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Abstract

Motivated by promising experimental results, this paper investigates the theoretical properties of a

recently proposed nonparametric estimator, called the Mutual Nearest Neighbors rule, which esti-

mates the regression function m(x) = E[Y |X = x] as follows: first identify the k nearest neighbors

of x in the sample Dn, then keep only those for which x is itself one of the k nearest neighbors, and

finally take the average over the corresponding response variables. We prove that this estimator is

consistent and that its rate of convergence is optimal. Since the estimate with the optimal rate of

convergence depends on the unknown distribution of the observations, we also present adaptation

results by data-splitting.

Keywords: nonparametric estimation, nearest neighbor methods, mathematical statistics

1. Introduction

Let Dn = {(X1,Y1), . . . ,(Xn,Yn)} be a sample of independent and identically distributed (i.i.d.)

copies of an R
d ×R-valued random pair (X,Y ) satisfying EY 2 < ∞. For fixed x in R

d , our goal is

to estimate the regression function m(x) = E[Y |X = x] using the data Dn. A regression function es-

timate mn(x) is said to be weakly consistent if the mean integrated squared error E[mn(X)−m(X)]2

tends to 0 as the sample size n goes to infinity, and is said to be universally weakly consistent if this

property holds for all distributions of (X,Y ) with EY 2 < ∞.

Equip the space Rd with the standard Euclidean metric. Then, for x in R
d , the k Nearest Neigh-

bors (kNN) estimate for the regression function m is defined by

mkNN
n (x) =

1

k

k

∑
i=1

Y(i,n)(x),

where (X(1,n)(x),Y(1,n)(x)), . . . ,(X(n,n)(x),Y(n,n)(x)) denotes a reordering of the data according to

the increasing values of di = di(x) = ‖Xi − x‖ (ties are broken in favor of smallest indices). This

procedure is one of the oldest approaches to regression analysis, dating back to Fix and Hodges
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(1951, 1952), and is among the most popular nonparametric methods. We refer the reader to De-

vroye et al. (1996) for results and details in the classification context, and to Györfi et al. (2002)

for the regression framework considered in the present paper. Accordingly, we adhere as much as

possible to their notations.

Let us denote Nk(x) the set of the k nearest neighbors of x in Dn, N ′
k (Xi) the set of the k nearest

neighbors of Xi in (Dn \{Xi})∪{x}, and

Mk(x) =
{

Xi ∈ Nk(x) : x ∈ N ′
k (Xi)

}

,

the set of the Mutual Nearest Neighbors (MNN) of x. Denoting Mk(x) = |Mk(x)| the number of

mutual nearest neighbors of x, Mk(x) is a random variable taking values between 0 and k. The

mutual nearest neighbors regression estimate is then defined as follows

mn(x) =
1

Mk(x)
∑

i:Xi∈Mk(x)

Yi,

with the convention that 0/0 = 0. Two remarks are in order. First, contrarily to the k-NN estimate,

the MNN estimate is symmetric. This means that, when averaging over the neighbors of x in the

sample Dn, we only consider the points for which x is itself one of the k nearest neighbors.

The second remark is that, compared to the standard kNN rule, there might be an additional

computational cost for applying the MNN procedure. Specifically, we might consider two different

situations. In the first one, it is possible to precompute and sort the distances between all couples

of points (Xi,X j) in the sample Dn. Since the cost of computing the distance between a pair of d-

dimensional vectors is O(d), and that there are n(n−1)/2 such pairs in Dn, and considering that the

(quick)sorting of a vector of size n is O(n logn), the cost of this precomputation is O((d+ logn)n2).
In this case, after computing and sorting the pairwise distances, the computational burden of MNN

and kNN are of the same order. Indeed, for a new point x, computing the distances to the Xi’s and

finding the k nearest neighbors has a cost in O((d + logk)n). For the mutual nearest neighbors,

for each of these k nearest neighbors, one has also to see if x is one of its k nearest neighbors,

hence an additive cost in O(k). In the second situation, the cost of precomputation is prohibitively

expensive, typically due to large sample size n and high dimension d of the covariates. In this case,

the algorithmic cost for the kNN rule is of course the same as before, that is in O((d + logk)n),
while the cost for the MNN rule is O((k+1)(d + logk)n) = O(k(d + logk)n).

The term of mutual nearest neighbors seems to date back to Chidananda Gowda and Krishna

(1978, 1979) in the context of clustering. In the past few years, it has raised an increasing interest in

image analysis for object retrieval (see for example Jégou et al. (2010) and Qin et al. (2011)) as well

as for classification purposes (see Liu et al., 2010). Interestingly, the latter reports that experimental

results show that, on standard data sets, the MNN estimates have better performances than standard

nearest neighbors estimates as well as other widely used classification rules.

Without claiming that MNN estimates always outperform standard nearest neighbors estimates,

a heuristic explanation for this better behavior in some situations is related to the existence of hubs

in high dimensional data. Specifically, a hub is a point which appears in many more kNN lists

than the others, making it very influential in kNN estimates. As explained in Radovanović et al.

(2010), hubness is an aspect of the curse of dimensionality as increasing the dimensionality results

in the emergence of hubs under widely applicable conditions. These authors have also conducted

several simulations to show how the existence of “bad” hubs negatively affects the kNN classifier
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(see Section 7.1.2 in Radovanović et al. 2010). In our context, the existence of hubs might not affect

the performance of MNN estimates and one could even consider the MNN rule as a variant of the

kNN rule which allows to automatically reduce the role of these hubs.

However, to the best of our knowledge, little if nothing is known about the theoretical properties

of the mutual nearest neighbors estimator. Our goal in this paper is to investigate its statistical

properties, focusing our attention on the regression viewpoint. In Section 2, we present strong and

weak consistency results. In Section 3, we go one step further and show that the rate of convergence

of this estimate is, in fact, optimal when d ≥ 2. Since the parameter k = kn of the estimate with

the optimal rate of convergence depends on the unknown distribution of (X,Y ), especially on the

smoothness of the regression function, we also present adaptive (i.e., data-dependent) choices for

kn that preserve the minimax optimality of the estimate.

2. Consistency

To prove the consistency of the MNN estimator, we write

mn(x) =
n

∑
i=1

Wi(x,X1, . . . ,Xn)Yi =
n

∑
i=1

WiYi,

where the weights Wi are non negative random variables defined by

Wi =

{

1
Mk(x)

if Mk(x)> 0 and Xi ∈ Mk(x),

0 otherwise.

This representation brings the MNN estimator into the general framework of weighted nearest

neighbors, as studied for example in Stone (1977). But, contrarily to the standard kNN estima-

tor for which the weights are deterministically linked to the order statistics X(1,n)(x), . . . ,X(n,n)(x),
notice that this is not the case in our situation.

Nonetheless, in order to control the random weights Wi, we will exploit the following observa-

tion: for all Xi in N ′
k (x), we have the following assertion

‖Xi −x‖<
d(k+1)

2
=

‖X(k+1,n)(x)−x‖
2

⇒ Xi ∈ Mk(x). (1)

Indeed, if not, there would exist k points X̃1, . . . , X̃k, different from Xi, and such that for all j =
1, . . . ,k,

‖X̃ j −Xi‖< ‖Xi −x‖<
d(k+1)

2
.

By the triangle inequality,

‖X̃ j −x‖< ‖Xi −x‖+‖X̃ j −Xi‖< d(k+1),

which implies that there are at least (k+ 1) points in the open ball Sx,d(k+1)
centered at x of radius

d(k+1), which contradicts the definition of d(k+1).

Accordingly, let us define the random variable B as the number of nearest neighbors Xi’s which

belong to Sx,d(k+1)/2. Given d(k+1) and defining pk as

pk =
µ(Sx,d(k+1)/2)

µ(Sx,d(k+1)
)
,
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where µ stands for the law of X, we will justify in the proof of Theorem 1 that B has a binomial

distribution with parameters k and pk. As a consequence, Assertion (1) reads as an inequality

between random variables

Mk(x)≥ B.

This latter remark is of crucial importance for showing the following consistency results as well as

for establishing the rates of convergence of Section 3. We begin with a strong consistency result.

Theorem 1 Suppose that the distribution µ of X is absolutely continuous on R
d , that Y is bounded

and that the regression function m is µ almost everywhere continuous. If k → ∞, k/n → 0, and

k/ logn → ∞, then mn is strongly consistent, that is

mn(X)−m(X)→ 0,

with probability one.

The proof of Theorem 1 reveals that local convergence in probability holds without the assump-

tion that k/ logn → ∞. Indeed, for µ almost every x and for every ε > 0,

P(|mn(x)−m(x)|> ε)→ 0,

when n goes to infinity, provided that k → ∞ and k/n → 0. Since Y is bounded, the weak (i.e., L2)

consistency of Theorem 2 below is just a straightforward consequence of the dominated convergence

theorem.

Notice that a standard way to prove the weak consistency of weighted nearest neighbors rules is

to check the five conditions of Stone’s universal consistency theorem (see Stone, 1977, Theorem 1).

As is often the case, one of them is in fact particularly hard to verify in our situation, namely that

there exists C ≥ 1 such that for any nonnegative Borel function f on R
d ,

E

[

n

∑
i=1

Wi f (Xi)

]

≤C E [ f (X)] .

The additional constraints in Theorem 2 are sufficient and are in fact the same as for the layered

nearest neighbor estimate studied in Biau and Devroye (2010), as well as for the affine invariant

nearest neighbor estimate investigated in Biau et al. (2012).

Theorem 2 Suppose that the distribution µ of X is absolutely continuous on R
d , that Y is bounded

and that the regression function m is µ almost everywhere continuous. If k → ∞ and k/n → 0, then

mn is weakly consistent, that is

E[(mn(X)−m(X))2]→ 0.

We may lighten the assumption that X has a density. Indeed, an inspection of the proof of

Theorem 1 indicates that consistency holds as long as for µ almost every x,

liminf
h→0

µ(Sx,h/2)

µ(Sx,h)
> 0.
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Interestingly, this condition is linked to the notion of doubling measure in geometric measure theory.

We refer the interested reader to the monographs of Ambrosio and Tilli (2004), Heinonen (2001),

and to the paper of Ambrosio et al. (2004).

Recall that the support S(µ) is defined as the collection of all x with µ(Sx,h) > 0 for all h > 0.

In our context, a probability measure µ is said to be doubling on its support S(µ) equipped with the

Euclidean norm if there exists a constant c > 0 such that, for every x in S(µ),

µ(Sx,h/2)

µ(Sx,h)
> c, (2)

and µ is said to be asymptotically doubling if, for every x in S(µ),

liminf
h→0

µ(Sx,h/2)

µ(Sx,h)
> 0.

Thus, we can relax the condition of Theorems 1 and 2 to only requiring that the probability mea-

sure µ is asymptotically doubling almost surely. To see that this condition is weaker than requiring

a density, note that if µ admits the density f , then a consequence of Lebesgue’s differentiation

Theorem (see for example Theorem A.10 in Devroye et al. (1996)) is that for µ-almost every x in

S(µ),

µ(Sx,h/2)

µ(Sx,h)
=

∫
Sx,h/2

f (u)du∫
Sx,h

f (u)du
→ 1

2d
,

when h tends to 0. Hence µ is asymptotically doubling almost surely.

It is also readily seen that any discrete probability measure is asymptotically doubling almost

surely. Singular continuous probability measures can also be asymptotically doubling as is seen

on the following example. Consider the uniform distribution on the standard Cantor ternary set C .

Recall that the uniform probability measure µ on C is the weak limit of the uniform probability

measures µN on the sets CN defined for every integer N as the union of 2N disjoint intervals with

common length 3−N . It is easy to see that for every integer N and for every x in CN ,

1

2
≤

µN(Sx,h/2)

µN(Sx,h)
≤ 1.

Hence, for every x in C ,

liminf
h→0

µ(Sx,h/2)

µ(Sx,h)
≥ 1

2
,

and µ is asymptotically doubling almost surely.

Next, we give an example of a singular continuous distribution that is non-asymptotically dou-

bling with probability one. Given a sequence (UN) of independent Bernoulli distributed random

variables with respective parameters N/(N + 1), which means that for all N ≥ 1, P(UN = 1) =
N/(N +1), define the random variable

X =
∞

∑
N=1

2UN

3N
.

Note that X takes values in the standard Cantor ternary set C , but that the law µ of X is not the

uniform law on it: obviously, in the triadic expansion of X, the 2’s are much more likely than the
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0’s. Nevertheless, a direct application of Borel-Cantelli Lemma ensures that µ almost surely, there

is an infinite number of 0’s in the triadic expansion of X. For such an x = ∑∞
N=1 2uN/3N , consider

the infinite set of indices

Ix = {N ≥ 1 : uN = 0} ,
and denote µN the restriction of µ to the set CN defined as above, that is, the union of 2N disjoint

intervals with common length 3−N . Then, by construction, for each N in Ix, there exists an h =
hN(x) ∈ [1/3N ,2/3N ] such that

µN(Sx,h/2)

µN(Sx,h)
=

1

N
⇒ liminf

h→0

µ(Sx,h/2)

µ(Sx,h)
= 0.

Consequently, µ is almost surely not asymptotically doubling. However, even on this pathological

probability space, it is not obvious that we can define a regression function m and a distribution for

Y such that the mutual nearest neighbors rule would fail to be consistent.

To conclude this section, let us finally notice that, in the context of adaptation to local intrinsic

dimension of kNN regression, similar ideas related to the doubling property also appear in a recent

paper by Kpotufe (2011).

3. Rates of Convergence

In this section, we are interested in rate of convergence results for the class F of (1,C,ρ,σ2)-smooth

distributions (X,Y ) such that X has compact support with diameter 2ρ, the regression function m

is Lipschitz with constant C and, for all x ∈ R
d , V[Y |X = x] ≤ σ2 < ∞ (the symbol V denotes

variance).

It is known (see, for example, Ibragimov and Khasminskii 1980, 1981, 1982, Stone 1980, 1982,

or Györfi et al. 2002) that for the class F , the optimal minimax rate of convergence is n−2/(d+2). In

particular, one has that

liminf
n→∞

inf
m̂n

sup
(X,Y )∈F

E[m̂n(X)−m(X)]2

((ρC)dσ2)
2

d+2 n−
2

d+2

≥ ∆,

for some positive constant ∆ independent of C, ρ and σ2. Here the infimum is taken over all estimates

m̂n, that is, over all measurable functions of the data.

It turns out that, for d ≥ 2 and a suitable choice of the sequence (kn), the MNN estimate mn

achieves the optimum rate for the class F , that is

limsup
n→∞

sup
(X,Y )∈F

E[mn(X)−m(X)]2

((ρC)dσ2)
2

d+2 n−
2

d+2

≤ Λ,

for some positive Λ independent of C, ρ and σ2.

Before precisely stating this result, we need an additional notation. Let µ be a probability

measure on R
d with compact support S(µ) with diameter 2ρ. We will assume that µ is doubling, as

defined in (2), and let

p = inf
(x,h)∈S(µ)×(0,2ρ]

µ(Sx,h/2)

µ(Sx,h)
> 0. (3)

It is readily seen that if µ is absolutely continuous with density f , a sufficient condition is that

there exist two strictly positive real numbers a and A such that for almost every x in S(µ), we have

a ≤ f (x)≤ A.
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Theorem 3 Assume that ties occur with probability 0. Suppose that the law µ of X has a compact

support S(µ) with diameter 2ρ, and that µ is doubling, with p defined as in (3). Suppose in addition

that, for all x and x′ ∈ R
d ,

σ2(x) = V[Y |X = x]≤ σ2,

and
∣

∣m(x)−m(x′)
∣

∣≤C‖x−x′‖,

for some positive constants σ2 and C. Denote by Lm an upper-bound of the continuous mapping m

on the compact S(µ). Then

(i) If d = 1,

E [mn(X)−m(X)]2 ≤ 2σ2

kp
+

16ρ2C2k

n
+L2

m(1− p)k.

(ii) If d = 2,

E [mn(X)−m(X)]2 ≤ 2σ2

kp
+

32ρ2C2

n
+L2

m(1− p)k.

(iii) If d ≥ 3,

E [mn(X)−m(X)]2 ≤ 2σ2

kp
+

8ρ2C2⌊n/k⌋−2/d

1−2/d
+L2

m(1− p)k.

By balancing the terms in Theorem 3, we are led to the following corollary:

Corollary 1 Under the assumptions of Theorem 3,

(i) If d = 1, there exists a sequence (kn) with kn ∝
√

n such that

E [mn(X)−m(X)]2 ≤ (Λ+o(1))
ρCσ√

n
,

for some positive constant Λ independent of ρ, C and σ2.

(ii) If d ≥ 2, there exists a sequence (kn) with kn ∝ n
2

d+2 such that

E [mn(X)−m(X)]2 ≤ (Λ+o(1))

(

(ρC)dσ2

n

)

2
d+2

,

for some positive constant Λ independent of ρ, C and σ2.

Two remarks are in order.

1. We note that, for d ≥ 2 and a suitable choice of kn, the MNN estimate achieves both the

minimax n−2/(d+2) rate and the optimal order of magnitude ((ρC)dσ2)2/(d+2) in the constant,

for the class F of (1,C,ρ,σ2)-smooth distributions (X,Y ) such that X has compact support

with covering radius ρ, the regression function m is Lipschitz with constant C and, for all

x ∈ R
d , V[Y |X = x]≤ σ2.
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2. For d = 1, the obtained rate is not optimal. This low-dimensional phenomenon is also known

to hold for the traditional kNN regression estimate, which does not achieve the optimal rate

in dimension 1 (see Problem 6.1 in Györfi et al. 2002).

In Corollary 1, the parameter kn of the estimate with the optimal rate of convergence for the class

F depends on the unknown distribution of (X,Y ), especially on the smoothness of the regression

function as measured by the Lipschitz constant C. To conclude this section, we present a data-

dependent way for choosing the resampling size kn and show that, for bounded Y , the estimate with

parameter chosen in such an adaptive way achieves the optimal rate of convergence.

To this end, we split the sample Dn = {(X1,Y1), . . . ,(Xn,Yn)} in two parts, denoted by Dℓ
n

(learning set) and Dt
n (testing set), of size ⌊n/2⌋ and n−⌊n/2⌋, respectively. The first half is used

to construct the MNN estimate

m⌊n/2⌋(x,D
ℓ
n) = mk,⌊n/2⌋(x,D

ℓ
n).

The second half is used to choose k by picking k̂n ∈ K = {1, . . . ,⌊n/2⌋} to minimize the empirical

risk
1

n−⌊n/2⌋
n

∑
i=⌊n/2⌋+1

(

Yi −mk,⌊n/2⌋(Xi,D
ℓ
n)
)2

.

Define the estimate

mn(x) = mk̂n,⌊n/2⌋(x,D
ℓ
n),

and note that mn depends on the entire data Dn. If |Y | ≤ L < ∞ almost surely, a straightforward

adaptation of Theorem 7.1 in Györfi et al. (2002) shows that, for any δ > 0,

E[mn(X)−m(X)]2 ≤ (1+δ) inf
k∈K

E[mk,⌊n/2⌋(X,Dℓ
n)−m(X)]2 +Ξ

lnn

n
,

for some positive constant Ξ depending only on L, d and δ. Immediately from Corollary 1, we can

conclude:

Theorem 4 Suppose that |Y | ≤ L almost surely, and let mn be the MNN estimate with k ∈ K =
{1, . . . ,⌊n/2⌋} chosen by data-splitting. Then the condition (lnn)(d+2)/(2d)n−1/2 ≤ ρC together with

d ≥ 2 implies

E[mn(X)−m(X)]2 ≤ (Λ+o(1))

(

(ρC)d

n

)

2
d+2

,

for some positive constant Λ which depends only on L and d.

Thus, the expected error of the estimate obtained via data-splitting is bounded from above up to a

constant by the corresponding minimax lower bound for the class F of regression functions, with

the optimal dependence in C and ρ.

4. Proofs

Proofs of the main results are gathered in this section.
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4.1 Proof of Theorem 1

Let us fix ε > 0 and x in S(µ) such that m is continuous at x. Setting

m̃n(x) =
n

∑
i=1

Wi m(Xi),

we have

P(|mn(x)−m(x)|> 2ε)≤ P

(

Mk(x)<
k

2d+1

)

+P

(

|mn(x)− m̃n(x)|> ε,Mk(x)≥
k

2d+1

)

+P

(

|m̃n(x)−m(x)|> ε,Mk(x)≥
k

2d+1

)

. (4)

First, remark that rearranging the k (ordered) statistics X(1,n), . . . ,X(k,n) in the original order of their

outcome, one obtains the k (non-ordered) random variables X⋆
1, . . . ,X

⋆
k . Let X̃1, . . . , X̃k be i.i.d.

random variables, with common law (conditional on d(k+1)) the restriction µ̃ of µ to the open ball

Sx,d(k+1)
, then it can be shown (see for example Lemma A.1 in Cérou and Guyader 2006) that

L(X⋆
1, . . . ,X

⋆
k |d(k+1)) = L(X̃1, . . . , X̃k). (5)

Next, given d(k+1), denote

pk = P

(

‖X̃−x‖<
d(k+1)

2

∣

∣

∣

∣

X̃ ∼ µ̃

)

=

∫
Sx,d(k+1)/2

f (u)du
∫

Sx,d(k+1)
f (u)du

,

where the denominator is strictly positive since x belongs to the support of µ. Concerning pk, recall

that Lebesgue’s differentiation Theorem ensures that for λ-almost all x ∈ R
d ,

1

λ(Sx,δ)

∫
Sx,δ

f (u)du → f (x),

when δ tends to 0 (see for example Theorem A.10 in Devroye et al. 1996). Notice that for µ almost

every x in the support of µ, we have f (x) > 0. Consequently, since λ(Sx,h) = Vdhd with Vd the

volume of the unit ball of Rd , we have that for µ-almost every x in R
d ,

p(δ) :=

∫
Sx,δ/2

f (u)du∫
Sx,δ

f (u)du
→ 1

2d
, (6)

when h tends to 0. Hence, let us choose δ0 > 0 such that

δ ∈ (0,δ0] ⇒
∣

∣

∣

∣

p(δ)− 1

2d

∣

∣

∣

∣

<
1

2d+2
.

Then we may write

P

(

Mk(x)<
k

2d+1

)

≤ P

(

Mk(x)<
k

2d+1
,d(k+1) ≤ δ0

)

+P(d(k+1) > δ0).

2369



GUYADER AND HENGARTNER

Denoting

q0 = P(‖X−x‖ ≤ δ0) =
∫

Sx,δ0

f (u)du,

we have q0 > 0. Following the proof of Lemma 4 in Devroye (1982), denote Z a binomial (n,q0)
random variable. If k/n → 0, then for n large enough, Hoeffding’s inequality yields

P(d(k+1) > δ0)≤ P(Z < k+1)≤ P

(

Z −nq0 <−nq0

2

)

≤ e−nq2
0/2,

which is summable in n for all δ0 > 0. Next, observe that

P

(

Mk(x)<
k

2d+1
,d(k+1) ≤ δ0

)

=
∫ δ0

0
P

(

Mk(x)<
k

2d+1

∣

∣

∣

∣

d(k+1) = δ

)

dPd(k+1)
(δ).

Given δ and defining B as the number of Xi’s among the k nearest neighbors of x which belong

to Sx,δ/2, then according to (5), the random variable B has binomial distribution B(k, p(δ)) and (1)

implies Mk(x)≥ B, so that

P

(

Mk(x)<
k

2d+1

∣

∣

∣

∣

d(k+1) = δ

)

≤ P

(

B <
k

2d+1

∣

∣

∣

∣

p(δ)

)

.

In this respect, Hoeffding’s inequality and (6) lead to

P

(

B <
k

2d+1

∣

∣

∣

∣

p(δ)

)

≤ exp

(

−2

(

p(δ)− 1

2d+1

)2

k

)

≤ exp

(

− k

22d+3

)

,

which is summable in n provided that k/ logn → ∞.

Let us turn now to second term of (4). This time, we write

P

(

|mn(x)− m̃n(x)|> ε,Mk(x)≥
k

2d+1

)

= E

[

1{Mk(x)≥ k

2d+1 }
P( |mn(x)− m̃n(x)|> ε|X1, . . . ,Xn)

]

= E

[

1{Mk(x)≥ k

2d+1 }
P

(∣

∣

∣

∣

∣

n

∑
i=1

Wi(Yi −m(Xi))

∣

∣

∣

∣

∣

> ε

∣

∣

∣

∣

∣

X1, . . . ,Xn

)]

.

Given X1, . . . ,Xn, the random variables Y1 −m(X1), . . . ,Yn −m(Xn) are independent, centered, and

bounded by 2L. Moreover, the weights W1, . . . ,Wn are deterministic and, since Mk(x) ≥ k/2d+1,

bounded by 2d+1/k. Consequently, Lemma 6 in Devroye (1982) leads to

P

(

|mn(x)− m̃n(x)|> ε,Mk(x)≥
k

2d+1

)

≤ 2exp

(

− kε2

2d+3(2L2 +Lε)

)

,

which is summable in n for all ε > 0, provided that k/ logn → ∞.

The last term of (4) is easier. First we notice that, since m is assumed continuous at point x,

there exists δ1 = δ1(ε) such that

‖x′−x‖ ≤ δ1 ⇒
∣

∣m(x′)−m(x)
∣

∣≤ ε.

2370



MUTUAL NEAREST NEIGHBORS ESTIMATE

The following inequalities are then straightforward

P

(

|m̃n(x)−m(x)|> ε,Mk(x)≥
k

2d+1

)

= P

(∣

∣

∣

∣

∣

n

∑
i=1

Wi(m(Xi)−m(x))

∣

∣

∣

∣

∣

> ε,Mk(x)≥
k

2d+1

)

≤ P

(

max
1≤i≤k

∣

∣m(X(i))−m(x)
∣

∣> ε

)

≤ P
(∥

∥X(k)−x
∥

∥> δ1

)

,

and the same reasoning as before yields

P

(

|m̃n(x)−m(x)|> ε,Mk(x)≥
k

2d+1

)

≤ e−nq2
1/2,

where

q1 = q1(ε) = P(‖X−x‖ ≤ δ1) =
∫

Sx,δ1

f (u)du.

Putting all things together, we have proved that for any ε > 0, if k/n → 0, then for n large enough

we have

P(|mn(x)−m(x)|> 2ε)

≤ 2exp

( −kε2

2d+3(2L2 +Lε)

)

+ exp

( −k

22d+3

)

+ exp

(−nq2
0

2

)

+ exp

(−nq2
1

2

)

,

which is summable in n for all ε > 0, provided that k/ logn → ∞. Since this is true for µ almost

every x, the strong consistency is established.

4.2 Proof of Theorem 3

As previously, setting

m̃n(x) =
n

∑
i=1

Wi m(Xi),

the proof of Theorem 3 will rely on the variance/bias decomposition

E [mn(x)−m(x)]2 = E [mn(x)− m̃n(x)]
2 +E [m̃n(x)−m(x)]2 . (7)
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The first term is easily bounded by noting that, for all x in R
d ,

E [mn(x)− m̃n(x)]
2 = E

[

n

∑
i=1

Wi (Yi −m(Xi))

]2

= E

[

n

∑
i=1

W 2
i (Yi −m(Xi))

2

]

= E

[

n

∑
i=1

W 2
i E

[

(Yi −m(Xi))
2
∣

∣

∣
Xi

]

]

= E

[

n

∑
i=1

W 2
i σ2 (Xi)

]

≤ σ2
E

[

n

∑
i=1

W 2
i

]

.

With the convention that 0/0=0, notice that by definition of the weights Wi,

E

[

n

∑
i=1

W 2
i

]

= E

[

1

Mk(X)
1Mk(X) 6=0

]

.

As in the proof of Theorem 1, given d(k+1), denote

pk = P

(

‖X̃−x‖<
d(k+1)

2

∣

∣

∣

∣

X̃ ∼ µ̃

)

=
µ
(

Sx,d(k+1)/2

)

µ
(

Sx,d(k+1)

) ,

and define B as the number of Xi’s among the k nearest neighbors of x which belong to Sx,d(k+1)/2.

Then, given pk, the random variable B has binomial distribution B(k, pk), and (1) implies

Mk(x)≥ B. (8)

In particular,
1

Mk(x)
1Mk(X) 6=0 ≤

2

1+Mk(x)
≤ 2

1+B
,

so that

E

[

n

∑
i=1

W 2
i

]

≤ E

[

E

[

2

1+B

∣

∣

∣

∣

pk

]]

= 2E

[

1− (1− pk)
k

(k+1)pk

]

.

Since pk ≥ p, we are led to

E [mn(x)− m̃n(x)]
2 ≤ 2σ2

kp
,

and integrating with respect to the distribution of X yields

E [mn(X)− m̃n(X)]2 ≤ 2σ2

kp
.
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Concerning the bias term in (7), again fix x in R
d , denote by Lm an upper-bound of the continuous

function m on the compact S(µ), and write

E [m̃n(x)−m(x)]2 ≤ E
[

(m̃n(x)−m(x))21{Mk(x)>0}
]

+L2
m P(Mk(x) = 0).

The second term is bounded thanks to (8),

P(Mk(x) = 0|pk)≤ P(B = 0|pk) = (1− pk)
k,

so that

P(Mk(x) = 0)≤ E

[

(1− pk)
k
]

,

and since pk ≥ p,

P(Mk(x) = 0)≤ E

[

(1− pk)
k
]

≤ (1− p)k.

For the first term, with the convention 0/0 = 0, one has

E
[

(m̃n(x)−m(x))21{Mk(x)>0}
]

= E





(

1

Mk(x)
∑

i:Xi∈Mk(x)

(m(Xi)−m(x))

)2

1{Mk(x)>0}





≤C2
E





(

1

Mk(x)
∑

i:Xi∈Mk(x)

‖Xi −x‖
)2

1{Mk(x)>0}



 .

Next we apply Jensen’s inequality to get

E
[

(m̃n(x)−m(x))21{Mk(x)>0}
]

≤C2
E

[

1{Mk(x)>0}
Mk(x)

∑
i:Xi∈Mk(x)

‖Xi −x‖2

]

.

Since any mutual nearest neighbor of x belongs to its k nearest neighbors, we deduce

E
[

(m̃n(x)−m(x))21{Mk(x)>0}
]

≤C2
E

[

∥

∥X(k,n)−x
∥

∥

2
]

.

Therefore, by integrating with respect to the distribution of X, we obtain the following upper-bound

for the bias term

E [m̃n(X)−m(X)]2 ≤C2
E
[

‖X(k,n)−X‖2
]

+L2
m(1− p)k.

Next, let us denote

ρ = inf
{

r > 0 : ∃ x0 ∈ R
d such that S(µ)⊂ Sx0,r

}

,

and notice that 2ρ is an upper-bound of the diameter of S(µ). Then we are in a position to apply

Proposition 2.3 in Biau et al. (2010), that is for d = 1,

E
[

‖X(k,n)−X‖2
]

≤ 16ρ2k

n
,
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and for d ≥ 3,

E
[

‖X(k,n)−X‖2
]

≤ 8ρ2⌊n/k⌋− 2
d

1−2/d
.

It turns out that, for d = 2, the bound given in Biau et al. (2010) is not optimal, since it leads to

E
[

‖X(k,n)−X‖2
]

≤ 8ρ2k

n

(

1+ log
n

k

)

,

whereas Theorem 3.2 in Liitiäinen et al. (2010) allows to get rid of the logarithmic term. Namely,

the application of their result in our context leads to

E
[

‖X(k,n)−X‖2
]

≤ 32ρ2k

n
.

This terminates the proof of Theorem 3.
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G. Biau, L. Devroye, V. Dujmović, and A. Krzyżak. An affine invariant k-nearest neighbor regres-

sion estimate. Journal of Multivariate Analysis, 112:24–34, 2012.

F. Cérou and A. Guyader. Nearest neighbor classification in infinite dimension. ESAIM: Probability

and Statistics, 10:340–355, 2006.

K. Chidananda Gowda and G. Krishna. Agglomerative clustering using the concept of mutual

nearest neighbourhood. Pattern Recognition, 10(2):105–112, 1978.

2374



MUTUAL NEAREST NEIGHBORS ESTIMATE

K. Chidananda Gowda and G. Krishna. The condensed nearest neighbor rule using the concept of

mutual nearest neighborhood. IEEE Transactions on Information Theory, 25(4), 1979.

L. Devroye. Necessary and sufficient conditions for the pointwise convergence of nearest neighbor

regression function estimates. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,

61(4):467–481, 1982.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-

Verlag, New York, 1996.

E. Fix and J.L. Hodges. Discriminatory analysis, non-parametric discrimination: consistency prop-

erties. Technical report, USAF school of aviation and medicine, Randolph Field, 1951.

E. Fix and J.L. Hodges. Discriminatory analysis: Small sample performance. Technical report,

USAF school of aviation and medicine, Randolph Field, 1952.
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