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Abstract

This work considers a computationally and statistically efficient parameter estimation
method for a wide class of latent variable models—including Gaussian mixture models,
hidden Markov models, and latent Dirichlet allocation—which exploits a certain tensor
structure in their low-order observable moments (typically, of second- and third-order).
Specifically, parameter estimation is reduced to the problem of extracting a certain (orthog-
onal) decomposition of a symmetric tensor derived from the moments; this decomposition
can be viewed as a natural generalization of the singular value decomposition for matrices.
Although tensor decompositions are generally intractable to compute, the decomposition
of these specially structured tensors can be efficiently obtained by a variety of approaches,
including power iterations and maximization approaches (similar to the case of matrices).
A detailed analysis of a robust tensor power method is provided, establishing an analogue
of Wedin’s perturbation theorem for the singular vectors of matrices. This implies a ro-
bust and computationally tractable estimation approach for several popular latent variable
models.
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1. Introduction

The method of moments is a classical parameter estimation technique (Pearson, 1894) from
statistics which has proved invaluable in a number of application domains. The basic
paradigm is simple and intuitive: (i) compute certain statistics of the data—often empirical
moments such as means and correlations—and (ii) find model parameters that give rise to
(nearly) the same corresponding population quantities. In a number of cases, the method of
moments leads to consistent estimators which can be efficiently computed; this is especially
relevant in the context of latent variable models, where standard maximum likelihood ap-
proaches are typically computationally prohibitive, and heuristic methods can be unreliable
and difficult to validate with high-dimensional data. Furthermore, the method of moments
can be viewed as complementary to the maximum likelihood approach; simply taking a
single step of Newton-Raphson on the likelihood function starting from the moment based
estimator (Le Cam, 1986) often leads to the best of both worlds: a computationally efficient
estimator that is (asymptotically) statistically optimal.

The primary difficulty in learning latent variable models is that the latent (hidden)
state of the data is not directly observed; rather only observed variables correlated with
the hidden state are observed. As such, it is not evident the method of moments should
fare any better than maximum likelihood in terms of computational performance: match-
ing the model parameters to the observed moments may involve solving computationally
intractable systems of multivariate polynomial equations. Fortunately, for many classes of
latent variable models, there is rich structure in low-order moments (typically second- and
third-order) which allow for this inverse moment problem to be solved efficiently (Cattell,
1944; Cardoso, 1991; Chang, 1996; Mossel and Roch, 2006; Hsu et al., 2012b; Anandkumar
et al., 2012c,a; Hsu and Kakade, 2013). What is more is that these decomposition problems
are often amenable to simple and efficient iterative methods, such as gradient descent and
the power iteration method.

1.1 Contributions

In this work, we observe that a number of important and well-studied latent variable
models—including Gaussian mixture models, hidden Markov models, and Latent Dirichlet
allocation—share a certain structure in their low-order moments, and this permits certain
tensor decomposition approaches to parameter estimation. In particular, this decompo-
sition can be viewed as a natural generalization of the singular value decomposition for
matrices.

While much of this (or similar) structure was implicit in several previous works (Chang,
1996; Mossel and Roch, 2006; Hsu et al., 2012b; Anandkumar et al., 2012c,a; Hsu and
Kakade, 2013), here we make the decomposition explicit under a unified framework. Specif-
ically, we express the observable moments as sums of rank-one terms, and reduce the pa-
rameter estimation task to the problem of extracting a symmetric orthogonal decomposition
of a symmetric tensor derived from these observable moments. The problem can then be
solved by a variety of approaches, including fixed-point and variational methods.
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One approach for obtaining the orthogonal decomposition is the tensor power method
of Lathauwer et al. (2000, Remark 3). We provide a convergence analysis of this method for
orthogonally decomposable symmetric tensors, as well as a detailed perturbation analysis
for a robust (and a computationally tractable) variant (Theorem 5.1). This perturbation
analysis can be viewed as an analogue of Wedin’s perturbation theorem for singular vectors
of matrices (Wedin, 1972), providing a bound on the error of the recovered decomposition
in terms of the operator norm of the tensor perturbation. This analysis is subtle in at least
two ways. First, unlike for matrices (where every matrix has a singular value decomposi-
tion), an orthogonal decomposition need not exist for the perturbed tensor. Our robust
variant uses random restarts and deflation to extract an approximate decomposition in a
computationally tractable manner. Second, the analysis of the deflation steps is non-trivial;
a naive argument would entail error accumulation in each deflation step, which we show can
in fact be avoided. When this method is applied for parameter estimation in latent variable
models previously discussed, improved sample complexity bounds (over previous work) can
be obtained using this perturbation analysis.

Finally, we also address computational issues that arise when applying the tensor de-
composition approaches to estimating latent variable models. Specifically, we show that the
basic operations of simple iterative approaches (such as the tensor power method) can be
efficiently executed in time linear in the dimension of the observations and the size of the
training data. For instance, in a topic modeling application, the proposed methods require
time linear in the number of words in the vocabulary and in the number of non-zero entries
of the term-document matrix. The combination of this computational efficiency and the
robustness of the tensor decomposition techniques makes the overall framework a promising
approach to parameter estimation for latent variable models.

1.2 Related Work

The connection between tensor decompositions and latent variable models has a long history
across many scientific and mathematical disciplines. We review some of the key works that
are most closely related to ours.

1.2.1 TENSOR DECOMPOSITIONS

The role of tensor decompositions in the context of latent variable models dates back to early
uses in psychometrics (Cattell, 1944). These ideas later gained popularity in chemometrics,
and more recently in numerous science and engineering disciplines, including neuroscience,
phylogenetics, signal processing, data mining, and computer vision. A thorough survey of
these techniques and applications is given by Kolda and Bader (2009). Below, we discuss a
few specific connections to two applications in machine learning and statistics, independent
component analysis and latent variable models (between which there is also significant
overlap).

Tensor decompositions have been used in signal processing and computational neuro-
science for blind source separation and independent component analysis (ICA) (Comon and
Jutten, 2010). Here, statistically independent non-Gaussian sources are linearly mixed in
the observed signal, and the goal is to recover the mixing matrix (and ultimately, the orig-
inal source signals). A typical solution is to locate projections of the observed signals that
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correspond to local extrema of the so-called “contrast functions” which distinguish Gaussian
variables from non-Gaussian variables. This method can be effectively implemented using
fast descent algorithms (Hyvarinen, 1999). When using the excess kurtosis (i.e., fourth-order
cumulant) as the contrast function, this method reduces to a generalization of the power
method for symmetric tensors (Lathauwer et al., 2000; Zhang and Golub, 2001; Kofidis and
Regalia, 2002). This case is particularly important, since all local extrema of the kurtosis
objective correspond to the true sources (under the assumed statistical model) (Delfosse
and Loubaton, 1995); the descent methods can therefore be rigorously analyzed, and their
computational and statistical complexity can be bounded (Frieze et al., 1996; Nguyen and
Regev, 2009; Arora et al., 2012b).

Higher-order tensor decompositions have also been used to develop estimators for com-
monly used mixture models, hidden Markov models, and other related latent variable mod-
els, often using the the algebraic procedure of R. Jennrich (as reported in the article of
Harshman, 1970), which is based on a simultaneous diagonalization of different ways of
flattening a tensor to matrices. Jennrich’s procedure was employed for parameter estima-
tion of discrete Markov models by Chang (1996) via pair-wise and triple-wise probability
tables; and it was later used for other latent variable models such as hidden Markov models
(HMMs), latent trees, Gaussian mixture models, and topic models such as latent Dirichlet
allocation (LDA) by many others (Mossel and Roch, 2006; Hsu et al., 2012b; Anandkumar
et al., 2012c,a; Hsu and Kakade, 2013). In these contexts, it is often also possible to es-
tablish strong identifiability results, without giving an explicit estimators, by invoking the
non-constructive identifiability argument of Kruskal (1977)—see the article by Allman et al.
(2009) for several examples.

Related simultaneous diagonalization approaches have also been used for blind source
separation and ICA (as discussed above), and a number of efficient algorithms have been
developed for this problem (Bunse-Gerstner et al., 1993; Cardoso and Souloumiac, 1993;
Cardoso, 1994; Cardoso and Comon, 1996; Corless et al., 1997; Ziehe et al., 2004). A rather
different technique that uses tensor flattening and matrix eigenvalue decomposition has
been developed by Cardoso (1991) and later by De Lathauwer et al. (2007). A significant
advantage of this technique is that it can be used to estimate overcomplete mixtures, where
the number of sources is larger than the observed dimension.

The relevance of tensor analysis to latent variable modeling has been long recognized in
the field of algebraic statistics (Pachter and Sturmfels, 2005), and many works characterize
the algebraic varieties corresponding to the moments of various classes of latent variable
models (Drton et al., 2007; Sturmfels and Zwiernik, 2013). These works typically do not
address computational or finite sample issues, but rather are concerned with basic questions
of identifiability.

The specific tensor structure considered in the present work is the symmetric orthogo-
nal decomposition. This decomposition expresses a tensor as a linear combination of simple
tensor forms; each form is the tensor product of a vector (i.e., a rank-1 tensor), and the
collection of vectors form an orthonormal basis. An important property of tensors with
such decompositions is that they have eigenvectors corresponding to these basis vectors.
Although the concepts of eigenvalues and eigenvectors of tensors is generally significantly
more complicated than their matrix counterpart—both algebraically (Qi, 2005; Cartwright
and Sturmfels, 2013; Lim, 2005) and computationally (Hillar and Lim, 2013; Kofidis and
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Regalia, 2002)—the special symmetric orthogonal structure we consider permits simple
algorithms to efficiently and stably recover the desired decomposition. In particular, a gen-
eralization of the matrix power method to symmetric tensors, introduced by Lathauwer
et al. (2000, Remark 3) and analyzed by Kofidis and Regalia (2002), provides such a de-
composition. This is in fact implied by the characterization of Zhang and Golub (2001),
which shows that iteratively obtaining the best rank-1 approximation of such orthogonally
decomposable tensors also yields the exact decomposition. We note that in general, ob-
taining such approximations for general (symmetric) tensors is NP-hard (Hillar and Lim,
2013).

1.2.2 LATENT VARIABLE MODELS

This work focuses on the particular application of tensor decomposition methods to estimat-
ing latent variable models, a significant departure from many previous approaches in the
machine learning and statistics literature. By far the most popular heuristic for parameter
estimation for such models is the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977; Redner and Walker, 1984). Although EM has a number of merits, it may suffer
from slow convergence and poor quality local optima (Redner and Walker, 1984), requir-
ing practitioners to employ many additional heuristics to obtain good solutions. For some
models such as latent trees (Roch, 2006) and topic models (Arora et al., 2012a), maximum
likelihood estimation is NP-hard, which suggests that other estimation approaches may be
more attractive. More recently, algorithms from theoretical computer science and machine
learning have addressed computational and sample complexity issues related to estimating
certain latent variable models such as Gaussian mixture models and HMMs (Dasgupta,
1999; Arora and Kannan, 2005; Dasgupta and Schulman, 2007; Vempala and Wang, 2004;
Kannan et al., 2008; Achlioptas and McSherry, 2005; Chaudhuri and Rao, 2008; Brubaker
and Vempala, 2008; Kalai et al., 2010; Belkin and Sinha, 2010; Moitra and Valiant, 2010;
Hsu and Kakade, 2013; Chang, 1996; Mossel and Roch, 2006; Hsu et al., 2012b; Anandkumar
et al., 2012c; Arora et al., 2012a; Anandkumar et al., 2012a). See the works by Anandku-
mar et al. (2012c) and Hsu and Kakade (2013) for a discussion of these methods, together
with the computational and statistical hardness barriers that they face. The present work
reviews a broad range of latent variables where a mild non-degeneracy condition implies
the symmetric orthogonal decomposition structure in the tensors of low-order observable
moments.

Notably, another class of methods, based on subspace identification (Overschee and
Moor, 1996) and observable operator models/multiplicity automata (Schiitzenberger, 1961;
Jaeger, 2000; Littman et al., 2001), have been proposed for a number of latent variable
models. These methods were successfully developed for HMMs by Hsu et al. (2012b), and
subsequently generalized and extended for a number of related sequential and tree Markov
models models (Siddiqi et al., 2010; Bailly, 2011; Boots et al., 2010; Parikh et al., 2011; Rodu
et al., 2013; Balle et al., 2012; Balle and Mohri, 2012), as well as certain classes of parse
tree models (Luque et al., 2012; Cohen et al., 2012; Dhillon et al., 2012). These methods
use low-order moments to learn an “operator” representation of the distribution, which can
be used for density estimation and belief state updates. While finite sample bounds can be
given to establish the learnability of these models (Hsu et al., 2012b), the algorithms do not
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actually give parameter estimates (e.g., of the emission or transition matrices in the case of
HMMs).

1.3 Organization

The rest of the paper is organized as follows. Section 2 reviews some basic definitions of
tensors. Section 3 provides examples of a number of latent variable models which, after
appropriate manipulations of their low order moments, share a certain natural tensor struc-
ture. Section 4 reduces the problem of parameter estimation to that of extracting a certain
(symmetric orthogonal) decomposition of a tensor. We then provide a detailed analysis of
a robust tensor power method and establish an analogue of Wedin’s perturbation theorem
for the singular vectors of matrices. The discussion in Section 6 addresses a number of
practical concerns that arise when dealing with moment matrices and tensors.

2. Preliminaries

We introduce some tensor notations borrowed from Lim (2005). A real p-th order tensor
A € QY ,R™ is a member of the tensor product of Euclidean spaces R™, i € [p]. We
generally restrict to the case where ny = ng = -+ = n, = n, and simply write A € Q” R".
For a vector v € R", we use v®? := v @v®---@v € @ R" to denote its p-th tensor power.
As is the case for vectors (where p = 1) and matrices (where p = 2), we may identify a
p-th order tensor with the p-way array of real numbers [A;, i, .4, 11,92, ..., € [n]], where
A ig,...ip 15 the (i1,42,...,1p)-th coordinate of A (with respect to a canonical basis).

We can consider A to be a multilinear map in the following sense: for a set of matrices
{Vi € R™™i : ¢ € [p|}, the (i1,42,...,1p)-th entry in the p-way array representation of
A(Vi, Ve, ..., V) € Rmxmaxxmy g

AL Vay oo Volliviaip = D Ajigarids Vilinir Valiaia -+ Valjpie

J1,J25--3p €[]

Note that if A is a matrix (p = 2), then
AV, Vo) = VT AV,

Similarly, for a matrix A and vector v € R", we can express Av as
A(I,v) = Av € R",

where [ is the n x n identity matrix. As a final example of this notation, observe

A(€iys€iny -5 €iy) = Aiyin, i

where {ej,eg,...,e,} is the canonical basis for R™.

Most tensors A € QP R™ considered in this work will be symmetric (sometimes called
supersymmetric), which means that their p-way array representations are invariant to
permutations of the array indices: id.e., for all indices i1,42,...,i, € [n], Ai17i27,,.7ip =
Aiw(l)»iﬂ(Q)v"wiw(p) for any permutation 7 on [p]. It can be checked that this reduces to the
usual definition of a symmetric matrix for p = 2.
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The rank of a p-th order tensor A € ®” R™ is the smallest non-negative integer k such
that A = Z?:l Ul ®u; ® -+ @ uy ;i for some u; ; € R™, i € [p], j € [k], and the symmetric
rank of a symmetric p-th order tensor A is the smallest non-negative integer k£ such that
A= Z§:1 u;&p for some u; € R™, j € [k].} The notion of rank readily reduces to the usual
definition of matrix rank when p = 2, as revealed by the singular value decomposition.
Similarly, for symmetric matrices, the symmetric rank is equivalent to the matrix rank as
given by the spectral theorem. A decomposition into such rank-one terms is known as a
canonical polyadic decomposition (Hitchcock, 1927a,b).

The notion of tensor (symmetric) rank is considerably more delicate than matrix (sym-
metric) rank. For instance, it is not clear a priori that the symmetric rank of a tensor
should even be finite (Comon et al., 2008). In addition, removal of the best rank-1 approx-
imation of a (general) tensor may increase the tensor rank of the residual (Stegeman and
Comon, 2010).

Throughout, we use ||[v| = (3>, v?)!/2 to denote the Euclidean norm of a vector v, and
||M|| to denote the spectral (operator) norm of a matrix. We also use ||T|| to denote the
operator norm of a tensor, which we define later.

3. Tensor Structure in Latent Variable Models

In this section, we give several examples of latent variable models whose low-order moments
can be written as symmetric tensors of low symmetric rank; some of these examples can be
deduced using the techniques developed in the text by McCullagh (1987). The basic form
is demonstrated in Theorem 3.1 for the first example, and the general pattern will emerge
from subsequent examples.

3.1 Exchangeable Single Topic Models

We first consider a simple bag-of-words model for documents in which the words in the
document are assumed to be exchangeable. Recall that a collection of random variables
xr1,%2,...,Tp are exchangeable if their joint probability distribution is invariant to permu-
tation of the indices. The well-known De Finetti’s theorem (Austin, 2008) implies that such
exchangeable models can be viewed as mixture models in which there is a latent variable h
such that z1,z9, ..., 2z, are conditionally i.i.d. given h (see Figure 1(a) for the corresponding
graphical model) and the conditional distributions are identical at all the nodes.

In our simplified topic model for documents, the latent variable h is interpreted as
the (sole) topic of a given document, and it is assumed to take only a finite number of
distinct values. Let k be the number of distinct topics in the corpus, d be the number of
distinct words in the vocabulary, and ¢ > 3 be the number of words in each document. The
generative process for a document is as follows: the document’s topic is drawn according to
the discrete distribution specified by the probability vector w := (wy,ws,...,wg) € Ak
This is modeled as a discrete random variable h such that

Prlh =j] =wj, je€ [kl

1. For even p, the definition is slightly different (Comon et al., 2008).
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Given the topic h, the document’s ¢ words are drawn independently according to the dis-
crete distribution specified by the probability vector ju, € A%, It will be convenient to
represent the ¢ words in the document by d-dimensional random vectors 1, s, . ..,z € R%.
Specifically, we set

x; =e; if and only if the t-th word in the document is i, ¢ € [/],

where e, s, . .. eq is the standard coordinate basis for R%.
One advantage of this encoding of words is that the (cross) moments of these random
vectors correspond to joint probabilities over words. For instance, observe that

Elx; ® x9] = Z Priz; = e, 20 =¢j] ¢, ¢
1<i,j<d
= Z Pr[lst word = 4, 2nd word = j] e; ® e;,

1<i,j<d
so the (7,j)-the entry of the matrix E[z; ® x3] is Pr[lst word = 4,2nd word = j]. More
generally, the (i1,1i2,...,177)-th entry in the tensor E[z; ® 2o ® - -+ ® xy] is Pr[lst word =
i1,2nd word = ig,...,f-th word = 4y]. This means that estimating cross moments, say, of
r1 ® Ty ® x3, is the same as estimating joint probabilities of the first three words over all
documents. (Recall that we assume that each document has at least three words.)

The second advantage of the vector encoding of words is that the conditional expectation
of x; given h = j is simply p;, the vector of word probabilities for topic j:

d d

Elweh=j] = Y Prftthword=ilh =3l e; = Y [ujlie; = pj, j € [K]
=1 =1

(where [115]; is the i-th entry in the vector u;). Because the words are conditionally inde-
pendent given the topic, we can use this same property with conditional cross moments,
say, of x1 and xa:

Elz1 ® x2|h = j] = Elz1|h =j]@E[zalh =j] = pj @ py, j € [kl
This and similar calculations lead one to the following theorem.
Theorem 3.1 (Anandkumar et al., 2012c) If

My = E[x1®x2]
My = E[$1®$2®$3],

then

k
My = Zwi i & b
=1
k

Mz = Zwi i @ i & ;.
=1
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As we will see in Section 4.3, the structure of My and M3 revealed in Theorem 3.1 implies
that the topic vectors pi, o, ..., ur can be estimated by computing a certain symmetric
tensor decomposition. Moreover, due to exchangeability, all triples (resp., pairs) of words
in a document—and not just the first three (resp., two) words—can be used in forming M3
(resp., My); see Section 6.1.

3.2 Beyond Raw Moments

In the single topic model above, the raw (cross) moments of the observed words directly
yield the desired symmetric tensor structure. In some other models, the raw moments do
not explicitly have this form. Here, we show that the desired tensor structure can be found
through various manipulations of different moments.

3.2.1 SPHERICAL GAUSSIAN MIXTURES: COMMON COVARIANCE

We now consider a mixture of k Gaussian distributions with spherical covariances. We start
with the simpler case where all of the covariances are identical; this probabilistic model is
closely related to the (non-probabilistic) k-means clustering problem (MacQueen, 1967).

Let w; € (0,1) be the probability of choosing component i € [k], {u1, u2, . .., ux} C R?
be the component mean vectors, and 021 be the common covariance matrix. An observation
in this model is given by

= p + 2,

where h is the discrete random variable with Pr[h = i] = w; for i € [k] (similar to the ex-
changeable single topic model), and z ~ N(0,02I) is an independent multivariate Gaussian
random vector in R? with zero mean and spherical covariance o21.

The Gaussian mixture model differs from the exchangeable single topic model in the way
observations are generated. In the single topic model, we observe multiple draws (words in
a particular document) x1, z9, ..., x¢ given the same fixed h (the topic of the document). In
contrast, for the Gaussian mixture model, every realization of x corresponds to a different
realization of h.

Theorem 3.2 (Hsu and Kakade, 2013) Assume d > k. The variance o is the smallest
eigenvalue of the covariance matriz Elz ® x] — E[x] ® E[x]|. Furthermore, if

My, = Elz®az]—o’I
d

Mz = E[ﬁﬁ@x@l‘]—GQZ(E[ZU]®€i®€i+ei®E[l’]®€i+€i®€i®E[$]),
i=1

then
k
My = Zwi i & b
i=1
k

Mz = Zwi i @ i & ;.
=1
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3.2.2 SPHERICAL GAUSSIAN MIXTURES: DIFFERING COVARIANCES

The general case is where each component may have a different spherical covariance. An
observation in this model is again = = up + 2, but now z € R? is a random vector whose
conditional distribution given h =i (for some i € [k]) is a multivariate Gaussian N(0,021)
with zero mean and spherical covariance o21.

Theorem 3.3 (Hsu and Kakade, 2013) Assume d > k. The average variance 6* :=

Sk wio? is the smallest eigenvalue of the covariance matriz Elx ® x] — Elz] @ Elz]. Let v

be any unit norm eigenvector corresponding to the eigenvalue 2. If

My = Elz(v"(z ~ Elz]))?
My, = Elz®az]—5%I
d
Ms = E[:L‘@.%@:L’]—Z(Ml®ei®€i+€i®M1®€i+€i®ei®M1)a

=1

then

k
My, = Zwi i @ b
=1

k
Ms = Zwi Hi @ g @ fg.
i=1

As shown by Hsu and Kakade (2013), M; = Zle w;o?p;. Note that for the common
covariance case, where 0 = 02, we have that M; = 0?E[z] (¢f. Theorem 3.2).

3.2.3 INDEPENDENT COMPONENT ANALYSIS (ICA)

The standard model for ICA (Comon, 1994; Cardoso and Comon, 1996; Hyvérinen and
Oja, 2000; Comon and Jutten, 2010), in which independent signals are linearly mixed and
corrupted with Gaussian noise before being observed, is specified as follows. Let h € R¥ be
a latent random vector with independent coordinates, A € R4** the mixing matrix, and z
be a multivariate Gaussian random vector. The random vectors h and z are assumed to be
independent. The observed random vector is

x:=Ah+ z.
Let u; denote the i-th column of the mixing matrix A.
Theorem 3.4 (Comon and Jutten, 2010) Define
My = Epereza]-T
where T is the fourth-order tensor with

(Tiy iz 3,10 = Bl Tiy |E[Ti524,] + Elzi, 245 B2, 744
+ E[lemm]E[l‘lzxu]a 1 S ilu i27 i37 7:4 S k
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(i.e., T is the fourth derivative tensor of the function v — 8 'E[(vTx)?]?, so My is the
fourth cumulant tensor). Let k; := E[h}] — 3 for each i € [k]. Then

k
My = ZF% i @ f; @y @ f.
i—1

Note that x; corresponds to the excess kurtosis, a measure of non-Gaussianity as x; = 0 if
h; is a standard normal random variable. Furthermore, note that A is not identifiable if A
is a multivariate Gaussian.

We may derive forms similar to that of Ms and M3 from Theorem 3.1 using My by
observing that

M-

My(I, I u,v) = ) ki w)(pi v) pi @ pui,

1

(2

M=

My(I,1,1,0) = > wip] v) i @ pi @ g

i=1

for any vectors u,v € R%,

3.2.4 LATENT DIRICHLET ALLOCATION (LDA)

An increasingly popular class of latent variable models are mized membership models, where
each datum may belong to several different latent classes simultaneously. LDA is one such
model for the case of document modeling; here, each document corresponds to a mixture
over topics (as opposed to just a single topic). The distribution over such topic mixtures is a
Dirichlet distribution Dir(«) with parameter vector o € Rﬁ 4 with strictly positive entries;
its density over the probability simplex A*~1 = {v € R¥ : v; € [0,1]Vi € [k], Zle v; =1}
is given by

(a0) 1
0 a;—1 k—1
pa(h) = L Hh v heA
[Tz Dew) i=1 '
where
ap :=a1 +oag+ -+ Qg

As before, the k topics are specified by probability vectors p1, pa, ..., pue € A1 To
generate a document, we first draw the topic mixture h = (hy, ho, ..., hg) ~ Dir(«), and
then conditioned on h, we draw ¢ words x1,xs,...,xy independently from the discrete
distribution specified by the probability vector Zle hip; (i.e., for each z;, we independently
sample a topic j according to h and then sample x; according to p;). Again, we encode a
word x; by setting x; = e; iff the ¢-th word in the document is 7.

The parameter o (the sum of the “pseudo-counts”) characterizes the concentration of
the distribution. As ap — 0, the distribution degenerates to a single topic model (i.e., the
limiting density has, with probability 1, exactly one entry of h being 1 and the rest are 0).
At the other extreme, if a = (¢, ¢, ..., c) for some scalar ¢ > 0, then as ay = ck — oo, the
distribution of h becomes peaked around the uniform vector (1/k,1/k,...,1/k) (further-
more, the distribution behaves like a product distribution). We are typically interested in
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Figure 1: Examples of latent variable models.

the case where oy is small (e.g., a constant independent of k), whereupon h typically has
only a few large entries. This corresponds to the setting where the documents are mainly
comprised of just a few topics.

Theorem 3.5 (Anandkumar et al., 2012a) Define

Ml = E[ZL‘I]
My = Elr) ® ] — M, ® M,
0+1
Mz = E[l‘1®x2®x3]
«
a —?—Q(E[xl®x2®M1]+E[x1®M1®$2]+E[M1®x1®$2]>
0
20%
+ M, @ My ® M.
(o +2) (o + 1) 1 1 1
Then
k o
My, = e S T
> ;(a0+1) [t ® p;
i 20
Mz = Z : Wi & s @ .

(a0 + 2) (a0 + 1)ag

Note that ag needs to be known to form M, and Mz from the raw moments. This,
however, is a much weaker than assuming that the entire distribution of h is known (i.e.,
knowledge of the whole parameter vector «).

3.3 Multi-View Models

Multi-view models (also sometimes called naive Bayes models) are a special class of Bayesian
networks in which observed variables x1,xo9,..., %, are conditionally independent given a
latent variable h. This is similar to the exchangeable single topic model, but here we
do not require the conditional distributions of the z4,¢ € [f] to be identical. Techniques
developed for this class can be used to handle a number of widely used models including
hidden Markov models (Mossel and Roch, 2006; Anandkumar et al., 2012c), phylogenetic
tree models (Chang, 1996; Mossel and Roch, 2006), certain tree mixtures (Anandkumar
et al., 2012b), and certain probabilistic grammar models (Hsu et al., 2012a).
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As before, we let h € [k] be a discrete random variable with Pr[h = j] = w; for all j € [k].
Now consider random vectors 21 € R%, 2o € R% and z3 € R% which are conditionally
independent given h, and

E[mt“l‘ :]] = Ht,j, ] € [k]v te {17273}

where the i ; € R% are the conditional means of the x; given h = j. Thus, we allow the
observations x1,x2,...,xy to be random vectors, parameterized only by their conditional

means. Importantly, these conditional distributions may be discrete, continuous, or even a
mix of both.

We first note the form for the raw (cross) moments.

Proposition 3.1 We have that:

k
}E[l‘t @ :Et/] = Z Wi Mt ® i {ta t,} - {]-a 27 3}7 13 7& t/
=1
k
Elz1 @ zo @ z3] = Z Wy p1; @ o @ [13 ;.
1=1

The cross moments do not possess a symmetric tensor form when the conditional distri-
butions are different. Nevertheless, the moments can be “symmetrized” via a simple linear
transformation of z; and zy (roughly speaking, this relates x; and x9 to xz3); this leads
to an expression from which the conditional means of x3 (i.e., p3 1,432, ..., 13%) can be
recovered. For simplicity, we assume dy = do = d3 = k; the general case (with d; > k) is
easily handled using low-rank singular value decompositions.

Theorem 3.6 (Anandkumar et al., 2012a) Assume that {{iy1, fv,2, - -, ok} are lin-
early independent for each v € {1,2,3}. Define

T = Elrz ® Bz @ zo] oy
Ty = Elr3®z1|Elre ® x1] tao
M, = E[Z; ® Z9)
Ms = E[Z) ® T2 ® x3].

Then

k
My = sz 13 @ p3 i
=1

k
My = ) w;piz; ® ps @ pise
=1

We now discuss three examples (taken mostly from Anandkumar et al., 2012¢) where the
above observations can be applied. The first two concern mixtures of product distributions,
and the last one is the time-homogeneous hidden Markov model.
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3.3.1 MIXTURES OF AXIS-ALIGNED (GAUSSIANS AND OTHER PRODUCT DISTRIBUTIONS

The first example is a mixture of k product distributions in R™ under a mild incoherence as-
sumption (Anandkumar et al., 2012¢). Here, we allow each of the & component distributions
to have a different product distribution (e.g., Gaussian distribution with an axis-aligned co-
variance matrix), but require the matrix of component means A := [y |po] - - - |ux] € R™*F
to satisfy a certain (very mild) incoherence condition. The role of the incoherence condition
is explained below.

For a mixture of product distributions, any partitioning of the dimensions [n] into three
groups creates three (possibly asymmetric) “views” which are conditionally independent
once the mixture component is selected. However, recall that Theorem 3.6 requires that
for each view, the k conditional means be linearly independent. In general, this may not
be achievable; consider, for instance, the case p; = e; for each i € [k]. Such cases, where
the component means are very aligned with the coordinate basis, are precluded by the
incoherence condition.

Define coherence(A) := max;c[,{e/ I1ae;} to be the largest diagonal entry of the orthog-
onal projector to the range of A, and assume A has rank k. The coherence lies between k/n
and 1; it is largest when the range of A is spanned by the coordinate axes, and it is k/n when
the range is spanned by a subset of the Hadamard basis of cardinality k. The incoherence
condition requires, for some ¢,§ € (0,1), coherence(A) < (¢2/6)/1In(3k/5). Essentially, this
condition ensures that the non-degeneracy of the component means is not isolated in just
a few of the n dimensions. Operationally, it implies the following.

Proposition 3.2 (Anandkumar et al., 2012c) Assume A has rank k, and

£2/6
h A< ———
coherence(A) < In(35/0)

for somee,d € (0,1). With probability at least 1 —0, a random partitioning of the dimensions
[n] into three groups (for each i € [n], independently pick t € {1,2,3} uniformly at random
and put i in group t) has the following property. For each t € {1,2,3} and j € [k], let
fu,j be the entries of p; put into group t, and let Ay := [pa|pe2] - |pek). Then for each
t € {1,2,3}, A has full column rank, and the k-th largest singular value of Ay is at least

/(1 —¢)/3 times that of A.

Therefore, three asymmetric views can be created by randomly partitioning the observed
random vector = into x1, o2, and x3, such that the resulting component means for each
view satisfy the conditions of Theorem 3.6.

3.3.2 SPHERICAL GAUSSIAN MIXTURES, REVISITED

Consider again the case of spherical Gaussian mixtures (cf. Section 3.2). As we shall see
in Section 4.3, the previous techniques (based on Theorem 3.2 and Theorem 3.3) lead to
estimation procedures when the dimension of z is k or greater (and when the k£ component
means are linearly independent). We now show that when the dimension is slightly larger,
say greater than 3k, a different (and simpler) technique based on the multi-view structure
can be used to extract the relevant structure.
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We again use a randomized reduction. Specifically, we create three views by (i) applying
a random rotation to x, and then (ii) partitioning z € R™ into three views &1, %o, &3 € R?
for d := n/3. By the rotational invariance of the multivariate Gaussian distribution, the
distribution of z after random rotation is still a mixture of spherical Gaussians (i.e., a
mixture of product distributions), and thus &1, &9, T3 are conditionally independent given
h. What remains to be checked is that, for each view ¢t € {1, 2,3}, the matrix of conditional
means of T; for each view has full column rank. This is true with probability 1 as long as
the matrix of conditional means A := [u1|uz|- - |ur] € R™** has rank k and n > 3k. To
see this, observe that a random rotation in R™ followed by a restriction to d coordinates
is simply a random projection from R™ to R? and that a random projection of a linear
subspace of dimension k to R? is almost surely injective as long as d > k. Applying this
observation to the range of A implies the following.

Proposition 3.3 (Hsu and Kakade, 2013) Assume A has rank k and that n > 3k. Let
R € R™ ™ be chosen uniformly at random among all orthogonal n X n matrices, and set
i:= Rz € R" and A := RA = [Ru1|Rpuz| - - - |Rux] € R™¥. Partition [n] into three groups
of sizes dy,dg,ds with dy > k for each t € {1,2,3}. Furthermore, for each t, define &; € R
(respectively, Ay € R**F) to be the subvector of & (resp., submatriz of A) obtained by
selecting the d; entries (resp., rows) in the t-th group. Then Z1,Z2,%3 are conditionally
independent given h; E[Z;/h = j|] = fltej for each j € [k] and t € {1,2,3}; and with
probability 1, the matrices Ay, Ay, As have full column rank.

It is possible to obtain a quantitative bound on the k-th largest singular value of each A;
in terms of the k-th largest singular value of A (analogous to Proposition 3.2). One avenue
is to show that a random rotation in fact causes A to have low coherence, after which we
can apply Proposition 3.2. With this approach, it is sufficient to require n = O(klogk)
(for constant € and §), which results in the k-th largest singular value of each A; being
a constant fraction of the k-th largest singular value of A. We conjecture that, in fact,
n > ¢ - k for some ¢ > 3 suffices.

3.3.3 HIDDEN MARKOV MODELS

Our last example is the time-homogeneous HMM for sequences of vector-valued observations
T1,T9,... € R9. Consider a Mar