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Abstract

It is known that for a certain class of single index models (SIMs) Y = f(Xᵀ
p×1β0, ε), sup-

port recovery is impossible when X ∼ N (0, Ip×p) and a model complexity adjusted sample
size is below a critical threshold. Recently, optimal algorithms based on Sliced Inverse
Regression (SIR) were suggested. These algorithms work provably under the assumption
that the design X comes from an i.i.d. Gaussian distribution. In the present paper we
analyze algorithms based on covariance screening and least squares with L1 penalization
(i.e. LASSO) and demonstrate that they can also enjoy optimal (up to a scalar) rescaled
sample size in terms of support recovery, albeit under slightly different assumptions on f
and ε compared to the SIR based algorithms. Furthermore, we show more generally, that
LASSO succeeds in recovering the signed support of β0 if X ∼ N (0,Σ), and the covariance
Σ satisfies the irrepresentable condition. Our work extends existing results on the support
recovery of LASSO for the linear model, to a more general class of SIMs.

Keywords: Single index models, Sparsity, Support recovery, High-dimensional statistics,
LASSO

1. Introduction

Modern data applications often require scientists to deal with high-dimensional problems
in which the sample size n could be much less than the dimensionality of the covariates
p. To handle such challenging problems, structural assumptions on the data generating
mechanism are often imposed. Such assumptions are motivated by the fact that classical
procedures such as linear regression provably fail, unless the ratio p/n converges to 0. How-
ever, modern procedures based on regularization may work well under the high dimensional
setting with additional sparsity assumptions. In the sparse high dimensional setting, it is
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often of interest to uncover the sparsity pattern, or in other words to select the relevant
variables for the model. Under generalized linear models, support recovery can be achieved
by fitting these models with penalized optimization procedures such as LASSO (Tibshirani,
1996) or Dantzig Selector (Candes and Tao, 2007), which are computationally inexpensive
compared to exhaustive search approaches. The LASSO algorithm’s variable selection/sup-
port recovery capabilities under generalized linear models, have been extensively studied
(Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Wainwright, 2009; Lee et al., 2013,
e.g. among others). However, much less is known under potential mis-specification of these
commonly used models or under more general models.

In this paper, we focus on recovering the support of the regression coefficients β0 under
a single index model (SIM):

Y = f(Xᵀβ0, ε), ε ⊥⊥X (1)

where both the link function f and the distribution of ε are left unspecified. Throughout,
we assume that βᵀ

0Σβ0 = 1 for identifiability and E(X) = 0, where Σ = E(XXᵀ). We
are specifically interested in the case where X ∈ Rp ∼ N (0,Σ) and β0 is s-sparse with
s < p. Obviously, the SIM includes many commonly used parametric or semi-parametric
regression models such as the linear regression model as special cases. Under (1) and the
sparsity assumption, we aim to show that the standard least squares LASSO algorithm,

β̂ = argmin
β∈Rp

{
1

2n

n∑
i=1

(Yi −Xᵀ
i β)2 + λ‖β‖1

}
, (2)

can successfully recover the support of β0 provided standard regularity conditions and that
the model complexity adjusted effective sample size,

np,s = n/{s log(p− s)},

is sufficiently large. Obviously, for most choices of f , fitting (2) is essentially making
inference under the mis-specified linear regression model.

The least squares LASSO algorithm has been used frequently in practice to perform
variable selection for analyzing genomic data (Cantor et al., 2010; Zhao et al., 2011; Wang
et al., 2013, e.g.). However, the linear model with Gaussian error is unlikely to be the true
model in many such cases. Hence it is of practical importance to theoretically establish that
the LASSO’s support recovery capabilities are in fact robust to mis-specification. In addition
to arguing that LASSO is robust, and perhaps even more surprisingly, we demonstrate that
fitting the mis-specified linear model with LASSO penalty can optimally (up to a scalar)
achieve support recovery with respect to the effective sample size np,s, for certain classes of
Σ and SIMs in a minimax sense. In the special case when Σ = Ip×p, the LASSO algorithm
can be slightly modified into a simple covariance screening procedure which possesses similar
properties as the LASSO procedure.

1.1 Overview of Related Work

When the dimension p is small, inference under a SIM has been studied extensively in the
literature (Xia and Li, 1999; Horowitz, 2009; Peng and Huang, 2011; McCullagh and Nelder,
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1989, e.g.) among many others. In the highly relevant line of work on sufficient dimension
reduction, many seminal insights can be found in Li and Duan (1989); Li (1991); Cook
and Ni (2005). When X ∼ N (0,Σ), results given in Li and Duan (1989) can be used to
show that argminβ{

∑n
i=1(Yi −Xᵀ

i β)2} consistently estimates β0 up to a scalar. When β0

is sparse, the sparse sliced inverse regression procedure given in Li and Nachtsheim (2006)
can be used to effectively recover β0 under model (1) although their procedure requires a
consistent estimator of Σ−1/2.

In the high dimensional setting with diverging p, Alquier and Biau (2013) were the first
to consider the sparse SIM, and proposed an estimation framework using a PAC-Bayesian
approach. Wang and Zhu (2015) and Wang et al. (2012) demonstrated that when support
recovery can be achieved when p = O(nk) under a SIM via optimizations in the form of
β̂ = argminβ∈Rp

1
2n

∑n
i=1(Fn(Yi)−1/2−Xᵀ

i β)2+
∑p

j=1 Jλ(βj), where Jλ is a penalty function

and Fn(x) = 1
n

∑n
i=1 1(Yi ≤ x). Regularized procedures have also been proposed for specific

choices of f and Y . For example, Yi et al. (2015) study consistent estimation under the
model P(Y = 1|X) = {f(βᵀX) + 1}/2 with binary Y , where f : R 7→ [−1, 1]. Yang et al.
(2015) consider the model Y = f(Xᵀβ) + ε with known f , and develop estimation and
inferential procedures based on the L1 regularized least squares loss.

With p potentially growing with n exponentially and under a general SIM, Radchenko
(2015) proposed a non-parametric least squares with an equality L1 constraint to handle
simultaneous estimation of β as well as f . The support recovery properties of this proce-
dure are not investigated, and in addition the results do not exhibit the optimal scaling
of the triple (n, p, s). Han and Wang (2015) suggest a penalized approach, in which they
use a loss function related to Kendall’s tau correlation coefficient. They also establish the
L2 consistency for the coefficient β but do not consider support recovery. Neykov et al.
(2015) analyzed two algorithms based on Sliced Inverse Regression (Li, 1991) under the
assumption that X ∼ N (0, Ip×p), and demonstrated that they can uncover the support
optimally in terms of the rescaled sample size. Plan and Vershynin (2015) and Thram-
poulidis et al. (2015) demonstrated that a constrained version of LASSO can be used to
obtain an L2 consistent estimator of β0. None of these procedures provide results on the
performance of the LASSO algorithm in support recovery, which relates to L2 consistency
but is a fundamentally different theoretical aspect. In addition, no existing work on the
SIM estimation procedures demonstrates that the performance depends on (n, p, s) only
through the effective sample size np,s.

1.2 Organization

The rest of the paper is organized as follows. Our main results are formulated in section
2. In particular, we show results on the covariance screening algorithm when Σ = Ip×p in
section 2.2 and our main result on the LASSO support recovery in section 2.3. Proof for the
main results are given in section 3. In addition we demonstrate that for a class of SIMs, any
algorithm provably fails to recover the support, unless the rescaled sample size np,s is large
enough. Numerical studies, confirming our main result are shown in section 4. We discuss
potential future directions in section 5. Technical proofs are deferred to the appendixes.
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2. Main Results

In this section we formulate our main results, which include the analysis of a simple covari-
ance screening algorithm, and the LASSO algorithm for SIMs. Before we move on to the
algorithms we summarize notation that we use throughout the paper and discuss several
useful definitions and preliminary results.

2.1 Preliminary and Notation

For a (sparse) vector v = (v1, . . . , vp)
ᵀ, we let S(v) := supp(v) = {j : vj 6= 0} denote its

support, S±(v) := {(sign(vj), j) : vj 6= 0} be its signed support, ‖v‖p denote the Lp norm,
‖v‖0 = | supp(v)|, and vmin = mini∈supp(v) |vi|. For a real random variable X, define

‖X‖ψ2 = sup
p≥1

p−1/2(E|X|p)1/p, ‖X‖ψ1 = sup
p≥1

p−1(E|X|p)1/p.1

Recall that a random variable is called sub-Gaussian if ‖X‖ψ2 < ∞ and sub-exponential
if ‖X‖ψ1 < ∞. For any integer k ∈ N we use the shorthand notation [k] = {1, . . . , k}.
For a matrix M ∈ Rd1×d2 , sets S1, S2 ⊆ [d], we let M,S2 = [Mij ]

j∈S2

i∈[d1] and MS1,S2 =

[Mij ]
j∈S2

i∈S1
. For a vector Z = (Z1, . . . , Zd)

ᵀ and set S ⊆ [d], ZS denotes the subvector
corresponding to the set S. Furthermore, let ‖M‖p,q = sup‖v‖p=1 ‖Mv‖q. In particu-

lar, we have ‖M‖2,2 = maxi∈[max(d1,d2)]{si(M)}, where si(M) is the ith singular value of

M, and ‖M‖∞,∞ = maxi∈[d1]

∑d2
j=1 |Mij |. For a matrix M ∈ Rd×d, we put Dmax(M) =

maxi∈[d] |Mii| for its maximal diagonal element, and diag(M) = [Mii]i∈[d] for the collection
of diagonal entries of M. We also use standard asymptotic notations. Given two sequences
{an}, {bn} we write an = O(bn) if there exists a constant C < ∞ such that an ≤ Cbn;
an = Ω(bn) if there exists a positive constant c > 0 such that an ≥ cbn, an = o(bn) if
an/bn → 0, and an � bn if there exists positive constants c and C such that c < an/bn < C.
Throughout, we also assume that there exists a constant 0 < ι < 1 such that s < p − pι,
which implies that log(p−s)

log(p) ≥ ι.
We assume that data for analysis consists of n independent and identically distributed

(i.i.d.) random vectors D = {(Yi,Xᵀ
i )ᵀ, i = 1, . . . , n} and we focus primarily on X ∼

N (0,Σ). In matrix form, we let X = [X1, . . . ,Xn]ᵀn×p = [Xij ]
j∈[p]
i∈[n], Y = (Y1, . . . , Yn)ᵀ, and

ε = (ε1, . . . , εn)ᵀ. The recovery of β0 under SIM often relies on the linearity of expectation
assumption given in Li and Duan (1989) and Li (1991):

Definition 2.1.1 (Linearity of Expectation) A p-dimensional random variable X is
said to satisfy linearity of expectation in the direction β if for any direction b ∈ Rp:

E[Xᵀb|Xᵀβ] = cbX
ᵀβ + ab,

where ab, cb ∈ R are some real constants which might depend on the direction b.

Remark 2.1.2 Note that if additionally E[X] = 0, then by taking expectation it is evident
that ab ≡ 0. Clearly, linearity of expectation is direction specific by definition. Elliptical

1. There are multiple equivalent (up to universal constants) definitions of the so-called Orlicz or ψ norms.
See Vershynin (2010) Lemma 5.5 for a succinct formal treatment of this.
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distributions (Fang et al., 1990) including multiviariate normal are known to satisfy the
linearity in expectation uniformly in all directions (Cambanis et al., 1981, e.g.).

Next, we record a simple but very useful observation, which forms the basis of our work.
From Theorem 2.1 of Li and Duan (1989), we note that under a SIM and normality of X
with covariance Σ > 0,

argmin
b

E(Y − bᵀX)2 = c0β0,

for some c0 ∈ R. More generally, we have

Lemma 2.1.3 Assume that the SIM (1) holds, Σ = E(XXᵀ) > 0, and X satisfies the
linearity in expectation condition in the direction β0 such that E[(Xᵀβ0)2] > 0. Then
we have Σ−1E(YX) = c0β0, where c0 := E(YXᵀβ0). Obviously, E(YX) = c0β0 when
Σ = Ip×p.

In view of Lemma 2.1.3, under sparsity assumptions, an L1 regularized least square
estimator can recover β0 proportionally and hence the support of β0. Furthermore, when
Σ = Ip×p, the covariance E(YX) can be directly used to recover β0. It is noteworthy to
remark that in the special case X ∼ N (0,Σ), a simple application of Stein’s Lemma (Stein,
1981) can help quantify the constant c0 precisely:

c0 = E(YXᵀβ0) = E(Z [Ef(Z, ε)|Z]︸ ︷︷ ︸
ϕ(Z)

) =

∫
Dϕ(z)

exp(−z2/2)√
2π

dz = EDϕ(Z),

where Dϕ is the distributional derivative of ϕ, Z ∼ N (0, 1) and we abused the notation
slightly in the last equality for simplicity.

The remaining of this section is structured as follows — in section 2.2 we study a
simple covariance thresholding algorithm, which is a manifestation of program (2) under
the assumption Σ = Ip×p. In section 2.3 we consider the full-fledged least squares LASSO
algorithm (2) with a general covariance matrix Σ. Throughout, we assume E(X) = 0 and
let σ2 = E(Y 2), η = Var(Y 2),

c0 = E(YXᵀβ0), γ = Var(YXᵀβ0), ξ2 = E{(Y−c0X
ᵀβ0)2}, and θ2 = Var{(Y−c0X

ᵀβ0)2}.

In addition, to simplify the presentation we will assume that the above constants are not
scaling with (n, p, s), and belong to a compact set which is bounded away from 0.

2.2 Covariance Screening under Σ = Ip×p
In this section, we propose a simple covariance screening procedure for signed support
recovery of β0 under a SIM with Σ = Ip×p , which relates to the sure independence screening
procedures (Fan and Lv, 2008; Fan et al., 2010) under the linear model. Note that the
LASSO procedure (2) can equivalently be expressed as:

β̂ = argmin
β∈Rp

{
− 1

n

n∑
i=1

YiX
ᵀ
i β +

1

2n
βᵀ

n∑
i=1

XiX
ᵀ
i β + λ‖β‖1

}
.
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Under the assumption Σ = Ip×p, we replace 1
n

∑n
i=1XiX

ᵀ
i with Ip×p and instead consider

β̂ = argmin
β∈Rp

{
− 1

n

n∑
i=1

YiX
ᵀ
i β +

1

2
βᵀβ + λ‖β‖1

}
.

It is well known that the solution to the above program takes the form:

β̂j = sign
(
n−1

n∑
i=1

YiXij

)(∣∣∣n−1
n∑
i=1

YiXij

∣∣∣− λ)
+
,

where x+ = x1(x ≥ 0). Hence, in this special case, the regularization parameter can be
equivalently interpreted as a thresholding parameter, filtering all small |n−1

∑n
i=1 YiXij |.

Motivated by this, we consider the following simple covariance screening procedure, which
acts as a filter taking covariances and their corresponding signs, only if they pass a critical
threshold:

Algorithm 1: Covariance Screening Algorithm

input: (Yi,Xi)
n
i=1: data; tuning parameter ν > 0

1. Calcluate V := Ĉov(Y,X) := n−1
∑n

i=1 YiXi,

2. Set Ŝ :=
{
Vj : |Vj | > ν

√
log p
n

}
;

3. Output the set {(sign(Vj), j) : |Vj | ∈ Ŝ}.

The following proposition shows that the algorithm recovers the support with probability
approaching 1 provided that the effective sample size np,s is sufficiently large under the
normality assumption of X ∼ N (0, Ip×p).

Proposition 2.2.1 Assume that X ∼ N (0, Ip×p), c0 6= 0, E(Y 4) <∞, and β0j ∈ {± 1√
s
, 0}

for all j ∈ [p] and some s ∈ N. Set ν = 1√
s

+ 2
√

2σ. Then as long as

np,s ≥ Υ,

for a large enough Υ = O(1) (depending on c0, σ
2) Algorithm 1 recovers the signed support

of c0β0 with asymptotic probability 1.

The proof of Proposition 2.2.1 can be found in Appendix D. We note that this result
does not require Y to be sub-Gaussian. When sub-Gaussianity is assumed, the convergence
rate of the probability approaching 1 can be improved. Furthermore, under sub-Gaussianity
of Y , we can relax the normality assumption of X. Specifically, one may instead consider
the following assumptions

Assumption 2.2.2 (Spherical Distribution of X and sub-Gaussian of Y ) Let X be
a spherically distributed p dimensional random variable with E[X] = 0,Var[X] = Ip×p,
whose moment generating function exists, and takes the form E{exp(tᵀX)} ≡ Ψ(tᵀt), t ∈
Rp, and in addition Ψ : R 7→ R is such that Ψ(t) ≤ exp(Ct) for some C > 0 for all t ∈ R+.
In addition, we assume that Y is sub-Gaussian, i.e. ‖Y ‖ψ2 ≤ KY .
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Note that (Vershynin, 2010, see Lemma 5.5. e.g.) assumption 2.2.2 implies maxj∈[p] ‖Xj‖ψ2 <
∞. Let K := maxj∈[p] ‖Xj‖ψ2 . In parallel to Proposition 2.2.1, we have

Proposition 2.2.3 In addition to Assumption 2.2.2, we assume that s, c0 6= 0 and β0j ∈
{± 1√

s
, 0} for all j ∈ [p] and some s ∈ N. Set the tuning parameter ν = ωKYK for some

absolute constant ω > 0. Then there exits an absolute constant Υ ∈ R depending on c0, C,K
and KY such that if:

np,s ≥ Υ,

Algorithm 1 recovers the signed support of c0β0 with asymptotic probability 1.

2.3 LASSO Algorithm with General Σ

In this section we consider the LASSO algorithm (2),

β̂ = argmin
β∈Rp

1

2n
‖Y − Xβ‖22 + λ‖β‖1, (3)

under the assumption X ∼ N (0,Σ) with a generic and unknown covariance matrix Σ.
Under certain sufficient conditions our goal is to show that (2) recovers the support of β0

with asymptotic probability 1 in optimal (up to a scalar) effective sample size. In contrast
to section 2.2, we also no longer require each of the signals of β to be of the same magnitude.

We first summarize a primal dual witness (PDW) construction which we borrow from
Wainwright (2009). The PDW construction lays out steps allowing one to prove sign con-
sistency for L1 constrained quadratic programming (3). We will only provide the sufficient
conditions to show sign-consistency, and the interested reader can check Wainwright (2009)
for the necessary conditions. We note that the validity of the PDW construction is generic,
in that it does not rely on the distribution of the residual w = Y − c0Xβ0, and hence
extends to the current framework. Note that unlike the linear regression case, in our setting
w does not necessarily have mean 0 although E[Xᵀw] = 0.

Recall that a vector z is a subgradient of the L1 norm evaluated at a vector v ∈ Rp
(i.e. z ∈ ∂‖v‖1) if we have zj = sign(vj), vj 6= 0 and zj ∈ [−1, 1] otherwise. It follows from

Karush-Kuhn-Tucker’s theorem that a vector β̂ ∈ Rp is optimal for the LASSO problem
(3) iff there exists a subgradient ẑ ∈ ∂‖β̂‖1 such that:

1

n
XᵀX(β̂ − c0β0)− 1

n
Xᵀw + λẑ = 0. (4)

Put S0 := S(β0) for brevity. In what follows we will assume that the matrix Xᵀ
,S0

X,S0 is
invertible (which it is with probability 1), even though this is not required by the PDW.
The PDW method constructs a pair (β̌, ž) ∈ Rp × Rp by following the steps:

• Solve:

β̌S0
= argmin

βS0∈R
s

1

2n
‖Y − X,S0βS0

‖22 + λ‖βS0
‖1,

where s = |S0|. This solution is unique under the invertibility of Xᵀ
,S0

X,S0 since in this

case the function is strictly convex. Set β̌Sc0 = 0.
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• Choose a žS0 ∈ ∂‖β̌S0
‖1.

• For j ∈ Sc0 set Zj := Xᵀ
,j [X,S0(Xᵀ

,S0
X,S0)−1žS0 + PX⊥

,S0

(
w
λn

)
]2, where PX⊥

,S0

= I −
X,S0(Xᵀ

,S0
X,S0)−1Xᵀ

,S0
is an orthogonal projection. Checking that |Zj | < 1 for all j ∈ Sc0

ensures that there is a unique solution β̌ = (β̌
ᵀ
S0
, β̌

ᵀ
Sc0

)ᵀ satisfying S(β̌) ⊆ S(c0β0).

• To check sign consistency we need žS0 = sign(c0β0S0
). For each j ∈ S0, define:

∆j := eᵀj (n
−1Xᵀ

,S0
X,S0)−1

[
n−1Xᵀ

,S0
w − λ sign(c0β0S0

)
]
, 3

where ej ∈ Rs is a canonical unit vector with 1 at the jth position. Checking žS0 =
sign(c0β0S0

) is equivalent to checking:

sign(c0β0j + ∆j) = sign(c0β0j), ∀j ∈ S0.

To this end we require several restrictions on Σ and moment conditions on Y . We partition
the covariance matrix

Σ =

[
ΣS0,S0 ΣS0,Sc0
ΣSc0,S0 ΣSc0,S

c
0

]
,

where ΣS0,S0 corresponds to the covariance of XS0 . Furthermore, we let

ΣSc0|S0
:= ΣSc0,S

c
0
−ΣSc0,S0Σ

−1
S0,S0

ΣS0,Sc0
, (5)

ρ∞(Σ
1/2
S0,S0

) := ‖Σ−1/2
S0,S0
‖∞,∞‖Σ1/2

S0,S0
‖∞,∞, (6)

be the conditional covariance matrix of XSc0
|XS0 , and the condition number of Σ

1/2
S0,S0

with
respect to ‖ · ‖∞,∞, respectively. We assume that

Assumption 2.3.1 (Irrepresentable Condition)

‖ΣSc0,S0Σ
−1
S0,S0
‖∞,∞ ≤ (1− κ), for some κ > 0.

Assumption 2.3.2 (Bounded Spectrum) For some fixed 0 < λmin ≤ λmax <∞,

λmin ≤ ΣS0,S0 ≤ λmax.

Assumption 2.3.3 (Bounded 4th Moment) E(Y 4) <∞, and does not scale with (n, p, s).

Recall that the irrepresentable condition is proved to be necessary for successful support
recovery (Wainwright, 2009, Theorem 4) in the linear model, and hence one should not
expect that Assumption 2.3.1 can be weakened. Assumption 2.3.3 guarantees that σ2, η,
c0, γ, ξ2 and θ2 are well defined and finite. Finally, successful support recovery will depend
on the strength of the minimal signal of β0. Recall that βmin

0 := minj∈S0 |β0j |, is the
minimal non-zero signal in the vector β0. We are now ready to provide sufficient conditions
for the LASSO signed support recovery, in the setting of SIMs

2. Zj are derived by simply plugging in β̌ and žS0 and solving (4) for žSc
0
.

3. ∆j can be seen to equal β̌j − c0β0j for j ∈ S0, when žS0 = sign(c0β0).
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Theorem 2.3.4 Let Assumptions 2.3.1 — 2.3.3 hold. Then for the LASSO estimator given
in (3) under a SIM (1), we have the following sufficient conditions:

i. If

np,s ≥
4Dmax(ΣSc0|S0

)
(

4
λmin

+ ξ2+1
λ2s

)
κ2

,

then S(β̂) ⊂ S(c0β0), with probability at least 1−O{p−1 + n−1 + e−Ω(s)}.

ii. Let further, for some positive constant α > 0 we have np,s ≥ α. Then there exist some
positive constants Υ0,Υ1,Υ2 > 0 which may depend4 on c0, σ such that if:

βmin
0 ≥ ‖Σ−1/2

S0,S0
‖2∞,∞λΥ0 +

Υ1ρ∞(Σ
1/2
S0,S0

)

√
s

n log(p− s)
‖β0‖∞ +

Υ2‖Σ−1/2
S0,S0
‖∞,∞√

s

n−1/2
p,s

(7)

we have S±(β̂) = S±(c0β0) with probability at least 1−O{e−Ω(s∧log(p−s)) +(log p)−1 +
n−1}.

Before we proceed with the proof of our main result, we would like to mention a few remarks
on our sufficient conditions, in particular the ones suggested in ii.

Remark 2.3.5 Firstly, the slow probability convergence rate (log p)−1 in part ii. is purely
due to the fact we are not willing to assume that Y is coming from a sub-Gaussian dis-
tribution. If such an assumption is made the rate reduces to the usual p−1. Secondly,
observe that λ−1

max ≤ ‖β0‖2 ≤ λ−1
min. Hence the value of βmin

0 is of “largest” order when
βmin

0 � ‖β0‖∞ � 1√
s
. Setting

λ := λT =

√
(ξ2 + 1)

4CTDmax(ΣSc0|S0
)

κ2

log(p− s)
n

,

for some CT > 1 gives us that the condition from i. is equivalent to:

np,s ≥
16Dmax(ΣSc0|S0

)

(1− C−1
T )κ2λmin

.

Note that due to positive definiteness: Dmax(ΣSc0|S0
) ≤ Dmax(ΣSc0,S

c
0
), and hence it is rea-

sonable to assume Dmax(ΣSc0|S0
) = O(1). Assume additionally that ‖Σ−1/2

S0,S0
‖∞,∞ = O(1),

ρ∞(Σ
1/2
S0,S0

) = O(1), and let βmin
0 � 1√

s
. Notice that the space of matrices satisfying as-

sumptions 2.3.1 — 2.3.3 and the latter assumptions is non-empty as one can easily show
that Toeplitz matrices with entries Σkj = ρ|k−j| with |ρ| < 1 satisfy these conditions e.g.
Using the same λ = λT we can clearly achieve the sufficient condition in ii. provided that
the model complexity adjusted sample size np,s is large enough. On the other hand, this

4. The dependency is inversely proportional to |c0| and proportional to σ; For more details refer to the
proof.
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scaling can no longer be guaranteed if βmin
0 � 1√

s
fails to hold. In any case, it is clear that

when Σ = Ip×p all conditions required are met, and hence Theorem 2.3.4 shows that the
LASSO algorithm will work optimally (up to a scalar) in terms of the rescaled sample size.
Below we formulate a result which allows us to claim certain optimality for the LASSO
algorithm in the case of a more general Σ matrix whenever we have approximately equally
sized coefficients.

Proposition 2.3.6 Consider a special example of a SIM with Y = G{h(Xᵀβ0) + ε} for
X ∼ N (0,Σ), and G, h are known strictly increasing continuous functions and in addition
h is an L-Lipschitz function. Assume that there exists a set S ⊂ [p], |S| = s such that
‖ΣS,S‖∞,∞ < R, Assumptions 2.3.1 and 2.3.2 hold on S and 0 < d ≤ diag(ΣSc,Sc) ≤ D <
∞. In addition, assume that ε is a continuously distributed random variable with density
pε satisfying:

pε(x) ∝ exp(−P (x2)), (8)

where P is any non-zero polynomial with non-negative coefficients such that P (0) = 0. We

restrict the parameter space to
{
β ∈ Rp : βᵀΣβ = 1, ‖β‖0 = s,

βmin

‖β‖∞
≥ cΣ

}
, where cΣ > 0

is a sufficiently small constant depending solely on Σ (see (20) for details). If

np,s < C,

for some constant C > 0 (depending on P,G, h,Σ) and s is sufficiently large, any algorithm
for support recovery makes errors with probability at least 1

2 asymptotically.

Proposition 2.3.6 justifies that the LASSO is sample size optimal even when more generic
covariance matrices than identity are considered, provided that we can show the class of
SIMs defined satisfy the assumptions of this section. We do so in the following Remark.

Remark 2.3.7 We will now argue that if we have a model as described in Proposition 2.3.6,
the LASSO will recover the support provided that the the covariance matrix Σ satisfies As-
sumptions 2.3.1 and 2.3.2, E(Y 4) <∞ and the minimal signal strength is sufficiently strong
as required by Remark 2.3.5. Notice that by Chebyshev’s association inequality (Boucheron
et al., 2013), we have:

E(YXᵀβ0) > E(Y )E(Xᵀβ0) = 0,

where the inequality is strict since G and h are strictly increasing and Xᵀβ0 ∼ N (0, 1).
In fact, using exactly the same argument, one can show more generally that if r(z) =
E[Y |Xᵀβ0 = z] is a strictly monotone function it follows that E(YXᵀβ0) 6= 0. We close
this remark by pointing out that the logistic regression model P (Y = 1 |X) = g(Xᵀβ0) with
g(x) = ex/(1 + ex) satisfies the condition since r(z) = g(z) is strictly monotone, and hence
using the LASSO algorithm one can recover the support correctly. This is an example that
even discrete valued Y outcomes can be solved by the least squares LASSO algorithm.

10
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2.3.1 Outcome Transformations

In this subsection we provide brief comments on possible strategies to transform the data
in view of the results of Theorem 2.3.4. A crucial condition in order for the signed support
recovery of β0 to hold is c0 6= 0, which should not be expected to hold in general, but
nevertheless naturally occurs in many cases. If this condition does not hold, one can poten-
tially transform the outcome Ỹ = g(Y ) by a function g in order to achieve E(ỸXᵀβ0) 6= 0
even if E(YXᵀβ0) = 0. If we use Ỹi = g(Yi) instead of Yi then clearly LASSO succeeds
under the assumptions from Theorem 2.3.4, only with assumptions on Yi being replaced by
Ỹi. The following proposition characterizes when one should expect a correlation inducing
transformation g to exist.

Proposition 2.3.8 There exists a measurable function g : R 7→ R such that E{g(Y )Xᵀβ0} 6=
0 if and only if Var{E(Xᵀβ0|Y )} > 0.

Another potential advantage of performing a transformation is to ensure that Ỹ = g(Y ) is
sub-Gaussian. For example, if we let g(y) = F (y) = P (Y ≤ y), then the sub-Gaussianity
of Ỹ is guaranteed, which would improve the rate of support recovery. For many choices
of g such as F , the transformation may be defined at the population level and is unknown
a priori. Thus it would be desirable to employ data dependent estimate ĝ of g. In other
words we consider fitting the following LASSO to recover the support:

β̂ = argmin
β∈Rp

1

2n
‖ĝ(Y )− Xβ‖22 + λ‖β‖1, (9)

where ĝ(Y ) should be understood as element-wise application of ĝ. The following Corollary
extends Theorem 2.3.4 to allow for data dependent transformations.

Corollary 2.3.9 Let the assumptions of Theorem 2.3.4 hold for Ỹi = g(Yi) in place of Yi
and assume additionally that:

‖ĝ(Y )− g(Y )‖2 ≤ O(
√

log p), (10)

with probability at least 1 − O(p−1), then if (7) holds we have S±(β̂) = S±(c0β0) with
probability at least 1−O{e−Ω(s∧log(p−s)) + (log p)−1 + n−1}.

Remark 2.3.10 Akin to (2), we do not require an intercept in the model after doing a
transformation in (9). This is possible since X is assumed to have mean 0. In practice if
this were not the case, one would have to either center X or include an intercept which is
not penalized.

3. Proof of Theorem 2.3.4

Our proof follows similar steps as Theorem 3 of Wainwright (2009) although many critical
modifications are needed, since the error term w = Y − c0Xβ0 is no longer independent of
X and is not mean 0.

11
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3.1 Verifying Strict Dual Feasibility

For j ∈ Sc0 decompose

Xᵀ
,j = Σ{j},S0

Σ−1
S0,S0

Xᵀ
,S0

+Eᵀ
j , (11)

where the entries of the prediction error vector Ej = (E1j , . . . , Enj)
ᵀ ∈ Rn are i.i.d. with

Eij ∼ N (0, [ΣSc0|S0
]jj), i ∈ [n]. In addition, observe that by this construction we have that

Ej is independent of X,S0 which can be verified upon multiplication by X,S0 in (11) and
taking expectation. Following the definition of Zj gives us that Zj = Aj +Bj , where:

Aj := Eᵀ
j

[
X,S0(Xᵀ

,S0
X,S0)−1žS0 + PX⊥

,S0

( w

λn

)]
, (12)

Bj := Σ{j},S0
(ΣS0,S0)−1žS0 . (13)

Under the irrepresentable condition, we have that maxj∈Sc |Bj | ≤ (1 − κ). Conditional on
X,S0 and ε (which determine w = Y − c0Xβ0) we have that the gradient žS0 is independent
of the vector Ej because the gradient is deterministic after conditioning on these quantities.
We have that Var(Eij) ≤ Dmax(ΣSc0|S0

), and thus conditionally on X,S0 and ε we get:

Var(Aj) ≤ Dmax(ΣSc0|S0
)
∥∥∥X,S0(Xᵀ

,S0
X,S0)−1žS0 + PX⊥

,S0

( w

λn

)∥∥∥2

2

= Dmax(ΣSc0|S0
)

[
žᵀS0

(Xᵀ
,S0

X,S0)−1žS0 +
∥∥∥PX⊥

,S0

( w

λn

)∥∥∥2

2

]
.

Next we need a lemma, which is a slight modification of Lemma 4 in Wainwright (2009).
The reason for this modification is that in our case w is no longer ∼ N (0, σ2I).

Lemma 3.1.1 Assume that s
n ≤

1
16 . Then we have:

max
j∈Sc0

Var(Aj) ≤ Dmax(ΣSc0|S0
)

(
4s

λminn
+
ξ2 + 1

λ2n

)
︸ ︷︷ ︸

M

,

with probability at least 1− 2e−s/2 − n−1θ2.

Now since conditionally on X,S0 and ε we have Aj ∼ N (0,Var(Aj)), using a standard normal
tail bound and the union bound we conclude:

P(max
j∈Sc0
|Aj | ≥ κ) ≤ 2(p− s)e−

κ2

2M + 2e−
s
2 + n−1θ2.

We need to select M so that the exponential term is decaying in the above display. A
sufficient condition for this is κ2/(2M) ≥ 2 log(p− s). The last is equivalent to:

np,s ≥
4Dmax(ΣSc0|S0

)
(

4
λmin

+ ξ2+1
λ2s

)
κ2

.

12
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3.2 Verifying Sign Consistency

The first part of the proof shows that the LASSO has a unique solution β̂ which satisfies
S(β̂) ⊆ S(c0β0) with high probability. Now we need to verify the sign-consistency, in order
to show that the supports coincide. We have the following:

max
j∈S0

|∆j | ≤ λ
∥∥∥(n−1Xᵀ

,S0
X,S0)−1 sign(c0β0S0

)
∥∥∥
∞︸ ︷︷ ︸

I1

+
∥∥∥(Xᵀ

,S0
X,S0)−1Xᵀ

,S0
w
∥∥∥
∞︸ ︷︷ ︸

I2

.

To deal with the first term we need the following:

Lemma 3.2.1 There exist positive constants K1, C2 > 0, such that the following holds:

P(I1 ≥ λK1‖Σ−1/2
S0,S0
‖2∞,∞) ≤ 4 exp(−C2(s ∧ log(p− s))),

The proof of this lemma is part of the proof of Theorem 3 in Wainwright (2009) and we omit
the details. Next we turn to bounding the term I2. Here our proof departs substantially
from the proof in Wainwright (2009), as I2 no longer has a simple structure required in the
original argument. In our case w depends on X,S0 , and it is not mean 0. We will make
usage of the following result, whose proof is provided in the appendix

Lemma 3.2.2 Let ‖β0‖2 = 1. We have n i.i.d. observations Y = f(Xᵀ
S0
β0S0

, ε) from a
SIM, where XS0 ∼ N (0, Is×s), with s < n and np,s ≥ α > 0 for some positive constant α.
Then there exist some positive constants Υ1,Υ2 > 0 (depending on σ and |c0|), such that:

‖[Xᵀ
,S0

X,S0 ]−1Xᵀ
,S0
Y − c0β0S0

‖∞ ≤
(

Υ1
s

n
‖β0S0

‖∞ + Υ2

√
log(p− s)

n

)
.

with probability at least 1−O{e−s/2 + (log p)−1 + n−1 + p−1}. Denote for brevity the RHS
of the inequality as δ(‖β0S0

‖∞, n, s, p).

While Lemma 3.2.2 is stated in terms of standard multivariate normal distribution
N (0, Is×s), we can easily adapt it to more general situations where we observe non-standard
normal random variables N (0,ΣS0,S0). Recall that the rows of X,S0 are distributed as

N (0,ΣS0,S0), Yi = f(Xᵀ
i β0, ε), and βᵀ

0S0
ΣS0,S0β0S0

= 1. Denote with Z = X,S0Σ
−1/2
S0,S0

.
Then we have the following inequality, with high probability:

I2 = ‖[Xᵀ
,S0

X,S0 ]−1Xᵀ
,S0
Y − c0β0S0

‖∞ = ‖Σ−1/2
S0,S0

[ZᵀZ]−1ZᵀY − c0β0S0
‖∞

≤ ‖Σ−1/2
S0,S0
‖∞,∞‖[ZᵀZ]−1ZᵀY − c0Σ

1/2
S0,S0

β0S0
‖∞

≤ ‖Σ−1/2
S0,S0
‖∞,∞δ(‖Σ1/2

S0,S0
β0S0
‖∞, s, n, p).

The last two inequalities imply that:

max
j∈S
|∆j | ≤ λK1‖Σ−1/2

S0,S0
‖2∞,∞ + ‖Σ−1/2

S0,S0
‖∞,∞δ(‖Σ1/2

S0,S0
β0S0
‖∞, s, n, p).

Hence as long as for βmin
0 = min{|β0j | : j ∈ S0} we have:

|c0|βmin
0 ≥ λK1‖Σ−1/2

S0,S0
‖2∞,∞ + ‖Σ−1/2

S0,S0
‖∞,∞δ(‖Σ1/2

S0,S0
‖∞,∞‖β0‖∞, s, n, p),

the LASSO will recover the support with high-probability. This concludes the proof.

13



Neykov, Liu and Cai

4. Numerical Studies

To support our theoretical claims, and in particular Theorem 2.3.4 we provide brief numeric
analysis in this section. We consider the following models:

Y = Xᵀβ0 + sin(Xᵀβ0) +N (0, 1), (14)

Y = 2 atan(Xᵀβ0) +N (0, 1), (15)

Y = (Xᵀβ0)3 +N (0, 1), (16)

Y = sinh(Xᵀβ0) +N (0, 1). (17)

We use a Toeplitz covariance matrix for the simulations Σ = I and Σkj = 2−|k−j|. The
vector β0 is selected so that βᵀ

0Σβ0 = 1, and its entries have equal magnitude, with the
first one having a negative sign, and the remaining being positive. We check whether the
solution path of the LASSO contains an s-sparse vector β0 whose support coincides with
the support of β0. This verifies the validity of one implication of our theory, as it shows
that the solution path indeed contains the true signed support of β0.

Figure 1: LASSO, s =
√
p, Σ = Ip×p
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In Figure 1, we show results of signed support recovery for different values of p, in the
regime s =

√
p in the case of an identity covariance matrix Σ = Ip×p. Similarly, Figure

2 shows results for the case of Toeplitz covaraince matrix Σkj = 2−|k−j|. As expected,
the support recovery is harder in the presence of correlation between the variables. These
results illustrate different phase transitions occurring for the four different models. We
observe empirically that values of np,s achieving reasonable success probability can be large
in some cases. It could be the case that using a transformed version of Y might lead to
better results for the model complexity adjusted sample size, as suggested in Section 2.3.1.
Figure 2 supports the result of Theorem 2.3.4 as all curves merge when the effective sample
size np,s becomes sufficiently large. In addition, these results suggest that the performance
of the support recovery is largely determined by (n, p, s) through the magnitude of np,s.

Figure 2: LASSO, s =
√
p, Σkj = 2−|k−j|
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(c) Model (16)
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(d) Model (17)

In addition to the verification of our theory, we also compare the vanilla least squares
LASSO to a version of the sparse sliced inverse regression (SSIR) algorithm suggested by Li
and Nachtsheim (2006). The SSIR algorithm is also based on a LASSO estimation. In its
original form however, this algorithm is not applicable for high-dimensional settings such
as ours, since it needs an estimate of the matrix Σ−1/2. To make use of the SSIR under the
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high-dimensional setting, we estimate Σ−1/2 by the CLIME procedure (Cai et al., 2011) to
Σ̂1/2 under sparsity assumptions. Due to space considerations we only show comparisons
for models (14) and (17), and the plots are attached in Appendix F. In the majority of cases
LASSO outperforms the SSIR algorithm substantially for small values of np,s, although it
seems that both approaches reach perfect support recovery at similar rescaled sample sizes.
We would like to emphasize that the SSIR algorithm requires solving an extra optimization
problem, and that furthermore, there are no theoretical results ensuring that SSIR in general
recovers the support. On an important note, the SSIR algorithm is designed to estimate
the central space of the more general class of multi-index models, which we do not discuss
in the present paper. For a brief discussion on how our work can be related to multi-index
model please refer to section 5.

5. Discussion

In this paper, we demonstrate that under a high dimensional SIM, L1-regularized least
squares, including a simplified covariance screening procedure under orthogonal design, is
robust in terms of model selection consistency, in that it correctly recovers the support of
the true regression parameter β0 provided that c0 = E(YXᵀβ0) 6= 0, the minimal signal
strength is sufficiently large and X ∼ N (0,Σ) under standard assumptions on Σ which are
necessary even in the linear regression case. Thus, our results extend known results on the
support recovery performance of LASSO under linear models to a much broader class of
SIMs. We furthermore demonstrate that the support recovery is achieved in a sample size
optimal np,s manner within a certain class of SIMs.

As we indicated in section 2.3.1, the assumption c0 6= 0 does not always hold, and
in addition it cannot be easily verified. A potential remedy for this approach will be
to transform the Y variable. From theoretical point of view it is of interest to develop
procedures which can adaptively estimate a “good” outcome transformation. Additionally,
a downside of the L1-regularization is the fact that the irrepresentable condition on the
covariance matrix is unavoidable. This could potentially be remedied by using more general
and non-convex penalties such as the SCAD penalty (Fan and Li, 2001). We focused on
the setting with X ∼ N (0,Σ), however we suspect that the support recovery holds in
more general cases where X comes from an elliptical distribution. It is less clear, however,
whether sample size optimality continues to hold in such situations, as we crucially rely
on the normality of X, in particular when using Lemma A.0.1 which follows by Gordon’s
comparison theorem, and through numerous projection-independence properties which are
characteristic of the Gaussian distribution.

The proposed method focuses on SIMs as the true underlying model. Extensions to
incorporate general multi-index models are not straightforward. For the special case of
multi-index models of the form

Y =

k∑
j=1

fj(X
ᵀβj , εj),

our method should also be able to recover the support, assuming that k is fixed and the
vectors βj have disjoint supports, and E(YXᵀβj) 6= 0 for all j ∈ [k]. When applied to such

a model, the LASSO estimate β̂ will include the union of the supports of βj , provided that
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sufficiently strong minimal signal (or sufficiently large sample size) and an irrepresantable
condition are present. How to apply the LASSO algorithm for support recovery under the
more general class of multi-index models warrants further research.

A note on the choice of the tuning parameter λ in practice is also in order. According
to Remark 2.3.5 and optimal choice of λ may depend on the unknowable parameter ξ2. A
procedure which we found to work well in practice is based on simple cross validation. To
find a good tuning parameter λ, from a grid of ` values of λ: {λ1, . . . , λ`} which are of√

log p
n magnitude, we recommend using K-fold cross validation, and setting λ to the value

minimizing the average least squares loss across (i.e. mean squared-error) the K folds.
Notice that according to Lemma 2.1.3, this criteria is very sensible. An important question
is whether one can arrive at a procedure with theoretical guarantees for λ selection, and we
hope to address this problem in our future work.

Finally, under a SIM and proper distributional assumptions on X, one may also recover
β0 proportionally using other convex loss functions. For example, when Y is binary, the
logistic log-likelihood loss may be more efficient than the L2 loss. Thus, it is of interest
to investigate the support recovery properties of the LASSO (or more general penalization
procedures) with other convex losses — such as the logistic/hinge losses, which could be
less susceptible to outliers.
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Appendix A. Auxiliary Lemmas

In this section, for convenience of the reader, we state couple of lemmas that we use often
in our analysis.

Lemma A.0.1 (Corollary 5.35 Vershynin (2010)) Let An×s matrix whose entries are
i.i.d. standard normal random variables. Then for every t ≥ 0, with probability at least
1− 2 exp(−t2/2) one has:

√
n−
√
s− t ≤ smin(A) ≤ smax(A) ≤

√
n+
√
s+ t,

where smin(A) and smax(A) are the smallest and largest singular values of A correspond-
ingly.

Lemma A.0.2 Consider a fixed nonzero vector z ∈ Rs and a random matrix An×s, whose

entries are i.i.d. standard normal random variables. If p, s, n are such that s ≥ 2, s
n ≤

1
64

and log p
n−s+1 ≤

1
32 , there are positive absolute constants C1 and C2 satisfying:

P

(
‖[(n−1AᵀA)−1 − Is×s]z‖∞ ≥ C1

s

n
‖z‖∞ + C2‖z‖2

√
log p

n

)
≤ 4p−1.

Proof [Proof of Lemma A.0.2] This Lemma is a generalization/modification of Lemma
5 of Wainwright (2009), allowing us to make usage of the L2 norm ‖z‖2 to obtain more
precise bounds. For self-content we spell out the full details of the proof. Using the spectral
theorem, decompose the matrix (n−1AᵀA)−1 − I = VDVᵀ, where D is a diagonal matrix
and V is an independent of D unitary matrix. Define the random variables:

Ui = eᵀiVDVᵀz = ziv
ᵀ
iDvi + vᵀ

iD
∑
j 6=i

zjvj ,

where vᵀ
i is the ith row vector of the matrix V. To bound maxi |Ui| we deal with these two

terms in turn. First notice that vᵀ
iDvi is the ith diagonal entry of the matrix (n−1AᵀA)−1−

I. By the assumption (AᵀA)−1 ∼ W−1(Is×s, n) where W−1 is an inverse Wishart distri-
bution. By the properties of the inverse Wishart distribution we conclude that vᵀ

iDvi ∼
nχ−2(n − s + 1) − 1, where χ−2 is the inverse χ2 distribution. Hence using Lemma 1 of
Laurent and Massart (2000) and the union bound we have:

P(max
i
|1− ((vᵀ

iDvi + 1)(n− s+ 1)/n)−1| ≥ 2
√
y + 2y) ≤ 2s exp(−(n− s+ 1)y).

Selecting y = 2 log p
n−s+1 bounds the above probability by 2s/p2 ≤ 2/p. For values of y < 1/32

we can lump 2
√
y+ 2y <

(
2 +

√
2

4

)√
y. Thus inverting the inequality inside the probability

we conclude that for each i ∈ [s]:

n

(n− s+ 1)(1 +
(

2 +
√

2
4

)√
2 log p
n−s+1)

≤ vᵀ
iDvi + 1 ≤ n

(n− s+ 1)(1−
(

2 +
√

2
4

)√
2 log p
n−s+1)
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It is simple to see that when log(p)
n−s+1 ≤

1
32 the above implies:

max
i
|zivᵀ

iDvi| < ‖z‖∞c̃1
s

n− s
+ ‖z‖2c̃2

√
log p

n− s+ 1
, (18)

where c̃1 = (1− (1/2 +
√

2/16))−1 and c̃2 = (2 +
√

2/4)c̃1. Next we show that the function
F (vi) = vᵀ

iD
∑

j 6=i zjvj is Lipschitz with a constant 8
√
s/n‖z‖2. We have:

‖∇F‖2 ≤ ‖D‖2,2
∥∥∥∑
j 6=i

zjvj

∥∥∥
2
≤ 9

√
s

n
‖z‖2,

with the last inequality holding with probability at least 1− 2 exp(−s/2) when s
n ≤

1
64 . We

used that vj are orthonormal, and we bounded the maximum eigenvalue of D, which follows
just as in the proof of Lemma E.0.2 so we omit the details. Since the variables {vj}j 6=i are
uniformly distributed on a (s − 1)-dimensional sphere, the proof is completed by invoking
the concentration of Lipschitz functions on the sphere to bound maxi∈[s] |F (vi)|:

P(max
i∈[s]
|F (vi)| ≥ t) ≤ 2s exp

(
−c̃(s− 1)

t2

81 sn‖z‖
2
2

)
,

for an absolute constant c̃. Under the assumption s ≥ 2, we can select t = 18‖z‖2
√

log p
c̃n

and taking into account that p > s completes the proof, after noticing that we can absorb
the second term of (18) to the above expression.

Appendix B. Preliminary Results

Proof [Proof of Lemma 2.1.3] First let Σ = Ip×p (hence by assumption ‖β0‖2 = 1) and
take any b ⊥ β0. Note that by the linearity of expectation:

E[Xᵀβ0X
ᵀb|Xᵀβ0] = cb(X

ᵀβ0)2.

Taking another expectation above we have E[Xᵀβ0X
ᵀb] = cbE[(Xᵀβ0)2]. However

E[Xᵀβ0X
ᵀb] = bᵀβ0 = 0,

and hence cb = 0. Thus if b ⊥ β0, E[Xᵀb|Xᵀβ0] = 0. Next, for any b ⊥ β0 we have:

E[YXᵀb] = E[E[YXᵀb|Xᵀβ0]] = E[E[Y |Xᵀβ0]E[Xᵀb|Xᵀβ0]] = 0.

Hence E[YX] ∝ β0. Finally, a projection on β0 yields

c0‖β0‖22 = E[YXᵀβ0].

This completes the proof in the case when Σ = Ip×p. For the more general case observe
that Y = f(Xᵀβ0, ε) = f(XᵀΣ−1/2Σ1/2β0, ε), and thus by what we just saw we have:

E[YΣ−1/2X] = c0Σ
1/2β0,

which becomes what we wanted to show after multiplying by Σ−1/2 on the left.
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Appendix C. Lower Bound

For two probability measures P and Q, which are absolutely continuous with respect to a
third probability measure µ (i.e. P,Q � µ), define their KL divergence by DKL(P‖Q) =∫
p log p

qdµ, where p = dP
dµ , q = dQ

dµ .

Lemma C.0.1 Assume conditions required in Proposition 2.3.6. In addition, let for any
fixed u, v ∈ R and some positive constant Ξ, f(u, ε) and f(v, ε) satisfy

DKL(p(f(u, ε))‖p(f(v, ε))) ≤ exp(Ξ(u− v)2)− 1, (19)

Then if

np,s <
1

8Ξ
, and s ≥ 8Ξ,

any algorithm recovering the support of β0 under (1) will have errors with probability at
least 1

2 asymptotically.

Proof [Proof of Lemma C.0.1] We start by constructing a set of p − s vectors B =

{β1, . . . ,βp−s}, belonging to the parameter space {β ∈ Rp : βᵀΣβ = 1, ‖β‖0 = s,
βmin

‖β‖∞
≥

cΣ}, for a sufficiently small (to be chosen) cΣ > 0, such that Var(Xᵀ(βk − βj)) ≤ 4
s for all

k, j ∈ [p − s]. Once this set is constructed we will use standard Fano type of argument to
finish the proof.

Without loss of generality let us assume that S0 = [s]. To construct the set B, first
focus on the sub-matrix ΣS0,S0 . We take the s dimensional vector γ = a(1/

√
s, . . . , 1/

√
s, 0)ᵀ

where a > 0 is selected so that γᵀΣS0,S0γ = s−1
s . Since ΣS0,S0 is assumed to have bounded

eigenvalues we know that such a indeed exists, and can be chosen in the interval a ∈
[1
2

1√
λmax

, 1√
λmin

] for s ≥ 2. Next to construct βk we use:

βkr = γr1(r ∈ S0) + bk1(r = k + s)/
√
s,

where bk is chosen so that βᵀ
kΣβk = 1. Below we argue that such bk indeed exists. By

Hölder’s inequality we have ‖ΣS0,S0γ‖∞ ≤ a‖ΣS0,S0‖∞,∞/
√
s ≤ aR/

√
s. Hence using

Assumption 2.3.1 we have:

‖ΣSc0,S0Σ
−1
S0,S0

ΣS0,S0γ‖∞ ≤ ‖ΣSc0,S0Σ
−1
S0,S0
‖∞,∞aR/

√
s ≤ (1− κ)aR/

√
s.

Note that due to the last inequality, for any k ∈ [p− s] we have:

βᵀ
kΣβk = γᵀΣS0,S0γ+2Σ{k+s},S0

γ
bk√
s

+
b2kΣk+s,k+s

s
≤ s− 1

s
+2

(1− κ)a|bk|R
s

+
b2kΣk+s,k+s

s
,

where we remind the reader that k+s ∈ Sc0. We chose bk such that sign(bk) = sign(Σ{k+s},S0
γ).

Hence we also have:
s− 1

s
+
b2kΣk+s,k+s

s
≤ βᵀ

kΣβk.

Combining the last two inequalities we conclude that there exists:

|bk| ∈
[√(1− κ)2a2R2 + Σk+s,k+s − (1− κ)aR

Σk+s,k+s
,Σ
−1/2
k+s,k+s

]
,
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with the desired properties. One can easily check that when:

cΣ ≤ min

(
1

2

√
d

λmax
,

√
(1− κ)2R2 + dλmin − (1− κ)R

D

)
, (20)

we have that minj∈[p−s]
βmin

j

‖βj‖∞
≥ cΣ, and in addition as we promised we have:

Var(Xᵀ(βk − βj)) =
Σk+s,k+sb

2
k − 2Σk+s,j+sbkbj + Σj+s,j+sb

2
j

s
≤ 4

s
.

Next, let J be a uniform distribution on B. Under the 0 − 1 loss the risk equals the
probability of error:

1

p− s
∑

j∈[p−s]

Pβj{Ŝ 6= S(βj)}, (21)

where by Pβj
we are measuring the probability under a dataset generated with βj , and Ŝ

is an estimate of the true support produced by any (possibly randomized) algorithm. By
Fano’s inequality that:

P(error) ≥ 1− I(J ;D) + log(2)

log |B|
, (22)

where I(J ;D) is the mutual information between the sample J and the sample D. Note
now that for the mutual information we have

I(J ;D) = I(J ; [{f(Xᵀ
j β0, εj),Xj}, j = 1, . . . , n])

≤ nH[{f(Xᵀβ0, ε),X}]− nH[{f(Xᵀβ0, ε),X}|J ]

≤ n max
k,j∈[p−s]

DKL

(
p[{f(Xᵀβk, ε),X}]‖p[{f(Xᵀβj , ε),X}]

)
,

where H(·) denotes the marginal entropy, H(· | ·) denotes the conditional entropy, DKL

denotes the KL divergence, the first inequality follows from the chain inequality of entropy
and the second inequality follows from a standard bound. Since the KL divergence is
invariant under change of variables, we let Uk = Xᵀβk and Wkj = PΣ,{βk,βj}⊥

X, where

PΣ,{βk,βj}⊥
∈ R(p−2)×p is chosen such that PΣ,{βk,βj}⊥

Σβk = 0 and PΣ,{βk,βj}⊥
Σβj = 0.

Noting that Wkj is independent of Uk, Uj , ε, Uk−Uj ∼ N (0, V ) with V ≤ 4/s, and applying
assumption (19), we have

n−1I(J ;D) ≤ max
k,j∈[p−s]

DKL

(
p[{f(Uk, ε), Uk, Uj}]‖p[{f(Uj , ε), Uk, Uj}]

)
≤ max

k,j∈[p−s]
E exp(Ξ(Uk − Uj)2)− 1 ≤

√
s

s− 8Ξ
− 1 ≤ 8Ξ

s
.

where the second inequality can be obtained by conditioning on Uk, Uj , and we assume that
the value of s is large enough so that s ≥ 16Ξ. We conclude that:

I(J ;D) ≤ 8Ξn

s
.
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Consequently by (22) if np,s < 1/(8Ξ) we will have errors with probability at least 1
2 , asymp-

totically. This is what we wanted to show.

Proof [Proof of Proposition 2.3.6] Note that all moments of the random variable ε exist.
Next we verify that condition (19) of Lemma C.0.1 holds in this setup. Since G is 1-1 and
KL divergence is invariant under changes of variables WLOG we can assume our model is
simply Y = h(Xᵀβ0) + ε or in other words f(u, ε) = h(u) + ε. This is a location family for
u ∈ R and thus the normalizing constant of the densities will stay the same regardless of
the value of u. Direct calculation yields:

DKL[p{f(u, ε)}‖p{f(v, ε)}] = E[P ((ξ + h(u)− h(v))2)− P (ξ2)] = P̃ ((h(u)− h(v))2),

where ξ has a density pξ(x) ∝ exp(−P (x2)), and P̃ is another non-zero polynomial with

nonnegative coefficients, with P̃ (0) = 0 of the same degree as P . The last observation
follows from the fact that all odd moments of ξ are 0, since ξ is a symmetric about 0
distribution. Since h is L-Lipschitz we conclude that:

DKL[p{f(u, ε)}‖p{f(v, ε)}] ≤ P̃ (L2(u− v)2).

The last can be clearly dominated by exp(C(u− v)2)− 1 for a large enough constant C.

Appendix D. Covariance Thresholding

Proof [Proof of Proposition 2.2.3] Using the fact that for any two random variables R, T we
have ‖RT‖ψ1 ≤ 2‖R‖ψ2‖T‖ψ2 we can conclude that the random vector YX is coordinate-
wise sub-exponentially distributed since supj∈[p] ‖Y Xj‖ψ1 ≤ K := 2KYK. An application
of Proposition 5.16 of Vershynin (2010) and the union bound then gives us that:

P

(∥∥∥∥∥ 1

n

n∑
i=1

YiXi − E[YX]

∥∥∥∥∥
∞

≥ t

)
≤ 2p exp

[
−c̃min

(
nt2

K2
,
nt

K

)]
,

where c̃ > 0 is some absolute constant. This inequality then implies:

sup
j∈[p]

∣∣∣∣∣ 1n
n∑
i=1

YiXij − E(Y Xj)

∣∣∣∣∣ ≤ K
√

2 log p

c̃n
,

with probability at least 1 − 2p−1 for values of n, p such that log p
n ≤ c̃

2 . Note that the
inequality in the preceding display implies that if:

|c0|√
s
> RK

√
2 log p

c̃n
,

for any R > 2 there will be a gap in the absolute values of the coefficients of Uj =
|n−1

∑n
i=1 YiXij | for j ∈ S0 and j 6∈ S0. The latter happens because:

|c0|√
s
−K

√
2 log p

c̃n
≥ (R− 1)K

√
2 log p

c̃n
> K

√
2 log p

c̃n
.
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This also shows that the coefficients will achieve the correct sign. Thus, as long as n
s log p ≥ Υ,

for Υ = 2R2K2

c20c̃
2 signed support recovery happens with asymptotic probability 1. Under our

assumption the latter is implied by np,s > Υ/ι which completes the proof.

Proof [Proof of Proposition 2.2.1] We follow the same steps as the proof of Proposition
2.2.3. We will use the following Lemma which we justify after the proof:

Lemma D.0.1 Let us observe n data points from the model described in Proposition 2.2.1
with β being an arbitrary unit vector. Then with probability at least 1− η

nσ4 − γ
log p −

2
p the

following event holds:∥∥∥∥∥ 1

n

n∑
i=1

YiXi − E(YX)

∥∥∥∥∥
∞

≤
(
‖β0‖∞ + 2

√
2σ2
)√ log p

n
.

Using the fact that in our case E(YX) = c0β0, and that ‖β0‖∞ = 1√
s
, we have that if:

(
‖β0‖∞ + 2

√
2σ2
)√ log p

n
≤ (1 + 2

√
2σ)

1√
s

√
s log p

n
<
|c0|
2

1√
s

there will be a gap between the coefficients corresponding to j ∈ S0 := S(β0) and j 6∈ S0.

Note that the last inequality holds if s log p
n <

c20
4(1+2

√
2σ)2

.

Remark D.0.2 The slow convergence in probability rate (log p)−1 observed in Lemma
D.0.1 is due to the fact that we are not requiring that Y is sub-Gaussian. If we do re-
quire it, the convergence rate of the probability can be seen to reduce to the usual p−1 level.

Proof [Proof of Lemma D.0.1] Note that, sub-exponential concentration bounds do not ap-
ply in this case. However, observe that by the properties of the multivariate normal distribu-
tion the random variable (I−β0β

ᵀ
0)X is independent ofXᵀβ0 and hence is independent of Y .

Furthermore it is clear that the random variable Y (I−β0β
ᵀ
0)X has mean 0. Note that con-

ditional on Yi, i ∈ [n] we have that 1
n

∑n
i=1 Yi(I−β0β

ᵀ
0)Xi ∼ N (0, n−2

∑n
i=1 Y

2
i (I−β0β

ᵀ
0)).

Thus by a standard Gaussian tail bound:

P

(∥∥∥∥∥ 1

n

n∑
i=1

Yi(I− β0β
ᵀ
0)Xi

∥∥∥∥∥
∞

≥ t
∣∣∣∣Y
)
≤ 2p exp

[
− nt

2

2Y 2

]
,

where Y 2 = n−1
∑n

i=1 Y
2
i , and we used that ‖I− β0β

ᵀ
0‖2,2 ≤ 1. By Chebyshev’s inequality

P(|Y 2 − σ2| ≥ r) ≤ η
nr2

. Hence selecting r = σ2 will keep the above probability going to 1

at rate 1
n and moreover for large n we have Y 2 ≤ 2σ2. Using this bound in the tail bound

above yields that for a choice of t = 2
√

2σ2 log p
n the tail bound will go to 0 at rate 2p−1 as

claimed.
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Next consider controlling:

P

(∥∥∥∥∥ 1

n

n∑
i=1

Yiβ0β
ᵀ
0Xi − c0β0

∥∥∥∥∥
∞

≥ t

)
= P

(∣∣∣∣∣ 1n
n∑
i=1

YiX
ᵀ
i β0 − c0

∣∣∣∣∣ ≥ t/‖β0‖∞

)
,

where recall that E(YX) = c0β0, and c0 is defined in the main text. Applying Chebyshev’s

inequality once again we get that t = ‖β0‖∞
√

log p
n suffices to keep the above probability

going to 0. By the triangle inequality we conclude that, with probability going to 1:∥∥∥∥∥ 1

n

n∑
i=1

YiXi − E(YX)

∥∥∥∥∥
∞

≤ ‖β0‖∞

√
log p

n
+ 2

√
2σ2

log p

n
.

This is what we claimed.

Appendix E. LASSO Support Recovery

Proof [Proof of Lemma 3.1.1] Note that since PX⊥
,S0

is an orthogonal projection matrix it

contracts length and hence: ∥∥∥PX⊥
,S0

( w

λn

)∥∥∥2

2
≤ ‖w‖

2
2

λ2n2
.

Next observe that w = Y −c0Xβ0 is a vector with non-zero mean. However, by Chebyshev’s
inequality we have:

P
(∣∣∣∣‖w‖22n

− ξ2

∣∣∣∣ ≥ t) ≤ θ2

nt2
.

Then setting t = 1 brings the above probability to 0 at a rate θ2

n . Next:

n−1žᵀS0
(n−1Xᵀ

,S0
X,S0)−1žS0 ≤

1

λmin(1− 2
√

s
n)2

‖žS0‖22
n

≤ 1

λmin(1− 2
√

s
n)2

s

n
,

with probability at least 1− 2 exp(−s/2), where we used Lemma A.0.1. This completes the
proof.

Proof [Proof of Lemma 3.2.2] First, we note the following decomposition:

[Xᵀ
,S0

X,S0 ]−1Xᵀ
,S0
Y − c0β0S0

= (n[Xᵀ
,S0

X,S0 ]−1 − I)n−1Xᵀ
,S0
Y + (n−1Xᵀ

,S0
Y − c0β0S0

).

Note that the second term is mean 0. Applying Lemma D.0.1 gives us a bound on the
second term. We next move on to consider the first term.

Consider a “symmetrization” transformation of the predictor matrix X̃ᵀ
,S0

= (I−β0S0
βᵀ

0S0
)Xᵀ

,S0
+

β0S0
βᵀ

0S0
X∗ᵀ,S0

, where [X∗,S0
]n×s is an i.i.d. copy of X,S0 , or in other words the columns of

X∗,S0
: X∗j ∼ N (0, In×n), j = 1, . . . , s and are independent of X,S0 . Note that in doing this
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construction, we guarantee that X̃,S0 is independent of Xᵀ
,S0
β0S0

. Now we further decompose
the first term as follows:

(n[Xᵀ
,S0

X,S0 ]−1 − I)n−1Xᵀ
,S0
Y = (n[Xᵀ

,S0
X,S0 ]−1 − I)β0S0

βᵀ
0S0
n−1Xᵀ

,S0
Y︸ ︷︷ ︸

I1

+ n([Xᵀ
,S0

X,S0 ]−1 − [X̃ᵀ
,S0

X̃,S0 ]−1)(I− β0S0
βᵀ

0S0
)n−1Xᵀ

,S0
Y︸ ︷︷ ︸

I2

+ (n[X̃ᵀ
,S0

X̃,S0 ]−1 − I)n−1X̃ᵀ
,S0
Y︸ ︷︷ ︸

I3

− (n[X̃ᵀ
,S0

X̃,S0 ]−1 − I)β0S0
βᵀ

0S0
n−1X∗ᵀ,S0

Y︸ ︷︷ ︸
I4

.

We next deal with each of these terms separately. For the first and last terms we can directly
apply Lemma A.0.2. Under the same event as in Lemma E.0.1, taking into account that

‖β0S0
‖2 = 1 we have that ‖([n−1Xᵀ

,S0
X,S0 ]−1 − I)β0S0

‖∞ ≤ C1
s
n‖β0S0

‖∞ + C2

√
log p
n and

‖([n−1X̃ᵀ
,S0

X̃,S0 ]−1 − I)β0S0
‖∞ ≤ C1

s
n‖β0S0

‖∞ +C2

√
log p
n . Furthermore, βᵀ

0S0
Xᵀ
,S0
Y /n is a

mean c0 random variable. Just as in the proof of Lemma D.0.1 by Chebyshev’s inequality

we have that with probability at least 1− γ
log p we have |βᵀ

0S0
Xᵀ
,S0
Y /n| ≤ |c0|+

√
log p
n .

Furthermore, notice that n−1βᵀ
0S0

X∗ᵀ,S0
Y is a mean 0 random variable. Conditionally on

Y it has a N (0, n−2
∑
Y 2
i ) distribution. With exactly the same argument as in the proof

of Lemma D.0.1 we conclude that with probability at least 1− η
nσ4 − 2

p :

|n−1βᵀ
0S0

X∗ᵀ,S0
Y | ≤ 2

√
σ2

log p

n
.

Hence, combining the above results we obtain:

‖I1‖∞ + ‖I4‖∞ ≤
(
C1

s

n
‖β0S0

‖∞ + C2

√
log p

n

)(
|c0|+

√
log p

n
+ 2

√
σ2

log p

n

)
. (23)

To deal with the term I2 first note that by Hölder’s inequality we have:

‖I2‖∞ ≤ ‖n([Xᵀ
,S0

X,S0 ]−1 − [X̃ᵀ
,S0

X̃,S0 ]−1)‖∞,∞‖(I− β0S0
βᵀ

0S0
)n−1Xᵀ

,S0
Y ‖∞. (24)

To deal with the first term we make usage of the following result:

Lemma E.0.1 Suppose that s, n satisfy s
n ≤

1
16 . The following bound holds:

‖[n−1Xᵀ
,S0

X,S0 ]−1 − [n−1X̃ᵀ
,S0

X̃,S0 ]−1‖∞,∞ ≤ 40
√
s

(
C1

s

n
‖β0S0

‖∞ + C̃2

√
log p

n

)
,

with probability at least 1 − 4 exp(−s/2) − 12
p −

4
n , where C1 > 0 and C̃2 = C2 + 4 are the

same constants as in (23).
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Note that the second term is a mean 0 random variable since (I− β0S0
βᵀ

0S0
)X,S0 is in-

dependent of Y . Just as in Lemma D.0.1 we can show that ‖(I−β0S0
βᵀ

0S0
)n−1Xᵀ

,S0
Y ‖∞ ≤

2
√

2σ2 log p
n with probability at least 1 − 2s

p2
≥ 1 − 2

p (this event is in fact a sub-event

of the bounds of the first term n−1Xᵀ
,S0
Y − c0β0S0

). Lemma E.0.1 gives us a bound on

‖n([Xᵀ
,S0

X,S0 ]−1− [X̃ᵀ
,S0

X̃,S0 ]−1)‖∞,∞ which in conjunction with the previous inequality suf-
fices to control the term I2.

Finally, to deal with the term I4 we will make use of the following:

Lemma E.0.2 Let s
n ≤

1
64 . Then there exists a constant Υ � σ > 0, such that the term:

‖(n[X̃ᵀ
,S0

X̃,S0 ]−1 − I)n−1X̃ᵀ
,S0
Y ‖∞ ≤ Υ

√
log p

n
,

with probability at least 1− 2
p −

η
nσ4 − 2 exp(−s/2).

Applying Lemma E.0.2 we have in conjunction with our previous bounds (23) and (24)
we get:

‖[Xᵀ
,S0

X,S0 ]−1Xᵀ
,S0
Y − c0β0S0

‖∞ ≤
(
C1

s

n
‖β0S0

‖∞ + C2

√
log p

n

)(
|c0|+

√
log p

n
+ 2

√
σ2

log p

n

)

+ 80
√
s

(
C1

s

n
‖β0S0

‖∞ + C̃2

√
log p

n

)√
2σ2

log p

n

+ Υ

√
log p

n
+ ‖β0S0

‖∞

√
log p

n
+ 2

√
σ2

log p

n
,

with probability at least 1− 4 exp(−s/2)− 4
n −

18
p − 2 η

nσ4 − 2 γ
log p

5, which finishes the proof,
after grouping terms and recalling the fact that log(p− s) � log p.

Proof [Proof of Lemma E.0.1] We first compare [n−1Xᵀ
,S0

X,S0 ]−1 to [n−1X̃ᵀ
,S0

X,S0+β0S0
βᵀ

0S0
]−1.

The latter matrix might happen to be non-invertible but this is irrelevant for our proof as
we argue below. Using Woodbury’s matrix identity we have:

[n−1X̃ᵀ
,S0

X,S0+β0S0
βᵀ

0S0
]−1−[n−1Xᵀ

,S0
X,S0 ]−1 =

[n−1Xᵀ
,S0

X,S0 ]−1β0S0
βᵀ

0S0
M[n−1Xᵀ

,S0
X,S0 ]−1

1− βᵀ
0S0

M[n−1Xᵀ
,S0

X,S0 ]−1β0S0

,

where M = n−1Xᵀ
,S0

X,S0 − I − n−1X∗ᵀ,S0
X,S0 . Note that whenever the right hand side of

Woodbury’s identity is well defined, the matrix n−1X̃ᵀ
,S0

X,S0 +β0S0
βᵀ

0S0
is indeed invertible,

and the inverse satisfies the above identity. As we argue below the right hand side is
well defined (i.e. the denominator is non-zero) with high probability hence the proof goes
through. Next we handle the term βᵀ

0S0
M[n−1Xᵀ

,S0
X,S0 ]−1. By the triangle inequality have:

‖βᵀ
0S0

M[n−1Xᵀ
,S0

X,S0 ]−1‖∞ ≤ ‖βᵀ
0S0

([n−1Xᵀ
,S0

X,S0 ]−1−I)‖∞+‖βᵀ
0S0
n−1X∗ᵀ,S0

X,S0 [n−1Xᵀ
,S0

X,S0 ]−1‖∞.

5. Here we are recognizing the fact that the events of some probability bounds we derived above, in fact
coincide.
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For the first term Lemma A.0.2 is directly applicable. Applying this lemma gives us the
existence of constants C1 and C2 such that:

‖([n−1Xᵀ
,S0

X,S0 ]−1 − I)β0S0
‖∞ ≤ C1

s

n
‖β0S0

‖∞ + C2

√
log p

n
,

with probability at least 1− 4p−1. For the second term, we have that conditionally on X,S0

it has a normal distribution: N (0, n−1(n−1Xᵀ
,S0

X,S0)−1). Since X,S0 is standard normal, we

can apply Lemma A.0.1 to claim that ‖n(Xᵀ
,S0

X,S0)−1‖2,2 ≤
(

1
1−
√

s
n
−t

)2

with probability

at least 1 − 2 exp(−nt2/2). Taking t =
√

s
n gives us that ‖n(Xᵀ

,S0
X,S0)−1‖2,2 ≤ 1

(1−2
√

s
n

)2

with probability at least 1 − 2 exp(−s/2). Thus conditioning on this event, by a standard
normal tail bound and a union bound we have:

P(‖βᵀ
0S0
n−1X∗ᵀ,S0

X,S0 [n−1Xᵀ
,S0

X,S0 ]−1‖∞ ≥ t) ≤ 2s exp

(
−t2n

(
1− 2

√
s

n

)2

/2

)
.

Selecting t = 4
√

log p
n , we get the probability above is bounded by 2s

p2
≤ 2

p (where we used

the assumption
√

s
n ≤

1
4). So finally on the intersection event we have:

‖βᵀ
0S0

M[n−1Xᵀ
,S0

X,S0 ]−1‖∞ ≤ C1
s

n
‖β0S0

‖∞ + C̃2

√
log p

n
,

with probability at least 1 − 6p−1 − 2 exp(−s/2) where C̃2 = C2 + 4. Let us now consider
the denominator:

1− βᵀ
0S0

M[n−1Xᵀ
,S0

X,S0 ]−1β0S0

=1− βᵀ
0S0

(I− [n−1Xᵀ
,S0

X,S0 ]−1)β0S0
+ n−1βᵀ

0S0
X∗ᵀ,S0

X,S0 [n−1Xᵀ
,S0

X,S0 ]−1β0S0

=βᵀ
0S0

[n−1Xᵀ
,S0

X,S0 ]−1β0S0
+ n−1βᵀ

0S0
X∗ᵀ,S0

X,S0 [n−1Xᵀ
,S0

X,S0 ]−1β0S0
.

Using Lemma A.0.1 we have λmin([n−1Xᵀ
,S0

X,S0 ]−1) ≥ 1
(1+2
√

s
n

)2
> 1

4 with the last bound

holding since s
n < 1

4 . Hence βᵀ
0S0

[n−1Xᵀ
,S0

X,S0 ]−1β0S0
≥ 1

4 . For the second term just as
before, conditionally on X,S0 we have

n−1βᵀ
0S0

X∗ᵀ,S0
X,S0 [n−1Xᵀ

,S0
X,S0 ]−1β0S0

∼ N (0, n−1βᵀ
0S0

[n−1Xᵀ
,S0

X,S0 ]−1β0S0
).

Then (given that ‖n(Xᵀ
,S0

X,S0)−1‖2,2 ≤ 1
(1−2
√

s
n

)2
) by a standard tail bound we have that

the second term is ≤ 4
√

logn
n with probability at least 1− 2

n . Putting everything together

we have:

1− βᵀ
0S0

M[n−1Xᵀ
,S0

X,S0 ]−1β0S0
≥ 1

4
− 4

√
log n

n
.

The last expression is clearly bigger than 1
5 for large enough values of n. Hence we conclude

that with high probability we have:

‖[n−1X̃ᵀ
,S0

X,S0 + β0S0
βᵀ

0S0
]−1 − [n−1Xᵀ

,S0
X,S0 ]−1‖∞,∞

≤ 5‖[n−1Xᵀ
,S0

X,S0 ]−1β0S0
‖1‖βᵀ

0S0
M[n−1Xᵀ

,S0
X,S0 ]−1‖∞
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For the first term, by the definition of matrix ‖ · ‖2,2 norm we further have:

‖[n−1Xᵀ
,S0

X,S0 ]−1β0S0
‖1 ≤

√
s‖[n−1Xᵀ

,S0
X,S0 ]−1β0S0

‖2 ≤
√
s‖β0S0

‖2‖[n−1Xᵀ
,S0

X,S0 ]−1‖2,2

≤
√
s

(1− 2
√

s
n)2

.

Combining this inequality with our previous bound we get:

‖[n−1X̃ᵀ
,S0

X,S0+β0S0
βᵀ

0S0
]−1−[n−1Xᵀ

,S0
X,S0 ]−1‖∞,∞ ≤

5
√
s

(1− 2
√

s
n)2

(
C1

s

n
‖β0S0

‖∞ + C̃2

√
log p

n

)
.

Next we show that [n−1X̃ᵀ
,S0

X,S0 +β0S0
βᵀ

0S0
]−1 is also close to [n−1X̃ᵀ

,S0
X̃,S0 ]−1. Another

usage of Woodbury’s matrix identity yields:

[n−1X̃ᵀ
,S0

X,S0+β0S0
βᵀ

0S0
]−1−[n−1X̃ᵀ

,S0
X̃,S0 ]−1 =

[n−1X̃ᵀ
,S0

X̃,S0 ]−1M̃β0S0
βᵀ

0S0
[n−1X̃ᵀ

,S0
X̃,S0 ]−1

1− βᵀ
0S0

[n−1X̃ᵀ
,S0

X̃,S0 ]−1M̃β0S0

,

where M̃ = n−1X̃ᵀ
,S0

X̃,S0 − I− n−1X̃ᵀ
,S0

X,S0 . Note that since X̃ᵀ
,S0
⊥⊥ X,S0β0S0

, the same ar-
gument as before goes through. Combining the bounds with a triangle inequality completes
the proof, using the fact that

√
s
n ≤

1
4 .

Proof [Proof of Lemma E.0.2] We first perform a singular value decomposition on the
X̃,S0 = Un×sDs×sV

ᵀ
s×s matrix. Note that since multiplying X̃,S0 by a unitary s× s matrix

on the right, or by a unitary n × n matrix on the left doesn’t change the distribution of
X̃,S0 we conclude that the matrices U,D and V are independent. This representation gives

us that (n−1X̃ᵀ
,S0

X̃,S0)−1 − I = V(nD−2 − I)Vᵀ. With this notation we can rewrite:

(n[X̃ᵀ
,S0

X̃,S0 ]−1 − I)n−1X̃ᵀ
,S0
Y = V (nD−2 − I)n−1/2D︸ ︷︷ ︸

W

n−1/2UᵀY .

We recall that by construction X̃,S0 is independent of Y . The elements of the matrix W
can be bounded in a simple manner. We have ‖W‖2,2 ≤ ‖(nD−2 − I)‖2,2‖n−1/2D‖2,2, and

by Lemma A.0.1, as before we have: ‖(nD−2 − I)‖2,2 ≤ 1
(1−2
√

s
n

)2
− 1 ≤ 4

√
s
n

(1−2
√

s
n

)2
and

‖n−1/2D‖2,2 ≤ 1 + 2
√

s
n with probability at least 1−2 exp(−s/2). We will condition on the

event ‖W‖2,2 ≤
4
√

s
n

(1−2
√

s
n

)2
(1 + 2

√
s
n) < 9

√
s
n , with the last inequality holding for

√
s
n ≤

1
8 .

Since every random variable in the above display is independent from W, the distributions
of V,U and Y stay unchanged under this conditioning. Let ei be a unit vector with 1
on the ith position. Since we are interested in bounding the ‖ · ‖∞ we will start with the
following:

eᵀi (n[X̃ᵀ
,S0

X̃,S0 ]−1 − I)n−1X̃ᵀ
,S0
Y = vᵀ

iW[n−1/2UᵀY ],

where vᵀ
i is the ith row of the matrix V. Condition on the vector n−1/2UᵀY . Since vi

is independent of n−1/2UᵀY it follows that the distribution of vi is uniform on the unit
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sphere in Rs. We next show that the function F (vi) = vᵀ
iW[n−1/2UᵀY ] is Lipschitz. We

have:

‖∇F‖2 ≤ ‖W‖2,2‖n−1/2UᵀY ‖2 ≤ 9

√
s

n
n−1/2

√√√√ s∑
i=1

(uᵀ
iY )2

≤ 9

√
s

n
n−1/2‖Y ‖2,

where the last inequality follows from the fact that the vectors ui are orthonormal and hence∑s
i=1(uᵀ

iY )2 ≤ ‖Y ‖22. Since Yi are assumed to have finite second moment, by Chebyshev’s
inequality we have that:

P(|n−1‖Y ‖22 − σ2| ≥ t) ≤ η

nt2
.

Selecting t = σ2 is sufficient to keep the above probability going to 0, and furthermore
for n large enough guarantees that n−1‖Y ‖22 ≤ 2σ2 and hence n−1/2‖Y ‖2 ≤

√
2σ. Thus

conditional on this event the function F is Lipschitz with a constant equal to
√

29σ
√

s
n .

Since the expectation of the function F is 0, by concentration of measure for Lipschitz
functions on the sphere (Ledoux, 2005; Ledoux and Talagrand, 2013), for any t > 0 we
have:

P(|F (vi)| ≥ tσ) ≤ 2 exp

(
−c̃s t2

162 sn

)
,

for some absolute constant c̃ > 0. Taking a union bound the above becomes:

P(max
i∈[s]
|F (vi)| ≥ tσ) ≤ 2s exp

(
−c̃ t

2n

162

)
.

Selecting t = 18
√

log p
c̃n , keeps the probability vanishing at a rate faster than 2s/p2 ≤ 2/p

and completes the proof.

Proof [Proof of Corollary 2.3.9] Tracing the proof of Theorem 2.3.4 we realize that it suffices
to show the following two quantities remain well controlled under the usage of ĝ:

i. |n−1
∑n

i=1X
ᵀ
i β0ĝ(Yi)− c0| ≤ O(

√
log p/n),

ii. n−1
∑n

i=1 ĝ
2(Yi) = O(1),
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with probability at least 1−O(p−1) and 1−O(n−1) correspondingly. To deal with i. observe
that:∣∣∣∣∣n−1

n∑
i=1

Xᵀ
i β0ĝ(Yi)− c0

∣∣∣∣∣ ≤
∣∣∣∣∣n−1

n∑
i=1

Xᵀ
i β0g(Yi)− c0

∣∣∣∣∣+

∣∣∣∣∣n−1
n∑
i=1

Xᵀ
i β0(g(Yi)− ĝ(Yi))

∣∣∣∣∣
≤

∣∣∣∣∣n−1
n∑
i=1

Xᵀ
i β0g(Yi)− c0

∣∣∣∣∣︸ ︷︷ ︸
I1

+
{
n−1

n∑
i=1

(Xᵀ
i β0)2

}1/2{
n−1

n∑
i=1

(ĝ(Yi)− g(Yi))
2
}1/2

︸ ︷︷ ︸
I2

.

The term I1 remains controlled by the proof of Theorem 2.3.4, while for the term I2 we
have:

I2 ≤ O(
√

log p/n),

with probability at least 1−O(p−1), where we used the assumption on ĝ and the fact that
the random variables (Xᵀ

i β0)2 ∼ χ2
1 and hence concentrate exponentially about their mean

— 1, by a standard tail bound (Boucheron et al., 2013).
Next, for ii., by the triangle inequality we have:√√√√n−1

n∑
i=1

ĝ2(Yi) ≤

√√√√n−1

n∑
i=1

g2(Yi) +

√√√√n−1

n∑
i=1

(ĝ(Yi)− g(Yi))2.

The first term is well controlled as before and is O(1) with probability at least 1−O(n−1)
and the second term is at most O(

√
log p/n) with probability at least 1 − O(p−1) by as-

sumption which concludes the proof.

Proof [Proof of Proposition 2.3.8] First let g be such that E{g(Y )Xᵀβ0} 6= 0. Recall that
E(Xᵀβ0) = 0. Hence by Cauchy-Schwartz we have:

0 < [E{g(Y )Xᵀβ0}]2 = (E[g(Y )E{Xᵀβ0|Y }])2 ≤ Var{g(Y )}Var{E(Xᵀβ0|Y )},

and therefore Var{E(Xᵀβ0|Y )} > 0. In the reverse case put g(Y ) = E{Xᵀβ0|Y } and apply
conditional expectation to obtain E{g(Y )Xᵀβ0} = Var{E(Xᵀβ0|Y )} > 0.
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Appendix F. Additional Simulation Results

F.1 Σ = I
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Figure 3: Model (14)
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Figure 4: Model (17)
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F.2 Σ : Σkj = 2−|k−j|
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Figure 5: Model (14)
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Figure 6: Model (17)
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Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection
with the lasso. The Annals of Statistics, pages 1436–1462, 2006.

Matey Neykov, Qian Lin, and Jun S Liu. Signed support recovery for single index models
in high-dimensions. arXiv preprint, arXiv:1511.02270, 2015.

Heng Peng and Tao Huang. Penalized least squares for single index models. Journal of
Statistical Planning and Inference, 141(4):1362–1379, 2011.

Yaniv Plan and Roman Vershynin. The generalized lasso with non-linear observations.
arXiv preprint, arXiv:1502.04071, 2015.

Peter Radchenko. High dimensional single index models. Journal of Multivariate Analysis,
139:266–282, 2015.

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The annals
of Statistics, pages 1135–1151, 1981.

Christos Thrampoulidis, Ehsan Abbasi, and Babak Hassibi. The lasso with non-linear
measurements is the lasso with non-linear measurements is equivalent to one with linear
measurements. arXiv preprint, arXiv:1506.02181, 2015.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

Martin J Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery
using-constrained quadratic programming (lasso). IEEE Transactions on Information
Theory, 55(5):2183–2202, 2009.

36



L1-Regularized Least Squares for SIM

J Wang, AT Bansal, M Martin, S Germer, R Benayed, L Essioux, JS Lee, A Begovich,
A Hemmings, A Kenwright, et al. Genome-wide association analysis implicates the in-
volvement of eight loci with response to tocilizumab for the treatment of rheumatoid
arthritis. The pharmacogenomics journal, 13(3):235–241, 2013.

Tao Wang and LiXing Zhu. A distribution-based lasso for a general single-index model.
Science China Mathematics, 58(1):109–130, 2015.

Tao Wang, Pei-Rong Xu, and Li-Xing Zhu. Non-convex penalized estimation in high-
dimensional models with single-index structure. Journal of Multivariate Analysis, 109:
221–235, 2012.

Yingcun Xia and WK Li. On single-index coefficient regression models. Journal of the
American Statistical Association, 94(448):1275–1285, 1999.

Zhuoran Yang, Zhaoran Wang, Han Liu, Yonina C. Eldar, and Tong Zhang. Sparse nonlinear
regression: Parameter sparse nonlinear regression: Parameter estimation and asymptotic
inference. arXiv preprint arXiv; 1511:04514, 2015.

Xinyang Yi, Zhaoran Wang, Constantine Caramanis, and Han Liu. Optimal linear estima-
tion under unknown nonlinear transform. arXiv preprint arXiv:1505.03257, 2015.

Jingyuan Zhao, Simone Gupta, Mark Seielstad, Jianjun Liu, and Anbupalam Thalamuthu.
Pathway-based analysis using reduced gene subsets in genome-wide association studies.
BMC bioinformatics, 12(1):1, 2011.

Peng Zhao and Bin Yu. On model selection consistency of lasso. The Journal of Machine
Learning Research, 7:2541–2563, 2006.

37


	Introduction
	Overview of Related Work
	Organization

	Main Results
	Preliminary and Notation
	
	
	Outcome Transformations


	Proof of Theorem ??
	Verifying Strict Dual Feasibility
	Verifying Sign Consistency

	Numerical Studies
	Discussion
	Auxiliary Lemmas
	Preliminary Results
	Lower Bound
	Covariance Thresholding
	LASSO Support Recovery
	Additional Simulation Results
	
	


