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Abstract

Sparsity-constrained optimization has wide applicability in machine learning, statistics, and signal

processing problems such as feature selection and Compressed Sensing. A vast body of work has

studied the sparsity-constrained optimization from theoretical, algorithmic, and application aspects

in the context of sparse estimation in linear models where the fidelity of the estimate is measured

by the squared error. In contrast, relatively less effort has been made in the study of sparsity-

constrained optimization in cases where nonlinear models are involved or the cost function is not

quadratic. In this paper we propose a greedy algorithm, Gradient Support Pursuit (GraSP), to

approximate sparse minima of cost functions of arbitrary form. Should a cost function have a Stable

Restricted Hessian (SRH) or a Stable Restricted Linearization (SRL), both of which are introduced

in this paper, our algorithm is guaranteed to produce a sparse vector within a bounded distance

from the true sparse optimum. Our approach generalizes known results for quadratic cost functions

that arise in sparse linear regression and Compressed Sensing. We also evaluate the performance of

GraSP through numerical simulations on synthetic and real data, where the algorithm is employed

for sparse logistic regression with and without ℓ2-regularization.

Keywords: sparsity, optimization, compressed sensing, greedy algorithm

1. Introduction

The demand for high-dimensional data analysis has grown significantly over the past decade by

the emergence of applications such as social networking, bioinformatics, and mathematical finance.

In these applications data samples often have thousands of features using which an underlying

parameter must be inferred or predicted. In many circumstances the number of collected samples

is significantly smaller than the dimensionality of the data, rendering any inference from the data

ill-posed. However, it is widely acknowledged that the data sets that need to be processed usually
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exhibit significant structure, which sparsity models are often able to capture. This structure can be

exploited for robust regression and hypothesis testing, model reduction and variable selection, and

more efficient signal acquisition in underdetermined regimes. Estimation of parameters with sparse

structure is usually cast as an optimization problem, formulated according to specific application

requirements. Developing techniques that are robust and computationally tractable to solve these

optimization problems, even only approximately, is therefore critical.

In particular, theoretical and application aspects of sparse estimation in linear models have been

studied extensively in areas such as signal processing, machine learning, and statistics. However,

sparse estimation in problems where nonlinear models are involved have received comparatively

little attention. Most of the work in this area extend the use of the ℓ1-norm as a regularizer, effec-

tive to induce sparse solutions in linear regression, to problems with nonlinear models (see, e.g.,

Bunea, 2008; van de Geer, 2008; Kakade et al., 2010; Negahban et al., 2009). As a special case,

logistic regression with ℓ1 and elastic net regularization are studied by Bunea (2008). Furthermore,

Kakade et al. (2010) have studied the accuracy of sparse estimation through ℓ1-regularization for the

exponential family distributions. A more general frame of study is proposed and analyzed by Negah-

ban et al. (2009) where regularization with “decomposable” norms is considered in M-estimation

problems. To provide the accuracy guarantees, these works generalize the Restricted Eigenvalue

condition (Bickel et al., 2009) to ensure that the loss function is strongly convex over a restriction of

its domain. We would like to emphasize that these sufficient conditions generally hold with proper

constants and with high probability only if one assumes that the true parameter is bounded. This fact

is more apparent in some of the mentioned work (e.g., Bunea, 2008; Kakade et al., 2010), while in

some others (e.g., Negahban et al., 2009) the assumption is not explicitly stated. We will elaborate

on this matter in Section 2. Tewari et al. (2011) also proposed a coordinate-descent type algorithm

for minimization of a convex and smooth objective over the convex signal/parameter models intro-

duced in Chandrasekaran et al. (2012). This formulation includes the ℓ1-constrained minimization

as a special case, and the algorithm is shown to converge to the minimum in objective value similar

to the standard results in convex optimization.

Furthermore, Shalev-Shwartz et al. (2010) proposed a number of greedy that sparsify a given es-

timate at the cost of relatively small increase of the objective function. However, their algorithms are

not stand-alone. A generalization of Compressed Sensing is also proposed in Blumensath (2010),

where the linear measurement operator is replaced by a nonlinear operator that applies to the sparse

signal. Considering the norm of the residual error as the objective, Blumensath (2010) shows that

if the objective satisfies certain sufficient conditions, the sparse signal can be accurately estimated

by a generalization of the Iterative Hard Thresholding algorithm (Blumensath and Davies, 2009).

The formulation of Blumensath (2010), however, has a limited scope because the metric of error is

defined using a norm. For instance, the formulation does not apply to objectives such as the logistic

loss. More recently, Jalali et al. (2011) studied a forward-backward algorithm using a variant of

the sufficient conditions introduced in Negahban et al. (2009). Similar to our work, the main result

in Jalali et al. (2011) imposes conditions on the function as restricted to sparse inputs whose non-

zeros are fewer than a multiple of the target sparsity level. The multiplier used in their results has

an objective-dependent value and is never less than 10. Furthermore, the multiplier is important in

their analysis not only for determining the stopping condition of the algorithm, but also in the lower

bound assumed for the minimal magnitude of the non-zero entries. In contrast, the multiplier in our

results is fixed at 4, independent of the objective function itself, and we make no assumptions about

the magnitudes of the non-zero entries.
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This paper presents an extended version with improved guarantees of our prior work in Bah-

mani et al. (2011), where we proposed a greedy algorithm, the Gradient Support Pursuit (GraSP),

for sparse estimation problems that arise in applications with general nonlinear models. We prove

the accuracy of GraSP for a class of cost functions that have a Stable Restricted Hessian (SRH). The

SRH, introduced in Bahmani et al. (2011), characterizes the functions whose restriction to sparse

canonical subspaces have well-conditioned Hessian matrices. Similarly, we analyze the GraSP algo-

rithm for non-smooth functions that have a Stable Restricted Linearization (SRL), a property intro-

duced in this paper, analogous to SRH. The analysis and the guarantees for smooth and non-smooth

cost functions are similar, except for less stringent conditions derived for smooth cost functions due

to properties of symmetric Hessian matrices. We also prove that the SRH holds for the case of the

ℓ2-penalized logistic loss function.

1.1 Notation

In the remainder of this paper we use the notation listed in Table 1.

1.2 Paper Outline

In Section 2 we provide a background on sparse parameter estimation which serves as an overview

of prior work. In Section 3 we state the general formulation of the problem and present our al-

gorithm. Conditions that characterize the cost functions and the main accuracy guarantees of our

algorithm are provided in Section 3 as well. The guarantees of the algorithm are proved in Appen-

dices A and B. As an example where our algorithm can be applied, ℓ2-regularized logistic regression

is studied in Section 4. Some experimental results for logistic regression with sparsity constraints

are presented in Section 5. Finally, Section 6 discusses the results and concludes.

2. Background

We first briefly review sparse estimation problems studied in the literature.

2.1 Sparse Linear Regression and Compressed Sensing

The special case of sparse estimation in linear models has gained significant attention under the

title of Compressed Sensing (CS) (Donoho, 2006). In standard CS problems the aim is to estimate

a sparse vector x⋆ from noisy linear measurements y = Ax⋆+ e, where A is a known n× p mea-

surement matrix with n ≪ p and e is the additive measurement noise. To find the sparsest estimate

in this underdetermined problem that is consistent with the measurements y one needs to solve the

optimization problem

x̂ =argmin
x

‖x‖0 s.t. ‖y−Ax‖2 ≤ ε, (1)

where ε is a given upper bound for ‖e‖2 (Candès et al., 2006). In the absence of noise (i.e., when

ε = 0), if x⋆ is s-sparse (i.e., it has at most s nonzero entries) one merely needs every 2s columns of

A to be linearly independent to guarantee exact recovery (Donoho and Elad, 2003). Unfortunately,

the ideal solver (1) is computationally NP-hard in general (Natarajan, 1995) and one must seek

approximate solvers instead.

It is shown in Candès et al. (2006) that under certain conditions, minimizing the ℓ1-norm as

a convex proxy for the ℓ0-norm yields accurate estimates of x⋆. The resulting approximate solver
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Symbol Description

[n] the set {1,2, . . . ,n} for any n ∈ N

I
calligraphic letters denote sets unless stated otherwise (e.g., N

(
µ,σ2

)
denotes

a normal distribution)

I c complement of set I

v bold face small letters denote column vectors in R
b for some b ∈ N

‖v‖q the ℓq-norm of vector v, that is
(
∑b

i=1 |vi|q
)1/q

, for a real number q ≥ 1

‖v‖0 the “ℓ0-norm” of vector v that merely counts its nonzero entries

v|I
depending on the context

1. restriction of vector v to the rows indicated by indices in I , or

2. a vector that equals v except for coordinates in I c where it is zero

vr the best r-term approximation of vector v

supp(v) the support set (i.e., indices of the non-zero entries) of v

M bold face capital letters denote matrices in R
a×b for some a,b ∈ N

MT transpose of matrix M

M† pseudo-inverse of matrix M

MI restriction of matrix M to the columns enumerated by I

‖M‖ the operator norm of matrix M which is equal to
√

λmax (MTM)

I the identity matrix

PI restriction of the identity matrix to the columns indicated by I

1 column vector of all ones

E [·] expectation

H f (·) Hessian of the function f

Table 1: Notation used in this paper
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basically returns the solution to the convex optimization problem

x̂ =argmin
x

‖x‖1 s.t. ‖y−Ax‖2 ≤ ε, (2)

The required conditions for approximate equivalence of (1) and (2), however, generally hold only if

measurements are collected at a higher rate. Ideally, one merely needs n = O(s) measurements to

estimate x⋆, but n = O(s log
p
s
) measurements are necessary for the accuracy of (2) to be guaranteed.

The convex program (2) can be solved in polynomial time using interior point methods. How-

ever, these methods do not scale well as the size of the problem grows. Therefore, several first-order

convex optimization methods are developed and analyzed as more efficient alternatives (see, e.g.,

Beck and Teboulle, 2009; Agarwal et al., 2010). Another category of low-complexity algorithms in

CS are the non-convex greedy pursuits including Orthogonal Matching Pursuit (OMP) (Pati et al.,

1993; Tropp and Gilbert, 2007), Compressive Sampling Matching Pursuit (CoSaMP) (Needell and

Tropp, 2009), Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2009), and Subspace

Pursuit (Dai and Milenkovic, 2009) to name a few. These greedy algorithms implicitly approximate

the solution to the ℓ0-constrained least squares problem

x̂ =argmin
x

1

2
‖y−Ax‖2

2 s.t. ‖x‖0 ≤ s. (3)

The main theme of these iterative algorithms is to use the residual error from the previous iteration

to successively approximate the position of non-zero entries and estimate their values. These algo-

rithms have shown to exhibit accuracy guarantees similar to those of convex optimization methods,

though with more stringent requirements.

As mentioned above, to guarantee accuracy of the CS algorithms the measurement matrix should

meet certain conditions such as incoherence (Donoho and Huo, 2001), Restricted Isometry Property

(RIP) (Candès et al., 2006), Nullspace Property (Cohen et al., 2009), etc. Among these conditions

RIP is the most commonly used and the best understood condition.

Matrix A is said to satisfy the RIP of order k—in its symmetric form—with constant δk, if δk < 1

is the smallest number that

(1−δk)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1+δk)‖x‖2
2

holds for all k-sparse vectors x. Several CS algorithms are shown to produce accurate solutions

provided that the measurement matrix has a sufficiently small RIP constant of order ck with c being

a small integer. For example, solving (2) is guaranteed to yield an accurate estimate of s-sparse

x⋆ if δ2s <
√

2−1 (Candès, 2008). Interested readers can find the best known RIP-based accuracy

guarantees for some of the CS algorithms in Foucart (2012).

2.2 Beyond Linear Models

The CS reconstruction algorithms attempt to provide a sparse vector that incurs only a small squared

error which measures consistency of the solution versus the acquired data. While this measure of

discrepancy is often desirable for signal processing applications, it is not the appropriate choice

for a variety of other applications. For example, in statistics and machine learning the logistic loss

function is also commonly used in regression and classification problems (see Liu et al., 2009, and

references therein). Thus, it is desirable to develop theory and algorithms that apply to a broader

class of optimization problems with sparsity constraints.
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The existing studies on this subject are mostly in the context of statistical estimation. The

majority of these studies consider the cost function to be convex everywhere and rely on the ℓ1-

regularization as the means to induce sparsity in the solution. For example, Kakade et al. (2010)

have shown that for the exponential family of distributions maximum likelihood estimation with

ℓ1-regularization yields accurate estimates of the underlying sparse parameter. Furthermore, Negah-

ban et al. have developed a unifying framework for analyzing statistical accuracy of M-estimators

regularized by “decomposable” norms in (Negahban et al., 2009). In particular, in their work ℓ1-

regularization is applied to Generalized Linear Models (GLM) (Dobson and Barnett, 2008) and

shown to guarantee a bounded distance between the estimate and the true statistical parameter. To

establish this error bound they introduced the notion of Restricted Strong Convexity (RSC), which

basically requires a lower bound on the curvature of the cost function around the true parameter in a

restricted set of directions. The achieved error bound in this framework is inversely proportional to

this curvature bound. Furthermore, Agarwal et al. (2010) have studied Projected Gradient Descent

as a method to solve ℓ1-constrained optimization problems and established accuracy guarantees

using a slightly different notion of RSC and Restricted Smoothness (RSM).

Note that the guarantees provided for majority of the ℓ1-regularization algorithms presume that

the true parameter is bounded, albeit implicitly. For instance, the error bound for ℓ1-regularized lo-

gistic regression is recognized by Bunea (2008) to be dependent on the true parameter (Bunea, 2008,

Assumption A, Theorem 2.4, and the remark that succeeds them). Moreover, the result proposed

by Kakade et al. (2010) implicitly requires the true parameter to have a sufficiently short length to

allow the choice of the desirable regularization coefficient (Kakade et al., 2010, Theorems 4.2 and

4.5). Negahban et al. (2009) also assume that the true parameter is inside the unit ball to establish

the required condition for their analysis of ℓ1-regularized GLM, although this restriction is not ex-

plicitly stated (see the longer version of Negahban et al., 2009, p. 37). We can better understand

why restricting the length of the true parameter may generally be inevitable by viewing these esti-

mation problems from the perspective of empirical processes and their convergence. The empirical

processes, including those considered in the studies mentioned above, are generally good approxi-

mations of their corresponding expected process (see Vapnik, 1998, chap. 5 and van de Geer, 2000).

Therefore, if the expected process is not strongly convex over an unbounded, but perhaps otherwise

restricted, set the corresponding empirical process cannot be strongly convex over the same set.

This reasoning applies in many cases including the studies mentioned above, where it would be

impossible to achieve the desired restricted strong convexity properties—with high probability—if

the true parameter is allowed to be unbounded.

Furthermore, the methods that rely on the ℓ1-norm are known to result in sparse solutions, but,

as mentioned in Kakade et al. (2010), the sparsity of these solutions is not known to be optimal in

general. One can intuit this fact from definitions of RSC and RSM. These two properties bound

the curvature of the function from below and above in a restricted set of directions around the true

optimum. For quadratic cost functions, such as squared error, these curvature bounds are absolute

constants. As stated before, for more general cost functions such as the loss functions in GLMs,

however, these constants will depend on the location of the true optimum. Consequently, depending

on the location of the true optimum these error bounds could be extremely large, albeit finite. When

error bounds are significantly large, the sparsity of the solution obtained by ℓ1-regularization may

not be satisfactory. This motivates investigation of algorithms that do not rely on ℓ1-norm to induce

sparsity.
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3. Problem Formulation and the GraSP Algorithm

As seen in Section 2.1, in standard CS the squared error f (x) = 1
2
‖y−Ax‖2

2 is used to measure

fidelity of the estimate. While this is appropriate for a large number of signal acquisition applica-

tions, it is not the right cost in other fields. Thus, the significant advances in CS cannot readily be

applied in these fields when estimation or prediction of sparse parameters become necessary. In this

paper we focus on a generalization of (3) where a generic cost function replaces the squared error.

Specifically, for the cost function f : Rp 7→ R, it is desirable to approximate

argmin
x

f (x) s.t. ‖x‖0 ≤ s. (4)

We propose the Gradient Support Pursuit (GraSP) algorithm, which is inspired by and generalizes

the CoSaMP algorithm, to approximate the solution to (4) for a broader class of cost functions.

Of course, even for a simple quadratic objective, (4) can have combinatorial complexity and

become NP-hard. However, similar to the results of CS, knowing that the cost function obeys

certain properties allows us to obtain accurate estimates through tractable algorithms. To guarantee

that GraSP yields accurate solutions and is a tractable algorithm, we also require the cost function to

have certain properties that will be described in Section 3.2. These properties are analogous to and

generalize the RIP in the standard CS framework. For smooth cost functions we introduce the notion

of a Stable Restricted Hessian (SRH) and for non-smooth cost functions we introduce the Stable

Restricted Linearization (SRL). Both of these properties basically bound the Bregman divergence

of the cost function restricted to sparse canonical subspaces. However, the analysis based on the

SRH is facilitated by matrix algebra that results in somewhat less restrictive requirements for the

cost function.

3.1 Algorithm Description

Algorithm 1: The GraSP algorithm

input : f (·) and s

output: x̂

initialize: x̂ = 0

repeat

compute local gradient: z = ∇ f (x̂)
identify directions: Z = supp(z2s)
merge supports: T = Z ∪ supp(x̂)
minimize over support: b = argmin f (x) s.t. x|T c = 0

prune estimate: x̂ = bs

until halting condition holds

GraSP is an iterative algorithm, summarized in Algorithm 1, that maintains and updates an esti-

mate x̂ of the sparse optimum at every iteration. The first step in each iteration, z = ∇ f (x̂), evaluates

the gradient of the cost function at the current estimate. For nonsmooth functions, instead of the

gradient we use a restricted subgradient z = ∇ f (x̂) defined in Section 3.2. Then 2s coordinates

of the vector z that have the largest magnitude are chosen as the directions in which pursuing the

minimization will be most effective. Their indices, denoted by Z = supp(z2s), are then merged
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with the support of the current estimate to obtain T = Z ∪ supp(x̂). The combined support is a set

of at most 3s indices over which the function f is minimized to produce an intermediate estimate

b= argmin f (x) s.t. x|T c =0. The estimate x̂ is then updated as the best s-term approximation of

the intermediate estimate b. The iterations terminate once certain condition, for instance, on the

change of the cost function or the change of the estimated minimum from the previous iteration,

holds.

In the special case where the squared error f (x) = 1
2
‖y−Ax‖2

2 is the cost function, GraSP

reduces to CoSaMP. Specifically, the gradient step reduces to the proxy step z = AT (y−Ax̂) and

minimization over the restricted support reduces to the constrained pseudoinverse step b|T = A
†
T

y,

b|T c = 0 in CoSaMP.

Variants Although in this paper we only analyze the standard form of GraSP outlined in Algorithm

1, other variants of the algorithm can also be studied. Below we list some of these variants.

1. Debiasing: In this variant, instead of performing a hard thresholding on the vector b, the

objective is minimized restricted to the support set of bs to obtain the new iterate:

x̂ = argmin
x

f (x) s.t. supp(x)⊆ supp(bs) .

2. Restricted Newton Step: To reduce the computations in each iteration, the minimization that

yields b, we can set b|T c = 0 and take a restricted Newton step as

b|T = x̂|T −κ
(
PT

T H f (x̂)PT

)−1
x̂|T ,

where κ > 0 is a step-size. Of course, here we are assuming that the restricted Hessian,

PT
T H f (x̂)PT , is invertible.

3. Restricted Gradient Descent: The minimization step can be relaxed even further by applying

a restricted gradient descent. In this approach, we again set b|T c = 0 and

b|T = x̂|T −κ ∇ f (x̂)|T .

Since T contains both the support set of x̂ and the 2s-largest entries of ∇ f (x̂) , it is easy to

show that each iteration of this alternative method is equivalent to a standard gradient descent

followed by a hard thresholding. In particular, if the squared error is the cost function as in

standard CS, this variant reduces to the IHT algorithm.

3.2 Sparse Reconstruction Conditions

In what follows we characterize the functions for which accuracy of GraSP can be guaranteed. For

twice continuously differentiable functions we rely on Stable Restricted Hessian (SRH), while for

non-smooth cost functions we introduce the Stable Restricted Linearization (SRL). These properties

that are analogous to the RIP in the standard CS framework, basically require that the curvature of

the cost function over the sparse subspaces can be bounded locally from above and below such that

the corresponding bounds have the same order. Below we provide precise definitions of these two

properties.
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Definition 1 (Stable Restricted Hessian). Suppose that f is a twice continuously differentiable func-

tion whose Hessian is denoted by H f (·). Furthermore, let

Ak (x) =sup
{

∆TH f (x)∆
∣∣∣ |supp(x)∪ supp(∆)| ≤ k,‖∆‖2 = 1

}
(5)

and

Bk (x) = inf
{

∆TH f (x)∆
∣∣∣ |supp(x)∪ supp(∆)| ≤ k,‖∆‖2 = 1

}
, (6)

for all k-sparse vectors x. Then f is said to have a Stable Restricted Hessian (SRH) with constant

µk, or in short µk-SRH, if 1 ≤ Ak(x)
Bk(x)

≤ µk.

Remark 1. Since the Hessian of f is symmetric, an equivalent for Definition 1 is that a twice contin-

uously differentiable function f has µk-SRH if the condition number of PK H f (x)PT
K is not greater

than µk for all k-sparse vectors x and sets K ⊆ [p] with |supp(x)∪K | ≤ k.

In the special case when the cost function is the squared error as in (3), we can write H f (x) =
ATA which is constant. The SRH condition then requires

Bk ‖∆‖2
2 ≤ ‖A∆‖2

2 ≤ Ak ‖∆‖2
2

to hold for all k-sparse vectors ∆ with Ak/Bk ≤ µk. Therefore, in this special case the SRH condition

essentially becomes equivalent to the RIP condition.

Remark 2. Note that the functions that satisfy the SRH are convex over canonical sparse subspaces,

but they are not necessarily convex everywhere. The following two examples describe some non-

convex functions that have SRH.

Example 1. Let f (x) = 1
2
xTQx, where Q= 2×11T−I. Obviously, we have H f (x) =Q. Therefore,

(5) and (6) determine the extreme eigenvalues across all of the k× k symmetric submatrices of Q.

Note that the diagonal entries of Q are all equal to one, while its off-diagonal entries are all equal to

two. Therefore, for any 1-sparse signal u we have uTQu = ‖u‖2
2, meaning that f has µ1-SRH with

µ1 = 1. However, for u = [1,−1,0, . . . ,0]T we have uTQu < 0, which means that the Hessian of f

is not positive semi-definite (i.e., f is not convex).

Example 2. Let f (x) = 1
2
‖x‖2

2 +Cx1x2 · · ·xk+1 where the dimensionality of x is greater than k. It is

obvious that this function is convex for k-sparse vectors as x1x2 · · ·xk+1 = 0 for any k-sparse vector.

So we can easily verify that f satisfies SRH of order k. However, for x1 = x2 = · · ·= xk+1 = t and

xi = 0 for i > k+1 the restriction of the Hessian of f to indices in [k+1] (i.e., PT
[k+1]H f (x)P[k+1])

is a matrix with diagonal entries all equal to one and off-diagonal entries all equal to Ctk−1. Let

Q denote this matrix and u be a unit-norm vector such that 〈u,1〉 = 0. Then it is straightforward

to verify that uTQu = 1−Ctk−1, which can be negative for sufficiently large values of C and t.

Therefore, the Hessian of f is not positive semi-definite everywhere, meaning that f is not convex.

To generalize the notion of SRH to the case of nonsmooth functions, first we define the restricted

subgradient of a function.

Definition 2 (Restricted Subgradient). We say vector ∇ f (x) is a restricted subgradient of f : Rp 7→ R

at point x if

f (x+∆)− f (x)≥
〈
∇ f (x) ,∆

〉

holds for all k-sparse vectors ∆.
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Remark 3. We introduced the notion of restricted subgradient so that the restrictions imposed on f

are as minimal as we need. We acknowledge that the existence of restricted subgradients implies

convexity in sparse directions, but it does not imply convexity everywhere.

Remark 4. Obviously, if the function f is convex everywhere, then any subgradient of f determines

a restricted subgradient of f as well. In general one may need to invoke the axiom of choice to

define the restricted subgradient.

Remark 5. We drop the sparsity level from the notation as it can be understood from the context.

With a slight abuse of terminology we call

B f

(
x′ ‖ x

)
= f

(
x′
)
− f (x)−

〈
∇ f (x) ,x

′−x
〉

the restricted Bregman divergence of f : Rp 7→ R between points x and x′ where ∇ f (·) gives a

restricted subgradient of f (·).

Definition 3 (Stable Restricted Linearization). Let x be a k-sparse vector in R
p. For function

f : Rp 7→ R we define the functions

αk (x) = sup

{
1

‖∆‖2
2

B f (x+∆ ‖ x) | ∆ 6= 0 and |supp(x)∪ supp(∆)| ≤ k

}

and

βk (x) = inf

{
1

‖∆‖2
2

B f (x+∆ ‖ x) | ∆ 6= 0 and |supp(x)∪ supp(∆)| ≤ k

}
.

Then f (·) is said to have a Stable Restricted Linearization with constant µk, or µk-SRL, if
αk(x)
βk(x)

≤ µk

for all k-sparse vectors x.

Remark 6. The SRH and SRL conditions are similar to various forms of the Restricted Strong Con-

vexity (RSC) and Restricted Strong Smoothness (RSS) conditions (Negahban et al., 2009; Agarwal

et al., 2010; Blumensath, 2010; Jalali et al., 2011; Zhang, 2011) in the sense that they all bound the

curvature of the objective function over a restricted set. The SRL condition quantifies the curvature

in terms of a (restricted) Bregman divergence similar to RSC and RSS. The quadratic form used in

SRH can also be converted to the Bregman divergence form used in RSC and RSS and vice-versa

using the mean-value theorem. However, compared to various forms of RSC and RSS conditions

SRH and SRL have some important distinctions. The main difference is that the bounds in SRH

and SRL conditions are not global constants; only their ratio is required to be bounded globally.

Furthermore, unlike the SRH and SRL conditions the variants of RSC and RSS, that are used in

convex relaxation methods, are required to hold over a set which is strictly larger than the set of

canonical k-sparse vectors.

There is also a subtle but important difference regarding the points where the curvature is eval-

uated at. Since Negahban et al. (2009) analyze a convex program, rather than an iterative algorithm,

they only needed to invoke the RSC and RSS at a neighborhood of the true parameter. In contrast,

the other variants of RSC and RSS (see, e.g., Agarwal et al., 2010; Jalali et al., 2011), as well as our

SRH and SRL conditions, require the curvature bounds to hold uniformly over a larger set of points,

thereby they are more stringent.
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3.3 Main Theorems

Now we can state our main results regarding approximation of

x⋆ = argmin f (x) s.t. ‖x‖0 ≤ s, (7)

using the GraSP algorithm.

Theorem 1. Suppose that f is a twice continuously differentiable function that has µ4s-SRH with

µ4s ≤ 1+
√

3
2

. Furthermore, suppose that for some ε > 0 we have ε ≤ B4s (x) for all 4s-sparse vectors

x. Then x̂(i), the estimate at the i-th iteration, satisfies

∥∥∥x̂(i)−x⋆
∥∥∥

2
≤ 2−i ‖x⋆‖2 +

6+2
√

3

ε
‖∇ f (x⋆)|I‖2 ,

where I is the position of the 3s largest entries of ∇ f (x⋆) in magnitude.

Remark 7. Note that this result indicates that ∇ f (x⋆) determines how accurate the estimate can

be. In particular, if the sparse minimum x⋆ is sufficiently close to an unconstrained minimum of

f then the estimation error floor is negligible because ∇ f (x⋆) has small magnitude. This result is

analogous to accuracy guarantees for estimation from noisy measurements in CS (Candès et al.,

2006; Needell and Tropp, 2009).

Remark 8. As the derivations required to prove Theorem 1 show, the provided accuracy guarantee

holds for any s-sparse x⋆, even if it does not obey (7). Obviously, for arbitrary choices of x⋆,

∇ f (x⋆)|I may have a large norm that cannot be bounded properly which implies large errors. In

statistical estimation problems, often the true parameter that describes the data is chosen as the target

parameter x⋆ rather than the minimizer of the average loss function as in (7). In these problems,

the approximation error ‖∇ f (x⋆)|I‖2 has statistical interpretation and can determine the statistical

precision of the problem. This property is easy to verify in linear regression problems. We will also

show this for the logistic loss as an example in Section 4.

Nonsmooth cost functions should be treated differently, since we do not have the luxury of

working with Hessian matrices for these type of functions. The following theorem provides guar-

antees that are similar to those of Theorem 1 for nonsmooth cost functions that satisfy the SRL

condition.

Theorem 2. Suppose that f is a function that is not necessarily smooth, but it satisfies µ4s-SRL with

µ4s ≤ 3+
√

3
4

. Furthermore, suppose that for β4s (·) in Definition 3 there exists some ε > 0 such that

β4s (x)≥ ε holds for all 4s-sparse vectors x. Then x̂(i), the estimate at the i-th iteration, satisfies

∥∥∥x̂(i)−x⋆
∥∥∥

2
≤ 2−i ‖x⋆‖2 +

6+2
√

3

ε

∥∥∇ f (x
⋆)
∣∣
I

∥∥
2
,

where I is the position of the 3s largest entries of ∇ f (x
⋆) in magnitude.

Remark 9. Should the SRH or SRL conditions hold for the objective function, it is straightforward

to convert the point accuracy guarantees of Theorems 1 and 2, into accuracy guarantees in terms of

the objective value. First we can use SRH or SRL to bound the Bregman divergence, or its restricted

version defined above, for points x̂(i) and x⋆. Then we can obtain a bound for the accuracy of the

objective value by invoking the results of the theorems. This indirect approach, however, might not

lead to sharp bounds and thus we do not pursue the detailed analysis in this work.
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4. Example: Sparse Minimization of ℓ2-regularized Logistic Regression

One of the models widely used in machine learning and statistics is the logistic model. In this model

the relation between the data, represented by a random vector a ∈ R
p, and its associated label,

represented by a random binary variable y ∈ {0,1}, is determined by the conditional probability

Pr{y | a;x}= exp(y〈a,x〉)
1+ exp(〈a,x〉) , (8)

where x denotes a parameter vector. Then, for a set of n independently drawn data samples {(ai,yi)}n
i=1

the joint likelihood can be written as a function of x. To find the maximum likelihood estimate one

should maximize this likelihood function, or equivalently minimize the negative log-likelihood, the

logistic loss,

g(x) =
1

n

n

∑
i=1

log(1+ exp(〈ai,x〉))− yi 〈ai,x〉 .

It is well-known that g(·) is strictly convex for p ≤ n provided that the associated design matrix,

A = [a1 a2 . . . an]
T
, is full-rank. However, in many important applications (e.g., feature selection)

the problem can be underdetermined (i.e., n < p). In these scenarios the logistic loss is merely

convex and it does not have a unique minimum. Furthermore, it is possible, especially in under-

determined problems, that the observed data is linearly separable. In that case one can achieve

arbitrarily small loss values by tending the parameters to infinity along certain directions. To com-

pensate for these drawbacks the logistic loss is usually regularized by some penalty term (Hastie

et al., 2009; Bunea, 2008).

One of the candidates for the penalty function is the (squared) ℓ2-norm of x (i.e., ‖x‖2
2). Con-

sidering a positive penalty coefficient η the regularized loss is

f (x) = g(x)+
η

2
‖x‖2

2 .

For any convex g(·) this regularized loss is guaranteed to be η-strongly convex, thus it has a unique

minimum. Furthermore, the penalty term implicitly bounds the length of the minimizer thereby

resolving the aforementioned problems. Nevertheless, the ℓ2 penalty does not promote sparse solu-

tions. Therefore, it is often desirable to impose an explicit sparsity constraint, in addition to the ℓ2

regularizer.

4.1 Verifying SRH for ℓ2-regularized Logistic Loss

It is easy to show that the Hessian of the logistic loss at any point x is given by Hg(x) =
1

4n
ATΛA,

where Λ is an n× n diagonal matrix whose diagonal entries are Λii = sech2 1
2
〈ai,x〉 with sech(·)

denoting the hyperbolic secant function. Note that 0 4 Hg (x) 4
1

4n
ATA. Therefore, if Hη (x)

denotes the Hessian of the ℓ2-regularized logistic loss, we have

∀x,∆ η‖∆‖2
2 ≤ ∆THη (x)∆ ≤ 1

4n
‖A∆‖2

2 +η‖∆‖2
2 . (9)

To verify SRH, the upper and lower bounds achieved at k-sparse vectors ∆ are of particular interest.

It only remains to find an appropriate upper bound for ‖A∆‖2
2 in terms of ‖∆‖2

2. To this end we use

the following result on Chernoff bounds for random matrices due to Tropp (2012).
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Theorem 3 (Matrix Chernoff (Tropp, 2012)). Consider a finite sequence {Mi} of k× k, indepen-

dent, random, self-adjoint matrices that satisfy

Mi < 0 and λmax (Mi)≤ R almost surely.

Let θmax := λmax (∑iE [Mi]). Then for τ ≥ 0,

Pr

{
λmax

(

∑
i

Mi

)
≥ (1+ τ)θmax

}
≤k exp

(
θmax

R
(τ− (1+ τ) log(1+ τ)

)
.

As stated before, in a standard logistic model data samples {ai} are supposed to be independent

instances of a random vector a. In order to apply Theorem 3 we need to make the following extra

assumptions:

Assumption. For every J ⊆ [p] with |J |= k,

(i) we have
∥∥a|J

∥∥2

2
≤ R almost surely, and

(ii) none of the matrices PT
JE
[
aaT
]

PJ is the zero matrix.

We define θJ
max := λmax

(
PT

J CPJ

)
, where C = E

[
aaT
]
, and let

θ := max
J⊆[p] , |J |=k

θJ
max and θ̃ := min

J⊆[p] , |J |=k
θJ

max.

To simplify the notation henceforth we let h(τ) = (1+ τ) log(1+ τ)− τ.

Corollary 1. With the above assumptions, if n ≥ R

θ̃h(τ)

(
logk+ k

(
1+ log

p
k

)
− logε

)
for some τ > 0

and ε ∈ (0,1), then with probability at least 1− ε the ℓ2-regularized logistic loss has µk-SRH with

µk ≤ 1+ 1+τ
4η θ.

Proof For any set of k indices J let M
J
i = ai|J ai|TJ = PT

J aia
T
i PJ . The independence of the vectors

ai implies that the matrix

AT
J AJ =

n

∑
i=1

ai|J ai|TJ

=
n

∑
i=1

M
J
i

is a sum of n independent, random, self-adjoint matrices. Assumption (i) implies that λmax

(
M

J
i

)
=

∥∥ai|J
∥∥2

2
≤ R almost surely. Furthermore, we have

λmax

(
n

∑
i=1

E

[
M

J
i

])
= λmax

(
n

∑
i=1

E
[
PT

J aia
T
i PJ

]
)

= λmax

(
n

∑
i=1

PT
JE
[
aia

T
i

]
PJ

)

= λmax

(
n

∑
i=1

PT
J CPJ

)

= nλmax

(
PT

J CPJ

)

= nθJ
max.
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Hence, for any fixed index set J with |J |= k we may apply Theorem 3 for Mi = M
J
i , θmax = nθJ

max,

and τ > 0 to obtain

Pr

{
λmax

(
n

∑
i=1

M
J
i

)
≥ (1+ τ)nθJ

max

}
≤k exp

(
−nθJ

maxh(τ)

R

)
.

Furthermore, we can write

Pr
{

λmax

(
AT

J AJ

)
≥ (1+ τ)nθ

}
= Pr

{
λmax

(
n

∑
i=1

M
J
i

)
≥ (1+ τ)nθ

}

≤ Pr

{
λmax

(
n

∑
i=1

M
J
i

)
≥ (1+ τ)nθJ

max

}

≤ k exp

(
−nθJ

maxh(τ)

R

)

≤ k exp

(
−nθ̃h(τ)

R

)
. (10)

Note that Assumption (ii) guarantees that θ̃ > 0, and thus the above probability bound will not be

vacuous for sufficiently large n. To ensure a uniform guarantee for all
(

p
k

)
possible choices of J we

can use the union bound to obtain

Pr





∨
J⊆[p]
|J |=k

λmax

(
AT

J AJ

)
≥(1+τ)nθ





≤ ∑
J⊆[p]
|J |=k

Pr
{

λmax

(
AT

J AJ

)
≥(1+τ)nθ

}

≤ k

(
p

k

)
exp

(
−nθ̃h(τ)

R

)

≤ k
( pe

k

)k

exp

(
−nθ̃h(τ)

R

)

= exp

(
logk+k+k log

p

k
−nθ̃h(τ)

R

)
.

Therefore, for ε ∈ (0,1) and n ≥ R
(
logk+ k

(
1+ log

p
k

)
− logε

)
/
(

θ̃h(τ)
)

it follows from (9) that

for any x and any k-sparse ∆,

η‖∆‖2
2 ≤ ∆THη (x)∆ ≤

(
η+

1+ τ

4
θ

)
‖∆‖2

2

holds with probability at least 1− ε. Thus, the ℓ2-regularized logistic loss has an SRH constant

µk ≤ 1+ 1+τ
4η θ with probability 1− ε.
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Remark 10. One implication of this result is that for a regime in which k and p grow sufficiently

large while
p
k

remains constant one can achieve small failure rates provided that n = Ω
(
Rk log

p
k

)
.

Note that R is deliberately included in the argument of the order function because in general R

depends on k. In other words, the above analysis may require n = Ω
(
k2 log

p
k

)
as the sufficient

number of observations. This bound is a consequence of using Theorem 3, but to the best of our

knowledge, other results regarding the extreme eigenvalues of the average of independent random

PSD matrices also yield an n of the same order. If matrix A has certain additional properties (e.g.,

independent and sub-Gaussian entries), however, a better rate of n = Ω
(
k log

p
k

)
can be achieved

without using the techniques mentioned above.

Remark 11. The analysis provided here is not specific to the ℓ2-regularized logistic loss and can be

readily extended to any other ℓ2-regularized GLM loss whose log-partition function has a Lipschitz-

continuous derivative.

4.2 Bounding the Approximation Error

We are going to bound ‖∇ f (x⋆)|I‖2 which controls the approximation error in the statement of

Theorem 1. In the case of case of ℓ2-regularized logistic loss considered in this section we have

∇ f (x) =
n

∑
i=1

(
1

1+ exp(−〈ai,x〉)
− yi

)
ai +ηx.

Denoting 1
1+exp(−〈ai,x⋆〉) − yi by vi for i = 1,2, . . . ,n then we can deduce

‖∇ f (x⋆)|I‖2 =

∥∥∥∥∥
1

n

n

∑
i=1

vi ai|I +η x⋆|I

∥∥∥∥∥
2

=

∥∥∥∥
1

n
AT

I v+η x⋆|I
∥∥∥∥

2

≤ 1

n

∥∥AT
I

∥∥‖v‖2 +η‖x⋆|I‖2

≤ 1√
n
‖AI‖

√
1

n

n

∑
i=1

v2
i +η‖x⋆|I‖2 ,

where v = [v1 v2 . . .vn]
T
. Note that vi’s are n independent copies of the random variable v =

1
1+exp(−〈a,x⋆〉) − y that is zero-mean and always lie in the interval [−1,1]. Therefore, applying the

Hoeffding’s inequality yields

Pr

{
1

n

n

∑
i=1

v2
i ≥ (1+ c)σ2

v

}
≤ exp

(
−2nc2σ4

v

)
,
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where σ2
v = E

[
v2
]

is the variance of v. Furthermore, using the logistic model (8) we can deduce

σ2
v = E

[
v2
]

= E
[
E
[
v2 | a

]]

= E

[
E

[
(y−E [y | a])2 | a

]]

= E [var(y | a)]

= E

[
1

1+ exp(〈a,x⋆〉) ×
exp(〈a,x⋆〉)

1+ exp(〈a,x⋆〉)

]
(because y | a ∼ Bernoulli as in (8))

= E

[
1

2+ exp(〈a,x⋆〉)+ exp(−〈a,x⋆〉)

]

≤ 1

4
(because exp(t)+ exp(−t)≥ 2).

Therefore, we have 1
n ∑n

i=1 v2
i <

1
4

with high probability. As in the previous subsection one can also

bound 1√
n
‖AI‖=

√
1
n
λmax

(
AT

I AI

)
using (10) with k = |I |= 3s. Hence, with high probability we

have

‖∇ f (x⋆)|I‖2 ≤
1

2

√
(1+ τ)θ+η‖x⋆‖2 .

Interestingly, this analysis can also be extended to the GLMs whose log-partition function ψ(·)
obeys 0 ≤ ψ′′ (t)≤C for all t with C being a positive constant. For these models the approximation

error can be bounded in terms of the variance of vψ = ψ′ (〈a,x⋆〉)− y.

5. Experimental Results

Algorithms that are used for sparsity-constrained estimation or optimization often induce sparsity

using different types of regularizations or constraints. Therefore, the optimized objective function

may vary from one algorithm to another, even though all of these algorithms try to estimate the

same sparse parameter and sparsely optimize the same original objective. Because of the discrep-

ancy in the optimized objective functions it is generally difficult to compare performance of these

algorithms. Applying algorithms on real data generally produces even less reliable results because

of the unmanageable or unknown characteristics of the real data. Nevertheless, we evaluated per-

formance of GraSP for variable selection in the logistic model both on synthetic and real data.

5.1 Synthetic Data

In our simulations the sparse parameter of interest x⋆ is a p = 1000 dimensional vector that has

s = 10 nonzero entries drawn independently from the standard Gaussian distribution. An intercept

c ∈ R is also considered which is drawn independently of the other parameters according to the

standard Gaussian distribution. Each data sample is an independent instance of the random vector

a = [a1,a2, . . . ,ap]
T

generated by an autoregressive process (Hamilton, 1994) determined by

a j+1 = ρa j +
√

1−ρ2z j, for all j ∈ [p−1]
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with a1 ∼ N (0,1), z j ∼ N (0,1), and ρ ∈ [0,1] being the correlation parameter. The data model we

describe and use above is identical to the experimental model used in Agarwal et al. (2010), except

that we adjusted the coefficients to ensure that E
[
a2

j

]
= 1 for all j ∈ [p]. The data labels, y ∈ {0,1}

are then drawn randomly according to the Bernoulli distribution with

Pr{y = 0 | a}= 1/(1+ exp(〈a,x⋆〉+ c)) .

We compared GraSP to the LASSO algorithm implemented in the GLMnet package (Friedman

et al., 2010), as well as the Orthogonal Matching Pursuit method dubbed Logit-OMP (Lozano et al.,

2011). To isolate the effect of ℓ2-regularization, both LASSO and the basic implementation of

GraSP did not consider additional ℓ2-regularization terms. To analyze the effect of an additional ℓ2-

regularization we also evaluated the performance of GraSP with ℓ2-regularized logistic loss, as well

as the logistic regression with elastic net (i.e., mixed ℓ1-ℓ2) penalty also available in the GLMnet

package. We configured the GLMnet software to produce s-sparse solutions for a fair comparison.

For the elastic net penalty (1−ω)‖x‖2
2 /2+ω‖x‖1 we considered the “mixing parameter” ω to be

0.8. For the ℓ2-regularized logistic loss we considered η = (1−ω)
√

log p
n

. For each choice of the

number of measurements n between 50 and 1000 in steps of size 50, and ρ in the set
{

0, 1
3
, 1

2
,
√

2
2

}

we generate the data and the associated labels and apply the algorithms. The average performance

is measured over 200 trials for each pair of (n,ρ).

Figure 1 compares the average value of the empirical logistic loss achieved by each of the con-

sidered algorithms for a wide range of “sampling ratio” n/p. For GraSP, the curves labelled by

GraSP and GraSP + ℓ2 corresponding to the cases where the algorithm is applied to unregularized

and ℓ2-regularized logistic loss, respectively. Furthermore, the results of GLMnet for the LASSO

and the elastic net regularization are labelled by GLMnet (ℓ1) and GLMnet (elastic net), respectively.

The simulation result of the Logit-OMP algorithm is also included. To contrast the obtained results

we also provided the average of empirical logistic loss evaluated at the true parameter and one stan-

dard deviation above and below this average on the plots. Furthermore, we evaluated performance

of GraSP with the debiasing procedure described in Section 3.1.

As can be seen from the figure at lower values of the sampling ratio GraSP is not accurate and

does not seem to be converging. This behavior can be explained by the fact that without regular-

ization at low sampling ratios the training data is linearly separable or has very few mislabelled

samples. In either case, the value of the loss can vary significantly even in small neighborhoods.

Therefore, the algorithm can become too sensitive to the pruning step at the end of each iteration.

At larger sampling ratios, however, the loss from GraSP begins to decrease rapidly, becoming ef-

fectively identical to the loss at the true parameter for n/p > 0.7. The results show that unlike

GraSP, Logit-OMP performs gracefully at lower sampling ratios. At higher sampling ratios, how-

ever, GraSP appears to yield smaller bias in the loss value. Furthermore, the difference between the

loss obtained by the LASSO and the loss at the true parameter never drops below a certain threshold,

although the convex method exhibits a more stable behaviour at low sampling ratios.

Interestingly, GraSP becomes more stable at low sampling ratios when the logistic loss is reg-

ularized with the ℓ2-norm. However, this stability comes at the cost of a bias in the loss value at

high sampling ratios that is particularly pronounced in Figure 1d. Nevertheless, for all of the tested

values of ρ, at low sampling ratios GraSP+ℓ2 and at high sampling ratios GraSP are consistently

closer to the true loss value compared to the other methods. Debiasing the iterates of GraSP also
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Figure 1: Comparison of the average (empirical) logistic loss at solutions obtained via GraSP,

GraSP with ℓ2-penalty, LASSO, the elastic-net regularization, and Logit-OMP. The re-

sults of both GraSP methods with “debiasing” are also included. The average loss at the

true parameter and one standard deviation interval around it are plotted as well.

appears to have a stabilizing effect at lower sampling ratios. For GraSP with ℓ2 regularized cost, the

debiasing particularly reduced the undesirable bias at ρ =
√

2
2

.

Figure 2 illustrates the performance of the same algorithms in terms of the relative error
‖x̂−x⋆‖2

‖x⋆‖2

where x̂ denotes the estimate that the algorithms produce. Not surprisingly, none of the algorithms

attain an arbitrarily small relative error. Furthermore, the parameter ρ does not appear to affect

the performance of the algorithms significantly. Without the ℓ2-regularization, at high sampling

ratios GraSP provides an estimate that has a comparable error versus the ℓ1-regularization method.

However, for mid to high sampling ratios both GraSP and GLMnet methods are outperformed by

Logit-OMP. At low to mid sampling ratios, GraSP is unstable and does not converge to an estimate

close to the true parameter. Logit-OMP shows similar behavior at lower sampling ratios. Perfor-

mance of GraSP changes dramatically once we consider the ℓ2-regularization and/or the debiasing

procedure. With ℓ2-regularization, GraSP achieves better relative error compared to GLMnet and

ordinary GraSP for almost the entire range of tested sampling ratios. Applying the debiasing pro-

cedure has improved the performance of both GraSP methods except at very low sampling ratios.
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Figure 2: Comparison of the average relative error (i.e.,
‖x̂−x⋆‖2

‖x⋆‖2
) in logarithmic scale at solutions

obtained via GraSP, GraSP with ℓ2-penalty, LASSO, the elastic-net regularization, and

Logit-OMP. The results of both GraSP methods with “debiasing” are also included.

These variants of GraSP appear to perform better than Logit-OMP for almost the entire range of

n/p.

5.2 Real Data

We also conducted the same simulation on some of the data sets used in NIPS 2003 Workshop on

feature extraction (Guyon et al., 2005), namely the ARCENE and DEXTER data sets. The logistic

loss values at obtained estimates are reported in Tables 2 and 3. For each data set we applied the

sparse logistic regression for a range of sparsity level s. The columns indicated by “G” correspond

to different variants of GraSP. Suffixes ℓ2 and “d” indicate the ℓ2-regularization and the debiasing

are applied, respectively. The columns indicated by ℓ1 and E-net correspond to the results of the

ℓ1-regularization and the elastic-net regularization methods that are performed using the GLMnet

package. The last column contains the result of the Logit-OMP algorithm.

The results for DEXTER data set show that GraSP variants without debiasing and the convex

methods achieve comparable loss values in most cases, whereas the convex methods show signifi-

cantly better performance on the ARCENE data set. Nevertheless, except for a few instances where
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s G Gd Gℓ2 Gℓ2d ℓ1 E-net Logit-OMP

5 5.89E+01 5.75E-01 2.02E+01 5.24E-01 5.59E-01 6.43E-01 2.23E-01

10 3.17E+02 5.43E-01 3.71E+01 4.53E-01 5.10E-01 5.98E-01 5.31E-07

15 3.38E+02 6.40E-07 5.94E+00 1.42E-07 4.86E-01 5.29E-01 5.31E-07

20 1.21E+02 3.44E-07 8.82E+00 3.08E-08 4.52E-01 5.19E-01 5.31E-07

25 9.87E+02 1.13E-07 4.46E+01 1.35E-08 4.18E-01 4.96E-01 5.31E-07

Table 2: ARCENE

s G Gd Gℓ2 Gℓ2d ℓ1 E-net Logit-OMP

5 7.58E+00 3.28E-01 3.30E+00 2.80E-01 5.75E-01 6.08E-01 2.64E-01

10 1.08E+00 1.79E-01 4.33E-01 1.28E-01 5.23E-01 5.33E-01 1.79E-01

15 6.06E+00 1.71E-01 3.35E-01 1.17E-01 4.88E-01 4.98E-01 1.16E-01

20 1.30E+00 8.84E-02 1.79E-01 8.19E-02 4.27E-01 4.36E-01 4.60E-02

25 1.17E+00 2.51E-07 2.85E-01 1.17E-02 3.94E-01 4.12E-01 4.62E-03

30 3.04E-01 5.83E-07 2.65E-01 1.77E-07 3.70E-01 3.88E-01 2.88E-07

35 6.22E-01 2.08E-07 2.68E-01 1.19E-07 3.47E-01 3.72E-01 2.14E-07

40 5.38E-01 2.01E-07 6.30E-02 1.27E-07 3.31E-01 3.56E-01 2.14E-07

45 3.29E-01 2.11E-07 1.05E-01 1.47E-07 3.16E-01 3.41E-01 2.14E-07

50 2.06E-01 1.31E-07 5.66E-02 1.46E-07 2.87E-01 3.11E-01 2.14E-07

55 3.61E-02 1.20E-07 8.40E-02 1.31E-07 2.80E-01 2.89E-01 2.14E-07

60 1.18E-01 2.46E-07 5.70E-02 1.09E-07 2.66E-01 2.82E-01 2.14E-07

65 1.18E-01 7.86E-08 2.87E-02 9.47E-08 2.59E-01 2.75E-01 2.14E-07

70 8.92E-02 1.17E-07 2.23E-02 8.15E-08 2.52E-01 2.69E-01 2.14E-07

75 1.03E-01 8.54E-08 3.93E-02 7.94E-08 2.45E-01 2.69E-01 2.14E-07

Table 3: DEXTER

Logit-OMP has the best performance, the smallest loss values in both data sets are attained by GraSP

methods with debiasing step.

6. Discussion and Conclusion

In many applications understanding high dimensional data or systems that involve these types of

data can be reduced to identification of a sparse parameter. For example, in gene selection problems

researchers are interested in locating a few genes among thousands of genes that cause or contribute

to a particular disease. These problems can usually be cast as sparsity-constrained optimizations.

In this paper we introduce a greedy algorithm called the Gradient Support Pursuit(GraSP) as an

approximate solver for a wide range of sparsity-constrained optimization problems.

We provide theoretical convergence guarantees based on the notions of a Stable Restricted Hes-

sian (SRH) for smooth cost functions and a Stable Restricted Linearization (SRL) for non-smooth

cost functions, both of which are introduced in this paper. Our algorithm generalizes the well-

established sparse recovery algorithm CoSaMP that merely applies in linear models with squared

error loss. The SRH and SRL also generalize the well-known Restricted Isometry Property for
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sparse recovery to the case of cost functions other than the squared error. To provide a concrete

example we studied the requirements of GraSP for ℓ2-regularized logistic loss. Using a similar ap-

proach one can verify SRH condition for loss functions that have Lipschitz-continuous gradient that

incorporates a broad family of loss functions.

At medium- and large-scale problems computational cost of the GraSP algorithm is mostly af-

fected by the inner convex optimization step whose complexity is polynomial in s. On the other

hand, for very large-scale problems, especially with respect to the dimension of the input, p, the

running time of the GraSP algorithm will be dominated by evaluation of the function and its gradi-

ent, whose computational cost grows with p. This problem is common in algorithms that only have

deterministic steps; even ordinary coordinate-descent methods have this limitation (Nesterov, 2012).

Similar to improvements gained by using randomization in coordinate-descent methods (Nesterov,

2012), introducing randomization in the GraSP algorithm could reduce its computational complex-

ity at large-scale problems. This extension, however, is beyond the scope of this paper and we leave

it for future work.

Appendix A. Iteration Analysis For Smooth Cost Functions

To analyze our algorithm we first establish a series of results on how the algorithm operates on its

current estimate, leading to an iteration invariant property on the estimation error. Propositions 1

and 2 are used to prove Lemmas 1 and 2. These Lemmas then are used to prove Lemma 3 that

provides an iteration invariant which in turn yields the main result.

Proposition 1. Let M(t) be a matrix-valued function such that for all t ∈ [0,1], M(t) is symmetric

and its eigenvalues lie in interval [B(t) ,A(t)] with B(t)> 0. Then for any vector v we have




1∫

0

B(t)dt


 ‖v‖2 ≤

∥∥∥∥∥∥




1∫

0

M(t)dt


 v

∥∥∥∥∥∥
2

≤




1∫

0

A(t)dt


 ‖v‖2 .

Proof Let λmin (·) and λmax (·) denote the smallest and largest eigenvalue functions defined over the

set of symmetric positive-definite matrices, respectively. These functions are in order concave and

convex. Therefore, Jensen’s inequality yields

λmin




1∫

0

M(t)dt


≥

1∫

0

λmin (M(t))dt ≥
1∫

0

B(t)dt

and

λmax




1∫

0

M(t)dt


≤

1∫

0

λmax (M(t))dt ≤
1∫

0

A(t)dt,

which imply the desired result.
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Proposition 2. Let M(t) be a matrix-valued function such that for all t ∈ [0,1] M(t) is symmetric

and its eigenvalues lie in interval [B(t) ,A(t)] with B(t)> 0. If Γ is a subset of row/column indices

of M(·) then for any vector v we have

∥∥∥∥∥∥




1∫

0

PT
ΓM(t)PΓcdt


 v

∥∥∥∥∥∥
2

≤
1∫

0

A(t)−B(t)

2
dt ‖v‖2 .

Proof Since M(t) is symmetric, it is also diagonalizable. Thus, for any vector v we may write

B(t)‖v‖2
2 ≤ vTM(t)v ≤ A(t)‖v‖2

2 ,

and thereby

−A(t)−B(t)

2
≤

vT
(

M(t)− A(t)+B(t)
2

I
)

v

‖v‖2
≤ A(t)−B(t)

2
.

Since M(t)− A(t)+B(t)
2

I is also diagonalizable, it follows from the above inequality that

∥∥∥∥M(t)− A(t)+B(t)

2
I

∥∥∥∥≤
A(t)−B(t)

2
.

Let M̃(t) = PT
ΓM(t)PΓc . Since M̃(t) is a submatrix of M(t)− A(t)+B(t)

2
I we should have

∥∥∥M̃(t)
∥∥∥≤

∥∥∥∥M(t)− A(t)+B(t)

2
I

∥∥∥∥≤
A(t)−B(t)

2
. (11)

Finally, it follows from the convexity of the operator norm, Jensen’s inequality, and (11) that

∥∥∥∥∥∥

1∫

0

M̃(t)dt

∥∥∥∥∥∥
≤

1∫

0

∥∥∥M̃(t)
∥∥∥dt ≤

1∫

0

A(t)−B(t)

2
dt.

To simplify notation we introduce functions

αk (p,q) =

1∫

0

Ak (tq+(1− t)p)dt

βk (p,q) =

1∫

0

Bk (tq+(1− t)p)dt

γk (p,q) = αk (p,q)−βk (p,q) ,

where Ak (·) and Bk (·) are defined by (5) and (6), respectively.
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Lemma 1. Let R denote the set supp(x̂−x⋆). The current estimate x̂ then satisfies

‖(x̂−x⋆) |Zc‖2 ≤
γ4s (x̂,x

⋆)+γ2s (x̂,x
⋆)

2β2s (x̂,x⋆)
‖x̂−x⋆‖2+

∥∥∇ f (x⋆) |R\Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s (x̂,x⋆)
.

Proof Since Z = supp(z2s) and |R | ≤ 2s we have
∥∥z|R

∥∥
2
≤ ‖z|Z‖2 and thereby

∥∥z|R \Z

∥∥
2
≤
∥∥z|Z\R

∥∥
2
. (12)

Furthermore, because z = ∇ f (x̂) we can write
∥∥z|R \Z

∥∥
2
≥
∥∥∇f (x̂)|R\Z−∇f (x⋆)|R\Z

∥∥
2
−
∥∥∇f (x⋆)|R\Z

∥∥
2

=

∥∥∥∥∥∥




1∫

0

PT
R \ZH f (tx̂+(1− t)x⋆)dt


(x̂−x⋆)

∥∥∥∥∥∥
2

−
∥∥∇ f (x⋆) |R \Z

∥∥
2

≥

∥∥∥∥∥∥




1∫

0

PT
R \ZH f (tx̂+(1− t)x⋆)PR \Zdt


(x̂−x⋆) |R \Z

∥∥∥∥∥∥
2

−
∥∥∇ f (x⋆) |R \Z

∥∥
2

−

∥∥∥∥∥∥




1∫

0

PT
R \ZH f (tx̂+(1− t)x⋆)PZ∩R dt


(x̂−x⋆) |Z∩R

∥∥∥∥∥∥
2

,

where we split the active coordinates (i.e., R ) into the sets R \Z and Z ∩R to apply the triangle

inequality and obtain the last expression. Applying Propositions 1 and 2 yields

∥∥z|R\Z

∥∥
2
≥β2s (x̂,x

⋆)
∥∥(x̂−x⋆) |R\Z

∥∥
2
− γ2s (x̂,x

⋆)

2

∥∥(x̂−x⋆) |Z∩R

∥∥
2
−
∥∥∇ f (x⋆) |R\Z

∥∥
2

≥β2s (x̂,x
⋆)
∥∥(x̂−x⋆) |R \Z

∥∥
2
− γ2s (x̂,x

⋆)

2
‖x̂−x⋆‖2−

∥∥∇ f (x⋆) |R \Z

∥∥
2
. (13)

Similarly, we have
∥∥z|Z\R

∥∥
2
≤
∥∥∇ f (x̂) |Z\R −∇ f (x⋆) |Z\R

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

=

∥∥∥∥∥∥




1∫

0

PT
Z\R H f (tx̂+(1− t)x⋆)PR dt


(x̂−x⋆) |R

∥∥∥∥∥∥
2

+
∥∥∇ f (x⋆) |Z\R

∥∥
2

≤γ4s (x̂,x
⋆)

2

∥∥(x̂−x⋆) |R
∥∥

2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

=
γ4s (x̂,x

⋆)

2
‖x̂−x⋆‖2 +

∥∥∇ f (x⋆) |Z\R

∥∥
2
. (14)

Combining (12), (13), and (14) we obtain

γ4s(x̂,x
⋆)

2
‖x̂−x⋆‖2+

∥∥∇ f (x⋆) |Z\R
∥∥

2
≥
∥∥z|Z\R

∥∥
2

≥
∥∥z|R \Z

∥∥
2

≥β2s(x̂,x
⋆)
∥∥(x̂−x⋆) |R\Z

∥∥
2
− γ2s(x̂,x

⋆)

2
‖x̂−x⋆‖2

−
∥∥∇ f (x⋆) |R \Z

∥∥
2
.
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Since R = supp(x̂−x⋆), we have
∥∥(x̂−x⋆) |R \Z

∥∥
2
= ‖(x̂−x⋆) |Zc‖2. Hence,

‖(x̂−x⋆) |Zc‖2 ≤
γ4s (x̂,x

⋆)+γ2s (x̂,x
⋆)

2β2s (x̂,x⋆)
‖x̂−x⋆‖2+

∥∥∇ f (x⋆) |R\Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
β2s (x̂,x⋆)

.

Lemma 2. The vector b given by

b =argmin f (x) s.t. x|T c = 0 (15)

satisfies

‖x⋆|T −b‖2 ≤
‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)
+

γ4s (b,x
⋆)

2β4s (b,x⋆)
‖x⋆|T c‖2 .

Proof We have

∇ f (x⋆)−∇ f (b) =

1∫

0

H f (tx
⋆+(1−t)b)dt (x⋆−b) .

Furthermore, since b is the solution to (15) we must have ∇ f (b) |T = 0. Therefore,

∇ f (x⋆) |T =




1∫

0

PT
T H f (tx

⋆+(1− t)b)dt


 (x⋆−b)

=




1∫

0

PT
T H f (tx

⋆+(1−t)b)PT dt


 (x⋆−b) |T

+




1∫

0

PT
T H f (tx

⋆+(1−t)b)PT cdt


 (x⋆−b) |T c . (16)

Since f has µ4s-SRH and |T ∪ supp(tx⋆+(1− t)b)| ≤ 4s for all t ∈ [0,1], functions A4s (·) and

B4s (·), defined using (5) and (6), exist such that we have

B4s (tx
⋆+(1− t)b)≤ λmin

(
PT

T H f (tx
⋆+(1−t)b)PT

)

and

A4s (tx
⋆+(1− t)b)≥ λmax

(
PT

T H f (tx
⋆+(1−t)b)PT

)
.

Thus, from Proposition 1 we obtain

β4s (b,x
⋆)≤ λmin




1∫

0

PT
T H f (tx

⋆+(1− t)b)PT dt
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and

α4s (b,x
⋆)≥ λmax




1∫

0

PT
T H f (tx

⋆+(1− t)b)PT dt


 .

This result implies that the matrix
∫ 1

0 PT
T H f (tx

⋆+(1− t)b)PT dt, henceforth denoted by W, is

invertible and
1

α4s (b,x⋆)
≤ λmin

(
W−1

)
≤ λmax

(
W−1

)
≤ 1

β4s (b,x⋆)
, (17)

where we used the fact that λmax (M)λmin

(
M−1

)
= 1 for any positive-definite matrix M, particularly

for W and W−1. Therefore, by multiplying both sides of (16) by W−1 obtain

W−1∇ f (x⋆) |T =(x⋆−b) |T +W−1




1∫

0

PT
T H f (tx

⋆+(1−t)b)PT cdt


 x⋆|T c ,

where we also used the fact that (x⋆−b) |T c = x⋆|T c . With S ⋆ = supp(x⋆), using triangle inequality,

(17), and Proposition 2 then we obtain

‖x⋆|T −b‖2 = ‖(x⋆−b)|T ‖2

≤

∥∥∥∥∥∥
W−1




1∫

0

PT
T H f (tx

⋆+(1−t)b)PT c∩S⋆dt


 x⋆|T c∩S⋆

∥∥∥∥∥∥
2

+
∥∥W−1∇ f (x⋆) |T

∥∥
2

≤ ‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)
+

γ4s (b,x
⋆)

2β4s (b,x⋆)
‖x⋆|T c‖2 ,

as desired.

Lemma 3 (Iteration Invariant). The estimation error in the current iteration, ‖x̂−x⋆‖2, and that in

the next iteration, ‖bs −x⋆‖2, are related by the inequality:

‖bs −x⋆‖2 ≤
γ4s (x̂,x

⋆)+ γ2s (x̂,x
⋆)

2β2s (x̂,x⋆)

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

)
‖x̂−x⋆‖2

+

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

) ∥∥∇ f (x⋆) |R \Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s (x̂,x⋆)
+

2‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)
.

Proof Because Z ⊆T we must have T c ⊆Zc. Therefore, we can write ‖x⋆|T c‖2 = ‖(x̂−x⋆) |T c‖2 ≤
‖(x̂−x⋆) |Zc‖2. Then using Lemma 1 we obtain

‖x⋆|T c‖2 ≤
γ4s(x̂,x

⋆)+γ2s(x̂,x
⋆)

2β2s(x̂,x⋆)
‖x̂−x⋆‖2+

∥∥∇ f (x⋆) |R\Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s(x̂,x⋆)
. (18)

Furthermore,

‖bs −x⋆‖2 ≤ ‖bs − x⋆|T ‖2 +‖x⋆|T c‖2

≤ ‖x⋆|T −b‖2 +‖bs −b‖2 +‖x⋆|T c‖2≤ 2‖x⋆|T −b‖2 +‖x⋆|T c‖2 , (19)
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where the last inequality holds because ‖x⋆|T ‖0 ≤ s and bs is the best s-term approximation of b.

Therefore, using Lemma 2,

‖bs −x⋆‖2 ≤
2

β4s (b,x⋆)
‖∇ f (x⋆) |T ‖2 +

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

)
‖x⋆|T c‖2 . (20)

Combining (18) and (20) we obtain

‖bs−x⋆‖2 ≤
γ4s (x̂,x

⋆)+ γ2s (x̂,x
⋆)

2β2s (x̂,x⋆)

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

)
‖x̂−x⋆‖2

+

(
1+

γ4s (b,x
⋆)

β4s (b,x⋆)

) ∥∥∇ f (x⋆) |R \Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s (x̂,x⋆)
+

2‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)
.

Using the results above, we can now prove Theorem 1.

Proof of Theorem 1. Using definition 1 it is easy to verify that for k ≤ k′ and any vector u we

have Ak (u) ≤ Ak′ (u) and Bk (u) ≥ Bk′ (u). Consequently, for k ≤ k′ and any pair of vectors p and

q we have αk (p,q) ≤ αk′ (p,q), βk (p,q) ≥ βk′ (p,q), and µk ≤ µk′ . Furthermore, for any function

that satisfies µk−SRH we can write

αk (p,q)

βk (p,q)
=

∫ 1
0 Ak (tq+(1− t)p)dt∫ 1
0 Bk (tq+(1− t)p)dt

≤
∫ 1

0 µkBk (tq+(1− t)p)dt∫ 1
0 Bk (tq+(1− t)p)dt

= µk,

and thereby
γk(p,q)
βk(p,q)

≤ µk −1. Therefore, applying Lemma 3 to the estimate in the i-th iterate of the

algorithm shows that

∥∥∥x̂(i)−x⋆
∥∥∥

2
≤(µ4s −1)µ4s

∥∥∥x̂(i−1)−x⋆
∥∥∥

2
+

2‖∇ f (x⋆) |T ‖2

β4s (b,x⋆)

+µ4s

∥∥∇ f (x⋆) |R \Z

∥∥
2
+
∥∥∇ f (x⋆) |Z\R

∥∥
2

β2s

(
x̂(i−1),x⋆

)

≤
(
µ2

4s −µ4s

)∥∥∥x̂(i−1)−x⋆
∥∥∥

2
+

2

ε
‖∇ f (x⋆) |I‖2+

2µ4s

ε
‖∇ f (x⋆) |I‖2 .

Applying the assumption µ4s ≤ 1+
√

3
2

then yields

∥∥∥x̂(i)−x⋆
∥∥∥

2
≤ 1

2

∥∥∥x̂(i−1)−x⋆
∥∥∥

2
+

3+
√

3

ε
‖∇ f (x⋆) |I‖2 .

The theorem follows using this inequality recursively.

Appendix B. Iteration Analysis For Non-Smooth Cost Functions

In this part we provide analysis of GraSP for non-smooth functions. Definition 3 basically states

that for any k-sparse vector x ∈ R
n, αk (x) and βk (x) are in order the smallest and largest values for

which

βk (x)‖∆‖2
2 ≤ B f (x+∆ ‖ x)≤ αk (x)‖∆‖2

2 (21)
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holds for all vectors ∆ ∈ R
n that satisfy |supp(x)∪ supp(∆)| ≤ k. By interchanging x and x+∆ in

(21) and using the fact that

B f (x+∆ ‖ x)+B f (x ‖ x+∆) =
〈
∇ f (x+∆)−∇ f (x) ,∆

〉

one can easily deduce

[βk(x+∆)+βk(x)]‖∆‖2
2≤
〈
∇ f (x+∆)−∇ f (x) ,∆

〉
≤ [αk(x+∆)+αk(x)]‖∆‖2

2. (22)

Propositions 3, 4, and 5 establish some basic inequalities regarding the restricted Bregman di-

vergence under SRL assumption. Using these inequalities we prove Lemmas 4 and 5. These two

Lemmas are then used to prove an iteration invariant result in Lemma 6 which in turn is used to

prove Theorem 2.

Note In Propositions 3, 4, and 5 we assume x1 and x2 are two vectors in R
n such that |supp(x1) ∪

supp(x2)| ≤ r. Furthermore, we use the shorthand ∆ = x1 −x2 and denote supp(∆) by R . We also

denote ∇ f (x1)−∇ f (x2) by ∆′. To simplify the notation further the shorthands αl , βl , and γl are

used for αl (x1,x2) :=αl (x1)+αl (x2), βl (x1,x2) := βl (x1)+βl (x2), and γl (x1,x2) :=αl (x1,x2)−
βl (x1,x2), respectively.

Proposition 3. Let R ′ be a subset of R . Then the following inequalities hold.
∣∣∣∣αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′, ∆|R ′

〉∣∣∣∣≤ γr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2 (23)

∣∣∣∣βr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′, ∆|R ′

〉∣∣∣∣≤ γr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2

Proof Using (21) we can write

βr (x1)
∥∥∥∆|R ′

∥∥∥
2

2
t2 ≤ B f

(
x1 − t ∆|R ′ ‖ x1

)
≤ αr (x1)

∥∥∥∆|R ′

∥∥∥
2

2
t2 (24)

βr (x2)
∥∥∥∆|R ′

∥∥∥
2

2
t2 ≤ B f

(
x2 − t ∆|R ′ ‖ x2

)
≤ αr (x2)

∥∥∥∆|R ′

∥∥∥
2

2
t2 (25)

and

βr (x1)
∥∥∥∆− t ∆|R ′

∥∥∥
2

2
≤ B f

(
x2 + t ∆|R ′ ‖ x1

)
≤ αr (x1)

∥∥∥∆− t ∆|R ′

∥∥∥
2

2
(26)

βr (x2)
∥∥∥∆− t ∆|R ′

∥∥∥
2

2
≤ B f

(
x1 − t ∆|R ′ ‖ x2

)
≤ αr (x2)

∥∥∥∆− t ∆|R ′

∥∥∥
2

2
, (27)

where t is an arbitrary real number. Using the definition of the Bregman divergence we can add (24)

and (25) to obtain

βr

∥∥∥∆|R ′

∥∥∥
2

2
t2 ≤ f

(
x1 − t ∆|R ′

)
− f (x1)+ f

(
x2 + t ∆|R ′

)
− f (x2)+

〈
∆′, ∆|R ′

〉
t

≤ αr

∥∥∥∆|R ′

∥∥∥
2

2
t2. (28)

Similarly, (26) and (27) yield

βr

∥∥∥∆−t ∆|R ′

∥∥∥
2

2
≤ f
(

x1−t ∆|R ′

)
− f (x1)+ f

(
x2 +t ∆|R ′

)
− f (x2)+

〈
∆′,∆−t ∆|R ′

〉

≤ αr

∥∥∥∆− t ∆|R ′

∥∥∥
2

2
. (29)
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Expanding the quadratic bounds of (29) and using (28) then we obtain

0 ≤ γr

∥∥∥∆|R ′

∥∥∥
2

2
t2 +2

(
βr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆, ∆|R ′

〉)
t −βr ‖∆‖2

2 +
〈
∆′,∆

〉
(30)

0 ≤ γr

∥∥∥∆|R ′

∥∥∥
2

2
t2 −2

(
αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆, ∆|R ′

〉)
t +αr ‖∆‖2

2 −
〈
∆′,∆

〉
. (31)

It follows from (22), (30), and (31) that

0 ≤ γr

∥∥∥∆|R ′

∥∥∥
2

2
t2 +2

(
βr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆, ∆|R ′

〉)
t + γr ‖∆‖2

2

0 ≤ γr

∥∥∥∆|R ′

∥∥∥
2

2
t2 −2

(
αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆, ∆|R ′

〉)
t + γr ‖∆‖2

2 .

These two quadratic inequalities hold for any t ∈ R thus their discriminants are not positive, that is,

(
βr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′, ∆|R ′

〉)2

− γ2
r

∥∥∥∆|R ′

∥∥∥
2

2
‖∆‖2

2 ≤ 0

(
αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′, ∆|R ′

〉)2

− γ2
r

∥∥∥∆|R ′

∥∥∥
2

2
‖∆‖2

2 ≤ 0,

which yield the desired result.

Proposition 4. The following inequalities hold for R ′ ⊆ R .
∣∣∣∣
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
−αr

〈
∆′, ∆|R ′

〉∣∣∣∣≤ γr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2 (32)

∣∣∣∣
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
−βr

〈
∆′, ∆|R ′

〉∣∣∣∣≤ γr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2

Proof From (21) we have

βr (x1)
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
t2 ≤ B f

(
x1 − t ∆′∣∣

R ′ ‖ x1

)
≤ αr (x1)

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 (33)

βr (x2)
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
t2 ≤ B f

(
x2 + t ∆′∣∣

R ′ ‖ x2

)
≤ αr (x2)

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 (34)

and

βr (x1)
∥∥∥∆− t ∆′∣∣

R ′

∥∥∥
2

2
≤ B f

(
x2 + t ∆′∣∣

R ′ ‖ x1

)
≤ αr (x1)

∥∥∥∆− t ∆′∣∣
R ′

∥∥∥
2

2
(35)

βr (x2)
∥∥∥∆− t ∆′∣∣

R ′

∥∥∥
2

2
≤ B f

(
x1 − t ∆′∣∣

R ′ ‖ x2

)
≤ αr (x2)

∥∥∥∆− t ∆′∣∣
R ′

∥∥∥
2

2
, (36)

for any t ∈ R. By subtracting the sum of (35) and (36) from that of (33) and (34) we obtain

βr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 −αr

∥∥∥∆− t ∆′∣∣
R ′

∥∥∥
2

2
≤ 2

〈
∆′, ∆′∣∣

R ′

〉
t −
〈
∆′,∆

〉

≤ αr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 −βr

∥∥∥∆− t ∆′∣∣
R ′

∥∥∥
2

2
. (37)
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Expanding the bounds of (37) then yields

0 ≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 +2

(〈
∆′, ∆′∣∣

R ′

〉
−αr

〈
∆, ∆′∣∣

R ′

〉)
t +αr ‖∆‖2

2 −
〈
∆′,∆

〉

0 ≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 −2

(〈
∆′, ∆′∣∣

R ′

〉
−βr

〈
∆, ∆′∣∣

R ′

〉)
t −βr ‖∆‖2

2 +
〈
∆′,∆

〉
.

Note that
〈

∆′, ∆′|R ′

〉
=
∥∥∥∆′|R ′

∥∥∥
2

2
and

〈
∆, ∆′|R ′

〉
=
〈

∆|R ′ ,∆′
〉

. Therefore, using (22) we obtain

0 ≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 +2

(∥∥∥∆′∣∣
R ′

∥∥∥
2

2
−αr

〈
∆′, ∆|R ′

〉)
t + γr ‖∆‖2

2 (38)

0 ≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
t2 −2

(∥∥∥∆′∣∣
R ′

∥∥∥
2

2
−βr

〈
∆′, ∆|R ′

〉)
t + γr ‖∆‖2

2 . (39)

Since the right-hand sides of (38) and (39) are quadratics in t and always non-negative for all values

of t ∈ R, their discriminants cannot be positive. Thus we have

(∥∥∥∆′∣∣
R ′

∥∥∥
2

2
−αr

〈
∆′, ∆|R ′

〉)2

− γ2
r

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
‖∆‖2 ≤ 0

(∥∥∥∆′∣∣
R ′

∥∥∥
2

2
−βr

〈
∆′, ∆|R ′

〉)2

− γ2
r

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
‖∆‖2 ≤ 0,

which yield the desired result.

Corollary 2. The inequality

∥∥∥∆′∣∣
R ′

∥∥∥
2
≥ βr

∥∥∥∆|R ′

∥∥∥
2
− γr

∥∥∥∆|R \R ′

∥∥∥
2
,

holds for R ′ ⊆ R .

Proof It follows from (32) and (23) that

−
∥∥∥∆′∣∣

R ′

∥∥∥
2

2
+α2

r

∥∥∥∆|R ′

∥∥∥
2

2
=−

∥∥∥∆′∣∣
R ′

∥∥∥
2

2
+αr

〈
∆′,∆|R ′

〉
+αr

[
αr

∥∥∥∆|R ′

∥∥∥
2

2
−
〈

∆′,∆|R ′

〉]

≤ γr

∥∥∥∆′∣∣
R ′

∥∥∥
2
‖∆‖2 +αrγr

∥∥∥∆|R ′

∥∥∥
2
‖∆‖2 .

Therefore, after straightforward calculations we get

∥∥∥∆′∣∣
R ′

∥∥∥
2
≥ 1

2

(
−γr ‖∆‖2 +

∣∣∣2αr

∥∥∥∆|R ′

∥∥∥
2
− γr ‖∆‖2

∣∣∣
)

≥ αr

∥∥∥∆|R ′

∥∥∥
2
− γr ‖∆‖2

≥ βr

∥∥∥∆|R ′

∥∥∥
2
− γr

∥∥∥∆|R \R ′

∥∥∥
2
.
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Proposition 5. Suppose that K is a subset of R c with at most k elements. Then we have

∥∥∥∆′∣∣
K

∥∥∥
2
≤ γk+r ‖∆‖2 .

Proof Using (21) for any t ∈ R we can write

βk+r (x1)
∥∥∥∆′∣∣

K

∥∥∥
2

2
t2 ≤ B f

(
x1 + t ∆′∣∣

K
‖ x1

)
≤ αk+r (x1)

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 (40)

βk+r (x2)
∥∥∥∆′∣∣

K

∥∥∥
2

2
t2 ≤ B f

(
x2 − t ∆′∣∣

K
‖ x2

)
≤ αk+r (x2)

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 (41)

and similarly

βk+r (x1)
∥∥∥∆+t ∆′∣∣

K

∥∥∥
2

2
≤ B f

(
x2−t ∆′∣∣

K
‖ x1

)
≤ αk+r (x1)

∥∥∥∆+t ∆′∣∣
K

∥∥∥
2

2
(42)

βk+r (x2)
∥∥∥∆+t ∆′∣∣

K

∥∥∥
2

2
≤ B f

(
x1+t ∆′∣∣

K
‖ x2

)
≤ αk+r (x2)

∥∥∥∆+t ∆′∣∣
K

∥∥∥
2

2
. (43)

By subtracting the sum of (42) and (43) from that of (40) and (41) we obtain

βk+r

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 −αk+r

∥∥∥∆+t ∆′∣∣
K

∥∥∥
2

2
≤−2t

〈
∆′, ∆′∣∣

K

〉
−
〈
∆′,∆

〉

≤ αk+r

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 −βk+r

∥∥∥∆+t ∆′∣∣
K

∥∥∥
2

2
. (44)

Note that
〈
∆′, ∆′|K

〉
=
∥∥∆′|K

∥∥2

2
and

〈
∆, ∆′|K

〉
= 0. Therefore, (22) and (44) imply

0 ≤ γk+r

∥∥∥∆′∣∣
K

∥∥∥
2

2
t2 ±2

∥∥∥∆′∣∣
K

∥∥∥
2

2
t + γk+r ‖∆‖2

2 (45)

hold for all t ∈ R. Hence, as quadratic functions of t, the right-hand side of (45) cannot have a

positive discriminant. Thus we must have

∥∥∥∆′∣∣
K

∥∥∥
4

2
− γ2

k+r ‖∆‖2
2

∥∥∥∆′∣∣
K

∥∥∥
2

2
≤ 0,

which yields the desired result.

Lemma 4. Let R denote supp(x̂−x⋆). Then we have

‖(x̂−x⋆)|Zc‖2
≤ γ2s (x̂,x

⋆)+γ4s (x̂,x
⋆)

β2s (x̂,x
⋆)

‖x̂−x⋆‖2+

∥∥∥∇ f (x
⋆)
∣∣
R\Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s (x̂,x
⋆)

.

Proof Given that Z = supp(z2s) and |R | ≤ 2s we have

∥∥∥z|R
∥∥∥

2
≤ ‖z|Z‖2

. Hence

∥∥∥z|R \Z

∥∥∥
2
≤
∥∥∥z|Z\R

∥∥∥
2
. (46)
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Furthermore, using Corollary 2 we can write

∥∥∥z|R \Z

∥∥∥
2
=
∥∥∥∇ f (x̂)

∣∣
R \Z

∥∥∥
2

≥
∥∥∥(∇ f (x̂)−∇ f (x

⋆))
∣∣
R \Z

∥∥∥
2
−
∥∥∥∇ f (x

⋆)
∣∣
R \Z

∥∥∥
2

≥β2s (x̂,x
⋆)
∥∥∥(x̂−x⋆)|R\Z

∥∥∥
2
− γ2s (x̂,x

⋆)
∥∥∥(x̂−x⋆)|R ∩Z

∥∥∥
2
−
∥∥∥∇ f (x

⋆)
∣∣
R\Z

∥∥∥
2

≥β2s (x̂,x
⋆)
∥∥∥(x̂−x⋆)|R \Z

∥∥∥
2
− γ2s (x̂,x

⋆)‖x̂−x⋆‖2−
∥∥∥∇ f (x

⋆)
∣∣
R\Z

∥∥∥
2
. (47)

Similarly, using Proposition 5 we have

∥∥∥z|Z\R

∥∥∥
2
=
∥∥∥∇ f (x̂)

∣∣
Z\R

∥∥∥
2
≤
∥∥∥(∇ f (x̂)−∇ f (x

⋆))
∣∣
Z\R

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

≤ γ4s (x̂,x
⋆)‖x̂−x⋆‖2 +

∥∥∥∇ f (x
⋆)
∣∣
Z\R

∥∥∥
2
. (48)

Combining (46), (47), and (48) then yields

γ4s (x̂,x
⋆)‖x̂−x⋆‖2 +

∥∥∥∇ f (x
⋆)
∣∣
Z\R

∥∥∥
2
≥−γ2s (x̂,x

⋆)
∥∥∥(x̂−x⋆)|R ∩Z

∥∥∥
2

+β2s (x̂,x
⋆)
∥∥∥(x̂−x⋆)|R\Z

∥∥∥
2
−
∥∥∥∇ f (x

⋆)
∣∣
R\Z

∥∥∥
2
.

Note that (x̂−x⋆)|R \Z = (x̂−x⋆)|Zc . Therefore, we have

‖(x̂−x⋆)|Zc‖2
≤ γ2s (x̂,x

⋆)+γ4s (x̂,x
⋆)

β2s (x̂,x
⋆)

‖x̂−x⋆‖2+

∥∥∥∇ f (x
⋆)
∣∣
R\Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s (x̂,x
⋆)

.

Lemma 5. The vector b given by

b = argmin
x

f (x) s.t. x|T c = 0 (49)

satisfies ‖x⋆|T −b‖2 ≤
‖∇ f (x

⋆)|
T
‖

2

β4s(x
⋆,b)

+
(

1+
γ4s(x

⋆,b)

β4s(x
⋆,b)

)
‖x⋆|T c‖2.

Proof Since b satisfies (49) we must have ∇ f (b)
∣∣
T
= 0. Then it follows from Corollary 2 that

‖x⋆|T −b‖2 = ‖(x⋆−b)|T ‖2

≤
∥∥∇ f (x

⋆)
∣∣
T

∥∥
2

β4s (x
⋆,b)

+
γ4s (x

⋆,b)

β4s (x
⋆,b)

‖x⋆|T c‖2 .
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Lemma 6. The estimation error of the current iterate (i.e., ‖x̂−x⋆‖2) and that of the next iterate

(i.e., ‖bs −x⋆‖2) are related by the inequality:

‖bs−x⋆‖2 ≤
(

1+
2γ4s (x

⋆,b)

β4s (x
⋆,b)

)
γ2s (x̂,x

⋆)+γ4s (x̂,x
⋆)

β2s (x̂
i,x⋆)

‖x̂−x⋆‖2+
2
∥∥∇ f (x

⋆)
∣∣
T

∥∥
2

β4s (x
⋆,b)

+

(
1+

2γ4s (x
⋆,b)

β4s (x
⋆,b)

) ∥∥∥∇ f (x
⋆)
∣∣
R \Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s (x̂,x
⋆)

.

Proof Since T c ⊆ Zc we have ‖x⋆|T c‖2 = ‖(x̂−x⋆)|T c‖2 ≤ ‖(x̂−x⋆)|Zc‖2
. Therefore, applying

Lemma 4 yields

‖x⋆|T c‖2 ≤
γ2s(x̂,x

⋆)+γ4s(x̂,x
⋆)

β2s(x̂,x
⋆)

‖x̂−x⋆‖2+

∥∥∥∇ f (x
⋆)
∣∣
R\Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s(x̂,x
⋆)

. (50)

Furthermore, as showed by (19) during the proof of Lemma 3, we again have

‖bs −x⋆‖2 ≤ 2‖x⋆|T −b‖2 +‖x⋆|T c‖2 .

Hence, it follows from Lemma 5 that

‖bs −x⋆‖2 ≤
2
∥∥∇ f (x

⋆)
∣∣
T

∥∥
2

β4s (x
⋆,b)

+

(
1+

2γ4s (x
⋆,b)

β4s (x
⋆,b)

)
‖x⋆|T c‖2 . (51)

Combining (50) and (51) yields

‖bs −x⋆‖2 ≤
(

1+
2γ4s (x

⋆,b)

β4s (x
⋆,b)

)
γ2s (x̂,x

⋆)+γ4s (x̂,x
⋆)

β2s (x̂,x
⋆)

‖x̂−x⋆‖2+
2
∥∥∇ f (x

⋆)
∣∣
T

∥∥
2

β4s (x
⋆,b)

+

(
1+

2γ4s (x
⋆,b)

β4s (x
⋆,b)

) ∥∥∥∇ f (x
⋆)
∣∣
R \Z

∥∥∥
2
+
∥∥∥∇ f (x

⋆)
∣∣
Z\R

∥∥∥
2

β2s (x̂,x
⋆)

.

Proof of Theorem 2. Let the vectors involved in the j-th iteration of the algorithm be denoted

by superscript ( j). Given that µ4s ≤ 3+
√

3
4

we have

γ4s

(
x̂( j),x⋆

)

β4s

(
x̂( j),x⋆

) ≤
√

3−1

4
and 1+

2γ4s

(
x⋆,b( j)

)

β4s

(
x⋆,b( j)

) ≤ 1+
√

3

2
,

that yield,
(

1+
2γ4s (x

⋆,b)

β4s (x
⋆,b)

)
γ2s

(
x̂( j),x⋆

)
+ γ4s

(
x̂( j),x⋆

)

β2s

(
x̂( j),x⋆

) ≤ 1+
√

3

2
× 2γ4s

(
x̂( j),x⋆

)

β4s

(
x̂( j),x⋆

)

≤ 1+
√

3

2
×

√
3−1

2

=
1

2
.
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Therefore, it follows from Lemma 6 that

∥∥∥x̂
( j+1) −x⋆

∥∥∥
2
≤ 1

2

∥∥∥x̂( j)−x⋆
∥∥∥

2
+

3+
√

3

ε

∥∥∇ f (x
⋆)
∣∣
I

∥∥
2
.

Applying this inequality recursively for j = 0,1, · · · , i−1 then yields

‖x̂−x⋆‖2 ≤ 2−i ‖x⋆‖2 +
6+2

√
3

ε

∥∥∇ f (x
⋆)
∣∣
I

∥∥
2
,

which is the desired result.
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