosting rounds
(black). The blue line shows this proportion for the one nearest neighbor classifier. Note
that the agreement of AdaBoost and the Bayes rule increases with the number of boosting
rounds.

4. Self-Averaging Property of Boosting

4.1 Boosting is Self-Smoothing

In the previous sections, we have demonstrated simple examples where random forests and
AdaBoost yield the strongest performance with respect to the Bayes rule. We have argued
that these algorithms are successful classifiers due to the fact that they fit initially complex
models by interpolating the training data but also exhibit smoothing properties via self-
averaging that stabilizes the fit in regions with signal, while continuing to keep localized
the effect of noise points on the overall fit. While this smoothing mechanism is obvious
for random forests via the averaging over decision trees, it is less obvious for AdaBoost.
In this section we explain why the additional iterations in boosting way beyond the point
at which perfect classification of the training data (i.e interpolation) has occurred actually
has the effect of smoothing out the effects of noise rather than leading to more and more
overfitting. To the best of our knowledge, this is a novel perspective on the algorithm. To
explain our key idea, we will recall the pure noise example from before with p = .8, d = 20
and n = 5000.

Recall that the classifier produced by AdaBoost corresponds to I[fM (x) > 0] where

fM (x) =

M∑
m=1

αmGm(x)

as defined earlier. Taking M = 1000 which was successful in our example let us rewrite
this as
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f1000(x) =
1000∑
m=1

αmGm(x) =
10∑
j=1

100∑
k=1

α100(j−1)+kG100(j−1)+k(x) =
10∑
j=1

100∑
k=1

hjk(x)

where
hjk(x) ≡ α100(j−1)+kG100(j−1)+k(x).

Now define

hjK(x) ≡
K∑
k=1

hjk(x)

and note that for every j ∈ {1, ..., 10} and every K ∈ {1, ...100} that I[hjK(x) > 0] is
itself a classifier made by linear combinations of classification trees. The ten plots in Figure
9 display the performance on the hold-out sample for these ten classifiers corresponding to
the ten different values for j as a function of K. Interestingly, each of these 10 classifiers by
itself displays the characteristic of boosting: the agreement with the Bayes rule increases
as more terms are added (for instance, as K is increased).

A second interesting fact about these 10 individual classifiers in the decomposition is
that each one achieves perfect separation of the training data and thus each one is an
interpolating classifier. This result can be expected in general, provided the total number
of iterations for each classifier in the decomposition is sufficiently large. This is clear for the
first classifier, since it is simply AdaBoost itself and will necessarily achieve zero training
error under some standard conditions as discussed in Jiang (2002). The second classifier in
the decomposition is simply AdaBoost weight carried over from the first classifier. Since re-
weighting the training data does not prevent AdaBoost from obtaining zero training error,
the second classifier also interpolates eventually, as does the third, and so on.

Decomposing boosting in this way offers an explanation of why the additional iterations
lead to robustness and better performance in noisy environments rather than severe over-
fitting. In this example, AdaBoost for 100 iterations is an interpolating classifier. It makes
some errors, mostly near the points in the training data for which the label differs from the
Bayes rule, although these are localized. Boosting for 1000 iterations is thus a point-wise
weighted average of 10 interpolating classifiers. The random errors near the points in the
training data for which the label differ from the Bayes’ rule cancel out in the ensemble av-
erage and become even more localized. Of course, the final classifier is still an interpolating
classifier as it is an average of 10 interpolating classifiers. In this way, boosting is self-
smoothing, self-averaging or self-bagging process that reduces overfitting as the number of
iterations increase. The additional iterations provide averaging and smoothing—not over-
fitting. Empirically this is very similar to random forests and provides evidence that both
algorithms, which perform well in our examples, actually do so using the same mechanism.

We further illustrate this phenomenon of increasing localization of the interpolating
resulting from this averaging through the following simulation. We take the same training
data as before but this time we form the hold out sample by taking a point a (Euclidean)
distance of .1 from each of the 1000 points labeled as −1 in the training data in a random
direction. Due to the forced (and unnatural) close proximity of the points in the hold out
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Figure 9: A decomposition of boosting

to training set deviations from the Bayes’ rule (points with −1 labels), the error rate is
much higher than it would be for a random sample. However, the interpolation continues
to become more localized as the iterations proceed (see Figure 10) so even points that are
quite close to the label errors (the −1 points) eventually become classified correctly as +1.
Comparison to Figure 8 shows that this localization continues at a steady rate even after the
error on the random hold-out sample is practically zero. In contrast, the nearest neighbor
interpolator this simulation yielded 100% disagreement with the Bayes’ rule.

4.2 A Five-Dimensional Example

We will now consider a second simulation to further illustrate how this self-averaging prop-
erty of AdaBoost helps prevent overfitting and improves performance. In this simulation
we add signal while retaining significant random noise. Let n = 400, d = 5 and sample xi

distributed iid uniform on [0, 1]5. The true model from for the simulation is

P (y = 1|x) = .2 + .6 I

 2∑
j=1

xj > 1

 .
The Bayes’ error is 0.20 and the optimal Bayes’ decision boundary is the diagonal of the
unit square in x1 and x2. Even with this small sample size, AdaBoost interpolates the
training data after 10 iterations. So we boost for 100 iterations which decomposes into ten
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Figure 10: This plot shows the proportion of points in a test set for which the predictions
made by AdaBoost and the Bayes rule differ, as a function of the number of boosting rounds
(black). The test set has been chosen to contain excess points near the error points in the
training set.

sets of ten (which is analogous to the 10 sets of 100 from the 20 dimensional example in the
previous section).

The ten plots in the first two rows in Figure 11 show the performance of the ten classifiers
corresponding to this decomposition with respect to a hold out sample of 1000 points. Each
point in the figure represents a point classified differently from the Bayes rule. While each
of the ten classifiers in the decomposition classifies a number of these 1000 points incorrectly
especially along the Bayes boundary, exactly which points are classified incorrectly varies
considerably from one classifier to the next. The final classifier (displayed in the last plot),
which corresponds to AdaBoost after 100 iterations, makes fewer mistakes than each of
the ten individual classifiers. Since AdaBoost is a point-wise weighted average of the 10
classifiers, the averaging over the highly variable error locations made by each classifier
reduces substantially the number of errors made by the ensemble. The percentage of points
classified differently from the Bayes’ rule by the final classifier is 118/1000=0.118 while
after the first ten there were still 162/1000=0.162 classified differently from the Bayes rule.
Averaged over 200 repetitions of this simulation these numbers are .19 after the first ten
iterations and .15 after 100 iterations confirming that the performance does improve by
running beyond the point at which interpolation initially occurs as (a result of this self-
smoothing).

In this example, we also have evidence that AdaBoost takes some measure to decorrelate
the errors made by its base classifiers, as hypothesized in Amit et al. (2000) and suggested in
Figure 11. To this end, we computed the correlation between I[h110(X) = Y ], . . . , I[h1010(X) =
Y ] over a large test set. The correlations ranged from 0.4 to 0.56, with an average value
of 0.488. As a comparison, we also considered a similar calculation for the decomposition
produced from a random forest with 500 trees, and from bagging 1000 depth 8 trees. As with
AdaBoost, we can also decompose these classifiers into a sum of interpolating classifiers: 25
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Figure 11: Errors made by each classifier in a decomposition of boosting (first two rows)
and errors made by the final classifier (bottom)
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sub-ensembles of 20 trees in the case of the random forest, and 10 sub-ensembles of trees in
the case of bagged trees. The interpolating classifiers produced by the random forest had
error correlations ranging from 0.75 to 0.87, with an average of 0.81, while the correlations
for the bagged trees ranged from 0.9 to 0.94, with an average value of 0.92. In other words,
the sub-ensembles produced by random forests and AdaBoost are less correlated than the
bagged trees, with AdaBoost being markedly less so. When voting across constituents in
its decomposition, it is clear that such a decorrelating effect would help to increase the
effectiveness of the voting mechanism to cancel out error points. While we observed this
phenomenon in a few data sets, we cannot state under what conditions it happens more
generally. However, it is know that boosting generally outperforms bagging, and that bagged
trees will be much more correlated.

4.3 Comparison to Boosted Stumps

Throughout this paper we have considered AdaBoost with large trees of up to 28 terminal
nodes. We have shown that AdaBoost with such large trees is a classifier which interpolates
the data in such a way that it performs well out of sample for problems in which the Bayes’
error rate is substantially larger than zero. In this section we will consider the performance
of AdaBoost with stumps as the base learner. The statistical theory predicts that AdaBoost
with stumps will overfit less than AdaBoost with larger trees, as expressed, for instance, in
Jiang (2002). It is also thought that stumps should be preferable when the Bayes’ decision
rule is additive in the original predictors. For instance the seminal book by Hastie et al.
(2009, chapter 10) advocates using trees of a depth one greater than the dominant level of
interaction, which is generally quite low.

AdaBoost with stumps does not self-smooth nearly as well as with larger trees, likely
because the the classifiers in the decomposition are more highly correlated, and the “rough”
fits from stumps fail to interpolate the training data locally enough; the fit is not spiked-
smooth around the training set error points. Consequently, AdaBoost with stumps as base
learners is outperformed by AdaBoost with large trees as base learners, when the Bayes error
rate is high. This is the case even when the Bayes rule is additive. This result is matched
by random forests which works best with large trees. Its randomly chosen predictors at
each splitting opportunity lowers the correlation among the trees and the resulting fit is
more spiked-smooth.

To illustrate this with an example, we return to the five dimensional simulation from
Section 4.2 which has an additive Bayes decision rule. Figure 12 displays the percentage
of points that are classified differently from the Bayes rule in the hold out sample of 1000,
as a function of the number of iterations. It can be seen that the stumps (left panel) do
not perform as well as the 28 node trees (right panel). After 250 iterations, AdaBoost
with stumps yields 141/1000 points in the hold out sample classified differently from the
Bayes rule, compared to 116/1000 for this same data set using instead AdaBoost with 28

node trees. In fact, the stumps seems to suffer from overfitting when run beyond only
25 iterations, while the 28 trees do not have a problem with overfitting as the number of
iterations are increased.

These numerical values are based only on a single run of this simulation, but the qual-
itative finding is reproducible over repeated runs. The result serves to illustrate that the
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Figure 12: Comparison of AdaBoost with stumps (a) and 28 node trees (b) for the five
dimensional simulation. The blue line corresponds to One-NN.

good out-of-sample performance of AdaBoost using large trees resulting from the local in-
terpolation of noise points is not shared by AdaBoost using stumps. The idea that stumps
will perform better in noisy environments because they overfit less is not supported by this
simulation. While the stumps do overfit less on the training data, as evidenced by the fact
that they did not give zero training error, they actually overfit worse than the larger trees
out of sample. Again, we attribute this to boosting with stumps lacking the self-smoothing
property and not being flexible enough to interpolate the noise locally.

5. Real Data Example

In previous sections, we explored the mechanism of spiked smoothing in simulation exper-
iments where it was easy for us to identify noise points. Recall that with a fully specified
probability model, noise points are simply sample points whose sign differs from the Bayes’
rule. While simulated examples are certainly good for illustration, one may wonder whether
these settings are overly simplistic. Data in the real world is typically generated by more
complicated—and unknown—probability models with heteroskedastic noise components.
Since boosted trees have been empirically successful in such settings, it pays to move our
discussion to the context of a data set arising in the real world.

5.1 Phoneme Data

In this section, we will discuss spiked smoothing in the context of a data set arising in a
speech recognition task designed to discriminate “nasal” vowels from “oral” vowels in spoken
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language 2. For a collection of 5404 examples of spoken vowels, this data set contains the
amplitudes of the first 5 harmonic frequencies as collected by a cochlea spectra (hearing
aid), along with a label of either nasal or oral (n=5404, p=5). The goal is then to use
these harmonic frequencies to correctly identify the type of vowel. While there are many
potential data sets we could have considered, this one is convenient to analyze since it
consists of a relatively small number of real valued covariates. This makes it easier to talk
about “neighborhoods” of points later in our discussion.

We begin by dividing the phoneme data set up into a training set consisting of 70% of
the samples, and a testing set consisting of 30% of the examples. Depth eight decision trees
boosted for 1000 rounds and a random forest classifier both achieve comparable test error
rates of 9.0% and 9.4%, respectively 3. Figure 13 demonstrates that boosting deep trees is
preferable to shallow trees in this data set. Each frame in the figure shows the testing error
in black and the training error in red as a function of the number of boosting iterations for
different depth trees. One can readily observe that test error steadily decreases with the
depth of tree used in AdaBoost. It is interesting to note that boosting trees of all depths
are slow to overfit the data, even with boosted stumps after 1000 iterations. It is also worth
noting that boosted depth 8 trees quickly interpolate the training data, as indicated by the
sharply decreasing red line. This raises the often asked question: what is AdaBoost doing
after it achieves a perfect fit on the training set?

Any discussion of spiked smoothing on real data is complicated by the reality that it
is impossible to identify noise points without knowing the underlying probability model.
As a substitute for noise points, we flipped the signs of 100 randomly chosen points in our
training data set (about 2% of the data) and analyzed the fits of boosted trees and a random
forest classifier around these points. After refitting the models to the perturbed data, we
find the the testing errors are 10.2% and 10.0% for boosted depth eight trees and a random
forest, respectively. Figure 14 illustrates that even after thousands of rounds of boosting,
test error continues to decrease. The punchline is that both algorithms are able to achieve
fits with comparable test set error even after flipping the sign of a large number of points
in the training set.

As a comparison with another interpolating classifier, we also repeated the same experi-
ment with a one nearest-neighbors classifier. We found the one nearest neighbor achieved a
test error rate of 10.5% when fit on the original training set, and a test error rate of 12.6%
when fit on the noisy training set. The increase in error rate when noise is added to the
training set is larger than that of AdaBoost or a random forest, which coincides with the
results form the simulated example in section 3.3. Furthermore, two sample t-tests reveal
that the increase in error rate for one nearest-neighbors is significant at the 0.01 level in
both cases (p-values less than 1e−16 in both cases).

We will argue that additional rounds of boosting are helping to “smooth out” and
“localize” the influence of the 100 noise points that we introduced into our training set.
In section 3.3, we illustrated the action of spiked smoothing in diagrams which showed
AdaBoost’s fit on a two dimensional plane. In this slightly higher dimensional example,

2. The original data can be found at the following address: https://www.elen.ucl.ac.be/neural-
nets/Research/Projects/ELENA/databases/REAL/phoneme/phoneme.txt.

3. The error rates reported are the result from repeating the fitting procedure on 100 random train/test
set splits and considering the average error on the test set.
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Figure 13: Plots of testing and training error as a function of number of boosting iterations
for trees of different depths. The black lines show the test error rates while the red lines
show training error rates. Notice that depth seven and eight boosted trees quickly fit the
training data, as depicted by the rapidly decreasing red lines.
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Figure 14: Plot of testing error for depth 8 boosted trees fit to a training set which has
flipped labels for 100 randomly selected examples.

we instead consider small neighborhoods around each of the noise points and track the
fraction of points in these neighborhoods that agree with the sign of the “correct label”,
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that is, before flipping the sign. 4. Panels (a) and (b) of Figure 15 plot this fraction as
a function of the number of boosting iterations for two representative “noise points.” In
both panels, it is clear that as the number of iterations increases, the fraction of points in
each neighborhood that agrees with the original sign of the training point increases. Recall
that in this case AdaBoost still fits its training data perfectly: the in-sample AdaBoost fit
agrees with the sign of the flipped training point in both figures. Despite this, the algorithm
still fits a majority of points in a neighborhood of each of these noise points in the correct
way. The classifier is producing a spiked smooth fit, that is, it fits the data in such a way
to localize the influence of noise points. One can interpret the increasing homogeneity in
each neighborhood as the result of averaging. The first few iterations of deeply boosted
trees produce a fit that interpolates the training data, but this fit is quite complicated in
the sense that it assigns large numbers of points in the neighborhood to both ‘+1‘ and ‘-1‘.
As the number of iterations increases, this fraction increases so that the fit becomes more
smooth in the classical sense.
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Figure 15: The fraction of points in a neighborhood that agree with the sign of the original
training point before its sign was flipped. Figures (a) and (b) plot this proportion for two
different, representative noise points.

5.2 Additional Data Sets

We repeated a version of the analysis conducted in Section 5.1 for five additional data sets
from the UCI repository: Haberman, Wisconsin breast cancer, voting, Pima, and German
credit. In our analysis we did the following: we added 5% label noise to the training data,
missing values were imputed with the mean prior to model fitting, and all experiments were
conducted on 50 random training-testing splits of each data set. Table 1 reports the mean
increase in testing error after adding 5% label noise over the 50 random training-testing
splits. For example, on the original haberman data set, AdaBoost achieved an average error
rate of 34.225%, and on the noisy version of the data set achieved an average error rate of

4. We choose each neighborhood to be a rectangle centered at the point of interest, with side lengths chosen
in such as way that the neighborhood contains only a small number of training points. We then chose
100 points uniformly at random in this rectangle and computed the AdaBoost classifier at each point:
these points are obviously not included in the original data set.
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34.354%. The mean difference of 0.13% is reported in the table. It is also apparent in each
setting that AdaBoost and random forest are relatively immune to the addition of label
noise. The stars in the Table 1 report the significance level when comparing the increase
in error rate for AdaBoost and a random forest with that of one-nearest neighbors using
a two-sample t-test. With the exception of the German credit data, the increase in error
rate for one nearest neighbors was larger than that of one nearest neighbors with statistical
significance.

Data set AdaBoost Random Forest 1-NN

Haberman 0.13** 0.52* 1.55

breast cancer 0.20*** 0.39*** 2.29

voting 1.63** 0.30*** 2.71

Pima 0.56*** 0.45*** 1.75
German 0.29 0.68 0.68

Table 1: The increase in average testing error after changing the sign of 5% of the training
data. The stars in the table report the significance level when comparing the increase in
error rate for AdaBoost and a random forest with that of one-nearest neighbors using a two-
sample t-test. One star denotes significance at the 10% level, two stars denotes significance
at the 5% level, and three stars denotes significance at the 1% level.

6. Concluding Remarks

AdaBoost is an undeniably successful algorithm and random forests is at least as good,
if not better. But AdaBoost is as puzzling as it is successful; it broke the basic rules of
statistics by iteratively fitting even noisy data sets until every training set data point was
fit without error. Even more puzzling, to statisticians at least, it will continue to iterate
an already perfectly fit algorithm which lowers generalization error. The statistical view
of boosting understands AdaBoost to be a stage wise optimization of an exponential loss,
which suggest (demands!) regularization of tree size and control on the number of iterations.
In contrast, a random forest is not an optimization; it appears to work best with large
trees and as many iterations as possible. It is widely believed that AdaBoost is effective
because it is an optimization, while random forests works—well because it works. Breiman
conjectured that “it is my belief that in its later stages AdaBoost is emulating a random
forest” (Breiman, 2001). This paper sheds some light on this conjecture by providing a novel
intuition supported by examples to show how AdaBoost and random forest are successful
for the same reason.

A random forests model is a weighted ensemble of interpolating classifiers by construc-
tion. Although it is much less evident, we have shown that AdaBoost is also a weighted
ensemble of interpolating classifiers. Viewed in this way, AdaBoost is actually a “random”
forest of forests. The trees in random forests and the forests in the AdaBoost each interpo-
late the data without error. As the number of iterations increase the averaging of decision
surface because smooths but nevertheless still interpolates. This is accomplished by whit-
tling down the decision boundary around error points. We hope to have cast doubt on the
commonly held belief that the later iterations of AdaBoost only serve to overfit the data.
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Instead, we argue that these later iterations lead to an “averaging effect”, which causes
AdaBoost to behave like a random forest.

A central part of our discussion also focused on the merits of interpolation of the training
data, when coupled with averaging. Again, we hope to dispel the commonly held belief that
interpolation always leads to overfitting. We have argued instead that fitting the training
data in extremely local neighborhoods actually serves to prevent overfitting in the presence
of averaging. The local fits serve to prevent noise points from having undue influence over
the fit in other areas. Random forests and AdaBoost both achieve this desirable level of local
interpolation by fitting deep trees. It is our hope that our emphasis on the “self-averaging”
and interpolating aspects of AdaBoost will lead to a broader discussion of this classifier’s
success that extends beyond the more traditional emphasis on margins and exponential loss
minimization.
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Peter Bühlmann and Bin Yu. Boosting with the l 2 loss: regression and classification.
Journal of the American Statistical Association, 98(462):324–339, 2003.

Corinna Cortes, Mehryar Mohri, and Umar Syed. Deep boosting. In Proceedings of the
Thirty-First International Conference on Machine Learning (ICML 2014), 2014.

Thomas M Cover and Peter E Hart. Nearest neighbor pattern classification. Information
Theory, IEEE Transactions on, 13(1):21–27, 1967.

Robert M. Freund, Paul Grigas, and Rahul Mazumder. Adaboost and forward stagewise
regression are first-order convex optimization methods. arXiv preprint arXiv:1307.1192,
2013.

Y. Freund and R.E. Shapire. Discussion of additive logistic regression: A statistical view
of boosting. Annals of Statistics, 28:337–374, 2000.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In
ICML, volume 96, pages 148–156, 1996.

Jerome Friedman. Greedy function approximation: a gradient boosting machine. Annals
of Statistics, pages 1189–1232, 2001.

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors). The Annals
of Statistics, 28(2):337–407, 2000.

Wei Gao and Zhi-Hua Zhou. On the doubt about margin explanation of boosting. Artificial
Intelligence, 203:1–18, 2013.

Carlos Guestrin. Pac-learning, vc dimension and margin-based bounds. Machine Learning,
10701:15781, 2006.

32



AdaBoost and Random Forests: the Power of Interpolation

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing, volume 2. Springer, 2009.

Wenxin Jiang. On weak base hypotheses and their implications for boosting regression and
classification. Annals of statistics, pages 51–73, 2002.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

Senén Barro Manuel Fernández-Delgado, Eva Cernadas and Dinani Amorim. Do we need
hundreds of classifiers to solve real world classification problems? The Journal of Machine
Learning Research, 15(1):3133–3181, 2014.

David Mease and Abraham Wyner. Evidence contrary to the statistical view of boosting.
The Journal of Machine Learning Research, 9:131–156, 2008.

Indraneel Mukherjee, Cynthia Rudin, and Robert E Schapire. The rate of convergence of
adaboost. The Journal of Machine Learning Research, 14(1):2315–2347, 2013.

Alex Niculescu-Mizil and Rich Caruana. An empirical comparison of supervised learning
algorithms using different performance metrics. Technical report, Cornell University,
2005.

Greg Ridgeway. Generalized boosted regression models. Documentation on the R Package
gbm, version 1· 5, 7, 2006.

Robert E. Schapire. Explaining adaboost. In Empirical Inference, pages 37–52. Springer,
2013.

Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. MIT press,
2012.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin:
A new explanation for the effectiveness of voting methods. Annals of statistics, pages
1651–1686, 1998.

Terry M. Therneau and Elizabeth J. Atkinson. An introduction to recursive partitioning
using the rpart routines. Technical report, Technical Report 61. URL http://www. mayo.
edu/hsr/techrpt/61. pdf, 1997.

Stefan Wager and Guenther Walther. Uniform convergence of random forests via adaptive
concentration. arXiv preprint arXiv:1503.06388, 2015.

Liwei Wang, Masashi Sugiyama, Zhaoxiang Jing, Cheng Yang, Zhi-Hua Zhou, and Jufu
Feng. A refined margin analysis for boosting algorithms via equilibrium margin. The
Journal of Machine Learning Research, 12:1835–1863, 2011.

Abraham J. Wyner. On boosting and the exponential loss. In Proceedings of the Ninth
Annual Conference on AI and Statistics Jan, pages 3–6. Citeseer, 2003.

33


	 Introduction 
	Competing Explanations for the Effectiveness of Boosting
	Margin View of Boosting
	Statistical Optimization View of Boosting

	Interpolating Classifiers
	Random Forests
	Local Robustness of Interpolating Classifiers
	A Two-Dimensional Example with Pure Noise
	A Visualization of Spiked-Smoothing
	A Two-Dimensional Example with Signal
	A Twenty-Dimensional Example

	Self-Averaging Property of Boosting
	Boosting is Self-Smoothing
	A Five-Dimensional Example
	Comparison to Boosted Stumps

	Real Data Example
	Phoneme Data
	Additional Data Sets

	Concluding Remarks

