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Abstract

The discovery of causal relationships from purely observational data is a fundamental prob-
lem in science. The most elementary form of such a causal discovery problem is to decide
whether X causes Y or, alternatively, Y causes X, given joint observations of two variables
X,Y . An example is to decide whether altitude causes temperature, or vice versa, given
only joint measurements of both variables. Even under the simplifying assumptions of no
confounding, no feedback loops, and no selection bias, such bivariate causal discovery prob-
lems are challenging. Nevertheless, several approaches for addressing those problems have
been proposed in recent years. We review two families of such methods: methods based on
Additive Noise Models (ANMs) and Information Geometric Causal Inference (IGCI). We
present the benchmark CauseEffectPairs that consists of data for 100 different cause-
effect pairs selected from 37 data sets from various domains (e.g., meteorology, biology,
medicine, engineering, economy, etc.) and motivate our decisions regarding the “ground
truth” causal directions of all pairs. We evaluate the performance of several bivariate causal
discovery methods on these real-world benchmark data and in addition on artificially sim-
ulated data. Our empirical results on real-world data indicate that certain methods are
indeed able to distinguish cause from effect using only purely observational data, although
more benchmark data would be needed to obtain statistically significant conclusions. One
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of the best performing methods overall is the method based on Additive Noise Models that
has originally been proposed by Hoyer et al. (2009), which obtains an accuracy of 63 ±
10 % and an AUC of 0.74 ± 0.05 on the real-world benchmark. As the main theoretical
contribution of this work we prove the consistency of that method.

Keywords: Causal discovery, additive noise, information-geometric causal inference,
cause-effect pairs, benchmarks

1. Introduction

An advantage of having knowledge about causal relationships rather than statistical as-
sociations is that the former enables prediction of the effects of actions that perturb the
observed system. Knowledge of cause and effect can also have implications on the appli-
cability of semi-supervised learning and covariate shift adaptation (Schölkopf et al., 2012).
While the gold standard for identifying causal relationships is controlled experimentation,
in many cases, the required experiments are too expensive, unethical, or technically impos-
sible to perform. The development of methods to identify causal relationships from purely
observational data therefore constitutes an important field of research.

An observed statistical dependence between two variables X, Y can be explained by
a causal influence from X to Y , a causal influence from Y to X, a possibly unobserved
common cause that influences both X and Y (“confounding”, see e.g., Pearl, 2000), a
possibly unobserved common effect of X and Y that is conditioned upon in data acquisition
(“selection bias”, see e.g., Pearl, 2000), or combinations of these. Most state-of-the-art
causal discovery algorithms that attempt to distinguish these cases based on observational
data require that X and Y are part of a larger set of observed random variables influencing
each other. For example, in that case, and under a genericity condition called “faithfulness”,
conditional independences between subsets of observed variables allow one to draw partial
conclusions regarding their causal relationships (Spirtes et al., 2000; Pearl, 2000; Richardson
and Spirtes, 2002; Zhang, 2008).

In this article, we focus on the bivariate case, assuming that only two variables, say
X and Y , have been observed. We simplify the causal discovery problem considerably by
assuming no confounding, no selection bias and no feedback. We study how to distinguish X
causing Y from Y causing X using only purely observational data, i.e., a finite i.i.d. sample
drawn from the joint distribution PX,Y .1 As an example, consider the data visualized in
Figure 1. The question is: does X cause Y , or does Y cause X? The true answer is “X
causes Y ”, as here X is the altitude of weather stations and Y is the mean temperature
measured at these weather stations (both in arbitrary units). In the absence of knowledge
about the measurement procedures that the variables correspond with, one can try to exploit
the subtle statistical patterns in the data in order to find the causal direction. This challenge
of distinguishing cause from effect using only observational data has attracted increasing
interest recently (Mooij and Janzing, 2010; Guyon et al., 2010, 2016). Approaches to causal
discovery based on conditional independences do not work here, as X and Y are typically
dependent, and there are no other observed variables to condition on.

1. We denote probability distributions by P and probability densities (typically with respect to Lebesgue
measure on Rd) by p.
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Figure 1: Example of a bivariate causal discovery task: decide whether X causes Y , or Y
causes X, using only the observed data (visualized here as a scatter plot).

A variety of causal discovery methods has been proposed in recent years (Friedman and
Nachman, 2000; Kano and Shimizu, 2003; Shimizu et al., 2006; Sun et al., 2006, 2008; Hoyer
et al., 2009; Mooij et al., 2009; Zhang and Hyvärinen, 2009; Janzing et al., 2010; Mooij et al.,
2010; Daniušis et al., 2010; Mooij et al., 2011; Shimizu et al., 2011; Janzing et al., 2012;
Hyvärinen and Smith, 2013; Peters and Bühlmann, 2014; Kpotufe et al., 2014; Nowzohour
and Bühlmann, 2015; Sgouritsa et al., 2015) that were claimed to be able to solve this task
under certain assumptions. All these approaches exploit the complexity of the marginal
and conditional probability distributions, in one way or the other. On an intuitive level,
the idea is that the factorization of the joint density pC,E(c, e) of cause C and effect E
into pC(c)pE |C(e | c) typically yields models of lower total complexity than the alternative
factorization into pE(e)pC |E(c | e). Although this idea is intuitively appealing, it is not clear
how to define complexity. If “complexity” and “information” are measured by Kolmogorov
complexity and algorithmic information, respectively (Janzing and Schölkopf, 2010; Lemeire
and Janzing, 2013), one can show that the statement “pC contains no information about
pE |C” implies that the sum of the complexities of pC and pE |C cannot be greater than the
sum of the complexities of pE and pC |E . Some approaches, instead, define certain classes
of “simple” conditionals, e.g., Additive Noise Models (Hoyer et al., 2009) and second-order
exponential models (Sun et al., 2006; Janzing et al., 2009), and infer X to be the cause of
Y whenever PY |X is from this class (and PX |Y is not). Another approach that employs
complexity in a more implicit way postulates that PC contains no information about PE |C
(Janzing et al., 2012).

Despite the large number of methods for bivariate causal discovery that has been pro-
posed over the last few years, their practical performance has not been studied very system-
atically, although some domain-specific studies have been performed (Smith et al., 2011;
Statnikov et al., 2012). The present work attempts to address this by presenting bench-
mark data and reporting extensive empirical results on the performance of various bivariate
causal discovery methods. Our main contributions are fourfold:

• We review two families of bivariate causal discovery methods, methods based on Ad-
ditive Noise Models (ANMs) (originally proposed by Hoyer et al., 2009), and Infor-
mation Geometric Causal Inference (IGCI) (originally proposed by Daniušis et al.,
2010).
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• We present a detailed description of the benchmark CauseEffectPairs that we col-
lected over the years for the purpose of evaluating bivariate causal discovery methods.
It currently consists of data for 100 different cause-effect pairs selected from 37 data
sets from various domains (e.g., meteorology, biology, medicine, engineering, economy,
etc.).

• We report the results of extensive empirical evaluations of the performance of several
members of the ANM and IGCI families, both on artificially simulated data as well
as on the CauseEffectPairs benchmark.

• We prove the consistency of the original implementation of ANM that was proposed
by Hoyer et al. (2009).

The CauseEffectPairs benchmark data are provided on our website (Mooij et al., 2014).
The synthetic benchmark data are provided as an online appendix for reproducibility pur-
poses. In addition, all the code (including the code to run the experiments and create the
figures) is provided both as an online appendix and on the first author’s homepage2 under
an open source license to allow others to reproduce and build on our work.

The structure of this article is somewhat unconventional, as it partially consists of a
review of existing methods, but it also contains new theoretical and empirical results. We
will start in the next subsection by giving a more rigorous definition of the causal discovery
task we consider in this article. In Section 2 we give a review of ANM, an approach based
on the assumed additivity of the noise, and describe various ways of implementing this idea
for bivariate causal discovery. In Appendix A we provide a proof for the consistency of
the original ANM implementation that was proposed by Hoyer et al. (2009). In Section 3,
we review IGCI, a method that exploits the independence of the distribution of the cause
and the functional relationship between cause and effect. This method is designed for
the deterministic (noise-free) case, but has been reported to work on noisy data as well.
Section 4 gives more details on the experiments that we have performed, the results of which
are reported in Section 5. Appendix D describes the CauseEffectPairs benchmark data
set that we used for assessing the accuracy of various methods. We conclude in Section 6.

1.1 Problem Setting

In this subsection, we formulate the problem of interest central to this work. We tried to
make this section as self-contained as possible and hope that it also appeals to readers who
are not familiar with the terminology in the field of causality. For more details, we refer
the reader to Pearl (2000).

Suppose that X,Y are two random variables with joint distribution PX,Y . This obser-
vational distribution corresponds to measurements of X and Y in an experiment in which
X and Y are both (passively) observed. If an external intervention (i.e., from outside the
system under consideration) changes some aspect of the system, then in general, this may
lead to a change in the joint distribution of X and Y . In particular, we will consider a

2. http://www.jorismooij.nl/
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perfect intervention3 “do(x)” (or more explicitly: “do(X = x)”) that forces the variable X
to have the value x, and leaves the rest of the system untouched. We denote the resulting
interventional distribution of Y as PY |do(x), a notation inspired by Pearl (2000). This in-
terventional distribution corresponds to the distribution of Y in an experiment in which X
has been set to the value x by the experimenter, after which Y is measured. Similarly, we
may consider a perfect intervention do(y) that forces Y to have the value y, leading to the
interventional distribution PX | do(y) of X.

For example, X and Y could be binary variables corresponding to whether the battery
of a car is empty, and whether the start engine of the car is broken. Measuring these
variables in many cars, we get an estimate of the joint distribution PX,Y . The marginal
distribution PX , which only considers the distribution of X, can be obtained by integrating
the joint distribution over Y . The conditional distribution PX |Y=0 corresponds with the
distribution of X for the cars with a broken start engine (i.e., those cars for which we observe
that Y = 0). The interventional distribution PX | do(Y=0), on the other hand, corresponds
with the distribution of X after destroying the start engines of all cars (i.e., after actively
setting Y = 0). Note that the distributions PX ,PX |Y=0,PX | do(Y=0) may all be different.

In the absence of selection bias, we define:4

Definition 1 We say that X causes Y if PY | do(x) 6= PY | do(x′) for some x, x′.

Causal relations can be cyclic, i.e., X causes Y and Y also causes X. For example, an
increase of the global temperature causes sea ice to melt, which causes the temperature to
rise further (because ice reflects more sun light).

In the context of multiple variables X1, . . . , Xp with p ≥ 2, we define direct causation
in the absence of selection bias as follows:

Definition 2 Xi is a direct cause of Xj with respect to X1, . . . , Xp if

PXj | do(Xi=x,X\ij=c) 6= PXj | do(Xi=x′,X\ij=c)

for some x, x′ and some c, where X\ij := X{1,...,p}\{i,j} are all other variables besides Xi, Xj.

In words: X is a direct cause of Y with respect to a set of variables under consideration if
Y depends on the value we force X to have in a perfect intervention, while fixing all other
variables. The intuition is that a direct causal relation of X on Y is not mediated via the
other variables. The more variables one considers, the harder it becomes experimentally to
distinguish direct from indirect causation, as one has to keep more variables fixed.5

We may visualize direct causal relations in a causal graph:

3. Different types of “imperfect” interventions can be considered as well, see e.g., Eberhardt and Scheines
(2007); Eaton and Murphy (2007); Mooij and Heskes (2013). In this paper we only consider perfect
interventions.

4. In the presence of selection bias, one has to be careful when linking causal relations to interventional
distributions. Indeed, if one would (incorrectly) apply Definition 1 to the conditional interventional
distributions PY | do(X=x),S=s instead of to the unconditional interventional distributions PY | do(X=x)

(e.g., because one is not aware of the fact that the data has been conditioned on S), one may obtain
incorrect conclusions regarding causal relations.

5. For the special case p = 2 that is of interest in this work, we do not need to distinguish indirect from
direct causality, as they are equivalent in that special case. However, we introduce this concept in order
to define causal graphs on more than two variables, which we use to explain the concepts of confounding
and selection bias.

5



Mooij, Peters, Janzing, Zscheischler and Schölkopf

Definition 3 The causal graph G has variables X1, . . . , Xp as nodes, and a directed edge
from Xi to Xj if and only if Xi is a direct cause of Xj with respect to X1, . . . , Xp.

Note that this definition allows for cyclic causal relations. In contrast with the typical
assumption in the causal discovery literature, we do not assume here that the causal graph
is necessarily a Directed Acyclic Graph (DAG).

If X causes Y , we generically have that PY | do(x) 6= PY . Figure 2 illustrates how various
causal relationships between X and Y (and at most one other variable) generically give rise
to different (in)equalities between marginal, conditional, and interventional distributions
involving X and Y . Note that the list of possibilities in Figure 2 is not exhaustive, as (i)
feedback relationships with a latent variable were not considered; (ii) combinations of the
cases shown are possible as well, e.g., (d) can be considered to be the combination of (a)
and (b), and both (e) and (f) can be combined with all other cases; (iii) more than one
latent variable could be present.

Returning to the example of the empty batteries (X) and broken start engines (Y ), it
seems reasonable to assume that these two variables are not causally related and case (c)
in Figure 2 would apply, and therefore X and Y must be statistically independent.

In order to illustrate case (f), let us introduce a third binary variable, S, which measures
whether the car starts or not. If the data acquisition is done by a car mechanic who only
considers cars that do not start (S = 0), then we are in case (f): conditioning on the common
effect S of X and Y leads to selection bias, i.e., X and Y are statistically dependent when
conditioning on S (even though they are not directly causally related). Indeed, if we know
that a car doesn’t start, then learning that the battery is not empty makes it much more
likely that the start engine is broken.

Another way in which two variables that are not directly causally related can still be
statistically dependent is case (e), i.e., if they have a common cause. As an example, take for
X the number of stork breeding pairs (per year) and for Y the number of human births (per
year) in a country. Data has been collected for different countries and shows a significant
correlation between X and Y (Matthews, 2000). Few people nowadays believe that storks
deliver babies, or the other way around, and therefore it seems reasonable to assume that
X and Y are not directly causally related. One obvious confounder (Z in Figure 2e) that
may explain the observed dependence between X and Y is land area.

When data from all (observational and interventional) distributions are available, it be-
comes straightforward in principle to distinguish the six cases in Figure 2 simply by checking
which (in)equalities in Figure 2 hold. In practice, however, we often only have data from
the observational distribution PX,Y (for example, because intervening on stork population
or human birth rate is impractical). Can we then still infer the causal relationship between
X and Y ? If, under certain assumptions, we can decide upon the causal direction, we
say that the causal direction is identifiable from the observational distribution (and our
assumptions).

In this work, we will simplify matters considerably by considering only (a) and (b) in
Figure 2 as possibilities. In other words, we assume that X and Y are dependent (i.e.,

6. Here, we assume that the intervention is performed before the conditioning. Since conditioning and
intervening do not commute in general, one has to be careful when modeling causal processes in the
presence of selection bias to take into account the actual ordering of these events.
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(a)

X Y

X YZ

PY 6= PY |do(x) = PY |x
PX = PX | do(y) 6= PX | y

(b)

X Y

X Z Y

PY = PY |do(x) 6= PY |x
PX 6= PX | do(y) = PX | y

(c)

X Y

PY = PY |do(x) = PY |x
PX = PX | do(y) = PX | y

(d)

X Y

PY 6= PY |do(x) 6= PY |x
PX 6= PX | do(y) 6= PX | y

(e)

X Y

Z

PY = PY |do(x) 6= PY |x
PX = PX | do(y) 6= PX | y

(f)

S

X Y

PY | s 6= PY | do(x),s = PY |x,s
PX | s 6= PX |do(y),s = PX | y,s

Figure 2: Several possible causal relationships between two observed variables X,Y and a
single latent variable: (a) X causes Y ; (b) Y causes X; (c) X,Y are not causally related; (d)
feedback relationship, i.e., X causes Y and Y causes X; (e) a hidden confounder Z explains
the observed dependence; (f) conditioning on a hidden selection variable S explains the
observed dependence.6 We used shorthand notation regarding quantifiers: equalities are
generally valid, inequalities not necessarily. For example, “PX = PX | y” means “∀y : PX =
PX | y”, whereas “PX 6= PX | y” means “∃y : PX 6= PX | y”. In all situations except (c), X
and Y are (generically) dependent, i.e., PX,Y 6= PXPY . The basic task we consider in this
article is deciding between (a) and (b), using only data from PX,Y .

PX,Y 6= PXPY ), there is no confounding (common cause of X and Y ), no selection bias
(common effect of X and Y that is implicitly conditioned on), and no feedback between
X and Y (a two-way causal relationship between X and Y ). Inferring the causal direction
between X and Y , i.e., deciding which of the two cases (a) and (b) holds, using only the
observational distribution PX,Y is the challenging task that we consider in this work.7

7. Note that this is a different question from the one often faced in problems in epidemiology, economics and
other disciplines where causal considerations play an important role. There, the causal direction is often
known a priori, i.e., one can exclude case (b), but the challenge is to distinguish case (a) from case (e) or
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2. Additive Noise Models

In this section, we review a family of causal discovery methods that exploits additivity of
the noise. We only consider the bivariate case here. More details and extensions to the
multivariate case can be found in Hoyer et al. (2009); Peters et al. (2014).

2.1 Theory

There is an extensive body of literature on causal modeling and causal discovery that
assumes that effects are linear functions of their causes plus independent, Gaussian noise.
These models are known as Structural Equation Models (SEM) (Wright, 1921; Bollen, 1989)
and are popular in econometrics, sociology, psychology and other fields. Although the
assumptions of linearity and Gaussianity are mathematically convenient, they are not always
realistic. More generally, one can define Functional Models, also known as Structural Causal
Models (SCM) or Non-Parametric Structural Equation Models (NP-SEM), in which effects
are modeled as (possibly nonlinear) functions of their causes and latent noise variables
(Pearl, 2000).

2.1.1 Bivariate Structural Causal Models

In general, if Y ∈ R is a direct effect of a cause X ∈ R and m latent causes U =
(U1, . . . , Um) ∈ Rm, then it is intuitively reasonable to model this relationship as{

Y = f(X,U1, . . . , Um),
X ⊥⊥ U , X ∼ pX(x), U ∼ pU (u1, . . . , um),

(1)

where f : R × Rm → R is a possibly nonlinear function (measurable with respect to the
Borel sets of R × Rm and R), and pX(x) and pU (u1, . . . , um) are the joint densities of the
observed cause X and latent causes U (with respect to Lebesgue measure on R and Rm,
respectively). The assumption that X and U are independent (“X ⊥⊥ U”) is justified by
the assumption that there is no confounding, no selection bias, and no feedback between

X and Y .8 We will denote the observational distribution corresponding to (1) by P(1)
X,Y .

By making use of the semantics of SCMs (Pearl, 2000), (1) also induces interventional

distributions P(1)
X | do(y) = P(1)

X and P(1)
Y | do(x) = P(1)

Y |x.
As the latent causes U are unobserved anyway, we can summarize their influence by a

single “effective” noise variable EY ∈ R (also known as “disturbance term”):{
Y = fY (X,EY )
X ⊥⊥ EY , X ∼ pX(x), EY ∼ pEY (eY ).

(2)

This simpler model can be constructed in such a way that it induces the same (observational
and interventional) distributions as (1):

a combination of both. Even though our empirical results indicate that some methods for distinguishing
case (a) from case (b) still perform reasonably well when their assumption of no confounding is violated
by adding a latent confounder as in (e), we do not claim that these methods can be used to distinguish
case (e) from case (a).

8. Another assumption that we have made here is that there is no measurement noise, i.e., noise added
by the measurement apparatus. Measurement noise would mean that instead of measuring X itself, we
observe a noisy version X̃, but Y is still a function of X, the (latent) variable X that is not corrupted
by measurement noise.
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(a)

X Y

U1

. . .

Um
(b)

X Y

EY
(c)

X Y

EX

Figure 3: Causal graphs of Structural Causal Models (1), (2) and (3), respectively. (a)
and (b) are interventionally equivalent, (b) and (c) are only observationally equivalent in
general.

Proposition 4 Given a model of the form (1) for which the observational distribution has
a positive density with respect to Lebesgue measure, there exists a model of the form (2) that
is interventionally equivalent, i.e., it induces the same observational distribution PX,Y
and the same interventional distributions PX | do(y), PY | do(x).

Proof Denote by P(1)
X,Y the observational distribution induced by model (1). One possi-

ble way to construct EY and fY is to define the conditional cumulative density function
FY |x(y) := P(1)(Y ≤ y |X = x) and its inverse with respect to y for fixed x, F−1Y |x. Then,
one can define EY as the random variable

EY := FY |X(Y ),

(where now the fixed value x is substituted with the random variable X) and the function
fY by9

fY (x, e) := F−1Y |x(e).

Now consider the change-of-variables (X,Y ) 7→ (X,EY ). The corresponding joint densities
transform as

p
(1)
X,Y (x, y) = pX,EY

(
x, FY |x(y)

) ∣∣∣∣∂FY |x∂y
(x, y)

∣∣∣∣ = pX,EY
(
x, FY |x(y)

)
p
(1)
Y |X(y |x),

and therefore
p
(1)
X (x) = pX,EY (x, FY |x(y))

for all x, y. This implies that EY ⊥⊥ X and that pEY = 1(0,1).

This establishes that P(2)
X,Y = P(1)

X,Y . The identity of the interventional distributions
follows directly, because

P(1)
X |do(y) = P(1)

X = P(2)
X = P(2)

X |do(y)

and
P(1)
Y | do(x) = P(1)

Y |x = P(2)
Y |x = P(2)

Y |do(x).

9. Note that we denote probability densities with the symbol p, so we can safely use the symbol f for a
function without risking any confusion.

9
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A similar construction of an effective noise variable can be performed in the other
direction as well, at least to obtain a model that induces the same observational distribution.
More precisely, we can construct a function fX and a random variable EX such that{

X = fX(Y,EX)
Y ⊥⊥ EX , Y ∼ pY (y), EX ∼ pEX (eX)

(3)

induces the same observational distribution P(3)
X,Y = P(2)

X,Y as (2) and the original (1). A
well-known example is the linear-Gaussian case:

Example 1 Let {
Y = αX + EY X ∼ N (µX , σ

2
X)

EY ⊥⊥ X EY ∼ N (µEY , σ
2
EY

).

The model {
X = βY + EX Y ∼ N (µY , σ

2
Y )

EX ⊥⊥ Y EX ∼ N (µEX , σ
2
EX

)

with

β =
ασ2X

α2σ2X + σ2EY
,

µY = αµX + µEY , σ2Y = α2σ2X + σ2EY ,

µEX = (1− αβ)µX − βµEY , σ2EX = (1− αβ)2σ2X + β2σ2EY

induces the same joint distribution on X,Y .

However, in general the interventional distributions induced by (3) will be different from
those of (2) and the original model (1). For example, in general

P(3)
X | do(y) = P(3)

X | y = P(2)
X | y 6= P(2)

X = P(2)
X | do(y).

This means that whenever we can model an observational distribution PX,Y with a model
of the form (3), we can also model it using (2), and therefore the causal relationship between
X and Y is not identifiable from the observational distribution without making additional
assumptions. In other words: (1) and (2) are interventionally equivalent, but (2) and (3) are
only observationally equivalent. Without having access to the interventional distributions,
this symmetry prevents us from drawing any conclusions regarding the direction of the
causal relationship between X and Y if we only have access to the observational distribution
PX,Y .

2.1.2 Breaking the Symmetry

By restricting the models (2) and (3) to have lower complexity, asymmetries can be intro-
duced. The work of Kano and Shimizu (2003); Shimizu et al. (2006) showed that for linear
models (i.e., where the functions fX and fY are restricted to be linear), non-Gaussianity
of the input and noise distributions actually allows one to distinguish the directionality
of such functional models. Peters and Bühlmann (2014) recently proved that for linear

10
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models, Gaussian noise variables with equal variances also lead to identifiability. For high-
dimensional variables, the structure of the covariance matrices can be exploited to achieve
asymmetries (Janzing et al., 2010; Zscheischler et al., 2011).

Hoyer et al. (2009) showed that also nonlinearity of the functional relationships aids
in identifying the causal direction, as long as the influence of the noise is additive. More
precisely, they consider the following class of models:

Definition 5 A tuple (pX , pEY , fY ) consisting of a density pX , a density pEY with finite
mean, and a Borel-measurable function fY : R→ R, defines a bivariate Additive Noise
Model (ANM) X → Y {

Y = fY (X) + EY
X ⊥⊥ EY , X ∼ pX , EY ∼ pEY .

If the induced distribution PX,Y has a density with respect to Lebesgue measure, the induced
density p(x, y) is said to satisfy an Additive Noise Model X → Y .

Note that an ANM is a special case of model (2) where the influence of the noise on Y is
restricted to be additive.

We are especially interested in cases for which the additivity requirement introduces an
asymmetry between X and Y :

Definition 6 If the joint density p(x, y) satisfies an Additive Noise Model X → Y , but does
not satisfy any Additive Noise Model Y → X, then we call the ANM X → Y identifiable
(from the observational distribution).

Hoyer et al. (2009) proved that Additive Noise Models are generically identifiable. The
intuition behind this result is that if p(x, y) satisfies an Additive Noise Model X → Y ,
then p(y |x) depends on x only through its mean, and all other aspects of this conditional
distribution do not depend on x. On the other hand, p(x | y) will typically depend in a more
complicated way on y (see also Figure 4). Only for very specific choices of the parameters
of an ANM one obtains a non-identifiable ANM. We have already seen an example of such a
non-identifiable ANM: the linear-Gaussian case (Example 1). A more exotic example with
non-Gaussian distributions is described in Peters et al. (2014, Example 25). Zhang and
Hyvärinen (2009) proved that non-identifiable ANMs necessarily fall into one out of five
classes. In particular, their result implies something that we might expect intuitively: if f
is not injective,10 the ANM is identifiable.

Mooij et al. (2011) showed that bivariate identifiability even holds generically when
feedback is allowed (i.e., if both X → Y and Y → X), at least when assuming noise
and input distributions to be Gaussian. Peters et al. (2011) provide an extension of the
acyclic model for discrete variables. Zhang and Hyvärinen (2009) give an extension of the
identifiability results allowing for an additional bijective11 transformation of the data, i.e.,
using a functional model of the form Y = φ

(
fY (X) + EY

)
, with EY ⊥⊥ X, and φ : R → R

10. A mapping is said to be injective if it does not map distinct elements of its domain to the same element
of its codomain.

11. A mapping is said to be surjective if every element in its codomain is mapped to by at least one element
of its domain. It is called bijective if it is surjective and injective.
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Figure 4: Identifiable ANM with Y = tanh(X)+E, where X ∼ N (0, 1) and E ∼ N (0, 0.52).
Shown are contours of the joint and conditional distributions, and a scatter plot of data
sampled from the model distribution. Note that the contour lines of p(y |x) only shift as x
changes. On the other hand, p(x | y) differs by more than just its mean for different values
of y.

bijective, which they call the Post-NonLinear (PNL) model. The results on identifiability
of Additive Noise Models can be extended to the multivariate case if there are no hidden
variables and no feedback loops (Peters et al., 2014). This extension can be applied to
nonlinear ANMs (Hoyer et al., 2009; Bühlmann et al., 2014), linear non-Gaussian models
(Shimizu et al., 2011), the model of equal error variances (Peters and Bühlmann, 2014) or
to the case of discrete variables (Peters et al., 2011). Full identifiability in the presence
of hidden variables for the acyclic case has only been established for linear non-Gaussian
models (Hoyer et al., 2008).

2.1.3 Additive Noise Principle

Following Hoyer et al. (2009), we hypothesize that:

Principle 1 Suppose we are given a joint density p(x, y) and we know that the causal
structure is either that of (a) or (b) in Figure 2. If p(x, y) satisfies an identifiable Additive
Noise Model X → Y , then it is likely that we are in case (a), i.e., X causes Y .

This principle should not be regarded as a rigorous statement, but rather as an empirical
assumption: we cannot exactly quantify how likely the conclusion that X causes Y is, as
there is always a possibility that Y causes X while pX,Y happens to satisfy an identifiable

12
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Additive Noise Model X → Y . In general, that would require a special choice of the
distribution of X and the conditional distribution of Y given X, which is unlikely. In this
sense, we can regard this principle as a special case of Occam’s Razor.

In the next subsection, we will discuss various ways of operationalizing this principle.
In Section 4, we provide empirical evidence supporting this principle.

2.2 Estimation Methods

The following Lemma is helpful to test whether a density satisfies a bivariate Additive Noise
Model:

Lemma 7 Given a joint density p(x, y) of two random variables X,Y such that the con-
ditional expectation E(Y |X = x) is well-defined for all x and measurable. Then, p(x, y)
satisfies a bivariate Additive Noise Model X → Y if and only if EY := Y − E(Y |X) has
finite mean and is independent of X.

Proof Suppose that p(x, y) is induced by (pX , pU , f), say Y = f(X) + U with X ⊥⊥ U ,
X ∼ pX , U ∼ pU . Then E(Y |X = x) = f(x) + ν, with ν = E(U). Therefore, EY =
Y −E(Y |X) = Y −(f(X)+ν) = U−ν is independent of X. Conversely, if EY is independent
of X, p(x, y) is induced by the bivariate Additive Noise Model (pX , pEY , x 7→ E(Y |X = x)).

In practice, we usually do not have the density p(x, y), but rather a finite sample of it. In
that case, we can use the same idea for testing whether this sample comes from a density
that satisfies an Additive Noise Model: we estimate the conditional expectation E(Y |X)
by regression, and then test the independence of the residuals Y − E(Y |X) and X.

Suppose we have two data sets, a training data set DN := {(xn, yn)}Nn=1 (for estimat-
ing the function) and a test data set D′N := {(x′n, y′n)}Nn=1 (for testing independence of
residuals), both consisting of i.i.d. samples distributed according to p(x, y). We will write
x = (x1, . . . , xN ), y = (y1, . . . , yN ), x′ = (x′1, . . . , x

′
N ) and y′ = (y′1, . . . , y

′
N ). We will

consider two scenarios: the “data splitting” scenario where training and test set are inde-
pendent (typically achieved by splitting a bigger data set into two parts), and the “data
recycling” scenario in which the training and test data are identical (where we use the same
data twice for different purposes: regression and independence testing).12

Hoyer et al. (2009) suggested the following procedure to test whether the data come from
a density that satisfies an Additive Noise Model.13 By regressing Y on X using the training
data DN , an estimate f̂Y for the regression function x 7→ E(Y |X = x) is obtained. Then,
an independence test is used to estimate whether the predicted residuals are independent of
the input, i.e., whether (Y − f̂Y (X)) ⊥⊥ X, using test data (x′,y′). If the null hypothesis of
independence is not rejected, one concludes that p(x, y) satisfies an Additive Noise Model
X → Y . The regression procedure and the independence test can be freely chosen.

There is a caveat, however: under the null hypothesis that p(x, y) indeed satisfies an
ANM, the error in the estimated residuals may introduce a dependence between the pre-
dicted residuals ê′Y := y′ − f̂Y (x′) and x′ even if the true residuals y′ − E(Y |X = x′) are

12. Kpotufe et al. (2014) refer to these scenarios as “decoupled estimation” and “coupled estimation”,
respectively.

13. They only considered the data recycling scenario, but the same idea can be applied to the data splitting
scenario.

13



Mooij, Peters, Janzing, Zscheischler and Schölkopf

independent of x′. Therefore, the threshold for the independence test statistic has to be
chosen with care: the standard threshold that would ensure consistency of the independence
test on its own may be too tight. As far as we know, there are no theoretical results on the
choice of that threshold that would lead to a consistent way to test whether p(x, y) satisfies
an ANM X → Y .

We circumvent this problem by assuming a priori that p(x, y) either satisfies an ANM
X → Y , or an ANM Y → X, but not both. In that sense, the test statistics of the
independence test can be directly compared, and no threshold needs to be chosen. This
leads us to Algorithm 1 as a general scheme for identifying the direction of the ANM. In order
to decide whether p(x, y) satisfies an Additive Noise Model X → Y , or an Additive Noise
Model Y → X, we simply estimate the regression functions in both directions, calculate the
corresponding residuals, estimate the dependence of the residuals with respect to the input
by some dependence measure Ĉ, and output the direction that has the lowest dependence.

In principle, any consistent regression method can be used in Algorithm 1. Likewise,
in principle any consistent measure of dependence can be used in Algorithm 1 as score
function. In the next subsections, we will consider in more detail some possible choices for
the score function. Originally, Hoyer et al. (2009) proposed to use the p-value of the Hilbert
Schmidt Independence Criterion (HSIC), a kernel-based non-parametric independence test.
Alternatively, one can also use the HSIC statistic itself as a score, and we will show that
this leads to a consistent procedure. Other dependence measures could be used instead,
e.g., the measure proposed by Reshef et al. (2011). Kpotufe et al. (2014); Nowzohour and
Bühlmann (2015) proposed to use as a score the sum of the estimated differential entropies
of inputs and residuals and proved consistency of that procedure. For the Gaussian case,
that is equivalent to the score considered in a high-dimensional context that was shown to
be consistent by Bühlmann et al. (2014). This Gaussian score is also strongly related to an
empirical-Bayes score originally proposed by Friedman and Nachman (2000). Finally, we
will briefly discuss a Minimum Message Length score that was considered by Mooij et al.
(2010) and another idea (based on minimizing a dependence measure directly) proposed by
Mooij et al. (2009).

2.2.1 HSIC-based Scores

One possibility, first considered by Hoyer et al. (2009), is to use the Hilbert-Schmidt In-
dependence Criterion (HSIC) (Gretton et al., 2005) for testing the independence of the
estimated residuals with the inputs. See Appendix A.1 for a definition and basic properties
of the HSIC independence test.

As proposed by Hoyer et al. (2009), one can use the p-value of the HSIC statistic under
the null hypothesis of independence. This amounts to the following score function for
measuring dependence:

Ĉ(u,v) := − log p̂HSICκˆ̀(u)
,κˆ̀(v)

(u,v). (4)

Here, κ` is a kernel with parameters `, that are estimated from the data. u and v are either
inputs or estimated residuals (see also Algorithm 1). A low HSIC p-value indicates that we
should reject the null hypothesis of independence. Another possibility is to use the HSIC
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Algorithm 1 General procedure to decide whether p(x, y) satisfies an Additive Noise Model
X → Y or Y → X.
Input:

1. I.i.d. sample DN := {(xi, yi)}Ni=1 of X and Y (“training data”);

2. I.i.d. sample D′N := {(x′i, y′i)}Ni=1 of X and Y (“test data”);

3. Regression method;

4. Score estimator Ĉ : RN × RN → R.

Output: ĈX→Y , ĈY→X , dir.

1. Use the regression method to obtain estimates:

(a) f̂Y of the regression function x 7→ E(Y |X = x),

(b) f̂X of the regression function y 7→ E(X |Y = y)

using the training data DN ;

2. Use the estimated regression functions to predict residuals:

(a) ê′Y := y′ − f̂Y (x′)

(b) ê′X := x′ − f̂X(y′)

from the test data D′N .

3. Calculate the scores to measure dependence of inputs and estimated residuals on the
test data D′N :

(a) ĈX→Y := Ĉ(x′, ê′Y );

(b) ĈY→X := Ĉ(y′, ê′X);

4. Output ĈX→Y , ĈY→X and

dir :=


X → Y if ĈX→Y < ĈY→X ,

Y → X if ĈX→Y > ĈY→X ,

? if ĈX→Y = ĈY→X .

value itself (instead of its p-value):

Ĉ(u,v) := ĤSICκˆ̀(u), κˆ̀(v)(u,v). (5)

An even simpler option is to use a fixed kernel k:

Ĉ(u,v) := ĤSICk,k(u,v). (6)
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In Appendix A, we prove that under certain technical assumptions, Algorithm 1 with score
function (6) is a consistent procedure for inferring the direction of the ANM. In particular,
the product kernel k · k should be characteristic in order for HSIC to detect all possible
independences, and the regression method should satisfy the following condition:

Definition 8 Let X,Y be two real-valued random variables with joint distribution PX,Y .
Suppose we are given sequences of training data sets DN = {X1, X2, . . . , XN} and test data
sets D′N = {X ′1, X ′2, . . . , X ′N} (in either the data splitting or the data recycling scenario). We
call a regression method suitable for regressing Y on X if the mean squared error between
true and estimated regression function, evaluated on the test data, vanishes asymptotically
in expectation, i.e.,

lim
N→∞

EDN ,D′N

(
1

N

N∑
n=1

∣∣∣f̂Y (X ′n;DN )− E(Y |X = X ′n)
∣∣∣2) = 0. (7)

Here, the expectation is taken over both training data DN and test data D′N .

The consistency result then reads as follows:

Theorem 9 Let X,Y be two real-valued random variables with joint distribution PX,Y that
either satisfies an Additive Noise Model X → Y , or Y → X, but not both. Suppose we are
given sequences of training data sets DN and test data sets D′N (in either the data splitting
or the data recycling scenario). Let k : R × R → R be a bounded non-negative Lipschitz-
continuous kernel such that the product k · k is characteristic. If the regression procedure
used in Algorithm 1 is suitable for both PX,Y and PY,X , then Algorithm 1 with score (6) is
a consistent procedure for estimating the direction of the Additive Noise Model.

Proof See Appendix A (where a slightly more general result is shown, allowing for two
different kernels k, l to be used). The main technical difficulty consists of the fact that the
error in the estimated regression function introduces a dependency between the cause and
the estimated residuals. We overcome this difficulty by showing that the dependence is so
weak that its influence on the test statistic vanishes asymptotically.

In the data splitting case, weakly universally consistent regression methods (Györfi et al.,
2002) are suitable. In the data recycling scenario, any regression method that satisfies (7) is
suitable. An example of a kernel k that satisfies the conditions of Theorem 9 is the Gaussian
kernel.

2.2.2 Entropy-based Scores

Instead of explicitly testing for independence of residuals and inputs, one can use the sum
of their differential entropies as a score function (e.g., Kpotufe et al., 2014; Nowzohour and
Bühlmann, 2015). This can easily be seen using Lemma 1 of Kpotufe et al. (2014), which
we reproduce here because it is very instructive:

Lemma 10 Consider a joint distribution of X,Y with density p(x, y). For arbitrary func-
tions f, g : R→ R we have:

H(X) +H
(
Y − f(X)

)
= H(Y ) +H

(
X − g(Y )

)
− I
(
X − g(Y ), Y

)
+ I
(
Y − f(X), X

)
,
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where H(·) denotes differential Shannon entropy, and I(·, ·) denotes differential mutual
information (Cover and Thomas, 2006).

The proof is a simple application of the chain rule of differential entropy. If p(x, y) satisfies
an identifiable Additive Noise Model X → Y , then there exists a function f with I(Y −
f(X), X) = 0 (e.g., the regression function x 7→ E(Y |X = x)), but I(X − g(Y ), Y ) > 0 for
any function g. Therefore, one can use Algorithm 1 with score function

Ĉ(u,v) := Ĥ(u) + Ĥ(v) (8)

in order to estimate the causal direction, using any estimator Ĥ(·) of the differential Shannon
entropy. Kpotufe et al. (2014); Nowzohour and Bühlmann (2015) prove that this approach
to estimating the direction of Additive Noise Models is consistent under certain technical
assumptions.

Kpotufe et al. (2014) note that the advantage of score (8) (based on marginal entropies)
over score (5) (based on dependence) is that marginal entropies are cheaper to estimate
than dependence (or mutual information). This is certainly true when considering compu-
tation time. However, as we will see later, a disadvantage of relying on differential entropy
estimators is that these can be quite sensitive to discretization effects.

2.2.3 Gaussian Score

The differential entropy of a random variable X can be upper bounded in terms of its
variance (see e.g., Cover and Thomas, 2006, Theorem 8.6.6):

H(X) ≤ 1

2
log(2πe) +

1

2
logVar(X), (9)

where identity holds in case X has a Gaussian distribution. Assuming that p(x, y) satisfies
an identifiable Gaussian Additive Noise Model X → Y with Gaussian input and Gaussian
noise distributions, we therefore conclude from Lemma 10 that

logVar(X) + logVar(Y − f̂(X)) = 2H(X) + 2H(Y − f̂(X))− 2 log(2πe)

< 2H(Y ) + 2H(X − ĝ(Y ))− 2 log(2πe)

≤ logVarY + logVar(X − ĝ(Y ))

for any function g. In that case, we can therefore use Algorithm 1 with score function

Ĉ(u,v) := log V̂ar(u) + log V̂ar(v). (10)

This score was also considered recently by Bühlmann et al. (2014) and shown to lead to a
consistent estimation procedure under certain assumptions.

2.2.4 Empirical-Bayes Scores

Deciding the direction of the ANM can also be done by applying model selection using
empirical Bayes. As an example, for the ANM X → Y , one can consider a generative
model that models X as a Gaussian, and Y as a Gaussian Process (Rasmussen and Williams,
2006) conditional on X. For the ANM Y → X, one considers a similar model with the roles
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Algorithm 2 Procedure to decide whether p(x, y) satisfies an Additive Noise Model X → Y
or Y → X suitable for empirical-Bayes or MML model selection.

Input:

1. I.i.d. sample DN := {(xi, yi)}Ni=1 of X and Y (“data”);

2. Score function Ĉ : RN × RN → R for measuring model fit and model complexity.

Output: ĈX→Y , ĈY→X , dir.

1. (a) calculate ĈX→Y = Ĉ(x,y)

(b) calculate ĈY→X = Ĉ(y,x)

2. Output ĈX→Y , ĈY→X and

dir :=


X → Y if ĈX→Y < ĈY→X ,

Y → X if ĈX→Y > ĈY→X ,

? if ĈX→Y = ĈY→X .

of X and Y reversed. Empirical-Bayes model selection is performed by calculating the
maximum evidences (marginal likelihoods) of these two models when optimizing over the
hyperparameters, and preferring the model with larger maximum evidence. This is actually
a special case (the bivariate case) of an approach proposed by Friedman and Nachman
(2000).14 Considering the negative log marginal likelihoods leads to the following score for
the ANM X → Y :

ĈX→Y (x,y) := min
µ,τ2,θ,σ2

(
− logN (x |µ1, τ2I)− logN (y |0,Kθ(x) + σ2I)

)
, (11)

and a similar expression for ĈY→X , the score of the ANM Y → X. Here, Kθ(x) is the
N×N kernel matrix Kij = kθ(xi, xj) for a kernel with parameters θ and N (· |µ,Σ) denotes
the density of a multivariate normal distribution with mean µ and covariance matrix Σ.
If one would put a prior distribution on the hyperparameters and integrate them out, this
would correspond to Bayesian model selection. In practice, one typically uses “empirical
Bayes”, which means that the hyperparameters (µ, τ,θ, σ) are optimized over instead for
computational reasons. Note that this method skips the explicit regression step, instead
it (implicitly) integrates over all possible regression functions (Rasmussen and Williams,
2006). Also, it does not distinguish the data splitting and data recycling scenarios, instead
it uses the data directly to calculate the (maximum) marginal likelihood. Therefore, the
structure of the algorithm is slightly different, see Algorithm 2. In Appendix B we show
that this score is actually closely related to the Gaussian score considered in Section 2.2.3.

14. Friedman and Nachman (2000) even hint at using this method for inferring causal relationships, although
it seems that they only thought of cases where the functional dependence of the effect on the cause was
not injective.
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2.2.5 Minimum Message Length Scores

In a similar vein as (empirical) Bayesian marginal likelihoods can be interpreted as measur-
ing likelihood in combination with a complexity penalty, Minimum Message Length (MML)
techniques can be used to construct scores that incorporate a trade-off between model fit
(likelihood) and model complexity (Grünwald, 2007). Asymptotically, as the number of
data points tends to infinity, one would expect the model fit to outweigh the model com-
plexity, and therefore by Lemma 10, simple comparison of MML scores should be enough
to identify the direction of an identifiable Additive Noise Model.

A particular MML score was considered by Mooij et al. (2010). This is a special case
(referred to in Mooij et al. (2010) as “AN-MML”) of their more general framework that
allows for non-additive noise. Like (11), the score is a sum of two terms, one corresponding
to the marginal density p(x) and the other to the conditional density p(y |x):

ĈX→Y (x,y) := L(x) + min
θ,σ2

(
− logN (y | 0,Kθ(x) + σ2I)

)
. (12)

The second term is an MML score for the conditional density p(y |x), and is identical to
the conditional density term in (11). The MML score L(x) for the marginal density p(x) is
derived as an asymptotic expansion based on the Minimum Message Length principle for a
mixture-of-Gaussians model (Figueiredo and Jain, 2002):

L(x) = min
η

 k∑
j=1

log

(
Nαj
12

)
+
k

2
log

N

12
+

3k

2
− log p(x |η)

 , (13)

where p(x |η) is a Gaussian mixture model: p(xi |η) =
∑k

j=1 αjN (xi |µj , σ2j ) with η =

(αi, µi, σ
2
i )
k
i=1. The optimization problem (13) is solved numerically by means of the algo-

rithm proposed by Figueiredo and Jain (2002), using a small but nonzero value (10−4) of
the regularization parameter.

Comparing this score with the empirical-Bayes score (11), the main conceptual difference
is that the former uses a more complicated mixture-of-Gaussians model for the marginal
density, whereas (11) uses a simple Gaussian model. We can use (12) in combination with
Algorithm 2 in order to estimate the direction of an identifiable Additive Noise Model.

2.2.6 Minimizing HSIC Directly

One can try to apply the idea of combining regression and independence testing into a single
procedure (as achieved with the empirical-Bayes score described in Section 2.2.4, for exam-
ple) more generally. Indeed, a score that measures the dependence between the residuals
y′ − fY (x′) and the inputs x′ can be minimized with respect to the function fY . Mooij

et al. (2009) proposed to minimize ĤSIC
(
x,y− f(x)

)
with respect to the function f . How-

ever, the optimization problem with respect to f turns out to be a challenging non-convex
optimization problem with multiple local minima, and there are no guarantees to find the
global minimum. In addition, the performance depends strongly on the selection of suitable
kernel bandwidths, for which no suitable automatic procedure is known in this context.
Finally, proving consistency of such a method might be challenging, as the minimization
may introduce strong dependences between the residuals. Therefore, we do not discuss or
evaluate this method in more detail here.
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3. Information-Geometric Causal Inference

In this section, we review a class of causal discovery methods that exploits independence of
the distribution of the cause and the conditional distribution of the effect given the cause.
It nicely complements causal inference based on additive noise by employing asymmetries
between cause and effect that have nothing to do with noise.

3.1 Theory

Information-Geometric Causal Inference (IGCI) is an approach that builds upon the as-
sumption that for X → Y the marginal distribution PX contains no information about the
conditional15 PY |X and vice versa, since they represent independent mechanisms. As Janz-
ing and Schölkopf (2010) illustrated for several toy examples, the conditional and marginal
distributions PY ,PX |Y may then contain information about each other, but it is hard to
formalize in what sense this is the case for scenarios that go beyond simple toy models. IGCI
is based on the strong assumption that X and Y are deterministically related by a bijective
function f , that is, Y = f(X) and X = f−1(Y ). Although its practical applicability is lim-
ited to causal relations with sufficiently small noise and sufficiently high non-linearity, IGCI
provides a setting in which the independence of PX and PY |X provably implies well-defined
dependences between PY and PX |Y in a sense described below.

To introduce IGCI, note that the deterministic relation Y = f(X) implies that the
conditional PY |X has no density p(y |x), but it can be represented using f via

P(Y = y |X = x) =

{
1 if y = f(x)
0 otherwise.

The fact that PX and PY |X contain no information about each other then translates into
the statement that PX and f contain no information about each other.

Before sketching a more general formulation of IGCI (Daniušis et al., 2010; Janzing
et al., 2012), we begin with the most intuitive case where f is a strictly monotonically
increasing differentiable bijection of [0, 1]. We then assume that the following equality is
approximately satisfied: ∫ 1

0
log f ′(x)p(x) dx =

∫ 1

0
log f ′(x) dx, (14)

where f ′ is the derivative of f . To see why (14) is an independence between function f and
input density pX , we interpret x 7→ log f ′(x) and x 7→ p(x) as random variables16 on the
probability space [0, 1]. Then the difference between the two sides of (14) is the covariance
of these two random variables with respect to the uniform distribution on [0, 1]:

Cov(log f ′, pX) = E(log f ′ · pX)− E(log f ′)E(pX)

=

∫
log f ′(x) · p(x)dx−

∫
log f ′(x)dx

∫
p(x)dx .

15. Note that PY |X represents the whole family of distributions x 7→ PY |X=x.
16. Note that random variables are formally defined as maps from a probability space to the real numbers.
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Figure 5: Illustration of the basic intuition behind IGCI. If the density pX of the cause X
is not correlated with the slope of f , then the density pY tends to be high in regions where
f is flat (and f−1 is steep). Source: Janzing et al. (2012).

As shown in Section 2 in Daniušis et al. (2010), pY is then related to the inverse function
f−1 in the sense that ∫ 1

0
log(f−1)′(y) · p(y) dy ≥

∫ 1

0
log(f−1)′(y) dy ,

with equality if and only if f ′ is constant. Hence, log(f−1)′ and pY are positively correlated
due to

E
(

log(f−1)′ · pY
)
− E

(
log(f−1)′

)
E(pY ) > 0 .

Intuitively, this is because the density pY tends to be high in regions where f is flat, or
equivalently, f−1 is steep (see also Figure 5). Hence, we have shown that PY contains
information about f−1 and hence about PX |Y whenever PX does not contain information
about PY |X (in the sense that (14) is satisfied), except for the trivial case where f is linear.

To employ this asymmetry, Daniušis et al. (2010) introduce the expressions

CX→Y :=

∫ 1

0
log f ′(x)p(x)dx (15)

CY→X :=

∫ 1

0
log(f−1)′(y)p(y)dy = −CX→Y . (16)

Since the right hand side of (14) is smaller than zero due to
∫ 1
0 log f ′(x)dx ≤ log

∫ 1
0 f
′(x)dx =

0 by concavity of the logarithm (exactly zero only for constant f), IGCI infers X → Y
whenever CX→Y is negative. Section 3.5 in Daniušis et al. (2010) also shows that

CX→Y = H(Y )−H(X) ,

i.e., the decision rule considers the variable with lower differential entropy as the effect.
The idea is that the function introduces new irregularities to a distribution rather than
smoothing the irregularities of the distribution of the cause.
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Generalization to other reference measures: In the above version of IGCI the uniform dis-
tribution on [0, 1] plays a special role because it is the distribution with respect to which
uncorrelatedness between pX and log f ′ is defined. The idea can be generalized to other
reference distributions. How to choose the right one for a particular inference problem is
a difficult question which goes beyond the scope of this article. From a high-level perspec-
tive, it is comparable to the question of choosing the right kernel for kernel-based machine
learning algorithms; it also is an a priori structure of the range of X and Y without which
the inference problem is not well-defined.

Let uX and uY be densities of X and Y , respectively, that we call “reference densities”.
For example, uniform or Gaussian distributions would be reasonable choices. Let uf be the
image of uX under f and uf−1 be the image of uY under f−1. Then we hypothesize the
following generalization of (14):

Principle 2 If X causes Y via a deterministic bijective function f such that uf−1 has a
density with respect to Lebesgue measure, then∫

log
uf−1(x)

uX(x)
p(x) dx ≈

∫
log

uf−1(x)

uX(x)
uX(x) dx . (17)

In analogy to the remarks above, this can also be interpreted as uncorrelatedness of the
functions log(uf−1/uX) and pX/uX with respect to the measure given by the density of
uX with respect to the Lebesgue measure. Again, we hypothesize this because the former
expression is a property of the function f alone (and the reference densities) and should
thus be unrelated to the marginal density pX . The special case (14) can be obtained by
taking the uniform distribution on [0, 1] for uX and uY .

As generalization of (15,16) we define:17

CX→Y :=

∫
log

uf−1(x)

uX(x)
p(x)dx

CY→X :=

∫
log

uf (y)

uY (y)
p(y)dy =

∫
log

uX(x)

uf−1(x)
p(x)dx = −CY→X , (18)

where the second equality in (18) follows by substitution of variables. Again, the hy-
pothesized independence implies CX→Y ≤ 0 since the right hand side of (17) coincides
with −D(uX‖uf−1) where D(·‖·) denotes Kullback-Leibler divergence. Hence, we also infer
X → Y whenever CX→Y < 0. Note also that

CX→Y = D(pX‖uX)−D(pX‖uf−1) = D(pX‖uX)−D(pY ‖uY ) ,

where we have only used the fact that relative entropy is preserved under bijections. Hence,
our decision rule amounts to inferring that the density of the cause is closer to its reference
density. This decision rule gets quite simple, for instance, if uX and uY are Gaussians with
the same mean and variance as pX and pY , respectively. Then it again amounts to inferring
X → Y whenever X has larger entropy than Y after rescaling both X and Y to have the
same variance.

17. Note that the formulation in Section 2.3 in Daniušis et al. (2010) is more general because it uses manifolds
of reference densities instead of a single density.
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3.2 Estimation Methods

The specification of the reference measure is essential for IGCI. We describe the implemen-
tation for two different choices:

1. Uniform distribution: scale and shift X and Y such that extrema are mapped onto 0
and 1.

2. Gaussian distribution: scale X and Y to variance 1.

Given this preprocessing step, there are different options for estimating CX→Y and CY→X
from empirical data (see Section 3.5 in Daniušis et al., 2010):

1. Slope-based estimator:

ĈX→Y :=
1

N − 1

N−1∑
j=1

log
|yj+1 − yj |
xj+1 − xj

, (19)

where we assumed the pairs {(xi, yi)} to be ordered ascendingly according to xi. Since
empirical data are noisy, the y-values need not be in the same order. ĈY→X is given
by exchanging the roles of X and Y .

2. Entropy-based estimator:

ĈX→Y := Ĥ(Y )− Ĥ(X) , (20)

where Ĥ(·) denotes some differential entropy estimator.

The theoretical equivalence between these estimators breaks down on empirical data not
only due to finite sample effects but also because of noise. For the slope based estimator,
we even have

ĈX→Y 6= −ĈY→X ,

and thus need to compute both terms separately.

Note that the IGCI implementations discussed here make sense only for continuous
variables with a density with respect to Lebesgue measure. This is because the difference
quotients are undefined if a value occurs twice. In many empirical data sets, however,
the discretization (e.g., due to rounding to some number of digits) is not fine enough to
guarantee this. A very preliminary heuristic that was employed in earlier work (Daniušis
et al., 2010) removes repeated occurrences by removing data points, but a conceptually
cleaner solution would be, for instance, the following procedure: Let x̃j with 1 ≤ j ≤ Ñ be
the ordered values after removing repetitions and let ỹj denote the corresponding y-values.
Then we replace (19) with

ĈX→Y :=
1∑Ñ−1

j=1 nj

Ñ−1∑
j=1

nj log
|ỹj+1 − ỹj |
x̃j+1 − x̃j

, (21)

where nj denotes the number of occurrences of x̃j in the original data set. Here we have
ignored the problem of repetitions of y-values since they are less likely, because they are not
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Algorithm 3 General procedure to decide whether PX,Y is generated by a deterministic
monotonic bijective function from X to Y or from Y to X.

Input:

1. I.i.d. sample DN := {(xi, yi)}Ni=1 of X and Y (“data”);

2. Normalization procedure ν : RN → RN ;

3. IGCI score estimator Ĉ : RN × RN → R.

Output: ĈX→Y , ĈY→X , dir.

1. Normalization:

(a) calculate x̃ = ν(x)

(b) calculate ỹ = ν(y)

2. Estimation of scores:

(a) calculate ĈX→Y = Ĉ(x̃, ỹ)

(b) calculate ĈY→X = Ĉ(ỹ, x̃)

3. Output ĈX→Y , ĈY→X and

dir :=


X → Y if ĈX→Y < ĈY→X ,

Y → X if ĈX→Y > ĈY→X ,

? if ĈX→Y = ĈY→X .

ordered if the relation between X and Y is noisy (and for bijective deterministic relations,
they only occur together with repetitions of x anyway).

Finally, let us mention one simple case where IGCI with estimator (19) provably works
asymptotically, even though its assumptions are violated. This happens if the effect is a non-
injective function of the cause. More precisely, assume Y = f(X) where f : [0, 1] → [0, 1]
is continuously differentiable and non-injective, and moreover, that pX is strictly positive
and bounded away from zero. To argue that ĈY→X > ĈX→Y asymptotically for N → ∞
we first observe that the mean value theorem implies

|f(x2)− f(x1)|
|x2 − x1|

≤ max
x∈[0,1]

|f ′(x)| =: smax (22)

for any pair x1, x2. Thus, for any sample size N we have ĈX→Y ≤ log smax. On the
other hand, ĈY→X → ∞ for N → ∞. To see this, note that all terms in the sum (19)
are bounded from below by − log smax due to (22), while there is no upper bound for the
summands because adjacent y-values may be from different branches of the non-injective
function f and then the corresponding x-values may not be close. Indeed, this will happen
for a constant fraction of adjacent pairs. For those, the gaps between the y-values decrease
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with O(1/N) while the distances of the corresponding x-values remain of O(1). Thus, the
overall sum (19) diverges. It should be emphasized, however, that one can have opposite
effects for any finite N . To see this, consider the function x 7→ 2|x − 1/2| and modify it
locally around x = 1/2 to obtain a continuously differentiable function f . Assume that the
probability density in [1/2, 1] is so low that almost all points are contained in [0, 1/2]. Then,
ĈX→Y ≈ log 2 while ĈY→X ≈ − log 2 and IGCI with estimator (19) decides (incorrectly) on
Y → X. For sufficiently large N , however, a constant (though possibly very small) fraction
of y-values come from different branches of f and thus ĈY→X diverges (while ĈX→Y remains
bounded from above).

4. Experiments

In this section we describe the data that we used for evaluation, implementation details
for various methods, and our evaluation criteria. The results of the empirical study will be
presented in Section 5.

4.1 Implementation Details

The complete source code to reproduce our experiments is available online as open source
under the FreeBSD license, both as an online appendix and on the homepage of the first
author.18 We used MatLab on a Linux platform, and made use of external libraries GPML

v3.5 (2014-12-08) (Rasmussen and Nickisch, 2010) for GP regression and ITE v0.61 (Szabó,
2014) for entropy estimation. For parallelization, we used the convenient command line tool
GNU parallel (Tange, 2011).

4.1.1 Regression

We used standard Gaussian Process (GP) Regression (Rasmussen and Williams, 2006) for
nonparametric regression, using the GPML implementation (Rasmussen and Nickisch, 2010).
We used a squared exponential covariance function, constant mean function, and an additive
Gaussian noise likelihood. We used the FITC approximation (Quiñonero-Candela and Ras-
mussen, 2005) as an approximation for exact GP regression in order to reduce computation
time. We found that 100 FITC points distributed on a linearly spaced grid greatly reduce
computation time without introducing a noticeable approximation error. Therefore, we
used this setting as a default for the GP regression. The computation time of this method
scales as O(Nm2T ), where N is the number of data points, m = 100 is the number of FITC
points, and T is the number of iterations necessary to optimize the marginal likelihood with
respect to the hyperparameters. In practice, this yields considerable speedups compared
with exact GP inference, which scales as O(N3T ).

18. http://www.jorismooij.nl/
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Name Implementation References

1sp based on (23) (Kraskov et al., 2004)
3NN ITE: Shannon kNN k (Kozachenko and Leonenko, 1987)
sp1 ITE: Shannon spacing V (Vasicek, 1976)
sp2 ITE: Shannon spacing Vb (Van Es, 1992)
sp3 ITE: Shannon spacing Vpconst (Ebrahimi et al., 1994)
sp4 ITE: Shannon spacing Vplin (Ebrahimi et al., 1994)
sp5 ITE: Shannon spacing Vplin2 (Ebrahimi et al., 1994)
sp6 ITE: Shannon spacing VKDE (Noughabi and Noughabi, 2013)
KDP ITE: Shannon KDP (Stowell and Plumbley, 2009)
PSD ITE: Shannon PSD SzegoT (Ramirez et al., 2009; Gray, 2006)

(Grenander and Szego, 1958)
EdE ITE: Shannon Edgeworth (van Hulle, 2005)

Gau based on (9)
ME1 ITE: Shannon MaxEnt1 (Hyvärinen, 1997)
ME2 ITE: Shannon MaxEnt2 (Hyvärinen, 1997)

Table 1: Entropy estimation methods. “ITE” refers to the Information Theoretical Esti-
mators Toolbox (Szabó, 2014). The first group of entropy estimators is nonparametric, the
second group makes additional parametric assumptions on the distribution of the data.

4.1.2 Entropy Estimation

We tried many different empirical entropy estimators, see Table 1. The first method, 1sp,
uses a so-called “1-spacing” estimate (see e.g., Kraskov et al., 2004):

Ĥ(x) := ψ(N)− ψ(1) +
1

N − 1

N−1∑
i=1

log |xi+1 − xi| , (23)

where the x-values should be ordered ascendingly, i.e., xi ≤ xi+1, and ψ is the digamma
function (i.e., the logarithmic derivative of the gamma function: ψ(x) = d/dx log Γ(x),
which behaves as log x asymptotically for x → ∞). As this estimator would become −∞
if a value occurs more than once, we first remove duplicate values from the data before
applying (23). There should be better ways of dealing with discretization effects, but we
nevertheless include this particular estimator for comparison, as it was also used in previous
implementations of the entropy-based IGCI method (Daniušis et al., 2010; Janzing et al.,
2012). These estimators can be implemented in O(N lnN) complexity, as they only need
to sort the data and then calculate a sum over data points.

We also made use of various entropy estimators implemented in the Information The-
oretical Estimators (ITE) Toolbox (Szabó, 2014). The method 3NN is based on k-nearest
neighbors with k = 3, all sp* methods use Vasicek’s spacing method with various correc-
tions, KDP uses k-d partitioning, PSD uses the power spectral density representation and
Szego’s theorem, ME1 and ME2 use the maximum entropy distribution method, and EdE uses
the Edgeworth expansion. For more details, see the documentation of the ITE toolbox
(Szabó, 2014).
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4.1.3 Independence Testing: HSIC

As covariance function for HSIC, we use the popular Gaussian kernel:

κ` : (x, x′) 7→ exp

(
−(x− x′)2

`2

)
,

with bandwidths selected by the median heuristic (Schölkopf and Smola, 2002), i.e., we take

ˆ̀(u) := median{‖ui − uj‖ : 1 ≤ i < j ≤ N, ‖ui − uj‖ 6= 0},

and similarly for ˆ̀(v). We also compare with a fixed bandwidth of 0.5. As the product of
two Gaussian kernels is characteristic, HSIC with such kernels will detect any dependence
asymptotically (see also Lemma 12 in Appendix A), at least when the bandwidths are fixed.

The p-value can either be estimated by using permutation, or can be approximated
by a Gamma approximation, as the mean and variance of the HSIC value under the null
hypothesis can also be estimated in closed form (Gretton et al., 2008). In this work, we use
the Gamma approximation for the HSIC p-value.

The computation time of our näıve implementation of HSIC scales as O(N2). Using
incomplete Cholesky decompositions, one can obtain an accurate approximation in only
O(N) (Jegelka and Gretton, 2007). However, the näıve implementation was fast enough for
our purpose.

4.2 Data Sets

We will use both real-world and simulated data in order to evaluate the methods. Here we
give short descriptions and refer the reader to Appendix C and Appendix D for details.

4.2.1 Real-world Benchmark Data

The CauseEffectPairs (CEP) benchmark data set that we propose in this work consists
of different “cause-effect pairs”, each one consisting of samples of a pair of statistically
dependent random variables, where one variable is known to cause the other one. It is an
extension of the collection of the eight data sets that formed the “CauseEffectPairs” task in
the Causality Challenge #2: Pot-Luck competition (Mooij and Janzing, 2010) which was
performed as part of the NIPS 2008 Workshop on Causality (Guyon et al., 2010). Version
1.0 of the CauseEffectPairs collection that we present here consists of 100 pairs, taken
from 37 different data sets from various domains. The CEP data are publicly available at
Mooij et al. (2014). Appendix D contains a detailed description of each cause-effect pair
and a justification of what we believe to be the ground truth causal relations. Scatter plots
of the pairs are shown in Figure 6. In our experiments, we only considered the 95 out of
100 pairs that have one-dimensional variables, i.e., we left out pairs 52–55 and 71.

4.2.2 Simulated Data

As collecting real-world benchmark data is a tedious process (mostly because the ground
truths are unknown, and acquiring the necessary understanding of the data-generating
process in order to decide about the ground truth is not straightforward), we also studied
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Figure 6: Scatter plots of the cause-effect pairs in the CauseEffectPairs benchmark
data. We only show the pairs for which both variables are one-dimensional.

the performance of methods on simulated data where we can control the data-generating
process, and therefore can be certain about the ground truth.

Simulating data can be done in many ways. It is not straightforward to simulate data
in a “realistic” way, e.g., in such a way that scatter plots of simulated data look similar to
those of the real-world data (see Figure 6). For reproducibility, we describe in Appendix C
in detail how the simulations were done. Here, we will just sketch the main ideas.

We sample data from the following structural equation models. If we do not want to
model a confounder, we use:

EX ∼ pEX , EY ∼ pEY
X = fX(EX)

Y = fY (X,EY ),

and if we do want to include a confounder Z, we use:

EX ∼ pEX , EY ∼ pEY , EZ ∼ pEZ
Z = fZ(EZ)

X = fX(EX , EZ)

Y = fY (X,EY , EZ).

Here, the noise distributions pEX , pEY , pEZ are randomly generated distributions, and the
causal mechanisms fZ , fX , fY are randomly generated functions. Sampling the random
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distributions for a noise variable EX (and similarly for EY and EZ) is done by mapping a
standard-normal distribution through a random function, which we sample from a Gaussian
Process. The causal mechanism fX (and similarly fY and fZ) is drawn from a Gaussian
Process as well. After sampling the noise distributions and the functional relations, we
generate data for X,Y, Z. Finally, Gaussian measurement noise is added to both X and Y .

By controlling various hyperparameters, we can control certain aspects of the data
generation process. We considered four different scenarios. SIM is the default scenario
without confounders. SIM-c includes a one-dimensional confounder, whose influences on X
and Y are typically equally strong as the influence of X on Y . The setting SIM-ln has low
noise levels, and we would expect IGCI to work well in this scenario. Finally, SIM-G has
approximate Gaussian distributions for the cause X and approximately additive Gaussian
noise (on top of a nonlinear relationship between cause and effect); we expect that methods
which make these Gaussianity assumptions will work well in this scenario. Scatter plots of
the simulated data are shown in Figures 7–10.

4.3 Preprocessing and Perturbations

The following preprocessing was applied to each pair (X,Y ). Both variables X and Y
were standardized (i.e., an affine transformation is applied on both variables such that their
empirical mean becomes 0, and their empirical standard deviation becomes 1). In order to
study the effect of discretization and other small perturbations of the data, one of these
four perturbations was applied:

unperturbed : No perturbation is applied.

discretized : Discretize the variable that has the most unique values such that after
discretization, it has as many unique values as the other variable. The discretization
procedure repeatedly merges those values for which the sum of the absolute error that
would be caused by the merge is minimized.

undiscretized : “Undiscretize” both variables X and Y . The undiscretization procedure
adds noise to each data point z, drawn uniformly from the interval [0, z′ − z], where
z′ is the smallest value z′ > z that occurs in the data.

small noise : Add tiny independent Gaussian noise to both X and Y (with mean 0 and
standard deviation 10−9).

Ideally, a causal discovery method should be robust against these and other small pertur-
bations of the data.

4.4 Evaluation Measures

We evaluate the performance of the methods in two different ways:

forced-decision : given a sample of a pair (X,Y ) the methods have to decide either
X → Y or Y → X; in this setting we evaluate the accuracy of these decisions;

ranked-decision : we used the scores ĈX→Y and ĈY→X to construct heuristic confidence
estimates that are used to rank the decisions; we then produced receiver-operating
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Figure 7: Scatter plots of the cause-effect pairs in simulation scenario SIM.

Figure 8: Scatter plots of the cause-effect pairs in simulation scenario SIM-c.
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Figure 9: Scatter plots of the cause-effect pairs in simulation scenario SIM-ln.

Figure 10: Scatter plots of the cause-effect pairs in simulation scenario SIM-G.

31



Mooij, Peters, Janzing, Zscheischler and Schölkopf

characteristic (ROC) curves and used the area under the curve (AUC) as performance
measure.

Some methods have an advantage in the second setting, as the scores on which their decisions
are based yield a reasonably accurate ranking of the decisions. By only taking the most
confident (highest ranked) decisions, the accuracy of these decisions increases, and this
leads to a higher AUC than for random confidence estimates. Which of the two evaluation
measures (accuracy or AUC) is the most relevant depends on the application.19

4.4.1 Weights

For the CEP data, we cannot always consider pairs that come from the same data set
as independent. For example, in the case of the Abalone data set (Bache and Lichman,
2013; Nash et al., 1994), the variables “whole weight”, “shucked weight”, “viscera weight”,
“shell weight” are strongly correlated. Considering the four pairs (age, whole weight), (age,
shucked weight), etc., as independent could introduce a bias. We (conservatively) correct
for that bias by downweighting these pairs. In general, we chose the weights such that the
weights of all pairs from the same data set are equal and sum to one. For the real-world
cause-effect pairs, the weights are specified in Table 4. For the simulated pairs, we do not
use weighting.

4.4.2 Forced-decision: Evaluation of Accuracy

In the “forced-decision” setting, we calculate the weighted accuracy of a method in the
following way:

accuracy =

∑M
m=1wmδd̂m,dm∑M

m=1wm
,

where dm is the true causal direction for the m’th pair (either “←” or “→”), d̂m is the
estimated direction (one of “←”, “→”, and “?”), and wm is the weight of the pair. Note
that we are only awarding correct decisions, i.e., if no estimate is given (dm = “?”), this
will negatively affect the accuracy. We calculate confidence intervals assuming a binomial
distribution using the method by Clopper and Pearson (1934).

4.4.3 Ranked-decision: Evaluation of AUC

To construct an ROC curve, we need to rank the decisions based on some heuristic estimate
of confidence. For most methods we simply use

Ŝ := −ĈX→Y + ĈY→X . (24)

19. In earlier work, we have reported accuracy-decision rate curves instead of ROC curves. However, it is
easy to visually overinterpret the significance of such a curve in the low decision-rate region. In addition,
AUC was used as the evaluation measure by Guyon et al. (2016). A slight disadvantage of ROC curves
is that they introduce an asymmetry between “positives” and “negatives”, whereas for our task, there is
no such asymmetry: we can easily transform a positive into a negative and vice versa by swapping the
variables X and Y . Therefore, “accuracy” is a more natural measure than “precision” in our setting.
We mitigate this problem by balancing the class labels by swapping X and Y variables for a subset of
the pairs.
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The interpretation is that the higher Ŝ, the more likely X → Y , and the lower Ŝ, the more
likely Y → X. For ANM-pHSIC, we use a different heuristic:

Ŝ :=


−1

min{ĈX→Y ,ĈY→X}
if ĈX→Y < ĈY→X

1
min{ĈX→Y ,ĈY→X}

if ĈX→Y > ĈY→X ,
(25)

and for ANM-HSIC, we use:

Ŝ :=


−1

1−min{ĈX→Y ,ĈY→X}
if ĈX→Y < ĈY→X

1
1−min{ĈX→Y ,ĈY→X}

if ĈX→Y > ĈY→X .
(26)

In the “ranked-decision” setting, we also use weights to calculate weighted recall (de-
pending on a threshold θ):

recall(θ) =

∑M
m=1wm1Ŝm>θδdm,→∑M

m=1wmδdm,→
,

where Ŝm is the heuristic score of the m’th pair (high values indicating high likelihood that
dm = →, low values indicating high likelihood that dm = ←), and the weighted precision
(also depending on θ):

precision(θ) =

∑M
m=1wm1Ŝm>θδdm,→∑M

m=1wm1Ŝm>θ
.

We use the MatLab routine perfcurve to produce (weighted) ROC curves and to estimate
weighted AUC and confidence intervals for the weighted AUC by bootstrapping.20

5. Results

In this section, we report the results of the experiments that we carried out in order to
evaluate the performance of various methods. We plot the accuracies and AUCs as box plots,
indicating the estimated (weighted) accuracy or AUC, the corresponding 68% confidence
interval, and the 95% confidence interval. If there were pairs for which no decision was
taken because of some failure, the number of nondecisions is indicated on the corresponding
box plot. The methods that we evaluated are listed in Table 2. Computation times are
reported in Appendix E.

5.1 Additive Noise Models

We start by reporting the results for methods that exploit additivity of the noise. Figure 11
shows the performance of all ANM methods on different unperturbed data sets, i.e., the
CEP benchmark and various simulated data sets. Figure 12 shows the performance of the

20. We used the “percentile method” (BootType = ’per’) as the default method (“bias corrected and
accelerated percentile method”) sometimes yielded an estimated AUC that fell outside the estimated
95% confidence interval of the AUC.
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Name Algorithm Score Heuristic Details
ANM-pHSIC 1 (4) (25) DR, adaptive kernel bandwidth
ANM-HSIC 1 (5) (26) DR, adaptive kernel bandwidth
ANM-HSIC-ds 1 (5) (26) DS, adaptive kernel bandwidth
ANM-HSIC-fk 1 (5) (26) DR, fixed kernel bandwidth (0.5)
ANM-HSIC-ds-fk 1 (5) (26) DS, fixed kernel bandwidth (0.5)
ANM-ent-... 1 (8) (24) DR, entropy estimators from Table 1
ANM-Gauss 1 (10) (24) DR
ANM-FN 2 (11) (24)
ANM-MML 2 (12) (24)
IGCI-slope 3 (19) (24)
IGCI-slope++ 3 (21) (24)
IGCI-ent-... 3 (20) (24) Entropy estimators from Table 1

Table 2: The methods that are evaluated in this work. DS = Data Splitting, DR = Data
Recycling.

same methods on different perturbations of the CEP benchmark data. The six variants
sp1,. . . ,sp6 of the spacing estimators perform very similarly, so we show only the results
for ANM-ent-sp1. For the “undiscretized” perturbed version of the CEP benchmark data,
GP regression failed in one case because of a numerical problem, which explains the failures
across all methods in Figure 12 for that case.

5.1.1 HSIC-based Scores

As we see in Figure 11 and Figure 12, the ANM methods that use HSIC perform reasonably
well on all data sets, obtaining accuracies between 63% and 85%. Note that the simulated
data (and also the real-world data) deviate in at least three ways from the assumptions made
by the additive noise method: (i) the noise is not additive, (ii) a confounder can be present,
and (iii) additional measurement noise was added to both cause and effect. Moreover, the
results turn out to be robust against small perturbations of the data. This shows that the
additive noise method can perform reasonably well, even in case of model misspecification.

The results of ANM-pHSIC and ANM-HSIC are very similar. The influence of various
implementation details on performance is small. On the CEP benchmark, data-splitting
(ANM-HSIC-ds) slightly increases accuracy, whereas using a fixed kernel (ANM-HSIC-fk,
ANM-HSIC-ds-fk) slightly lowers AUC. Generally, the differences in performance are small
and not statistically significant. The variant ANM-HSIC-ds-fk is proved to be consistent in
Appendix A. If standard GP regression satisfies the property in (32), then ANM-HSIC-fk is
also consistent.

5.1.2 Entropy-based Scores

For the entropy-based score (8), we see in Figure 11 and Figure 12 that the results depend
strongly on which entropy estimator is used.

All (nonparametric) entropy estimators (1sp, 3NN, spi, KDP, PSD) perform well on sim-
ulated data, with the exception of EdE. On the CEP benchmark on the other hand, the
performance varies greatly over estimators. One of the reasons for this are discretization
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Figure 11: Accuracies (top) and AUCs (bottom) of various ANM methods on different
(unperturbed) data sets. For the variants of the spacing estimator, only the results for sp1
are shown, as results for sp2,. . . ,sp6 were similar.
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Figure 12: Accuracies (top) and AUCs (bottom) of various ANM methods on different
perturbations of the CEP benchmark data. For the variants of the spacing estimator, only
the results for sp1 are shown, as results for sp2,. . . ,sp6 were similar.
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effects. Indeed, the differential entropy of a variable that can take only a finite number
of values is −∞. The way in which differential entropy estimators treat values that occur
multiple times differs, and this can have a large influence on the estimated entropy. For
example, 1sp simply ignores values that occur more than once, which leads to a perfor-
mance that is below chance level on the CEP data. 3NN returns −∞ (for both ĈX→Y and
ĈY→X) in the majority of the pairs in the CEP benchmark and therefore often cannot
decide. The spacing estimators spi also return −∞ in quite a few cases. The only (non-
parametric) entropy-based ANM methods that perform well on both the CEP benchmark
data and the simulated data are ANM-ent-KDP and ANM-ent-PSD. Of these two methods,
ANM-ent-PSD seems more robust under perturbations than ANM-ent-KDP, and can compete
with the HSIC-based methods.

5.1.3 Other Scores

Consider now the results for the parametric entropy estimators (ANM-Gauss, ANM-ent-ME1,
ANM-ent-ME2), the empirical-Bayes method ANM-FN, and the MML method ANM-MML.

First, note that ANM-Gauss and ANM-FN perform very similarly. This means that the
difference between these two scores (i.e., the complexity measure of the regression function,
see also Appendix B) does not outweigh the common part (the likelihood) of these two
scores. Both these scores do not perform much better than chance on the CEP data,
probably because the Gaussianity assumption is typically violated in real data. They do
obtain high accuracies and AUCs for the SIM-ln and SIM-G scenarios. For SIM-G this is to
be expected, as the assumption that the cause has a Gaussian distribution is satisfied in
that scenario. For SIM-ln it is not evident why these scores perform so well—it could be
that the noise is close to additive and Gaussian in that scenario.

The related score ANM-MML, which employs a more sophisticated complexity measure
for the distribution of the cause, performs better on the two simulation settings SIM and
SIM-c. However, ANM-MML performs worse in the SIM-G scenario, which is probably due
to a higher variance of the MML complexity measure compared with the simple Gaussian
entropy measure. This is in line with expectations. However, performance of ANM-MML is
hardly better than chance on the CEP data. In particular, the AUC of ANM-MML is worse
than that of ANM-pHSIC.

The parametric entropy estimators ME1 and ME2 do not perform very well on the SIM

data, although their performance on the other simulated data sets (in particular SIM-G) is
good. The reasons for this behaviour are not understood; we speculate that the parametric
assumptions made by these estimators match the actual distribution of the data in these
particular simulation settings quite well. The accuracy and AUC of ANM-ent-ME1 and
ANM-ent-ME2 on the CEP data are lower than those of ANM-pHSIC.

5.2 Information Geometric Causal Inference

Here we report the results of the evaluation of different IGCI variants. Figure 13 shows
the performance of all the IGCI variants on different (unperturbed) data sets, the CEP
benchmark and four different simulation settings, using the uniform base measure. Figure 14
shows the same for the Gaussian base measure. Figure 15 shows the performance of the IGCI
methods on different perturbations of the CEP benchmark, using the uniform base measure,
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and Figure 16 for the Gaussian base measure. Again, the six variants sp1,. . . ,sp6 of the
spacing estimators perform very similarly, so we show only the results for IGCI-ent-sp1.

Let us first look at the performance on simulated data. Note that none of the IGCI
methods performs well on the simulated data when using the uniform base measure. A very
different picture emerges when using the Gaussian base measure: here the performance
covers a wide spectrum, from lower than chance level on the SIM data to accuracies higher
than 90% on SIM-G. The choice of the base measure clearly has a larger influence on the
performance than the choice of the estimation method.

As IGCI was designed for the bijective deterministic case, one would expect that IGCI
would work best on SIM-ln (without depending too strongly on the reference measure),
because in that scenario the noise is relatively small. Surprisingly, this does not turn out
to be the case. To understand this unexpected behavior, we inspect the scatter plots in
Figure 9 and observe that the functions in SIM-ln are either non-injective or relatively close
to linear. Both can spoil the performance despite having low noise (see also the remarks at
the end of Subsection 3.2 on finite sample effects).

For the more noisy settings, earlier experiments showed that IGCI-slope and IGCI-1sp

can perform surprisingly well on simulated data (Janzing et al., 2012). Here, however, we see
that the performance of all IGCI variants on noisy data depends strongly on characteristics
of the data generation process and on the chosen base measure. IGCI seems to pick up
certain features in the data that turn out to be correlated with the causal direction in some
settings, but can be anticorrelated with the causal direction in other settings. In addition,
our results suggest that if the distribution of the cause is close to the base measure used in
IGCI, then also for noisy data the method may work well (as in the SIM-G setting). However,
for causal relations that are not sufficiently non-linear, performance can drop significantly
(even below chance level) in case of a discrepancy between the actual distribution of the
cause and the base measure assumed by IGCI.

Even though the performance of all IGCI variants with uniform base measure is close to
chance level on the simulated data, most methods perform better than chance on the CEP
data (with the exception of IGCI-ent-sp1 and IGCI-ent-3NN). When using the Gaussian
base measure, performance of IGCI methods on CEP data varies considerably depending
on implementation details. For some IGCI variants the performance on CEP data is robust
to small perturbations (most notably the parametric entropy estimators), but for most
non-parametric entropy estimators and for IGCI-slope, there is a strong dependence and
sometimes even an inversion of the accuracy when perturbing the data slightly. We do not
have a good explanation for these observations.

5.2.1 Original Implementations

Let us now take a closer look at the accuracies of the original methods IGCI-slope and
IGCI-ent-1sp that were proposed by Daniušis et al. (2010); Janzing et al. (2012), and
at the newly introduced IGCI-slope++ that is closely related to IGCI-slope. The IGCI
variants slope, slope++ and ent-1sp perform very similar on all data sets. For both
uniform and Gaussian base measures, the performance is better than chance level on the
CEP benchmark, but not as much as in previous evaluations on earlier versions of the
benchmark. The discrepancy with the accuracies of around 80% reported by Janzing et al.
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Figure 13: Accuracies (top) and AUCs (bottom) for various IGCI methods using the uniform
base measure on different (unperturbed) data sets.
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Figure 14: Accuracies (top) and AUCs (bottom) for various IGCI methods using the Gaus-
sian base measure on different (unperturbed) data sets.
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Figure 15: Accuracies (top) and AUCs (bottom) for various IGCI methods using the uniform
base measure on different perturbations of the CEP benchmark data.
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Figure 16: Accuracies (top) and AUCs (bottom) for various IGCI methods using the Gaus-
sian base measure on different perturbations of the CEP benchmark data.
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(2012) could be explained by the fact that here we evaluate on a larger set of cause-effect
pairs, and we chose the weights more conservatively.

It is also interesting to look at the behavior under perturbations of the CEP data. When
using the uniform base measure, the accuracy of both IGCI-slope and IGCI-ent-1sp drops
back to chance level if small noise is added, whereas AUC even becomes worse than chance
level. For the Gaussian base measure, both accuracy and AUC become worse than random
guessing on certain perturbations of the CEP data, although discretization does not affect
performance. This observation motivated the introduction of the slope-based estimator
IGCI-slope++ that uses (21) instead of (19) in order to deal better with repetitions of
values. However, as we can see, this estimator does not perform better in practice than the
original estimator IGCI-slope.

5.2.2 Nonparametric Entropy Estimators

It is clear that discretization effects play an important role in the performance of the non-
parametric entropy estimators. For example, the closely related estimators 1sp and spi
perform comparably on simulated data, but on the CEP data, the spi estimators perform
worse because of nondecisions due to repeated values. Similarly, the bad performance of
IGCI-ent-3NN on the CEP data is related to discretization effects. This is in line with our
observations on the behavior of these entropy estimators when using them for entropy-based
ANM methods.

Further, note that the performance of IGCI-ent-KDP is qualitatively similar to that of
IGCI-ent-PSD, but in contrast with the PSD estimator, the results of the KDP estimator are
not robust under perturbations when using the uniform base measure. The only nonpara-
metric entropy estimators that give results that are robust to small perturbations of the
data (for both base measures) are PSD and EdE. The performance of IGCI-ent-PSD on the
CEP benchmark depends on the chosen base measure: for the uniform base it is better than
chance level, for the Gaussian base measure it is worse than chance level. Interestingly, the
EdE estimator that performed poorly for ANM gives consistently good results on the CEP
benchmark when used for IGCI: it is the only nonparametric entropy estimator that yields
results that are better than chance for both base measures and irrespective of whether the
data were perturbed or not.

Apparently, implementation details of entropy estimators can result in huge differences
in performance, often in ways that we do not understand well.

5.2.3 Parametric Entropy Estimators

Let us finally consider the performance of entropy-based IGCI methods that use parametric
entropy estimators, which make additional assumptions on the distribution. As expected,
these estimators are robust to small perturbations of the data.

Interestingly, IGCI-ent-Gau with uniform base measure turns out to be one of the best
IGCI methods on the CEP benchmark, in the sense that it obtains good accuracy and AUC
and in addition is robust to perturbations. Note that the performance of IGCI-ent-Gau on
the CEP benchmark is comparable with that of the original implementation IGCI-slope

and the newer version IGCI-slope++, but that only IGCI-ent-Gau is robust to small per-
turbations of the data. This estimator simply estimates entropy by assuming a Gaussian
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Figure 17: ROC curves for two of the best-performing methods (ANM-pHSIC and
IGCI-ent-Gau). Both methods work well on the CEP benchmark and keep performing
well under small perturbations of the data, but only ANM-pHSIC also performs well on the
simulated data.

distribution. In other words, it uses:

ĈX→Y :=
1

2
log V̂ar(ỹ)− 1

2
log V̂ar(x̃) = log


√

V̂ar(y)

max(y)−min(y)

/ √
V̂ar(x)

max(x)−min(x)

 .

Apparently, the ratio of the size of the support of the distribution and its standard devia-
tion is already quite informative on the causal direction for the CEP data. This might
also explain the relatively good performance on this benchmark of IGCI-ent-ME1 and
IGCI-ent-ME2 when using the uniform base measure, as these estimate entropy by fitting
a parametric distribution to the data (which includes Gaussian distributions as a special
case). On the other hand, these methods do not work better than chance on the simulated
data.

Now let us look at the results when using the Gaussian base measure. IGCI-ent-Gau

makes no sense in combination with the Gaussian base measure. IGCI-ent-ME1 and
IGCI-ent-ME2 on the CEP data do not perform better than chance. On simulated data,
they only do (extremely) well for the SIM-G scenario which uses a Gaussian distribution of
the cause measure, i.e., for which the chosen base measure exactly corresponds with the
distribution of the cause.

6. Discussion and Conclusion

In this work, we considered a challenging bivariate causal discovery problem, where the task
is to decide whether X causes Y or vice versa, using only a sample of purely observational
data. We reviewed two families of methods that can be applied to this task: methods based
on Additive Noise Models (ANMs) and Information Geometric Causal Inference (IGCI)
methods. We discussed various possible implementations of these methods and how they
are related.

In addition, we have proposed the CauseEffectPairs benchmark data set consisting
of 100 real-world cause-effect pairs and we provided our justifications for the ground truths.
We have used this benchmark data in combination with several simulated data sets in order
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to evaluate various bivariate causal discovery methods. Our main conclusions (illustrated
in Figure 17) are twofold:

1. The ANM methods that use HSIC perform reasonably well on all data sets (including
the perturbed versions of the CEP benchmark and all simulation settings), obtaining
accuracies between 63% and 85% (see Figures 11 and 12). In particular, the original
ANM-pHSIC method obtains an accuracy of 63 ± 10 % and an AUC of 0.74 ± 0.05 on
the CEP benchmark. The only other ANM method that performs well on all data
sets is ANM-ent-PSD. It obtains a higher accuracy (69 ± 10%) than ANM-pHSIC on
the CEP benchmark, but a lower AUC (0.68 ± 0.06), but these differences are not
statistically significant.

2. The performance of IGCI-based methods varies greatly depending on implementation
details, perturbations of the data and certain characteristics of the data, in ways that
we do not fully understand (see Figures 13, 14, 15, 16). In many cases, causal relations
seem to be too linear for IGCI to work well. None of the IGCI implementations per-
formed well on all data sets that we considered, and the apparent better-than-chance
performance of some of these methods on the CEP benchmark remains somewhat of
a mystery.

The former conclusion about the performance of ANM-pHSIC is in line with earlier reports,
but the latter conclusion is surprising, considering that good performance of IGCI-slope

and IGCI-ent-1sp has been reported on several occasions in earlier work (Daniušis et al.,
2010; Mooij et al., 2010; Janzing et al., 2012; Statnikov et al., 2012; Sgouritsa et al., 2015).
One possible explanation that the performance of IGCI on simulated data here differs from
earlier reports is that earlier simulations used considerably smoother distributions of the
cause variable.

Ironically, the original ANM method ANM-pHSIC proposed by Hoyer et al. (2009) turned
out to be one of the best methods overall, despite the recent research efforts aimed at
developing better methods. This observation motivated the consistency proof of HSIC-
based ANM methods, the major theoretical contribution of this work. We expect that
extending this consistency result to the multivariate case (see also Peters et al., 2014)
should be straightforward.

One reason for the disappointing performance of several methods (in particular, the
slope-based IGCI estimators and methods that make use of certain nonparametric differen-
tial entropy estimators) is discretization. When dealing with real-world data on a computer,
variables of a continuous nature are usually discretized because they have to be represented
as floating point numbers. Often, additional rounding is applied, for example because only
the most significant digits are recorded. We found that for many methods, especially for
those that use differential entropy estimators, (coarse) discretization of the data causes
problems. This suggests that performance of several methods can still be improved, e.g.,
by using entropy estimators that are more robust to such discretization effects. The HSIC
independence measure (and its p-value) and the PSD entropy estimator were found to be
robust against small perturbations of the data, including discretization.

Since we compared many different implementations (which turned out to have quite
different performance characteristics), we need to use a strong correction for multiple testing
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if we would like to conclude that one of these methods performs significantly better than
chance. Although it seems unlikely that the good performance of ANM-pHSIC on both CEP
data and all simulated data is due to chance alone, eventually we are most interested in
the performance on real-world data alone. Unfortunately, the CEP benchmark turned out
to be too small to warrant significant conclusions for any of the tested methods.

A rough estimate how large the CauseEffectPairs benchmark should have been in
order to obtain significant results can easily be made. Using a standard (conservative) Bon-
ferroni correction, taking into account that we compared 37 methods, we would need about
120 (weighted) pairs for an accuracy of 65% to be considered significant (with two-sided
testing and 5% significance threshold). This is about four times as much as the current
number of 37 (weighted) pairs in the CauseEffectPairs benchmark. Therefore, we sug-
gest that at this point, the highest priority regarding future work should be to obtain more
validation data, rather than developing additional methods or optimizing computation time
of existing methods. We hope that our publication of the CauseEffectPairs benchmark
data inspires researchers to collaborate on this important task and we invite everybody to
contribute pairs to the CauseEffectPairs benchmark data.

Concluding, our results provide some evidence that distinguishing cause from effect is
indeed possible from purely observational real-world data by exploiting certain statistical
patterns in the data. However, the performance of current state-of-the-art bivariate causal
discovery methods still has to be improved further in order to enable practical applications,
and more validation data are needed in order to obtain statistically significant conclusions.
Furthermore, it is not clear at this stage under what assumptions current methods could
be extended to deal with possible confounding variables, an important issue in practice.
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Appendix A. Consistency Proof of ANM-HSIC

In this Appendix, we prove the consistency of Algorithm 1 with score (6), which is closely
related to the algorithm originally proposed by Hoyer et al. (2009) that uses score (4). The
main difference is that the original implementation uses the HSIC p-value, whereas here,
we use the HSIC value itself as a score. Also, we consider the option of splitting the data
set into one part for regression and another part for independence testing. Finally, we fix
the HSIC kernel instead of letting its bandwidth be chosen by a heuristic that depends on
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the data. The reason that we make these small modifications is that they lead to an easier
proof of consistency of the method.

We start with recapitulating the definition and basic properties of the Hilbert Schmidt
Independence Criterion (HSIC) in Section A.1. Then, we discuss asymptotic properties of
non-parametric regression methods in Section A.2. Finally, we combine these ingredients
in Section A.3.

A.1 Consistency of HSIC

We recapitulate the definitions and some asymptotic properties of the Hilbert Schmidt
Independence Criterion (HSIC), following mostly the notations and terminology in Gretton
et al. (2005). The HSIC estimator that we use here is the original biased estimator proposed
by Gretton et al. (2005).

Definition 11 Given two random variables X ∈ X and Y ∈ Y with joint distribution PX,Y ,
and bounded kernels k : X 2 → R and l : Y2 → R, we define the population HSIC of X
and Y as

HSICk,l(X,Y ) :=E
(
k(X,X ′)l(Y, Y ′)

)
+ E

(
k(X,X ′)

)
E
(
l(Y, Y ′)

)
− 2E

(
E
(
k(X,X ′) |X

)
E
(
l(Y, Y ′) |Y

))
.

Here, (X,Y ) and (X ′, Y ′) are two independent random variables distributed according to
PX,Y .

When k and l are clear from the context, we will typically suppress the dependence of the
population HSIC on the choice of the kernels k and l, simply writing HSIC(X,Y ) instead.
The justification for the name “independence criterion” stems from the following important
result (Fukumizu et al., 2008, Theorem 3):

Lemma 12 Whenever the product kernel k · l is characteristic (in the sense of Fukumizu
et al. (2008); Sriperumbudur et al. (2010)): HSICk,l(X,Y ) = 0 if and only if X ⊥⊥ Y (i.e.,
X and Y are independent).

A special case of this lemma, assuming that X and Y have compact domain, was proved
originally in Gretton et al. (2005). Recently, Gretton (2015) showed that a similar result
also holds if both kernels k and l are characteristic and satisfy some other conditions as
well. Intuitively, a characteristic kernel leads to an injective embedding of probability
measures into the corresponding Reproducible Kernel Hilbert Space (RKHS). The HSIC
is the squared RKHS distance between the embedded joint distribution and the embedded
product of the marginals. Given that the embedding is injective, this distance is zero if and
only if the variables are independent. Examples of characteristic kernels are Gaussian RBF
kernels and Laplace kernels. For more details on the notion of characteristic kernel (see
Sriperumbudur et al., 2010). We will use the following (biased) estimator of the population
HSIC (Gretton et al., 2005):

Definition 13 Given two N -tuples (with N ≥ 2) x = (x1, . . . , xN ) ∈ XN and y =
(y1, . . . , yN ) ∈ YN , and bounded kernels k : X 2 → R and l : Y2 → R, we define

ĤSICk,l(x,y) := (N − 1)−2tr(KHLH) = (N − 1)−2
N∑

i,j=1

K̄ijLij , (27)
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where Kij = k(xi, xj), Lij = l(yi, yj) are Gram matrices and Hij = δij−N−1 is a centering
matrix, and we write K̄ := HKH for the centered Gram matrix K. Given an i.i.d. sample
DN = {(xn, yn)}Nn=1 from PX,Y , we define the empirical HSIC of X and Y estimated
from DN as

ĤSICk,l(X,Y ;DN ) := ĤSICk,l(x,y).

Again, when k and l are clear from the context, we will typically suppress the dependence
of the empirical HSIC on the choice of the kernels k and l. Unbiased estimators of the
population HSIC were proposed in later work (Song et al., 2012), but we will not consider
those here. A large deviation result for this empirical HSIC estimator is given by Gretton
et al. (2005, Theorem 3):

Lemma 14 Assume that kernels k and l are bounded almost everywhere by 1, and are
non-negative. Suppose that the data set DN consists of N i.i.d. samples from some joint
probability distribution PX,Y . Then, for N ≥ 2 and all δ > 0, with probability at least 1− δ:∣∣∣HSICk,l(X,Y )− ĤSICk,l(X,Y ;DN )

∣∣∣ ≤√ log(6/δ)

α2N
+

c

N
,

where α2 > 0.24 and c are constants.

This directly implies the consistency of the empirical HSIC estimator:21

Corollary 15 Let (X1, Y1), (X2, Y2), . . . be i.i.d. according to PX,Y . Defining the sequence
of data sets DN = {(Xn, Yn)}Nn=1 for N = 2, 3, . . . , we have for non-negative bounded kernels
k, l that, as N →∞:

ĤSICk,l(X,Y ;DN )
P→ HSICk,l(X,Y ).

We do not know of any results for consistency of HSIC when using adaptive kernel pa-
rameters (i.e., when estimating the kernel from the data). This is why we only present a
consistency result for fixed kernels here.

For the special case that Y = R, we will use the following continuity property of the
empirical HSIC estimator. It shows that for a Lipschitz-continuous kernel l, the empirical
HSIC is also Lipschitz-continuous in the corresponding argument, but with a Lipschitz
constant that scales at least as N−1/2 for N → ∞. This novel technical result will be the
key to our consistency proof of Algorithm 1 with score (6).

Lemma 16 For all N ≥ 2, for all x ∈ XN , for all y,y′ ∈ RN , for all bounded kernels
k : X 2 → R, and for all bounded and Lipschitz-continuous kernels l : R2 → R:∣∣∣ĤSIC(x,y)− ĤSIC(x,y′)

∣∣∣ ≤ 32λC√
N

∥∥y − y′∥∥ ,
where |k(ξ, ξ′)| ≤ C for all ξ, ξ′ ∈ X and λ is the Lipschitz constant of l.

21. Let X1, X2, . . . be a sequence of random variables and let X be another random variable. We say that

Xn converges to X in probability, written Xn
P→ X, if

∀ε > 0 : lim
n→∞

P(|Xn −X| > ε) = 0.
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Proof From (27) it follows that:

∣∣∣ĤSIC(x,y)− ĤSIC(x,y′)
∣∣∣ = (N − 1)−2

∣∣∣∣∣∣
N∑

i,j=1

K̄ij(Lij − L′ij)

∣∣∣∣∣∣ ,
where Kij = k(xi, xj), Lij = l(yi, yj), L

′
ij = l(y′i, y

′
j) and K̄ := HKH with Hij = δij −N−1.

First, note that |Kij | ≤ C implies that
∣∣K̄ij

∣∣ ≤ 4C:

∣∣K̄ij

∣∣ =

∣∣∣∣∣∣Kij −
1

N

N∑
i′=1

Ki′j −
1

N

N∑
j′=1

Kij′ +
1

N2

N∑
i′,j′=1

Ki′j′

∣∣∣∣∣∣
≤ |Kij |+

1

N

N∑
i′=1

∣∣Ki′j

∣∣+
1

N

N∑
j′=1

∣∣Kij′
∣∣+

1

N2

N∑
i′,j′=1

∣∣Ki′j′
∣∣ ≤ 4C.

Now starting from the definition and using the triangle inequality:∣∣∣∣∣∣
N∑

i,j=1

K̄ij(Lij − L′ij)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
N∑

i,j=1

K̄ij

(
l(y′i, y

′
j)− l(y′i, yj)

)∣∣∣∣∣∣+

∣∣∣∣∣∣
N∑

i,j=1

K̄ij

(
l(y′i, yj)− l(yi, yj)

)∣∣∣∣∣∣ .
For the first term, using Cauchy-Schwartz (in RN2

) and the Lipschitz property of l:∣∣∣∣∣∣
N∑

i,j=1

K̄ij

(
l(y′i, y

′
j)− l(y′i, yj)

)∣∣∣∣∣∣
2

≤

 N∑
i,j=1

∣∣K̄ij

∣∣2 N∑
i,j=1

∣∣l(y′i, y′j)− l(y′i, yj)∣∣2


≤ 16N2C2 · λ2N
N∑
j=1

∣∣y′j − yj∣∣2
= 16N3C2λ2

∥∥y′ − y∥∥2 .
The second term is similar. The result now follows (using that N

N−1 ≤ 2 for N ≥ 2).

A.2 Consistency of Nonparametric Regression

From now on, we will assume that both X and Y take values in R. Györfi et al. (2002)
provide consistency results for several nonparametric regression methods. Here we briefly
discuss the main property (“weak universal consistency”) that is of particular interest in
our setting.

Given a distribution PX,Y , one defines the regression function of Y on X as the
conditional expectation

f(x) := E(Y |X = x).

Given an i.i.d. sample of data points DN = {(xn, yn)}Nn=1 (the “training” data), a regression
method provides an estimate of the regression function f̂( · ;DN ). The mean squared
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error on the training data (also called “training error”) is defined as:

1

N

N∑
n=1

∣∣∣f(xn)− f̂(xn;DN )
∣∣∣2 .

The risk (also called “generalization error”), i.e., the expected L2 error on an independent
test datum, is defined as:

EX
∣∣∣f(X)− f̂(X;DN )

∣∣∣2 =

∫ ∣∣∣f(x)− f̂(x;DN )
∣∣∣2 dPX(x).

Note that the risk is a random variable that depends on the training data DN .
If the expected risk converges to zero as the number of training points increases, the

regression method is called “weakly consistent”. More precisely, following Györfi et al.
(2002):

Definition 17 Let (X1, Y1), (X2, Y2), . . . be i.i.d. according to PX,Y . Defining training data
sets DN = {(Xn, Yn)}Nn=1 for N = 2, 3, . . . , and writing EDN for the expectation value when
averaging over DN , a sequence of estimated regression functions f̂(·;DN ) is called weakly
consistent for a certain distribution PX,Y if

lim
N→∞

EDN
(
EX
∣∣∣f(X)− f̂(X;DN )

∣∣∣2 ) = 0. (28)

A regression method is called weakly universally consistent if it is weakly consistent for
all distributions PX,Y with finite second moment of Y , i.e., with EY (Y 2) <∞.

Many popular nonparametric regression methods have been shown to be weakly universally
consistent (see e.g., Györfi et al., 2002). One might expect näıvely that if the expected risk
goes to zero, then also the expected training error should vanish asymptotically:

lim
N→∞

EDN

(
1

N

N∑
n=1

∣∣∣f(Xn)− f̂(Xn;DN )
∣∣∣2) = 0. (29)

However, property (29) does not necessarily follow from (28).22 One would expect that
asymptotic results on the training error would actually be easier to obtain than results on

22. Here is a counterexample. Suppose that regression method f̂ satisfies properties (29) and (28) and that
X has bounded density. Given a smooth function φ : R → R with support ⊂ [−1, 1], 0 ≤ φ(x) ≤ 1,
and φ(0) = 1, we now construct a modified sequence of estimated regression functions f̃( · ;DN ) that is
defined as follows:

f̃(x;DN ) := f̂(x;DN ) +

N∑
i=1

φ

(
x−Xi
∆

(N)
i

)
,

where the ∆
(N)
i should be chosen such that ∆

(N)
i ≤ N−2 and that the intervals [Xi −∆

(N)
i , Xi + ∆

(N)
i ]

are disjoint. Then, we have that

lim
N→∞

EDN

(
EX
∣∣∣f(X)− f̃(X;DN )

∣∣∣2 ) = 0,

but on the other hand,

lim
N→∞

EDN

1

N

N∑
n=1

∣∣∣f(Xn)− f̃(Xn;DN )
∣∣∣2 = 1.
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generalization error. One result that we found in the literature is Lemma 5 in Kpotufe et al.
(2014), which states that a certain box kernel regression method satisfies (29) under certain
assumptions on the distribution PX,Y . The reason that we bring this up at this point is
that property (29) allows to prove consistency even when one uses the same data for both
regression and independence testing (see also Lemma 19).

From now on, we will always consider the following setting. Let (X̃1, Ỹ1), (X̃2, Ỹ2), . . .
be i.i.d. according to some joint distribution PX,Y . We distinguish two different scenarios:

• “Data splitting”: using half of the data for training, and the other half of the data for
testing. In particular, we define Xn := X̃2n−1, Yn := Ỹ2n−1, X

′
n := X̃2n and Y ′n := Ỹ2n

for n = 1, 2, . . . .

• “Data recycling”: using the same data both for regression and for testing. In partic-
ular, we define Xn := X̃n, Yn := Ỹn, X ′n := X̃n and Y ′n := Ỹn for n = 1, 2, . . . .

In both scenarios, for N = 1, 2, . . . , we define a sequence of training data sets DN :=
{(Xn, Yn)}Nn=1 (for the regression) and a sequence of test data sets D′N := {(X ′n, Y ′n)}Nn=1

(for testing independence of residuals). Note that in the data recycling scenario, training
and test data are identical, whereas in the data splitting scenario, training and test data
are independent.

Define a random variable (the “residual”)

E := Y − f(X) = Y − E(Y |X), (30)

and its vector-valued versions on the test data:

E′...N :=
(
Y ′1 − f(X ′1), . . . , Y

′
N − f(X ′N )

)
,

called the true residuals. Using a regression method, we obtain an estimate f̂(x;DN ) for
the regression function f(x) = E(Y |X = x) from the training data DN . We then define an
estimate of the vector-valued version of E on the test data:

Ê′...N :=
(
Y ′1 − f̂(X ′1;DN ), . . . , Y ′N − f̂(X ′N ;DN )

)
, (31)

called the predicted residuals.

Definition 18 We call the regression method suitable for regressing Y on X if the mean
squared error between true and predicted residuals vanishes asymptotically in expectation:

lim
N→∞

EDN ,D′N

(
1

N

∥∥∥Ê′...N −E′...N∥∥∥2) = 0. (32)

Here, the expectation is taken over both training data DN and test data D′N .

Lemma 19 In the data splitting case, any regression method that is weakly consistent for
PX,Y is suitable. In the data recycling case, any regression method satisfying property (29)
is suitable.
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Proof Simply rewriting:

lim
N→∞

E
(

1

N

∥∥∥Ê′...N −E′...N∥∥∥2) =

lim
N→∞

E

(
1

N

N∑
n=1

∣∣∣(Y ′n − f̂(X ′n;DN )
)
−
(
Y ′n − f(X ′n)

)∣∣∣2) =

lim
N→∞

EDN ,D′N

(
1

N

N∑
n=1

∣∣∣f̂(X ′n;DN )− f(X ′n)
∣∣∣2) .

Therefore, (32) reduces to (28) in the data splitting scenario (where each X ′n is an indepen-
dent copy of X), and reduces to (29) in the data recycling scenario (where X ′n = Xn).

In particular, if E(X2) < ∞ and E(Y 2) < ∞, any weakly universally consistent regression
method is suitable both for regressing X on Y and Y on X in the data splitting scenario.

A.3 Consistency of ANM-HSIC

We can now prove our main result, stating that the empirical HSIC calculated from the
test set inputs and the predicted residuals on the test set (using the regression function
estimated from the training set) converges in probability to the population HSIC of the
true inputs and the true residuals:

Theorem 20 Let X,Y ∈ R be two random variables with joint distribution PX,Y . Let
k, l : R × R → R be two bounded non-negative kernels and assume that l is Lipschitz
continuous. Suppose we are given sequences of training data sets DN and test data sets D′N
(in either the data splitting or the data recycling scenario described above). Suppose we use
a suitable regression procedure (c.f. Lemma 19), to obtain a sequence f̂(x;DN ) of estimates
of the regression function E(Y |X = x) from the training data. Defining the true residual
E by (30), and the predicted residuals Ê′...N on the test data as in (31), then, for N →∞:

ĤSICk,l(X
′
...N , Ê

′
...N )

P→ HSICk,l(X,E).

Proof We start by applying Lemma 16:∣∣∣ĤSIC(X ′...N , Ê
′
...N )− ĤSIC(X ′...N ,E

′
...N )

∣∣∣2 ≤ (32λC√
N

)2 ∥∥∥Ê′...N −E′...N∥∥∥2 ,
where λ and C are constants. From the suitability of the regression method, (32), it therefore
follows that

lim
N→∞

EDN ,D′N
∣∣∣ĤSIC(X ′...N , Ê

′
...N )− ĤSIC(X ′...N ,E

′
...N )

∣∣∣2 = 0,

i.e.,

ĤSIC(X ′...N , Ê
′
...N )− ĤSIC(X ′...N ,E

′
...N )

L2→ 0.

As convergence in L2 implies convergence in probability (see, e.g, Wasserman, 2004),

ĤSIC(X ′...N , Ê
′
...N )− ĤSIC(X ′...N ,E

′
...N )

P→ 0.
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From the consistency of the empirical HSIC, Corollary 15:

ĤSIC(X ′...N ,E
′
...N )

P→ HSIC(X,E).

Hence, by taking sums (see e.g., Theorem 5.5 in Wasserman, 2004), we arrive at the desired
statement.

We are now ready to show that Algorithm 1 with score (6) (which is the special case
k = l) is consistent.

Corollary 21 Let X,Y be two real-valued random variables with joint distribution PX,Y
that either satisfies an Additive Noise Model X → Y , or Y → X, but not both. Suppose
we are given sequences of training data sets DN and test data sets D′N (in either the data
splitting or the data recycling scenario). Let k, l : R× R→ R be two bounded non-negative
Lipschitz-continuous kernels such that their product k · l is characteristic. If the regression
procedure used in Algorithm 1 is suitable for both PX,Y and PY,X , then Algorithm 1 with
score (6) is a consistent procedure for estimating the direction of the Additive Noise Model.

Proof Define “population residuals” EY := Y − E(Y |X) and EX := X − E(X |Y ).
Note that PX,Y satisfies a bivariate Additive Noise Model X → Y if and only if EY ⊥⊥ X
(c.f. Lemma 7). Further, by Lemma 12, we have HSICk,l(X,EY ) = 0 if and only if
X ⊥⊥ EY . Similarly, PX,Y satisfies a bivariate Additive Noise Model Y → X if and only if
HSICl,k(Y,EX) = 0.

Now, by Theorem 20,

ĈX→Y := ĤSICk,l(X
′
...N , ÊY (D′N ;DN ))

P→ HSICk,l(X,EY ),

and similarly

ĈY→X := ĤSICl,k(Y
′
...N , ÊX(D′N ;DN ))

P→ HSICl,k(Y,EX),

where the predicted residuals are defined by

ÊY (D′N ;DN ) :=
(
Y ′1 − f̂Y (X ′1;DN ), . . . , Y ′N − f̂Y (X ′N ;DN )

)
,

ÊX(D′N ;DN ) :=
(
X ′1 − f̂X(Y ′1 ;DN ), . . . , X ′N − f̂X(Y ′N ;DN )

)
,

with estimates f̂Y (x;DN ), f̂X(y;DN ) of the regression functions E(Y |X = x),E(X |Y = y)
from the training data DN .

Because PX,Y satisfies an Additive Noise Model only in one of the two directions, this im-
plies that either HSICk,l(X,EY ) = 0 and HSICl,k(Y,EX) > 0 (corresponding with X → Y ),
or HSICk,l(X,EY ) > 0 and HSICl,k(Y,EX) = 0 (corresponding with Y → X). Therefore
the test procedure is consistent.
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Appendix B. Relationship Between Scores (10) and (11)

For the special case of an Additive Noise Model X → Y , the empirical-Bayes score proposed
by Friedman and Nachman (2000) is given in (11):

ĈX→Y = min
µ,τ2,θ,σ2

(
− logN (x |µ1, τ2I)− logN (y |0,Kθ(x) + σ2I)

)
.

It is a sum of the negative log likelihood of a Gaussian model for the inputs:

min
µ,τ2

(
− logN (x |µ1, τ2I)

)
= min

µ,τ2

(
N

2
log(2πτ2) +

1

2τ2

N∑
i=1

(xi − µ)2

)

=
N

2
log(2πe) +

N

2
log

(
1

N

N∑
i=1

(xi − x̄)2

) (33)

with x̄ := 1
N

∑N
i=1 xi, and the negative log marginal likelihood of a GP model for the

outputs, given the inputs:

min
θ,σ2

(
− logN (y | 0,Kθ(x) + σ2I)

)
= min
θ,σ2

(
N

2
log(2π) +

1

2
log |det(Kθ(x) + σ2I)|+ yT (Kθ(x) + σ2I)−1y

)
.

(34)

Note that (33) is an empirical estimator of the entropy of a Gaussian with variance Var(X),
up to a factor N :

H(X) =
1

2
log(2πe) +

1

2
logVar(X).

We will show that (34) is closely related to an empirical estimator of the entropy of the
residuals Y − E(Y |X):

H(Y − E(Y |X)) =
1

2
log(2πe) +

1

2
logVar(Y − E(Y |X)).

This means that the score (11) considered by Friedman and Nachman (2000) is closely
related to the Gaussian score (10) for X → Y :

ĈX→Y = logVar(X) + logVar(Y − f̂Y (X)).

The following Lemma shows that standard Gaussian Process regression can be inter-
preted as a penalized maximum likelihood optimization.

Lemma 22 Let Kθ(x) be the kernel matrix (abbreviated as K) and define a negative pe-
nalized log-likelihood as:

− logL(f , σ2;y,K) :=

N

2
log(2πσ2) +

1

2σ2

N∑
i=1

(yi − fi)2︸ ︷︷ ︸
Likelihood

+
1

2
fTK−1f +

1

2
log |det

(
I + σ−2K

)
|︸ ︷︷ ︸

Penalty

. (35)
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Minimizing with respect to f yields a minimum at

f̂σ,θ = argmin
f

(
− logL(f , σ2;y,Kθ)

)
= Kθ(Kθ + σ2I)−1y, (36)

and the value at the minimum is given by

min
f

(
− logL(f , σ2;y,Kθ)

)
= − logL(f̂σ,θ, σ

2;y,Kθ) = − logN (y |0,Kθ + σ2I). (37)

Proof Because B(A−1 +B−1)A = A +B for invertible (equally-sized square) matrices
A,B, the following identity holds:

(A−1 +B−1)−1 = A(A+B)−1B.

Substituting A = K and B = σ2I, we obtain directly that

(K−1 + σ−2I)−1 = K(K + σ2I)−1σ2. (38)

By taking log-determinants, it also follows that

log | detK|+ log |det(K−1 + σ−2I)| = log |det
(
I + σ−2K

)
|.

Therefore, we can rewrite (35) as follows:

L(f , σ2;y,K) = N (f |0,K)N (y − f |0, σ2I)
∣∣det

(
K−1 + σ−2I

)∣∣−1/2 (2π)N/2. (39)

Equation (A.7) in Rasmussen and Williams (2006) for the product of two Gaussians
states that

N (x|a,A)N (x|b,B) = N (a|b,A+B)N (x|c,C),

where C = (A−1+B−1)−1 and c = C(A−1a+B−1b). Substituting x = f , a = 0, A = K,
b = y, and B = σ2I, and using (38), this gives:

N (f |0,K)N (y − f |0, σ2I) = N (y |0,K + σ2I)N (f |f̂ , (K−1 + σ−2I)−1),

where
f̂σ,θ := Kθ(Kθ + σ2I)−1y.

Therefore, we can rewrite (39) as:

L(f , σ2;y,K)

= N (y |0,K + σ2I)N (f |f̂ , (K−1 + σ−2I)−1)
∣∣det

(
K−1 + σ−2I

)∣∣−1/2 (2π)N/2.

It is now obvious that the penalized likelihood is maximized for f = f̂σ,θ (for fixed
hyperparameters σ,θ) and that at the maximum, it has the value

L(f̂σ,θ, σ
2;y,Kθ) = N (y |0,Kθ + σ2I).
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Note that the estimated function (36) is identical to the mean posterior GP, and the value
(37) is identical to the negative logarithm of the marginal likelihood (evidence) of the data
according to the GP model (Rasmussen and Williams, 2006).

Making use of Lemma 22, the conditional part (34) in score (11) can be rewritten as:

min
σ2,θ

(
− logN (y |0,Kθ + σ2I)

)
= min

σ2,θ

1

2

(
N log(2πσ2) +

1

σ2

N∑
i=1

(yi − (f̂σ,θ)i)
2 + f̂Tσ,θK

−1
θ f̂σ,θ + log |det

(
I + σ−2Kθ

)
|

)

=
N

2
log(2πσ̂2) +

1

2σ̂2

N∑
i=1

(yi − (f̂)i)
2

︸ ︷︷ ︸
Likelihood term

+
1

2
f̂TK−1

θ̂
f̂ +

1

2
log | det

(
I + σ̂−2Kθ̂

)
|︸ ︷︷ ︸

Complexity penalty

,

where f̂ := f̂σ̂,θ̂ for the minimizing (σ̂, θ̂). If the complexity penalty is small compared to

the likelihood term around the optimal values (σ̂, θ̂), we can approximate:

min
σ2,θ

(
− logN (y |0,Kθ + σ2I)

)
≈ N

2
log(2πσ̂2) +

1

2σ̂2

N∑
i=1

(yi − f̂i)2

≈ min
σ2

(
N

2
log(2πσ2) +

1

2σ2

N∑
i=1

(yi − f̂i)2
)

=
N

2
log(2πe) +

N

2
log

(
1

N

N∑
i=1

(yi − f̂i)2
)
.

This shows that there is a close relationship between the two scores (11) and (10).

Appendix C. Details on the Simulated Data

Here we give more details on how the data were simulated. The simulated data itself is
provided as supplementary material on the first author’s website.

C.1 Sampling from a Random Density

We first describe how we sample from a random density. First, we sample X ∈ RN from a
standard-normal distribution:

X ∼ N (0N , IN ),

and define
−→
X to be the vector that is obtained by sorting X in ascending order. Then, we

sample a realization F of a Gaussian Process with inputs
−→
X, using a kernel with hyperpa-

rameters θ and white noise with standard deviation σ:

F ∼ N (0,Kθ(
−→
X) + σ2I),
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where Kθ(
−→
X) is the Gram matrix for

−→
X using kernel kθ. We use the trapezoidal rule

to calculate the cumulative integral of the function eF : R → R that linearly interpolates

the points (
−→
X, exp(F )). In this way, we obtain a vector G ∈ RN where each element Gi

corresponds to
∫ −→X i−→
X1

eF (x) dx. As covariance function, we used the Gaussian kernel:

kθ(x,x′) = exp

(
−

D∑
i=1

(xi − x′i)2

θ2i

)
.

We will denote this whole sampling procedure by:

G ∼ RD(θ, σ).

C.2 Sampling Cause-Effect Pairs

We simulate cause-effect pairs as follows. First, we sample three noise variables:

WEX ∼ Γ(aWEX
, bWEX

) EX ∼ RD(WEX , τ)

WEY ∼ Γ(aWEY
, bWEY

) EY ∼ RD(WEX , τ)

WEZ ∼ Γ(aWEZ
, bWEZ

) EZ ∼ RD(WEZ , τ)

where each noise variable has a random characteristic length scale. We then standardize
each noise sample EX , EY and EZ .

If there is no confounder, we sample X from a GP with inputs EX :

SEX ∼ Γ(aSEX , bSEX )

X ∼ N (0,KSEX
(EX) + τ2I)

and then we standardize X. Then, we sample Y from a GP with inputs (X,EY ) ∈ RN×2:

SX ∼ Γ(aSX , bSX )

SEY ∼ Γ(aSEY , bSEY )

Y ∼ N (0,K(SX ,SEY )((X,EY )) + τ2I)

and then we standardize Y .
If there is a confounder, we sample X from a GP with inputs (EX ,EZ) ∈ RN×2:

SEX ∼ Γ(aSEX , bSEX )

SEZ ∼ Γ(aSEZ , bSEZ )

X ∼ N (0,K(SEX ,SEZ )((EX ,EZ)) + τ2I)

and then we standardize X. Then, we sample Y from a GP with inputs (X,EY ,EZ) ∈
RN×3:

SX ∼ Γ(aSX , bSX )

SEY ∼ Γ(aSEY , bSEY )

SEZ ∼ Γ(aSEZ , bSEZ )

Y ∼ N (0,K(SX ,SEY ,SEZ )((X,EY ,EZ)) + τ2I)
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Scenario (aWEX
, bWEX

) (aSEX
, bSEX

) (aSEY
, bSEY

) (aSMX
, bSMX

) (aSMY
, bSMY

)

SIM (5, 0.1) (2, 1.5) (2, 15) (2, 0.1) (2, 0.1)
SIM-c (5, 0.1) (2, 1.5) (2, 15) (2, 0.1) (2, 0.1)
SIM-ln (5, 0.1) (2, 1.5) (2, 300) (2, 0.01) (2, 0.01)
SIM-G (106, 10−3) (106, 10−3) (2, 15) (2, 0.1) (2, 0.1)

Table 3: Parameter settings used to simulate cause-effect pairs for four scenarios. SIM-c

has a confounder, the other scenarios have no confounders. The common parameters for
the four scenarios are: τ = 10−4, (aWnEY , bWEY

) = (5, 0.1), (aWEZ
, bWEZ

) = (5, 0.1),
(aSEZ , bSEZ ) = (2, 15), (aSX , bSX ) = (2, 15).

and then we standardize Y .

Finally, we add measurement noise:

SMX
∼ Γ(aSMX , bSMX )

MX ∼ N (0, S2
MX
I)

X ←X +MX

SMY
∼ Γ(aSMY , bSMY )

MY ∼ N (0, S2
MY
I)

Y ← Y +MY

We considered the four scenarios in Table 3: SIM, a scenario without confounders; SIM-c,
a similar scenario but with one confounder; SIM-ln, a scenario with low noise levels (for
which we expect IGCI to perform well); SIM-G, a scenario with a distribution of X that is
almost Gaussian. We used N = 1000 samples for each pair, and simulated 100 cause-effect
pairs for each scenario.

Appendix D. Description of the CauseEffectPairs Benchmark

The CauseEffectPairs benchmark set described here is an extension of the collection of
the eight data sets that formed the CauseEffectPairs task in the Causality Challenge
#2: Pot-Luck competition (Mooij and Janzing, 2010) that was performed as part of the
NIPS 2008 Workshop on Causality (Guyon et al., 2010).23 Here we describe version 1.0
of the CauseEffectPairs benchmark, which consists of 100 “cause-effect pairs”, each
one consisting of samples of a pair of statistically dependent random variables, where one
variable is known to cause the other one. The task is to identify for each pair which of the
two variables is the cause and which one the effect, using the observed samples only. The
data are publicly available at Mooij et al. (2014).

The data sets were selected such that we expect common agreement on the ground
truth. For example, the first pair consists of measurements of altitude and mean annual
temperature of more than 300 weather stations in Germany. It should be obvious that
altitude causes temperature rather than the other way around. Even though part of the

23. The introduction of this section and the descriptions of these 8 pairs are heavily based on Mooij and
Janzing (2010).
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statistical dependences may also be due to hidden common causes and selection bias, we
expect that there is a significant cause-effect relation between the two variables in each pair,
based on our understanding of the data generating process.

The best way to decide upon the ground truth of the causal relationships in the systems
that generated the data would be by performing interventions on one of the variables and
observing whether the intervention changes the distribution of the other variable. Unfortu-
nately, these interventions cannot be performed in practice for many of the existing pairs
because the original data-generating system is no longer available, or because of other prac-
tical reasons. Therefore, we have selected data sets in which the causal direction should
be clear from the meanings of the variables and the way in which the data were gener-
ated. Unfortunately, for many data sets that are publicly available, it is not always clearly
documented exactly how the variables are defined and measured.

In selecting the cause-effect pair data sets, we applied the following criteria:

• The minimum number of samples per pair should be a few hundred;

• The variables should have values in Rd for some d = 1, 2, 3, . . . ;

• There should be a significant cause–effect relationship between the two variables;

• The direction of the causal relationship should be known or obvious from the meaning
of the variables.

Version 1.0 of the CauseEffectPairs collection consists of 100 pairs satisfying these
criteria, taken from 37 different data sets from different domains. We refer to these pairs
as pair0001, . . . , pair00100. Table 4 gives an overview of the cause-effect pairs. In the
following subsections, we describe the cause-effect pairs in detail, and motivate our decisions
on the causal relationships present in the pairs. We provide a scatter plot for each pair,
where the horizontal axis corresponds with the cause, and the vertical axis with the effect.
For completeness, we describe all the pairs in the data set, including those that have been
described before in Mooij and Janzing (2010).

Pair Variable 1 Variable 2 Data Set Ground Truth Weight
pair0001 Altitude Temperature D.1 → 1/6
pair0002 Altitude Precipitation D.1 → 1/6
pair0003 Longitude Temperature D.1 → 1/6
pair0004 Altitude Sunshine hours D.1 → 1/6
pair0005 Age Length D.2 → 1/7
pair0006 Age Shell weight D.2 → 1/7
pair0007 Age Diameter D.2 → 1/7
pair0008 Age Height D.2 → 1/7
pair0009 Age Whole weight D.2 → 1/7
pair0010 Age Shucked weight D.2 → 1/7
pair0011 Age Viscera weight D.2 → 1/7
pair0012 Age Wage per hour D.3 → 1/2
pair0013 Displacement Fuel consumption D.4 → 1/4
pair0014 Horse power Fuel consumption D.4 → 1/4
pair0015 Weight Fuel consumption D.4 → 1/4
pair0016 Horsepower Acceleration D.4 → 1/4
pair0017 Age Dividends from stocks D.3 → 1/2
pair0018 Age Concentration GAG D.5 → 1
pair0019 Current duration Next interval D.6 → 1
pair0020 Latitude Temperature D.1 → 1/6
pair0021 Longitude Precipitation D.1 → 1/6
pair0022 Age Height D.7 → 1/3
pair0023 Age Weight D.7 → 1/3
pair0024 Age Heart rate D.7 → 1/3

(Table continues on next page)
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Pair Variable 1 Variable 2 Data Set Ground Truth Weight
pair0025 Cement Compressive strength D.8 → 1/8
pair0026 Blast furnace slag Compressive strength D.8 → 1/8
pair0027 Fly ash Compressive strength D.8 → 1/8
pair0028 Water Compressive strength D.8 → 1/8
pair0029 Superplasticizer Compressive strength D.8 → 1/8
pair0030 Coarse aggregate Compressive strength D.8 → 1/8
pair0031 Fine aggregate Compressive strength D.8 → 1/8
pair0032 Age Compressive strength D.8 → 1/8
pair0033 Alcohol consumption Mean corpuscular volume D.9 → 1/5
pair0034 Alcohol consumption Alkaline phosphotase D.9 → 1/5
pair0035 Alcohol consumption Alanine aminotransferase D.9 → 1/5
pair0036 Alcohol consumption Aspartate aminotransferase D.9 → 1/5
pair0037 Alcohol consumption Gamma-glutamyl transpeptidase D.9 → 1/5
pair0038 Age Body mass index D.10 → 1/4
pair0039 Age Serum insulin D.10 → 1/4
pair0040 Age Diastolic blood pressure D.10 → 1/4
pair0041 Age Plasma glucose concentration D.10 → 1/4
pair0042 Day of the year Temperature D.11 → 1/2
pair0043 Temperature at t Temperature at t + 1 D.12 → 1/4
pair0044 Surface pressure at t Surface pressure at t + 1 D.12 → 1/4
pair0045 Sea level pressure at t Sea level pressure at t + 1 D.12 → 1/4
pair0046 Relative humidity at t Relative humidity at t + 1 D.12 → 1/4
pair0047 Number of cars Type of day D.13 ← 1
pair0048 Indoor temperature Outdoor temperature D.14 ← 1
pair0049 Ozone concentration Temperature D.15 ← 1/3
pair0050 Ozone concentration Temperature D.15 ← 1/3
pair0051 Ozone concentration Temperature D.15 ← 1/3
pair0052 (Temp, Press, SLP, Rh) (Temp, Press, SLP, RH) D.12 ← 0
pair0053 Ozone concentration (Wind speed, Radiation, Temp.) D.16 ← 0
pair0054 (Displ., Horsepower, Weight) (Fuel consumption, Acceleration) D.4 → 0
pair0055 Ozone concentration (16-dim.) Radiation (16-dim.) D.15 ← 0
pair0056 Fem. life expectancy, 2000–2005 Latitude of capital D.17 ← 1/12
pair0057 Fem. life expectancy, 1995–2000 Latitude of capital D.17 ← 1/12
pair0058 Fem. life expectancy, 1990–1995 Latitude of capital D.17 ← 1/12
pair0059 Fem. life expectancy, 1985–1990 Latitude of capital D.17 ← 1/12
pair0060 Male life expectancy, 2000–2005 Latitude of capital D.17 ← 1/12
pair0061 Male life expectancy, 1995–2000 Latitude of capital D.17 ← 1/12
pair0062 Male life expectancy, 1990–1995 Latitude of capital D.17 ← 1/12
pair0063 Male life expectancy, 1985–1990 Latitude of capital D.17 ← 1/12
pair0064 Drinking water access Infant mortality D.17 → 1/12
pair0065 Stock return of Hang Seng Bank Stock return of HSBC Hldgs D.18 → 1/3
pair0066 Stock return of Hutchison Stock return of Cheung kong D.18 → 1/3
pair0067 Stock return of Cheung kong Stock return of Sun Hung Kai Prop. D.18 → 1/3
pair0068 Bytes sent Open http connections D.19 ← 1
pair0069 Inside temperature Outside temperature D.20 ← 1
pair0070 Parameter Answer D.21 → 1
pair0071 Symptoms (6-dim.) Classification of disease (2-dim.) D.22 → 0
pair0072 Sunspots Global mean temperature D.23 → 1
pair0073 CO2 emissions Energy use D.17 ← 1/12
pair0074 GNI per capita Life expectancy D.17 → 1/12
pair0075 Under-5 mortality rate GNI per capita D.17 ← 1/12
pair0076 Population growth Food consumption growth D.24 → 1
pair0077 Temperature Solar radiation D.11 ← 1/2
pair0078 PPFD Net Ecosystem Productivity D.25 → 1/3
pair0079 Net Ecosystem Productivity Diffuse PPFD D.25 ← 1/3
pair0080 Net Ecosystem Productivity Direct PPFD D.25 ← 1/3
pair0081 Temperature Local CO2 flux, BE-Bra D.26 → 1/3
pair0082 Temperature Local CO2 flux, DE-Har D.26 → 1/3
pair0083 Temperature Local CO2 flux, US-PFa D.26 → 1/3
pair0084 Employment Population D.27 ← 1
pair0085 Time of measurement Protein content of milk D.28 → 1
pair0086 Size of apartment Monthly rent D.29 → 1
pair0087 Temperature Total snow D.30 → 1
pair0088 Age Relative spinal bone mineral density D.31 → 1
pair0089 Root decomposition in Oct Root decomposition in Apr D.32 ← 1/4
pair0090 Root decomposition in Oct Root decomposition in Apr D.32 ← 1/4
pair0091 Clay content in soil soil moisture D.32 → 1/4
pair0092 Organic carbon in soil Clay content in soil D.32 ← 1/4
pair0093 Precipitation Runoff D.33 → 1
pair0094 Hour of the day Temperature D.34 → 1/3
pair0095 Hour of the day Electricity consumption D.34 → 1/3
pair0096 Temperature Electricity consumption D.34 → 1/3
pair0097 Initial speed Final speed D.35 → 1/2
pair0098 Initial speed Final speed D.35 → 1/2
pair0099 Language test score Social-economic status family D.36 ← 1
pair0100 Cycle time of CPU Performance D.37 → 1

Table 4: Overview of the pairs in version 1.0 of the CauseEffectPairs benchmark.
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D.1 DWD

The DWD climate data were provided by the Deutscher Wetterdienst (DWD). We down-
loaded the data from http://www.dwd.de and merged several of the original data sets to
obtain data for 349 weather stations in Germany, selecting only those weather stations
without missing data. After merging the data sets, we selected the following six variables:
altitude, latitude, longitude, and annual mean values (over the years 1961–1990) of sun-
shine duration, temperature and precipitation. We converted the latitude and longitude
variables from sexagesimal to decimal notation. Out of these six variables, we selected
six different pairs with “obvious” causal relationships: altitude–temperature (pair0001),
altitude–precipitation (pair0002), longitude–temperature (pair0003), altitude–sunshine
hours (pair0004), latitude–temperature (pair0020), longitude–precipitation (pair0021).

pair0001 pair0002 pair0003

pair0004 pair0020 pair0021

Figure 18: Scatter plots of pairs from D.1. pair0001: altitude → temperature, pair0002:
altitude → precipitation, pair0003: longitude → temperature, pair0004: altitude → sun-
shine hours, pair0020: latitude → temperature, pair0021: longitude → precipitation.

pair0001: Altitude → Temperature

As an elementary fact of meteorology, places with higher altitude tend to be colder than
those that are closer to sea level (roughly 1 centigrade per 100 meter). There is no doubt that
altitude is the cause and temperature the effect: one could easily think of an intervention
where the thermometer is lifted (e.g., by using a balloon) to measure the temperature at a
higher point of the same longitude and latitude. On the other hand, heating or cooling a
location usually does not change its altitude (except perhaps if the location happens to be
the space enclosed by a hot air balloon, but let us assume that the thermometers used to
gather this data were fixed to the ground). The altitudes in the DWD data set range from
0 m to 2960 m, which is sufficiently large to detect significant statistical dependences.
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One potential confounder is latitude, since all mountains are in the south and far from
the sea, which is also an important factor for the local climate. The places with the highest
average temperatures are therefore those with low altitude but lying far in the south. Hence
this confounder should induce positive correlations between altitude and temperature as
opposed to the negative correlation between altitude and temperature that is observed
empirically. This suggests that the direct causal relation between altitude and temperature
dominates over the confounder.

pair0002: Altitude → Precipitation

It is known that altitude is also an important factor for precipitation since rain often occurs
when air is forced to rise over a mountain range and the air becomes over-saturated with
water due to the lower temperature (orographic rainfall). This effect defines an indirect
causal influence of altitude on precipitation via temperature. These causal relations are,
however, less simple than the causal influence from altitude to temperature because gradi-
ents of the altitude with respect to the main direction of the wind are more relevant than
the altitude itself. A hypothetical intervention that would allow us to validate the causal
relation could be to build artificial mountains and observe orographic rainfall.

pair0003: Longitude → Temperature

To detect the causal relation between longitude and temperature, a hypothetical interven-
tion could be to move a thermometer between West and East. Even if one would adjust
for altitude and latitude, it is unlikely that temperature would remain the same since the
climate in the West is more oceanic and less continental than in the East of Germany.
Therefore, longitude causes temperature.

pair0004: Altitude → Sunshine Hours

Sunshine duration and altitude are slightly positively correlated. Possible explanations are
that higher weather stations are sometimes above low-hanging clouds. Cities in valleys,
especially if they are close to rivers or lakes, typically have more misty days. Moving a
sunshine sensor above the clouds clearly increases the sunshine duration whereas installing
an artificial sun would not change the altitude. The causal influence from altitude to sun-
shine duration can be confounded, for instance, by the fact that there is a simple statistical
dependence between altitude and longitude in Germany as explained earlier.

pair0020: Latitude → Temperature

Moving a thermometer towards the equator will generally result in an increased mean
annual temperature. Changing the temperature, on the other hand, does not necessarily
result in a north-south movement of the thermometer. The obvious ground truth of latitude
causing temperature might be somewhat “confounded” by longitude, in combination with
the selection bias that arises from only including weather stations in Germany.
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pair0021: Longitude → Precipitation

As the climate in the West is more oceanic and less continental than in the East of Ger-
many, we expect there to be a relationship between longitude and precipitation. Changing
longitude by moving in East-West direction may therefore change precipitation, even if one
would adjust for altitude and latitude. On the other hand, making it rain locally (e.g., by
cloud seeding) will not result in a change in longitude.

D.2 Abalone

The Abalone data set (Nash et al., 1994) in the UCI Machine Learning Repository (Bache
and Lichman, 2013) contains 4177 measurements of several variables concerning the sea snail
Abalone. We downloaded the data from https://archive.ics.uci.edu/ml/datasets/

Abalone. The original data set contains the nine variables sex, length, diameter, height,
whole weight, shucked weight, viscera weight, shell weight and number of rings. The num-
ber of rings in the shell is directly related to the age of the snail: adding 1.5 to the num-
ber of rings gives the age in years. Of these variables, we selected six pairs with obvi-
ous cause-effect relationships: age–length (pair0005), age–shell weight (pair0006), age–
diameter (pair0007), age–height (pair0008), age–whole weight (pair0009), age–shucked
weight (pair0010), age–viscera weight (pair0011).

pair0005 pair0006 pair0007 pair0008

pair0009 pair0010 pair0011

Figure 19: Scatter plots of pairs from D.2. pair0005: age → length, pair0006: age →
shell weight, pair0007: age→ diameter, pair0008: age→ height, pair0009: age→ whole
weight, pair0010: age → shucked weight, pair0011: age → viscera weight.

pair0005–pair0011: Age → {Length, Shell Weight, Diameter, Height,
Whole/Shucked/Viscera Weight}

For the variable “age” it is not obvious what a reasonable intervention would be since
there is no possibility to change the time. However, waiting and observing how variables
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change over time can be considered as equivalent to the hypothetical intervention on age
(provided that the relevant background conditions do not change too much). Clearly, this
“intervention” would change the probability distribution of the length, whereas changing
the length of snails (by surgery) would not change the distribution of age (assuming that
the surgery does not take years). Regardless of the difficulties of defining interventions, we
expect common agreement on the ground truth: age causes all the other variables related
to length, diameter height and weight.

There is one subtlety that has to do with how age is measured for these shells: this
is done by counting the rings. For the variable “number of rings” however, changing the
length of the snail may actually change the number of rings. We here presume that all
snails have undergone their natural growing process so that the number of rings is a good
proxy for the variable age.

D.3 Census Income KDD

The Census Income (KDD) data set (U.S. Department of Commerce, 1994) in the UCI
Machine Learning Repository (Bache and Lichman, 2013) has been extracted from the
1984 and 1985 U.S. Census studies. We downloaded the data from https://archive.ics.

uci.edu/ml/datasets/Census-Income+(KDD). We have selected the following variables:
AAGE (age), AHRSPAY (wage per hour) and DIVVAL (dividends from stocks).

pair0012 pair0017

Figure 20: Scatter plots of pairs from D.3. pair0012: age → wage per hour, pair0017:
age → dividends from stocks.

pair0012: Age → Wage Per Hour

We only used the first 5000 instances for which wage per hour was not equal to zero. The
data clearly shows an increase of wage up to about 45 and a decrease for higher age.

As already argued for the Abalone data, interventions on the variable “age” are difficult
to define. Compared to the discussion in the context of the Abalone data set, it seems
more problematic to consider waiting as a reasonable “intervention” here, since the relevant
(economical) background conditions change rapidly compared to the length of the human
life: If someone’s salary is higher than the salary of a 20 year younger colleague because
of his/her longer job experience, we cannot conclude that the younger colleague will earn
the same money 20 years later as the older colleague earns now. Possibly, the factory or
even the branch of industry he/she was working in does not exist any more and his/her job
experience is no longer appreciated. However, we know that employees sometimes indeed do
get a higher income because of their longer job experience. Pretending longer job experience
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by a fake certificate of employment would be a possible intervention. On the other hand,
changing the wage per hour is an intervention that is easy to imagine (though difficult for
us to perform) and this would certainly not change the age.

pair0017: Age → Dividends from Stocks

We only used the first 5000 instances for which dividends from stocks was not equal to
zero. Similar considerations apply as for age vs. wage per hour. Doing an intervention
on age is not practical, but companies could theoretically intervene on the dividends from
stocks, and that would not result in a change of age, obviously. On the other hand, age
influences income, and thereby over time, the amount of money that people can invest in
stocks, and thereby, the amount of dividends they earn from stocks. This causal relation is
a very indirect one, though, and the dependence between age and dividends from stock is
less pronounced than that between age and wage per hour.

D.4 Auto-MPG

The Auto-MPG data set in the UCI Machine Learning Repository (Bache and Lichman,
2013) concerns city-cycle fuel consumption in miles per gallon (MPG), i.e., the number of
miles a car can drive on one gallon of gasoline, and contains several other attributes, like
displacement, horsepower, weight, and acceleration. The original data set comes from the
StatLib library (Meyer and Vlachos, 2014) and was used in the 1983 American Statistical
Association Exposition. We downloaded the data from http://archive.ics.uci.edu/ml/

datasets/Auto+MPG and selected only instances without missing data, thereby obtaining
392 samples.

pair0013 pair0014 pair0015 pair0016

Figure 21: Scatter plots of pairs from D.4. pair0013: displacement → fuel consump-
tion, pair0014: horse power → fuel consumption, pair0015: weight → fuel consump-
tion, pair0016: horsepower → acceleration, pair0054: (displacement,horsepower,weight)
→ (MPG,acceleration)

pair0013: Displacement → Fuel Consumption

Displacement is the total volume of air/fuel mixture an engine can draw in during one
complete engine cycle. The larger the displacement, the more fuel the engine can consume
with every turn. Intervening on displacement (e.g., by increasing the cylinder bore) changes
the fuel consumption. Changing the fuel consumption (e.g., by increasing the weight of the
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car, or changing its air resistance, or by using another gear) will not change the displacement,
though.

pair0014: Horse power → Fuel Consumption

Horse power measures the amount of power an engine can deliver. There are various ways
to define horsepower and different standards to measure horse power of vehicles. In general,
though, it should be obvious that fuel consumption depends on various factors, including
horse power. Changing horsepower (e.g., by adding more cylinders to an engine, or adding
a second engine to the car) would lead to a change in fuel consumption. On the other hand,
changing fuel consumption does not necessarily change horse power.

pair0015: Weight → Fuel Consumption

There is a strong selection bias here, as car designers use a more powerful motor (with higher
fuel consumption) for a heavier car. Nevertheless, the causal relationship between weight
and fuel consumption should be obvious: if we intervene on weight, then fuel consumption
will change, but not necessarily vice versa.

pair0016: Horsepower → Acceleration

Horsepower is one one of the factors that cause acceleration. Other factors are wheel size,
the gear used, and air resistance. Intervening on acceleration does not necessarily change
horsepower.

pair0054: (Displacement,Horsepower,Weight) → (MPG,Acceleration)

This pair consists of two multivariate variables that are combinations of the variables we
have considered before. The multivariate variable consisting of the three components dis-
placement, horsepower and weight can be considered to cause the multivariate variable
comprised of fuel consumption and acceleration.

D.5 GAGurine

This data concerns the concentration of the chemical compound Glycosaminoglycan (GAG)
in the urine of 314 children aged from zero to seventeen years. This is the GAGurine data set
supplied with the MASS package of the computing language R (Venables and Ripley, 2002).

pair0018

Figure 22: Scatter plots of pairs from D.5. pair0018: age → concentration GAG.
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pair0018: Age → Concentration GAG

Obviously, GAG concentration does not cause age, but it could be the other way around,
considering the strong dependence between the two variables.

D.6 Old Faithful

This is the geyser data set supplied with the MASS package of the computing language R

(Venables and Ripley, 2002). It is originally described in (Azzalini and Bowman, 1990) and
contains data about the duration of an eruption and the time interval between subsequent
eruptions of the Old Faithful geyser in Yellowstone National Park, USA. The data consists
of 194 samples and was collected in a single continuous measurement from August 1 to
August 15, 1985.

pair0019

Figure 23: Scatter plots of pairs from D.6. pair0019: current duration → next interval.

pair0019: Current Duration → Next Interval

The chronological ordering of events implicates that the time interval between the current
and the next eruption is an effect of the duration of the current eruption.

D.7 Arrhythmia

The Arrhythmia data set (Guvenir et al., 1997) from the UCI Machine Learning Repository
(Bache and Lichman, 2013) concerns cardiac arrhythmia. It consists of 452 patient records
and contains many different variables. We downloaded the data from https://archive.

ics.uci.edu/ml/datasets/Arrhythmia and only used the variables for which the causal
relationships should be evident. We removed two instances from the data set, corresponding
with patient lengths of 680 and 780 cm, respectively.

pair0022–pair0024: Age → {Height, Weight, Heart Rate}

As discussed before, “interventions” on age (for example, waiting a few years) may affect
height of persons. On the other hand, we know that height does not cause age. The same
holds for age and weight and for age and heart rate. It is important to note here that age is
simply measured in years since the birth of a person. Indeed, weight, height and also heart
rate might influence “biological aging”, the gradual deterioration of function of the human
body.
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pair0022 pair0023 pair0024

Figure 24: Scatter plots of pairs from D.7. pair0022: age → height, pair0023: age →
weight, pair0024: age → heart rate.

D.8 Concrete Compressive Strength

This data set, available at the UCI Machine Learning Repository (Bache and Lichman,
2013), concerns a systematic study (Yeh, 1998) regarding concrete compressive strength as
a function of ingredients and age. Citing Yeh (1998): “High-performance concrete (HPC) is
a new terminology used in the concrete construction industry. In addition to the three basic
ingredients in conventional concrete, i.e., Portland cement, fine and coarse aggregates, and
water, the making of HPC needs to incorporate supplementary cementitious materials, such
as fly ash and blast furnace slag, and chemical admixture, such as superplasticizer 1 and 2.
Several studies independently have shown that concrete strength development is determined
not only by the water-to-cement ratio, but that it also is influenced by the content of other
concrete ingredients.” Compressive strength is measured in units of MPa, age in days, and
the other variables are measured in kilograms per cubic metre of concrete mixture. The
data set was downloaded from https://archive.ics.uci.edu/ml/datasets/Concrete+

Compressive+Strength and contains 1030 measurements.

pair0025–pair0032: {Cement, Blast Furnace Slag, Fly Ash, Water,
Superplasticizer, Coarse Aggregate, Fine Aggregate, Age} → Compressive
Strength

It should be obvious that compressive strength is the effect, and the other variables are
its causes. Note, however, that in practice one cannot easily intervene on the mixture
components without simultaneously changing the other mixture components. For example,
if one adds more water to the mixture, then as a result, all other components will decrease,
as they are measured in kilograms per cubic metre of concrete mixture. Nevertheless,
we expect that we can see these interventions as reasonable approximations of “perfect
interventions” on a single variable.

D.9 Liver Disorders

This data set, available at the UCI Machine Learning Repository (Bache and Lichman,
2013), was collected by BUPA Medical Research Ltd. It consists of several blood test re-
sults, which are all thought to be indicative for liver disorders that may arise from excessive
alcohol consumption. Each of the 345 instances constitutes the record of a single male
individual. Daily alcohol consumption is measured in number of half-pint equivalents of
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pair0025 pair0026 pair0027 pair0028

pair0029 pair0030 pair0031 pair0032

Figure 25: Scatter plots of pairs from D.8. pair0025: cement → compressive strength,
pair0026: blast furnace slag → compressive strength, pair0027: fly ash → compressive
strength, pair0028: water → compressive strength, pair0029: superplasticizer → com-
pressive strength, pair0030: coarse aggregate → compressive strength, pair0031: fine
aggregate → compressive strength, pair0032: age → compressive strength.

alcoholic beverages drunk per day. The blood test results are mean corpuscular volume
(MCV), alkaline phosphotase (ALP), alanine aminotransferase (ALT), aspartate amino-
transferase (AST), and gamma-glutamyl transpeptidase (GGT). The data is available at
https://archive.ics.uci.edu/ml/datasets/Liver+Disorders.

Although one would expect that daily alcohol consumption is the cause, and the blood
test results are the effects, this is not necessarily the case. Indeed, citing Baynes and Do-
miniczak (1999): “[...] increased plasma concentrations of acetaldehyde after the ingestion
of alcohol [...] causes the individual to experience unpleasant flushing and sweating, which
discourages alcohol abuse. Disulfiram, a drug that inhibits ALDH, also leads to these symp-
toms when alcohol is taken, and may be given to reinforce abstinence from alcohol.” This
means that a priori, a reverse causation of the chemical whose concentration is measured
in one of these blood tests on daily alcohol consumption cannot be excluded with certainty.
Nevertheless, we consider this to be unlikely, as the medical literature describes how these
particular blood tests can be used to diagnose liver disorders, but we did not find any
evidence that these chemicals can be used to treat excessive alcohol consumption.

pair0033: Alcohol Consumption → Mean Corpuscular Volume

The mean corpuscular volume (MCV) is the average volume of a red blood cell. An elevated
MCV has been associated with alcoholism (Tønnesen et al., 1986), but there are many other
factors also associated with MCV.
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pair0033 pair0034 pair0035

pair0036 pair0037

Figure 26: Scatter plots of pairs from D.9. pair0033: alcohol consumption→ mean corpus-
cular volume, pair0034: alcohol consumption → alkaline phosphotase, pair0035: alcohol
consumption → alanine aminotransferase, pair0036: alcohol consumption → aspartate
aminotransferase, pair0037: alcohol consumption → gamma-glutamyl transpeptidase.

pair0034: Alcohol Consumption → Alkaline Phosphotase

Alkaline phosphatase (ALP) is an enzyme that is predominantly abundant in liver cells,
but is also present in bone and placental tissue. Elevated ALP levels in blood can be due
to many different liver diseases and also bone diseases, but also occur during pregnancy
(Braunwald et al., 2001).

pair0035: Alcohol Consumption → Alanine Aminotransferase

Alanine Aminotransferase (ALT) is an enzyme that is found primarily in the liver cells. It
is released into the blood in greater amounts when there is damage to the liver cells, for
example due to a viral hepatitis or bile duct problems. ALT levels are often normal in
alcoholic liver disease (Braunwald et al., 2001).

pair0036: Alcohol Consumption → Aspartate Aminotransferase

Aspartate aminotransferase (AST) is an enzyme that is found in the liver, but also in many
other bodily tissues, for example the heart and skeletal muscles. Similar to ALT, the AST
levels raise in acute liver damage. Elevated AST levels are not specific to the liver, but can
also be caused by other diseases, for example by pancreatitis. An AST:ALT ratio of more
than 3:1 is highly suggestive of alcoholic liver disease (Braunwald et al., 2001).
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pair0037: Alcohol Consumption → Gamma-Glutamyl Transpeptidase

Gamma-Glutamyl Transpeptidase (GGT) GGT is another enzyme that is primarily found
in liver cells. It is rarely elevated in conditions other than liver disease. High GGT levels
have been associated with alcohol use (Braunwald et al., 2001).

D.10 Pima Indians Diabetes

This data set, available at the UCI Machine Learning Repository (Bache and Lichman,
2013), was collected by the National Institute of Diabetes and Digestive and Kidney Diseases
in the USA to forecast the onset of diabetes mellitus in a high risk population of Pima
Indians near Phoenix, Arizona. Cases in this data set were selected according to several
criteria, in particular being female, at least 21 years of age and of Pima Indian heritage.
This means that there could be selection bias on age.

We downloaded the data from https://archive.ics.uci.edu/ml/datasets/Pima+

Indians+Diabetes. We only selected the instances with nonzero values, as it seems likely
that zero values encode missing data. This yielded 768 samples.

pair0038 pair0039 pair0040 pair0041

Figure 27: Scatter plots of pairs from D.10. pair0038: age → body mass index, pair0039:
age → serum insulin, pair0040: age → diastolic blood pressure, pair0041: age → plasma
glucose concentration.

pair0038: Age → Body Mass Index

Body mass index (BMI) is defined as the ratio between weight (kg) and the square of height
(m). Obviously, age is not caused by body mass index, but as age is a cause of both height
and weight, age causes BMI.

pair0039: Age → Serum Insulin

2-Hour serum insulin (µU/ml), measured 2 hours after the ingestion of a standard dose of
glucose, in an oral glucose tolerance test. We can exclude that serum insulin causes age,
and there could be an effect of age on serum insulin. Another explanation for the observed
dependence could be the selection bias.
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pair0040: Age → Diastolic Blood Pressure

Diastolic blood pressure (mm Hg). It seems obvious that blood pressure does not cause
age. The other causal direction seems plausible, but again, an alternative explanation for
the dependence could be selection bias.

pair0041: Age → Plasma Glucose Concentration

Plasma glucose concentration, measured 2 hours after the ingestion of a standard dose of
glucose, in an oral glucose tolerance test. Similar reasoning as before: we do not believe
that plasma glucose concentration causes ages, but it could be the other way around, and
there may be selection bias.

D.11 B. Janzing’s Meteo Data

This data set is from a private weather station, owned by Bernward Janzing, located in
Furtwangen (Black Forest), Germany at an altitude of 956 m. The measurements include
temperature, precipitation, and snow height (since 1979), as well as solar radiation (since
1986). The data have been archived by Bernward Janzing, statistical evaluations have
been published in Janzing (2004), monthly summaries of the weather are published in local
newspapers since 1981.

pair0042 pair0077

Figure 28: Scatter plots of pairs from D.11. pair0042: day of the year → temperature,
pair0077: solar radiation → temperature.

pair0042: Day of the Year → Temperature

This data set shows the dependence between season and temperature over 25 years plus one
month, namely the time range 01/01/1979–01/31/2004. It consists of 9162 measurements.

One variable is the day of the year, represented by an integer from 1 to 365 (or 366 for
leap years). The information about the year has been dropped. Y is the mean temperature
of the respective day, calculated according to the following definition:

Tmean :=
Tmorning + Tmidday + 2Tevening

4
,

where morning, midday, and evening are measured at 7:00 am, 14:00 pm, and 21:00 pm
(MEZ), respectively (without daylight saving time). Double counting of the evening value
is official standard of the German authority “Deutscher Wetterdienst”. It has been defined
at a time where no electronic data loggers were available and thermometers had to be read
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out by humans. Weighting the evening value twice has been considered a useful heuristics
to account for the missing values at night.

We consider day of the year as the cause, since it can be seen as expressing the angular
position on its orbit around the sun. Although true interventions are infeasible, it is com-
monly agreed that changing the position of the earth would result in temperature changes
at a fixed location due to the different solar incidence angle.

pair0077: Solar Radiation → Temperature

This data set shows the relation between solar radiation and temperature over 23 years,
namely the interval 01/01/1986–12/31/2008. It consists of 8401 measurements.

Solar radiation is measured per area in W/m2 averaged over one day on a horizontal
surface. Temperature is the averaged daily, as in pair0042. The original data has been
processed by us to extract the common time interval. We assume that radiation causes
temperature. High solar radiation increases the temperature of the air already at a scale
of hours. Interventions are easy to implement: Creating artificial shade on a large enough
surface would decrease the air temperature. On longer time scales there might also be an
influence from temperature to radiation via the generation of clouds through evaporation
in more humid environments. This should, however, not play a role for daily averages.

D.12 NCEP-NCAR Reanalysis

This data set, available from the NOAA (National Oceanic and Atmospheric Adminis-
tration) Earth System Research Laboratory website at http://www.esrl.noaa.gov/psd/

data/gridded/data.ncep.reanalysis.surface.html, is a subset of a reanalysis data set,
incorporating observations and numerical weather prediction model output from 1948 to
date (Kalnay et al., 1996). The reanalysis data set was produced by the National Center
for Environmental Prediction (NCEP) and the National Center for Atmospheric Research
(NCAR). Reanalysis data products aim for a realistic representation of all relevant climato-
logical variables on a spatiotemporal grid. We collected four variables from a global grid of
144 × 73 cells: air temperature (in K, pair0043), surface pressure (in Pascal, pair0044),
sea level pressure (in Pascal, pair0045) and relative humidity (in %, pair0045) on two
consecutive days, day 50 and day 51 of the year 2000 (i.e., Feb 19th and 20th). Each data
pair consists of 144× 73− 143 = 10369 data points, distributed across the globe. 143 data
points were subtracted because at the north pole values are repeated across all longitudes.

Each data point is the daily average over an area that covers 2.5◦ × 2.5◦ (approximately
250 km × 250 km at the equator). Because causal influence cannot propagate backwards
in time, temperature, pressure and humidity in a certain area are partly affected by their
value the day before in the same area.

pair0043: Temperature at t → Temperature at t+1

Due to heat storage, mean daily air temperature near surface at any day largely impact
daily air temperature at the following day. We assume there is no causation backwards in
time, hence the correlation between temperatures at two consecutive days must be driven
by confounders (such as large-scale weather patterns) or a causal influence from the first
day to the second.
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pair0043 pair0044 pair0045 pair0046

Figure 29: Scatter plots of pairs from D.12. pair0043: temperature at t → temperature
at t+1, pair0044: surface pressure at t → surface pressure at t+1, pair0045: sea level
pressure at t → sea level pressure at t+1, pair0046: relative humidity at t → relative
humidity at t+1, pair0052: (temp, press, slp, rh) at t → (temp, press, slp, rh) at t+1.

pair0044: Surface Pressure at t → Surface Pressure at t+1

Pressure patterns near the earth’s surface are mostly driven by large-scale weather patterns.
However, large-scale weather patterns are also driven by local pressure gradients and hence,
some of the correlation between surface pressure at two consecutive days stems from a direct
causal link between the first and the second day, as we assume there is no causation in time.

pair0045: Sea Level Pressure at t → Sea Level Pressure at t+1

Similar reasoning as in pair0044.

pair0046: Relative Humidity at t → Relative Humidity at t+1

Humidity of the air at one day affects the humidity of the following day because if no air
movement takes place and no drying or moistening occurs, it will approximately stay the
same. Furthermore, as reasoned above, because there is no causation backwards in time,
relative humidity at day t+ 1 cannot affect humidity at day t. Note that relative humidity
has values between 0 and 100. Values can be saturated in very humid places such as tropical
rainforest and approach 0 in deserts. For this reason, the scatter plot looks as if the data
were clipped.

pair0052: (Temp, Press, SLP, RH) at t → (Temp, Press, SLP, RH) at t+1

The pairs pair0043–pair0046 were combined to a 4-dimensional vector. From the reason-
ing above it follows that the vector of temperature, near surface pressure, sea level pressure
and relative humidity at day t has a causal influence on the vector of the same variables at
time t+ 1.

D.13 Traffic

This data set has been extracted from http://www.b30-oberschwaben.de/html/tabelle.

html, a website containing various kinds of information about the national highway B30.
This is a road in the federal state Baden-Württemberg, Germany, which provides an impor-
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tant connection of the region around Ulm (in the North) with the Lake Constance region
(in the South). After extraction, the data set contains 254 samples.

pair0047

Figure 30: Scatter plots of pairs from D.13. pair0047: type of day → number of cars.

pair0047: Type of Day → Number of Cars

One variable is the number of cars per day, the other denotes the type of the respective
day, with “1” indicating Sundays and holidays and “2” indicating working days. The type
of day causes the number of cars per day. Indeed, introducing an additional holiday by a
political decision would certainly change the amount of traffic on that day, while changing
the amount of traffic by instructing a large number of drivers to drive or not to drive at a
certain day would certainly not change the type of that day.

D.14 Hipel & McLeod

This data set contains 168 measurements of indoor and outdoor temperatures. It was taken
from a book by Hipel and McLeod (1994) and can be downloaded from http://www.stats.

uwo.ca/faculty/mcleod/epubs/mhsets/readme-mhsets.html.

pair0048

Figure 31: Scatter plots of pairs from D.14. pair0048: outdoor temperature → indoor
temperature.

pair0048: Outdoor Temperature → Indoor Temperature

Outdoor temperatures can have a strong impact on indoor temperatures, in particular when
indoor temperatures are not adjusted by air conditioning or heating. Contrarily, indoor
temperatures will have little or no effect on outdoor temperatures, because the outside
environment has a much larger heat capacity.
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D.15 Bafu

This data set deals with the relationship between daily ozone concentration in the air and
temperature. It was downloaded from http://www.bafu.admin.ch/luft/luftbelastung/

blick_zurueck/datenabfrage/index.html. Lower atmosphere ozone (O3) is a secondary
pollutant that is produced by the photochemical oxidation of carbon monoxide (CO),
methane (CH4), and non-methane volatile organic compounds (NMVOCs) by OH in the
presence of nitrogen oxides (NOx, NO + NO2) (Rasmussen et al., 2012). It is known that
ozone concentration strongly correlates with surface temperature (Bloomer et al., 2009).
Several explanations are given in the literature (see e.g., Rasmussen et al., 2012). Without
going into details of the complex underlying chemical processes, we mention that the crucial
chemical reactions are stronger at higher temperatures. For instance, isoprene emissions
of plants increase with increasing temperature and isoprene can play a similar role in the
generation of O3 as NOx (Rasmussen et al., 2012). Apart from this, air pollution may be
influenced indirectly by temperature, e.g., via increasing traffic at ‘good’ weather conditions
or an increased occurrence rate of wildfires. All these explanations state a causal path from
temperature to ozone. Note that the phenomenon of ozone pollution in the lower atmo-
sphere discussed here should not be confused with the ‘ozone hole’, which is a lack of ozone
in the higher atmosphere. Close to the surface, ozone concentration does not have an impact
on temperatures. For all three data sets, ozone is measured in µg/m3 and temperature in
◦C.

pair0049 pair0050 pair0051

Figure 32: Scatter plots of pairs from D.15. pair0049: temperature → ozone concen-
tration, pair0050: temperature → ozone concentration, pair0051: temperature → ozone
concentration, pair0055: radiation → ozone concentration.

pair0049: Temperature → Ozone Concentration

365 daily mean values of ozone and temperature of year 2009 in Lausanne-César-Roux,
Switzerland.

pair0050: Temperature → Ozone Concentration

365 daily mean values of ozone and temperature of year 2009 in Chaumont, Switzerland.

pair0051: Temperature → Ozone Concentration

365 daily mean values of ozone and temperature of year 2009 in Davos-See, Switzerland.
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pair0055: Radiation → Ozone Concentration

72 daily mean values of ozone concentrations and radiation in the last 83 days of 2009
at 16 different places in Switzerland (11 days were deleted due to missing data). Solar
radiation and surface ozone concentration are correlated (Feister and Balzer, 1991). The
deposition of ozone is driven by complex micro-meteorological processes including wind
direction, air temperature, and global radiation (Stockwell et al., 1997). For instance, solar
radiation affects the height of the planetary boundary layer and cloud formation and thus
indirectly influences ozone concentrations. In contrast, global radiation is not driven by
ozone concentrations close to the surface.

Ozone is given in µg/m3, radiation in W/m2. The 16 different places are: 1: Bern-
Bollwerk, 2: Magadino-Cadenazzo, 3: Lausanne-César-Roux, 4: Payerne, 5: Lugano-
Universita, 6: Taenikon, 7: Zuerich-Kaserne, 8: Laegeren, 9: Basel-Binningen, 10: Chau-
mont, 11: Duebendorf, 12: Rigi-Seebodenalp, 13: Haerkingen, 14: Davos-See, 15: Sion-
Aéroport, 16: Jungfraujoch.

D.16 Environmental

We downloaded ozone concentration, wind speed, radiation and temperature from http:

//www.mathe.tu-freiberg.de/Stoyan/umwdat.html, discussed in Stoyan et al. (1997).
The data consist of 989 daily values over the time period from 05/01/1989 to 10/31/1994
observed in Heilbronn, Germany.

pair0053: (Wind Speed, Radiation, Temperature) → Ozone Concentration

As we have argued above in Section D.15, wind direction (and speed), air temperature, and
global radiation influence local ozone concentrations. Wind can influence ozone concentra-
tions for example in the following way. No wind will keep the the concentration of ozone in
a given air parcel constant if no lateral or vertical sources or sinks are prevalent. In con-
trast, winds can move and disperse and hence mix air with different ozone concentrations.
Ozone concentration is given in µg/m3, wind speed in m/s, global radiation in W/m2 and
temperature in ◦C.

D.17 UNdata

The following data were taken from the “UNdata” database of the United Nations Statistics
Division at http://data.un.org.

pair0056–pair0059: Latitude of Capital → Female Life Expectancy

Pairs pair0056–pair0059 consist of female life expectancy (in years) at birth versus latitude
of the country’s capital, for various countries (China, Russia and Canada were removed).
The four pairs correspond with measurements over the periods 2000–2005, 1995–2000, 1990–
1995, 1985–1990, respectively. The data were downloaded from http://data.un.org/

Data.aspx?d=GenderStat&f=inID%3a37.

The location of a country (encoded in the latitude of its capital) has an influence on how
poor or rich a country is, hence affecting the quality of the health care system and ultimately
life expectancy. This influence could stem from abundance of natural resources within
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pair0056 pair0057 pair0058 pair0059

pair0060 pair0061 pair0062 pair0063

pair0064 pair0073 pair0074 pair0075

Figure 33: Scatter plots of pairs from D.17. pair0056–pair0059: latitude of capital →
female life expectancy, pair0060–pair0063: latitude of capital → male life expectancy,
pair0064: drinking water access → infant mortality, pair0073: energy use → CO2 emis-
sions, pair0074: GNI per capita → life expectancy, pair0075: GNI per capita → under-5
mortality rate.

the country’s borders or the influence neighboring countries have on its economic welfare.
Furthermore, the latitude can influence life expectancy via climatic factors. For instance,
life expectancy might be smaller if a country frequently experiences climatic extremes. In
contrast, it is clear that life expectancy does not have any effect on latitude.

pair0060–pair0063: Latitude of Capital → Male Life Expectancy

Pairs pair0060–pair0063 are similar, but concern male life expectancy. The same reason-
ing as for female life expectancy applies here.

pair0064: Drinking Water Access → Infant Mortality

Here, one variable describes the percentage of population with sustainable access to im-
proved drinking water sources in 2006, whereas the other variable denotes the infant mor-
tality rate (per 1000 live births) for both sexes. The data were downloaded from http://
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data.un.org/Data.aspx?d=WHO&f=inID%3aMBD10 and http://data.un.org/Data.aspx?

d=WHO&f=inID%3aRF03, respectively, and consist of 163 samples.

Clean drinking water is a primary requirement for health, in particular for infants (Esrey
et al., 1991). Changing the percentage of people with access to clean water will directly
change the mortality rate of infants, since infants are particularly susceptible to diseases
(Lee et al., 1997). There may be some feedback, because if infant mortality is high in a poor
country, development aid may be directed towards increasing the access to clean drinking
water.

pair0073: Energy Use → CO2 Emissions

This data set contains energy use (in kg of oil equivalent per capita) and CO2 emission data
from 152 countries between 1960 and 2005, yielding together 5084 samples. Considering
the current energy mix across the world, the use of energy clearly results in CO2 emissions
(although in varying amounts across energy sources). Contrarily, a hypothetical change in
CO2 emissions will not affect the energy use of a country on the short term. On the longer
term, if CO2 emissions increase, this may cause energy use to decrease because of fear for
climate change.

pair0074: GNI per Capita → Life Expectancy

We collected the Gross National Income (GNI, in USD) per capita and the life expectancy
at birth (in years) for 194 different countries. GNI can be seen as an index of wealth of a
country. In general, richer countries have a better health care system than poor countries
an thus can take better care of their citizens when they are ill. Reversely, we believe that
the life expectancy of humans has a smaller impact on how wealthy a country is than vice
versa.

pair0075: GNI per Capita → Under-5 Mortality Rate

Here we collected the Gross National Income (GNI, in USD) per capita and the under-5
mortality rate (deaths per 1000 live births) for 205 different countries. The reasoning is
similar as in pair0074. GNI as an index of wealth influences the quality of the health care
system, which in turn determines whether young children will or will not die from minor
diseases. As children typically do not contribute much to GNI per capita, we do not expect
the reverse causal relation to be very strong.

D.18 Yahoo database

These data denote stock return values and were downloaded from http://finance.yahoo.

com. We collected 1331 samples from the following stocks between January 4th, 2000 and
June 17, 2005: Hang Seng Bank (0011.HK), HSBC Hldgs (0005.HK), Hutchison (0013.HK),
Cheung kong (0001.HK), and Sun Hung Kai Prop. (0016.HK). Subsequently, the following
preprocessing was applied, which is common in financial data processing:

1. Extract the dividend/split adjusted closing price data from the Yahoo Finance data
base.
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2. For the few days when the price is not available, we use simple linear interpolation to
estimate the price.

3. For each stock, denote the closing price on day t by Pt, and the corresponding return
is calculated as Xt = (Pt − Pt−1)/Pt−1.

pair0065 pair0066 pair0067

Figure 34: Scatter plots of pairs from D.18. pair0065: Stock Return of Hang Seng Bank
→ Stock Return of HSBC Hldgs, pair0066: Stock Return of Hutchison → Stock Return of
Cheung kong, pair0067: Stock Return of Cheung kong → Stock Return of Sun Hung Kai
Prop.

pair0065: Stock Return of Hang Seng Bank → Stock Return of HSBC Hldgs

HSBC owns 60% of Hang Seng Bank. Consequently, if stock returns of Hang Seng Bank
change, this should have an influence on stock returns of HSBC Hldgs, whereas causation
in the other direction would be expected to be less strong.

pair0066: Stock Return of Hutchison → Stock Return of Cheung kong

Cheung kong owns about 50% of Hutchison. Same reasoning as in pair0065.

pair0067: Stock Return of Cheung kong → Stock Return of Sun Hung Kai
Prop.

Sun Hung Kai Prop. is a typical stock in the Hang Seng Property subindex, and is believed
to depend on other major stocks, including Cheung kong.

D.19 Internet Traffic Data

This data set has been created from the log-files of a http-server of the Max Planck Institute
for Intelligent Systems in Tübingen, Germany. The variable Internet connections counts
the number of times an internal website of the institute has been accessed during a time
interval of 1 minute (more precisely, it counts the number of URL requests). Requests
for non-existing websites are not counted. The variable Byte transferred counts the total
number of bytes sent for all those accesses during the same time interval. The values
(x1, y1), . . . , (x498, y498) refer to 498 time intervals. To avoid too strong dependence between
the measurements, the time intervals are not adjacent but have a distance of 20 minutes.
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pair0068

Figure 35: Scatter plots of pairs from D.19. pair0068: internet connections → bytes trans-
ferred.

pair0068: Internet Connections → Bytes Transferred

Internet connections causes Bytes transferred because an additional access of the website
raises the transfer of data, while transferring more data does not create an additional
website access. Note that not every access yields data transfer because the website may
still be cached. However, this fact does not spoil the causal relation, it only makes it less
deterministic.

D.20 Inside and Outside Temperature

This bivariate time-series data consists of measurements of inside room temperature (◦C)
and outside temperature (◦C), where measurements were taken every 5 minutes for a period
of about 56 days, yielding a total of 16382 measurements. The outside thermometer was
located on a spot that was exposed to direct sunlight, which explains the large fluctuations.
The data were collected by Joris M. Mooij.

pair0069

Figure 36: Scatter plots of pairs from D.20. pair0069: outside temperature → inside
temperature.

pair0069: Outside Temperature → Inside Temperature

Although there is a causal relationship in both directions, we expect that the strongest effect
is from outside temperature on inside temperature, as the heat capacity of the inside of a
house is much smaller than that of its surroundings. See also the reasoning for pair0048.

81



Mooij, Peters, Janzing, Zscheischler and Schölkopf

D.21 Armann & Bülthoff

This data set is taken from a psychological experiment that artificially generates images
of human faces that interpolate between male and female, taking real faces as basis (Ar-
mann and Bülthoff, 2012). The interpolation is done via principal component analysis after
representing true face images as vectors in an appropriate high-dimensional space. Human
subjects are instructed to label the faces as male or female. The variable “parameter”
runs between 0 and 14 and describes the transition from female to male. It is chosen by
the experimenter. The binary variable “answer” indicates the answers ‘female’ and ‘male’,
respectively. The data set consists of 4499 samples.

pair0070

Figure 37: Scatter plots of pairs from D.21. pair0070: parameter → answer.

pair0070: Parameter → Answer

Certainly parameter causes answer. We do not have to talk about hypothetical interventions.
Instead, we have a true intervention, since “parameter” has been set by the experimenter.

D.22 Acute Inflammations

This data set is part of the UCI Machine Learning Repository (Bache and Lichman, 2013)
and is available at https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations.
It was collected in order to create a computer expert system that decides whether a patient
suffers from two different diseases of urinary system (Czerniak and Zarzycki, 2003). The
two possible diseases are acute inflammations of urinary bladder and acute nephritises of
renal pelvis origin. As it is also possible to chose none of those, the class variable takes
values in {0, 1}2. The decision is based on six symptoms: temperature of patient (e.g. 35.9),
occurrence of nausea (“yes” or “no”), lumbar pain (“yes” or “no”), urine pushing (“yes” or
“no”), micturition pains (“yes” or “no”) and burning of urethra, itch, swelling of urethra
outlet (“yes” or “no”). These are grouped together in a six-dimensional vector “symptoms”.

pair0071: Symptoms → Classification of Disease

One would think that the disease is causing the symptoms but this data set was created
artificially. The description on the UCI homepage says: “The data was created by a medical
expert as a data set to test the expert system, which will perform the presumptive diagnosis
of two diseases of urinary system. (...) Each instance represents an potential patient.” We
thus consider the symptoms as the cause for the expert’s decision.
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D.23 Sunspots

The data set consists of 1632 monthly values between May 1874 and April 2010 and therefore
contains 1632 data points. The temperature data have been taken from http://www.

cru.uea.ac.uk/cru/data/temperature/ and have been collected by Climatic Research
Unit (University of East Anglia) in conjunction with the Hadley Centre (at the UK Met
Office) (Morice et al., 2012). The temperature data is expressed in deviations from the
1961–90 mean global temperature of the Earth (i.e., monthly anomalies). The sunspot
data (Hathaway, 2010) are taken from the National Aeronautics and Space Administration
and were downloaded from http://solarscience.msfc.nasa.gov/SunspotCycle.shtml.
According to the description on that website, “sunspot number is calculated by first counting
the number of sunspot groups and then the number of individual sunspots. The sunspot
number is then given by the sum of the number of individual sunspots and ten times the
number of groups. Since most sunspot groups have, on average, about ten spots, this
formula for counting sunspots gives reliable numbers even when the observing conditions
are less than ideal and small spots are hard to see.”

pair0072

Figure 38: Scatter plots of pairs from D.23. pair0072: sunspots → global mean tempera-
ture.

pair0072: Sunspots → Global Mean Temperature

Sunspots are phenomena that appear temporarily on the sun’s surface. Although the causes
of sunspots are not entirely understood, there is a significant dependence between the
number of sunspots and the global mean temperature anomalies (p-value for zero correlation
is less than 10−4). There is evidence that the Earth’s climate heats and cools as solar
activity rises and falls (Haigh, 2007), and the sunspot number can be seen as a proxy for
solar activity. Also, we do not believe that the Earth’s surface temperature (or changes of
the Earth’s atmosphere) has an influence on the activity of the sun. We therefore consider
number of sunspots causing temperature as the ground truth.

D.24 Food and Agriculture Organization of the UN

The data set has been collected by Food and Agriculture Organization of the UN (http:
//www.fao.org/economic/ess/ess-fs/en/) and is accessible at http://www.docstoc.

com/docs/102679223/Food-consumption-and-population-growth---FAO. It covers 174
countries or areas during the period from 1990–92 to 1995–97 and the period from 1995–97
to 2000–02. As one entry is missing, this gives 347 data points. We selected two variables:
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population growth and food consumption. The first variable indicates the average annual
rate of change of population (in %), the second one describes the average annual rate of
change of total dietary consumption for total population (kcal/day) (also in %).

pair0076

Figure 39: Scatter plots of pairs from D.24. pair0076: population growth → food con-
sumption growth.

pair0076: Population Growth → Food Consumption Growth

We regard population growth to cause food consumption growth, mainly because more
people eat more. Both variables are most likely also confounded by the availability of food,
driven for instance by advances in agriculture and subsequently increasing yields, but also
by national and international conflicts, the global food market and other economic factors.
However, for the short time period considered here, confounders which mainly influence the
variables on a temporal scale can probably be neglected. Their might also be a causal link
from food consumption growth to population growth, for instance one could imagine that
if people are well fed, they also reproduce more. However, we assume this link only plays a
minor role here.

D.25 Light Response

The filtered version of the light response data was obtained from Moffat (2012). It consists
of 721 measurements of Net Ecosystem Productivity (NEP) and three different measures of
the Photosynthetic Photon Flux Density (PPFD): the direct, diffuse, and total PPFD. NEP
is a measure of the net CO2 flux between the biosphere and the atmosphere, mainly driven
by biotic activity. It is defined as the photosynthetic carbon uptake minus the carbon
release by respiration, and depends on the available light. NEP is measured in units of
µmol CO2 m−2 s−1. PPFD measures light intensity in terms of photons that are available
for photosynthesis, i.e., with wavelength between 400 nm and 700 nm (visible light). More
precisely, PPFD is defined as the number of photons with wavelength of 400–700 nm falling
on a certain area per time interval, measured in units of µmol photons m−2 s−1. The total
PPFD is the sum of PPFDdif, which measures only diffusive photons, and PPFDdir, which
measures only direct (solar light) photons. The data was measured over several hectare of
a forest in Hainich, Germany (site name DE-Hai, latitude: 51.08◦N, longitude: 10.45◦E),
and is available from http://fluxnet.ornl.gov.

84

http://fluxnet.ornl.gov


Distinguishing Cause from Effect

pair0078 pair0079 pair0080

Figure 40: Scatter plots of pairs from D.25. pair0078: PPFD→ NEP, pair0079: PPFDdif
→ NEP, pair0080: PPFDdir → NEP.

pair0078–pair0080: {PPFD,PPFDdif,PPFDdir} → NEP

Net Ecosystem Productivity is known to be driven by both the direct and the diffuse
Photosynthetic Photon Flux Density, and hence also by their sum, the total PPFD.

D.26 FLUXNET

The data set contains measurements of net CO2 exchanges between atmosphere and bio-
sphere aggregated over night, and the corresponding temperature. It is taken from the
FLUXNET network (Baldocchi et al., 2001), available at http://fluxnet.ornl.gov (see
also Section D.25). The data have been collected at a 10 Hz rate and was aggregated to
one value per day over one year (365 values) and at three different sites (BE-Bra, DE-Har,
US-PFa). CO2 exchange measurements typically have a footprint of about 1km2. The data
set contains further information on the quality of the data (“1” means that the value is
credible, “NaN” means that the data point has been filled in).

pair0081 pair0082 pair0083

Figure 41: Scatter plots of pairs from D.26. pair0081 (BE-Bra): temperature→ local CO2

flux, pair0082 (DE-Har): temperature→ local CO2 flux, pair0083 (US-PFa): temperature
→ local CO2 flux.

pair0081–pair0083: Temperature → Local CO2 Flux

Because of lack of sunlight, CO2 exchange at night approximates ecosystem respiration
(carbon release from the biosphere to the atmosphere), which is largely dependent on tem-
perature (see, e.g., Mahecha et al., 2010). The CO2 flux is mostly generated by microbial
decomposition in soils and maintenance respiration from plants and does not have a direct
effect on temperature. We thus consider temperature causing CO2 flux as the ground truth.
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The three pairs pair0081–pair0083 correspond with sites BE-Bra, DE-Har, US-PFa, re-
spectively.

D.27 US County-Level Growth

The data set from Wheeler (2003) is available at http://www.spatial-econometrics.com/
data/contents.html. It contains both employment and population information for 3102
counties in the US in 1980. We selected columns eight and nine in the file “countyg.dat”.
Column eight contains the natural logarithm of the number of employed people, while
column nine contains the natural logarithm of the total number of people living in this
county, and is therefore always larger than the number in column eight.

pair0084

Figure 42: Scatter plots of pairs from D.27. pair0084: population → employment.

pair0084: Population → Employment

It seems reasonable that the total population causes the employment and not vice versa. If
we increase the number of people living in an area, this has a direct effect on the number of
employed people. We believe that the decision to move into an economically strong area is
rather based on the employment rate rather than the absolute number of employed people.
There might be an effect that the employment status influences the decision to get children
but we regard this effect to be less relevant.

D.28 Milk Protein Trial

This data set is extracted from that for the milk protein trial used by Verbyla and Cullis
(1990). The original data set consists of assayed protein content of milk samples taken
weekly from each of 79 cows. The cows were randomly allocated to one of three diets:
barley, mixed barley-lupins, and lupins, with 25, 27 and 27 cows in the three groups,
respectively. Measurements were taken for up to 19 weeks but there were 38 drop-outs
from week 15 onwards, corresponding to cows who stopped producing milk before the end
of the experiment. We removed the missing values (drop-outs) in the data set: we did
not consider the measurements from week 15 onwards, which contain many drop-outs, and
we discarded the cows with drop-outs before week 15. Finally, the data set contains 71
cows and 14 weeks, i.e., 994 samples in total. Furthermore, we re-organized the data set
to see the relationship between the milk protein and the time to take the measurement.
We selected two variables: the time to take weekly measurements (from 1 to 14), and the
protein content of the milk produced by each cow at that time.
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pair0085

Figure 43: Scatter plots of pairs from D.28. pair0085: time of measurement → protein
content of milk.

pair0085: Time of Measurement → Protein Content of Milk

Clearly, the time of the measurement causes the protein content and not vice versa. We do
not consider the effect of the diets on the protein content.

D.29 kamernet.nl

This data was collected by Joris M. Mooij from http://www.kamernet.nl, a Dutch website
for matching supply and demand of rooms and apartments for students, in 2007. The
variables of interest are the size of the apartment or room (in m2) and the monthly rent
in EUR. Two outliers (one with size 0 m2, the other with rent of 1 EUR per month) were
removed, after which 666 samples remained.

pair0086

Figure 44: Scatter plots of pairs from D.29. pair0086: size of apartment → monthly rent.

pair0086: Size of Apartment → Monthly Rent

Obviously, the size causes the rent, and not vice versa.

D.30 Whistler Daily Snowfall

The Whistler daily snowfall data is one of the data sets on http://www.mldata.org, and
was originally obtained from http://www.climate.weatheroffice.ec.gc.ca/ (Whistler
Roundhouse station, identifier 1108906). We downloaded it from http://www.mldata.

org/repository/data/viewslug/whistler-daily-snowfall. It concerns historical daily
snowfall data in Whistler, BC, Canada, over the period July 1, 1972 to December 31, 2009.
It was measured at the top of the Whistler Gondola (Latitude: 50◦04′04.000′′N, Longitude:
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122◦56′50.000′′W, Elevation: 1835 m). We selected two attributes, mean temperature (◦C)
and total snow (cm). The data consists of 7753 measurements of these two attributes.

pair0087

Figure 45: Scatter plots of pairs from D.30. pair0087: temperature → total snow.

pair0087: Temperature → Total Snow

Common sense tells us that the mean temperature is one of the causes of the total amount of
snow, although there may be a small feedback effect of the amount of snow on temperature.
Confounders are expected to be present (e.g., whether there are clouds).

D.31 Bone Mineral Density

This data set comes from the R package ElemStatLearn, and contains measurements of the
age and the relative change of the bone mineral density of 261 adolescents. Each value is the
difference in the spinal bone mineral density taken on two consecutive visits, divided by the
average. The age is the average age over the two visits. We preprocessed the data by taking
only the first measurement for each adolescent, as each adolescent has 1–3 measurements.

pair0088

Figure 46: Scatter plots of pairs from D.31. pair0088: age→ relative bone mineral density.

pair0088: Age → Bone Mineral Density

Age must be the cause, bone mineral density the effect.

D.32 Soil Properties

These data were collected within the Biodiversity Exploratories project, see http://www.

biodiversity-exploratories.de. We used data set 14686 (soil texture) and 16666 (root
decomposition). With the goal to study fine root decomposition rates, Solly et al. (2014)

88

http://www.biodiversity-exploratories.de
http://www.biodiversity-exploratories.de


Distinguishing Cause from Effect

placed litterbags containing fine roots in 150 forest and 150 grassland sites along a cli-
mate gradient across Germany. Besides the decomposition rates, a range of other relevant
variables were measured, including soil properties such as clay content, soil organic carbon
content and soil moisture. We deleted sites with missing values and separated grasslands
and forests.

pair0089 pair0090 pair0091 pair0092

Figure 47: Scatter plots of pairs from D.32. pair0089: Root decomposition in April →
Root decomposition in October (Forests), pair0090: Root decomposition in April → Root
decomposition in October (Grasslands), pair0091: Clay content in soil → Soil moisture
(forests), pair0092: Clay content in soil → Organic carbon content (forests).

pair0089–pair0090: Root Decomposition in April → Root Decomposition in
October

Root decomposition happens monotonously in time. Hence the amount decomposed in
April directly affects the amount decomposed in October in the same year.

pair0091: Clay Content in Soil → Soil Moisture

The amount of water that can be stored in soils depends on its texture. The clay content
of a soil influences whether precipitation is stored longer in soils or runs off immediately.
In contrast, it is clear that wetness of a soil does not affect its clay content.

pair0092: Clay Content in Soil → Organic Carbon Content

How much carbon an ecosystem stores in its soil depends on multiple factors, including the
land cover type, climate and soil texture. Higher amounts of clay are favorable for storage
of organic carbon (Solly et al., 2014). Soil organic carbon, on the other hand, does not alter
the texture of a soil.

D.33 Runoff

This data set comes from the MOPEX data base (http://www.nws.noaa.gov/ohd/mopex/
mo_datasets.htm and can be downloaded directly from ftp://hydrology.nws.noaa.gov/

pub/gcip/mopex/US_Data/Us_438_Daily/. It contains precipitation and runoff data from
over 400 river catchments in the USA on a daily resolution from 1948 to 2004. We computed
yearly averages of precipitation and runoff for each catchment.
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pair0093

Figure 48: Scatter plots of pairs from D.33. pair0093: Precipitation → Runoff.

pair0093: Precipitation → Runoff

Precipitation is by far the largest driver for runoff in a given river catchment. There might
be a very small feedback from runoff that evaporates and generates new precipitation. This
is, however, negligible if the catchment does not span over full continents.

D.34 Electricity Load

This data set comes from a regional energy distributor in Turkey. It contains three variables,
the hour of the day, temperature in degree Celsius and electricity consumption (load) in
MW per hour. We thank S. Armagan Tarim and Steve Prestwich for providing the data.

pair0094 pair0095 pair0096

Figure 49: Scatter plots of pairs from D.34. pair0094: Hour of the day → Tempera-
ture, pair0095: Hour of the day → Electricity consumption, pair0096: Temperature →
Electricity consumption.

pair0094: Hour of the Day → Temperature

We consider hour of the day as the cause, since it can be seen as expressing the angular
position of the sun. Although true interventions are unfeasible, it is commonly agreed that
changing the position of the sun would result in temperature changes at a fixed location
due to the different solar incidence angle.

pair0095: Hour of the Day → Electricity Consumption

The hour of the day constrains in many ways what people do and thus also their use of
electricity. Consequently, we consider hour of the day as cause and electricity consumption
as effect.
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pair0096: Temperature → Electricity Consumption

Changes in temperature can prompt people to use certain electric devices, e.g., an electric
heating when it is gets very cold or the usage of a fan or air conditioning when it gets
very hot. Furthermore, certain machines such as computers have to be cooled more if
temperatures rise. Hence we consider temperature as cause and electricity consumption as
effect.

D.35 Ball Track

The data has been recorded by D. Janzing using a ball track that has been equipped with
two pairs of light barriers. The first pair measures the initial speed and the second pair the
speed of a ball at some later position of the track. The units are arbitrary and differ for
both measurements since they are obtained by inverting the time the ball needed to pass
the distance between two light barriers of one pair.

pair0097 pair0098

Figure 50: Scatter plots of pairs from D.35. pair0097: Initial speed → Final speed,
pair0098: Initial speed → Final speed.

The initial part of the track has large slope. The initial speed is strongly determined by
the exact position where the ball is put on the track. For part of the runs, the position of
the ball has been chosen by D. Janzing, the other part by a 4-year old child. This should
avoid that the variation of the initial position is done in a too systematic way.

Two similar experiments have been performed, using different ball track setups. For
pair0098 the ball track had a longer acceleration zone than for pair0097, which allows for
larger variations in initial speed.

pair0097: Initial Speed → Final Speed

These data consists of 202 measurements. Obviously, the initial speed of the ball causes the
final speed.

pair0098: Initial Speed → Final Speed

These data consist of 94 measurements. Again, the initial speed of the ball causes the final
speed.
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D.36 Nlschools

This is data set nlschools from the R package MASS. The data were used by Snijders and
Bosker (1999) as a running example and are about a study of 2287 eighth-grade pupils (aged
about 11) in 132 classes in 131 schools in the Netherlands. We used two variables: lang, a
language test score, and SES, the social-economic status of the pupil’s family.

pair0099

Figure 51: Scatter plots of pairs from D.36. pair0099: Social-economic status of family →
Language test score.

pair0099: Social-Economic Status of Family → Language Test Score

We consider the social-economic status of the pupil’s family to be the cause of the language
test score of the pupil. However, note that selection bias may be present via the choice of
the schools to include in the study.

D.37 CPUs

This is data set cpus from the R package MASS, and concerns characteristics of 209 CPUs
(Ein-Dor and Feldmesser, 1987). We used two variables: syct, cycle time in nanoseconds,
and perf, the published performance on a benchmark mix relative to an IBM 370/158-3,
and took the logarithms of the original values.

pair0100

Figure 52: Scatter plots of pairs from D.37. pair0100: CPU cycle time → Performance.

pair0100: CPU Cycle Time → Performance

It should be obvious that CPU cycle time causes its performance.
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Appendix E. Computation Time

We report the total computation time for each benchmark set and for each of our implemen-
tations of various methods in Figures 53 and 54. We used a machine with Intel Xeon CPU

E5-2680 v2 @ 2.80GHz processors, 40 cores, and 125 GB of RAM. The measured computa-
tion time measures the total time spent (i.e., the sum of the computation times of individual
cores). We did not spend much effort on optimizing the implementations, so the reported
computation times should be seen as upper bounds on what is achievable. We only report
results for the unperturbed data, as the preprocessing does not affect computation time
significantly.

In general, for the ANM implementations, most time is taken by the Gaussian Pro-
cess regression. The HSIC test and entropy estimators are relatively quick compared to
that. A notable outlier is ANM-MML which spends much time on estimating the MML of
the marginal distribution using the algorithm by Figueiredo and Jain (2002). IGCI imple-
mentations are much faster than ANM (about two orders of magnitude in our setting), as
non-parametric regression is not required. One notable outlier for the IGCI implementa-
tions is IGCI-ent-PSD, which shows that the ent-PSD estimator is slower than the other
entropy estimators in the ITE toolbox. Interestingly, this is also the only non-parametric
entropy estimator that turned out to be robust to perturbations of the data.
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Figure 53: Computation times of various ANM methods on different (unperturbed) data
sets. For the variants of the spacing estimator, only the results for sp1 are shown, as results
for sp2,. . . ,sp6 were similar.
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Figure 54: Computation times of various IGCI methods on different (unperturbed) data
sets. For the variants of the spacing estimator, only the results for sp1 are shown, as results
for sp2,. . . ,sp6 were similar. We only show results for the uniform base measure as those
for the Gaussian base measure are similar.
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zum 25-jährigen Bestehen der Wetterstation. Self-published, in German, 2004.

D. Janzing and B. Schölkopf. Causal inference using the algorithmic Markov condition. IEEE
Transactions on Information Theory, 56(10):5168–5194, 2010.

D. Janzing, X. Sun, and B. Schölkopf. Distinguishing cause and effect via second order exponential
models. arXiv.org preprint, arXiv:0910.5561v1 [stat.ML], October 2009. URL http://arxiv.

org/abs/0910.5561v1.

D. Janzing, P. Hoyer, and B. Schölkopf. Telling cause from effect based on high-dimensional obser-
vations. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010),
pages 479–486, 2010.

D. Janzing, J. M. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniušis, B. Steudel, and
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A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information. Physical Review E,
69:066138, 2004.

L. Lee, M. R. Rosenzweig, and M. M. Pitt. The effects of improved nutrition, sanitation, and water
quality on child health in high-mortality populations. Journal of Econometrics, 77(1):209–235,
1997.

98

http://arxiv.org/abs/0910.5561v1
http://arxiv.org/abs/0910.5561v1


Distinguishing Cause from Effect

J. Lemeire and D. Janzing. Replacing causal faithfulness with algorithmic independence of condi-
tionals. Minds and Machines, 23(2):227–249, May 2013.

M. D. Mahecha, M. Reichstein, N. Carvalhais, G. Lasslop, H. Lange, S. I. Seneviratne, R. Vargas,
C. Ammann, M. A. Arain, A. Cescatti, I. A. Janssens, M. Migliavacca, L. Montagnani, and A. D.
Richardson. Global convergence in the temperature sensitivity of respiration at ecosystem level.
Science, 329(5993):838–840, 2010.

R. Matthews. Storks deliver babies (p = 0.008). Teaching Statistics, 22(2):36–38, 2000.

M. Meyer and P. Vlachos. Statlib: Data, software and news from the statistics community, 2014.
URL http://lib.stat.cmu.edu/.

A. M. Moffat. A New Methodology to Interpret High Resolution Measurements of Net Carbon Fluxes
between Terrestrial Ecosystems and the Atmosphere. PhD thesis, Friedrich Schiller University,
Jena, 2012.

J. M. Mooij and T. Heskes. Cyclic causal discovery from continuous equilibrium data. In Proceedings
of the 29th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2013), pages 431–
439, 2013.

J. M. Mooij and D. Janzing. Distinguishing between cause and effect. In JMLR Workshop and
Conference Proceedings, volume 6, pages 147–156, 2010.

J. M. Mooij, D. Janzing, J. Peters, and B. Schölkopf. Regression by dependence minimization and its
application to causal inference. In Proceedings of the 26th International Conference on Machine
Learning (ICML 2009), pages 745–52, 2009.

J. M. Mooij, O. Stegle, D. Janzing, K. Zhang, and B. Schölkopf. Probabilistic latent variable models
for distinguishing between cause and effect. In Advances in Neural Information Processing Systems
23 (NIPS*2010), pages 1687–1695, 2010.

J. M. Mooij, D. Janzing, T. Heskes, and B. Schölkopf. On causal discovery with cyclic additive noise
models. In Advances in Neural Information Processing Systems 24 (NIPS*2011), pages 639–647,
2011.

J. M. Mooij, D. Janzing, J. Zscheischler, and B. Schölkopf. CauseEffectPairs repository, 2014. URL
http://webdav.tuebingen.mpg.de/cause-effect/.

C. P. Morice, J. J. Kennedy, N. A. Rayner, and P. D. Jones. Quantifying uncertainties in global and
regional temperature change using an ensemble of observational estimates: The hadcrut4 data
set. Journal of Geophysical Research: Atmospheres (1984–2012), 117(D8), 2012.

W. Nash, T. Sellers, S. Talbot, A. Cawthorn, and W. Ford. The population biology of Abalone
(Haliotis species) in Tasmania. I. Blacklip Abalone (H. rubra) from the North Coast and Islands
of Bass Strait. Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288), 1994.

H. A. Noughabi and R. A. Noughabi. On the entropy estimators. Journal of Statistical Computation
and Simulation, 83:784–792, 2013.
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