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Abstract

We focus on the distribution regression problem: regressing to vector-valued outputs from
probability measures. Many important machine learning and statistical tasks fit into this
framework, including multi-instance learning and point estimation problems without ana-
lytical solution (such as hyperparameter or entropy estimation). Despite the large number
of available heuristics in the literature, the inherent two-stage sampled nature of the prob-
lem makes the theoretical analysis quite challenging, since in practice only samples from
sampled distributions are observable, and the estimates have to rely on similarities com-
puted between sets of points. To the best of our knowledge, the only existing technique
with consistency guarantees for distribution regression requires kernel density estimation
as an intermediate step (which often performs poorly in practice), and the domain of the
distributions to be compact Euclidean. In this paper, we study a simple, analytically com-
putable, ridge regression-based alternative to distribution regression, where we embed the
distributions to a reproducing kernel Hilbert space, and learn the regressor from the em-
beddings to the outputs. Our main contribution is to prove that this scheme is consistent
in the two-stage sampled setup under mild conditions (on separable topological domains
enriched with kernels): we present an exact computational-statistical efficiency trade-off
analysis showing that our estimator is able to match the one-stage sampled minimax op-
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timal rate (Caponnetto and De Vito, 2007; Steinwart et al., 2009). This result answers a
17-year-old open question, establishing the consistency of the classical set kernel (Haussler,
1999; Gärtner et al., 2002) in regression. We also cover consistency for more recent kernels
on distributions, including those due to Christmann and Steinwart (2010).

Keywords: Two-Stage Sampled Distribution Regression, Kernel Ridge Regression, Mean
Embedding, Multi-Instance Learning, Minimax Optimality

1. Introduction

We address the learning problem of distribution regression in the two-stage sampled setting,
where we only have bags of samples from the probability distributions: we regress from
probability measures to real-valued (Póczos et al., 2013) responses, or more generally to
vector-valued outputs (belonging to an arbitrary separable Hilbert space). Many classical
problems in machine learning and statistics can be analysed in this framework. On the
machine learning side, multiple instance learning (Dietterich et al., 1997; Ray and Page,
2001; Dooly et al., 2002) can be thought of in this way, where each instance in a labeled
bag is an i.i.d. (independent identically distributed) sample from a distribution. On the
statistical side, tasks might include point estimation of statistics on a distribution without
closed form analytical expressions (e.g., its entropy or a hyperparameter).

Intuitive description of our goal: Let us start with a somewhat informal definition
of the distribution regression problem and an intuitive phrasing of our goals. Suppose that
our data consist of z = {(xi, yi)}li=1, where xi is a probability distribution, yi is its label
(in the simplest case yi ∈ R or yi ∈ Rd) and each (xi, yi) pair is i.i.d. sampled from a
meta distribution M. However, we do not observe xi directly; rather, we observe a sample

xi,1, . . . , xi,Ni
i.i.d.∼ xi. Thus the observed data are ẑ = {({xi,n}Nin=1, yi)}li=1. Since xi,j is

sampled from xi, and xi is sampled from M, we call this process two-stage sampling. Our
goal is to predict a new yl+1 from a new batch of samples xl+1,1, . . . , xl+1,Nl+1

drawn from a
new distribution xl+1 ∼M. For example, in a medical application, the ith patient might be
identified with a probability distribution (xi), which can be periodically assessed by blood
tests ({xi,n}Nin=1). We are also given some health indicator of the patient (yi), which might
be inferred from his/her blood measurements. Based on the observations (ẑ), we might
wish to learn the mapping from the set of blood tests to the health indicator, and the hope
is that by observing more patients (larger l) and performing a larger number of tests (larger
Ni) the estimated mapping (f̂ = f̂(ẑ)) becomes more “precise”. Briefly, we consider the
following questions:

Can the distribution regression problem be solved consistently
under mild conditions? What is the exact computational-
statistical efficiency trade-off implied by the two-stage sampling?

In our work the estimated mapping (f̂) is the analytical solution of a kernel ridge regression
(KRR) problem.1 The performance of f̂ depends on the assumed function class (H), the

1. Beyond its simple analytical formula, kernel ridge regression also allows efficient distributed (Zhang et al.,
2015; Richtárik and Takác̆, 2016), sketch (Alaoui and Mahoney, 2015; Yang et al., 2016) and Nyström
based approximations (Rudi et al., 2015).
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family of f̂ candidates used in the ridge formulation. We shall focus on the analysis of two
settings:

1. Well-specified case (f∗ ∈ H): In this case we assume that the regression function
f∗ belongs to H. We focus on bounding the goodness of f̂ compared to f∗. In other
words, if R[f∗] denotes the prediction error (expected risk) of f∗, then our goal is to
derive a finite-sample bound for the excess risk, E(f̂ , f∗) = R[f̂ ] − R[f∗] that holds
with high probability. We make use of this bound to establish the consistency of the
estimator (i.e., drive the excess risk to zero) and to derive the exact computational-
statistical efficiency trade-off of the estimator as a function of the sample number (l,
N = Ni, ∀ i) and the problem difficulty (see Theorem 5 and its corresponding remarks
for more details).

2. Misspecified case (f∗ ∈ L2\H): Since in practise it might be hard to check whether
f∗ ∈ H, we also study the misspecified setting of f∗ ∈ L2; the relevant case is when
f∗ ∈ L2\H. In the misspecified setting the ’richness’ of H has crucial importance,
in other words the size of D2

H = inff∈H ‖f∗ − f‖22, the approximation error from H.
Our main contributions consist of proving a finite-sample excess risk bound, using
which we show that the proposed estimator can attain the ideal performance, i.e.,
E(f̂ , f∗) −D2

H can be driven to zero. Moreover, on smooth classes of f∗-s, we give a
simple and explicit description for the computational-statistical efficiency trade-off of
our estimator (see Theorem 9 and its corresponding remarks for more details).

There exist a vast number of heuristics to tackle learning problems on distributions; we
will review them in Section 5. However, to the best of our knowledge, the only prior work
addressing the consistency of regression on distributions requires kernel density estimation
(Póczos et al., 2013; Oliva et al., 2014; Sutherland et al., 2016), which assumes that the
response variable is scalar-valued,2 and the covariates are nonparametric continuous dis-
tributions on Rd. As in our setting, the exact forms of these distributions are unknown;
they are available only through finite sample sets. Póczos et al. estimated these distribu-
tions through a kernel density estimator (assuming these distributions have a density) and
then constructed a kernel regressor that acts on these kernel density estimates.3 Using the
classical bias-variance decomposition analysis for kernel regressors, they showed the consis-
tency of the constructed kernel regressor, and provided a polynomial upper bound on the
rates, assuming the true regressor to be Hölder continuous, and the meta distribution that
generates the covariates xi to have finite doubling dimension (Kpotufe, 2011).4

One can define kernel learning algorithms on bags based on set kernels (Gärtner et al.,
2002) by computing the similarity of the sets/bags of samples representing the input dis-
tributions; set kernels are also called called multi-instance kernels or ensemble kernels, and
are examples of convolution kernels (Haussler, 1999). In this case, the similarity of two sets

2. Oliva et al. (2013, 2015) consider the case where the responses are also distributions or functions.
3. We would like to clarify that the kernels used in their work are classical smoothing kernels—extensively

studied in non-parametric statistics (Györfi et al., 2002)—and not the reproducing kernels that appear
throughout our paper.

4. Using a random kitchen sinks approach, with orthonormal basis projection estimators Oliva et al. (2014);
Sutherland et al. (2016) propose distribution regression algorithms that can computationally handle large
scale datasets; as with Póczos et al. (2013), these approaches are based on density estimation in Rd.
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is measured by the average pairwise point similarities between the sets. From a theoretical
perspective, nothing is known about the consistency of set kernel based learning method
since their introduction in 1999 (Haussler, 1999; Gärtner et al., 2002): i.e. in what sense
(and with what rates) is the learning algorithm consistent, when the number of items per
bag, and the number of bags, are allowed to increase?

It is possible, however, to view set kernels in a distribution setting, as they represent
valid kernels between (mean) embeddings of empirical probability measures into a repro-
ducing kernel Hilbert space (RKHS; Berlinet and Thomas-Agnan, 2004). The population
limits are well-defined as being dot products between the embeddings of the generating
distributions (Altun and Smola, 2006), and for characteristic kernels the distance between
embeddings defines a metric on probability measures (Sriperumbudur et al., 2011; Gretton
et al., 2012). When bounded kernels are used, mean embeddings exist for all probability
measures (Fukumizu et al., 2004). When we consider the distribution regression setting,
however, there is no reason to limit ourselves to set kernels. Embeddings of probability mea-
sures to RKHS are used by Christmann and Steinwart (2010) in defining a yet larger class
of easily computable kernels on distributions, via operations performed on the embeddings
and their distances. Note that the relation between set kernels and kernels on distribu-
tions was also applied by Muandet et al. (2012) for classification on distribution-valued
inputs, however consistency was not studied in that work. We also note that motivated
by the current paper, Lopez-Paz et al. (2015) have recently presented the first theoretical
results about surrogate risk guarantees on a class (relying on uniformly bounded Lipschitz
functionals) of soft distribution-classification problems.

Our contribution in this paper is to establish the learning theory of a simple, mean
embedding based ridge regression (MERR) method for the distribution regression problem.
This result applies both to the basic set kernels of Haussler (1999); Gärtner et al. (2002),
the distribution kernels of Christmann and Steinwart (2010), and additional related kernels.
We provide finite-sample excess risk bounds, prove consistency, and show how the two-stage
sampled nature of the problem (bag size) governs the computational-statistical efficiency of
the MERR estimator. More specifically, in the

1. well-specified case: We

(a) derive finite-sample bounds on the excess risk: We construct R[f̂ ] − R[f∗] ≤
r(l, N, λ) bounds holding with high probability, where λ is the regularization pa-
rameter in the ridge problem (λ→ 0, l→∞, N = Ni →∞).

(b) establish consistency and computational-statistical efficiency trade-off of the MERR
estimator on a general prior family P(b, c) as defined by Caponnetto and De Vito
(2007), where b captures the effective input dimension, and larger c means smoother
f∗ (1 < b, c ∈ (1, 2]). In particular, when the number of samples per bag is chosen

as N = la log(l) and a ≥ b(c+1)
bc+1 , then the learning rate saturates at l−

bc
bc+1 , which

is known to be one-stage sampled minimax optimal (Caponnetto and De Vito,

2007). In other words, by choosing a = b(c+1)
bc+1 < 2, we suffer no loss in statistical

performance compared with the best possible one-stage sampled estimator.

Note: the advantage of considering the P(b, c) family is two-fold. It does not assume
parametric distributions, yet certain complexity terms can be explicitly upper bounded
in the family. This property will be exploited in our analysis. Moreover, (for special

4



Learning Theory for Distribution Regression

input distributions) the parameter b can be related to the spectral decay of Gaussian
Gram matrices, and existing analysis techniques (Steinwart and Christmann, 2008) may
be used in interpreting these decay conditions.

2. misspecified case: We establish consistency and convergence rates even if f∗ /∈ H.
Particularly, by deriving finite-sample bounds on the excess risk we

(a) prove that the MERR estimator can achieve the best possible approximation accu-
racy from H, i.e. the R[f̂ ]−R[f∗]−D2

H quantity can be driven to zero (recall that
DH = inff∈H ‖f∗ − f‖2). Specifically, this result implies that if H is dense in L2

(DH = 0), then the excess risk R[f̂ ]−R[f∗] converges to zero.

(b) analyse the computational-statistical efficiency trade-off: We show that by choosing

the bag size as N = l2a log(l) (a > 0) one can get rate l−
2sa
s+1 for a ≤ s+1

s+2 , and the

rate saturates for a ≥ s+1
s+2 at l−

2s
s+2 , where the difficulty of the regression problem is

captured by s ∈ (0, 1] (a larger s means an easier problem). This means that easier

tasks give rise to faster convergence (for s = 1, the rate is l−
2
3 ), the bag size N can

again be sub-quadratic in l (2a ≤ 2(s+1)
s+2 ≤

4
3 < 2), and the rate at saturation is close

to r̃(l) = l−
2s

2s+1 , which is the asymptotically optimal rate in the one-stage sampled
setup, with real-valued output and stricter eigenvalue decay conditions (Steinwart
et al., 2009).

Due to the differences in the assumptions made and the loss function used, a direct com-
parison of our theoretical result and that of Póczos et al. (2013) remains an open question,
however we make three observations. First, our approach is more general, since we may
regress from any probability measure defined on separable, topological domains endowed
with kernels. Póczos et al.’s work is restricted to compact domains of finite dimensional
Euclidean spaces, and requires the distributions to admit probability densities; distributions
on strings, graphs, and other structured objects are disallowed. Second, in our analysis we
will allow separable Hilbert space valued outputs, in contrast to the real-valued output con-
sidered by Póczos et al. (2013). Third, density estimates in high dimensional spaces suffer
from slow convergence rates (Wasserman, 2006, Section 6.5). Our approach mitigates this
problem, as it works directly on distribution embeddings, and does not make use of density
estimation as an intermediate step.

The principal challenge in proving theoretical guarantees arises from the two-stage sam-
pled nature of the inputs. In our analysis of the well-specified case, we make use of Capon-
netto and De Vito (2007)’s results, which focus (only) on the one-stage sample setup. These
results will make our analysis somewhat shorter (but still rather challenging) by giving up-
per bounds for some of the objective terms. Even the verification of these conditions requires
care since the inputs in the ridge regression are themselves distribution embeddings (i.e.,
functions in a reproducing kernel Hilbert space).

In the misspecified case, RKHS methods alone are not sufficient to obtain excess risk
bounds: one has to take into account the “richness” of the modelling RKHS class (H) in
the embedding L2 space. The fundamental challenge is whether it is possible to achieve the
best possible performance dictated by H; or in the special case when further smoothness
conditions hold on f∗, what convergence rates can yet be attained, and what computational-
statistical efficiency trade-off realized. The second smoothness property could be modelled

5
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for example by range spaces of (fractional) powers of integral operators associated to H.
Indeed, there exist several results along these lines with KRR for the case of real-valued
outputs: see for example (Sun and Wu, 2009a, Theorem 1.1), (Sun and Wu, 2009b, Corol-
lary 3.2), (Mendelson and Neeman, 2010, Theorem 3.7 with Assumption 3.2). The question
of optimal rates has also been addressed for the semi-supervised KRR setting (Caponnetto,
2006, Theorem 1), and for clipped KRR estimators (Steinwart et al., 2009) with integral
operators of rapidly decaying spectrum. Our results apply more generally to the two-stage
sampled setting and to vector valued outputs belonging to separable Hilbert spaces. More-
over, we obtain a general consistency result without range space assumptions, showing that
the modelling power of H can be fully exploited, and convergence to the best approximation
available from H can be realized.5

There are numerous areas in machine learning and statistics, where estimating vector-
valued functions has crucial importance. Often in statistics, one is not only confronted with
the estimation of a scalar parameter, but with a vector of parameters. On the machine
learning side, multi-task learning (Evgeniou et al., 2005), functional response regression
(Kadri et al., 2016), or structured output prediction (Brouard et al., 2011; Kadri et al.,
2013) fall under the same umbrella: they can be naturally phrased as learning vector-
valued functions (Micchelli and Pontil, 2005). The idea underlying all these tasks is simple
and intuitive: if multiple prediction problems have to be solved simultaneously, it might
be beneficial to exploit their dependencies. Imagine for example that the task is to predict
the motion of a dancer: taking into account the interrelation of the actor’s body parts is
likely to lead to more accurate estimation, as opposed to predicting the individual parts
one by one, independently. Successful real-world applications of a multi-task approach
include for example preference modelling of users with similar demographics (Evgeniou
et al., 2005), prediction of the daily precipitation profiles of weather stations (Kadri et al.,
2010), acoustic-to-articulatory speech inversion (Kadri et al., 2016), identifying biomarkers
capable of tracking the progress of Alzheimer’s disease (Zhou et al., 2013), personalized
human activity recognition based on iPod/iPhone accelerometer data (Sun et al., 2013),
finger trajectory prediction in brain-computer interfaces (Kadri et al., 2012) or ecological
inference (Flaxman et al., 2015); for a recent review on multi-output prediction methods see
(Álvarez et al., 2011; Borchani et al., 2015). A mathematically sound way of encoding prior
information about the relation of the outputs can be realized by operator-valued kernels and
the associated vector-valued RKHS-s (Pedrick, 1957; Micchelli and Pontil, 2005; Carmeli
et al., 2006, 2010); this is the tool we use to allow vector-valued learning tasks.

Finally, we note that the current work extends our earlier conference paper (Szabó et al.,
2015) in several important respects: we now show that the MERR method can attain the
one-stage sampled minimax optimal rate; we generalize the analysis in the well-specified
setting to allow outputs belonging to an arbitrary separable Hilbert spaces (in contrast to
the original scalar-valued output domain); and we tackle the misspecified setting, obtaining
finite sample guarantees, consistency, and computational-statistical efficiency trade-offs.

The paper is structured as follows: The distribution regression problem and the MERR
technique are introduced in Section 2. Our assumptions are detailed in Section 3. We
present our theoretical guarantees (finite-sample bounds on the excess risk, consistency,

5. Specializing our result, we get explicit rates and an exact computational-statistical efficiency description
for MERR as a function of sample numbers and problem difficulty, for smooth regression functions.
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computational-statistical efficiency trade-offs) in Section 4: the well-specified case is con-
sidered in Section 4.1, and the misspecified setting is the focus of Section 4.2. Section 5 is
devoted to an overview of existing heuristics for learning on distributions. Conclusions are
drawn in Section 6. Section 7 contains proof details. In Section 8 we discuss our assumptions
with concrete examples.

2. The Distribution Regression Problem

Below we first introduce our notation (Section 2.1), then formally define the distribution
regression task (Section 2.2).

2.1 Notation

We use the following notations throughout the paper:
• Sets, topology, measure theory: Let K be a Hilbert space; cl

[
V
]

is the closure of a set
V ⊆ K. ×i∈ISi is the direct product of sets Si. f◦g is the composition of function f and g.
Let (X, τ) be a topological space and let B(X) := B(τ) be the Borel σ-algebra induced by
the topology τ . If (X, d) is a metric space, then B = B(d) is the Borel σ-algebra generated
by the open sets induced by metric d. M+

1 (X) denotes the set of Borel probability measures
on the (X,B(X)) measurable space. Given measurable spaces (U1, S1) and (U2, S2), the
S1 ⊗ S2 product σ-algebra (Steinwart and Christmann, 2008, page 480) on the product
space U1 × U2 is the σ-algebra generated by the cylinder sets U1 × S2, S1 × U2 (S1 ∈ S1,
S2 ∈ S2). The weak topology (τw = τw(X, τ)) on M+

1 (X) is defined as the weakest topology
such that the Lh : (M+

1 (X), τw) → R, Lh(x) =
∫
X
h(u)dx(u) mapping is continuous for

all h ∈ Cb(X) = {(X, τ)→ R bounded, continuous functions}.
• Functional analysis: Let (N1, ‖·‖N1

) and (N2, ‖·‖N2
) denote two normed spaces, then

L(N1, N2) stands for the space of N1 → N2 bounded linear operators; if N1 = N2, we will
use the L(N1) = L(N1, N2) shorthand. For M ∈ L(N1, N2) the operator norm is defined
as ‖M‖L(N1,N2) = sup06=h∈N1

‖Mh‖N2
/ ‖h‖N1

, Im(M) = {Mn1}n1∈N1 denotes the range
of M , Ker(M) = {n1 ∈ N1 : Mn1 = 0} is the null space of M . Let K be a Hilbert space.
The adjoint operator M∗ ∈ L(K) of an operator M ∈ L(K) is the operator such that
〈Ma, b〉K = 〈a,M∗b〉K for all a and b in K. M ∈ L(K) is called positive if 〈Ma, a〉K ≥ 0
(∀a ∈ K), self-adjoint if M = M∗, and trace class if

∑
j∈J 〈|M |ej , ej〉K < ∞ for an

(ej)j∈J ONB (orthonormal basis) of K (|M | := (M∗M)
1
2 ), in which case Tr(M) :=∑

j∈J 〈Mej , ej〉K < ∞; compact if cl [Ma : a ∈ K, ‖a‖K ≤ 1] is a compact set. Let K1

and K2 be Hilbert spaces. M ∈ L(K1,K2) is called Hilbert-Schmidt if ‖M‖2L2(K1,K2) =
Tr(M∗M) =

∑
j∈J 〈Mej ,Mej〉K2

< ∞ for some (ej)j∈J ONB of K1. The space of
Hilbert-Schmidt operators is denoted by L2(K1,K2) = {M ∈ L(K1,K2) : ‖M‖L2(K1,K2) <
∞}. We use the shorthand notation L2(K) = L2(K,K) if K := K1 = K2; L2(K) is
separable if and only if K is separable (Steinwart and Christmann, 2008, page 506).
Trace class and Hilbert-Schmidt operators over a K Hilbert space are compact operators
(Steinwart and Christmann, 2008, page 505-506); moreover,

‖A‖L(K) ≤ ‖A‖L2(K) , ∀A ∈ L2(K), (1)

‖AB‖L2(K) ≤ ‖A‖L2(K) ‖B‖L(K) , ∀A,B ∈ L2(K). (2)
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I is the identity operator; Il ∈ Rl×l is the identity matrix.

• RKHS, mean embedding: Let H = H(k) be an RKHS (Steinwart and Christmann,
2008) with k : X× X→ R as the reproducing kernel. Denote by

X = µ
(
M+

1 (X)
)

= {µx : x ∈M+
1 (X)} ⊆ H, µx =

∫
X

k(·, u)dx(u) = Eu∼x[k(·, u)] ∈ H

the set of mean embeddings (Berlinet and Thomas-Agnan, 2004) of the distributions to
the space H.6 Let Y be a separable Hilbert space, where the inner product is denoted
by 〈·, ·〉Y ; the associated norm is ‖·‖Y . H = H(K) is the Y -valued RKHS (Pedrick,
1957; Micchelli and Pontil, 2005; Carmeli et al., 2006, 2010) of X → Y functions with
K : X ×X → L(Y ) as the reproducing kernel (we will present some concrete examples
of K in Section 3; see Table 1); Kµx ∈ L(Y,H) is defined as

K(µx, µt)(y) = (Kµty)(µx), (∀µx, µt ∈ X), or K(·, µt)(y) = Kµty. (3)

Further, f(µx) = K∗µxf (∀µx ∈ X, f ∈ H).

• Regression function: Let ρ be the µ-induced probability measure on the Z = X × Y
product space, and let ρ(µx, y) = ρ(y|µx)ρX(µx) be the factorization of ρ into conditional
and marginal distributions.7 The regression function of ρ with respect to the (µx, y) pair
is denoted by

fρ(µa) =

∫
Y
y dρ(y|µa) (µa ∈ X) (4)

and for f ∈ L2
ρX

let ‖f‖ρ =
√
〈f, f〉ρ := ‖f‖L2

ρX
=
[∫
X ‖f(µa)‖2Y dρX(µa)

] 1
2
. Let us

assume that the operator-valued kernel K : X × X → L(Y ) is a Mercer kernel (that is
H = H(K) ⊆ C(X,Y ) = {X → Y continuous functions}), is bounded (∃BK < ∞ such
that ‖K(x, x)‖L(Y ) ≤ BK), and is a compact operator for all x ∈ X. These requirements
will be guaranteed by our assumptions, see Section 7.2.6. In this case, the inclusion S∗K :
H ↪→ L2

ρX
is bounded, and its adjoint SK : L2

ρX
→ H is given by

(SKg)(µu) =

∫
X
K(µu, µt)g(µt)dρX(µt). (5)

We further define T̃ as

T̃ = S∗KSK : L2
ρX
→ L2

ρX
; (6)

in other words, the result of operation (5) belongs to H, which is embedded in L2
ρX

. T̃ is
a compact, positive, self-adjoint operator (Carmeli et al., 2010, Proposition 3), thus by
the spectral theorem T̃ s exists, where s ≥ 0.

6. The x 7→ µx mapping is defined for all x ∈M+
1 (X) if k is bounded, i.e., supu∈X k(u, u) <∞.

7. Our assumptions will guarantee the existence of ρ (see Section 3). Since Y is a Polish space (because it
is separable Hilbert) the ρ(y|µa) conditional distribution (y ∈ Y , µa ∈ X) is also well-defined (Steinwart
and Christmann, 2008, Lemma A.3.16, page 487).
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2.2 Distribution Regression

We now formally define the distribution regression task. Let us assume that M+
1 (X) is

endowed with S1 = B(τw), the weak-topology generated σ-algebra; thus (M+
1 (X), S1) is

a measurable space. In the distribution regression problem, we are given samples ẑ =

{({xi,n}Nin=1, yi)}li=1 with xi,1, . . . , xi,Ni
i.i.d.∼ xi where z = {(xi, yi)}li=1 with xi ∈ M+

1 (X)
and yi ∈ Y drawn i.i.d. from a joint meta distribution M defined on the measurable
space (M+

1 (X) × Y, S1 ⊗ B(Y )), the product space enriched with the product σ-algebra.
Unlike in classical supervised learning problems, the problem at hand involves two levels of
randomness, wherein first z is drawn from M, and then ẑ is generated by sampling points
from xi for all i = 1, . . . , l. The goal is to learn the relation between the random distribution
x and response y based on the observed ẑ. For notational simplicity, we will assume that
N = Ni (∀i).

As in the classical regression problem (Rd → R), distribution regression can be tackled
via kernel ridge regression (using a squared loss as the discrepancy criterion). The kernel
(say KG) is defined on M+

1 (X), and the regressor is then modelled by an element in the
RKHS G = G(KG) of functions mapping from M+

1 (X) to Y . In this paper, we choose
KG(x, x′) = K(µx, µx′) where x, x′ ∈M+

1 (X) and so that the function (in G) to describe the
(x, y) random relation is constructed as a composition f ◦ µx, i.e.

M+
1 (X)

µ−→ X(⊆ H = H(k))
f∈H=H(K)−−−−−−−→ Y. (7)

In other words, the distribution x ∈ M+
1 (X) is first mapped to X ⊆ H by the mean

embedding µ, and the result is composed with f , an element of the RKHS H.
Let the expected risk for a f̃ : X → Y (measurable) function be defined as

R
[
f̃
]

= E(x,y)∼M
∥∥f̃(µx)− y

∥∥2

Y
,

which is minimized by the fρ regression function. The classical regularization approach is
to optimize

fλz = arg min
f∈H

1

l

l∑
i=1

‖f(µxi)− yi‖
2
Y + λ ‖f‖2H (8)

instead of R, based on samples z. Since z is not available, we consider the objective function
defined by the observable quantity ẑ,

fλẑ = arg min
f∈H

1

l

l∑
i=1

‖f(µx̂i)− yi‖
2
Y + λ ‖f‖2H , (9)

where x̂i = 1
N

∑N
n=1 δxi,n is the empirical distribution determined by {xi,n}Ni=1. The ridge

regression objective function has an analytical solution: given training samples ẑ, the pre-
diction for a new t test distribution is

(fλẑ ◦ µ)(t) = k(K + lλI)−1[y1; . . . ; yl], (10)

where k = [K(µx̂1 , µt), . . . ,K(µx̂l , µt)] ∈ L(Y )1×l, K = [K(µx̂i , µx̂j )] ∈ L(Y )l×l,

[y1; . . . ; yl] ∈ Y l.

9
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Remark 1

• It is important to note that the algorithm has access to the sample points only via
their mean embeddings {µx̂i}li=1 in Eq. (9).

• There is a two-stage sampling difficulty to tackle: The transition from fρ to fλz rep-
resents the fact that we have only l distribution samples (z); the transition from fλz
to fλẑ means that the xi distributions can be accessed only via samples (ẑ).

• While ridge regression can be performed using the kernel KG, the two-stage sam-
pling makes it difficult to work with arbitrary KG. By contrast, our choice of
KG(x, x′) = K(µx, µx′) enables us to handle the two-stage sampling by estimating
µx with an empirical estimator, and using it in the algorithm as shown above.

• In case of scalar output (Y = R), L(Y ) = L(R) = R and (10) is a standard linear
equation with K ∈ Rl×l, k ∈ R1×l. More generally, if Y = Rd, then L(Y ) = L(Rd) =
Rd×d and (10) is still a finite-dimensional linear equation with K ∈ R(dl)×(dl) and
k ∈ Rd×(dl).

• One could also formulate the problem (and get guarantees) for more abstract X ⊆
H → Y regression tasks [see Eq. (7)] on a convex set X with H and Y being general,
separable Hilbert spaces. Since distribution regression is probably the most accessi-
ble example where two-stage sampling appears, and in order to keep the presentation
simple, we do not consider such extended formulations in this work.

Our main goals in this paper are as follows: first, to analyse the excess risk

E
(
fλẑ , fρ

)
:= R[fλẑ ]−R[fρ],

both when fρ ∈ H (the well-specified case) and fρ ∈ L2
ρX
\H (the misspecified case); second,

to establish consistency (E
(
fλẑ , fρ

)
→ 0, or in the misspecified case E

(
fλẑ , fρ

)
− D2

H → 0,

where D2
H := infq∈H ‖fρ − S∗Kq‖

2
ρ is the approximation error of fρ by a function in H); and

third, to derive an exact computational-statistical efficiency trade-off as a function of the
(l, N, λ) triplet, and of the difficulty of the problem.

3. Assumptions

In this section, we detail our assumptions on the (X, Y, k,K) quartet. Our analysis for the
well-specified case uses existing ridge regression results (Caponnetto and De Vito, 2007)
focusing on problem (8) where only a single-stage sampling is present, hence we have to
verify the associated conditions. Though we make use of these results, the analysis still
remains challenging; the available bounds can moderately shorten our proof. We must take
particular care in verifying that Caponnetto and De Vito (2007)’s conditions are met, since
they need to hold for the space of mean embeddings of the distributions (X = µ

(
M+

1 (X)
)
),

whose properties as a function of X and H must themselves be established.

Our assumptions are as follows:

1. (X, τ) is a separable, topological space.

10
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2. Y is a separable Hilbert space.
3. k is bounded, in other words ∃Bk <∞ such that supu∈X k(u, u) ≤ Bk, and continuous.
4. The {Kµa}µa∈X operator family is uniformly bounded in Hilbert-Schmidt norm and

Hölder continuous in operator norm. Formally, ∃BK <∞ such that

‖Kµa‖
2
L2(Y,H) = Tr

(
K∗µaKµa

)
≤ BK , (∀µa ∈ X), (11)

and ∃L > 0, h ∈ (0, 1] such that the mappingK(·) : X → L(Y,H) is Hölder continuous:

‖Kµa −Kµb‖L(Y,H) ≤ L ‖µa − µb‖
h
H , ∀(µa, µb) ∈ X ×X. (12)

5. y is bounded: ∃C <∞ such that ‖y‖Y ≤ C almost surely.

These requirements hold under mild conditions: in Section 8, we provide insight into the
consequences of our assumptions, with several concrete illustrations (e.g. regression with
set- and RBF-type kernels).

4. Error Bounds, Consistency & Computational-Statistical Efficiency
Trade-off

In this section, we present our analysis of the consistency of the mean embedding based
ridge regression (MERR) method.

Given the estimator (fλẑ ) in Eq. (9), we derive finite-sample high probability upper
bounds (see Theorems 2 and 7) for the excess risk E

(
fλẑ , fρ

)
, and in the misspecified setting,

for the excess risk compared to the best attainable value from H, i.e., E
(
fλẑ , fρ

)
−D2

H. We
illustrate the bounds for particular classes of prior distributions, and work through special
cases to obtain consistency conditions and computational-statistical efficiency trade-offs
(see Theorems 4, 9 and the 3rd bullet of Remark 8). The main challenge is how to turn
the convergence rates of the mean embeddings into those for an error E of the predictor.
Although the main ideas of the proofs can be summarized relatively briefly, the full details
are more demanding. High-level ideas with the sketches of the proofs and the obtained
results are presented in Section 4.1 (well-specified case) and Section 4.2 (misspecified case).
The derivations of some technical details of Theorems 2 and 7 are available in Section 7.

4.1 Results for the Well-specified Case

We first focus on the well-specified case (fρ ∈ H) and present our first main result. We
derive a high probability upper bound for the excess risk E

(
fλẑ , fρ

)
of the MERR method

(Theorem 2). The upper bound is instantiated for a general class of prior distributions
(Theorem 4), which leads to a simple computational-statistical efficiency description (The-
orem 5); this shows (among others) conditions when the MERR technique is able to achieve
the one-stage sampled minimax optimal rate. We first give a high-level sketch of our con-
vergence analysis and an intuitive interpretation of the results. An outline of the main proof
ideas is given below, with technical details in Section 7.

Let us define x = {xi}li=1 and x̂ = {{xi,n}Nn=1}li=1 as the ‘x-part’ of z and ẑ, respectively.
One can express fλz [Eq. (8)] (Caponnetto and De Vito, 2007), and similarly fλẑ [Eq. (9)],

11
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as

fλz = (Tx + λ)−1gz, Tx =
1

l

l∑
i=1

Tµxi , gz =
1

l

l∑
i=1

Kµxi
yi, (13)

fλẑ = (Tx̂ + λ)−1gẑ, Tx̂ =
1

l

l∑
i=1

Tµx̂i , gẑ =
1

l

l∑
i=1

Kµx̂i
yi, (14)

where Tµa = KµaK
∗
µa ∈ L(H) (µa ∈ X), Tx, Tx̂ : H → H, gz, gẑ ∈ H. By these explicit ex-

pressions, one can decompose the excess risk into 5 terms (Szabó et al., 2015, Section A.1.8):

E
(
fλẑ , fρ

)
= R

[
fλẑ
]
−R [fρ] ≤ 5 [S−1 + S0 + A(λ) + S1 + S2] ,

where

S−1 = S−1(λ, z, ẑ) = ‖
√
T (Tx̂ + λI)−1(gẑ − gz)‖2H, (15)

S0 = S0(λ, z, ẑ) = ‖
√
T (Tx̂ + λI)−1(Tx − Tx̂)fλz ‖2H, (16)

A(λ) = ‖
√
T (fλ − fρ)‖2H, S1 = S1(λ, z) = ‖

√
T (Tx + λI)−1(gz − Txfρ)‖2H,

S2 = S2(λ, z) = ‖
√
T (Tx + λI)−1(T − Tx)(fλ − fρ)‖2H,

fλ = arg min
f∈H

(R[f ] + λ ‖f‖2H), T =

∫
X
TµadρX(µa) = SKS

∗
K : H→ H. (17)

Three of the terms (S1, S2, A(λ)) are identical to the terms in Caponnetto and De Vito
(2007), hence the earlier bounds can be applied. The two new terms (S−1, S0) resulting
from two-stage sampling will be upper bounded by making use of the convergence of the
empirical mean embeddings. These bounds will lead to the following results:

Theorem 2 (Finite-sample excess risk bounds; well-specified case) Let
K(·) : X → L(Y,H) be Hölder continuous with constants L, h. Let l ∈ Z+, N ∈ Z+,

0 < λ, 0 < η < 1, 0 < δ, Cη = 32 log2(6/η), ‖y‖Y ≤ C (a.s.) and A(λ) be the residual as
defined above. Define M = 2(C + ‖fρ‖H

√
BK), Σ = M

2 , T as in (17), B(λ) = ‖fλ − fρ‖2H
as the reconstruction error, and N(λ) = Tr[(T + λI)−1T ] as the effective dimension. Then
with probability at least 1− η − e−δ, the excess risk can be upper bounded as

E
(
fλẑ , fρ

)
≤ 5

{
4L2

(
1 +

√
log(l) + δ

)2h
(2Bk)

h

λNh

[
C2 + 4BK ×

×
(

log2

(
6

η

){
64

λ

[
M2BK
l2λ

+
Σ2N(λ)

l

]
+

24

λ2

[
4B2

KB(λ)

l2
+
BKA(λ)

l

]}
+ B(λ) + ‖fρ‖2H

)]
+A(λ) + Cη

[
B2
KB(λ)

l2λ
+
BKA(λ)

4lλ
+
BKM

2

l2λ
+

Σ2N(λ)

l

]}

if l ≥ 2CηBKN(λ)/λ, λ ≤ ‖T‖L(H) and N ≥
(
1 +

√
log(l) + δ

)2
2
h+6
h Bk(BK)

1
hL

2
h /λ

2
h .
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Below we specialize our excess risk bound for a general prior class, which captures the diffi-
culty of the regression problem as defined in Caponnetto and De Vito (2007). This P(b, c)
class is described by two parameters b and c: larger b means faster decay of the eigenvalues
of the covariance operator T [in Eq. (17)], hence smaller effective input dimension; larger c
corresponds to a smoother regression function. Formally:

Definition of the P(b, c) class: Let us fix the positive constants R, α, β. Then given
1 < b, c ∈ (1, 2], the P(b, c) class is the set of probability distributions ρ on Z = X × Y
such that

1. a range space assumption is satisfied: ∃g ∈ H s.t. fρ = T
c−1
2 g with ‖g‖2H ≤ R,

2. in the spectral decomposition of T =
∑∞

n=1 λn 〈·, en〉H en, where (en)∞n=1 is a basis of
Ker(T )⊥, the eigenvalues of T satisfy α ≤ nbλn ≤ β (∀n ≥ 1).

Remark 3 We make few remarks about the P(b, c) class:

• Range space assumption on fρ: The smoothness of fρ is expressed as a range space
assumption, which is slightly different from the standard smoothness conditions ap-
pearing in non-parametric function estimation. By the spectral decomposition of T
given above [λ1 ≥ λ2 ≥ . . . > 0, limn→∞ λn = 0], T ru =

∑∞
n=1(λn)r 〈u, en〉H en (r =

c−1
2 ≥ 0, u ∈ H) and

Im(T r) =
{∑∞

n=1
cnen :

∑∞

n=1
c2
nλ
−2r
n <∞

}
. (18)

Specifically, in the limit as r → 0, we obtain fρ ∈ Im(T 0) = Im(I) = H (no con-
straint); larger values of r give rise to faster decay of the (cn)∞n=1 Fourier coefficients.
This is the concrete meaning of fρ ∈ Im(T r).

• Spectral decay condition: We can provide a simple illustration of when the spectral
decay conditions hold, in the event that the distributions are normal with means mi

and identical variance (xi = N(mi, σ
2I)). When Gaussian kernels (k) are used with

linear K, then K(µxi , µxj ) = e−c‖mi−mj‖
2

(Muandet et al., 2012, Table 1, line 2)
(Gaussian, with arguments equal to the difference in means). Thus, this Gram matrix
will correspond to the Gram matrix using a Gaussian kernel between points mi. The
spectral decay of the Gram matrix will correspond to that of the Gaussian kernel, with
points drawn from the meta-distribution over the mi. Thus, the source conditions are
analysed in the same manner as for Gaussian Gram matrices: see e.g. Steinwart and
Christmann (2008) for a discussion of these spectral decay properties.

In the P(b, c) family, the behaviour of A(λ), B(λ) and N(λ) is known: A(λ) ≤ Rλc, B(λ) ≤
Rλc−1, N(λ) ≤ β b

b−1λ
− 1
b . Specializing Theorem 2 and retaining its assumptions, we get:

Theorem 4 (Finite-sample excess risk bound for ρ ∈ P(b, c))
Suppose the conditions in Theorem 2 hold. Let ρ ∈ P(b, c), where 1 < b and c ∈ (1, 2].
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Then

E
(
fλẑ , fρ

)
≤ 5

{
4L2

(
1 +

√
log(l) + δ

)2h
(2Bk)

h

λNh

[
C2 + 4BK×

×

(
Cη

{
2

λ

[
M2BK
l2λ

+
Σ2βb

(b− 1)lλ
1
b

]
+

3

4λ2

[
4B2

KRλ
c−1

l2
+
BKRλ

c

l

]}
+Rλc−1 + ‖fρ‖2H

)]

+Rλc + Cη

[
B2
KRλ

c−2

l2
+
BKRλ

c−1

4l
+
BKM

2

l2λ
+

Σ2βb

(b− 1)lλ
1
b

]}
.

Discarding the constants in Theorem 4, the study of convergence of the excess risk E(fλẑ , fρ)
to 0 boils down to finding N and λ (as a function of l) where N →∞, λ→ 0 and

r(l, N, λ) =
logh(l)

Nhλ

(
1

λ2l2
+ 1 +

1

lλ1+ 1
b

)
+ λc +

1

l2λ
+

1

lλ
1
b

→ 0, s.t. lλ
b+1
b ≥ 1,

log(l)

λ
2
h

≤ N

(19)

as l→∞. Let us choose N = l
a
h log(l); in this case Eq. (19) reduces to

r(l, λ) =
1

l2+aλ3
+

1

laλ
+

1

la+1λ2+ 1
b

+ λc +
1

l2λ
+

1

lλ
1
b

→ 0, s.t. lλ
b+1
b ≥ 1, laλ2 ≥ 1. (20)

One can assume that a > 0, otherwise r(l, λ) → 0 fails to hold; in other words, N should
grow faster than log(l). Matching the ‘bias’ (λs) and ‘variance’ (other) terms in r(l, λ)
to choose λ, and guaranteeing that the matched terms dominate and the constraints in
Eq. (20) hold, one gets the following simple description for the computational-statistical
efficiency trade-off:8

Theorem 5 (Computational-statistical efficiency trade-off; well-specified case;
ρ ∈ P(b, c)) Suppose the conditions in Theorem 2 hold. Let ρ ∈ P(b, c) and N = l

a
h log(l),

where 0 < a, 1 < b, c ∈ (1, 2]. If

• a ≤ b(c+1)
bc+1 , then E

(
fλẑ , fρ

)
= Op

(
l−

ac
c+1

)
with λ = l−

a
c+1 ,

• a ≥ b(c+1)
bc+1 then E

(
fλẑ , fρ

)
= Op

(
l−

bc
bc+1

)
with λ = l−

b
bc+1 .

Remark 6 Theorem 5 formulates an exact computational-statistical efficiency trade-off for
the choice of the bag size (N) as a function of the number of distributions (l) and problem
difficulty (b, c).

• a-dependence: A smaller bag size (smaller a; N = l
a
h log(l)) means computational

savings, but reduced statistical efficiency. It is not worth increasing a above b(c+1)
bc+1

since from that point the rate becomes r(l) = l−
bc
bc+1 ; remarkably, this rate is minimax

in the one-stage sampled setup (Caponnetto and De Vito, 2007). The sensible choice

a = b(c+1)
bc+1 < 2 means that the one-stage sampled minimax rate can be achieved in the

two-stage sampled setting with bag size N sub-quadratic in l.

8. The derivations are available in the supplement of http://arxiv.org/pdf/1411.2066.
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• h-dependence: In accord with our ‘smoothness’ assumptions it is rewarding to use
smoother K kernels (larger h ∈ (0, 1]) since this reduces the bag size [N = l

a
h log(l)].

• c-dependence: The strictly decreasing property of c 7→ b(c+1)
bc+1 implies that for

‘smoother’ problems (larger c) fewer samples (N) are sufficient.

Below we elaborate on the sketched high-level idea and prove Theorem 2.

Proof of Theorem 2 (detailed derivations of each step can be found in Section 7.1)

1. Decomposition of the excess risk: We have the following upper bound for the excess
risk

E
(
fλẑ , fρ

)
= R

[
fλẑ
]
−R [fρ] ≤ 5 [S−1 + S0 + A(λ) + S1 + S2] . (21)

2. It is sufficient to upper bound S−1 and S0: Caponnetto and De Vito (2007) have
shown that for ∀η > 0 if l ≥ 2CηBKN(λ)/λ, λ ≤ ‖T‖L(H), then P(Θ(λ, z) ≤ 1/2) ≥
1− η/3, where

Θ(λ, z) =
∥∥(T − Tx)(T + λI)−1

∥∥
L(H)

, (22)

using which upper bounds on S1 and S2 that hold with probability 1 − η are obtained.
It is known that A(λ) ≤ Rλc.

3. Probabilistic bounds on ‖gẑ − gz‖2H, ‖Tx − Tx̂‖2L(H), ‖
√
T (Tx̂ + λI)−1‖2

L(H), ‖f
λ
z ‖2H:

One can bound S−1 and S0 as

S−1 ≤
∥∥√T (Tx̂ + λI)−1

∥∥2

L(H)
‖gẑ − gz‖2H

and

S0 ≤
∥∥√T (Tx̂ + λI)−1

∥∥2

L(H)
‖Tx − Tx̂‖2L(H)

∥∥fλz ∥∥2

H
.

For the terms on the r.h.s., we derive upper bounds [for the definition of α, see Eq. (24)]

‖gẑ − gz‖2H ≤ L
2C2 (1 +

√
α)

2h
(2Bk)

h

Nh
,
∥∥∥√T (Tx̂ + λI)−1

∥∥∥
L(H)

≤ 2√
λ
,

‖Tx − Tx̂‖2L(H) ≤
(1 +

√
α)

2h
2h+2(Bk)

hBKL
2

Nh
,

and ∥∥∥fλz ∥∥∥2

H
≤ 6

(
16

λ
log2

(
6

η

)[
M2BK
l2λ

+
Σ2N(λ)

l

]
(23)

+
4

λ2
log2

(
6

η

)[
4B2

KB(λ)

l2
+
BKA(λ)

l

]
+ B(λ) + ‖fρ‖2H

)
.

The bounds hold under the following conditions:
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• ‖gẑ − gz‖2H (see Section 7.1.1): if the empirical mean embeddings are close to their
population counterparts, i.e.,

‖µxi − µx̂i‖H ≤
(1 +

√
α)
√

2Bk√
N

, (∀i = 1, . . . , l). (24)

This event has probability 1 − le−α over all i = 1, . . . , l samples; see (Altun and
Smola, 2006) and (Szabó et al., 2015, Section A.1.10).

• ‖Tx − Tx̂‖2L(H) (see Section 7.1.2): (24) is assumed.

• ‖
√
T (Tx̂ + λI)−1‖2

L(H) (Szabó et al., 2015, Section A.1.11): (24), Θ(λ, z) ≤ 1
2 , and

(1 +
√
α)

2
2
h+6
h Bk(BK)

1
hL

2
h

λ
2
h

≤ N. (25)

• ‖fλz ‖2H: The bound is guaranteed to hold under the conditions of the bounds of S1

and S2.8

4. Union bound: By applying an α = log(l) + δ reparameterization, and combining the
received upper bounds with Caponnetto and De Vito (2007)’s results for S1 and S2,
Theorem 2 follows (Section 7.1.3) with a union bound.

Finally, we note that existing results/ideas were used at two points to simplify our anal-

ysis: bounding S1, S2, Θ(λ, z),
∥∥fλz ∥∥2

H
(Caponnetto and De Vito, 2007) and ‖µxi − µx̂i‖H

(Altun and Smola, 2006).9

4.2 Results for the Misspecified Case

In this section, we focus on the misspecified case (fρ ∈ L2
ρX
\H) and present our second main

result, which was inspired by the proof technique of Sriperumbudur et al. (2014, Theorem
12). We derive a high probability upper bound for E

(
fλẑ , fρ

)
, i.e., the excess risk of the

MERR method (Theorem 7) which gives rise to consistency results (3rd bullet of Remark 8)
and precise computational-statistical efficiency trade-off (Theorem 9). Theorem 7 consists
of two finite-sample bounds:

1. The first, more general bound [Eq. (27)] will be used to show consistency in the
misspecified case (see the 3rd bullet of Remark 8), in other words that E

(
fλẑ , fρ

)
can

be driven to its smallest possible value determined by the “richness” of H:

D2
H := inf

q∈H
‖fρ − S∗Kq‖

2
ρ . (26)

The value of DH equals the approximation error of fρ by a function from H. Specifi-
cally, if H [precisely S∗K(H) = {S∗Kq : q ∈ H} ⊆ L2

ρX
] is dense in L2

ρX
, then DH = 0.

9. We also corrected some constants in the previous works (Altun and Smola, 2006; Caponnetto and De
Vito, 2007).
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2. The second, specialized result [Eq. (28)] under additional smoothness assumptions on
fρ will give rise to a precise computational-statistical efficiency trade-off in terms of
the problem difficulty (s) and sample numbers (l, N); this result can be seen as the
misspecified analogue of Theorem 5.

After stating our results, the main ideas of the proof follow; further technical details are
available in Section 7.2. Our main theorem for bounding the excess risk is as follows:

Theorem 7 (Finite-sample excess risk bounds; misspecified case) Let l ∈ Z+,

N ∈ Z+, 0 < λ, 0 < η < 1, 0 < δ and Cη = log
(

6
η

)
. Assume that

(
12BK
λ Cη

)2
≤ l

and
(
1 +

√
log(l) + δ

)2
2
h+6
h Bk(BK)

1
hL

2
h /λ

2
h ≤ N .

1. Then for arbitrary q ∈ H with probability at least 1− η − e−δ

√
E
(
fλẑ , fρ

)
≤

2LC
(

1 +
√

log(l) + δ
)h

(2Bk)
h
2

√
λN

h
2

(
1 +

2
√
BK√
λ

)
+ (27)

2Cη√
λ

{(
2C
√
BK

l
+
C
√
BK√
l

)
+

(
2BK
l

+
σ√
l

)
1

λ

√
λ ‖fρ‖ρDa(λ, q)

}
+Da(λ, q),

where Da(λ, q) = ‖fρ − S∗Kq‖ρ + max(1, ‖T‖L(H))λ
1
2 ‖q‖H.

2. In addition, suppose fρ ∈ Im(T̃ s) for some s > 0, where T̃ is defined in Eq. (6). Then
with probability at least 1− η − e−δ, we have

√
E
(
fλẑ , fρ

)
≤

2LC
(

1 +
√

log(l) + δ
)h

(2Bk)
h
2

√
λN

h
2

(
1 +

2
√
BK√
λ

)
+

2Cη√
λ

{(
2C
√
BK

l
+
C
√
BK√
l

)
+

(
2BK
l

+
σ√
l

)
1

λ
×√

max

(
1,
∥∥∥T̃∥∥∥s

L(L2
ρX

)

)
λ
∥∥∥T̃−sfρ∥∥∥

ρ
Db(λ, s)

}
+Db(λ, s), (28)

where Db(λ, s) = max(1, ‖T̃‖s−1
L(L2

ρX
)
)λmin(1,s)‖T̃−sfρ‖ρ.

Remark 8 We give a short insight into the assumptions of Theorem 7, followed by conse-
quences of the theorem.
• Range space assumption on fρ: The range space assumption for the compact, posi-

tive, self-adjoint operator, T̃ = T̃ (K) : L2
ρX
→ L2

ρX
in the 2nd part of Theorem 7

can be interpreted similarly to that on T ; see Eq. (18). One can also prove alterna-
tive descriptions for Im(T̃ s) in terms of interpolation spaces (Steinwart and Scovel,
2012, Theorem 4.6, page 387), or the decay of the 2-approximation error function,

A2(λ) = inff∈H(K)

(
λ ‖f‖2H(K) +R[f ]−R[fρ]

)
(Smale and Zhou, 2003; Steinwart et al.,

2009).
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•
√
E
(
fλẑ , fρ

)
: Notice that in the bounds [ (27), (28)], instead of the excess risk, its square

root appears; this has technical reasons, as it is easier to have the Da(λ, q) quantity
(without multiplicative constants) appear on the r.h.s. of Eq. (27) with this form.
• Consistency in the misspecified case: The consequence of Theorem 7(1) is as follows.

Discarding the constants in Eq. (27), we obtain the upper bound (notice that the constant
multiplier of ‖fρ − S∗Kq‖ρ in the last term was one):

√
r(l, N, λ, q) =

log
h
2 (l)

N
h
2 λ

+
1√
lλ

+

√∥∥fρ − S∗Kq∥∥ρ +
√
λ ‖q‖H

λ
√
l

+ ‖fρ − S∗Kq‖ρ +
√
λ ‖q‖H .

By choosing N = l1/h log l,
√
r(l, λ) is bounded by

inf
q∈H

‖fρ − S∗Kq‖ρ +

√∥∥fρ − S∗Kq∥∥ρ
λ
√
l

+

√
‖q‖H
λ

3
4

√
l

+
√
λ‖q‖H

+Op
(

1√
λl

)
.

Our goal is to investigate the behavior of the bound as l → ∞, λ → 0 and λ
√
l →

∞. Define K(α, β, γ) := infq∈H

{
‖fρ − S∗Kq‖ρ + α

√∥∥fρ − S∗Kq∥∥ρ + β
√
‖q‖H + γ‖q‖H

}
.

K(α, β, γ) is the pointwise infimum of affine functions, therefore it is upper semi-
continuous and concave on R3 (Aliprantis and Border, 2006, Lemmas 2.41 and 5.40
); it is continuous on ×3

i=1R>0 (Rockafellar and Wets, 2008, Theorem 2.35). More-
over, by applying (Rockafellar and Wets, 2008, Corollary 2.37) it extends continuously to
×3
i=1R≥0; specifically it is continuous at (α, β, γ) = 0. In other words, as l →∞, λ→ 0

and λ
√
l → ∞, K

(
1
λ
√
l
, 1

λ
3
4
√
l
,
√
λ

)
→ DH and we get consistency in the misspecified

case,10 √
r(N, l, λ)→ DH.

Discarding the constants in Eq. (28) we get10

√
r(l, N, λ) =

log
h
2 (l)

N
h
2 λ

+
1√
lλ

+

√
λmin(1,s)

λ
√
l

+ λmin(1,s), subject to
1

λ2
≤ l. (29)

Our goal is to drive r(l, N, λ) to zero with a suitable choice of the (l, N, λ) triplet under
the stronger range space assumption. Since in Eq. (29) min(1, s) appears, one can assume
without loss of generality that s ∈ (0, 1]; consequently 1 − s

2 ∈
[

1
2 , 1
)

and 1

l
1
2 λ

1
2
≤ 1

λ1−
s
2 l

1
2

.

Let us choose N = l2a/h log(l); in this case using the previous dominance note, Eq. (29)
reduces to the study of√

r(l, λ) =
1

laλ
+

1

λ1− s
2 l

1
2

+ λs → 0, s.t. lλ2 ≥ 1. (30)

One can assume that a > 0, otherwise r(l, λ) → 0 fails to hold: in other words, N should
grow faster than log(l). Matching the ‘bias’ (λs) and ‘variance’ (other) terms in r(l, λ) to
choose λ, guaranteeing that the matched terms dominate and the constraint in Eq. (30)
hold, one can arrive at the following computational-statistical efficiency trade-off:8

10. We have discarded the log(l)/λ
2
h ≤ N constraint implied by the convergence of the first term in

√
r.
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Theorem 9 (Computational-statistical efficiency trade-off; misspecified case,

fρ ∈ Im(T̃ s)) Suppose that fρ ∈ Im(T̃ s) and N = l
2a
h log(l), where s ∈ (0, 1], a > 0.

If

• a ≤ s+1
s+2 , then E

(
fλẑ , fρ

)
= Op

(
l−

2sa
s+1

)
with λ = l−

a
s+1 ,

• a ≥ s+1
s+2 , then E

(
fλẑ , fρ

)
= Op

(
l−

2s
s+2

)
with λ = l−

1
s+2 .

Remark 10 Theorem 9 provides a complete computational-statistical efficiency trade-off
description for the choice of the bag size (N) as a number of the distributions (l).

• a-dependence: A smaller value of ‘a’ (smaller bags N = l2a/h log(l)) leads to a compu-
tational advantage, but one looses in statistical efficiency. As ‘a’ reaches s+1

s+2 , the rate

becomes r(l) = l−
2s
s+2 and one does not gain from further increasing the value of a. The

sensible choice of a = s+1
s+2 ≤

2
3 means that N can again be sub-quadratic (2a < 4

3 < 2)
in l.

• h-dependence: By using smoother K kernels (larger h ∈ (0, 1]) one can reduce the size
of the bags: h 7→ 2a/h is decreasing in h. This is compatible with our smoothness
requirement on fρ.

• s-dependence: “Easier” tasks (larger s) give rise to faster convergence. Indeed, in the

r(l) = l−
2s
s+2 rate the s 7→ 2s

s+2 exponent is strictly increasing function of the problem
difficulty (s). For example, for extremely non-smooth regression problems (s ≈ 0)
the convergence can be arbitrary slow (lims→0

2s
s+2 = 0). In the smooth case (s = 1)

lims→1
2s
s+2 = 2

3 and one can achieve the r(l) = l−
2
3 rate.

• We may compare our r(l) = l−
2s
s+2 result with the ro(l) = l−

2s
2s+1 (one-stage sampled)

rate (Steinwart et al., 2009, β/2 := s, q := 2, p := 1 in Corollary 6), which was
shown to be asymptotically optimal on Y = R for continuous k on compact metric
X. Steinwart et al.’s result is more general in terms of q (‖f‖qH based regularization)

and p (‖f‖∞ ≤ C ‖f‖pH ‖f‖
1−p
ρ , ∀f ∈ H; in our case p = 1), although it imposes

an additional eigenvalue constraint [(Steinwart et al., 2009, Eq. (6))] as well as fρ ∈
Im(T̃ s). Moreover, one can observe that ro(l) ≤ r(l) with a small gap, and that
for s → 0 and s = 1, ro(l) = r(l); see Fig. 1. We further remind the reader that our
MERR analysis also holds for separable Hilbert output spaces Y , separable topological
domains X enriched with a bounded, continuous kernel k, and that we handle the two-
stage sampled setting.

The main steps of the proof of Theorem 7 are as follows:

Proof of Theorem 7 (the details of the derivation are available in Section 7.2) Steps 1-7
will be identical in both proofs,11 and we present them jointly.

1. Decomposition of the excess risk: By the triangle inequality, we have√
E
(
fλẑ , fρ

)
=
∥∥S∗Kfλẑ − fρ∥∥ρ ≤ ∥∥S∗K(fλẑ − fλz )∥∥ρ +

∥∥S∗Kfλz − fρ∥∥ρ. (31)

11. Importantly, with a slight modification of the more general, first part of Theorem 7, one can get the
specialized second setting of the theorem (see Step 8).
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Szabó et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Smoothness (s)

R
a
te

 

 

−log
l
[r

o
(l)]=2s/(2s+1)

−log
l
[r(l)]=2s/(s+2)

Figure 1: Comparison of the ro(l) = l−
2s

2s+1 and r(l) = l−
2s
s+2 rates as function of the problem

difficulty/smoothness (s).

2. Bound on
∥∥S∗K (fλẑ − fλz )∥∥ρ: Using12 the fact that

‖S∗Kh‖
2
ρ =

∥∥√Th∥∥2

H
(∀h ∈ H), (32)

and the definitions of S−1 and S0 [see Eqs. (15)-(16)], we obtain∥∥S∗K(fλẑ − fλz )∥∥ρ =
∥∥√T (fλẑ − fλz )∥∥H ≤√S−1 +

√
S0, (33)

through an application of triangle inequality. One can derive without a P(b, c) prior
assumption (Section 7.2.1) the upper bound13

√
S−1 +

√
S0 ≤

2LC(1 +
√
α)h(2Bk)

h
2

√
λN

h
2

[
1 +

2
√
BK√
λ

]
for the r.h.s. of Eq. (33) under the conditions that Θ(λ, z) ≤ 1

2 (which holds with

probability 1− η if [12BK log(2/η)/λ]2 ≤ l), and that Eqs. (24)-(25) hold.

3. Decomposition of
∥∥S∗Kfλz − fρ∥∥ρ: By the triangle inequality and Eq. (32), we have∥∥S∗Kfλz − fρ∥∥ρ =
∥∥S∗K(fλz − fλ)+ S∗Kf

λ − fρ
∥∥
ρ
≤
∥∥S∗K(fλz − fλ)∥∥ρ +

∥∥S∗Kfλ − fρ∥∥ρ
=
∥∥√T (fλz − fλ)∥∥H +

∥∥S∗Kfλ − fρ∥∥ρ. (34)

4. Decomposition of
∥∥√T (fλz − fλ) ∥∥H: Making use of the analytical expressions for fλz

and fλ [see Eq. (13) and Eq. (17)], and the operator Woodbury formula (Ding and Zhou,
2008, Theorem 2.1, page 724) we arrive at the decomposition (see Section 7.2.2)∥∥√T (fλz − fλ)∥∥H ≤ ∥∥√T (Tx + λI)−1

∥∥
L(H)

(
‖gz − gρ‖H +

‖T − Tx‖L(H) λ
−1
∥∥SK[fρ − (T̃ + λI)−1S∗KSKfρ

]∥∥
H

)
,

where gρ = SKfρ. As it is known (Caponnetto and De Vito, 2007, page 348) ‖
√
T (Tx +

λI)−1‖L(H) ≤ 1/
√
λ provided that Θ(λ, z) ≤ 1

2 .

12. See for example de Vito et al. (2006) on page 88 with the (H,G, A, T ) := (H, L2
ρX , S

∗
K , T ) choice.

13. See the remark at the end of Section 7.2.1.
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5. Bound on ‖gz − gρ‖H, ‖T − Tx‖L(H): By concentration arguments the bounds

‖gz − gρ‖H ≤

(
4C
√
BK

l
+

2C
√
BK√
l

)
log

(
2

η

)
, ‖T − Tx‖L(H) ≤

(
4BK
l

+
4σ√
l

)
log

(
2

η

)
hold with probability at least 1− η, each (see Section 7.2.3, 7.2.4).

6. Decomposition of
∥∥SK[fρ−(T̃ +λI)−1S∗KSKfρ

]∥∥2

H
: Exploiting the analytical formula

for fλ, one can construct (Section 7.2.5) the upper bound∥∥SK[fρ − (T̃ + λI)−1S∗KSKfρ
]∥∥2

H
≤
∥∥T̃ [fρ − (T̃ + λI)−1S∗KSKfρ

]∥∥
ρ

∥∥S∗Kfλ − fρ∥∥ρ.
7. Bound on

∥∥T̃ [fρ − (T̃ + λI)−1S∗KSKfρ
]∥∥
ρ
: Using our assumptions that fρ ∈ Im(T̃ s)

(s ≥ 0)14 and exploiting the separability of L2
ρX

, by Lemma 7.3.2 (K = L2
ρX

, f = fρ,

M = T̃ , a = 1) and T̃ = S∗KSK we obtain the upper bound∥∥T̃ [fρ − (T̃ + λI)−1S∗KSKfρ
]∥∥
ρ

=
∥∥T̃ [fρ − (T̃ + λI)−1T̃ fρ

]∥∥
ρ

≤ max
(

1, ‖T̃‖s
L(L2

ρX
)

)
λmin(1,s+1)

∥∥T̃−sfρ∥∥ρ = max
(

1, ‖T̃‖s
L(L2

ρX
)

)
λ
∥∥T̃−sfρ∥∥ρ,

where we used at the last step that min(1, s+ 1) = 1; this follows from s ≥ 0.

8. Bound on
∥∥S∗Kfλ − fρ∥∥ρ:

(a) No range space assumption: One can construct (Section 7.2.6) the bound∥∥S∗Kfλ − fρ∥∥ρ ≤ ‖fρ − S∗Kq‖ρ + max
(
1, ‖T‖L(H)

)
λ

1
2 ‖q‖H ,

which holds for arbitrary q ∈ H.

(b) Range space assumption in L2
ρX

: Using the S∗Kf
λ = (T̃ + λI)−1T̃ fρ identity

[see Eq. (43)], and Lemma 7.3.2 (M = T̃ , K = L2
ρX

, a = 0), we get∥∥S∗Kfλ − fρ∥∥ρ =
∥∥(T̃ + λI)−1T̃ fρ − fρ

∥∥
ρ
≤ max

(
1,
∥∥T̃∥∥s−1

L(L2
ρX

)

)
λmin(1,s)

∥∥T̃−sfρ∥∥ρ.
9. Union bound: Applying an α = log(l) + δ reparameterization, changing η to η

3 and
combining the derived results (in case of the first statement with s = 0) with a union
bound, Theorem 7 follows.

Remark 11 To contrast the derivation of the well- and the misspecified cases, we note that
previous results [Section 4.1, or Caponnetto and De Vito (2007)’s bound] were used at two
points:

(a) In Step 2 by using Eq. (32) and transforming the L2
ρX

error
∥∥S∗K (fλẑ − fλz )∥∥ρ to H,

we could rely on our previous bounds for S−1 and S0. However, we were required to
use a different concentration argument to guarantee Θ(λ, z) ≤ 1

2 since we no longer
assume the P(b, c) prior class.

14. Note that we choose s = 0 and s > 0 in the first and second theorem part, respectively.
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(b) In Step 4 the first term could be bounded by Caponnetto and De Vito (2007). Its
Θ(λ, z) ≤ 1

2 condition was guaranteed by Step 2; and see Section 7.2.1.

We note that our misspecified proof method was inspired by Sriperumbudur et al. (2014,
Theorem 12), where the authors focused on the consistency of an infinite-dimensional ex-
ponential family estimator.

5. Related Work

In this section we discuss existing approaches and heuristic techniques to tackle learning
problems on distributions.

Methods based on parametric assumptions: A number of methods have been
proposed to compute the similarity of distributions or bags of samples. As a first approach,
one could fit a parametric model to the bags, and estimate the similarity of the bags
based on the obtained parameters. It is then possible to define learning algorithms on
the basis of these similarities, which often take analytical form. Typical examples with
explicit formulas include Gaussians, finite mixtures of Gaussians, and distributions from
the exponential family (with known log-normalizer function and zero carrier measure, see
Kondor and Jebara, 2003; Jebara et al., 2004; Wang et al., 2009; Nielsen and Nock, 2012).
A major limitation of these methods, however, is that they apply quite simple parametric
assumptions, which may not be sufficient or verifiable in practise.

Methods based on parametric assumption in a RKHS: A heuristic related to
the parametric approach is to assume that the training distributions are Gaussians in a
reproducing kernel Hilbert space (see for example Jebara et al., 2004; Zhou and Chellappa,
2006, and references therein). This assumption is algorithmically appealing, as many diver-
gence measures for Gaussians can be computed in closed form using only inner products,
making them straightforward to kernelize. A fundamental shortfall of kernelized Gaussian
divergences is the lack of their consistency analysis in specific learning algorithms.

Kernels based techniques: A more theoretically grounded approach to learning on
distributions has been to define positive definite kernels on the basis of statistical diver-
gence measures on distributions, or by metrics on non-negative numbers; these can then be
used in kernel algorithms. This category includes work on semigroup kernels (Cuturi et al.,
2005), non-extensive information theoretical kernel constructions (Martins et al., 2009), and
kernels based on Hilbertian metrics (Hein and Bousquet, 2005). For example, the intuition
of semigroup kernels (Cuturi et al., 2005) is as follows: if two measures or sets of points
overlap, then their sum is expected to be more concentrated. The value of dispersion can
be measured by entropy or inverse generalized variance. In the second type of approach
(Hein and Bousquet, 2005), homogeneous Hilbert metrics on the non-negative real line are
used to define the similarity of probability distributions. While these techniques guaran-
tee to provide valid kernels on certain restricted domains of measures, the performance of
learning algorithms based on finite-sample estimates of these kernels remains a challenging
open question. One might also plug into learning algorithms (based on similarities of dis-
tributions) consistent Rényi and Tsallis divergence estimates (Póczos et al., 2011, 2012),
but these similarity indices are not kernels, and their consistency in specific learning tasks
remains an open question.
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Multi-instance learning: An alternative paradigm in learning when the inputs are
“bags of objects” is to simply treat each input as a finite set : this leads to the multi-instance
learning task (MIL, see Dietterich et al., 1997; Ray and Page, 2001; Dooly et al., 2002). In
MIL one is given a set of labelled bags, and the task of the learner is to find the mapping
from the bags to the labels. Many important examples fit into the MIL framework: for
example, different configurations of a given molecule can be handled as a bag of shapes,
images can be considered as a set of patches or regions of interest, a video can be seen as a
collection of images, a document might be described as a bag of words or paragraphs, a web
page can be identified by its links, a group of people on a social network can be captured
by their friendship graphs, in a biological experiment a subject can be identified by his/her
time series trials, or a customer might be characterized by his/her shopping records. The
MIL approach has been applied in several domains; see the reviews from Babenko (2004);
Zhou (2004); Foulds and Frank (2010); Amores (2013).

“Bag-of-objects” methods (MIL, classification): Despite the large number of
MIL applications and the spate of heuristic solution techniques, there exist few theoretical
results in the area (Auer, 1998; Long and Tan, 1998; Blum and Kalai, 1998; Babenko et al.,
2011; Zhang et al., 2013; Sabato and Tishby, 2012) and they focus on the multi-instance
classification (MIC) task. In particular, let us first consider the standard MIC assumption
(Dietterich et al., 1997), where a bag is declared to be positive (labelled with “1”) if at least
one of its instances is positive (“1”); otherwise, the bag is negative (“0”).15 In other words,
if the instances (xi,n) in the ith bag {xi,1, . . . , xi,N} have hidden label L(xi,n) ∈ {0, 1}, then
the observed label of the bag is yi = h(xi,1, . . . , xi,N ) = max(L(xi,1), . . . , L(xi,N )) ∈ {0, 1}.
In case of the original APR (axis-aligned rectangles; Dietterich et al., 1997) hypothesis class,
function L is equal to the indicator of an unknown rectangle R (L = IR). In other words, a
bag is declared to be positive if there exists at least one instance in the bag, which belongs
to R.16 The goal is to learn R with high probability given the bags ({xi,1, . . . , xi,N}-
s) and their labels (yi-s). Long and Tan (1998) proved the PAC learnability (probably
approximately correct; Valiant, 1984) of the APR hypothesis class, if all instances in each
bag are i.i.d. and follow the same product distribution over the instance coordinates. On the
other hand, for arbitrary distributions over bags, when the instances within a bag might
be statistically dependent, APR learning under MIC is NP-hard (Auer, 1998); the same
authors also showed that the product property (Long and Tan, 1998) on the coordinates is
not required to obtain PAC results. Blum and Kalai (1998) extended PAC learnability of
APR-s to hypothesis classes learnable from one-sided classification noise. In contrast to the
previous approaches (Long and Tan, 1998; Auer, 1998; Blum and Kalai, 1998), Babenko
et al. (2011) modelled the bags as low-dimensional manifolds, and proved PAC bounds. By
relaxing the standard MIC assumption, Sabato and Tishby (2012) showed PAC-learnability
for general MIC hypothesis classes with extended “max” functions. Zhang et al. (2013)
derived high-probability generalization bounds in the MIC setting, when local and global
representations are combined. Our work falls outside this setting since the label and bag
generation mechanisms we consider are different: we do not assume an exact form of the

15. The motivation of this assumption comes from drug discovery: if a molecule has at least one well-binding
configuration, then it is considered to bind well.

16. In terms of drug binding prediction, this means that a molecule binds to a target iff at least one of its
configurations falls within a fixed, but unknown rectangle.
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labelling mechanism (function L and max in h). Rather, the labelling is presumed to be
stochastically determined by the underlying true distribution, not deterministically by the
instance realizations in the bags (these are presumed i.i.d., and may be bag-specific).

“Bag-of-objects” methods (MIL, not classification): Beyond classification, there
exist several heuristics—without consistency guarantees—for many other multi-instance
problems in the literature, including regression (Ray and Page, 2001; Dooly et al., 2002;
Zhou et al., 2009; Kwok and Cheung, 2007), clustering (Zhang and Zhou, 2009; Zhang
et al., 2009, 2011; Chen and Wu, 2012), ranking (Bergeron et al., 2008; Hu et al., 2008;
Bergeron et al., 2012), outlier detection (Wu et al., 2010), transfer learning (Raykar et al.,
2008; Zhang and Si, 2009), and feature selection, -weighting and -extraction (also called
dimensionality reduction, low-dimensional embedding, manifold learning, see Raykar et al.,
2008; Ping et al., 2010; Sun et al., 2010; Carter et al., 2011; Zafra et al., 2013; Chai et al.,
2014a,b, and references therein).

Approaches using set metrics: Adapting the bag viewpoint of MIL, one can come
up with set metric based learning algorithms.17 Probably one of the most well-known set
metrics is the Hausdorff metric (Edgar, 1995), which is defined for non-empty compact
sets of metric spaces, specifically for sets containing finitely many points. There also ex-
ist other (semi)metric constructions on points sets (Eiter and Mannila, 1997; Ramon and
Bruynooghe, 2001). Unfortunately, the classical Hausdorff metric is highly sensitive to
outliers, seriously limiting its practical applicability. In order to mitigate this deficiency,
several variants of the Hausdorff metric have been designed in the MIL literature, such
as the maximal-, the minimal- and the ranked Hausdorff metrics, with successful appli-
cations in MIC (Wang and Zucker, 2000) and multi-instance outlier detection (Wu et al.,
2010); and the average Hausdorff metric (Zhang and Zhou, 2009) and contextual Hausdorff
dissimilarity (Chen and Wu, 2012), which have been found useful in multi-instance cluster-
ing. Unfortunately, these methods lack any theoretical guarantee when applied in specific
learning problems.

Functional data analysis techniques: Finally, the distribution regression task might
also be interpreted as a functional data analysis problem (Ramsay and Silverman, 2002,
2005; Müller, 2005), by considering the probability measures xi as functions. This is a
highly non-standard setup, however, since these functions (xi) are defined on σ-algebras
and are non-negative, σ-additive.

6. Conclusion

We have established a learning theory of distribution regression, where the inputs are prob-
ability measures on separable, topological domains endowed with reproducing kernels, and
the outputs are elements of a separable Hilbert space. We studied a ridge regression scheme
defined on embeddings of the input distributions to a reproducing kernel Hilbert space,
which has a simple analytical solution, as well as theoretically sound, efficient methods
for approximation (Zhang et al., 2015; Richtárik and Takác̆, 2016; Alaoui and Mahoney,
2015; Yang et al., 2016; Rudi et al., 2015). We derived explicit bounds on the excess risk
as a function of the number of samples and problem difficulty. We tackled both the well-

17. Often these “metrics” are only semi-metrics, as they do not satisfy the triangle inequality.
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specified case (when the regression function belongs to the assumed RKHS modelling class),
and the more general misspecified setup. As a special case of our results, we proved the
consistency of regression for set kernels (Haussler, 1999; Gärtner et al., 2002), which was a
17-year-old open problem, and for a recent kernel family (Christmann and Steinwart, 2010),
which we have expanded upon (Table 1). We proved an exact computational-statistical ef-
ficiency trade-off for the MERR estimator: in the well-specified setting, we showed how to
choose the bag size in the two-stage sampled setup to match the one-stage sampled min-
imax optimal rate (Caponnetto and De Vito, 2007); and in the misspecified setting, our
rates approximate closely an asymptotically optimal estimator imposing stricter eigenvalue
decay conditions (Steinwart et al., 2009). Several exciting open questions remain, includ-
ing whether improved/optimal rates can be derived in the misspecified case, whether we
can obtain consistency guarantees for non-point estimates, and how to handle non-ridge
extensions.

Finally, we note that although the primary focus of the current paper was theoretical,
we have applied the MERR method (Szabó et al., 2015, Section A.2) to supervised entropy
learning and aerosol prediction based on multispectral satellite images.18 In future work,
we will address applications with vector-valued outputs.

7. Proofs

We provide proofs for our results detailed in Section 4: Section 7.1 (resp. Section 7.2)
focuses on the well-specified case (resp. misspecified setting). The used lemmas are enlisted
in Section 7.3.

7.1 Proofs of the Well-specified Case

We give proof details concerning the excess risk in the well-specified case (Theorem 2).

7.1.1 Proof of the bound on ‖gẑ − gz‖2H

By (13), (14) we get gẑ − gz = 1
l

∑l
i=1

(
Kµx̂i

− Kµxi

)
yi; hence by applying the Hölder

property of K(·), the boundedness of yi (‖yi‖Y ≤ C) and (24), we obtain

‖gẑ − gz‖2H ≤
1

l2
l

l∑
i=1

∥∥(Kµx̂i
−Kµxi

)
yi
∥∥2

H
≤ 1

l

l∑
i=1

∥∥Kµx̂i
−Kµxi

∥∥2

L(Y,H)
‖yi‖2Y

≤ L2

l

l∑
i=1

‖yi‖2Y ‖µx̂i − µxi‖
2h
H ≤

L2C2

l

l∑
i=1

[
(1 +

√
α)
√

2Bk√
N

]2h

= L2C2 (1 +
√
α)

2h
(2Bk)

h

Nh

with probability at least 1− le−α, based on a union bound.

18. For code, see https://bitbucket.org/szzoli/ite/.
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7.1.2 Proof of the bound on ‖Tx − Tx̂‖2L(H)

Using the definition of Tx and Tx̂, and exploiting (with ‖ · ‖L(H)) that in a normed space19

(N, ‖·‖), fi ∈ N , (i = 1, . . . , n)∥∥∑n

i=1
fi
∥∥2 ≤ n

∑n

i=1
‖fi‖2 , (35)

we get

‖Tx − Tx̂‖2L(H) ≤
1

l2
l

l∑
i=1

∥∥∥Tµxi − Tµx̂i∥∥∥2

L(H)
. (36)

To upper bound ‖Tµxi − Tµx̂i‖
2
L(H), let us see how Tµu = KµaK

∗
µa acts. The existence of an

E ≥ 0 constant satisfying ‖(Tµu − Tµv)(f)‖H ≤ E ‖f‖H implies ‖Tµu − Tµv‖L(H) ≤ E. We

continue with the l.h.s. of this equation using Eq. (35):

‖(Tµu − Tµv)(f)‖2H =
∥∥KµuK

∗
µu(f)−KµvK

∗
µv(f)

∥∥2

H

=
∥∥Kµu

[
K∗µu(f)−K∗µv(f)

]
+ (Kµu −Kµv)K

∗
µv(f)

∥∥2

H

≤ 2
[∥∥Kµu

[
K∗µu(f)−K∗µv(f)

]∥∥2

H
+
∥∥(Kµu −Kµv)K

∗
µv(f)

∥∥2

H

]
.

By Eq. (45) and the Hölder continuity of K(·), one arrives at∥∥Kµu

[
K∗µu(f)−K∗µv(f)

]∥∥2

H
≤ ‖Kµu‖

2
L(Y,H)

∥∥K∗µu(f)−K∗µv(f)
∥∥2

Y

≤ ‖Kµu‖
2
L(Y,H)

∥∥K∗µu −K∗µv∥∥2

L(H,Y )
‖f‖2H = ‖Kµu‖

2
L(Y,H) ‖(Kµu −Kµv)

∗‖2L(H,Y ) ‖f‖
2
H

= ‖Kµu‖
2
L(Y,H) ‖Kµu −Kµv‖

2
L(Y,H) ‖f‖

2
H ≤ BKL

2 ‖µu − µv‖2hH ‖f‖
2
H ,∥∥(Kµu −Kµv)K

∗
µv(f)

∥∥2

H
≤ ‖Kµu −Kµv‖

2
L(Y,H)

∥∥K∗µv(f)
∥∥2

Y

≤ ‖Kµu −Kµv‖
2
L(Y,H)

∥∥K∗µv∥∥2

L(H,Y )
‖f‖2H ≤ BKL

2 ‖µu − µv‖2hH ‖f‖
2
H .

Hence ‖(Tµu − Tµv)(f)‖2H ≤ 4BKL
2 ‖µu − µv‖2hH ‖f‖

2
H ⇒ E2 = 4BKL

2 ‖µu − µv‖2hH . Ex-
ploiting this property in (36) with Eq. (24) we arrive to the bound

‖Tx − Tx̂‖2L(H) ≤
4BKL

2

l

l∑
i=1

‖µxi − µx̂i‖
2h
H ≤

4BKL
2

l

l∑
i=1

(1 +
√
α)

2h
(2Bk)

h

Nh

=
(1 +

√
α)

2h
2h+2(Bk)

hBKL
2

Nh
. (37)

7.1.3 Proof: final union bound in Theorem 2

Until now, we obtained that if (i) the sample number N satisfies Eq. (25), (ii) (24) holds
(which has probability at least 1− le−α = 1− e−[α−log(l)] = 1− e−δ applying a union bound

19. Eq. (35) holds since ‖·‖2 is convex function, thus
∥∥ 1
n

∑n
i=1 fi

∥∥2 ≤ 1
n

∑n
i=1 ‖fi‖

2.
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argument; α = log(l) + δ), and (iii) Θ(λ, z) ≤ 1
2 is fulfilled [see Eq. (22)], then

S−1 + S0 ≤
4

λ

[
L2C2 (1 +

√
α)

2h
(2Bk)

h

Nh
+

(1 +
√
α)

2h
2h+2(Bk)

hBKL
2

Nh
×

×
(

log2

(
6

η

){
64

λ

[
M2BK
l2λ

+
Σ2N(λ)

l

]
+

24

λ2

[
4B2

KB(λ)

l2
+
BKA(λ)

l

]}
+ B(λ) + ‖fρ‖2H

)]
=

4L2 (1 +
√
α)

2h
(2Bk)

h

λNh

[
C2 + 4BK ×

×
(

log2

(
6

η

){
64

λ

[
M2BK
l2λ

+
Σ2N(λ)

l

]
+

24

λ2

[
4B2

KB(λ)

l2
+
BKA(λ)

l

]}
+ B(λ) + ‖fρ‖2H

)]
.

By taking into account Caponnetto and De Vito (2007)’s bounds for S1 and S2, S1 ≤
32 log2

(
6
η

) [
BKM

2

l2λ
+ Σ2N(λ)

l

]
, S2 ≤ 8 log2

(
6
η

) [
4B2

KB(λ)

l2λ
+ BKA(λ)

lλ

]
, plugging all the expres-

sions to (21), we obtain Theorem 2 with a union bound.

7.2 Proofs of the Misspecified Case

We present the proof details concerning the excess risk in the misspecified case (Theorem 7).

7.2.1 Proof of the bound on
√
S−1 +

√
S0 without P(b, c)

The upper bounds on S−1 and S0 [which are defined in Eqs. (15), (16)] remain valid with-
out modification provided that (i) Θ(λ, z) = ‖(T − Tx)(T + λ)−1‖L(H) ≤ ‖(T − Tx)(T +

λ)−1‖L2(H) ≤ 1
2 , where we used Eq. (1), (ii) Eq. (24) is satisfied (which has probability

1− le−α) and (iii) Eq. (25) holds. Our goal below is to guarantee the Θ(λ, z) ≤ 1
2 condition

with high probability without assuming that the prior belongs to P(b, c).

Requirement Θ(λ, z) ≤ 1
2 : Let us define ξi = Tµxi (T +λ)−1 ∈ L2(H), (i = 1, . . . , l). With

this choice we get E[ξi] = T (T + λ)−1, (T − Tx)(T + λ)−1 = E[ξi]− 1
l

∑l
i=1 ξi and

‖ξi‖L2(H) ≤
∥∥Tµxi∥∥L2(H)

∥∥(T + λ)−1
∥∥
L(H)

≤ BK/λ ⇒ E
[
‖ξi‖2L2(H)

]
≤ (BK)2/λ2,

where we made use of (2), the ‖Tµxi‖L2(H) ≤ BK identity following from the boundedness
of K (Caponnetto and De Vito, 2007, page 341, Eq. (13)), and the spectral theorem.
Consequently, by the Bernstein’s inequality (Lemma 7.3.1 with K = L2(H), B = 2BK/λ,
σ = BK/λ) we obtain that for ∀η ∈ (0, 1)

P
(∥∥(T − Tx)(T + λ)−1

∥∥
L2(H)

≤ 2

(
2BK
λl

+
BK√
lλ

)
log

(
2

η

))
≥ 1− η.

Thus, for Θ(λ, z) ≤ 1
2 with probability 1− η it is sufficient to have

2

(
2BK
λl

+
BK√
lλ

)
log

(
2

η

)
≤ 6BK√

lλ
log

(
2

η

)
≤ 1

2
⇔
[

12BK
λ

log

(
2

η

)]2

≤ l. (38)
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Under these conditions, we arrived at the upper bound

√
S−1 +

√
S0 ≤

√
4L2C2 (1 +

√
α)

2h
(2Bk)h

λNh

[
√

1 +

√
4BK
λ

]

=
2LC(1 +

√
α)h(2Bk)

h
2

√
λN

h
2

[
1 +

2
√
BK√
λ

]
,

where as opposed to Section 7.1.3 and Eq. (23) we used a slightly cruder
∥∥fλz ∥∥2

H
≤ C2

λ

bound; it holds without the P(b, c) assumption by the definition of fλz and the boundedness

of y since λ
∥∥fλz ∥∥2

H
≤ 1

l

∑l
i=1 ‖yi‖

2
Y ≤ C2.

Remark: Notice that the price we pay for not assuming that the prior belongs to the
P(b, c) class (b > 1) is a slightly tighter 1

λ2
≤ l constraint [Eq. (38)] instead of 1

λ1+
1
b
≤ l in

Eq. (19), and a somewhat looser
∥∥fλz ∥∥2

H
bound.

7.2.2 Proof of the decomposition of
∥∥√T (fλz − fλ) ∥∥H

Using the analytical formula of fλz [see Eq. (13)] and that of fλ [see Eq.(17)]

fλ = (SKS
∗
K + λI)−1SKfρ = (T + λI)−1SKfρ (39)

one gets (T + λI)fλ = SKfρ ⇒ λfλ = SKfρ − Tfλ and

fλz − fλ = (Tx + λI)−1gz − fλ = (Tx + λI)−1gz − (Tx + λI)−1(Tx + λI)fλ

= (Tx + λI)−1
[
gz − (Tx + λI)fλ

]
= (Tx + λI)−1

(
gz − Txfλ − λfλ

)
= (Tx + λI)−1

(
gz − Txfλ − SKfρ + Tfλ

)
= (Tx + λI)−1 (gz − SKfρ) + (Tx + λI)−1(T − Tx)fλ

= (Tx + λI)−1 (gz − SKfρ) + (Tx + λI)−1(T − Tx)(T + λI)−1SKfρ. (40)

Let us rewrite (T+λI)−1 by the (A+UV )−1 = A−1−A−1U
(
I + V A−1U

)−1
V A−1 operator

Woodbury formula (Ding and Zhou, 2008, Theorem 2.1, page 724)

(T + λI)−1 = (λI + SKS
∗
K)−1 = (λ−1I)− (λ−1I)SK

[
I + S∗K(λ−1I)SK

]−1
S∗K(λ−1I)

= (λ−1I)− λ−1SK(λI + T̃ )−1S∗K .

By the derived expression for (T +λI)−1, we get (T +λI)−1SKfρ = λ−1SKfρ−λ−1SK(λI+
T̃ )−1S∗KSKfρ = λ−1SK

[
fρ − (T̃ + λI)−1S∗KSKfρ

]
. Plugging this result to Eq. (40), intro-

ducing the gρ = SKfρ notation, using the triangle inequality we get∥∥√T (fλz − fλ)∥∥H =

=
∥∥∥√T (Tx + λI)−1

{
(gz − SKfρ) + (T − Tx)λ−1SK

[
fρ − (T̃ + λI)−1S∗KSKfρ

]}∥∥∥
H

≤
∥∥√T (Tx + λI)−1

∥∥
L(H)

(
‖gz − gρ‖H + ‖T − Tx‖L(H) λ

−1
∥∥SK[fρ − (T̃ + λI)−1S∗KSKfρ

]∥∥
H

)
.
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7.2.3 Proof of the bound on ‖gz − gρ‖H
As is known gz = 1

l

∑l
i=1Kµxi

yi [see Eq. (13)] and gρ =
∫
X Kµxfρ(µx)dρX(µx) (Caponnetto

and De Vito, 2007, Eq. (23), page 344). Let ξi = Kµxi
yi ∈ H (i = 1, . . . , l). In this case

E[ξi] = gρ, gρ − gz = E[ξi] − 1
l

∑l
i=1 ξi, and ‖ξi‖2H =

∥∥Kµxi
yi
∥∥2

H
≤
∥∥Kµxi

∥∥2

L(Y,H)
‖yi‖2Y ≤

BKC
2 ⇒ ‖ξi‖H ≤ C

√
BK ⇒ E

[
‖ξi‖2H

]
≤ C2BK using the boundedness of kernel K

(
∥∥Kµxi

∥∥2

L(Y,H)
≤ BK) and the boundedness of output y (‖|y‖Y ≤ C). Applying the Bern-

stein inequality (see Lemma 7.3.1 with K = H, B = 2C
√
BK , σ = C

√
BK) one gets that

for any η ∈ (0, 1)

P

(
‖gz − gρ‖H ≤ 2

(
2C
√
BK

l
+
C
√
BK√
l

)
log

(
2

η

))
≥ 1− η.

7.2.4 Proof of the bound on ‖T − Tx‖L(H)

Let ξi = Tµxi ∈ L2(H) (i = 1, . . . , l), then E[ξi] = T , T −Tx = T − 1
l

∑l
i=1 Tµxi , ‖ξi‖L2(H) =

‖Tµxi‖L2(H) ≤ BK , E
[
‖ξi‖2L2(H)

]
≤ B2

K . Applying the ‖T − Tx‖L(H) ≤ ‖T − Tx‖L2(H)

relation [see Eq. (1)] and the Bernstein inequality (see Lemma 7.3.1 with K = L2(H),
B = 2BK , σ = BK), we obtain that for any η ∈ (0, 1)

P
(
‖T − Tx‖L(H) ≤ 2

(
2BK
l

+
σ√
l

)
log

(
2

η

))
≥ 1− η.

7.2.5 Proof of the decomposition of
∥∥SK(fρ − (T̃ + λI)−1S∗KSKfρ

)∥∥2

H

Since ‖SKa‖2H = 〈SKa, SKa〉H = 〈S∗KSKa, a〉ρ =
〈
T̃ a, a

〉
ρ

(∀a ∈ L2
ρX

) by the definition of

the adjoint operator and T̃ = S∗KSK [see Eq. (6)], we can rewrite the target term as∥∥∥SK [fρ − (T̃ + λI)−1S∗KSKfρ

]∥∥∥2

H
=

=
〈
T̃
[
fρ − (T̃ + λI)−1S∗KSKfρ

]
, fρ − (T̃ + λI)−1S∗KSKfρ

〉
ρ

≤
∥∥∥T̃ [fρ − (T̃ + λI)−1S∗KSKfρ

]∥∥∥
ρ

∥∥∥fρ − (T̃ + λI)−1S∗KSKfρ

∥∥∥
ρ
,

where the CBS (Cauchy-Bunyakovsky-Schwarz) inequality was applied. Since

(S∗KSK + λI)S∗K = S∗K(SKS
∗
K + λI) S∗K(SKS

∗
K + λI)−1 = (S∗KSK + λI)−1S∗K

S∗K(SKS
∗
K + λI)−1SK = (S∗KSK + λI)−1S∗KSK (41)

S∗K(T + λI)−1SK = (T̃ + λI)−1T̃ (42)

using Eq. (41) and the analytical expression for fλ [see Eq. (39)] we have

(T̃ + λI)−1T̃ fρ = (T̃ + λI)−1S∗KSKfρ = (S∗KSK + λI)−1 S∗KSKfρ

= S∗K(SKS
∗
K + λI)−1SKfρ = S∗Kf

λ (43)

and
∥∥SK[fρ − (T̃ + λI)−1S∗KSKfρ

]∥∥2

H
≤
∥∥T̃ [fρ − (T̃ + λI)−1S∗KSKfρ

]∥∥
ρ

∥∥S∗Kfλ − fρ∥∥ρ.
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Szabó et al.

7.2.6 Proof of the bound on
∥∥S∗Kfλ − fρ∥∥ρ

Let us apply (i) the Af − f = Af − f − q′ + q′ = (A − I)(f − q′) + Aq′ − q′ relation with
A = (T̃ + λI)−1T̃ , f = fρ and q′ = S∗Kq, where q ∈ H is an arbitrary element from H, (ii)
Eq. (43) and (iii) the triangle inequality to arrive at∥∥S∗Kfλ − fρ∥∥ρ =

∥∥(T̃ + λI)−1T̃ fρ − fρ
∥∥
ρ

=
∥∥[(T̃ + λI)−1T̃ − I

]
(fρ − S∗Kq) + (T̃ + λI)−1T̃ S∗Kq − S∗Kq

∥∥
ρ

≤
∥∥[(T̃ + λI)−1T̃ − I

]
(fρ − S∗Kq)

∥∥
ρ

+
∥∥(T̃ + λI)−1T̃ S∗Kq − S∗Kq

∥∥
ρ
.

Below we give upper bounds on these two terms.

First, notice that µx ∈ X 7→ ‖K(µx, µx)‖L(Y ) ≤ BK . This boundedness with the strong
continuity of K(·) imply (Carmeli et al., 2006, Proposition 12) that H ⊆ C(X,Y ), i.e., K
is a Mercer kernel. Since Kµx is a Hilbert-Schmidt operator for all µx ∈ X [see Eq. (11)],
it is also a compact operator (∀µx ∈ X). The compactness of Kµx-s with the bounded and
Mercer property of K guarantees the boundedness of S∗K and that T̃ is a compact, positive,
self-adjoint operator (Carmeli et al., 2010, Proposition 3).

Bound on ‖[(T̃ + λI)−1T̃ − I](fρ − S∗Kq)‖ρ: Since T̃ is a compact positive self-adjoint op-
erator, by the spectral theorem (Steinwart and Christmann, 2008, Theorem 4.27, page 127)
there exist an (ui)i∈I countable ONB in cl

[
Im(T̃ )

]
, and a1 ≥ a2 ≥ . . . > 0 such that

T̃ f =
∑

i∈I ai 〈f, ui〉ρ ui (∀f ∈ L2
ρX

) and let (vj)j∈J (J is also countable by the separabil-

ity20 of L2
ρX

) an ONB in Ker(T̃ ∗) = Ker(T̃ ); L2
ρX

= cl
[
Im(T̃ )

]
⊕Ker(T̃ ). Thus,

∥∥[(T̃ + λI)−1T̃ − I
]
(fρ − S∗Kq)

∥∥2

ρ
=
∑
i∈I

( ai
ai + λ

− 1
)2
〈fρ − S∗Kq, ui〉

2
ρ +

∑
j∈J
〈fρ − S∗Kq, vj〉

2
ρ

≤
∑
i∈I
〈fρ − S∗Kq, ui〉

2
ρ +

∑
j∈J
〈fρ − S∗Kq, vj〉

2
ρ = ‖fρ − S∗Kq‖

2
ρ

exploiting the Parseval’s identity and that
(

λi
λi+λ

− 1
)2 ≤ 1.

Bound on ‖(T̃ + λI)−1T̃ S∗Kq − S∗Kq‖ρ: By using Eq. (42), Eq. (32), and Lemma 7.3.2
(M = T = SKS

∗
K , K = H, f = q, a = 1

2), the target quantity can be bounded as∥∥(T̃ + λI)−1T̃ S∗Kq − S∗Kq
∥∥
ρ

=
∥∥S∗K(T + λI)−1SKS

∗
Kq − S∗Kq

∥∥
ρ

=
∥∥√T [(T + λI)−1SKS

∗
Kq − q

] ∥∥
H

=
∥∥√T [(T + λI)−1Tq − q

] ∥∥
H
≤ max

(
1, ‖T‖L(H)

)
λ

1
2 ‖q‖H .

Making use of the two derived bounds, we get
∥∥S∗Kfλ − fρ∥∥ρ ≤ ‖fρ − S∗Kq‖ρ +

max
(
1, ‖T‖L(H)

)
λ

1
2 ‖q‖H.

20. L2
ρX = L2(X, B(H)|X , ρX ;Y ) is isomorphic to L2(X, B(H)|X , ρX ;R)⊗Y , where ⊗ is the tensor product

of Hilbert spaces. The separability follows from that of Y and L2(X, B(H)|X , ρX ;R); the latter holds
(Cohn, 2013, Proposition 3.4.5) since B(H)|X is countably generated since X ⊆ H is separable.
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7.3 Supplementary Lemmas

In this section, we list two lemmas used in the proofs.

7.3.1 Bernstein’s inequality (Caponnetto and De Vito, 2007, Prop. 2, p. 345)

Let ξi (i = 1, . . . , l) be i.i.d. realizations of a random variable on a (Ω,A, P ) probability
space with values in a separable Hilbert space K. If there exist B > 0, σ > 0 constants

such that ‖ξ(ω)‖K ≤
B
2 a.s., E

[
‖ξ‖2K

]
≤ σ2, then for all l ≥ 1 and η ∈ (0, 1) we have

P

(∥∥∥1

l

l∑
i=1

ξi − E[ξ1]
∥∥∥
K
≤ 2

(
B

l
+

σ√
l

)
log

(
2

η

))
≥ 1− η.

7.3.2 Lemma on bounded, self-adjoint compact operators; Sriperumbudur
et al. (2014, Proposition A.2, page 39)

Let M be a bounded, self-adjoint compact operator on a separable Hilbert space K. Let
a ≥ 0, λ > 0, and s ≥ 0. Let f ∈ K such that f ∈ Im (M s). If s+ a > 0, then∥∥Ma

[
(M + λI)−1Mf − f

]∥∥
K
≤ max

(
1, ‖M‖s+a−1

L(K)

)
λmin(1,s+a)

∥∥M−sf∥∥
K
.

Note: specifically for s = 0 we have Im (M s) = Im (I) = K, in other words, there is no
additional range space constraint.

8. Discussion of Our Assumptions

We give a short insight into the consequences of our assumptions (detailed in Section 3)
and present some concrete examples.

• Well-definedness of ρ: The boundedness and continuity of k imply the measura-
bility of µ : (M+

1 (X),B(τw))→ (H,B(H)). Let τ denote the open sets on H = H(k),
τ |X = {A ∩ X : A ∈ τ} the subspace topology on X, and B(H)|X = {A ∩ X : A ∈
B(H)} the subspace σ-algebra on X. By noting (Schwartz, 1998, Corollary 5.2.13)
that B (τ |X) = B(H)|X = {A ∈ B(H) : A ⊆ X} ⊆ B(H), the H-measurability of µ
guarantees the measurability of µ : (M+

1 (X),B(τw)) → (X, B(H)|X), and hence the
well-definedness of ρ, the measure induced by M on X × Y ; for further details see
(Szabó et al., 2015, Section A.1.1).21

• Separability of X: separability of X and the continuity of k implies the separability
of H = H(k) (Steinwart and Christmann, 2008, Lemma 4.33, page 130). Also, since
X ⊆ H, X is separable.

• Finiteness of Bk: If X is compact, then the continuity of k implies Bk <∞.

• Finiteness of BK , compact metricness of X: Let X be a compact metric space. In
this case M+

1 (X) is also compact metric (Parthasarathy, 1967, Theorem 6.4, page 55).

21. Note that the referred proof also holds for separable Hilbert Y , and by the simplified reasoning above
the original X ∈ B(H) condition could be avoided.
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Hence if µ : (M+
1 (X), τw) → H(k) is continuous22 (not just measurable), then X is

compact metric and thus by the Hölder property of K(·), it is continuous implying
that BK <∞.

• K properties: It is known (Caponnetto and De Vito, 2007, page 339-340) that

K(µa, µb) = K∗µaKµb , (∀µa, µb ∈ X) (44)

‖Kµa‖L(Y,H) =
∥∥K∗µa∥∥L(H,Y )

≤
√
BK , (∀µa ∈ X). (45)

Remark: In terms of Eq. (44), the Eq. (11) assumption means that the
{K(µa, µa)}µa∈X operators are trace class, specifically they are compact operators.

• Separability of H: The separability of X and the continuity of K imply the separa-
bility of H. Indeed, since µa 7→ Kµa is Hölder continuous w.r.t. the Hilbert-Schmidt
norm it is also continuous. As a result it is continuous w.r.t. the operator norm, and
thus also w.r.t. the strong topology. Using this property with the finiteness of BK the
separability of H follows (Carmeli et al., 2006, Proposition 5.1, Corollary 5.2).

• Our assumptions imply Caponnetto and De Vito (2007)’s conditions (not considering
the P(b, c) prior requirement). Indeed

1. Y is a separable Hilbert space by assumption; the same property also holds for H

as we have seen.
2. The measurability of (µx, µt) 7→ 〈Kµxw,Kµtv〉H for ∀w, v ∈ Y is guaranteed by the

continuity of K(·) w.r.t. the strong topology.

3. We have
∫
X×Y ‖y‖

2
Y dρX(µx, y) ≤

∫
X×Y C

2dρX(µx, y) = C2 < ∞ due to the
boundedness of y, and hence ∃Σ > 0, ∃M > 0 such that for ρX -almost µx ∈ X∫

Y
‖y − fρ(µx)‖mY dρ(y|µx) ≤ m!Σ2Mm−2

2
(∀m ≥ 2). (46)

Indeed, by (Caponnetto and De Vito, 2007, Eq. (33)) the Bernstein condition (46)
holds if ‖y − fρ(µx)‖Y ≤

M
2 ,
∫
Y ‖y − fρ(µx)‖2Y dρ(y|µx) ≤ Σ2. In our case using

the boundedness of y, the regression function is also bounded and the same holds
for ‖y − fρ(µx)‖Y by the triangle inequality: ‖y − fρ(µx)‖Y ≤ C + ‖fρ‖H

√
BK ;

thus, M = 2(C + ‖fρ‖H
√
BK), Σ = M

2 is a suitable choice.
4. The Polishness of X × Y was used by Caponnetto and De Vito (2007) to assure

the existence of ρ(y|µa); we guaranteed this existence under somewhat milder con-
ditions (see footnote 7).

Real-valued outputs: We now consider the specific case of Y = R, when the following
simplifications and results hold. By noting that in this case Tr(K∗µaKµa) = K(µa, µa),
Eq. (11) simplifies to the boundedness of kernel K in the traditional sense

K(µa, µa) ≤ BK (∀µa ∈ X). (47)

22. For example, if k is universal, then µ metrizes the weak topology τw (Sriperumbudur et al., 2010,
Theorem 23, page 1552), hence µ is continuous.
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KG Ke KC Kt Ki

e−
‖µa−µb‖2H

2θ2 e−
‖µa−µb‖H

2θ2

(
1 + ‖µa − µb‖2H /θ2

)−1(
1 + ‖µa − µb‖θH

)−1(
‖µa − µb‖2H + θ2

)− 1
2

h = 1 h = 1
2 h = 1 h = θ

2 (θ ≤ 2) h = 1

Table 1: Nonlinear kernels on mean embedded distributions: K = K(µa, µb); θ > 0. For the
Hölder continuity of ΨK , we assume that X is a compact metric space and µ is continuous.

Eq. (12) reduces to the Hölder continuity of the canonical feature map ΨK(µc) :=
K(·, µc) : X → H, in other words ∃L > 0, h ∈ (0, 1] such that ‖ΨK(µa)−ΨK(µb)‖H ≤
L ‖µa − µb‖hH , ∀(µa, µb) ∈ X × X. In case of a linear kernel, K(µa, µb) = 〈µa, µb〉H ,
(µa, µb ∈ X), the Hölder continuity of ΨK holds with L = 1, h = 1, and BK = Bk is a suit-
able choice. Evaluating the kernel K at the empirical embeddings µx̂i =

∫
X
k(·, u)dx̂i(u) =

1
N

∑N
n=1 k(·, xi,n) ∈ H yields the standard set kernel

K(µx̂i , µx̂j ) =
〈
µx̂i , µx̂j

〉
H

=

〈
1

N

N∑
n=1

k(·, xi,n),
1

N

N∑
m=1

k(·, xj,m)

〉
H

=
1

N2

N∑
n,m=1

k(xi,n, xj,m)

by the bilinearity of 〈·, ·〉H and the reproducing property of k.

Remark: One can define many nonlinear kernels (see Table 1) on mean embedded distribu-
tions. These kernels are the natural extensions to distributions of the Gaussian (Christmann
and Steinwart, 2010), exponential, Cauchy, generalized t-student and inverse multiquadric
kernels. If X is a compact metric space and µ is continuous, then the ΨK canonical fea-
ture maps, associated to K-s in Table 1, can be shown to satisfy our Hölder continuity
requirement [Eq. (12)]; for details, see (Szabó et al., 2015, Section A.1.5-A.1.6).
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