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Abstract

In supervised learning problems, global and local learning algorithms are used. In contrast to global

learning algorithms, the prediction of a local learning algorithm in a testing point is only based on

training data which are close to the testing point. Every global algorithm such as support vector

machines (SVM) can be localized in the following way: in every testing point, the (global) learning

algorithm is not applied to the whole training data but only to the k nearest neighbors (kNN) of

the testing point. In case of support vector machines, the success of such mixtures of SVM and

kNN (called SVM-KNN) has been shown in extensive simulation studies and also for real data sets

but only little has been known on theoretical properties so far. In the present article, it is shown

how a large class of regularized kernel methods (including SVM) can be localized in order to get a

universally consistent learning algorithm.

Keywords: machine learning, regularized kernel methods, localization, SVM, k-nearest neigh-

bors, SVM-KNN

1. Introduction

In a supervised learning problem, the goal is to predict the value y of an unobserved output vari-

able Y after observing the value x of an input variable X . A predictor is a function f which maps

the observed input value x (called testing data point) to a prediction f (x) of the unobserved out-

put value y. Choosing a predictor f = fDn
is done on base of previously observed data Dn =

(

(x1,y1), . . . ,(xn,yn)
)

(called trainig data). A learning algorithm is a function Dn 7→ fDn
which

maps training data Dn to a predictor fDn
. Among the learning algorithms commonly used in ma-

chine learning, there are local and global algorithms. The most prominent example of a local algo-

rithm is k-nearest neighbors (kNN). In case of a local algorithm Dn 7→ fDn
, the prediction fDn

(x) in

a testing data point x is not based on the whole training data but only on those training data points

(xi,yi) which are close to x. In case of a global algorithm, choosing a predictor fDn
is based on a

global criterion—such as (penalized) empirical risk minimization—and, accordingly, the prediction

fDn
(x) in a point x can also be based on training data points (xi,yi) which are not close to x. Typi-

cal examples of global algorithms are regularized kernel methods such as support vector machines

(SVM).

Global algorithms have disadvantages if the complexity of the optimal predictor varies for dif-

ferent areas of the input space. For example, in one part of the the input space, an optimal predictor

might be a very simple function and, in another part, it might be a highly complex and volatile func-
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tion. This is a problem for global algorithms because the complexity of the selected predictor fDn

is usually regularized by one or several hyperparameters which are fixed for the whole input space.

One way to overcome this problem is to separate the input space into several parts in a first step and

to separately use a global algorithm for each of the separated parts. For example, the input space

is separated by use of decision trees and then SVMs are separately applied on the separated parts

of the input space; see, for example, Bennett and Blue (1998), Wu et al. (1999), and Chang et al.

(2010). Another possibility is to “localize” a global algorithm. This can be done in the following

way: (1) select a few training data points which are close to the testing data point, (2) determine

a predictor based on the selected training data points by use of a (global) learning algorithm, and

(3) calculate the prediction in the testing data point. A number of algorithms which have been sug-

gested in the literature can be described in this way. These algorithms only differ in the way how

data points are selected in (1) and which learning algorithm is used in (2). An early investigation

of such methods is Bottou and Vapnik (1992) and Vapnik and Bottou (1993). A number of recent

articles apply such an approach to support vector machines (SVM). That is, SVM is used in (2),

but there are differences in (1): In Zhang et al. (2006), data points are selected in the same way as

for kNN. That is, the prediction in a testing point x is given by that SVM which is calculated based

on the kn training points which are nearest to x; the natural number kn acts as a hyperparameter.

In order to decide which training points are the kn closest ones to x, a metric on the input space

is needed. Zhang et al. (2006) considers different metrics. As this approach is a mixture between

kNN and SVM, it is called SVM-KNN. Independently, a similar approach has been developed by

E. Blanzieri and others. The main difference to Zhang et al. (2006) is that distances (for select-

ing the kn nearest neighbors) are not measured in the input space but in the feature space (i.e., in

the RKHS associated with the kernel of the SVM). This approach has been extensively studied in

experimental comparisons in Blanzieri and Bryl (2007a), Blanzieri and Bryl (2007b), Segata and

Blanzieri (2009) and Blanzieri and Melgani (2008) where the latter publication also derives a local

bound on the generalization error. Another slightly different approach is developed in Cheng et al.

(2007) and Cheng et al. (2010). There, data points are not selected according to a fixed number kn

of nearest neighbors as in kNN; instead, those training data points are selected which are contained

in a fixed neighborhood about the testing point x. That is, not the number of testing points in the

neighborhood is fixed (as in kNN), but the area of the neighborhood is fixed. In addition, it is also

possible to downweight testing points depending on their distance to the testing point x.

Though all of these approaches have been extensively studied on simulated and real-world data

and their success has experimentally been shown, only little is known on theoretical properties so

far. In this article, it is shown that some SVM-KNN approaches are universally consistent. Though

the above cited approaches only consider SVMs for classification (using the hinge loss) and linear

kernels, the following theoretical investigation allows for a large class of loss functions and kernels.

That is, not only SVMs but also general regularized kernel methods are considered for classification

and regression as well. Here, kn nearest neighbors are selected by use of the ordinary Euclidean

metric on the input space X ⊂R
p so that this approach is closest to Zhang et al. (2006). All methods

based on a kNN approach are faced with the problem of distance ties. This means that, in general,

the set of the kn nearest neighbors to a testing point x is not necessarily unique because different

testing points might have the same distance to x. In case of distance ties, a number of tie-breaking

strategies have been suggested in the literature; see, for example, Devroye et al. (1994, § 1). E.g.

a simple tie-breaking strategy is to generate artificial additional covariates U1, . . . ,Un i.i.d. from the

uniform distribution on [0,ε] for some small ε > 0. Then, for the new input variables X ′
i := (Xi,Ui),
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Figure 1: Neighborhood (dotted circle) determined by the k nearest neighbors of a testing point

(empty point) for k = 3. The left figure shows a situation without distance ties at the bor-

der of the neighborhood (dotted circle). The right figure shows a situation with distance

ties at the border of the neighborhood (empty point): only one of the two data points

(filled points) at the border may belong to the k = 3 nearest neighbors; choosing between

these two candidates is done by randomization here.

distance ties only occur with zero probability. The drawback of this method is that ε has to be chosen

in advance and, in particular if ε is not small enough, this tie-breaking strategy changes the results

even if there are no distance ties. Therefore, we use a different strategy where, in case of a distance

tie, the k nearest neigbors are chosen by randomization; see Figure 1. Technically, this is done by

artificially generated covariates U1, . . . ,Un i.i.d. from the uniform distribution on [0,1] where—in

contrast to the simple tie-breaking strategy mentioned above—Ui is only taken into account in case

of a distance tie in Xi.

It has to be pointed out that the approach of this article differs from the one in Zakai and Ri-

tov (2009); see also Zakai (2008). There, it is shown that every consistent learning algorithm is

in a sense localizable. On the one hand, this is of great theoretical importance because, roughly

speaking, it says that global methods as SVMs asymptotically act like local methods. On the other

hand, this also shows that any consistent method can be localized in a way so that the local version

is again consistent. By a superficial inspection of these results, one might suggest that, essentially,

this would already show consistency of any localized method such as SVM-KNN. However, this is

not the case and these results cannot be used offhand in order to prove consistency of SVM-KNN:

Firstly, the way how the methods are localized completely differ. In Zakai and Ritov (2009), lo-

calizing is not done by fixed numbers kn of nearest neighbors (as in kNN and SVM-KNN) but by

fixed sizes (radii) Rn of neighborhoods (similar as in Cheng et al. (2010)). Using fixed sizes (radii)

of neighborhoods is more convenient for theoretical investigations because whether a data point xi0

lies in such a neighborhood only depends on this data point; that is, variables indicating whether data

points belong to such a neighborhood are i.i.d. In contrast, whether a data point xi0 belongs to the

kn nearest neighbors depends on the whole sample; that is, the corresponding indicator variables are

not independent and one has to work with random sets of indexes. In particular, the kNN-approach

leads to random sizes of neighborhoods which depend on the testing point x while Zakai and Ritov

(2009) deal with deterministic sequences of radii Rn which do not depend on the testing point x.
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Secondly, due to the generality of the investigation in Zakai and Ritov (2009), it is only shown there

that a (deterministic) sequence of radii Rn exists such that a suitably,1 localized method is consistent.

This indicates that looking for consistent localized methods may be promising; however, for prac-

tical purposes, mere existence is not enough and one also has to know how to choose such entities

like Rn in order to get a consistent method. In the special case of SVM-KNN, the main result of

the present article precisely specifies possible choices of all involved entities (hyperparameters etc.)

which guarantee consistency.

For kNN, consistency requires that the number of selected neighbors kn goes to infinity but not too

fast for n → ∞. Clearly, this will also be crucial for SVM-KNN but, now, an additional difficulty

arises: the calculation of the SVM (or any other regularized kernel method) depends on a regular-

ization parameter λn which determines to what extend the complexity of a predictor is penalized

(in order to avoid overfitting). Consistency of SVMs is only guaranteed if λn converges to 0 but

not too fast. Accordingly, in case of SVM-KNN, the interplay between the convergence of kn and

the convergence of λn is crucial. Theorem 1 below gives precise conditions on kn and λn which

guarantee consistency of SVM-KNN. In Therorem 1, it is assumed that kn, n ∈N, is a predefined

deterministic sequence. The regularization parameters λn = λDn,x are based on the training data and

can, to some extend, also be chosen in a data-driven way, for example, by cross-validation. In addi-

tion, the choice of the regularization parameter is local, that is, depends on the testing point x. This

enables a local regularization of the complexity of the predictor which is an important motivation

for localizing a global algorithm as already stated above.

Local approaches such as SVM-KNN are computationally very efficient if the number of testing

points is small. However, if the number of testing points is large, then such methods are burdened

with high computational costs of the testing phase. Therefore, variants of SVM-KNN have been

proposed in Cheng et al. (2007) and Segata and Blanzieri (2010). For example, in Segata and

Blanzieri (2010), the computational complexity is reduced by the following modification: the SVM

is not calculated on base of the k-nearest neighbors of the testing point but on base of the k-nearest

neighbors of a certain training point which is close to the testing point. In this way, only a relatively

small number of SVMs has to be calculated. If k is reasonable small (and fixed), then training scales

as O(n log(n)) and testing scales as O(log(n)) in the number of training points.

The article is organized as follows: Section 2 recalls the precise mathematical definitions of

kNN, regularized kernel methods (in particular, SVM) and SVM-KNN as investigated here. Section

3 contains the main result, that is, consistency of SVM-KNN, Section 4 investigates an illustrative

example and Section 5 contains some concluding remarks. All proofs and auxiliary results are given

in the Appendix.

2. Setup: kNN, SVM and SVM-KNN

Let (Ω,A ,Q) be a probability space, let X be an open subset of Rd , and let Y be a closed subset of

R. For any (topological) space W , its Borel-σ-algebra is denoted by BW . Let

X1, . . . ,Xn : (Ω,A ,Q) −→
(

X ,BX

)

and Y1, . . . ,Yn : (Ω,A ,Q) −→
(

Y ,BY

)

be random variables such that (X1,Y1), . . . ,(Xn,Yn) are independent and identically distributed ac-

cording to some unknown probability measure P on
(

X ×Y ,BX×Y

)

. In order to find a prediction

1. In Zakai and Ritov (2009), localizing also involves a smoothing operation around the testing point.
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y = f (ξ) for a point ξ ∈ X , a kNN-rule is based on the kn nearest neighbors of ξ. The kn nearest

neighbors of ξ ∈ R
p within x1, . . . ,xn ∈ R

p are given by an index set I ⊂ {1, . . . ,n} such that

♯(I ) = kn and max
i∈I

|xi −ξ| < min
j 6∈I

|x j −ξ| . (1)

However, in case of distance ties, some observations xi and x j have the same distance to ξ (i.e.,

|xi−ξ|= |x j−ξ|) so that the kn nearest neighbors are not unique and an index set I as defined above

does not exist. In order to break distance ties, we use randomization (see also Figure 1) as done in

(Devroye et al., 1994, p. 1373f): We artificially generate data from random variables U1, . . . ,Un

which are uniformly distributed on (0,1) and such that (X1,Y1), . . . ,(Xn,Yn),U1, . . . ,Un are inde-

pendent. Define Zi := (Xi,Ui) for every i ∈ {1, . . . ,n}. That is, we observe (Z1,Y1), . . . ,(Zn,Yn) now.

Define

Dn :=
(

(Z1,Y1), . . . ,(Zn,Yn)
)

∀n ∈N .

We say that zi = (xi,ui) is (strictly) closer to ζ = (ξ,u) ∈ X × (0,1) than z j = (x j,u j) if |xi − ξ| <
|x j − ξ|; and, in case of a distance tie |xi − ξ| = |x j − ξ|, we say that zi = (xi,ui) is (strictly) closer

to ζ = (ξ,u) than z j = (x j,u j), if |ui − u| < |u j − u|. That is, we use some kind of a lexicographic

order which guarantees that nothing changes if there are no distance ties. Note that there can also

be distance ties for the ui but these only occur with zero probability. The following is a precise

definition of “nearest neighbors” which also takes into account distance ties in the xi and the ui. For

n ∈ N, let kn ∈ {1, . . . ,n}. Take any z1 = (x1,u1), . . . ,zn = (xn,un),ζ = (ξ,u) ∈ R
p × (0,1) such

that there is a τn(z1, . . . ,zn,ζ) = I ⊂ {1, . . . ,n} such that

♯(I ) = kn , max
i∈I

|xi −ξ| ≤ min
i6∈I

|xi −ξ| and max
j∈I∩J

|u j −u| < min
j∈J \I

|u j −u| (2)

where

J =
{

j ∈ {1, . . . ,n}
∣

∣

∣
|x j −ξ|= max

i∈I
|xi −ξ|

}

. (3)

If such a set τn(z1, . . . ,zn,ζ) = I exists, it is unique. If it does not exist, there are also distance ties

in the ui and we arbitrarily define τn(z1, . . . ,zn,ζ) := {1, . . . ,kn} in this case. Since distance ties in

the ui occur with zero probability, the definition of τn(z1, . . . ,zn,ζ) is meaningless in this case; it is

only important to assure measurability of τn : (z1, . . . ,zn,ζ) 7→ τn(z1, . . . ,zn,ζ); see Appendix B. So,

definition (2) and (3) is a modification of (1) in order to deal with distance ties in the xi. Note that,

due to the lexicographic order, the values ui and u are only relevant in case of distance ties (at the

border of the neighborhood given by the kn nearest neighbors).

Next, define

In,ζ(ω) := τn

(

Z1(ω), . . . ,Zn(ω),ζ
)

∀ω ∈ Ω , ∀ζ ∈R
p × (0,1) . (4)

That is, In,ζ contains the indexes of the kn-nearest neighbors of ζ. Let i1 < i2 < .. . < ikn
be the

(ordered) elements of In,ζ. Then, the vector of the kn-nearest neighbors is

Dn,ζ :=
(

(Zi1 ,Yi1), . . . ,(Zikn
,Yikn

)
)

. (5)

The prediction of the ordinary kNN-rule in ξ is given by the mean

1

kn
∑

i∈In,ζ

Yi .
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The SVM-KNN method replaces the mean by an SVM. To this end, we recall the definition of

SVMs; here, the term “SVM” is used in a wide sense which covers many regularized kernel-based

learning algorithms for classification and regression as well; see, for example, Steinwart and Christ-

mann (2008) for these methods.

A measurable map L : Y ×R→ [0,∞) is called loss function. A loss function L is called convex

loss function if it is convex in its second argument, that is, t 7→ L(y, t) is convex for every y ∈ Y .

The risk of a measurable function f : X →R is defined by

RP( f ) =
∫

X×Y
L
(

y, f (x)
)

P
(

d(x,y)
)

.

The goal is to estimate a function f : X →R which minimizes this risk. The estimates obtained from

the method of support vector machines are elements of so-called reproducing kernel Hilbert spaces

(RKHS) H. An RKHS H is a certain Hilbert space of functions f : X →R which is generated by a

kernel K : X ×X →R . See, for example, Schölkopf and Smola (2002) or Steinwart and Christmann

(2008) for details about these concepts.

Let H be such an RKHS. Then, the regularized risk of an element f ∈ H is defined to be

RP,λ( f ) = RP( f ) + λ‖ f‖2
H , where λ ∈ (0,∞) .

An element f ∈ H is called a support vector machine (SVM) and denoted by fP,λ if it minimizes

the regularized risk in H . That is,

RP( fP,λ) + λ‖ fP,λ‖2
H = inf

f∈H

(

RP( f ) + λ‖ f‖2
H

)

. (6)

The empirical SVM fDn,λDn
is that function f ∈ H which minimizes

1

n

n

∑
i=1

L
(

yi, f (xi)
)

+ λDn
‖ f‖2

H

in H for the data Dn =((x1,y1), . . . ,(xn,yn)) ∈ (X ×Y )n and a regularization parameter λDn
∈ (0,∞)

which is chosen in a data-driven way (e.g., by cross-validation) in applications so that it typically

depends on the data. The empirical support vector machine fDn,λDn
uniquely exists for every λDn

∈
(0,∞) and every data-set Dn ∈ (X ×Y )n if t 7→ L(y, t) is convex for every y ∈ Y .

The prediction of the SVM-KNN learning algorithm in ζ = (ξ,u) ∈ X × (0,1) is given by

fDn,ζ,Λn,ζ
(ξ) with

fDn,ζ,Λn,ζ
= argmin

f∈H

(

1

kn
∑

i∈In,ζ

L
(

Yi, f (Xi)
)

+ Λn,ζ‖ f‖2
H

)

(7)

where ω 7→ Λn,ζ(ω) is a random regularization parameter depending on n and ζ. That is, the method

calculates the empirical SVM fDn,ζ,Λn,ζ
for the kn nearest neighbors (given by the index set In,ζ) and

uses the value fDn,ζ,Λn,ζ
(ξ) for the prediction in ζ. The empirical SVM minimizes the regularized

empirical risk where the regularization is done in order to avoid overfitting. Note that—unlike most

theoretical investigations on SVMs—the regularization parameter Λn,ζ is random and, here, also the

index set In,ζ is random, that is, a set-valued random variable. We will assume that Y ⊂ [−M,M] for
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some M so that the SVM-KNN can be clipped. The clipped version of the SVM-KNN is denoted

by

a
fDn,ζ,Λn,ζ

(ξ) =











M fDn,ζ,Λn,ζ
(ξ) > M

fDn,ζ,Λn,ζ
(ξ) if fDn,ζ,Λn,ζ

(ξ) ∈ [−M,M]

−M fDn,ζ,Λn,ζ
(ξ) < −M

. (8)

This means that we change the prediction to M (or −M) if fDn,ζ,Λn,ζ
(ξ) is larger (or smaller) than M

(or −M). As we will assume that Y ⊂ [−M,M], predictions exceeding [−M,M] are not sensible

and, in these cases, clipping obviously improves the accuracy of our predictions.

3. Main Result

This section contains the main result, namely universal consistency of SVM-KNN where the term

“SVM” is used in a broad sense. Instead of just SVMs in the original sense (i.e., classification using

the hinge loss), a large class of regularized kernel methods for classification and regression as well

is covered. However, as already mentioned in the introduction, not any combination of SVM and

kNN is possible. In order to get consistency, the choice of the number of neighbors kn and the data-

driven local choice of the regularization parameter λ=Λn,ξ needs some care. The following settings

guarantee consistency of SVM-KNN. Possible choices for kn and λn are, for example, kn = b ·n0.75

for b ∈ (0,1] and λn = a ·n−0.15 for a ∈ (0,∞), n ∈N.

Settings: Choose a sequence kn ∈N, n ∈N, such that

k1 ≤ k2 ≤ k3 ≤ . . . ≤ lim
n→∞

kn = ∞ and
kn

n
ց 0 for n → ∞ ,

and a sequence λn ∈ (0,∞), n ∈N, such that

lim
n→∞

λn = 0 and lim
n→∞

λ
3
2
n · kn√

n
= ∞ (9)

and a constant c ∈ (0,∞), and a sequence cn ∈ [0,∞) such that limn→∞ cn/
√

λn = 0. For every

ζ = (ξ,u) ∈ X × (0,1), define

Λ̃n,ζ =
1

kn
∑

i∈In,ζ

|Xi −ξ| 3
2

and choose random regularization parameters Λn,ζ such that

X × (0,1)×Ω → (0,∞), (ξ,u,ω) = (ζ,ω) 7→ Λn,ζ(ω)

is measurable and

c ·max
{

λn, Λ̃n,ζ

}

≤ Λn,ζ ≤ (c+ cn) ·max
{

λn, Λ̃n,ζ

}

∀ζ ∈ X × (0,1) . (10)

Let the kernel K : X ×X →R be continuously differentiable, bounded, and such that its RKHS H

is non-degenerated in the following sense:

for every x ∈ X there is an f ∈ H such that f (x) 6= 0 . (11)
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Theorem 1 Let X ⊂ R
p be an open subset and let Y ⊂ [−M,M] be closed. Let L : [−M,M]×

R → [0,∞) be a convex loss function with the following local Lipschitz property: there are some

b0,b1 ∈ (0,∞) and q ∈ [0,1] such that, for every a ∈ (0,∞),

sup
y∈[−M,M]

∣

∣L(y, t1)−L(y, t2)
∣

∣ ≤ |L|a,1 · |t1 − t2| ∀ t1, t2 ∈ [−a,a] (12)

for |L|a,1 = b0 + b1aq. In addition, assume that there is an increasing function ℓ : [0,∞) → [0,∞)
such that lims→0 ℓ(s) = 0 and

sup
t∈[−M,M]

∣

∣L(y1, t)−L(y2, t)
∣

∣ ≤ ℓ
(

|y1 − y2|
)

∀y1,y2 ∈ [−M,M] . (13)

Assume that (X1,Y1), . . . ,(Xn,Yn) are independent and identically distributed according to some

unknown probability measure P on
(

X ×Y ,BX×Y

)

and let U1, . . . ,Un be uniformly distributed on

(0,1) such that (X1,Y1), . . . ,(Xn,Yn),U1, . . . ,Un are independent.

Then, every SVM-KNN defined by (7,8) according to the above settings and clipped at M,

fDn
: ζ = (ξ,u) 7→ a

fDn,ζ,Λn,ζ
(ξ)

is risk-consistent, that is,

RP

(

fDn

)

−−−→
n→∞

inf
f :X→R

measurable

RP( f ) =: R ∗
P in probability.

Essentially all commonly used loss functions satisfy assumptions (12) and (13): for example,

the hinge loss and the logistic loss for classification, the ε-insensitive loss, the least squares loss,

the absolute deviation loss, and the Huber loss for regression, and the pinball loss for quantile

regression.

The property (11) of a nowhere degenerated RKHS H is a very weak property and replaces

strong denseness properties of H which are typically needed in order to assure universal consistency

of SVMs.

The settings include a data-driven local choice of the regularization parameter λ = Λn,ζ. Here,

“local” means that Λn,ζ depends on the testing point ζ. This is preferable because, in this way, it is

possible to allow for different degrees of complexity on different areas of the input space. As already

mentioned in the introduction, this is an important motivation for “localizing” a global algorithm.

A simple rule of thumb for choosing Λn,ζ is to predefine a fixed c ∈ (0,∞) and use

Λn,ζ = c ·max
{

λn, Λ̃n,ζ

}

. (14)

The deterministic λn prevents the regularization parameters from decreasing to 0 too fast and (9)

controls the interplay between kn and λn. (Recall that it is well known that classical SVMs are

not consistent if the regularization parameters decrease to 0 too fast.) Note that the calculation of

Λ̃n,ζ is computationally fast as In,ζ (the index set of the kn nearest neighbors) has to be calculated

anyway. The behavior of Λ̃n,ζ is reasonable: if the kn nearest neighbors are relatively close to the

testing point ζ, then Λ̃n,ζ is relatively small which is favorable because this means that relatively

many training points are close to ζ so that the predictor should be allowed to be relatively complex

around ζ. Nevertheless, the rule of thumb suggested in (14) will not satisfactorily capture different
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degrees of complexity in most cases. Then, it is possible to choose the regularization parameter on

base of a (restricted) cross-validation or any other method for selecting the hyperparameter: choose

a (very) small c ∈ (0,∞) and a (very) large C ∈ (0,∞), define cn :=C
√

λn/ ln(n) and make sure that

your selection method (e.g., cross validation) only picks a value from the interval

[

c ·max
{

λn, Λ̃n,ζ

}

, (c+ cn) ·max
{

λn, Λ̃n,ζ

}

]

.

As it is assumed in Theorem 1 that limn→∞ kn/n = 0 (i.e., the fraction of data points in the neighbor-

hood diminishes), this SVM-KNN approach is rather a kNN-approach in which the simple (local)

constant fitting is replaced by a more advanced (local) SVM fitting. That is, we follow a local

modeling paradigm (see Györfi et al., 2002, § 2.1) just as done, for example, when generalizing the

Nadaraya-Watson kernel estimator (constant fitting) to the local polynomial kernel estimator (poly-

nomial fitting); for local polynomial fitting and the advantages of generalizing local constant fitting,

see, for example, Fan and Gijbels (1996). In case of SVM-KNN, the advantage of generalizing con-

stant fitting (kNN), has been demonstrated in extensive simulation studies in Zhang et al. (2006),

Blanzieri and Bryl (2007a), Blanzieri and Bryl (2007b), Segata and Blanzieri (2009), and Blanzieri

and Melgani (2008).

Instead, it would also be possible to assume that limn→∞ kn/n = 1 so that the method (asymp-

totically) acts as an ordinary SVM. If convergence of the fraction kn/n to 1 is fast enough, then

universal consistency of such a method follows from universal consistency of SVM.

4. An Illustrative Example

It is commonly accepted in machine learning that there is no universally consistent learning algo-

rithm which is always better than all other universally consistent learning algorithms and, for two

different learning algorithms, there is always a situation in which one learning algorithm is better

than the other one and there is also a situation in which it is the other way round; see, for example,

(Devroye et al., 1996, § 1). The goal of this section is to illustrate where localizing SVMs provides

some gain and where it does not. It has to be pointed out here that it is not the goal of this article or

this section to empirically show the success of the SVM-KNN approach. This has previously been

done; see the references cited in the introduction. The aim of this article is the proof of universal

consistency and this section is only for illustrative purposes.

Let us consider the following model

Yi = f j(Xi)+ εi , i ∈ {1, . . . ,n} (15)

where, in the first scenario ( j = 1), the regression function is given by

f1(x) = 10(|x|−1)2 · sign(x) , x ∈ [−1,1]

and, in the second scenario ( j = 2), the regression function is given by

f2(x) = 10x2 · sign(x) , x ∈ [−1,1] .

As illustrated in Figure 2, the difference between f1 and f2 is that the parts of the functions on

(−1,0) and (0,1) are interchanged. In both cases, X1, . . . ,Xn are i.i.d. drawn from the uniform

distribution on [−1,1] and ε1, . . . ,εn are i.i.d. drawn from N (0,σ2) for σ = 0.5.
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Figure 2: Graph of the regression functions f1(x) = 10(|x|−1)2 · sign(x) and f2(x) = 10x2 · sign(x)
in model (15)

Classical SVMs, the localized version SVM-KNN, and classical kNN are applied to simulated

data sets of size n = 200 for both scenarios each with 500 runs. In case of classical SVMs, the

Gaussian RBF kernel Kγ(x,x
′) = exp(−γ(x−x′)2) and the ε-insensitive loss for ε = 0.001 are used.

The hyperparameter γ is chosen by a five-fold cross validation among

0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 30, 50, 75, 100, 150, 200, 250, 300, 350, 400, 500

and the regularization parameter is equal to λn = a · n−0.45 where a is chosen by a five-fold cross

validation among

0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1,

The choice λn = a ·n−0.45 is motivated by the fact that classical SVMs with the ε-insensitive loss are

consistent if limn→∞ λn = 0 and limn→∞ λ2
nn = ∞; see (Christmann and Steinwart, 2007, Theorem

12). In case of SVM-KNN, the number of nearest neighbors is equal to kn =
⌈

b · n0.75
⌉

where the

hyperparameter b is chosen by a five-fold cross validation among

0.15, 0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.9 ,1 .

The exponent 0.75 for the definition of kn is in accordance with the settings in Section 3. Choosing

kn =
⌈

b · n0.75
⌉

would also guarantee universal consistency of classical kNN; see, for example,

(Györfi et al., 2002, Theorem 6.1). For each testing point ξ, the prediction is calculated by a local

SVM on the kn nearest neighbor. For each local SVM, the polynomial kernel K(x,x′) = (x · x′+1)3

with degree 3 and the ε-insensitive loss for ε = 0.001 are used. In accordance with the settings in

Section 3, the regularization parameter is equal to Λn,ξ = Cn,ξ max
{

0.01k−0.2
n , 1

kn
∑i∈In,ξ

|xi − ξ|1.5
}

where, for every ξ, the hyperparameter Cn,ξ is chosen by a five-fold cross validation among
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0.01, 0.1, 1, 10, 100, 1000, 10000, 100000 .

Similarly to the case of SVM-KNN, the number of nearest neighbors in the classical kNN method is

equal to kn =
⌈

c ·n0.5
⌉

where the hyperparameter c is chosen by a five-fold cross validation among

0.1, 0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.9 ,1 .

The evaluation of the estimates is done on a test data set which consists of 1001 equidistant grid

points ξi on [−1,1]. For every run r ∈ {1, . . . ,500}, the mean absolute error (MAE) is calculated

MAE j,r( f⋆) =
1

1001

1001

∑
i=1

∣

∣ f⋆(xi)− f j(xi)
∣

∣ for f⋆ ∈
{

f SVM

j,r , f SVM-KNN

j,r , f kNN

j,r

}

where f SVM

j,r denotes the SVM-estimate, f SVM-KNN

j,r denotes the SVM-KNN-estimate, and f kNN

j,r denotes the

kNN-estimate in the r-th run of scenario j. For every scenario j and every learning algorithm, the

values MAE j,r( f⋆), r ∈ {1, . . . ,500}, are shown in a boxplot in Figure 3. In addition, Table 1 shows

the average of MAE j,r( f⋆) over the 500 runs:

MAE j( f⋆) =
1

500

500

∑
r=1

MAE j,r( f⋆) for f⋆ ∈
{

f SVM

j,r , f SVM-KNN

j,r

}

.

scenario j = 1 scenario j = 2

SVM 0.453 0.115

SVM-KNN 0.331 0.216

kNN 0.348 0.189

Table 1: The average MAE j of the mean absolute error over the 500 runs for classical SVMs and

SVM-KNN for scenarios j = 1 and j = 2

It turns out that SVM-KNN is clearly better than classical SVM in scenario 1 while classical

SVM is clearly better than SVM-KNN in scenario 2. In both examples, the performance of SVM-

KNN is similar to that of classical kNN. Function f2 in scenario 2 is a smooth function and classical

SVMs are typically very successful for learning such smooth functions. Function f1 in scenario 1

nearly coincides with f2 in scenario 2 in the sense that the parts of the functions on (−1,0) and (0,1)
are just interchanged. However, this leads to a considerable jump at x = 0 which provides some

difficulty for classical SVMs. Such jumps can be managed by classical SVMs if the hyperparameter

γ and the regularization parameter λ are suitably chosen, namely, if γ is large and/or λ is small.

However, such a choice increases the danger of overfitting in those parts of the input space in which

the unknown regression function is a simple, smooth function. This problem is avoided by localized

learners such as SVM-KNN, which is a main motivation for localizing global learning algorithms.

In particular, the difference of the performance between scenario 1 and 2 is much smaller in case of

SVM-KNN than in case of classical SVM. Figure 4 shows in a boxplot which values of γ are selected

by the cross validation in the 500 runs for each scenario. Obviously, the jump in x = 0 leads to large

values of γ in scenario 1 compared to scenario 2. This in turn facilitates that the SVM-estimate is

too volatile in those parts of the input space in which f1 is relatively simple, for example, in the

interval [−1,−0.5]. This tendency is exemplarily illustrated in Figure 5 which shows the estimates

on the interval [−1,0] of the input space in the first 9 runs of the simulation in case of scenario 1.
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Figure 3: Boxplots of the mean absolute errors MAE j,r in the runs r ∈ {1, . . . ,500} for classical

SVMs and SVM-KNN for scenarios j = 1 and j = 2
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Figure 4: Values of the hyperparameter γ selected by cross validation for the classical SVM in the

500 runs for each scenario

5. Conclusions

Learning algorithms which are defined in a global manner typically can have difficulties if the com-

plexity of the optimal predictor varies for different areas of the input space. One way to overcome

this problem is to localize the learning algorithm. That is, the learning algorithm is not applied to

the whole training data but only to those training data which are close to the testing point. In a num-
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Figure 5: Estimates on the interval [−1,0] in the first nine runs in scenario 1: true function f1

(dashed black line), SVM (solid black line), SVM-KNN (solid gray line)

ber of recent articles such localizations of support vector machines have been suggested and their

success has empirically been shown in extensive simulation studies and on real data sets but only

little has been known on theoretical properties. In this article, it has been shown for a large class

of regularized kernel methods (including SVM) that suitably localized versions (called SVM-KNN)

are universally consistent.

Instead of localizing support vector machines, it would also be possible in principle to local-

ize any other learning algorithm, for example, boosting. If this is done suitably, then localizing a

learning algorithm will often lead to an algorithm which is again universally consistent. This article

presents one way how this can be done in the special case of regularized kernel methods. However,

it is a topic of further research if it is possible to derive a general scheme of localizing learning algo-

rithms which, in combination with properties of the learning algorithm, always guarantees universal

consistency.
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Appendix A. Preparations

Let PX denote the distribution of the covariates Xi. For every ζ = (ξ,u) ∈ X × (0,1), there is a

smallest rn,ξ ∈ [0,∞] such that Q
(

|Xi −ξ| ≤ rn,ξ

)

≥ kn

n
and there is an sn,ζ ∈ [0,∞) such that

Q
(

|Xi −ξ|< rn,ξ or
(

|Xi −ξ|= rn,ξ, |Ui −u|< sn,ζ

)

)

=
kn

n
.

For every ζ= (ξ,u)∈X ×(0,1), r ∈ [0,∞), and s∈ [0,∞), define the open balls Br(ξ) = {x∈X | |x−
ξ|< r} and Bs(u) = {v ∈ (0,1)| |v−u|< s}, and define the boundary ∂Br(ξ) = {x ∈ X | |x−ξ|= r}.

Define

Bn,ζ =
(

Brn,ξ
(ξ)× (0,1)

)

∪
(

∂Brn,ξ
(ξ)×Bsn,ζ

(u)
)

Roughly spoken, Bn,ζ is a neighborhood around ζ = (ξ,u) with probability kn/n which is in line

with our tie-breaking strategy. Then,

PX ⊗Unif(0,1)
(

Bn,ζ

)

= Q
(

Zi ∈ Bn,ζ

)

=
kn

n

where Unif(0,1) denotes the uniform distribution on (0,1). Let Pn,ζ be the conditional distribution of

Zi given Zi ∈ Bn,ζ, that is,

Pn,ζ(B) =
Q
(

Zi ∈ B∩Bn,ζ

)

Q
(

Zi ∈ Bn,ζ

) =
n

kn

Q
(

Zi ∈ B∩Bn,ζ

)

∀B ∈BX×(0,1).

Let x 7→P(·|x) be any regular version of the factorized conditional distribution of Yi given Xi = x; see,

for example, (Dudley, 2002, § 10.2). Due to independence of Ui, this coincides with the conditional

distribution of Yi given Zi = z (i.e., given (Xi,Ui) = (x,u)) and, accordingly, we write P(·|z) = P(·|x).
Let QZ,Y denote the joint distribution of (Zi,Yi) and define Z := X × (0,1). Then, for every ζ ∈ Z,

n ∈N, and every integrable g : Z ×Y →R,

n

kn

∫
Z×Y

IBn,ζ
(z)g(z,y)QZ,Y

(

d(z,y)
)

=
∫

Z

∫
Y

g(z,y)P(dy|z)Pn,ζ(dz) . (16)

When this does not lead to confusion, the conditional distribution of the pair of random variables

(Zi,Yi) given Zi ∈ Bn,ζ is also denoted by Pn,ζ. That is, we will also write

n

kn

∫
Z×Y

IBn,ζ
(z)g(z,y)QZ,Y

(

d(z,y)
)

=
∫

Z×Y
g(z,y)Pn,ζ

(

d(z,y)
)

. (17)

The following lemma is an immediate consequence of the definitions and well known facts

about the support of measures, see, for example, Parthasarathy (1967, II. Theorem 2.1). It says that,

for almost every ξ ∈ X , the radii rn,ξ decrease to 0.

Lemma 2 Define

B0 :=
{

ξ ∈ X
∣

∣ 6 ∃r ∈ (0,∞) such that PX (Br(ξ)) = 0
}

.

Then, PX (B0) = 1.

Furthermore, for every ξ ∈ B0,

∞ ≥ r1,ξ ≥ r2,ξ ≥ r3,ξ ≥ . . . ≥ lim
n

rn,ξ = 0 .
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Similarly to the definition of In,ζ and Dn,ζ in (4) and (5), we define the modifications I ⋆
n,ζ and

D⋆
n,ζ: For every n ∈N, ζ = (ξ,u) ∈ X × (0,1) and ω ∈ Ω, define

I ⋆
n,ζ(ω) :=

{

i ∈ {1, . . . ,n}
∣

∣ Zi(ω) ∈ Bn,ζ

}

.

Fix any n ∈N, ζ = (ξ,u)∈ X × (0,1) and ω ∈ Ω and let i1 < i2 < .. . < im be the (ordered) elements

of I ⋆
n,ζ(ω). Then, define

D⋆
n,ζ(ω) =

(

(

Zi1(ω),Yi1(ω)
)

, . . . ,
(

Zim(ω),Yim(ω)
)

)

.

That is, I ⋆
n,ζ consists of all those indexes i ∈ {1, . . . ,n} and D⋆

n,ζ consists of all those data points

(Zi,Yi) such that Zi ∈ Bn,ζ . This means: while the the sets In,ζ and Dn,ζ consist of a fixed num-

ber of nearest neighbors, the sets I ⋆
n,ζ and D⋆

n,ζ consist of all those neighbors which lie in a fixed

neighborhood.

As the probability that Zi ∈ Bn,ζ is kn/n, we expect that, for large n, the index sets In,ζ and

I ⋆
n,ζ and the vectors of data points Dn,ζ and D⋆

n,ζ are similar. However, working with I ⋆
n,ζ is more

comfortable because, whether i ∈ I ⋆
n,ζ, only depends on Zi but, whether i ∈ In,ζ, depends on all

Z1, . . . ,Zn.

If a real-valued function f is clipped at M, then the clipped version is denoted by
a
f , that is,

a
f (x) = f (x) if −M ≤ f (x)≤M, and

a
f (x) =−M if f (x)<−M, and

a
f (x) =M if M < f (x). Note that,

for every f1, f2 : X →R and ξ ∈ X , it follows that
∣

∣

a
f1(ξ)−

a
f2(ξ)

∣

∣≤
∣

∣ f1(ξ)− f2(ξ)
∣

∣. Furthermore,

since K is bounded, every f ∈H fulfills | f (ξ)| ≤ ‖K‖∞ ·‖ f‖H ; see (Steinwart and Christmann, 2008,

Lemma 4.23). In combination with (12), this implies that, for every ξ ∈ X and for every f1, f2 ∈ H,

∣

∣

∣

∣

∣

∫
L
(

y,
a
f1(ξ)

)

P(dy|ξ)−
∫

L
(

y,
a
f2(ξ)

)

P(dy|ξ)
∣

∣

∣

∣

∣

≤ |L|M,1·‖K‖∞·‖ f1− f2‖H . (18)

Define ‖L(·,0)‖∞ = supy∈[−M,M]

∣

∣L(y,0)
∣

∣. Then, for every probability measure P0,

RP0
(0) =

∫
L(y,0)P0

(

d(x,y)
)

≤ ‖L(·,0)‖∞

(13)
< ∞ . (19)

The following lemma is one of the main tools; it is an application of Hoeffding’s inequality and

will be used several times for V = H and V =R.

Lemma 3 Let V be a separable Hilbert space and, for every n ∈ N, let Ψn : Z ×Y → V be a

Borel-measurable function such that for every bounded subset B ⊂ Z,

sup
n∈N

sup
z∈B,y∈Y

∥

∥Ψn(z,y)
∥

∥

H
< ∞ .

Then, for every ζ ∈ X ,

λ
− 3

2
n

n

kn

(

1

n

n

∑
i=1

Ψn(Zi,Yi)IBn,ζ
(Zi) −

∫
Ψn(z,y)IBn,ζ

(z)QZ,Y

(

d(z,y)
)

)

−−−→
n→∞

0

in probability.
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Note that the integral in Lemma 3 is an integral over a Hilbert-space-valued function and, accord-

ingly, is a Bochner integral; see, for example, (Denkowski et al., 2003, § 3.10) for such integrals.

Proof The proof is done by an application of Hoeffding’s inequality for functions with values in a

separable Hilbert space. According to Lemma 2, there is an n0 ∈N such that Bn0,ζ is bounded and

Bn,ζ ⊂ Bn0,ζ for every n ≥ n0. Hence, there is a constant b ∈ (0,∞) such that, for every n ≥ n0,

sup
(z,y)∈Z×Y

∥

∥Ψn(z,y)IBn,ζ
(z)
∥

∥

V
≤ b .

For every n ≥ n0 and τ ∈ (0,∞), define an,τ := 2b·
(
√

τn−1 +
√

n−1 + τn−1
)

and

An,τ =

{

∥

∥

∥

∥

1

n

n

∑
i=1

Ψn(Zi,Yi)IBn,ζ
(Zi)−

∫
ΨnIBn,ζ

dQZ,Y

∥

∥

∥

∥

V

< an,τ

}

.

Then, by Hoeffding’s inequality for separable Hilbert spaces (e.g., Steinwart and Christmann, 2008,

Corollary 6.15),

Q
(

An,τ

)

≥ 1− e−τ ∀n ≥ n0 , ∀τ ∈ (0,∞) . (20)

Define τn := λ
3
2
n knn−

1
2 and εn := λ

− 3
2

n nk−1
n an,τn

for every n ≥ n0. Then, for every ω ∈ An,τ,

λ
− 3

2
n

n

kn

∥

∥

∥

∥

∥

1

n

n

∑
i=1

Ψn(Zi(ω),Yi(ω))IBn,ζ
(Zi(ω))−

∫
ΨnIBn,ζ

dQZ,Y

∥

∥

∥

∥

∥

V

< εn.

According to (9),

εn =
n·an,τn

λ
3
2
n kn

=
2bn

λ
3
2
n kn

(

√

λ
3
2
n kn√
nn

+

√

1

n
+

λ
3
2
n kn√
nn

)

= 2b ·
(
√ √

n

λ
3
2
n kn

+

√
n

λ
3
2
n kn

+
1√
n

)

−−−→
n→∞

0.

Hence, for every ε > 0, there is an nε ∈N such that ε > εn for every n ≥ nε and, therefore,

Q

(

λ
− 3

2
n

n

kn

∥

∥

∥

∥

1

n

n

∑
i=1

Ψn(Zi,Yi)IBn,ζ
(Zi)−

∫
ΨnIBn,ζ

dQZ,Y

∥

∥

∥

∥

V

> ε

)

≤ Q
(

∁An,τn

) (20)

≤ e−τn .

The last expression converges to 0 because limn→∞ τn = ∞ due to (9),

Appendix B. Measurability

Measurability is an issue and needs some care because the SVM-KNN is based on a subsample

which is randomly chosen. It is not possible to ignore measurability by turning over to outer prob-

abilities here because the final step of the proof of the main theorem is based on an application of

Fubini’s Theorem and, therefore, heavily relies on (product) measurability.
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Lemma 4

(a) The following maps are measurable with respect to the product-σ-algebra B
p ⊗B(0,1)⊗A

and the respective Borel-σ-Algebra:

(i) R
p × (0,1)×Ω → R

(p+1)kn , (ξ,u,ω) = (ζ,ω) 7→ Dn,ζ(ω)

(ii) R
p × (0,1)×Ω → R , (ξ,u,ω) = (ζ,ω) 7→ Rn,ζ(ω) := maxi∈In,ζ

∣

∣Xi(ω)−ξ
∣

∣ .

(iii) R
p × (0,1)×Ω → R , (ξ,u,ω) = (ζ,ω) 7→ Λ̃n,ζ(ω) .

(b) Let Λ : Rp × (0,1)×Ω → (0,∞) be measurable with respect to B
p ⊗B(0,1) ⊗A and the

Borel-σ-Algebra. Then,

R
p × (0,1)×Ω → R , (ξ,u,ω) = (ζ,ω) 7→ fDn,ζ(ω),Λ(ζ,ω)

(ξ)

is measurable with respect to B
p ⊗B(0,1)⊗A and B.

(c) For every ζ = (ξ,u)∈R
p×(0,1) and every Λ : Ω → (0,∞) measurable with respect to A and

the Borel-σ-Algebra, the map

Ω → R , ω 7→ fD⋆
n,ζ

(ω),Λ(ω)(ξ)

is measurable with respect to A and B.

Proof For every ζ = (ξ,u) ∈R
p × (0,1) and ω ∈ Ω, define In,ζ(ω) as in Section 2. Let Indn denote

the set of all subsets of {1, . . . ,n} with kn elements. First, it is shown that

τ̃n : Ω×R
p × (0,1) → Indn, (ω,ξ,u) 7→ In,(ξ,u)(ω)

is measurable with respect to A ⊗B
p⊗B(0,1) and 2Indn : Take any I ∈ Indn such that I 6= {1, . . . ,kn}

and, for every J ⊂ {1, . . . ,n}, define

B
(1)
J :=

{

(ω,ξ,u) ∈ Ω×R
p × (0,1)

∣

∣

∣
max
i∈I

|Xi(ω)−ξ| ≤ min
ℓ 6∈I

|Xℓ(ω)−ξ|
}

B
(2)
J :=

{

(ω,ξ,u) ∈ Ω×R
p × (0,1)

∣

∣

∣
|X j(ω)−ξ|= max

i∈I
|Xi(ω)−ξ| ∀ j ∈ J

}

B
(3)
J :=

{

(ω,ξ,u) ∈ Ω×R
p × (0,1)

∣

∣

∣
|Xℓ(ω)−ξ| 6= max

i∈I
|Xi(ω)−ξ| ∀ℓ 6∈ J

}

B
(4)
J :=

{

(ω,ξ,u) ∈ Ω×R
p × (0,1)

∣

∣

∣
max
i∈J∩I

|Ui(ω)−u|< min
j∈J \I

|U j(ω)−u|
}

.

The set B
(1)
J says that no Xℓ is closer to ξ than the kn nearest neighbors. The sets B

(2)
J and B

(3)
J states

that J specifies all those X j which lie at the border of the neighborhood given by the nearest neigh-

bors. The set B
(4)
J is concerned with all data points which lie at the border: the nearest neighbors

among them have strictly smaller |Ui −u| than those which do not belong to the nearest neighbors.

Accordingly, the inverse image τ̃−1
n ({I}) equals

τ̃−1
n ({I}) =

⋃
J⊂{1,...,n}

(

B
(1)
J ∩B

(2)
J ∩B

(3)
J ∩B

(4)
J

)

.
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Since B
(t)
J is measurable for every t ∈ {1,2,3,4} and J ⊂ {1, . . . ,n}, this shows that τ̃−1

n ({I}) is

measurable for every I 6= {1, . . . ,kn}. Hence, τ̃n is measurable. For every I = {i1, . . . , ikn
} such that

i1 < i2 < · · ·< ikn
and every Dn =

(

(z1,y1), . . . ,(zn,yn)
)

∈ ((Rp × (0,1))×R)n define

ϕn(I ,Dn) =
(

(zi1 ,yi1), . . . ,(zikn
,yikn

)
)

.

The map ϕn : Indn × ((Rp × (0,1))×R)n → ((Rp × (0,1))×R)kn is continuous (where Indn is

endowed with the discrete topology). Since

Dn,ζ(ω) = ϕn

(

τ̃n(ω,ξ,u) , Dn(ω)
)

for ζ = (ξ,u) ,

statement (i) follows from measurability of τ̃n and ϕn. Next, (ii) follows from measurability of

(xi1 , . . . ,xikn
,ξ) 7→ max j∈{1,...,kn} |xi j

−ξ| and (iii) follows from

Λ̃n,ζ =
1

kn

n

∑
i=1

|Xi −ξ| 3
2 I[0,∞)(Rn,ζ −Xi) .

Now, we can prove part (b) and (c): For every I ⊂{1,2, . . . ,n} and every D=
(

(x1,y1), . . . ,(xn,yn)
)

∈
((Rp × (0,1))×R)n, denote DI =

(

(xi,yi)
)

i∈I
. Then, it follows from Lemma 9 (a) and (Steinwart

and Christmann, 2008, Lemma 4.23) that the map

2{1,2,...,n}× ((Rp × (0,1))×R)n ×X → H , (I ,D,ξ) 7→ fDI ,λ(ξ)

is continuous for every λ > 0 (where 2{1,2,...,n} is endowed with the discrete topology). Since

λ 7→ fDI ,λ(ξ) is continuous for every fixed (I ,D,ξ) according to (Steinwart and Christmann, 2008,

Corollary 5.19 and Lemma 4.23), the map
(

(I ,D,ξ),λ
)

7→ fDI ,λ(ξ) is a Caratheodory function

and, therefore, measurable; see, for example, Denkowski et al. (2003, Definition 2.5.18 and Theo-

rem 2.5.22). Then, (b) follows from (a), and (c) follows from measurability of τ̃∗
n,ζ : ω 7→ I ∗

n,ζ(ω)

for every fixed ζ = (ξ,u). Measurability of τ̃∗
n,ζ follows from

τ̃∗n,ζ
−1(I ) =

⋂
i∈I

Z−1
i (Bn,ζ)∩

⋂
i6∈I

Z−1
i (∁Bn,ζ) ∀I ∈ 2{1,2,...,n} .

Appendix C. Proof of Theorem 1

In the main part of the proof, it is shown that for PX ⊗Unif(0,1) - almost every ζ = (ξ,u)∈ X ×(0,1),

0 ≤
∫

L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ) −−−→

n→∞
0 (21)

in probability. Then, statement (21) implies Theorem 1 as follows:

Since, for every fixed ζ = (ξ,u), the maps

ω 7→
∫

L
(

y,
a
fDn,ζ(ω),Λn,ζ(ω)(ξ)

)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ) , n ∈N,
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are uniformly bounded, convergence in probability for PX ⊗Unif(0,1) - almost every ζ = (ξ,u) ∈
X × (0,1) implies

EQ

(∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ)

)

−−−→
n→∞

0

for PX ⊗Unif(0,1) - almost every ζ = (ξ,u) ∈ X × (0,1). Since the maps

ζ = (ξ,u) 7→ EQ

(∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ)

)

, n ∈N,

are uniformly bounded again, PX ⊗Unif(0,1) - almost sure convergence implies

∫∫
EQ

(∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ)− inf
t∈R

∫
L(y, t)P(dy|ζ)

)

PX (dξ)Unif(0,1)(du)−→ 0 (22)

for n→∞. Note that ζ 7→ inft∈R
∫

L(y, t)P(dy|ζ) is measurable, because the assumptions on L imply

continuity of t 7→ ∫
L(y, t)P(dy|ζ), hence, inft∈R

∫
L(y, t)P(dy|ζ) = inft∈Q

∫
L(y, t)P(dy|ζ) for every

ζ ∈ X × (0,1). Next, recall that fDn
(ζ) =

a
fDn,ζ,Λn,ζ

(ξ) and P(·|ξ) = P(·|ζ) for every ζ = (ξ,u). By a

slight abuse of notation, we write

RP( fDn
) = RP⊗Unif(0,1)( fDn

) =
∫∫

L
(

y, fDn
(ξ,u)

)

P
(

d(ξ,y)
)

Unif(0,1)(du) .

Then, applying Fubini’s Theorem in (22) yields

0 ≤ EQ

(

RP

(

fDn

)

−
∫

inf
t∈R

∫
L(y, t)P(dy|ξ)PX (dξ)

)

−−−→
n→∞

0 . (23)

For every measurable f : X →R,

∫
L
(

y, f (ξ)
)

P(dy|ξ) ≥ inf
t∈R

∫
L(y, t)P(dy|ξ) ∀ξ ∈ X .

Hence,

R ∗
P ≥

∫
inf
t∈R

∫
L(y, t)P(dy|ξ)PX (dξ)

and, therefore, (23) implies

EQ

(

RP

(

fDn

)

− R ∗
P

)

−−−→
n→∞

0

and, as RP

(

fDn

)

≥ R ∗
P ,

EQ

∣

∣RP

(

fDn

)

− R ∗
P

∣

∣ −−−→
n→∞

0 .

In particular, this also implies

RP

(

fDn

)

−−−→
n→∞

R ∗
P in probability.
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That is, it only remains to prove (21). To this end, note that, for every ζ = (ξ,u) ∈ X × (0,1),
we have P(·|ζ) = P(·|ξ) and

0 ≤
∫

L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ζ) − inf
t∈R

∫
L(y, t)P(dy|ζ) ≤

≤
∣

∣

∣

∣

∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫

L
(

y,
a
fD⋆

n,ζ
,Λn,ζ

(ξ)
)

P(dy|ξ)
∣

∣

∣

∣

(24)

+

∣

∣

∣

∣

∫
L
(

y,
a
fD⋆

n,ζ
,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫

L
(

y,
a
fPn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)
∣

∣

∣

∣

(25)

+

∣

∣

∣

∣

∫
L
(

y,
a
fPn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫∫

L
(

y,
a
fPn,ζ,Λn,ζ

(x)
)

P(dy|x)Pn,ζ(d(x,v))

∣

∣

∣

∣

(26)

+

(∫∫
L
(

y,
a
fPn,ζ,Λn,ζ

(x)
)

P(dy|x)Pn,ζ(d(x,v))− inf
t∈R

∫
L(y, t)P(dy|ξ)

)

∨0 (27)

where a ∨ 0 = max{a,0}. Therefore, it suffices to prove convergence in probability of each of

these four summands. This is done in the following four subsections but, first, we need some more

preparations:

Lemma 5 Fix any ζ = (ξ,u) ∈ B0 × (0,1) where B0 is defined as in Lemma 2. Let PDn,ζ
and PD⋆

n,ζ

denote the empirical measure corresponding to Dn,ζ and D⋆
n,ζ respectively. It follows that

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

−−−→
n→∞

0 in probability , (28)

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

♯(I ⋆
n,ζ
)

−−−→
n→∞

0 in probability , (29)

λ
− 3

2
n

∥

∥

∥
PDn,ζ

−PD⋆
n,ζ

∥

∥

∥

TV
−−−→

n→∞
0 in probability , (30)

Rn,ζ := max
i∈In,ζ

|Xi −ξ| −−−→
n→∞

0 in probability , (31)

and, for every β ∈ (0,∞),

λ
− 3

2
n

∣

∣

∣

∣

1

kn
∑

i∈In,ζ

|Xi −ξ|β −
∫

|x−ξ|β Pn,ζ(d(x,v))

∣

∣

∣

∣

−−−→
n→∞

0 in probability. (32)

Proof Statement (28) follows from Lemma 3 because the definitions imply

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

= λ
− 3

2
n

n

kn

∣

∣

∣

∣

∣

1

n

n

∑
i=1

IBn,ζ
(Zi) −

∫
IBn,ζ

(z)QZ,Y

(

d(z,y)
)

∣

∣

∣

∣

∣

.
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In order to prove (29) note that (28) implies that ♯(I ⋆
n,ζ)/kn → 1 in probability and, therefore, also

kn/♯(I
⋆

n,ζ) → 1 in probability. Hence, (28) implies (29) because

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

♯(I ⋆
n,ζ
)

= λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

· kn

♯(I ⋆
n,ζ
)
.

In order to prove (30) note that the definitions imply for almost every ω ∈ Ω

In,ζ(ω) ⊂ I ⋆
n,ζ(ω) or I ⋆

n,ζ(ω) ⊂ In,ζ(ω) . (33)

(Only in case of distance ties in the Ui(ω), statement (33) is not true.) Therefore,

♯
(

In,ζ \ I ⋆
n,ζ

)

≤
∣

∣♯(I ⋆
n,ζ)− kn

∣

∣ and ♯
(

I ⋆
n,ζ \ In,ζ

)

≤
∣

∣♯(I ⋆
n,ζ)− kn

∣

∣ . (34)

almost surely. Then, almost surely,

sup
C∈BZ×Y

∣

∣PDn,ζ
(C)−PD⋆

n,ζ
(C)
∣

∣ =

= sup
C

∣

∣

∣

∣

1

kn

(

∑
i∈In,ζ∩I ⋆

n,ζ

IC(Zi,Yi)+ ∑
i∈In,ζ\I ⋆

n,ζ

IC(Zi,Yi)
)

−

− 1

♯
(

I ⋆
n,ζ
)

(

∑
i∈I ⋆

n,ζ
∩In,ζ

IC(Zi,Yi)+ ∑
i∈I ⋆

n,ζ
\In,ζ

IC(Zi,Yi)
)

∣

∣

∣

∣

≤

≤ sup
C

∣

∣

∣

1

kn

− 1

♯
(

I ⋆
n,ζ
)

∣

∣

∣ ∑
i∈In,ζ∩I ⋆

n,ζ

IC(Zi,Yi) +

+
1

kn

sup
C

∑
i∈In,ζ\I ⋆

n,ζ

IC(Zi,Yi) +
1

♯
(

I ⋆
n,ζ
)

sup
C

∑
i∈I ⋆

n,ζ
\In,ζ

IC(Zi,Yi) ≤

(34)

≤
∣

∣

∣

1

kn

− 1

♯
(

I ⋆
n,ζ
)

∣

∣

∣
kn +

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

+

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

♯(I ⋆
n,ζ
)

.

Therefore, (30) follows from (28) and (29).

In order to prove (31), fix any ε > 0. As ξ ∈ B0, we have PX

(

Bε(ξ)
)

> 0 and, therefore,

PX

(

Bε(ξ)
)

− kn/n > 1
2
PX

(

Bε(ξ)
)

> 0 for n large enough (see Lemma 2). Then, (31) follows from

Q
(

Rn,ζ > ε
)

= Q
(

♯
{

i ∈ {1, . . . ,n}
∣

∣ Xi ∈ Bε(ξ)
}

< kn

)

= Q

(

1

n

n

∑
i=1

IBε(ξ)(Xi)<
kn

n

)

= Q

(

PX

(

Bε(ξ)
)

− 1

n

n

∑
i=1

IBε(ξ)(Xi) > PX

(

Bε(ξ)
)

− kn

n

)

≤

≤ Q

(

PX

(

Bε(ξ)
)

− 1

n

n

∑
i=1

IBε(ξ)(Xi) >
1

2
PX

(

Bε(ξ)
)

)

and the law of large numbers.

Now, statement (32) will be proven. An application of Lemma 3 for Ψn

(

(x,v),y
)

= |x−ξ|β and

(16) yield that it suffices to prove

λ
− 3

2
n

∣

∣

∣

∣

1

kn
∑

i∈In,ζ

|Xi −ξ|β − 1

kn

n

∑
i=1

|Xi −ξ|βIBn,ζ
(Zi)

∣

∣

∣

∣

−−−→
n→∞

0 (35)
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in probability in order to prove statement (32).

According to Lemma 2, there is an n0 ∈N such that rn,ξ ≤ 1 for every n ≥ n0. Then, for every

ε > 0 and every n ≥ n0,

Q

(

λ
− 3

2
n

∣

∣

∣

∣

1

kn
∑

i∈In,ζ

|Xi −ξ|β − 1

kn

n

∑
i=1

|Xi −ξ|βIBn,ζ
(Zi)

∣

∣

∣

∣

> ε

)

≤

≤ Q

(

λ
− 3

2
n

∥

∥

∥
PDn,ζ

− ♯(I ⋆
n,ζ)

kn
PD⋆

n,ζ

∥

∥

∥

TV
> ε, Rn,ζ ≤ 1

)

+ Q
(

Rn,ζ > 1
)

≤ Q

(

λ
− 3

2
n

∥

∥

∥
PDn,ζ

−PD⋆
n,ζ

∥

∥

∥

TV
>

ε

2

)

+Q

(

λ
− 3

2
n

|♯(I ⋆
n,ζ)− kn|

kn

>
ε

2

)

+Q
(

Rn,ζ > 1
)

so that (35) follows from (30), (28), and (31).

Lemma 6 For every PX -integrable h : X →R, there is a set Bh ∈BX such that PX (Bh) = 1 and

lim
n→∞

∫
∣

∣h(x)−h(ξ)
∣

∣Pn,ζ

(

d(x,v)
)

= 0 ∀ζ = (ξ,u) ∈ Bh × (0,1). (36)

Proof Define

γn,ξ :=
1

PX

(

Brn,ξ
(ξ)
)

∫
Brn,ξ

(ξ)

∣

∣h(x)−h(ξ)
∣

∣PX (dx)

and, analogously, define γn,ξ where the open ball Brn,ξ
(ξ) is replaced by the closed ball Brn,ξ

(ξ)
around ξ with radius rn,ξ. According to Besicovitch’s Density Theorem, there is a set Bh ∈BX such

that PX (Bh) = 1 and, for every ξ ∈ Bh, limn→∞ γn,ξ = limn→∞ γn,ξ = 0; for γn,ξ, see, for example,

(Fremlin, 2006, Theorem 472D(b)); for γn,ξ, this follows from (Krantz and Parks, 2008, Theorem

4.3.5(2)) (exactly in the same way as Fremlin, 2006, Theorem 472D(b) follows from Fremlin, 2006,

Theorem 472D(a)). Recall from Appendix A that Bn,ζ =
(

Brn,ξ
(ξ)× (0,1)

)

∪
(

∂Brn,ξ
(ξ)×Bsn,ζ

(u)
)

and define αn,ζ := Q
(

Ui ∈ Bsn,ζ
(u)
)

, βn,ξ := PX

(

Brn,ξ
(ξ)
)

and βn,ξ := PX

(

Brn,ξ
(ξ)
)

. Then,

kn

n
= Q

(

Zi ∈ Bn,ζ

)

= βn,ξ +αn,ζ

(

βn,ξ −βn,ξ

)

(37)

and ∫
∣

∣h(x)−h(ξ)
∣

∣Pn,ζ

(

d(x,v)
)

=

=
n

kn

(∫
Brn,ξ

(ξ)

∣

∣h(x)−h(ξ)
∣

∣PX (dx) + αn,ζ

∫
∂Brn,ξ

(ξ)

∣

∣h(x)−h(ξ)
∣

∣PX (dx)

)

=
n

kn

(

βn,ξγn,ξ + αn,ζ

(

βn,ξγn,ξ −βn,ξγn,ξ

)

)

=

=
n

kn

(

βn,ξ +αn,ζ

(

βn,ξ −βn,ξ

)

)

γn,ξ +
n

kn

(1−αn,ζ)βn,ξ(γn,ξ − γn,ξ) ≤
(37)

≤ γn,ξ + 1 ·
∣

∣γn,ξ − γn,ξ

∣

∣ −−−→
n→∞

0
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C.1 Convergence of the First Summand (24)

Fix any ζ = (ξ,u)∈ B0×(0,1) where B0 is defined as in Lemma 2. Again let PDn,ζ
and PD⋆

n,ζ
denote

the empirical measure corresponding to Dn,ζ and D⋆
n,ζ respectively. It follows from (18), (19), and

(51) that

∣

∣

∣

∣

∫
L
(

y,
a
fDn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫

L
(

y,
a
fD⋆

n,ζ
,Λn,ζ

(ξ)
)

P(dy|ξ)
∣

∣

∣

∣

≤

≤ |L|M,1‖K‖2
∞

(

b0Λ−1
n,ζ

+b1‖K‖q
∞RP1

(0)
q
2 Λ

− q
2
−1

n,ζ

)

·
∥

∥PDn,ζ
−PD⋆

n,ζ

∥

∥

TV
≤

(10)

≤ |L|M,1‖K‖2
∞

(

b0(cλn)
−1 +b1‖K‖q

∞

∥

∥L(·,0)
∥

∥

q
2

∞
(cλn)

− q
2
−1
)

·
∥

∥PDn,ζ
−PD⋆

n,ζ

∥

∥

TV
.

Therefore, convergence in probability follows from (30) in Lemma 5 and q ∈ [0,1].

C.2 Convergence of the Second Summand (25)

Fix any ζ = (ξ,u) ∈ B0 × (0,1).

Lemma 7 For every n ∈N, define

λ̃n,ζ =
∫

|x−ξ| 3
2 Pn,ζ

(

d(x,v)
)

and λn,ζ := c ·max
{

λn, λ̃n,ζ

}

.

Then,
|Λn,ζ −λn,ζ|
Λn,ζ

√

λn,ζ

−−−→
n→∞

0 in probability .

Proof For a1,a2,b ∈ R, denote a1 ∨a2 = max{a1,a2} and note that |a1 ∨b−a2 ∨b| ≤ |a1 −a2|.
For every n, the definitions and (10) imply

|Λn,ζ −λn,ζ|
Λn,ζ

√

λn,ζ

≤
∣

∣Λn,ζ − c·
(

λn∨Λ̃n,ζ

)∣

∣+ c·
∣

∣λn∨Λ̃n,ζ −λn∨λ̃n,ζ

∣

∣

c
3
2 ·
(

λn ∨ Λ̃n,ζ

)√
λn

≤ cn

c
3
2

√
λn

+

∣

∣Λ̃n,ζ − λ̃n,ζ

∣

∣

√
cλn

√
λn

.

Hence, the statement follows from the assumption that limn→∞ cn/
√

λn = 0 and from (32) in Lemma

5.

According to (18), it suffices to show

∥

∥ fD⋆
n,ζ

,Λn,ζ
− fPn,ζ,Λn,ζ

∥

∥

H
−−−→

n→∞
0 in probability

in order to prove convergence to 0 of the the second summand (25). To this end, note that

∥

∥ fD⋆
n,ζ

,Λn,ζ
− fPn,ζ,Λn,ζ

∥

∥

H
≤

≤
∥

∥ fD⋆
n,ζ

,Λn,ζ
− fD⋆

n,ζ
,λn,ζ

∥

∥

H
+
∥

∥ fD⋆
n,ζ

,λn,ζ
− fPn,ζ,λn,ζ

∥

∥

H
+
∥

∥ fPn,ζ,λn,ζ
− fPn,ζ,Λn,ζ

∥

∥

H

and that
∥

∥ fD⋆
n,ζ

,Λn,ζ
− fD⋆

n,ζ
,λn,ζ

∥

∥

H
and

∥

∥ fPn,ζ,λn,ζ
− fPn,ζ,Λn,ζ

∥

∥

H
converge in probability to 0 according

to part (i) of Lemma 9 (b), (19), and Lemma 7. Note that boundedness of the kernel K means that
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supx∈X ‖Φ(x)‖H = ‖K‖∞. By defining f (x,v)= f (x) for every z=(x,v)∈X ×(0,1)=Z and f ∈H,

the RKHS H consisting of functions f : X →R can also be identified with an RKHS (again denoted

by H) which consists of functions f : Z →R; the kernel of this RKHS is given by K(z,z′) = K(x,x′)
for every z = (x,v),z′ = (x′,u′) ∈ X × (0,1) = Z; see, for example, the proof of (Christmann and

Hable, 2012, Theorem 2). Fix a = b0 + b1‖K‖q
∞

∥

∥L(·,0)
∥

∥

q/2

∞
c−q/2 and n0 ∈N such that λn ≤ 1 for

every n ≥ n0. According to the definition of λn,ζ, we have λ
−q/2

n,ζ
≤ c−q/2λ

−q/2
n ≤ c−q/2λ

−1/2
n for

every n ≥ n0. According to part (ii) of Lemma 9 (b) and (19), for every n ≥ n0, there is a measurable

function hn,ζ : Z ×Y →R such that ‖hn,ζ‖∞ ≤ aλ
− 1

2
n and

∥

∥ fD⋆
n,ζ

,λn,ζ
− fPn,ζ,λn,ζ

∥

∥

H
≤

≤ λ−1
n,ζ

∥

∥

∥

∥

∥

1

♯(I ⋆
n,ζ
) ∑

i∈I ⋆
n,ζ

hn,ζ(Zi,Yi)Φ(Xi)−
∫

hn,ζΦdPn,ζ

∥

∥

∥

∥

∥

H

≤

≤ c−1λ−1
n

∣

∣

∣

∣

1

♯(I ⋆
n,ζ
)
− 1

kn

∣

∣

∣

∣

∑
i∈I ⋆

n,ζ

∥

∥

∥
hn,ζ(Zi,Yi)Φ(Xi)

∥

∥

∥

H
+

+ c−1λ−1
n

∥

∥

∥

∥

∥

1

kn
∑

i∈I ⋆
n,ζ

hn,ζ(Zi,Yi)Φ(Xi)−
∫

hn,ζΦdPn,ζ

∥

∥

∥

∥

∥

H

≤

(17)

≤ λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

·ac−1‖K‖∞ +

+ λ−1
n

n

kn

∥

∥

∥

∥

∥

1

n

n

∑
i=1

hn,ζ(Zi,Yi)Φ(Xi)IBn,ζ
(Zi)−

∫
hn,ζΦIBn,ζ

dQZ,Y

∥

∥

∥

∥

∥

H

· c−1.

It follows from (28) that

λ
− 3

2
n

∣

∣♯(I ⋆
n,ζ)− kn

∣

∣

kn

−−−→
n→∞

0 in probability

and it follows from Lemma 3 for Ψn(z,y) = λ
1
2
n hn,ζ(z,y)Φ(x), z = (x,v), that

λ−1
n

n

kn

∥

∥

∥

∥

∥

1

n

n

∑
i=1

hn,ζ(Zi,Yi)Φ(Xi)IBn,ζ
(Zi)−

∫
hn,ζΦIBn,ζ

dQZ,Y

∥

∥

∥

∥

∥

H

−−−→
n→∞

0 in probability.

C.3 Convergence of the Third Summand (26)

For every m ∈N, define

αm(y) =
mM

∑
j=−mM

j

m
I( j−1

m
, j

m
](y) , y ∈R . (38)

That is, αm

(

Y
)

⊂
{

j
m

∣

∣ j ∈ {−mM, . . . ,mM}
}

and

∣

∣αm(y)− y
∣

∣ < 1
m

∀y ∈ Y . (39)
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According to Lemma 6, there is a set B1 ∈BX such that PX (B1) = 1 and such that, for all maps

h : X → R , x 7→ P
(

(

j−1
m

, j
m

]

∣

∣

∣
x
)

, j ∈ {−mM, . . . ,mM} , m ∈N ,

(36) is fulfilled with Bh = B1. Fix any ζ = (ξ,u) ∈ X × (0,1) such that ξ ∈ B0 ∩B1. It follows from

(13) and (39) that, for every m ∈N,

sup
t∈[−M,M]

x∈X

∣

∣

∣

∣

∫
L(y, t)P(dy|x) −

∫
L(αm(y), t)P(dy|x)

∣

∣

∣

∣

≤ ℓ( 1
m
) .

Since limm→∞ ℓ( 1
m
) = 0, it is enough to show that, for every m ∈N,

∣

∣

∣

∣

∫
L
(

αm(y),
a
fPn,ζ,Λn,ζ

(ξ)
)

P(dy|ξ)−
∫∫

L
(

αm(y),
a
fPn,ζ,Λn,ζ

(x)
)

P(dy|x)Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

converges to 0 in probability for n → ∞ . Next, it follows from

∫
L
(

αm(y), t
)

P(dy|x) (38)
=

mM

∑
j=−mM

L( j
m
, t) ·P

(

(

j−1
m

, j
m

]

∣

∣

∣
x
)

∀ t ∈R ∀x ∈ X

that it suffices to show that, for every j ∈ {−mM, . . . ,mM} and m ∈N,

∣

∣

∣

∣

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(ξ)
)

P
((

j−1
m

, j
m

]∣

∣ξ
)

−
∫

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(x)
)

P
((

j−1
m

, j
m

]∣

∣x
)

Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

converges to 0 in probability for n → ∞ . The latter statement is shown in the following:

∣

∣

∣

∣

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(ξ)
)

P
((

j−1
m

, j
m

]∣

∣ξ
)

−
∫

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(x)
)

P
((

j−1
m

, j
m

]∣

∣x
)

Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫
L
(

j
m
,
a
fPn,ζ,Λn,ζ

(ξ)
)

(

P
((

j−1
m

, j
m

]∣

∣ξ
)

−P
((

j−1
m

, j
m

]∣

∣x
)

)

Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫
(

L
(

j
m
,
a
fPn,ζ,Λn,ζ

(ξ)
)

−L
(

j
m
,
a
fPn,ζ,Λn,ζ

(x)
)

)

P
((

j−1
m

, j
m

]∣

∣x
)

Pn,ζ

(

d(x,v)
)

∣

∣

∣

∣

≤ sup
t,y∈[−M,M]

L(y, t) ·
∫
∣

∣

∣
P
((

j−1
m

, j
m

]∣

∣ξ
)

−P
((

j−1
m

, j
m

]∣

∣x
)

∣

∣

∣
Pn,ζ

(

d(x,v)
)

(40)

+ |L|M,1

∫
∣

∣

a
fPn,ζ,Λn,ζ

(ξ)−a
fPn,ζ,Λn,ζ

(x)
∣

∣Pn,ζ

(

d(x,v)
)

(41)

As rn,ξ ց 0 (Lemma 2), it follows from the above definition of B1 and ξ ∈ B1 that the summand

in (40) converges to 0 (in R) for n → ∞. In order to prove convergence (in probability) of the

summand in (41), note that, according to the mean value theorem in several variables and Steinwart
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and Christmann (2008, Corollary 4.36 and Equation (5.4)),

∫
∣

∣

a
fPn,ζ,Λn,ζ

(ξ)−a
fPn,ζ,Λn,ζ

(x)
∣

∣Pn,ζ

(

d(x,v)
)

≤

≤
∫
∣

∣ fPn,ζ,Λn,ζ
(ξ)− fPn,ζ,Λn,ζ

(x)
∣

∣Pn,ζ

(

d(x,v)
)

≤

≤
∫

sup
x′∈Brn,ξ

(ξ)

∣

∣

∣

∂

∂x
fPn,ζ,Λn,ζ

(x′)
∣

∣

∣
· |x−ξ|Pn,ζ

(

d(x,v)
)

≤

≤
∥

∥ fPn,ζ,Λn,ζ

∥

∥

H
·
(

sup
x∈Brn,ξ

(ξ)

√

∂1,1K(x,x)

)

·
∫

|x−ξ|Pn,ζ

(

d(x,v)
)

≤

≤
(

sup
x∈Brn,ξ

(ξ)

√

∂1,1K(x,x)

)

·
√

RPn,ζ
(0) ·

∫ |x−ξ|Pn,ζ

(

d(x,v)
)

√

Λn,ζ

where Brn,ξ
(ξ) denotes the closed ball around ξ with radius rn,ξ. As

RPn,ζ
(0)≤ sup

y∈[−M,M]

L(y,0)< ∞ and lim
n→∞

sup
x∈Brn,ξ

(ξ)

√

∂1,1K(x,x) =
√

∂1,1K(ξ,ξ) ,

it remains to show that∫ |x−ξ|Pn,ζ

(

d(x,v)
)

√

Λn,ζ

−−−→
n→∞

0 in probability . (42)

In order to prove (42), note that
∫ |x−ξ|Pn,ζ

(

d(x,v)
)

√

Λn,ζ

≤

≤
1
kn

∑i∈In,ζ
|Xi −ξ|

√

Λn,ζ

+

∣

∣

∣

1
kn

∑i∈In,ζ
|Xi −ξ|− ∫ |x−ξ|Pn,ζ

(

d(x,v)
)

∣

∣

∣

√

Λn,ζ

≤

(10)

≤
1
kn

∑i∈In,ζ
|Xi −ξ|

√

c 1
kn

∑i∈In,ζ
|Xi −ξ| 3

2

+ (43)

+ c−
1
2 λ

− 1
2

n

∣

∣

∣

1

kn
∑

i∈In,ζ

|Xi −ξ|−
∫

|x−ξ|Pn,ζ

(

d(x,v)
)

∣

∣

∣
. (44)

The summand in (44) converges to 0 in probability according to (32). The summand in (43) con-

verges to 0 in probability because, by convexity of z 7→ z
3
2 and ♯(In,ζ) = kn, we get

1
kn

∑i∈In,ζ
|Xi −ξ|

√

c 1
kn

∑i∈In,ζ
|Xi −ξ| 3

2

≤
1
kn

∑i∈In,ζ
|Xi −ξ|

√

c
(

1
kn

∑i∈In,ζ
|Xi −ξ|

)
3
2

=

= c−
1
2

( 1

kn
∑

i∈In,ζ

|Xi −ξ|
)

1
4 ≤ c−

1
2 R

1
4

n,ζ
−−−→

n→∞
0 in probability

according to (31).
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C.4 Convergence of the Fourth Summand (27)

Let M1(X ×Y ) be the set of all probability measures on X ×Y . For every f ∈ H, define the map

A f : M1(X ×Y )× [0,∞)→R by

A f (P0,λ) =
∫

L
(

y, f (x)
)

P0

(

d(x,y)
)

+ λ‖ f‖2
H (45)

for every P0 ∈ M1(X ×Y ) and λ ∈ [0,∞). For every f ∈ H, the map (x,y) 7→ L
(

y, f (x)
)

is contin-

uous and bounded on X ×Y and, therefore, A f is continuous with respect to weak convergence of

probability measures (and the ordinary topology on R and [0,∞)). Hence,

(P0,λ) 7→ inf
f∈H

A f (P0,λ) is upper semi-continuous (46)

see, for example, (Denkowski et al., 2003, Prop. 1.1.36).

Let Cc(X ×Y ) be the set of all continuous functions g : X ×Y → R with compact support.

According to Denkowski et al. (2003, Theorem 2.6.24), there is a countable dense subset S ⊂
Cc(X ×Y ) (with respect to uniform convergence).

According to Lemma 6, there is a set B2 ∈BX such that PX (B2) = 1 and such that, for all maps

h : X → R , x 7→
∫

g(x,y)P(dy|x) , g ∈ S ,

(36) is fulfilled with Bh = B2. Fix any ζ = (ξ,u) ∈ X × (0,1) such that ξ ∈ B0 ∩B1 ∩B2.

Lemma 8 Let (Λn j,ζ) j∈N be a subsequence of (Λn,ζ)n∈N which converges to zero Q-a.s. for j → ∞.

Then, Q - a.s.,

(∫ ∫
L
(

y,
a
fPn j ,ζ

,Λn j ,ζ
(x)
)

P(dy|x)Pn j,ζ

(

d(x,v)
)

− inf
t∈R

∫
L(y, t)P(dy|ξ)

)

∨0 −−−→
j→∞

0 .

Proof For every n ∈N, let P̃n,ζ denote the conditional distribution of (X ,Y ) given Z ∈ Bn,ζ. Then,

for every integrable g : X ×Y →R,

∫
g(x,y)P̃n,ζ

(

d(x,y)
)

=
∫

g(x,y)Pn,ζ

(

d(x,v,y)
)

=
∫

Z

∫
Y

g(x,y)P(dy|x)Pn,ζ

(

d(x,v)
)

and, according to the definitions (45) and (6),

inf
f∈H

A f (P̃n,ζ,λ) =
∫

L
(

y, fPn,ζ,λ(x)
)

Pn,ζ

(

d(x,v,y)
)

+ λ
∥

∥ fPn,ζ,λ

∥

∥

2

H
(47)

for every λ ∈ (0,∞) and n ∈N. Analogously to the definition of P̃n,ζ ∈ M (X ×Y ), define P̃0,ζ ∈
M (X ×Y ) by

∫
g(x,y) P̃0,ζ

(

d(x,y)
)

=
∫

Y
g(ξ,y)P(dy|ξ) for every integrable g : X ×Y →R .

First, it is shown that

P̃n,ζ −−−→
n→∞

P̃0,ζ weakly in M (X ×Y ) . (48)
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According to Bauer (2001, Theorem 30.8), we have to show that
∫

gdP̃n,ζ −−−→
n→∞

∫
gdP̃0,ζ ∀g ∈ Cc(X ×Y ) . (49)

Fix any g∈ Cc(X ×Y ). Then, for every ε> 0, there is a gε ∈ S such that supx,y

∣

∣g(x,y)−gε(x,y)|< ε

and, therefore,
∣

∣

∣

∣

∫
gdP̃n,ζ −

∫
gdP̃0,ζ

∣

∣

∣

∣

≤
∫
|g−gε|dP̃n,ζ +

∣

∣

∣

∣

∫
gε dP̃n,ζ −

∫
gε dP̃0,ζ

∣

∣

∣

∣

+
∫
|g−gε|dP̃0,ζ ≤

≤ 2ε +
∫

Z

∣

∣

∣

∣

∫
Y

gε(x,y)P(dy|x)−
∫

Y
gε(ξ,y)P(dy|ξ)

∣

∣

∣

∣

Pn,ζ

(

d(x,v)
)

The second summand converges to 0 for n → ∞ because of ξ ∈ B2, gε ∈ S , and the definition of B2.

As ε > 0 can be arbitrarily close to 0, this shows (49) and, therefore, (48).

Next, fix any ω ∈ Ω such that γ j := Λn j,ξ(ω)−→ 0 for j → ∞. Then,

limsup
j→∞

∫∫
L
(

y,
a
fPn j ,ζ

,Λn j ,ζ
(ω)(x)

)

P(dy|x)Pn j,ζ

(

d(x,v)
)

≤

≤ limsup
j→∞

∫∫
L
(

y, fPn j ,ζ
,γ j
(x)
)

P(dy|x)Pn j,ζ

(

d(x,v)
)

+ γ j

∥

∥ fPn j ,ζ
,γ j

∥

∥

2

H
=

(47)
= limsup

j→∞
inf
f∈H

A f (P̃n j,ζ,γ j)
(46,48)

≤ inf
f∈H

A f (P̃0,ζ,0) =

= inf
f∈H

∫
L
(

y, f (ξ)
)

P(dy|ξ) = inf
t∈R

∫
L(y, t)P(dy|ξ) .

By use of the above lemma, we can complete the proof of part 4 now. The definition of Λn,ζ and

(31) imply that Λn,ξ → 0 in probability for n → ∞. Then, via the characterization of convergence in

probability by use of subsequences and almost sure convergence, it follows from Lemma 8 that
(∫∫

L
(

y,
a
fPn,ζ,Λn,ζ

(x)
)

P(dy|x)Pn,ζ

(

d(x,v)
)

− inf
t∈R

∫
L(y, t)P(dy|ξ)

)

∨0 −−−→
n→∞

0

in probability.

Appendix D. Stability Properties of Support Vector Machines

Part (a) of the following Lemma 9 shows: in order to ensure that empirical SVMs are continuous in

the data, continuity of the loss function L is enough. This result strengthens (Steinwart and Christ-

mann, 2008, Lemma 5.13) which assumes differentiability and also (Hable and Christmann, 2011,

Corollary 3.5) which assumes Lipschitz-(equi-)continuity. Next, part (i) of Lemma 9 (b) consid-

erably strengthens (Steinwart and Christmann, 2008, Corollary 5.19) in the sense that it quantifies

the continuity of the map λ 7→ fP0,λ. Finally, parts (ii) and (iii) of Lemma 9 (b) are just simple

applications of the stability results in (Steinwart and Christmann, 2008, § 5.3).

Lemma 9 Let X0 be a separable metric space and let Y0 ⊂R be closed. Let K : X0 ×X0 →R be a

continuous and bounded kernel with RKHS H and canonical feature map Φ. Let L : Y0×R→ [0,∞)
be a convex loss function.
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(a) If L : Y0 ×R→ [0,∞) is continuous, then the map

(X0 ×Y0)
n → H , D 7→ fD,λ

is continuous for every λ > 0 and n ∈N.

(b) Assume that L has the local Lipschitz-property that, for every a ∈ (0,∞), there is an |L|a,1 ∈
(0,∞) such that

sup
y∈Y0

∣

∣L(y, t1)−L(y, t2)
∣

∣ ≤ |L|a,1 · |t1 − t2| ∀ t1, t2 ∈ [−a,a] .

(i) Then, for every probability measure P0 on (X0 ×Y0,BX0×Y0
) such that RP0

(0)< ∞ and

for every λ0,λ1 ∈ (0,∞), it holds that

∥

∥ fP0,λ1
− fP0,λ0

∥

∥

H
≤ |λ1 −λ0|

λ1

√
λ0

2

√

RP0
(0) .

(ii) If there are some b0,b1 ∈ (0,∞) and q ∈ [0,∞) such that, for every a ∈ (0,∞), |L|a,1 =
b0 + b1aq, then: for every probability measures P1 on (X0 × Y0,BX0×Y0

) such that

RP1
(0) < ∞ and for every λ ∈ (0,∞), there is a measurable hP1,λ : X0 ×Y0 → R such

that

∣

∣hP1,λ(x,y)
∣

∣ ≤ b0 +b1‖K‖q
∞

(

RP1
(0)

λ

)
q
2

(50)

and such that, for every P2 on (X0 ×Y0,BX0×Y0
) with RP2

(0)< ∞,

∥

∥ fP1,λ − fP2,λ

∥

∥

H
≤ λ−1

∥

∥

∥

∥

∫
hP1,λΦdP1 −

∫
hP1,λΦdP1

∥

∥

∥

∥

H

=

= λ−1 sup
f∈H

‖ f‖H≤1

∣

∣EP1
hP1,λ f −EP2

hP1,λ f
∣

∣ .

(iii) If there are some b0,b1 ∈ (0,∞) and q ∈ [0,∞) such that, for every a ∈ (0,∞), |L|a,1 =
b0 + b1aq, then: for every probability measures P1 and P2 on (X0 ×Y0,BX0×Y0

) such

that RP1
(0)< ∞ and RP2

(0)< ∞ and for every λ ∈ (0,∞),

∥

∥ fP1,λ − fP2,λ

∥

∥

H
≤ ‖K‖∞

(

b0λ−1 +b1‖K‖q
∞RP1

(0)
q
2 λ−

q
2
−1
)

∥

∥P1 −P2

∥

∥

TV
. (51)

Proof In order to prove (a) by contradiction, assume that D 7→ fD,λ is not continuous. Then, there

is an ε > 0 and a sequence, such that

D(m) −−−−→
m→∞

D(0) and
∥

∥ fD(m),λ − fD(0),λ

∥

∥

H
≥ ε ∀m ∈N . (52)

Define RD( f ) = 1
n ∑n

i=1 L(yi, f (xi)) for every D =
(

(x1,y1), . . . ,(xn,yn)
)

∈ (X0 ×Y0)
n and f ∈ H.

According to (Steinwart and Christmann, 2008, (5.4)) and due to continuity of L,

sup
m∈N

∥

∥ fD(m),λ

∥

∥

H
≤ sup

m∈N

√

λ−1RD(m)(0) < ∞ . (53)
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Hence, there is a subsequence such that f
D(mℓ) weakly converges to some f0 ∈ H in the Hilbert space

H for ℓ → ∞; see, for example, (Dunford and Schwartz, 1958, Corollary IV.4.7). That is, there is

also a sequence which fulfills (52) and such that, in addition, fD(m),λ weakly converges to f0 in H

for some f0 ∈ H. This implies

lim
m→∞

fD(m),λ(x) = lim
m→∞

〈

fD(m),λ,Φ(x)
〉

H =
〈

f0,Φ(x)
〉

H = f0(x) ∀x ∈ X0

and, for x(m) → x(0) in X0,

lim
m→∞

∣

∣ fD(m),λ(x
(m))− f0(x

(0))
∣

∣ ≤

≤ lim
m→∞

∣

∣

〈

fD(m),λ ,Φ(x(m))−Φ(x(0))
〉

H

∣

∣ + lim
m→∞

∣

∣ fD(m),λ(x
(0))− f0(x

(0))
∣

∣

≤ lim
m→∞

∥

∥ fD(m),λ

∥

∥

H
·
∥

∥Φ(x(m))−Φ(x(0))
∥

∥

H
= 0

where the last equality follows from (53) and continuity of the kernel K. Hence, it follows that

lim
m→∞

RD(m)

(

fD(m),λ

)

= RD(0)

(

f0

)

. (54)

Therefore, lower semi-continuity of the H-norm with respect to weak convergence in H (e.g., Con-

way, 1985, Exercise V.1.9) implies

liminf
m→∞

RD(m)

(

fD(m),λ

)

+λ
∥

∥ fD(m),λ

∥

∥

2

H
≥ RD(0)

(

f0

)

+λ
∥

∥ f0

∥

∥

2

H
. (55)

Recall that the point-wise infimum of a familiy of continuous functions yields an upper semi-

continuous function; see, for example, (Denkowski et al., 2003, Prop. 1.1.36). Then, the definition

of fD(m),λ and continuity of D 7→ RD( f )+λ‖ f‖2
H for every f ∈ H imply

RD(0)

(

f0

)

+λ
∥

∥ f0

∥

∥

2

H
≥ inf

f∈H

(

RD(0)( f )+λ‖ f‖2
H

)

≥

≥ limsup
m→∞

inf
f∈H

(

RD(m)( f )+λ‖ f‖2
H

)

= limsup
m→∞

RD(m)

(

fD(m),λ

)

+λ
∥

∥ fD(m),λ

∥

∥

2

H
≥

≥ liminf
m→∞

RD(m)

(

fD(m),λ

)

+λ
∥

∥ fD(m),λ

∥

∥

2

H

(55)

≥ RD(0)

(

f0

)

+λ
∥

∥ f0

∥

∥

2

H
.

Hence, it follows that f0 = fD(0),λ and

lim
m→∞

RD(m)

(

fD(m),λ

)

+λ
∥

∥ fD(m),λ

∥

∥

2

H
= RD(0)

(

fD(0),λ

)

+λ
∥

∥ fD(0),λ

∥

∥

2

H
. (56)

Then, f0 = fD(0),λ, (54), and (56) imply that limm→∞ ‖ fD(m),λ‖H = ‖ fD(0),λ‖H . Since weak conver-

gence in the Hilbert space H and this convergence of the H-norms imply norm convergence in

H (see, e.g., Conway, 1985, Exercise V.1.8), we have shown that limm→∞ ‖ fD(m),λ − fD(0),λ‖H = 0,

which is a contradiction to (52).

The following proof of part (i) of Lemma 9 (b) is essentially a variant of the proof of (Steinwart

and Christmann, 2008, Theorem 5.9) even though the statements are quite different. Let ∂L(y, t0)
denote the subdifferential of the convex map t 7→ L(y, t) at the point t0. According to (Steinwart and
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Christmann, 2008, Corollary 5.10), there is a bounded measurable map h :∈ X0 ×Y0 →R such that

h(x,y) ∈ ∂L
(

y, fP0,λ0
(x)
)

for every (x,y) ∈ X0 ×Y0 and

fP0,λ0
= − 1

2λ0

∫
hΦdP0 . (57)

The definition of the subdifferential implies

h(x,y)
(

fP0,λ1
(x)− fP0,λ0

(x)
)

≤ L
(

y, fP0,λ1
(x)
)

−L
(

y, fP0,λ0
(x)
)

for every (x,y) ∈ X0 ×Y0 and integrating with respect to P0 yields

∫
h(x,y)

(

fP0,λ1
(x)− fP0,λ0

(x)
)

P0

(

d(x,y)
)

≤ R ( fP0,λ1
)−R ( fP0,λ0

) .

The reproducing property of the canonical feature map Φ and the property of the Bochner integral

(Denkowski et al., 2003, Theorem 3.10.16) imply

∫
h(x,y)

(

fP0,λ1
(x)− fP0,λ0

(x)
)

P0

(

d(x,y)
)

=

=
∫
〈

fP0,λ1
− fP0,λ0

, h(x,y)Φ(x)
〉

H P0

(

d(x,y)
)

=

=
〈

fP0,λ1
− fP0,λ0

,
∫

hΦdP0

〉

H
(57)
=
〈

fP0,λ1
− fP0,λ0

,−2λ0 fP0,λ0

〉

H .

That is,

〈

fP0,λ1
− fP0,λ0

,−2 λ0

λ1
fP0,λ0

〉

H ≤ 1
λ1

(

RP0
( fP0,λ1

)−RP0
( fP0,λ0

)
)

. (58)

An elementary calculation with 〈 , 〉H shows that

2
〈

fP0,λ1
− fP0,λ0

, fP0,λ0

〉

H +
∥

∥ fP0,λ1
− fP0,λ0

∥

∥

2

H
=
∥

∥ fP0,λ1

∥

∥

2

H
−
∥

∥ fP0,λ0

∥

∥

2

H
. (59)

Calculating (58)+(59) yields

〈

fP0,λ1
− fP0,λ0

, 2(1− λ0

λ1
) fP0,λ0

〉

H +
∥

∥ fP0,λ1
− fP0,λ0

∥

∥

2

H
≤

≤ 1
λ1

(

RP0
( fP0,λ1

)−RP0
( fP0,λ0

)
)

+
∥

∥ fP0,λ1

∥

∥

2

H
−
∥

∥ fP0,λ0

∥

∥

2

H
=

= 1
λ1

(

RP0,λ1
( fP0,λ1

)−RP0,λ1
( fP0,λ0

)
)

≤ 0 .

Hence,

∥

∥ fP0,λ1
− fP0,λ0

∥

∥

2

H
≤

∣

∣

∣

〈

fP0,λ1
− fP0,λ0

, 2(1− λ0

λ1
) fP0,λ0

〉

H

∣

∣

∣
≤

≤
∥

∥ fP0,λ1
− fP0,λ0

∥

∥

H
·2
∣

∣1− λ0

λ1

∣

∣ ·
∥

∥ fP0,λ0

∥

∥

H
.

Since
∥

∥ fP0,λ0

∥

∥

H
≤
√

λ−1
0 RP0

(0) (see, e.g., Steinwart and Christmann, 2008, (5.4)), this implies

statement (i) of Lemma 9 (b).

In order to prove (ii) and (iii) of Lemma 9 (b), note that the properties of the Bochner-Integral

(see, e.g., Denkowski et al., 2003, Theorem 3.10.16) imply 〈∫ hΦdP, f 〉H =
∫

h f dP for every inte-

grable function h : X0×Y0 →R because of the reproducing property 〈Φ(x), f 〉H = f (x). Due to the
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assumptions on L, it follows from (Steinwart and Christmann, 2008, Corollary 5.10) that there is a

measurable function hP1,λ : X0 ×Y0 →R which fulfills (50) and

∥

∥ fP1,λ − fP2,λ

∥

∥

H
≤ 1

λ

∥

∥

∥

∥

∫
hP1,λΦdP1 −

∫
hP1,λΦdP2

∥

∥

∥

∥

H

=

= sup
f∈H

‖ f‖H≤1

1

λ

〈∫
hP1,λΦdP1 −

∫
hP1,λΦdP2 , f

〉

H

= sup
f∈H

‖ f‖H≤1

1

λ

∣

∣

∣

∣

∫
hP1,λ f dP1 −

∫
hP1,λ f dP2

∣

∣

∣

∣

.

That is, we have shown (ii). Then, (iii) follows from (ii) and ‖ f‖∞ ≤ ‖K‖∞‖ f‖H .
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Zdzislaw Denkowski, Stanislaw Migórski, and Nikolas S. Papageorgiou. An Introduction to Non-

linear Analysis: Theory. Kluwer Academic Publishers, Boston, 2003.
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