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Abstract
Classifiers are often used to detect miscreant activities. We study how an adversary can system-
atically query a classifier to elicit information that allows the attacker to evade detection while
incurring a near-minimal cost of modifying their intended malfeasance. We generalize the theory
of Lowd and Meek (2005) to the family of convex-inducing classifiers that partition their feature
space into two sets, one of which is convex. We present query algorithms for this family that con-
struct undetected instances of approximately minimal costusing only polynomially-many queries
in the dimension of the space and in the level of approximation. Our results demonstrate that near-
optimal evasion can be accomplished for this family withoutreverse engineering the classifier’s
decision boundary. We also consider generalℓp costs and show that near-optimal evasion on the
family of convex-inducing classifiers is generally efficient for both positive and negative convexity
for all levels of approximation ifp= 1.

Keywords: query algorithms, evasion, reverse engineering, adversarial learning

1. Introduction

A number of systems and security engineers have proposed the use of machine learning to detect
miscreant activities in a variety of applications; for example, spam, intrusion,virus, and fraud de-
tection. However, all known detection techniques have blind spots: classes of miscreant activity
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that fail to be detected. While learning allows the detection algorithm to adapt over time, real-world
constraints on the learner typically allow an adversary to programmatically findvulnerabilities. We
consider how an adversary can systematically discover blind spots by querying a fixed or learning-
based detector to find a low cost (for some cost function) instance that thedetector does not filter.
As a motivating example, consider a spammer who wishes to minimally modify a spam message so
it is not classified as a spam (here, cost is a measure of how much the spammust be modified). As a
second example, consider the design of an exploit that must avoid intrusiondetection systems (here,
cost may be a measure of the exploit’s severity). There are a variety of domain-specific mechanisms
an adversary can use to observe the classifier’s response to a query, or in other words, to query a
membership oracle of the filter; for example, the spam filter of a public email system can be ob-
served by creating a dummy account on that system and sending the queries to that account. By
observing the responses of the detector, the adversary can search for a modification while using as
few queries as possible.

The idealized theoretical problem of near-optimal evasion was first posed by Lowd and Meek
(2005). We continue their investigation by generalizing their results to convex-inducing classifiers—
classifiers that partition feature space into two sets, one of which is convex. The family of convex-
inducing classifiers is a particularly natural set to examine, as it includes the family of linear
classifiers studied by Lowd and Meek as well as anomaly detection classifiers using bounded
PCA (Lakhina et al., 2004), anomaly detection algorithms that use hyper-sphere boundaries (Bishop,
2006), one-class classifiers that predict anomalies by thresholding the log-likelihood of a log-
concave (or uni-modal) density function, and quadratic classifiers with a decision function of the
form x⊤Ax +b⊤x+ c≥ 0 if A is semidefinite (see Boyd and Vandenberghe, 2004, Chapter 3), to
name a few. Furthermore, the family of convex-inducing classifiers also includes more complicated
bodies such as the countable intersection of halfspaces, cones, or balls.

We also show that near-optimal evasion does not require reverse engineering the classifier’s
decision boundary, which is the approach taken by Lowd and Meek (2005) for evading linear classi-
fiers in a continuous domain. Our algorithms for evading convex-inducing classifiers do not require
fully estimating the classifier’s boundary. Instead, we directly search fora minimal-cost evading
instance. Since our algorithms require only polynomially-many queries, while reverse engineering
the general convex case is hard (see Rademacher and Goyal, 2009),our algorithms witness a sep-
aration between the complexities of reverse engineering and evasion. In the special case of linear
classifiers, our algorithms achieve better query complexity than the previously-published reverse-
engineering technique. Finally, we also extend near-optimal evasion to generalℓp costs. For these
costs, we show that our algorithms can also be used for near-optimal evasion, but are generally not
efficient. However, in the cases when our algorithms are not efficient, weshow that there is no
efficient query-based algorithm.

A preliminary version of this paper was previously published as the report(Nelson et al., 2010b)
extending our earlier work (Nelson et al., 2010a). This paper is organized as follows. We overview
past work related to near-optimal evasion in the remainder of this section. InSection 2, we formalize
the near-optimal evasion problem, and review Lowd and Meek’s definitionsand results. We present
algorithms for evasion that are near-optimal under weightedℓ1 costs in Section 3, and we consider
minimizing generalℓp costs in Section 4. We conclude the paper by discussing future directions for
near-optimal evasion in Section 5.
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1.1 Related Work

Lowd and Meek (2005) first explored near-optimal evasion and developed a method that reverse
engineered linear classifiers in a continuous domain. Our approach generalizes that result and im-
proves upon it in three significant ways.

• We consider a more general family of classifiers: the family of convex-inducing classifiers
that partition the space of instances into two sets, one of which is convex. This family sub-
sumes the family of linear classifiers considered by Lowd and Meek.

• Our approach does not fully estimate the classifier’s decision boundary (which is generally
hard; see Rademacher and Goyal 2009) or reverse-engineer the classifier’s state. Instead,
we directly search for an instance that the classifier labels as negative and is close to the
desired attack instance (an evading instance of near-minimal cost). Lowd and Meek previ-
ously demonstrated a direct search technique for linear classifiers in Boolean spaces, but that
technique is not applicable to the classifiers we consider.

• Even though our algorithms find solutions for a more general family of classifiers, our algo-
rithms still use only polynomially-many queries in the dimension of the feature space and
the accuracy of the desired approximation. Moreover, ourK-STEP MULTI L INESEARCH

(Algorithm 3) solves the linear case with asymptotically fewer queries than the previously-
published reverse-engineering technique.

Dalvi et al. (2004) use a game-theoretic approach to preemptively patch acost-sensitive naive
Bayes classifier’s blind spots. They construct a modified classifier designed to detect optimally
modified instances. Brückner and Scheffer (2009) and Kantarcioglu et al. (2009) have extended this
setting to larger families of classifiers and developed techniques to solve forequilibrium strategies to
their game. This prior research is complementary to query-based evasion;the near-optimal evasion
problem studies how an adversary can use queries to find blind spots of aclassifier that is unknown
but queryable whereas their game-theoretic approaches assume the adversary knows the classifier
and can optimize their evasion accordingly at each step of an iterated game.

A number of authors have studied evading sequence-based intrusion detector systems (IDSs) (Tan
et al., 2002; Wagner and Soto, 2002). In exploringmimicry attacks, these authors demonstrated that
real IDSs can be fooled by modifying exploits to mimic normal behaviors. These authors used
offline analysis of the IDSs to construct their modifications; by contrast, our modifications are opti-
mized by querying the classifier.

The field of active learning also studies a form of query-based optimization(Schohn and Cohn,
2000). As summarized by Settles (2009), the three primary approaches to active learning are mem-
bership query synthesis, stream-based selective sampling and pool-based sampling. Our work is
most closely related to the membership query synthesis subfield introduced byAngluin (1988)
in which the learner can request the label for any instance in feature space rather than for unla-
beled instances drawn from a distribution. However, while active learningand near-optimal evasion
are similar in their exploration of query strategies, the objectives for these two settings are quite
different—evasion approaches search for low-cost negative instances within a factor 1+ ε of an
optimal cost whereas active learning algorithms seek to obtain hypotheses with low generalization
error often in a PAC-setting (see Section 2.3 for a discussion on reverse-engineering approaches to
evasion and active learning). It is interesting to note, nonetheless, that results in active learning set-
tings (e.g., Dasgupta et al., 2009; Feldman, 2009) have also achieved polynomial query complexities
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in specific cases. However, we focus solely on the evasion objective, and we leave the exploration
of relationships between our results and those in active learning to future work.

Another class of related techniques that use query-based optimization arenon-gradient global
optimization methods often referred to as direct search. Simple examples of these techniques in-
clude bisection and golden-section search methods, for finding roots andextrema of univariate
functions, and derivative approximation approaches such as the secant method and interpolation
methods (e.g., Burden and Faires, 2000). Combinations of these approaches include Dekker’s and
Brent’s algorithms (e.g., Brent, 1973), which exhibit superlinear convergence under certain condi-
tions on the query function; that is, the number of queries is inversely quadratic in the desired error
tolerance. However, while these approaches can be adapted to multiple dimensions, their query
complexity grows exponentially with the dimension. Other approaches include the simplex method
of Nelder and Mead (1965) and theDIRECT search algorithm introduced by Jones et al. (1993)
(refer to Jones, 2001 and Kolda et al., 2003 for surveys of direct search methods), however, we
are unaware of query bounds for these methods. While any direct search methods can be adapted
for near-optimal evasion, these methods were designed to optimize an irregular function in a regular
domain with few dimensions whereas the near-optimal evasion problem involves optimizing regular
known functions (the cost function) over an unknown, possibly irregular, and high-dimensional do-
main (the points labeled as negative by the classifier). The methods we present specifically exploit
the regular structure ofℓp costs and of the convex-inducing classifiers to achieve near-optimality
with only polynomially-many queries.

2. Problem Setup

We begin by introducing our notation and assumptions. First, we assume that instances are rep-
resented inD-dimensional Euclideanfeature space1 X = ℜD such as for some intrusion detection
systems (e.g., Wang and Stolfo, 2004). Each component of an instancex ∈ X is a featurewhich
we denote asxd. We useδd to denote each coordinate vector of the form(0, . . . ,1, . . . ,0) with a 1
only at thedth feature. We assume the feature space representation is known by the adversary and
there are no restrictions on the adversary’s queries; that is, any pointx in feature spaceX can be
queried by the adversary to learn the classifier’s prediction at that point.These assumptions may
not be true in every real-world setting (for instance, spam detectors areoften defined with discrete
features and designers often attempt to hide or randomize their feature set;for example, see Wang
et al., 2006), but they allow us to investigate strategies taken by a worst-case adversary. We revisit
these assumptions in Section 5.

We further assume the target classifierf belongs to a family of classifiersF . Any classifier
f ∈ F is a mappingf : X → Y from feature spaceX to its response spaceY . We assume the
adversary’s attack will be against a fixedf so the learning method and the training data used to
selectf are irrelevant. We assume the adversary does not knowf but knows its familyF . We also
restrict our attention to binary classifiers withY = {'−', '+'}.

We assumef ∈ F is deterministic and so it partitionsX into two sets—the positive classX+
f =

{x ∈ X | f (x) = '+'} and the negative classX−f = {x ∈ X | f (x) = '−'}. We take the negative set
to benormal instances. We assume that the adversary is aware of at least one instance in each class,

1. Lowd and Meek also consider integer and Boolean-valued feature spaces and derive results for several classes of
learners in these discrete-valued spaces.

1296



QUERY STRATEGIES FOREVADING CONVEX-INDUCING CLASSIFIERS

x− ∈X−f andxA∈X+
f , and can observef (x) for anyx by issuing amembership query(see Section 5

for a more detailed discussion).

2.1 Adversarial Cost

We assume the adversary has a notion of utility over the feature space, which we quantify with a cost
functionA : X → ℜ0+ (the non-negative reals); for example, for a spammer, this could be a string
edit distance on email messages. The adversary wishes to optimizeA over the negative class,X−f ;
for example, the spammer wants to send spam that will be classified as normal email ('−') rather
than as spam ('+'). We assume this cost function is a distance to some target instancexA ∈ X+

f that
is most desirable to the adversary. We focus on the general class of weightedℓp (0< p≤ ∞) cost
functions relative to the targetxA given by

A(c)
p
(
x−xA)=

(
D

∑
d=1

cd
∣
∣xd−xA

d

∣
∣
p

)1/p

, (1)

where 0< cd < ∞ is the relative cost the adversary associates with altering thedth feature. When
the relative costs are uniform,cd = 1 for all d, we use the simplified notationAp to refer to the
cost function. Similarly, when referring to a generic weighted cost function with weightsc, we use
the notationA(c). We also consider the cases when some features havecd = 0 (adversary doesn’t
care about thedth feature) orcd = ∞ (adversary requires thedth feature to matchxA

d). We use
BC (A;y) = {x ∈ X | A(x−y)≤C} to denote the cost ball (or sublevel set) centered aty with cost
no more than the thresholdC. For instance,BC

(
A1;xA

)
is the set of instances that do not exceed

an ℓ1 cost ofC from the targetxA. For convenience, we also useBC (A) , BC
(
A;xA

)
to denote

theC-cost-ball ofA re-centered at the adversary’s target,xA, since we focus on costs relative to this
instance. Unless stated otherwise, we take “ℓ1 cost” to mean a weightedℓ1 cost in the sequel.

Unfortunately,ℓp costs do not include many interesting costs such as string edit distances for
spam and other real-world settings, such as the intrusion detection example from above where there
may be no natural notion of distance between points. Nevertheless, the objective of this paper is
not to provide practical evasion algorithms but rather to understand the theoretic capabilities of an
adversary on the analytically tractable, albeit practically restrictive, family of ℓp costs. Weighted
ℓ1 costs are particularly appropriate for adversarial problems in which the adversary is interested
in some features more than others and his cost is assessed based on the degree to which a feature
is altered. Moreover, theℓ1-norm is a natural measure for a word-level edit distance for email
spam, where larger weights model tokens that are more costly to remove (e.g.,a payload URL). In
Section 3, we focus on the weightedℓ1 costs studied by Lowd and Meek before exploring general
ℓp costs in Section 4. In the latter case, our discussion focuses on uniform weights for ease of
exposition, but the results also extend to the cost-sensitive case as presented for weightedℓ1 costs.

Lowd and Meek (2005) defineminimal adversarial cost (MAC)of a classifierf to be

MAC(f ,A), inf
x∈X−f

[
A
(
x−xA)] ;

that is, the greatest lower bound on the cost obtained by any negative instance. They further define
a data point to be anε-approximateinstance of minimal adversarial cost (ε-IMAC) if it is a negative
instance with a cost no more than a factor(1+ε) of theMAC; that is, everyε-IMAC is a member of
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the set
ε-IMAC(f ,A),

{

x ∈ X−f
∣
∣
∣ A
(
x−xA)≤ (1+ ε) ·MAC (f ,A)

}

. (2)

The adversary’s goal is to find anε-IMAC efficiently, while issuing as few queries as possible.

2.2 Search Terminology

The notion of near optimality introduced in Equation (2) is that ofmultiplicative optimality; that
is, anε-IMAC must have a cost within a factor of(1+ ε) of theMAC. However, the results of this
paper can also be immediately adapted foradditive optimalityin which we seek instances with cost
no more thanη > 0 greater than theMAC. To differentiate between these notions of optimality,
we will use the notationε-IMAC(∗) to refer to the set in Equation (2) and define an analogous set
η-IMAC(+) for additive optimality as

η-IMAC(+) (f ,A),
{

x ∈ X−f
∣
∣
∣ A
(
x−xA)≤ η+MAC (f ,A)

}

. (3)

We use the termsε-IMAC(∗) andη-IMAC(+) to refer both to the sets defined in Equation (2) and (3)
as well as the members of these sets—the usage will be clear from the context.

Either notion of optimality allows us to efficiently use bounds on theMAC to find anε-IMAC(∗)

or anη-IMAC(+). Suppose there is a negative instance,x−, with costC−, and there is aC+ > 0
such that all instances with cost no more thanC+ are positive; that is,C+ ≤MAC(f ,A)≤C−. Then
the negative instancex− is ε-multiplicatively optimal ifC−/C+ ≤ (1+ ε) whereas it isη-additively
optimal if C−−C+ ≤ η. In the sequel, we will consider algorithms that can achieve either additive
or multiplicative optimality via binary search. Namely, if the adversary can determine whether an
intermediate cost establishes a new upper or lower bound on theMAC, then binary search strategies
can iteratively reduce thet th gap between any boundsC−t andC+

t with the fewest steps. We now
provide common terminology for the binary search and in Section 3 we use convexity to establish a
new bound at each iteration.

Lemma 1 If an algorithm can provide bounds0<C+ ≤MAC(f ,A)≤C−, then this algorithm has

achieved(C−−C+)-additive optimality and(C−

C+ −1)-multiplicative optimality.

In thet th iteration of an additive binary search, theadditive gapbetween thet th bounds,C−t and
C+

t , is given byG(+)
t =C−t −C+

t with G(+)
0 defined accordingly by the initial boundsC−0 =C− and

C+
0 =C+. The search uses a proposal step ofCt = (C−t +C+

t )/2, a stopping criterion ofG(+)
t ≤ η

and achievesη-additive optimality in

L(+)
η =

⌈

log2

[

G(+)
0

η

]⌉

steps. In fact, binary search has the best worst-case query complexityfor achievingη-additive
optimality.

Binary search can also be used for multiplicative optimality by searching in exponential space.
Assuming thatC− ≥C+ > 0, we can rewrite our upper and lower bounds asC− = 2a andC+ = 2b,
and thus the multiplicative optimality condition becomesa−b≤ log2(1+ ε); that is, an additive
optimality condition. Thus, binary search on the exponent achievesε-multiplicative optimality and
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does so with the best worst-case query complexity. Themultiplicative gapof the t th iteration is
G(∗)

t = C−t /C+
t with G(∗)

0 defined accordingly by the initial boundsC−0 andC+
0 . The t th query

is Ct =
√

C−t ·C+
t , the stopping criterion isG(∗)

t ≤ 1+ ε and the search achievesε-multiplicative
optimality in

L(∗)
ε =







log2




log2

(

G(∗)
0

)

log2(1+ ε)











(4)

steps. Although both additive and multiplicative criteria are related, there aretwo differences be-
tween these notions of optimality.

First, multiplicative optimality only makes sense whenC+
0 is strictly positive whereas additive

optimality can still be achieved ifC+
0 = 0. TakingC+

0 > 0 is equivalent to assuming thatxA is in the
interior ofX+

f (a requirement for our algorithms to achieve multiplicative optimality). Otherwise,

whenxA is on the boundary ofX+
f , there is noε-IMAC(∗) for anyε > 0 unless there is some point

x∗ ∈ X−f with 0 cost. Practically though, the need for a lower bound is a minor hindrance—as we
demonstrate in Section 3.1.3, there is an algorithm that can efficiently establish alower boundC+

0
for anyℓp cost if such a lower bound exists.

Second, the additive optimality criterion is notscale invariant(i.e., any instancex† that satis-
fies the optimality criterion for costA also satisfies it forA′ (x) = s·A(x) for any s> 0) whereas
multiplicative optimality is scale invariant. Additive optimality is, however,shift invariant(i.e., any
instancex† that satisfies the optimality criterion for costA also satisfies it forA′ (x) = s+A(x) for
anys≥ 0) whereas multiplicative optimality is not. Scale invariance is more salient in near-optimal
evasion because if the cost function is also scale invariant (all proper norms are) then the optimality
condition is invariant to a rescaling of the underlying feature space; for example, a change in units
for all features. Thus, multiplicative optimality is a unitless notion of optimality whereas additive
optimality is not.

The following result states that additive optimality’s lack of scale invariance allows for the
feature space to be arbitrarily rescaled until any fixed level of additive optimality can no longer be
achieved; that is, the units of the cost determine whether a particular level of additive accuracy can
be achieved. By contrast multiplicative costs are unitless.

Proposition 2 Consider any hypothesis spaceF , target instancexA and cost function A. If there
exists somēε > 0 such that no efficient query-based algorithm can find anε-IMAC(∗) for any0<
ε≤ ε̄, then there is no efficient query-based algorithm that can find anη-IMAC(+) for any0< η≤
ε̄ ·MAC(f ,A). In particular consider a sequence of classifiers fn admitting unbounded MACs, and a
sequenceεn > 0 such that1/εn = o(MAC(fn,A)). Then if no general algorithm can efficiently find
anεn-IMAC(∗) on each fn then no general algorithm can efficiently find anηn-IMAC(+) for ηn→∞.

Proof Consider any classifierf ∈ F such thatMAC(f ,A) > 0. Suppose there exists somex ∈
η-IMAC(+) for someη > 0. Letε = η/MAC(f ,A) then by definition

A
(
x−xA)≤ η+MAC(f ,A) = (1+ ε)MAC(f ,A) ,

implying thatx ∈ ε-IMAC(∗). Then by the contrapositive, if noε-IMAC(∗) can be efficiently found
for any 0< ε≤ ε̄, then noη-IMAC(+) can be efficiently found for any 0< η≤ ε̄ ·MAC(f ,A). The
last result is an immediate corollary.
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The last statement is, in fact, applicable to many common settings. For instance, for any of the
weightedℓp costs (with 0< p≤ ∞ and 0< cd < ∞ for all d) the family of linear classifiers and the
family of hypersphere classifiers are both sufficiently diverse to yield such a sequence of classifiers
that admit unboundedMACs as required by the last statement. Thus, the family of convex-inducing
classifiers can also yield such a sequence. Moreover, as we show in Section 4, there are indeedℓp

costs for which there exists̄ε > 0 such that no efficient query-based algorithm can find anε-IMAC(∗)

for any 0< ε≤ ε̄. The consequence of this is that there is no general algorithm capable ofachieving
additive optimality for any fixedη with respect to the convex-inducing classifiers for theseℓp costs.

For the remainder of this paper, we will addressε-multiplicative optimality for anε-IMAC (ex-
cept where explicitly noted) and defineLε = L(∗)

ε andGt = G(∗)
t . Nonetheless, our algorithms can be

immediately adapted to additive optimality by simply changing the proposal step, stopping condi-
tion, and the definitions ofL(∗)

ε andGt ; the binary searches for additive and multiplicative optimality
differ in their proposal steps and stopping criteria only. Finally, while we express query complexity
in the sequel in terms of multiplicativeLε, note thatL(∗)

ε = Θ(log 1
ε ) and so in this way our query

complexities can be rewritten to directly depend onε.

2.3 Near-Optimal Evasion

Lowd and Meek (2005) introduce the concept ofadversarial classifier reverse engineering (ACRE)
learnability to quantify the difficulty of finding anε-IMAC instance for a particular family of clas-
sifiers,F , and a family of adversarial costs,A . Using our notation, their definition ofACREε-
learnable is

A set of classifiersF isACREε-learnable under a set of cost functionsA if an algorithm
exists such that for allf ∈ F andA ∈ A , it can find anx ∈ ε-IMAC(f ,A) using only
polynomially-many membership queries in terms of the dimensionD, the encoded size
of f , and the encoded size ofx+ andx−.

In this definition, Lowd and Meek use encoded size to refer to the length of the string of digits
used to encodef , x+, andx−. In generalizing their result, we slightly alter their definition of query
complexity. First, to quantify query complexity we use only the dimension,D, and the number of
steps,Lε, required by a univariate binary search to narrow the gap to within the desired accuracy.
By including Lε in our definition of query complexity, we do not require the encoded size ofx+

andx− sinceLε implicitly captures the size of the distance between these points as discussed above.
Second, we assume the adversary only has two initial pointsx− ∈ X−f andxA ∈ X+

f (the original

setting used a thirdx+ ∈ X+
f ): we restrict our setting to the case ofx+ = xA, yielding simpler search

procedures.2 Finally, our algorithms do not reverse engineer the decision boundary, so “ACRE”
would be a misnomer here. Instead we refer to the overall problem asNear-Optimal Evasionand
replaceACREε-learnable with the following definition ofε-IMAC searchable.

A family of classifiersF is ε-IMAC searchableunder a family of cost functionsA
if for all f ∈ F andA ∈ A , there is an algorithm that finds somex ∈ ε-IMAC(f ,A)

2. As is apparent in our algorithms, usingx+ = xA makes the attacker less covert since it is significantly easier to infer
the attacker’s intentions based on their queries. Covertness is not an explicit goal in ε-IMAC search, but it would be
a requirement of many real-world attackers. However, since our goal is not to design real attacks but rather analyze
the best possible attack so as to understand our classifier’s vulnerabilities, covertness can be ignored.
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using polynomially-many membership queries inD andLε. We will refer to such an
algorithm asefficient.

Our definition does not include the encoded size of the classifier,f , because our approach to
near-optimal evasion does not reverse engineer the classifier’s parameters. Unlike Lowd and Meek’s
approach for continuous spaces, our algorithms construct queries to provably find anε-IMAC with-
out reverse engineering the classifier’s decision boundary; that is, estimating the decision surface of
f or estimating the parameters that specify it. Efficient query-based reverse engineering forf ∈ F
is sufficient for minimizingA over the estimated negative space. However, generally reverse engi-
neering is an expensive approach for near-optimal evasion, requiring query complexity that is expo-
nential in the feature space dimension for general convex classes (Rademacher and Goyal, 2009),
while finding anε-IMAC need not be as we demonstrate in this paper.3 In fact, the requirements
for finding anε-IMAC differ significantly from the objectives of reverse-engineering approaches
such as active learning. Both approaches use queries to reduce the size of version spacêF ⊂ F ;
that is, the set of classifiers consistent with the adversary’s membership queries. However reverse-
engineering approaches minimize the expected number of disagreements between members of̂F .
To find anε-IMAC, by contrast, we need only provide a single instance,x† ∈ ε-IMAC(f ,A), for all
f ∈ F̂ , while leaving the classifier largely unspecified; that is, we need to show that

⋂
f∈F̂

ε-IMAC(f ,A) 6= /0 .

This objective allows the classifier to be unspecified in much ofX . We present algorithms forε-
IMAC search on a family of classifiers that generally cannot be efficiently reverse engineered—the
queries we construct necessarily elicit anε-IMAC only; the classifier itself will be underspecified
in large regions ofX so our techniques do not reverse engineer the classifier. Similarly, for linear
classifiers in Boolean spaces, Lowd and Meek demonstrated an efficientalgorithm for near-optimal
evasion that does not reverse engineer the classifier—it too searchesdirectly for anε-IMAC and it
shows that this family is 2-IMAC searchable forℓ1 costs with uniform feature weights,c.

3. Evasion of Convex Classes forℓ1 Costs

We generalizeε-IMAC searchability to the family ofconvex-inducing classifiersF convex that par-
tition the feature spaceX into a positive and negative class, one of which is convex. The convex-
inducing classifiers include the linear classifiers studied by Lowd and Meek(2005), anomaly detec-
tors using bounded PCA (Lakhina et al., 2004) and using hyper-sphere boundaries (Bishop, 2006),
one-class classifiers that predict anomalies by thresholding the log-likelihood of a log-concave
(or uni-modal) density function, and quadratic classifiers with a decision function of the form
x⊤Ax + b⊤x+ c ≥ 0 if A is semidefinite (see Boyd and Vandenberghe, 2004, Chapter 3). The
convex-inducing classifiers also include bodies such as any intersections of a countable number of
halfspaces, cones, or balls.

RestrictingF to be the family of convex-inducing classifiers simplifiesε-IMAC search. In
our approach to this problem, we divideF convex, the family of convex-inducing classifiers, into

3. Lowd and Meek (2005) also previously showed that the reverse-engineering technique of finding a feature’s sign
witness is NP-complete for linear classifiers with Boolean features but alsothat this family was nonetheless 2-IMAC
searchable.
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Figure 1: Geometry of convex sets andℓ1 balls. (a) If the positive setX+
f is convex, finding anℓ1

ball contained withinX+
f establishes a lower bound on the cost, otherwise at least one of

theℓ1 ball’s corners witnesses an upper bound. (b) If the negative setX−f is convex, we
can establish upper and lower bounds on the cost by determining whether or not anℓ1

ball intersects withX−f , but this intersection need not include any corner of the ball.

F convex,'−' andF convex,'+' corresponding to the classifiers that induce a convex setX−f or X+
f , re-

spectively (of course, linear classifiers belong to both). When the negative classX−f is convex (i.e.,

f ∈ F convex,'−'), the problem reduces to minimizing a (convex) functionA constrained to a convex
set—ifX−f were known to the adversary, then this would correspond to solving a convex program.

When the positive classX+
f is convex (i.e.,f ∈ F convex,'+'), however, our task is to minimize the

convex functionA outside of a convex set; this is generally a hard problem (cf. Section 4.1.4 where
we show that minimizing anℓ2 cost can require exponential query complexity). Nonetheless for
certain cost functionsA, it is easy to determine whether a particular cost ballBC (A) is completely
contained within a convex set. This leads to efficient approximation algorithms.

We construct efficient algorithms forquery-basedoptimization of the (weighted)ℓ1 costA(c)
1 of

Equation (1) for the family of convex-inducing classifiers. There is an asymmetry to this problem
depending on whether the positive or negative class is convex as illustrated in Figure 1. When the
positive set is convex, determining whether theℓ1 ball BC(A(c)

1 ) is a subset ofX+
f only requires

querying the vertices of the ball as depicted in Figure 1(a). When the negative set is convex, deter-
mining whetherBC(A(c)

1 )∩X−f = /0 is non-trivial since the intersection need not occur at a vertex as
depicted in Figure 1(b). We present an efficient algorithm for optimizing (weighted)ℓ1 costs when
X+

f is convex and a polynomial randomized algorithm for optimizing any convex cost whenX−f is
convex. In both cases, we consider only convex sets with non-empty interiors. The algorithms we
present achieve multiplicative optimality via the binary search strategies discussed in the previous
section. In the sequel, we use Equation (4) to defineLε andC−0 = A(c)

1

(
x−−xA

)
as an initial upper

bound on theMAC. We also assume there is someC+
0 > 0 that lower bounds theMAC.
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3.1 ε-IMAC Search for a ConvexX+
f

Solving theε-IMAC Search problem whenf ∈F convex,'+' is hard in the general case of a convex cost
A. Here we introduce algorithms for theℓ1 cost that solve the problem as a binary search. Namely,
given initial costsC+

0 andC−0 that bound theMAC, our algorithm can efficiently determine whether
BCt (A1) ⊂ X+

f for any intermediate costC+
t <Ct <C−t . If the ℓ1 ball is contained inX+

f , thenCt

becomes the new lower boundC+
t+1. OtherwiseCt becomes the new upper boundC−t+1. Since our

objective given in Equation (2) is to obtain multiplicative optimality, our steps will take the form
Ct =

√

C+
t ·C−t . We now explain how we exploit the properties of theℓ1 ball and convexity ofX+

f to

efficiently determine whetherBC (A1) is a subset ofX+
f for anyC. We also discuss practical aspects

of our algorithm and extensions to otherℓp cost functions.
The existence of an efficient query algorithm relies on three facts: (1)xA∈ X+

f ; (2) everyℓ1 cost

C-ball centered atxA intersects withX−f only if at least one of its vertices is inX−f ; and (3)C-balls

of ℓ1 costs only have 2·D vertices. The vertices of theℓ1 ball BC (A1) are axis-aligned instances
differing fromxA in exactly one feature (e.g., thedth feature) and can be expressed as

xA± C
cd
·δd , (5)

which belongs to theC-ball of ourℓ1 cost (the coefficientCcd
normalizes for the weightcd on thedth

feature). We now formalize the second fact as follows.

Lemma 3 For all C > 0, if there exists somex ∈ X−f that achieves a cost of C= A(c)
1

(
x−xA

)
, then

there is some feature d such that a vertex of the form of Equation(5) is in X−f (and also achieves
cost C by Equation 1).

Proof Suppose not; then there is somex∈ X−f such thatA(c)
1

(
x−xA

)
=C andx hasM ≥ 2 features

that differ fromxA (if x only differs in one feature it would be of the form of Equation 5). Let

{d1, . . . ,dM} be the differing features and letbdi = sign
(

xdi −xA
di

)

be the sign of the difference be-

tweenx andxA along thedi-th feature. For eachdi , let edi = xA+ C
cdi
·bdi ·δdi be a vertex of the form

of Equation (5) which has a costC (from Equation 1). TheM verticesedi form anM-dimensional
equi-cost simplex of costC on whichx lies; that is,x = ∑M

i=1 αi ·edi for some 0≤ αi ≤ 1. If all
edi ∈ X+

f , then the convexity ofX+
f implies that all points in their simplex are inX+

f and sox ∈ X+
f

which violates our premise. Thus, if any instance inX−f achieves costC, there is always at least one
vertex of the form Equation (5) inX−f that also achieves costC.

As a consequence, if all such vertices of anyC ballBC (A1) are positive, then allx with A(c)
1 (x)≤

C are positive thus establishingC as a lower bound on theMAC. Conversely, if any of the vertices
of BC (A1) are negative, thenC is an upper bound onMAC. Thus, by simultaneously querying all
2·D equi-cost vertices ofBC (A1), we either establishC as a new lower or upper bound on theMAC.
By performing a binary search onC we iteratively halve the multiplicative gap between our bounds
until it is within a factor of 1+ ε. This yields anε-IMAC of the form of Equation (5).

A general form of this multiline search procedure is presented as Algorithm1 and depicted in
Figure 2. MULTI L INESEARCH simultaneously searches along the directions in a setW of search
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f
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Figure 2: The geometry of search. (a) Weightedℓ1 balls are centered around the targetxA and have
2 ·D vertices; (b) Search directions in multi-line search radiate fromxA to probe specific
costs; (c) In general, we leverage convexity of the cost function whensearching to evade.
By probing all search directions at a specific cost, the convex hull of thepositive queries
bounds theℓ1 cost ball contained within it.

directions that radiate from their origin atxA and that are vectors of unit cost; that is,A(w) = 1
for everyw ∈W . (We transform a given set of non-normalized search vectors{v} into unit search
vectors by simply applying a normalization constant ofA(v)−1 to each vector.) At each step of
MULTI L INESEARCH, at most|W | queries are issued in order to construct a bounding shell (i.e.,
the convex hull of these queries will either form an upper or lower boundon theMAC) to determine
whetherBC (A) ⊂ X+

f . Once a negative instance is found at costC, we cease further queries at
costC since a single negative instance is sufficient to establish a lower bound. Wecall this policy
lazy querying—a practice that will lead to better bounds for a worst-case classifier. Further, when
an upper bound is established for a costC (a negative vertex is found), our algorithm prunes all
directions that were positive at costC. This pruning is sound; by convexity, these pruned directions
are positive for all costs less than the new upper boundC on theMAC. Finally, by performing a
binary search on the cost, MULTI L INESEARCH finds anε-IMAC with no more than|W | ·Lε queries
but at least|W |+Lε queries. Thus, this algorithm isO (|W | ·Lε).

It is worth noting that, in its present form, MULTI L INESEARCH has two implicit assumptions.
First, we assume all search directions radiate from a common origin,xA, andA(0) = 0. Without
this assumption, the ray-constrained cost functionA(s·w) is still convex ins≥ 0 but not necessar-
ily monotonic as required for binary search. Second, we assume the costfunction A is a positive
homogeneous functionalong any ray fromxA; that is,A(s·w) = |s| ·A(w). This assumption al-
lows MULTI L INESEARCH to scale its unit search vectors to achieve the same scaling of their cost.
Although the algorithm could be adapted to eliminate these assumptions, the cost functions in Equa-
tion (1) satisfy both assumptions since they are norms centered atxA.

Algorithm 2 uses MULTI L INESEARCH for ℓ1 costs by takingW to be the vertices of the unit-
costℓ1 ball centered atxA. In this case, the search issues at most 2·D queries to determine whether
BC (A1) is a subset ofX+

f and so Algorithm 2 isO (Lε ·D). However, MULTI L INESEARCH does
not rely on its directions being vertices of theℓ1 ball although those vertices are sufficient to span
theℓ1 ball. Generally, MULTI L INESEARCH is agnostic to the configuration of its search directions
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Algorithm 1 MULTI -LINE SEARCH

MLS
(
W ,xA,x−,C+

0 ,C
−
0 ,ε
)

x∗← x−

t← 0
while C−t /C+

t > 1+ ε do
Ct ←

√

C+
t ·C−t

for all e ∈W do
Query: f t

e← f
(
xA+Ct ·e

)

if f t
e = '−' then

x∗← xA+Ct ·e
Prunei fromW if f t

i = '+'
break for-loop

end if
end for
C+

t+1←C+
t andC−t+1←C−t

if ∀e∈W f t
e = '+' then C+

t+1←Ct

elseC−t+1←Ct

t← t +1
end while
return: x ∗

Algorithm 2 CONVEX X+
f SET SEARCH

ConvexSearch
(
xA,x−,c,ε,C+

)

D← dim
(
xA
)

C−← A(c)
(
x−−xA

)

W ← /0
for i = 1 toD do

ei ← 1
ci
·δi

W ←W ∪
{
±ei
}

end for
return: MLS

(
W ,xA,x−,C+,C−,ε

)

Figure 3: Algorithms for multi-line search. Algorithm 1 is a generic procedurefor performing si-
multaneous binary searches along multiple search directions emanating fromxA; each di-
rection,e∈W , must be a unit-cost direction. Algorithm 2 uses this MULTI L INESEARCH

procedure to minimize weightedℓ1 costs when the positive class of a classifier is convex.
For this procedure, every weight,ci , must be on the range(0,∞) although extensions are
discussed in Section 3.1.3.

and can be adapted for any set of directions that can provide a sufficiently tight bound on the cost
using the convexity ofX+

f (see Section 4.1.1 for the bounding requirements the search directions
must satisfy). However, as we show in Section 4.1, the number of search directions required to
adequately bound anℓp cost ball forp> 1 can be exponential inD.

3.1.1 K-STEPMULTI -L INE SEARCH

Here we present a variant of the multi-line search algorithm that better exploits pruning to reduce
the query complexity of Algorithm 1—we call this variantK-STEP MULTI L INESEARCH. The
MULTI L INESEARCH algorithm consists of 2· |W | simultaneous binary searches (a breadth-first
strategy). This strategy prunes directions most effectively when the convex body is asymmetrically
elongated relative toxA but fails to prune for symmetrically rounded bodies. We could instead
search each direction sequentially (a depth-first strategy) and still obtaina worst case ofO (Lε ·D)
queries. This strategy uses fewer queries to shrink the cost gap on symmetrically rounded bodies
but is unable to do so for asymmetrically elongated bodies. We therefore propose an algorithm that
mixes these strategies.
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At each phase, theK-STEPMULTI L INESEARCH (Algorithm 3) chooses a single directioneand
queries it forK steps to generate candidate boundsB− andB+ on theMAC. The algorithm makes
substantial progress towards reducingGt without querying other directions (a depth-first strategy).
It then iteratively queries all remaining directions at the candidate lower bound B+ (a breadth-first
strategy). Again we use lazy querying and stop as soon as a negative instance is found sinceB+

is then no longer a viable lower bound. In this case, although the candidate bound is invalidated,
we can still prune all directions that were positive atB+. Thus, in every iteration, either the gap is
substantially decreased or at least one search direction is pruned. We show that forK = ⌈√Lε⌉, the
algorithm achieves a delicate balance between the usual breadth-first and depth-first approaches to
attain a better worst-case complexity than either.

Theorem 4 Algorithm 3 will find anε-IMAC with at mostO
(
Lε +
√

Lε|W |
)

queries when K=
⌈√Lε⌉.

The proof of this theorem appears in Appendix A. As a consequence ofTheorem 4, finding an
ε-IMAC with Algorithm 3 for anℓ1 cost requiresO

(
Lε +
√

LεD
)

queries. Further, Algorithm 2 can
incorporateK-STEP MULTI L INESEARCH directly by replacing its function calls to MULTI L INE-
SEARCH with K-STEPMULTI L INESEARCH and usingK = ⌈√Lε⌉.

3.1.2 LOWER BOUND

Here we find a lower bound on the number of queries required by any algorithm to find anε-IMAC
whenX+

f is convex for any convex cost function (e.g., Equation 1 forp≥ 1). Below we present a
theorem that provides a lower bound for multiplicative optimality (for additive optimality, there is
an analogous lower bound for any 0< η <C−0 −C+

0 ). Notably, since anε-IMAC uses multiplicative
optimality, we incorporate a boundC+

0 > 0 on theMAC into our statement.

Theorem 5 For any D> 0, any positive convex function A: ℜD→ℜ+, any initial bounds0<C+
0 <

C−0 on the MAC, and0< ε < C−0
C+

0
−1, all algorithms must submit at leastmax{D,L(∗)

ε }membership

queries in the worst case to beε-multiplicatively optimal onF convex,'+'.

The proof of this result is in Appendix B. In this theorem, we restrictε to the interval
(

0, C−0
C+

0
−1
)

since, outside of this interval, the strategy is trivial. Forε= 0 no approximation algorithm terminates

and forε≥ C−0
C+

0
−1, x− is anε-IMAC, so no queries are required.

Theorem 5 shows thatε-multiplicative optimality requiresΩ(L(∗)
ε +D) queries. Thus, we see

that ourK-STEPMULTI L INESEARCH algorithm (Algorithm 3) has close to the optimal query com-
plexity for ℓ1-costs with itsO(Lε +

√
LεD) queries. This lower bound also applies to anyℓp cost

with p> 1, but in Section 4 we show lower bounds forp> 1 that substantially improve this result.

3.1.3 SPECIAL CASES

Here we present a number of special cases that require minor modifications to Algorithms 1 and 3
primarily as preprocessing steps.

Revisiting Linear Classifiers:Lowd and Meek originally developed a method for reverse engi-
neering linear classifiers for anℓ1 cost. First their method isolates a sequence of points fromx− to xA

1306



QUERY STRATEGIES FOREVADING CONVEX-INDUCING CLASSIFIERS

Algorithm 3 K-STEP MULTI -LINE SEARCH

KMLS
(
W ,xA,x−,C+

0 ,C
−
0 ,ε,K

)

x∗← x−

t← 0
while C−t /C+

t > 1+ ε do
Choose a directione∈W
B+←C+

t

B−←C−t
for K stepsdo

B←
√

B+ ·B−
Query: fe← f

(
xA+B·e

)

if fe = '+' then B+← B
elseB−← B and x∗← xA+B·e

end for
for all i ∈W \{e} do

Query: f t
i ← f

(
xA+(B+) · i

)

if f t
i = '−' then

x∗← xA+(B+) · i
Prunek fromW if f t

k = '+'
break for-loop

end if
end for
C−t+1← B−

if ∀i ∈W f t
i = '+' then C+

t+1← B+

elseC−t+1← B+

t← t +1
end while
return: x ∗

Figure 4: Algorithm for multi-line search. It performs simultaneous binary searches along multiple
unit search directions emanating fromxA. Algorithm 3 is asympototically more efficient
than Algorithm 1 whenK = ⌈√Lε⌉ and can be used as a substitute for it in Algorithm 2.

that cross the classifier’s boundary and then the method estimates the hyperplane’s parameters using
D binary line searches. However, as a consequence of the ability to efficiently minimize our objec-
tive whenX+

f is convex, we immediately have an alternative method for linear classifiers. Because
linear classifiers are a special case of convex-inducing classifiers, Algorithm 2 can be applied, and
ourK-STEPMULTI L INESEARCH algorithm improves on complexity of Lowd and Meek’s reverse-
engineering technique’sO (Lε ·D) queries and applies to a broader family of classifiers.

While Algorithm 2 has superior complexity, it uses 2·D search directions rather than theD
directions used in the approach of Lowd and Meek, which may require ourtechnique to issue more
queries in some practical settings. However, for some restrictive classifier families, it is also pos-
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sible to eliminate search directions proved to be infeasible based on the current set of queries. For
instance, given a setW of search directions,t queries

{
xi
}t

i=1 and their corresponding responses
{

yi
}t

i=1, a search directione can be eliminated fromW if for all C+
t ≤ α <C−t there does not exist

any classifierf ∈ F consistent with all previous queries (i.e.,f (x−) = '−', f
(
xA
)
= '+' and for all

i ∈ {1, . . . , t}, f
(
xi
)
= yi) that also satisfiesf (α ·e) = '−' andf (α · i) = '+' for everyi ∈W \ {e}.

That is,e is feasible if and only if it is the only search direction among the set of remainingsearch
directions,W , that would be classified as a negative for a costα by some consistent classifier. Fur-
ther, since subsequent queries only restrict the feasible space ofα and the set of consistent classifiers
F̂ , pruning these infeasible directions is sound for the remainder of the search.

For restrictive families of convex-inducing classifiers, these feasibility conditions can be effi-
ciently verified and may be used to prune search directions without issuing further queries. In fact,
for the family of linear classifiers written asf (x) = sign(w⊤x+b) for a normal vectorw and dis-
placementb, the above conditions become a set of linear inequalities along with quadratic inequal-
ities corresponding to the constraint involving search directions. This canbe cast as the following
optimization program with respect toα, w andb:

min
α,w,b

α ·w⊤e+b

s.t.

α ∈ [C+
t ,C−t )

w⊤x−+b ≤ 0
w⊤xA+b ≥ 0

yi(w⊤xi +b) ≥ 0 ∀ i ∈ {1, . . . , t}
α ·w⊤i+b ≥ 0 ∀ i ∈W \{e}.

If the resulting minimum is less than zero, directione is feasible, otherwise,e can be pruned.
Such programs can be efficiently solved and may allow the adversary to rapidly eliminate infeasible
search directions without issuing additional queries. However, refiningthese pruning procedures
further is beyond the scope of this paper.

ExtendingMULTI L INESEARCH Algorithms to Weights cd = ∞ or cd = 0: In Algorithm 2, we
reweighted thedth axis-aligned directions by a factor1cd

to make unit cost vectors by implicitly as-
sumingcd ∈ (0,∞). The case of immutable features wherecd = ∞ is dealt with by simply removing
those features from the set of search directionsW used in the MULTI L INESEARCH. In the case
of useless or unconstrained features whencd = 0, MULTI L INESEARCH-like algorithms no longer
ensure near-optimality because they implicitly assume that cost balls are bounded sets. Ifcd = 0,
thenB0(A) is no longer bounded and 0 cost can be achieved ifX−f anywhere intersects the subspace
spanned by the 0-cost features—this makes near-optimality unachievable unless a negative 0-cost
instance can be found. In the worst case, such an instance could be arbitrarily far in any direction
within the 0-cost subspace making search for such an instance intractable. Nonetheless, one pos-
sible search strategy is to assign all 0-cost features a non-zero weightthat decays quickly toward
0 (e.g.,cd = 2−t in the t th iteration) as we repeatedly rerun MULTI L INESEARCH on the altered
objective forT iterations. We will either find a negative instance that only alters 0-cost features
(and hence is a 0-IMAC), or it terminates with a non-zero cost instance, which is anε-IMAC if no
0-cost negative instances exist. This algorithm does not ensure near-optimality but may be suitable
for practical settings using some fixedT runs.

Lack of an Initial Lower Cost Bound:Thus far, to find anε-IMAC our algorithms have searched
between initial boundsC+

0 andC−0 , but, in general,C+
0 may not be known to a real-world adversary.
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We now present the SPIRALSEARCH algorithm (Algorithm 4) that efficiently establishes a lower
bound on theMAC if one exists. This algorithm performs a halving search on the exponent along
a single direction to find a positive example, then queries the remaining directions at this candidate
bound. Either the lower bound is verified or directions that were positive can be pruned for the
remainder of the search.

Algorithm 4 SPIRAL SEARCH

SpiralSearch
(
W ,xA,C−0

)

t← 0 andV ← /0
repeat

Choose a directione∈W
Removee fromW andV ← V ∪{e}
Query: fe← f

(

xA+C−0 ·2−2t ·e
)

if fe = '−' then
W ←W ∪{e} andV ← /0
t← t +1

end if
until W = /0
C+

0 ←C−0 ·2−2t

if t > 0 then C−0 ←C−0 ·2−2t−1

return: (V ,C+
0 ,C−0 )

Figure 5: Algorithm for establishing an initial lower bound on the cost.

At the t th iteration of SPIRALSEARCH, a direction is selected and queried at the candidate lower
bound of(C−0 )2

−2t
. If the query is positive, that direction is added to the setV of directions

consistent with the lower bound. Otherwise, all positive directions inV are pruned, a new upper
bound is established, and the candidate lower bound is reduced with an exponentially decreasing

exponent. By definition of theMAC, this algorithm will terminate aftert =
⌈

log2 log2
C−0

MAC(f ,A)

⌉

iterations. Further, in this algorithm, multiple directions are probed only during iterations with
positive queries and it makes at most one positive query for each direction. Thus, given that some
lower boundC+

0 > 0 does exist, SPIRALSEARCH will establish a lower bound withO (L′ε +D)
queries, whereL′ε is given by Equation (4) defined usingC+

0 = MAC(f ,A); the largest possible
lower bound.

This algorithm can be used as a precursor to any of the previous searches.4 Upon completion,
the upper and lower bounds it establishes have a multiplicative gap of 22t−1

for t > 0 or 2 fort = 0.
From the definition oft provided above in terms of theMAC, MULTI L INESEARCH can hence
proceed usingLε = L′ε. Further, the search directions pruned by SPIRALSEARCH are also invalid
for the subsequent MULTI L INESEARCH so the setV returned by SPIRALSEARCH will be used as
the initial setW for the subsequent search. Thus, the query complexity of the subsequent search is
the same as if it had started with the best possible lower bound.

4. If no lower bound on the cost exists, no algorithm can find anε-IMAC. As presented, this algorithm would not
terminate, but in practice the search would be terminated after sufficiently many iterations.
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Lack of a Negative Example:Our algorithms can also naturally be adapted to the case when
the adversary has no negative examplex−. This is accomplished by queryingℓ1 balls of doubly
exponentially increasing cost until a negative instance is found. During the t th iteration, we probe
along every search direction at a cost(C+

0 )2
2t

; either all probes are positive (and we have a new
lower bound) or at least one is negative and we can terminate the search.Once a negative example
is located (having probed forT iterations), we must have(C+

0 )2
2T−1

< MAC(f ,A)≤ (C+
0 )2

2T
; thus,

T =
⌈

log2 log2
MAC(f ,A)

C+
0

⌉

. We can subsequently perform MULTI L INESEARCH with C+
0 = 22T−1

and

C−0 = 22T
; that is, log2G0 = 2T−1. This precursor step requires at most|W | ·T queries to initialize

the MULTI L INESEARCH algorithm with a gap such thatLε =
⌈

(T−1)+ log2
1

log2(1+ε)

⌉

according

to Equation (4).
If there is neither an initial upper bound or lower bound, we proceed by probing each search

direction at unit cost using an additional|W | queries. We will subsequently have either an upper or
lower bound and can proceed accordingly.

3.2 ε-IMAC Learning for a ConvexX−f

Here, we minimize a convex cost functionA with bounded cost balls (we focus on weightedℓ1

costs in Equation 1) when the feasible setX−f is convex. Any convex function can be efficiently
minimized within a known convex set (e.g., using an ellipsoid or interior point method; see Boyd and
Vandenberghe 2004). However, in our problem, the convex set is onlyaccessible via membership
queries. We use a randomized polynomial algorithm of Bertsimas and Vempala (2004) to minimize
the cost functionA given an initial pointx− ∈ X−f . For any fixed cost,Ct , we use their algorithm

to determine (with high probability) whetherX−f intersects withBCt
(A); that is, whetherCt is a

new lower or upper bound on theMAC. With high probability, this approach can find anε-IMAC
in no more thanLε repetitions using binary search. The following theorem is the main result of this
section.

Theorem 6 Let cost function A be convex and have bounded balls; that is, boundedsublevel sets.
Let the feasible setX−f be convex and assume there is some r> 0 andy∈ X−f such thatX−f contains
the cost ballB r (A;y). Then given access to an oracle returning separating hyperplanes for the A
cost balls, Algorithm 7 will find anε-IMAC usingO∗

(
D5
)

queries with high probability.5

The proof of this result is outlined in the remainder of this section, and is based on Bertsimas
and Vempala (2004, Theorem 14). We first introduce their randomized ellipsoid algorithm, then we
elaborate on their procedure for efficient sampling from a convex body, and finally we present our
application to optimization. In this section, we focus only on weightedℓ1 costs (Equation 1) and
return to more general cases in Section 4.2.

3.2.1 INTERSECTION OFCONVEX SETS

Bertsimas and Vempala present a query-based procedure for determining whether two convex sets
(e.g.,X−f and theA1-ball of radiusCt) intersect. Their INTERSECTSEARCH procedure, which we

5. O∗ (·) denotes the standard complexity notationO (·) without logarithmic terms. The dependence onε is in these
logarithmic terms, see Bertsimas and Vempala (2004) for details.
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Algorithm 5 INTERSECTSEARCH

IntersectSearch
(
P 0,Q =

{
x j ∈ P 0

}
,xA,C

)

for s= 1 toT do
(1) Generate 2N samples

{
x j
}2N

j=1
Choosex fromQ
x j ← HitRun

(
P s−1,Q ,x j

)

(2) If any x j , A
(
x j −xA

)
≤ C terminate the for-

loop
(3) Put samples into 2 sets of sizeN
R ←

{
x j
}N

j=1 andS ←
{

x j
}2N

j=N+1

(4) zs← 1
N ∑x j∈R x j

(5) ComputeHzs using Equation (7)
(6) P s← P s−1∩Hzs

(7) Keep samples inP s

Q ←{x ∈ S ∧x ∈ P s}
end for
Return: the found[x j ,P s,Q ]; or No Intersect

Algorithm 6 HIT-AND-RUN

HitRun
(
P ,
{

y j
}
,x0
)

for i = 1 toK do
(1) Choose a random direction:

ν j ∼ N(0,1)
v← ∑ j ν j ·y j

(2) Sample uniformly alongv using
rejection sampling:
Chooseω̂ s.t. xi−1+ ω̂ ·v /∈ P
repeat

ω∼ Unif (0, ω̂)
xi ← xi−1+ω ·v
ω̂← ω

until x i ∈ P
end for
Return: xK

Figure 6: Algorithms used for the randomized ellipsoid algorithm of Bertsimas and Vempala. IN-
TERSECTSEARCH is used to find the intersection between a pair of convex sets:P 0 is
queryable andB provides has a separating hyperplane from Equation (7). Note that the
ROUNDING algorithm discussed in Section 3.2.2 can be used as a preprocessing step so
thatP 0 is near-isotropic and to obtain the samples forQ . TheHIT-AND-RUN algorithm
is used to efficiently obtain uniform samples from a bounded near-isotropicconvex set,
P , based on a set of uniform samples from it,

{
y j
}

, and a starting pointx0.

present as Algorithm 5, is a randomized ellipsoid method for determining whetherthere is an in-
tersection between two bounded convex sets:P is only accessible through membership queries and
B provides a separating hyperplane for any point outside it (for our problem these sets correspond
to X−f andBCt

(A1) respectively). They use efficient query-based approaches to uniformly sample
fromP to obtain sufficiently many samples such that cuttingP through the centroid of these samples
with a separating hyperplane fromB significantly reduces the volume ofP with high probability.
Their technique thus constructs a sequence of progressively smaller feasible setsP s⊂ P s−1 until
either the algorithm finds a point inP ∩B or it is highly likely that the intersection is empty.

Our problem reduces to finding the intersection betweenX−f andBCt
(A1). ThoughX−f may

be unbounded, we are minimizing a cost with bounded cost balls, so we can instead use the set
P 0 = X−f ∩B2R(A1;x−) (whereR= A

(
x−−xA

)
>Ct), which is a convex bounded subset ofX−f .

Since, by the triangle inequality, the ballB2R(A1;x−) centered atx− envelops all ofBCt (
A1;xA

)

centered atxA, the setP 0 contains the entirety of the desired intersection,X−f ∩BCt
(A1), if it exists.

We also assume that there is somer > 0 such that there is anr-ball contained in the convex setX−f ;
that is, there existsy ∈ X−f such that ther-ball centered aty, B r (A1;y), is a subset ofX−f . This
assumption both ensures thatX−f has a non-empty interior (a requirement for theHIT-AND-RUN
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Algorithm 7 CONVEX X−f SET SEARCH

SetSearch
(
P ,Q =

{
x j ∈ P

}
,xA,x−,C+

0 ,C
−
0 ,ε
)

x∗← x− andt← 0
while C−t /C+

t > 1+ ε do
Ct ←

√

C−t ·C+
t

[x∗,P ′,Q ′]← IntersectSearch
(
P ,Q ,xA,Ct

)

if intersection foundthen
C−t+1← A

(
x∗−xA

)
andC+

t+1←C+
t

P ← P ′ andQ ← Q ′

else
C−t+1←C−t andC+

t+1←Ct

end if
t← t +1

end while
Return: x∗

Figure 7: Algorithm that efficiently implements the randomized ellipsoid algorithm ofBertsimas
and Vempala. SETSEARCH performs a binary search for anε-IMAC using the randomized
INTERSECTSEARCH procedure to determine, with high probability, whether or notX−f
contains any points less than a specified cost,Ct . Note that the ROUNDING algorithm
discussed in Section 3.2.2 can be used as a preprocessing step so thatP is near-isotropic
and to obtain the samples forQ .

algorithm discussed below) and it provides a stopping condition for the overall intersection search
algorithm.

The foundation of Bertsimas and Vempala’s search algorithm is the capability tosample uni-
formly from an unknown but bounded convex body by means of theHIT-AND-RUN random walk
technique (Algorithm 6) introduced by Smith (1996). Given an instancex j ∈ P s−1, HIT-AND-RUN

selects a random directionv throughx j (we return to the selection ofv in Section 3.2.2). Since
P s−1 is a bounded convex set, the setΩ =

{
ω≥ 0

∣
∣ x j +ωv ∈ P s−1

}
is a bounded interval index-

ing all feasible points along directionv throughx j . Samplingω uniformly from Ω (using rejection
sampling) yields the next step of the random walkx j +ωv. As noted above, this random walk
will not make progress if the interior ofP s−1 is empty (which we preclude by assuming thatX−f
contains anr-ball), and efficient sampling also requires thatP s−1 is sufficiently round. However,
under the conditions discussed in Section 3.2.2, theHIT-AND-RUN random walk generates a sample
uniformly from the convex body afterO∗

(
D3
)

steps (Lov́asz and Vempala, 2004). We now detail
the overall INTERSECTSEARCH procedure (Algorithm 5) and then discuss the mechanism used to
maintain efficient sampling after each successive cut. It is worth noting thatAlgorithm 5 requires
P 0 to be in near-isotropic position and thatQ is a set of samples from it; these requirements are met
by using the ROUNDING algorithm of Lov́asz and Vempala discussed at the end of Section 3.2.2.

Randomized Ellipsoid Method:We useHIT-AND-RUN to obtain 2N samples
{

x j
}

fromP s−1⊂
X−f for a single phase of the randomized ellipsoid method. If any samplex j satisfiesA1

(
x j −xA

)
≤
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Ct , thenx j is in the intersection ofX−f andBCt
(A1) and the procedure is complete. Otherwise, we

want to significantly reduce the size ofP s−1 without excluding any ofBCt
(A1) so that sampling

concentrates toward the intersection (if it exists)—for this we need a separating hyperplane for
BCt

(A1). For any pointy /∈ BCt
(A1), the (sub)gradient of theℓ1 cost is given by

hy
d = cd sign

(
yd−xA

d

)
, (6)

and is a separating hyperplane fory andBCt
(A1).

To achieve efficiency, we choose a pointz ∈ P s−1 so that cuttingP s−1 throughz with the
hyperplanehz eliminates a significant fraction ofP s−1. To do so,z must be centrally located within
P s−1. We use the empirical centroidz= N−1 ∑x∈R x of the half of our samples inR ; the other half
will be used in Section 3.2.2. We cutP s−1 with the hyperplanehz throughz; that is,P s= P s−1∩Hz

whereHz is the halfspace

Hz =
{

x
∣
∣
∣ x⊤hz < z⊤hz

}

. (7)

As shown by Bertsimas and Vempala, this cut achievesvol(P s)≤ 2
3vol

(
P s−1

)
with high probability

if N =O∗ (D) andP s−1 is near-isotropic (see Section 3.2.2). Since the ratio of volumes between the
initial circumscribing and inscribing balls of the feasible set is(R/r)D, the algorithm can terminate
after T = O (D log(R/r)) unsuccessful iterations with a high probability that the intersection is
empty.

Because every iteration in Algorithm 5 requiresN = O∗ (D) samples, each of which needK =
O∗
(
D3
)

random walk steps, and there areT = O∗ (D) iterations, the total number of membership
queries required by Algorithm 5 isO∗

(
D5
)
.

3.2.2 SAMPLING FROM A QUERYABLE CONVEX BODY

In the randomized ellipsoid method, random samples are used for two purposes: estimating the con-
vex body’s centroid and maintaining the conditions required for theHIT-AND-RUN sampler to effi-
ciently generate points uniformly from a sequence of shrinking convex bodies. Until this point, we
assumed theHIT-AND-RUN random walk efficiently produces uniformly random samples from any
bounded convex bodyP accessible through membership queries. However, if the body is severely
elongated, randomly selected directions will rarely align with the long axis of thebody and our
random walk will take small steps (relative to the long axis) and mix slowly. For the sampler to mix
effectively, we need the convex bodyP to be sufficiently round, or more formallynear-isotropic:

for any unit vectorv, Ex∼P
[(

v⊤ (x−Ex∼P [x])
)2
]

is bounded between 1/2 and 3/2 of vol(P ).

If the body is not near-isotropic, we must rescaleX with an appropriate affine transformation
T so the resulting transformed bodyP ′ is near-isotropic. With sufficiently many samples fromP
we can estimateT as their empirical covariance matrix. Instead, we rescaleX implicitly using a
technique described by Bertsimas and Vempala (2004). We maintain a setQ of sufficiently many
uniform samples from the bodyP s, and in theHIT-AND-RUN algorithm (Algorithm 6), we sample
the directionv based on this set. Intuitively, because the samples inQ are distributed uniformly in
P s, the directions we sample based on the points inQ implicitly reflect the covariance structure of
P s. This is equivalent to sampling the directionv from a normal distribution with zero mean and
covariance ofP .

We must ensureQ is a set of sufficiently many samples fromP s after each cut takingP s←
P s−1∩Hzs. To do so, we initially resample 2N points fromP s−1 using HIT-AND-RUN—half of
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these,R , are used to estimate the centroidzs for the cut and the other half,S , are used to repopulate
Q after the cut. BecauseS contains independent uniform samples fromP s−1, those inP s after
the cut constitute independent uniform samples fromP s (i.e., rejection sampling). By choosing
N sufficiently large, our cut will be sufficiently deep and we will have sufficiently many points to
resampleP s after the cut.

Finally, for this sampling approach to succeed, we need the initial setP 0 to be transformed into
near-isotropic position and we also need an initial setQ of uniform samples from the transformed
P 0 as input to Algorithm 5. However in our problem, we only have a single pointx− ∈ X−f and our

set,P 0, need not be near-isotropic. Fortunately, there is an iterative procedure that uses theHIT-
AND-RUN algorithm to simultaneously transform the initial convex set,P 0, into a near-isotropic
position and construct our initial set of samples,Q . This algorithm, the ROUNDING algorithm as
described by Lov́asz and Vempala (2003), usesO∗

(
D4
)

membership queries to find a transformation
that placesP 0 into a near-isotropic position and produces an initial set of samples from it. We use
this as a preprocessing step for Algorithms 5 and 7; that is, givenX−f andx− ∈ X−f , we construct

P 0 = X−f ∩B2R(A1;x−) and then can use the ROUNDING algorithm to transformP 0 and produce an

initial uniform sample from it; that is,Q =
{

x j ∈ P 0
}

. These sets are then the inputs to our search
algorithms.

3.2.3 OPTIMIZATION OVER ℓ1 BALLS

We now revisit the outermost optimization loop (for searching the minimum feasiblecost) of the
algorithm and suggest improvements. These improvements are reflected in our final procedure SET-
SEARCH in Algorithm 7—the total number of queries required is alsoO∗

(
D5
)
. Again, Algorithm 7

requiresP to be near-isotropic and thatQ is a set of samples from it, which is accomplished by the
ROUNDING algorithm discussed at the end of Section 3.2.2. First, notice thatxA andx− are the same
for every iteration of the optimization procedure. Further, in each iteration of Algorithm 7, the new
set,P , remains near-isotropic and the newQ is a set of samples from it since the sets returned by
Algorithm 5 retain these properties. Thus, the set,P , and the set of samples,Q =

{
x j ∈ P

}
, main-

tained by Algorithm 7 are sufficient to initialize INTERSECTSEARCH at each stage of its overall
binary search overCt , and we only need to execute the ROUNDING procedure once as a prepro-
cessing step rather than re-invoking it before every invocation of INTERSECTSEARCH. Second, the
separating hyperplanehy given by Equation (6) does not depend on the target costCt but only onxA,
the common center of all theℓ1 balls used in this search. In fact, the separating hyperplane at point
y is valid for all ℓ1-balls of costC < A

(
y−xA

)
. Further, ifC < Ct , we haveBC (A1) ⊂ BCt

(A1).
Thus, the final state from a successful call to INTERSECTSEARCH for theCt-ball can be used as the
starting state for any subsequent call to INTERSECTSEARCH for all C<Ct . Hence, in Algorithm 7,
we updateP andQ only when Algorithm 5 succeeds.

4. Evasion for Generalℓp Costs

Here we further extendε-IMAC searchability over the family of convex-inducing classifiers to the
full family of ℓp costs for any 0< p≤ ∞. As we demonstrate in this section, manyℓp costs are not
generallyε-IMAC searchable for allε > 0 over the family of convex-inducing classifiers (i.e., we
show that finding anε-IMAC for this family can require exponentially many queries in D andLε). In
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fact, only the weightedℓ1 costs have known (randomized) polynomial query strategies when either
the positive or negative set is convex.

4.1 Convex Positive Set

Here we explore the ability of the MULTI L INESEARCH andK-STEP MULTI L INESEARCH algo-
rithms presented in Section 3.1 to find solutions to the near-optimal evasion problem for ℓp cost
functions withp 6= 1. Particularly forp > 1 we will be exploring the consequences of using the
MULTI L INESEARCH algorithms using more search directions than just the 2·D axis-aligned di-
rections. Figure 8 demonstrates how queries can be used to construct upper and lower bounds on
generalℓp costs. The following lemma also summarizes well-known bounds on generalℓp costs
using anℓ1 cost.

Lemma 7 The largestℓp (p> 1) ball enclosed within a C-costℓ1 ball has a cost of C·D
1−p

p and for
p= ∞ the cost is C·D−1.

4.1.1 BOUNDING ℓp BALLS

In general, suppose we probe along some set ofM unit directions and at some point we have at
least one negative point supporting an upper bound ofC−0 andM positive points supporting a lower
bound ofC+

0 . The lower bound provided by thoseM positive points is the cost of the largestℓp cost
ball that fits entirely within their convex hull; let’s say this cost isC† ≤ C+

0 . In order to achieve

ε-multiplicative optimality, we needC
−
0

C† ≤ 1+ ε, which we can rewrite as

(
C−0
C+

0

)(
C+

0

C†

)

≤ 1+ ε .

This allows us to break the problem into two parts. The first ratioC−0 /C
+
0 is controlled solely by the

accuracyε achieved by running the multiline search algorithm forLε steps whereas the second ratio
C+

0 /C
† depends only on how well theℓp ball is approximated by the convex hull of theM search

directions. These two ratios separate our task into choosingM andLε so that their product is less
than 1+ε. First we can choose parametersα≥ 0 andβ≥ 0 so that(1+α)(1+β)≤ 1+ε. Then we

chooseM so thatC
+
0

C† = 1+β and useLα steps so that multiline search withM directions will achieve
C−0
C+

0
= 1+α. In doing so, we create a generalized multiline search that can achieveε-multiplicative

optimality.
In the case ofp= 1, we previously saw that choosingM = 2·D allows us to exactly reconstruct

theℓ1 ball so thatC+
0 /C

† = 1 (i.e.,β = 0). Thus by takingα = ε, we recover our original multiline
search result.

We now address costs whereβ > 0. For a MULTI L INESEARCH algorithm to be efficient, it is

necessary thatC
+
0

C† = 1+β can be achieved with polynomially-many search directions (in D andLε)
for someβ ≤ ε; otherwise,(1+α)(1+β) > 1+ ε and the MULTI L INESEARCH approach cannot
succeed for anyα > 0. Thus, we quantify how many search directions (or queries) are required to

achieveC+
0

C† ≤ 1+ ε. Note that this ratio is independent of the relative size of these costs, so without
loss of generality we will only consider bounds for unit-cost balls. Thus,we compute the largest
value ofC† that can be achieved for the unit-costℓp ball (i.e., we makeC+

0 = 1) within the convex
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Figure 8: Convex hull for a set of queries and the resulting bounding balls for severalℓp costs.
Each row represents a unique set of positive (red '+' points) and negative (black'∗' points)
queries and each column shows the implied upper bound (the green dashedball) and lower
bound (the solid blue ball) for a differentℓp cost. In the first row, the body is defined by a
random set of seven queries, in the second, the queries are along the coordinate axes, and
in the third, the queries are around a circle.

hull of M queries. In particular, we quantify how many queries are required to achieve

C†≥ 1
1+ ε

.

We would like to show that only polynomially-many are required for at least some values ofε as
this is sufficient for a MULTI L INESEARCH approach to be efficient.

Lemma 8 If there exists a configuration of M unit search directions with a convex hull that yields
a bound C† for the cost function A, thenMULTI L INESEARCH algorithms can use those search
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directions to achieveε-multiplicative optimality with a query complexity that is polynomial in M

and L(∗)ε for any

ε >
1

C† −1 .

Moreover, if the M search directions yield C† = 1 for the cost function A, thenMULTI L INESEARCH

algorithms can achieveε-multiplicative optimality with a query complexity that is polynomial in M

and L(∗)ε for anyε > 0.

Notice that this lemma also reaffirms that forp= 1 using theM = 2 ·D axis-aligned directions
allows MULTI L INESEARCH algorithms to achieveε-multiplicative optimality for anyε > 0 with a
query complexity that is polynomial inM andL(∗)

ε .

4.1.2 MULTILINE SEARCH FOR0< p< 1

A simple result holds here. Namely, since the unitℓ1 ball bounds any unitℓp balls with 0< p< 1, we
can achieveC+

0 /C
† = 1 using only the 2·D axis-aligned search directions. Thus, for any 0< p< 1,

we can efficiently search for any value ofε > 0. Whether or not anyℓp (0< p< 1) cost function
can be efficiently optimized with fewer search directions is an open question.

4.1.3 MULTILINE SEARCH FOR p> 1

For this case, we can trivially use theℓ1 bound onℓp balls as summarized by the following corollary.

Corollary 9 For 1 < p < ∞ and ε ∈
(

D
p−1

p −1,∞
)

any multi-line search algorithm can achieve

ε-multiplicative optimality on Ap using M= 2 ·D search directions. Similarly forε ∈ (D−1,∞)
any multi-line search algorithm can achieveε-multiplicative optimality on A∞ also using M= 2 ·D
directions.

Proof From Lemma 7, the largest co-centeredℓp ball contained within the unitℓ1 ball has radius

D
1−p

p cost (orD for p= ∞). The bounds onε then follow from Lemma 8.

Unfortunately, this result only applies for a range ofε that grows withD, which is insufficient
for ε-IMAC searchability. In fact, for some fixed values ofε, there is no query-based strategy that
can boundℓp costs using polynomially-many queries inD as the following result shows.

Theorem 10 For p> 1, D> 0, any initial bounds0<C+
0 <C−0 on the MAC, andε∈

(

0,2
p−1

p −1
)

(or ε ∈ (0,1) for p = ∞), all algorithms must submit at leastαD
p,ε membership queries (for some

constantαp,ε > 1) in the worst case to beε-multiplicatively optimal onF convex,'+' for ℓp costs.

The proof of this theorem and the definition ofαp,ε are provided in Appendix C. A consequence
of this result is that there is no query-based algorithm that can efficiently find anε-IMAC of anyℓp

cost (p> 1) for anyfixedε within the range 0< ε < 2
p−1

p −1 (or 0< ε < 1 for p= ∞) on the family
F convex,'+'. However, from Theorem 9 and Lemma 8, multiline-search type algorithms efficiently

find theε-IMAC of anyℓp cost (p> 1) for anyε ∈
(

D
p−1

p −1,∞
)

(or D−1< ε < ∞ for p= ∞). It

is generally unclear if efficient algorithms exist for any values ofε between these intervals, but in
the following section we derive a stronger bound for the casep= 2.
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4.1.4 MULTILINE SEARCH FOR p= 2

Theorem 11 For any D> 1, any initial bounds0<C+
0 <C−0 on the MAC, and0< ε < C−0

C+
0
−1, all

algorithms must submit at leastα
D−2

2
ε membership queries (whereαε =

(1+ε)2

(1+ε)2−1 > 1) in the worst

case to beε-multiplicatively optimal onF convex,'+' for ℓ2 costs.

The proof of this result is in Appendix D.
This result says that there is no algorithm that can generally achieveε-multiplicative optimality

for ℓ2 costs for anyfixedε > 0 using only polynomially-many queries inD since the ratioC
−
0

C+
0

could

be arbitrarily large. It may appear that Theorem 11 contradicts Corollary9. However, Corollary 9
only applies for an interval ofε that depends onD; that is,ε >

√
D−1. Interestingly, substituting

this lower bound onε into the bound given by Theorem 11, we get that the number of required
queries forε >

√
D−1 need only be

M ≥
(

(1+ ε)2

(1+ ε)2−1

)D−2
2

=

(
D

D−1

)D−2
2

,

which is a monotonically increasing function inD that asymptotes at
√

e≈ 1.64. Thus, Theorem 11
and Corollary 9 are in agreement since forε >

√
D−1, the former only requires that we need at

least 2 queries.

4.2 Convex Negative Set

Algorithm 7 generalizes immediately to all weightedℓp costs (p≥ 1) centered atxA since they
are convex. For these costs, an equivalent separating hyperplane for y can be used in place of
Equation (6). They are given by the equivalent (sub)-gradients forℓp cost balls:

hy
p,d = cd ·sign

(
yd−xA

d

)
·
(

|yd−xA
d |

A(c)
p (y−xA)

)p−1

,

hy
∞,d = cd ·sign

(
yd−xA

d

)
· I
{

|yd−xA
d |= A(c)

∞
(
y−xA)

}

.

By only changing the cost functionA and the separating hyperplanehy used for the halfspace cut in
Algorithms 5 and 7, the randomized ellipsoid method can also be applied for any weightedℓp cost

A(c)
p with p> 1.

For more general convex costsA, we still have that everyC-cost ball is a convex set (i.e., the
sublevel set of a convex function is a convex set; see Boyd and Vandenberghe 2004, Chapter 3) and
thus has a separating hyperplane. Further, since for anyD > C, BC (A) ⊂ BD (A), the separating
hyperplane of theD-cost ball is also a separating hyperplane of theC cost ball and can be re-used
in our Algorithm 7. Thus, this procedure is applicable for any convex cost function,A, so long as
we can compute the separating hyperplanes of any cost ball ofA for any pointy not in the cost ball.

For non-convex costsA such as weightedℓp costs with 0< p< 1, minimization over a convex
setX−f is generally hard. However, there may be special cases when minimizing such a cost can be
accomplished efficiently.
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5. Conclusions and Future Work

In this paper, we studyε-IMAC searchability of convex-inducing classifiers. We present membership
query algorithms that efficiently accomplishε-IMAC search on this family. When the positive class
is convex, we demonstrate efficient techniques that outperform the previous reverse-engineering
approaches for linear classifiers in a continuous space. When the negative class is convex, we
apply the randomized ellipsoid method introduced by Bertsimas and Vempala to achieve efficient
ε-IMAC search. If the adversary is unaware of which set is convex, they cantrivially run both
searches to discover anε-IMAC with a combined polynomial query complexity. We also show our
algorithms can be efficiently extended for a number of special circumstances. Most importantly, we
demonstrate that these algorithms can succeed without reverse engineering the classifier. Instead,
these approaches systematically eliminate inconsistent hypotheses and progressively concentrate
their efforts in an ever-shrinking neighborhood of aMAC instance. By doing so, these algorithms
only require polynomially-many queries in spite of the size of the family of all convex-inducing
classifiers.

We also consider the family ofℓp costs and show thatF convexis only generallyε-IMAC search-
able for allε > 0 whenp= 1. For 0< p< 1, the MULTI L INESEARCH algorithms of Section 3.1
achieve identical results when the positive set is convex, but the non-convexity of theseℓp costs
precludes the use of the randomized ellipsoid method when the negative set isconvex. The ellipsoid
method does provide an efficient solution for convex negative sets whenp> 1 (since these costs are
convex). However, for convex positive sets, our results show that for p> 1 there is no algorithm that
can efficiently find anε-IMAC for all ε > 0. Moreover, forp= 2 we prove that there is no efficient
algorithm for finding anε-IMAC for any fixed value ofε.

By studyingε-IMAC searchability, we provide a broader picture of how machine learning tech-
niques are vulnerable to query-based evasion attacks. Exploring near-optimal evasion is important
for understanding how an adversary may circumvent learners in security-sensitive settings. In such
an environment, system developers are hesitant to trust procedures that may create vulnerabilities.
The algorithms we present are invaluable tools not for an adversary to develop better attacks but
rather for analysts to better understand the vulnerabilities of their filters: our framework provides
the query complexity in the worst-case setting when an adversary can directly query the classifier.
However, our analysis and algorithms do not completely answer the evasionproblem and also gen-
erally can not be easily used by an adversary since there are severalreal-world obstacles that are not
incorporated into our framework. Queries may only be partially observableor noisy, and the feature
set may only be partially known. Most importantly, an adversary may not be able to query allx∈ X ;
instead their queries must be legitimate objects (such as email) that are mapped intoX . A real-world
adversary must invert the feature-mapping—a generally difficult task. These limitations necessitate
further research on the impact of partial observability and approximate querying onε-IMAC search,
and to design more secure filters. Broader open problems include: isε-IMAC search possible on
other classes of learners such as SVMs (linear in a large possibly infinite feature space)? Can an
adversary efficiently performε-IMAC search when his cost is defined in an alternate feature space to
the classifier’s? Isε-IMAC search feasible against an online learner that adapts as it is queried? Can
learners be made resilient to these threats and how does this impact learning performance? These
and other open problems for near-optimal evasion are discussed in Nelson et al. (2011).
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Appendix A. Query Complexity for K-STEP M ULTI L INE SEARCH Algorithm

We consider the evasion problem as a game betweenclassifier(playing first) andadversary(playing
second) who wishes to evade detection by the classifier. To analyze the worst-case query complexity
of K-STEP MULTI L INESEARCH (Algorithm 3), we consider aworst-case classifierthat seeks to
maximize the number of queries submitted by the adversary. The worst-case classifier is completely
aware of the state of the adversary; that is, the dimension of the spaceD, the adversary’s goalLε,
the cost functionA, the bounds on the cost functionC+

t andC−t , and so forth.

Proof of Theorem 4 At each iteration of Algorithm 3, the adversary chooses some direction,e
not yet eliminated fromW . Every direction inW is feasible (i.e., could yield anε-IMAC) and
the worst-case classifier, by definition, will make this choice as costly as possible. During theK
steps of binary search along this direction, regardless of which directione is selected or how the
worst-case classifier responds, the candidate multiplicative gap (see Section 2.2) alongewill shrink
by an exponent of 2−K ; that is,

B−

B+
=

(
C−

C+

)2−K

,

log(G′t+1) = log(Gt) ·2−K .

The primary decision for the worst-case classifier occurs when the adversary begins querying other
directions besidee. At iterationt, the worst-case classifier has two options:

Case 1 (t ∈ C1): Respond with '+' for all remaining directions. Here the bound can-
didatesB+ andB− are verified and thus the new gap is reduced by an exponent of
2−K ; however, no directions are eliminated from the search.

Case 2 (t ∈ C2): Choose at least one direction to respond with '−'. Here since only
the value ofC− changes, the worst-case classifier can choose to respond to the first
K queries so that the gap decreases by a negligible amount (by always responding
with '+' during the firstK queries alonge, the gap only decreases by an exponent of
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(
1−2−K

)
). However, the worst-case classifier must choose some numberEt ≥ 1

of directions that will be eliminated.

We conservatively assume that the gap only decreases for case 1, which decouples the analysis of the
queries forC1 andC2 and allows us to upper bound the total number of queries. By this assumption,
if t ∈ C1 we haveGt = G2−K

t−1 whereas ift ∈ C2 thenGt = Gt−1. By analyzing the gap before and
after the final iterationT, it can be shown that

|C1|= ⌈Lε/K⌉ (8)

since, for the algorithm to terminate, there must be a total of at leastLε binary search steps made
during case one iterations and every case one iteration takes exactlyK steps.

At every iteration in case one, the adversary makes exactlyK + |Wt | −1 queries whereWt is
the set of feasible directions remaining at thet th iteration. WhileWt is controlled by the worst-case
classifier, we can apply the bound|Wt | ≤ |W |. Using this and the relation from Equation (8), we
can bound the number of queries,Q1, used in case 1 by

Q1 ≤ ∑
t∈C1

(K+ |W |−1)

=

⌈
Lε

K

⌉

· (K+ |W |−1)

≤
(

Lε

K
+1

)

·K+

⌈
Lε

K

⌉

· (|W |−1)

= Lε +K+

⌈
Lε

K

⌉

· (|W |−1) .

For each case two iteration, we make exactlyK +Et queries, and each eliminatesEt ≥ 1 di-
rections; hence,|Wt+1| = |Wt | −Et . A worst-case classifier will always makeEt = 1 since that
maximally limits how much the adversary gains. Nevertheless, since case 2 requires the elimination
of at least 1 direction, we have|C2| ≤ |W | − 1 and moreover, regardless of the choice ofEt we
have∑t∈C2

Et ≤ |W |−1 since each direction can be eliminated no more than once and at least one
direction must remain. Thus,

Q2 = ∑
i∈C2

(K+Et)

≤ |C2| ·K+ |W |−1

≤ (|W |−1)(K+1) .

The total number of queries used by Algorithm 3 is then

Q= Q1+Q2 ≤ Lε +K+

⌈
Lε

K

⌉

· (|W |−1)+(|W |−1)(K+1)

= Lε +

⌈
Lε

K

⌉

· |W |+K · |W |+ |W |−
⌈

Lε

K

⌉

−1

≤ Lε +

(⌈
Lε

K

⌉

+K+1

)

|W | .
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Finally, choosingK = ⌈√Lε⌉ minimizes this expression. By substituting thisK into Q’s bound
and using the boundLε/⌈

√
Lε⌉ ≤

√
Lε, we have

Q≤ Lε +
(

2⌈
√

Lε⌉+1
)

|W | ,

establishing the result.

Appendix B. Proof of Lower Bound

Here we prove the lower bound from Section 3.1.2. Recall thatD is the dimension of the space,
A : ℜD→ℜ+ is any positive convex function, and 0<C+

0 <C−0 are initial upper and lower bounds
on theMAC. We also have that̂F convex,'+' ⊂ F convex,'+' is the set of classifiers consistent with
the constraints on theMAC; that is, forf ∈ F̂ convex,'+' we haveX+

f is convex,BC+
0 (A) ⊂ X+

f , and

BC−0 (A) 6⊂ X+
f . As above, we consider a worst-case classifier.

Proof of Theorem 5 Suppose a query-based algorithm submitsN < D+ 1 membership queries
x1, . . . ,xN ∈ℜD to the classifier. For the algorithm to beε-optimal, these queries must constrain all
consistent classifierŝF convex,'+' to have a common point among theirε-IMAC sets. Suppose that the
responses to the queries are consistent with the classifierf defined as:

f (x) =

{

+1, if A
(
x−xA

)
<C−0

−1, otherwise
.

For this classifier,X+
f is convex sinceA is a convex function,BC+

0 (A) ⊂ X+
f sinceC+

0 < C−0 , and

BC−0 (A) 6⊂ X+
f sinceX+

f is the openC−0 -ball whereasBC−0 (A) is the closedC−0 -ball. Moreover,

sinceX+
f is the openC−0 -ball, ∄ x ∈ X−f s.t.A

(
x−xA

)
< C−0 thereforeMAC(f ,A) = C−0 , and any

ε-optimal pointsx′ ∈ ε-IMAC(∗) (f ,A) must satisfyC−0 ≤ A
(
x′−xA

)
≤ (1+ ε)C−0 .

Consider an alternative classifierg that responds identically tof for x1, . . . ,xN but has a different
convex positive setX+

g . Without loss of generality, suppose the firstM ≤N queries are positive and
the remainder are negative. LetG = conv

(
x1, . . . ,xM

)
; that is, the convex hull of theM positive

queries. Now letX+
g be the convex hull ofG and theC+

0 -ball of A: X+
g = conv

(

G ∪BC+
0 (A)

)

.

SinceG contains all positive queries andC+
0 <C−0 , the convex setX+

g is consistent with the observed

responses,BC+
0 (A) ⊂ X+

g by definition, andBC−0 (A) 6⊂ X+
g since the positive queries are all inside

the openC−0 -sublevel set. Further, sinceM ≤N < D+1,G is contained in a proper linear subspace
of ℜD and hence the interior ofG is empty; that is,int (G) = /0. Hence, there is always some
point fromBC+

0 (A) that is on the boundary ofX+
g ; that is,BC+

0 (A) 6⊂ int (G) becauseint (G) = /0
andBC+

0 (A) 6= /0. Hence, there must be at least one point fromBC+
0 (A) on the boundary of the

convex hull ofBC+
0 (A) andG . Hence,MAC(g,A) = infx∈X−g

[
A
(
x−xA

)]
=C+

0 . Since the accuracy

ε < C−0
C+

0
−1, anyx ∈ ε-IMAC(∗) (g,A) must have

A
(
x−xA)≤ (1+ ε)C+

0 <
C−0
C+

0

C+
0 =C−0 ,
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whereas anyy ∈ ε-IMAC(∗) (f ,A) must have A
(
y−xA

)
≥ C−0 . Thus, ε-IMAC(∗) (f ,A)∩

ε-IMAC(∗) (g,A) = /0 and we have constructed two convex-inducing classifiersf andg both con-
sistent with the query responses with no commonε-IMAC(∗).

Suppose instead that a query-based algorithm submitsN < L(∗)
ε membership queries. Recall our

definitions:C−0 is the initial upper bound on theMAC, C+
0 is the initial lower bound on theMAC,

andG(∗)
t = C−t /C+

t is the gap between the upper bound and lower bound at iterationt. Here, the
worst-case classifierf responds with

f
(
xt)=

{

+1, if A
(
xt −xA

)
≤
√

C−t−1 ·C+
t−1

−1, otherwise
.

When the classifier responds with '+', C+
t increases to no more than

√

C−t−1 ·C+
t−1 and soGt ≥

√
Gt−1. Similarly when this classifier responds with '−', C−t decreases to no less than

√

C−t−1 ·C+
t−1

and so againGt ≥
√

Gt−1. These responses ensure the invariantGt ≥
√

Gt−1 and since the algorithm

can not terminate untilGN ≤ 1+ ε, we haveN ≥ L(∗)
ε from Equation (4). Otherwise, there are still

two convex-inducing classifiers with consistent query responses but with no commonε-IMAC. The
first classifier’s positive set is the smallest cost-ball enclosing all positive queries, while the second
classifier’s positive set is the largest cost-ball enclosing all positive queries but no negatives. The
MAC values for these classifiers differ by more than a factor of(1+ ε) if N < L(∗)

ε , so they have no
commonε-IMAC.

Appendix C. Proof of Theorem 10

First we introduce the following lemma for theD-dimensionalhypercube graphs—a collection of
2D nodes of the form(±1,±1, . . . ,±1) where each node has an edge to every other node that is
Hamming distance 1 from it.

Lemma 12 For any 0 < δ ≤ 1/2 and D≥ 1, to cover a D-dimensional hypercube graph so that
every vertex has a Hamming distance of at most⌊δD⌋ to some vertex in the covering, the number of
vertices in the covering must be

Q(D,h)≥ 2D(1−H(δ)) ,

where H(δ) =−δ log2 δ− (1−δ) log2(1−δ) is theentropyof δ.

Proof There are 2D vertices in theD-dimensional hypercube graph. Each vertex in the covering
is within a Hamming distance of at mosth for exactly∑h

k=0

(D
k

)
vertices. Thus, one needs at least

2D/
(

∑h
k=0

(D
k

))

to cover the hypercube graph. Now we apply the following bound (see Flum and

Grohe, 2006, Page 427)
⌊δD⌋

∑
k=0

(
D
k

)

≤ 2H(δ)D

to the denominator,6 which is valid for any 0< δ≤ 1/2.

6. Gottlieb et al. (2011) present a better entropy bound on this sum of binomial coefficients, but it is unnecessary for
our result.
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Lemma 13 The minimum of theℓp cost function Ap from the targetxA to the halfspaceHw,b =
{

x
∣
∣ x⊤w≥ b⊤w

}
can be expressed in terms of the equivalent hyperplanex⊤w≥ d parameterized

by a normal vectorw and displacement d=
(
b−xA

)⊤w as

min
x∈Hw,d

Ap
(
x−xA)=

{

d · ‖w‖−1
p

p−1
, if d > 0

0, otherwise
(9)

for all 1< p< ∞ and for p= ∞ it is

min
x∈Hw,d

A∞
(
x−xA)=

{

d · ‖w‖−1
1 , if d > 0

0, otherwise
. (10)

Proof For 1< p< ∞, minimizingAp on the halfspaceHw,b is equivalent to finding a minimizer for

min
x

1
p

D

∑
i=1

|xi |p s.t. x⊤w≤ d .

Clearly, if d≤ 0 then the vector0 (corresponding toxA in the transformed space) trivially satisfies
the constraint and minimizes the cost function with cost 0 which yields the second case of Equa-
tion (9). For the cased > 0, we construct the Lagrangian

L (x,λ),
1
p

D

∑
i=1

|xi |p−λ
(

x⊤w−d
)

.

Differentiating this with respect tox and setting that partial derivative equal to zero yieldsx∗i =

sign(wi)(λ|wi |)
1

p−1 . Plugging this back into the Lagrangian yields

L (x∗,λ) =
1− p

p
λ

p
p−1

D

∑
i=1

|wi |
p

p−1 +λd ,

which we now differentiate with respect toλ and set the derivative equal to zero to yieldλ∗ =
(

d

∑D
i=1 |wi |

p
p−1

)p−1

. Plugging this solution into the formula forx∗ yields the solutionx∗i =

sign(wi)

(

d

∑D
i=1 |wi |

p
p−1

)

|wi |
1

p−1 . The ℓp cost of this optimal solution is given byAp
(
x∗−xA

)
=

d · ‖w‖−1
p

p−1
, which is the first case of Equation (9).

For p= ∞, once again ifd≤ 0 then the vector0 trivially satisfies the constraint and minimizes
the cost function with cost 0 which yields the second case of Equation (10). For the cased > 0,
we use the geometry of hypercubes (the equi-cost balls of aℓ∞ cost function) to derive the second
case of Equation (10). Any optimal solution must occur at a point where thehyperplane given by
x⊤w = b⊤w is tangent to a hypercube aboutxA—this can either occur along a side (face) of the
hypercube or at a corner. However, if the plane is tangent along a side(face) it is also tangent at a
corner of the hypercube. Hence, there is always an optimal solution at some corner of the optimal
cost hypercube.
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At a corner of the hypercube, we have the following property:

|x∗1|= |x∗2|= . . .= |x∗D| ;

that is, the magnitude of all coordinates of this optimal solution is the same value. Further, the sign
of the optimal solution’sith coordinate must agree with the sign of the hyperplane’sith coordinate,
wi . These constraints, along with the hyperplane constraint, lead to the following formula for an
optimal solution:xi = d · sign(wi)‖w‖−1

1 for all i. Theℓ∞ cost of this solution is simplyd · ‖w‖−1
1 .

Finally, for the proof of Theorem 10, we use the orthants (centered atxA)—anorthant is theD-
dimensional generalization of a quadrant in 2-dimensions. There are 2D orthants in aD-dimensional
space. We represent each orthant by itscanonical representationwhich is a vector ofD positive or
negative ones; that is, the orthant represented bya= (±1,±1, . . . ,±1) contains the pointxA+a and
is the set of all pointsx satisfying:

xi ∈
{

[0,+∞] , if ai =+1

[−∞,0] , if ai =−1
.

Proof of Theorem 10 Suppose a query-based algorithm submitsN membership queriesx1, . . . ,xN ∈
ℜD to the classifier. Again, for the algorithm to beε-optimal, these queries must constrain all
consistent classifierŝF convex,'+' to have a common point among theirε-IMAC sets. The responses
described above are consistent with the classifierf defined as

f (x) =

{

+1, if Ap
(
x−xA

)
<C−0

−1, otherwise
.

For this classifier,X+
f is convex sinceAp is a convex function forp≥ 1, BC+

0 (Ap) ⊂ X+
f since

C+
0 <C−0 , andBC−0 (Ap) 6⊂X+

f sinceX+
f is the openC−0 -ball whereasBC−0 (Ap) is the closedC−0 -ball.

Moreover, sinceX+
f is the openC−0 -ball, ∄ x ∈ X−f s.t.Ap

(
x−xA

)
< C−0 thereforeMAC(f ,Ap) =

C−0 , and anyε-optimal pointsx′ ∈ ε-IMAC(∗) (f ,Ap) must satisfyC−0 ≤ Ap
(
x′−xA

)
≤ (1+ ε)C−0 .

Now consider an alternative classifierg that responds identically tof for x1, . . . ,xN but has a
different convex positive setX+

g . Without loss of generality suppose the firstM ≤ N queries are
positive and the remaining are negative. Here we consider a set which is aconvex hull of the
orthants of allM positive queries; that is,

G = conv
(

orth
(
x1)∩X+

f ,orth
(
x2)∩X+

f , . . . ,orth
(
xM)∩X+

f

)

whereorth(x) is some orthant thatx lies within relative to the center,xA (a data point may lie
within more than one orthant but, to cover it, we need only have one orthant that contains it). By
intersecting each data point’s orthant with the setX+

f and taking the convex hull of these regions,

G is convex , containsxA and is a subset ofX+
f consistent with all the query responses off ; that

is, each of theM positive queries are inX+
g and all the negative queries are inX−g . Moreover,G

contains the convex hull of theM positive queries. Thus, by finding the largest enclosedℓp ball
within theG , we upper boundMAC(g,Ap).
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We now represent each orthant as a vertex in a D-dimensional hypercube graph—the Hamming
distance between any pair of orthants is the number of different coordinates in their canonical rep-
resentations and two orthants are adjacent in the graph if and only if they have Hamming distance
of one. Using this notion of Hamming distance, we will seek aK-covering of the hypercube. We
refer to the orthants used inG to cover theM positive queries ascovering orthantsand their corre-
sponding vertices form a covering of the hypercube. Suppose theM covering orthants are sufficient
for aK covering but not aK−1 covering; then there must be at least one vertex not in the covering
that has at least aK Hamming distance to every vertex in the covering. This vertex correspondsto
an empty orthant that differs from all covered orthants in at leastK coordinates of their canonical
vertices. Without loss of generality, suppose this uncovered orthant has the canonical vertex of all
positive ones which we scale toC−0 (+1,+1, . . . ,+1). Consider the hyperplane with normal vector
w = (+1,+1, . . . ,+1) and displacement

d =

{

C−0 (D−K)
p−1

p if 1 < p< ∞
C−0 (D−K) if p= ∞

that specifies the functions(x) = x⊤w − d = ∑D
i=1xi − d. For this hyperplane, the vertex

C−0 (+1,+1, . . . ,+1) yields s
(
C−0 (+1,+1, . . . ,+1)

)
= C−0 D−d > 0. Also for any orthanta with

Hamming distance at leastK from this uncovered orthant, we have that for anyx ∈ orth(a)∩X+
f ,

by definition of the orthant andX+
f , the functionsyields

s(x) = ∑
{i | ai=+1}

xi
︸︷︷︸

≥0

+ ∑
{i | ai=−1}

xi
︸︷︷︸

≤0

−d .

Since all the terms in the second summation are non-positive, the second sum isat most 0. Thus,
by maximizing the first summation, we upper bounds(x). The summation∑{i | ai=+1} xi (with the
constraint that‖x‖p <C−0 ) has at mostD−K terms and is maximized byxi =C−0 (D−K)−1/p (or

xi =C−0 for p= ∞) for which the first summation is upper bounded byC−0 (D−K)
p−1

p orC−0 (D−K)
for p = ∞; that is, it is upper bounded byd. Thus, we have thats(x) ≤ 0, and this hyperplane
separates the scaled vertexC−0 (+1,+1, . . . ,+1) from each setorth(a)∩X+

f wherea is the canonical
representation of any orthant with a Hamming distance of at leastK. This hyperplane also separates
the scaled vertex fromG by the properties of the convex hull. Since the displacementd defined
above is greater than 0, by applying Lemma 13, this separating hyperplane upper bounds the cost of
the largestℓp ball enclosed inG as

MAC(g,Ap)≤C−0 (D−K)
p−1

p · ‖w‖−1
p

p−1
=C−0

(
D−K

D

) p−1
p

for 1< p< ∞ and

MAC(g,Ap)≤C−0 (D−K) · ‖1‖−1
1 =C−0

D−K
D

for p= ∞. Since we have an upper bound on theMAC of g and theMAC of f isC−0 , in order to have
a commonε-IMAC between these classifiers, we must have

(1+ ε)≥
{(

D
D−K

) p−1
p , if 1 < p< ∞

D
D−K , if p= ∞

.
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Solving for the value ofK required to achieve a desired accuracy of 1+ ε we have

K ≤







(1+ε)
p

p−1−1

(1+ε)
p

p−1
D , if 1 < p< ∞

ε
1+εD , if p= ∞

,

which bounds the size of the covering required to achieve the desired accuracy.
For the case 1< p< ∞, by Lemma 12, there must be

M ≥ exp

{

ln(2) ·D
(

1−H

(

(1+ ε)
p

p−1 −1

(1+ ε)
p

p−1

))}

vertices of the hypercube in the covering to achieve any accuracy 0< ε < 2
p−1

p − 1, for which

δ = (1+ε)
p

p−1−1

(1+ε)
p

p−1
< 1

2 as required by the lemma. Moreover, sinceH (δ)< 1 for δ < 1
2,

αp,ε = exp

{

ln(2)

(

1−H

(

(1+ ε)
p

p−1 −1

(1+ ε)
p

p−1

))}

> 1

and we haveM ≥ αD
p,ε.

Similarly for p= ∞, Lemma 12 can be applied yieldingM ≥ 2D(1−H( ε
1+ε)) to achieve any de-

sired accuracy 0< ε < 1 (for which ε/(1+ ε) < 1/2 as required by the Lemma). Again, by the

properties of entropy, the constantα∞,ε = 2(1−H( ε
1+ε)) > 1 for 0< ε < 1 and we haveM ≥ αD

∞,ε.

Appendix D. Proof of Theorem 11

For this proof, we build on previous results for covering hyperspheres. The proof is based on the
following covering number result by Wyner and Shannon, which bounds the minimum number
of spherical caps required to cover a hypersphere. AD-dimensionalspherical capis the outward
region formed by the intersection of a hypersphere and a halfspace as depicted in Figure 9. We
parameterize the caps by the hypersphere’s radiusR and the half-angleφ about a central radius
(through the caps’s peak) as in the right-most diagram of Figure 9.

We now derive a bound on the number of spherical caps of half-angleφ required to cover the
sphere, mirroring the result of Wyner (1965).

Lemma 14 (Result based on Wyner 1965) Covering the surface of D-dimensional hypersphere of
radius R requires at least

(
1

sinφ

)D−2

spherical caps of half-angleφ ∈ (0, π
2).

Proof In Capabilities of Bounded Discrepancy Decoding, Wyner showed that the minimal number,
M, of spherical caps of half-angleφ required to coverD-dimensional hypersphere of radiusR is
given by

M ≥ D
√

πΓ
(

D+1
2

)

(D−1)Γ
(
1+ D

2

)

[∫ φ

0
sinD−2(t)dt

]−1

.
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h

(a)

h

R−
h

R

√

h(2R−
h)φ

(b)

Figure 9: This figure depicts the geometry of spherical caps. (a) A spherical cap of heighth, which
is created by a plane passing through the sphere. The green region represents the area
of the cap. (b) The geometry of the spherical cap; the intersecting halfspace forms a
right triangle with the centroid of the hypersphere. The length of the side ofthis triangle
adjacent to the centroid isR−h, its hypotenuse has lengthR, and the side opposite the

centroid has length
√

h(2R−h). The half angleφ, given by sin(φ) =
√

h(2R−h)
R , of the

right circular cone is used to parameterize the cap.

whereΓ(x) is the usual gamma function. This result follows directly from computing the surface
area of the hypersphere and that of each spherical cap.

We continue by lower bounding the above integral for a looser but more interpretable bound.
Integrals of the form

∫ φ
0 sinD(t)dt also arise in computing the volume of a spherical cap. This

volume (and thus the integral) can be bounded by enclosing the cap within a hypersphere; compare
with Ball (1997). This yields the following bound:

∫ φ

0
sinD(t)dt ≤

√
πΓ
(

D+1
2

)

Γ
(
1+ D

2

) ·sinD φ .

Using this bound on the integral, our bound on the size of the covering becomes

M ≥ D
√

πΓ
(

D+1
2

)

(D−1)Γ
(
1+ D

2

)

[√
πΓ
(

D−1
2

)

Γ
(

D
2

) ·sinD−2 φ

]−1

.

Now using properties of the gamma function, it can be shown that
Γ(D+1

2 )Γ(D
2 )

Γ(1+D
2 )Γ(D−1

2 )
= D−1

D so that after

canceling terms we arrive at our result:

M ≥
(

1
sinφ

)D−2

.
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Proof of Theorem 11 Suppose a query-based algorithm submitsN membership queriesx1, . . . ,xN ∈
ℜD to the classifier. For the algorithm to beε-optimal, these queries must constrain all consistent
classifiers,F̂ convex,'+', to have a common point among theirε-IMAC sets. Suppose that all the
responses are consistent with the classifierf defined as

f (x) =

{

+1, if A2
(
x−xA

)
<C−0

−1, otherwise
.

For this classifier,X+
f is convex sinceA2 is a convex function,BC+

0 (A2)⊂ X+
f sinceC+

0 <C−0 , and

BC−0 (A2) 6⊂ X+
f sinceX+

f is the openC−0 -ball whereasBC−0 (A2) is the closedC−0 -ball. Moreover,

sinceX+
f is the openC−0 -ball, ∄ x ∈ X−f such thatA2

(
x−xA

)
<C−0 . Therefore,MAC(f ,A2) =C−0 ,

and anyε-optimal pointsx′ ∈ ε-IMAC(∗) (f ,A2) must satisfyC−0 ≤ A2
(
x′−xA

)
≤ (1+ ε)C−0 .

Now consider an alternative classifierg that responds identically tof for x1, . . . ,xN but has a
different convex positive setX+

g . Without loss of generality, suppose the firstM ≤ N queries are
positive and the remaining are negative. LetG = conv

(
x1, . . . ,xM

)
be the convex hull of theseM

positive queries. We will assumexA ∈ G , since otherwise, we construct the setX+
g as in the proof

for Theorem 5 above and achieveMAC(f ,A2) = C+
0 thereby achieving our desired result. Now

consider the projection of each of the positive queries onto the surface of the ℓ2 ball BC−0 (A2),
given by the pointszi =C−0

xi

A2(xi−xA)
. Since each positive query lies along the line betweenxA and

its projectionzi , by convexity and the fact thatxA ∈ G , we haveG ⊂ conv
(
z1,z2, . . . ,zM

)
—we

will call this enlarged hullĜ . TheseM projected points
{

zi
}

must form a covering of theC−0 -
hypersphere as the locii of caps of half-angleφ∗ε = arccos

(
(1+ ε)−1

)
. If not, then there exists some

point on the surface of this hypersphere that is at least an angleφ∗ε from all zi points and the resulting
φ∗ε-cap centered at this uncovered point is not inĜ (since a cap is defined as the intersection of the
hypersphere and a halfspace). Moreover, by definition of theφ∗ε-cap, it achieves a minimalℓ2 cost of
C−0 cosφ∗ε . Thus, if we fail to achieve aφ∗ε-covering of theC−0 -hypersphere, the alternative classifier
g hasMAC(g,A2)<C−0 cosφ∗ε =C−0 /(1+ ε) and anyx ∈ ε-IMAC(∗) (g,A2) must have

A2
(
x−xA)≤ (1+ ε)MAC< (1+ ε)

C−0
1+ ε

=C−0 ,

whereas anyy ∈ ε-IMAC(∗) (f ,A) must have costA
(
y−xA

)
≥ C−0 . Thus, we would have

ε-IMAC(∗) (f ,A)∩ε-IMAC(∗) (g,A)= /0 and would fail to achieveε-multiplicative optimality. Hence,
we have shown that anφ∗ε-covering is necessary forε-multiplicative optimality. Moreover, from our
definition of φ∗ε , for anyε ∈ (0,∞), φ∗ε ∈ (0, π

2) and thus, Lemma 14 is applicable for allε. From
Lemma 14, to have anφ∗ε-covering we must have

M ≥
(

1
sinφ∗ε

)D−2
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queries. Using the trigonometric identity sin(arccos(x)) =
√

1−x2, we can substitute forφ∗ε and
find

M ≥
(

1

sin
(
arccos

(
1

1+ε
))

)D−2

≥
(

(1+ ε)2

(1+ ε)2−1

)D−2
2

.
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