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Abstract

Security issues are crucial in a number of machine learning applications, especially in scenar-

ios dealing with human activity rather than natural phenomena (e.g., information ranking, spam

detection, malware detection, etc.). In such cases, learning algorithms may have to cope with ma-

nipulated data aimed at hampering decision making. Although some previous work addressed the

issue of handling malicious data in the context of supervised learning, very little is known about

the behavior of anomaly detection methods in such scenarios. In this contribution,1 we analyze

the performance of a particular method—online centroid anomaly detection—in the presence of

adversarial noise. Our analysis addresses the following security-related issues: formalization of

learning and attack processes, derivation of an optimal attack, and analysis of attack efficiency and

limitations. We derive bounds on the effectiveness of a poisoning attack against centroid anomaly

detection under different conditions: attacker’s full or limited control over the traffic and bounded

false positive rate. Our bounds show that whereas a poisoning attack can be effectively staged in the

unconstrained case, it can be made arbitrarily difficult (a strict upper bound on the attacker’s gain)

if external constraints are properly used. Our experimental evaluation, carried out on real traces of

HTTP and exploit traffic, confirms the tightness of our theoretical bounds and the practicality of

our protection mechanisms.

Keywords: anomaly detection, adversarial, security analysis, support vector data description,

computer security, network intrusion detection

1. Introduction

Machine learning methods have been instrumental in enabling novel data analysis applications. Nu-

merous currently indispensable technologies—object recognition, user preference analysis, spam

filtering, to name only a few—rely on accurate analysis of massive amounts of data. Unfortunately,

the increasing use of machine learning methods gives rise to a threat of their abuse. A convinc-
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ing example of this phenomenon are emails that bypass spam protection tools. Abuse of machine

learning can take on various forms. A malicious party may affect the training data, for example,

when it is gathered from the real operation of a system and cannot be manually verified. Another

possibility is to manipulate objects observed by a deployed learning system (test data) so as to bias

its decisions in favor of an attacker. Yet another way to defeat a learning system is to send a large

amount of nonsense data in order to produce an unacceptable number of false alarms and hence

force the system’s operator to turn it off. Manipulation of a learning system may thus range from

simple cheating to complete disruption of its operation.

A potential insecurity of machine learning methods stems from the fact that they are usually

not designed with adversarial input in mind. Starting from the mainstream computational learning

theory (Vapnik, 1998; Schölkopf and Smola, 2002), a prevalent assumption is that training and test

data are generated from the same fixed, but unknown, probability distribution. This assumption

obviously does not hold for adversarial scenarios. Furthermore, even the recent work on learning

with non-i.i.d. data (Steinwart et al., 2009; Mohri and Rostamizadeh, 2010) or differing training and

test distributions (Sugiyama et al., 2007) is not necessarily appropriate for adversarial input, because

in the latter case one must account for a specific worst-case difference while all the aforementioned

papers assume that the data is generated stochastically.

Computer security is the most important application field in which robustness of learning algo-

rithms against adversarial input is crucial. Modern security infrastructures are facing an increasing

professionalization of attacks motivated by monetary profit. A widespread deployment of evasion

techniques, such as encryption, obfuscation and polymorphism, is manifested in a rapidly increas-

ing diversity of malicious software observed by security experts. Machine learning methods offer a

powerful tool to counter a rapid evolution of security threats. For example, anomaly detection can

identify unusual events that potentially contain novel, previously unseen exploits (Wang and Stolfo,

2004; Rieck and Laskov, 2006; Wang et al., 2006; Rieck and Laskov, 2007). Another typical ap-

plication of learning methods is automatic signature generation which drastically reduces the time

needed for development and deployment of attack signatures (Newsome et al., 2006; Li et al., 2006).

Machine learning methods can also help researchers better understand the design of malicious soft-

ware by using classification or clustering techniques together with special malware acquisition and

monitoring tools (Bailey et al., 2007; Rieck et al., 2008).

In order for machine learning methods to be successful in security applications—and in gen-

eral in any application where adversarial input may be encountered—they should be equipped with

countermeasures against potential attacks. The current understanding of security properties of learn-

ing algorithms is rather incomplete. Earlier work in the PAC-framework addressed some scenarios

in which training data is deliberately corrupted (Angluin and Laird, 1988; Littlestone, 1988; Kearns

and Li, 1993; Auer, 1997; Bschouty et al., 1999). These results, however, are not connected to mod-

ern learning algorithms used in classification, regression and anomaly detection problems. Several

examples of effective attacks were demonstrated in the context of specific security and spam detec-

tion applications (Lowd and Meek, 2005a; Fogla et al., 2006; Fogla and Lee, 2006; Perdisci et al.,

2006; Newsome et al., 2006; Nelson et al., 2008), which motivated a recent work on taxonomiza-

tion of such attacks (Barreno et al., 2006, 2008, 2010). However, it remains largely unclear whether

machine learning methods can be protected against adversarial impact.

We believe that an unequivocal answer to the problem of the “security of machine learning” does

not exist. Security guarantees cannot be established experimentally, because the notion of security

addresses events that do not just happen on average but rather only potentially may happen. Hence,
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a theoretical analysis of machine learning algorithms for adversarial scenarios is indispensable. It

is hard to imagine, however, that such an analysis can offer meaningful results for any attack in

every circumstance. Hence, to be a useful guide for practical applications of machine learning in

adversarial environments, such an analysis must address specific attacks against specific learning

algorithms. This is precisely the approach followed in this contribution.

The main focus of our work is the security analysis of online centroid anomaly detection against

the so-called “poisoning” attacks. Centroid anomaly detection is a very simple method which has

been widely used in computer security applications (e.g., Forrest et al., 1996; Warrender et al., 1999;

Wang and Stolfo, 2004; Rieck and Laskov, 2006; Wang et al., 2006; Rieck and Laskov, 2007). In

the learning phase, centroid anomaly detection computes the mean of all training data points:

c =
1

n

n

∑
j=1

x j .

Detection is carried out by computing the distance of a new example x from the centroid c and

comparing it with an appropriate threshold:

f (x) =

{

1, if ||x− c||> θ

0, otherwise .

Notice that all operations can be carried out using kernel functions—a standard trick known since the

development of support vector machines and kernel PCA (Boser et al., 1992; Schölkopf et al., 1998;

Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004), which substantially increases the

discriminative power of this method.

More often than not, anomaly detection algorithms are deployed in non-stationary environments

and need to be regularly re-trained. Since the data is fed into the learning phase without any verifica-

tion, an adversary has an opportunity to force a learning algorithm to learn a representation suitable

for him. One particular kind of attack is the so-called “poisoning” in which specially crafted data

points are injected to cause the decision function to misclassify a given malicious point as benign.

This attack makes sense when an attacker does not have “write” permission to the training data,

hence cannot manipulate it directly. Therefore, his goal is to trick an algorithm by merely using

an “append” permission, by sending new data that looks innocuous to the learning algorithm but

changes the algorithm’s state in a way that favors the attacker; for example, forcing the algorithm to

accept a specific attack point later during the testing stage.

The poisoning attack against online centroid anomaly detection has been considered by Nelson

and Joseph (2006) for the case of an infinite window, that is, when a learning algorithm memorizes

all data seen so far. Their main result was surprisingly optimistic: it was shown that the number

of attack data points that must be injected grows exponentially as a function of the impact over a

learned hypothesis. However, the assumption of an infinite window also hinders the ability of a

learning algorithm to adjust to legitimate changes in the data distribution.

1.1 Contributions of This Work

As a main contribution, we present the security analysis of online centroid anomaly detection for the

finite window case; that is, when only a fixed number of data points can be used at any time to form

a hypothesis. We show that, in this case, an attacker can easily compromise a learning algorithm by
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using only a linear amount of injected data unless additional constraints are imposed. As a further

contribution, we analyze the algorithm under two additional constraints: (a) the fraction of the

traffic controlled by an attacker is bounded by ν, and (b) the false positive rate induced by an attack

is bounded by α. Both constraints can be motivated by an operational practice of anomaly detection

systems. Overall, we significantly extend the analysis of Nelson and Joseph (2006) by considering

a more realistic learning scenario, explicitly treating potential constraints on the attacker’s part and

providing tighter bounds.

Our analysis methodology follows the following framework, which can be used for any kind of

quantitative security analysis of learning algorithms (Laskov and Kloft, 2009):

1. Axiomatic formalization of the learning and the attack processes. Such a formalization in-

cludes definitions of data sources and objective (risk) functions used by each party, as well

as the attacker’s goal. It specifies the knowledge available to an attacker, that is, whether

he knows an algorithm, its parameters and internal state, and which data he can potentially

manipulate.

2. Specification of an attacker’s constraints. Potential constraints on the attacker’s part may in-

clude: percentage of traffic under his control, amount of additional data that must be injected,

an upper bound on the norm of a manipulated part, a maximal allowable false-positive rate (in

case an attack must be stealthy), etc. Such constraints must be incorporated into the axiomatic

formalization.

3. Investigation of the optimal attack policy. Such a policy may be long-term; that is, over

multiple attack iterations, as well as short-term, for a single iteration. The investigation can

be carried out either as a formal proof or numerically, by casting the search for an attack

policy as an optimization problem.

4. Bounding the attacker’s gain under the optimal policy. The ultimate goal of our analysis is

to quantify the attacker’s gain or effort under his optimal policy. Such an analysis may take

different forms, for example calculation of the probability for an attack to succeed, estimation

of the required number of attack iterations, calculation of the geometric impact of an attack

(a shift towards an insecure state), etc.

Organization of this paper reflects the main steps of the proposed methodology. In the prelimi-

nary Section 2, the models of the learning and attack processes are introduced. The analytical part is

arranged in two sections. In Sections 3 and 4, we address the steps (1), (3) and (4) under the assump-

tion that the attacker has full control of the network traffic, first assuming that a learning algorithm

can memorize all previously seen examples, followed by the finite memory case. Section 5 intro-

duces the assumption that the attacker’s control is limited to a fixed fraction of network traffic, as

required in step (2). Another constraint (bounded false positive rate) is considered in Section 6. This

section also removes the somewhat unrealistic assumption of Section 5 that all innocuous points are

accepted by the algorithm. Analytic results are experimentally verified in Section 8 on real HTTP

data and attacks used in intrusion detection systems. Some proofs and auxiliary technical material

are presented in the Appendix. The notation used in the paper is summarized in Table 1.

3684



SECURITY ANALYSIS OF ONLINE CENTROID ANOMALY DETECTION

r centroid’s radius

i attack iteration index, i ∈ N0

ci center of centroid in i-th attack iteration

A attack point

a attack direction vector

Di i-th relative displacement of a centroid in radii

into direction of a

n number of patterns used for initial training of

the centroid

f attack strategy function

ν fraction of adversarial training points

Bi Bernoulli random variable

xi training data

α false alarm rate

IS indicator function of a set S

Table 1: Notation summary.

1.2 Poisoning and Related Attacks Against Learning Algorithms

For two-class learning problems, attacks against learning algorithms can be generally classified

according to the following two criteria (the terminology in the taxonomy of Barreno et al. (2006) is

given in brackets):

• whether an attack is staged during the training (causative) or the deployment of an algorithm

(exploratory), or

• whether an attack attempts to increase the false negative or the false positive rate at the de-

ployment stage (integrity/availability).

The poisoning attack addressed in our work can be classified as a causative integrity attack. This

scenario is quite natural, for example, in web application scenarios in which the data on a server can

be assumed to be secure but the subsequent injection of adversarial data cannot be easily prevented.

Other common attack types are the mimicry attack—alteration of malicious data to resemble in-

nocuous data (an exploratory integrity attack) and the “red herring” attack—sending junk data that

causes false alarms (an exploratory availability attack). Attacks of the latter two kinds are beyond

the scope of our investigation.

As a final remark, we must consider the extent to which the attacker is familiar with the learning

algorithm and trained model. One of the key principles of computer security, known as Kerckhoff’s

principle, is that the robustness of any security instrument must not depend on keeping its oper-

ational functionality secret. Similar to modern cryptographic methods, we must assume that the

attacker knows which machine learning algorithm is deployed and how it operates (he can even use

machine learning to reverse engineer deployed classifiers, as shown by Lowd and Meek, 2005b).

However, it may be more difficult for an attacker to obtain the training data or the particular learned

model. In the case of anomaly detection, it is relatively easy for an attacker to retrieve the learned

model: it suffices to sniff on the same application that is protected by an algorithm to get approxi-
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mately the same innocuous data the algorithm is trained on. Hence, we will assume that the attacker

has precise knowledge of the trained model throughout the attack.

2. Learning and Attack Models

Before proceeding with the analysis, we first present the precise models of the learning and the

attack processes.

2.1 Centroid Anomaly Detection

Given a data set X0 = {x
(1)
0 , . . . ,x

(n)
0 } ⊂ R

d , the goal of anomaly detection (also often referred to

as “novelty detection”) is to determine whether an example x is unlikely to have been generated

by the same distribution as the set X0. A natural way to perform anomaly detection is to estimate

the probability density function of the distribution from which the set X0 was drawn and mark x

as anomalous if it comes from a region with low density. In general, however, density estimation

is a difficult problem, especially in high dimensions. A large amount of data is usually needed to

reliably estimate the density in all regions of the space. For anomaly detection, knowing the density

in the entire space is superfluous, as we are only interested in deciding whether a specific point lies

within a “sparsely populated” area. Hence several direct methods have been proposed for anomaly

detection, for example, one-class SVM (Schölkopf et al., 2001), support vector data description

(SVDD) (Tax and Duin, 1999a,b), and density level set estimation (Polonik, 1995; Tsybakov, 1997;

Steinwart et al., 2005). A comprehensive survey of anomaly detection techniques can be found in

Markou and Singh (2003a,b).

In the centroid anomaly detection, an Euclidean distance from the empirical mean of the data is

used as a measure of abnormality:

f (x) = ||x− 1

n

n

∑
j=1

x
( j)
0 || .

If a hard decision is desired instead of a soft abnormality score, the data point is considered anoma-

lous if its score exceeds a fixed threshold r.

Despite its straightforwardness, a centroid model can represent complex density level sets us-

ing a kernel mapping (Müller et al., 2001; Schölkopf and Smola, 2002) (see Figure 1). Centroid

anomaly detection can be seen as a special case of the SVDD with outlier fraction η = 1 and

of the Parzen window density estimator (Parzen, 1962) with Gaussian kernel function k(x,y) =
1

(
√

2πσ)d
exp(− 1

2σ2 ‖x−y‖2).

Centroid anomaly detection has been successfully used in a variety of anomaly detection ap-

plications such as intrusion detection (Hofmeyr et al., 1998; Yeung and Chow, 2002; Laskov et al.,

2004a; Wang and Stolfo, 2004; Rieck and Laskov, 2006; Wang et al., 2006; Rieck and Laskov,

2007), wireless sensor networks (Rajasegarar et al., 2007) and jet engine vibration data analysis

(Nairac et al., 1999). It has been shown (see, for example, Section 4.1 in Shawe-Taylor and Cris-

tianini, 2004; Vert and Vert, 2006) that even in high-dimensional spaces induced by nonlinear feature

maps, the empirical estimator of the center of mass of the data is stable and the radius of the sphere

anchored at the center of mass is related to the level set of the corresponding probability density.
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Figure 1: Illustration of the density level estimation using a centroid model with a non-linear kernel.

2.2 Online Anomaly Detection

The majority of anomaly detection applications have to deal with non-stationary data. This is espe-

cially typical for computer security, as the processes being monitored usually change over time. For

example, network traffic characteristics are strongly influenced by the time of the day; system call

sequences depend on the applications running on a computer. The model of normality constructed

by anomaly detection algorithms hence needs to be regularly updated, in the extreme case—after

the arrival of each data point. Obviously, retraining the model from scratch every time is computa-

tionally inefficient; however, the incorporation of new data points and the removal of irrelevant ones

can be done with acceptable effort (e.g., Laskov et al., 2006).

For centroid anomaly detection, we assume that the initial state of the learner comprises a center

c0 and a given radius r. We further assume that this state has been obtained from purely innocuous

data. Whenever a new data point xi arrives at iteration i ∈ N, the learner’s center of mass ci is

updated if and only if the new data point is considered non-anomalous; otherwise, it is rejected and

not used for re-training. The radius r stays fixed over time.2 Recalculation of the center of mass is

straightforward and requires O(1) work. If all examples are “memorized”, that is, Xi = Xi−1∪{xi},3

the update is computed as

ci+1 =

(

1− 1

n+ i

)

ci +
1

n+ i
xi . (1)

For a finite horizon, that is, ∀i : |Xi|= n, in each iteration i, some previous example xold ∈ Xi is

replaced by the newly arriving xi, and the update is thus performed as

ci+1 = ci +
1

n
(xi −xold) . (2)

The update formula can be generalized to ci+1 = ci +
κ
i
(xi − xold), with fixed κ ≥ 0. This changes

the bounds in the upcoming analysis only by a constant factor in this case, which is negligible.

2. From the operational standpoint, this assumption is reasonable as the radius serves as a threshold and is usually set

and manually tuned after inspection of (false) alarms. Treating the radius as a model parameter would necessitate

complex rules for its update and would open the system to poisoning attacks against the radius.

3. Note that the data need not be physically stored, as the contributions from individual data points are accumulated in

a current location of the center.
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Figure 2: Illustration of a poisoning attack. By iteratively inserting malicious training points an

attacker can gradually “drag” the centroid into a direction of an attack. The radius is

assumed to stay fixed over time. Figure taken from Nelson and Joseph (2006).

Various strategies can be used to determine the “least relevant” point xold to be removed from

the working set:

(a) oldest-out: the point with the oldest timestamp is removed.

(b) random-out: a randomly chosen point is removed.

(c) nearest-out: the nearest-neighbor of the new point x is removed.

(d) average-out: the center of mass is removed. The new center of mass is recalculated as ci+1 =
ci +

1
n
(xi − ci), which is equivalent to Equation (1) with constant n.

The strategies (a)–(c) require the storage of all points in the working set, whereas the strategy (d)

can be implemented by holding only the center of mass in memory.

2.3 Poisoning Attack

The goal of a poisoning attack is to force an algorithm, at some learning iteration i, to accept the

attack point A that lies outside of the normality ball, that is, ||A− ci|| > r. It is assumed that the

attacker knows the anomaly detection algorithm and the training data. Furthermore, the attacker

cannot modify any existing data except for adding new points. Although the attacker can send any

data point, it obviously only makes sense for him to send points lying within the current sphere as

they are otherwise discarded by the learning algorithm. As illustrated in Figure 2, the poisoning

attack amounts to injecting specially crafted points that are accepted as innocuous but shift the

center of mass in the direction of the attack point until the latter appears innocuous as well.

What points should be used by an attacker in order to subvert online anomaly detection? Intu-

itively, one can expect that the optimal one-step displacement of the center of mass is achieved by

placing attack point xi along the line connecting c and A such that ||xi − c|| = r. A formal proof

of the optimality of such a strategy and the estimation of its efficiency constitutes the first step of

security analysis of online anomaly detection and is provided in the following sections for various

scenarios. In our analysis, we will use the following measure of attack effectiveness.
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Definition 1 (Relative displacement) Let A be an attack point and a = A−c0

||A−c0|| be the attack di-

rection unit vector. The i-th relative displacement Di of an online centroid learner is defined as

Di =
(ci − c0) ·a

r
.

The relative displacement measures the length of the projection of accrued change to ci onto the

attack direction a in terms of the radius of the normality ball. Note that the displacement is a relative

quantity, that is, we may without loss of generality translate the coordinate system so that the center

of mass lies at the origin (i.e., c0 = 0) and subsequently isotropically normalize the space so that the

centroid has unit radius r = 1. After this transformation, the formula for the displacement can be

simplified to

Di = ci ·a .

Definition 2 An attack strategy that maximizes the displacement Di in each iteration i is referred to

as greedy-optimal.

3. Attack Effectiveness for Infinite Horizon Centroid Learner

The effectiveness of a poisoning attack for the infinite horizon learner has been analyzed in Nelson

and Joseph (2006). We provide an alternative proof that follows the main steps of the framework

proposed in Section 1.1.

Theorem 3 The i-th relative displacement Di of the online centroid learner with an infinite horizon

under a poisoning attack is bounded by

Di ≤ ln

(

1+
i

n

)

, (3)

where i is the number of attack points and n is the number of initial training points.

Proof We first determine the greedy-optimal attack strategy and then bound the attack progress.

(a) Let A be an attack point and denote by a the corresponding attack direction vector. Let

{xi|i ∈ N} be adversarial training points. The center of mass at the ith iteration is given in the

following recursion:

ci+1 =

(

1− 1

n+ i

)

ci +
1

n+ i
xi+1 , (4)

with initial value c0 = 0. By the construction of the poisoning attack, ||xi − ci|| ≤ r, which is

equivalent to xi = ci +bi with ||bi|| ≤ r. Equation (4) can thus be transformed into

ci+1 = ci +
1

n+ i
bi .

Taking the scalar product with a and using the definition of a relative displacement, we obtain:

Di+1 = Di +
1

n+ i
· bi ·a

r
, (5)
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with D0 = 0. The right-hand side of the Equation (5) is clearly maximized under ||bi|| ≤ 1 by setting

bi = ra. Thus the greedy-optimal attack is given by

xi = ci + ra . (6)

(b) Plugging the optimal strategy bi = ra into Equation (5), we obtain:

Di+1 = Di +
1

n+ i
.

This recursion can be explicitly solved, taking into account that D0 = 0, resulting in:

Di =
i

∑
k=1

1

n+ k
=

n+i

∑
k=1

1

k
−

n

∑
k=1

1

k
.

Inserting the upper bound on the harmonic series, ∑m
k=1

1
k
= ln(m)+εm, with εm ≥ 0, into the above

formula and noting that εm is monotonically decreasing, we obtain:

Di ≤ ln(n+ i)− ln(n) = ln

(

n+ i

n

)

= ln

(

1+
i

n

)

,

which completes the proof.

Since the bound in Equation (3) is monotonically increasing, we can invert it to obtain a bound

on the effort needed by an attacker to achieve his goal:

i ≥ n · (exp(Di)−1) .

It can be seen that the effort needed to poison an online centroid learner is exponential in terms of the

relative displacement of the center of mass.4 In other words, an attacker’s effort grows prohibitively

fast with respect to the separability of the attack from innocuous data. For a kernelized centroid

learner, the greedy-optimal attack may not be valid, as there may not exist a point in the input space

corresponding to the optimal attack image in the feature space. However, an attacker can construct

points in the input space that are close enough to the greedy-optimal point for the attack to succeed,

with a moderate constant cost factor; cf., Section 8.5.

4. Poisoning Attack against Finite Horizon Centroid Learner

The optimistic result presented in Section 3 is unfortunately not quite useful. In practice, memo-

rization of all training points essentially defeats the main purpose of an online algorithm, that is,

its ability to adjust to non-stationarity. Hence it is important to understand how the removal of data

points from the working set affects the security of online anomaly detection. To this end, the spe-

cific removal strategies presented in Section 2.2 must be considered. The analysis can be carried

out theoretically for the average-out and random-out update rules; for the nearest-out rule, an op-

timal attack can be stated as an optimization problem and the attack effectiveness can be analyzed

empirically.

4. Even constraining a maximum number of online update steps does not remove this bound’s exponential growth

(Nelson and Joseph, 2006).
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4.1 Poisoning Attack for Average-out, Random-out and Oldest-out Rules

We begin our analysis with the average-out learner which follows exactly the same update rule as

the infinite-horizon online centroid learner with the exception that the window size n remains fixed

instead of growing indefinitely (cf. Section 2.2). Despite the similarity to the infinite-horizon case,

the result presented in the following theorem is surprisingly pessimistic.

Theorem 4 The i-th relative displacement Di of the online centroid learner with the average-out

update rule under a worst-case optimal poisoning attack is

Di =
i

n
,

where i is the number of attack points and n is the training window size.

Proof The proof is similar to the proof of Theorem 3. By explicitly writing out the recurrence

between subsequent displacements, we conclude that the greedy-optimal attack is also attained by

placing an attack point along the line connecting ci and A at the edge of the sphere (cf. Equation (6)):

xi = ci + ra .

It follows that the relative displacement under the greedy-optimal attack is

Di+1 = Di +
1

n
.

Since this recurrence is independent of the running index i, the displacement is simply accumulated

over each iteration, which yields the bound of the theorem.

One can see that, unlike the logarithmic bound in Theorem 3, the average-out learner is charac-

terized by a linear bound on the displacement. As a result, an attacker only needs a linear number

of injected points—instead of an exponential one—in order to subvert an average-out learner. This

cannot be considered secure.

A similar result, in terms of the expectation of the relative displacement, can be obtained for the

random-out removal strategy. The proof is based on the observation that in expectation, the average-

out rule is equivalent to the random-out rule. The oldest-out rule can also be handled similarly to

the average-out rule by observing that in both cases some fixed point known in advance is removed

from a working set, which allows an attacker to easily find an optimal attack point.

4.2 Poisoning Attack for Nearest-out Rule

One might expect that the nearest-out strategy poses a stronger challenge to an attacker as it tries to

retain working set diversity by eliminating the most similar data to the new point. However, even

this strategy can be broken with a feasible amount of work if the attacker follows a greedy-optimal

strategy. The latter is the subject of our investigation in this section.
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4.2.1 GREEDY-OPTIMAL ATTACK

The greedy-optimal attack should provide a maximal gain for an attacker in a single iteration. For

the infinite-horizon learner (and hence also for the average-out learner, as it uses the same recurrence

in a proof), it is possible to show that the greedy-optimal attack yields the maximum gain for the

entire sequence of attack iterations; that is, it is (globally) optimal. For the nearest-out learner, it is

hard to analyze the full sequence of attack iterations, hence we limit our analysis to a single-iteration

gain. Empirically, even a greedy-optimal attack turns out to be effective.

To construct a greedy-optimal attack, we partition the sphere spanned by the centroid into

Voronoi cells Vj centered at the training data points x j, j = 1, . . . ,n. Each Voronoi cell comprises

points for which x j is the nearest neighbor. Whenever a new training point “falls into” the sphere,

the center of the corresponding Voronoi cell is removed according to the nearest-out rule.

The optimal attack strategy is now straightforward. First, we determine the optimal attack loca-

tion within each cell. This can be done by solving the following optimization problem for a fixed

x j:

Optimization Problem 5 (greedy-optimal attack)

x∗j = argmax
x

y j(x) := (x−x j) ·a (7)

s.t. ‖x−x j‖ ≤ ‖x−xk‖, ∀k = 1, ...,n (8)

‖x− 1
n ∑n

k=1 xk‖ ≤ r . (9)

The objective of the optimization problem (7) reflects the goal of maximizing the projection of x−x j

onto the attack direction a. The constraint (8) stipulates that the point x j is the nearest neighbor of

x. The constraint (9), when active, enforces that no solution lies outside of the sphere.

The geometry of the greedy-optimal attack is illustrated in Figure 3. An optimal attack point

is placed at the “corner” of a Voronoi cell (including possibly a round boundary of the centroid) to

cause the largest displacement of the centroid along the attack direction.

Once the candidate attack locations are found for each of the n Voronoi cells, the one that has

the highest value of the objective function y j(x
∗
j) is injected and the respective center x j∗ of the

Voronoi cell is expunged from the training set:

j∗ = argmax j∈1,...,n y j(x
∗
j) . (10)

The optimization problem (7) can be simplified by plugging in the definition of the Euclidean

norm. In the resulting optimization problem, all but one of the norm constraints are reduced to

simpler linear constraints:

x∗j = argmax
x

(x−x j) ·a

s.t. 2(xk −x j) ·x ≤ xk ·xk −x j ·x j, ∀k = 1, ...,n (11)

x ·x− 2
n ∑n

k=1 x ·xk ≤ r2 − 1
n2 ∑n

k,l=1 xk ·xl .

Due to the quadratic constraint, the inner optimization task is not as simple as a linear or a quadratic

program. However, several standard optimization packages; for example, CPLEX or MOSEK,
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Figure 3: The geometry of a poisoning attack for the nearest-out rule. A greedy-optimal attack is

injected at the boundary of the respective Voronoi cell.

can optimize such quadratically constrained linear programs (QCLP) with high efficiency, espe-

cially when there is only a single quadratic constraint. Alternatively, one can use specialized algo-

rithms for linear programming with a single quadratic constraint (van de Panne, 1966; Martein and

Schaible, 2005) or convert the quadratic constraint to a second-order cone (SOC) constraint and use

general-purpose conic optimization methods.

4.2.2 IMPLEMENTATION OF A GREEDY-OPTIMAL ATTACK

For the practical implementation of the attack specified by problem (11), some additional processing

steps must be carried out.

A point can become “immune” to a poisoning attack, if starting from some iteration i′ its Voronoi

cell does not overlap with the hypersphere of radius r centered at ci′ . The quadratic constraint (9)

is never satisfied in this case, and the inner optimization problem (7) becomes infeasible. These

immune points remain in the working set forever and slow down the attack’s progress. To avoid this

situation, an attacker must keep track of all optimal solutions x∗j of the inner optimization problems.

If an online update would cause some Voronoi cell Vj to completely slip out of the hypersphere an

attacker should ignore the outer loop decision (10) and expunge x j instead of x j∗ .

A significant speedup can be attained by avoiding the solution of unnecessary QCLP problems.

Let S = {1, . . . , j− 1} and αS be the current best solution of the outer loop problem (10) over the

set S. Let yαS
be the corresponding objective value of an inner optimization problem (11). Consider

the following auxiliary quadratic program (QP):

maxx ‖x− 1
n ∑n

k=1 xk‖ (12)

s.t. 2(xk −x j) ·x ≤ xk ·xk −x j ·x j, ∀k = 1, ...,n (13)

(x−x j) ·a ≥ yαS
. (14)
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Its feasible set comprises the Voronoi cell of x j, defined by constraint (13), further reduced by

constraint (14) to the points that improve the current value yαS
of the global objective function. If

the objective function value provided by the solution of the auxiliary QP (12) exceeds r then the

solution of the local QCLP (11) does not improve the global objective function yαS
. Hence the

expensive QCLP optimization can be skipped.

4.2.3 ATTACK EFFECTIVENESS

To evaluate the effectiveness of the greedy-optimal attack, we perform a simulation on artificial

geometric data. The goal of this simulation is to investigate the behavior of the relative displacement

Di during the progress of the greedy-optimal attack.

An initial working set of size n = 100 is sampled from a d-dimensional Gaussian distribution

with unit covariance (experiments are repeated for various values of d ∈ {2, ...,100}). The radius

r of the online centroid learner is chosen such that the expected false positive rate is bounded by

α = 0.001. An attack direction a, ‖a‖= 1, is chosen randomly, and 500 attack iterations (5∗n) are

generated using the procedure presented in Sections 4.2.1–4.2.2. The relative displacement of the

center in the direction of the attack is measured at each iteration. For statistical significance, the

results are averaged over 10 runs.

Figure 4(a) shows the observed progress of the greedy-optimal attack against the nearest-out

learner and compares it to the behavior of the theoretical bounds for the infinite-horizon learner (the

bound of Nelson and Joseph, 2006) and the average-out learner. The attack effectiveness is measured

for all three cases by the relative displacement as a function of the number of iterations. Plots for

the nearest-out learner are presented for various dimensions d of the artificial problems tested in

simulations. The following observations can be made from the plot provided in Figure 4(a).

First, the attack progress, that is, the functional dependence of the relative displacement of the

greedy-optimal attack against the nearest-out learner with respect to the number of iterations, is

linear. Hence, contrary to our initial intuition, the removal of nearest neighbors of incoming points

does not lead to better security against poisoning attacks.

Second, the slope of the linear attack progress increases with the dimensionality of the problem.

For low dimensionality, the relative displacement of the nearest-out learner is comparable, in abso-

lute terms, with that of the infinite-horizon learner. For high dimensionality, the nearest-out learner

becomes even less secure than the simple average-out learner. By increasing the dimensionality

beyond d > n the attack effectiveness cannot be increased. Mathematical reasons for this behavior

are investigated in Section A.1.

A further illustration of the behavior of the greedy-optimal attack is given in Figure 4(b), show-

ing the dependence of the average attack slope on the dimensionality. One can see that the attack

slope increases logarithmically with the dimensionality and wanes out to a constant factor after the

dimensionality exceeds the number of training data points. A theoretical explanation of the observed

experimental results is given in Appendix A.1.2.

4.3 Concluding Remarks

To summarize our analysis for the case of the attacker’s full control over the training data, we

conclude that an optimal poisoning attack successfully subverts a finite-horizon online centroid

learner for all outgoing point selection rules. This conclusion contrasts with the analysis of the

infinite-horizon learner carried out in Barreno et al. (2006) that yields a logarithmic attack progress.
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Figure 4: Effectiveness of the poisoning attack for the nearest-out rule as a function of input space

dimensionality. (a) The displacement of the centroid along the attack direction grows

linearly with the number of injected points. Upper bounds on the displacement of the

average-out rule are plotted for comparison. (b) The slope of the linear growth increases

with the input space dimensionality.

As a compromise, one can in practice choose a large working set size n, which reduces the slope of

a linear attack progress.

Among the different outgoing point selection rules, the nearest-out rule presents the most chal-

lenges for the implementation of an optimal attack. Some approximations make such an attack

feasible while still maintaining a reasonable progress rate. The key factor for the success of a poi-

soning attack in the nearest-out case lies in high dimensionality of the feature space. The progress

of an optimal poisoning attack depends on the size of the Voronoi cells induced by the training data

points. The size of the Voronoi cells is related linearly to the volume of the sphere corresponding

to the attack’s feasible region (see Appendix A.1.2 for a theoretical discussion of this effect). With

the increasing dimensionality of the feature space, the volume of the sphere increases exponentially,

which leads to a higher attack progress rate.

In the following sections, we analyze two additional factors that affect the progress of a poi-

soning attack. First, we consider the case when the attacker controls only a fixed fraction ν of the

training data. Subsequently we analyze a scenario in which an attacker is not allowed to exceed

a certain false positive rate α; for example, by stopping online learning when a high false positive

rate is observed. It will be shown that both of these possible constraints significantly reduce the

effectiveness of poisoning attacks.

5. Poisoning Attack with Limited Bandwidth Constraint

Until now we assumed that an attacker has unlimited control over the training data; that is, in the

worst case, all the data seen by the learner may be adversarial. This assumption is too pessimistic,

as typically a deployed learning algorithm would also receive normal data during its operation. We

would now analyze centroid anomaly detection under the assumption that only a fraction ν of the

training data is adversarial. Our goal is to analyze the impact of this fraction of control on the
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difficulty of an attack. The choice of realistic values of ν is application-specific. For simplicity, we

restrict ourselves to the average-out learner as we have seen that it only differs by a constant from

the nearest-out one and is equivalent in expectation to the random-out one.

5.1 Learning and Attack Models

As discussed in Section 2, we assume that the initial online centroid learner is centered at the

position c0 and has a fixed radius r (without loss of generality c0 = 0 and r = 1; cf. discussion

after Definition 1 in Section 2). At each iteration a new training point arrives—which is either

inserted by an adversary or drawn independently from the distribution of innocuous points—and a

new center of mass ci is calculated. The mixing of innocuous and attack points is modeled by a

Bernoulli random variable with the parameter ν which denotes the probability that an adversarial

point is presented to the learner. Adversarial points Ai are chosen according to the attack function

f depending on the actual state of the learner ci. The innocuous pool is modeled by a probability

distribution from which the innocuous points xi are independently drawn. We assume that the

expectation of innocuous points xi coincides with the initial center of mass: E(xi) = c0.

For simplicity, we make one additional assumption in this chapter: all innocuous points are

accepted by the learner at any time of the attack independent of their actual distance to the center

of mass. In the absence of this assumption, we would need special treatment for the case that a truly

innocuous point is disregarded by the learner as the center of mass is getting displaced by the attack.

In the next section we drop this assumption so that the learner only accepts points which fall within

the actual radius.

The described probabilistic model is formalized by the following axiom.

Axiom 6 {Bi|i ∈ N} are independent Bernoulli random variables with parameter ν > 0. xi are

i.i.d. random variables in a Euclidean space R
d , drawn from a fixed but unknown distribution

Px, satisfying E(x) = 0 and ‖x‖ ≤ r
w.l.o.g.
= 1. Bi and x j are mutually independent for each i, j.

f : Rd → R
d is a function ‖ f (x)−x‖ ≤ r that we call attack strategy. {ci|i ∈ N} is a collection of

random vectors such that w.l.o.g. c0 = 0 and

ci+1 = ci +
1

n
(Bi f (ci)+(1−Bi)xi − ci) . (15)

Moreover, we denote xi := xi ·a.

For simplicity of notation, in this section we refer to a collection of random vectors {ci|i ∈ N}
satisfying Axiom 6 as an online centroid learner. Any function f satisfying Axiom 6 is called an

attack strategy. The attack strategy is a function that maps a vector (the center) to an attack location.

According to the above axiom, the adversary’s attack strategy is formalized by an arbitrary

function f . This raises the question of which attack strategies are optimal in the sense that an

attacker reaches his goal of concealing a predefined attack direction vector in a minimal number of

iterations. As in the previous sections, an attack’s progress is measured by projecting the current

center of mass onto the attack direction vector:

Di = ci ·a .

Attack strategies maximizing the displacement Di in each iteration i are referred to as greedy-

optimal attack strategies.
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5.2 Greedy-Optimal Attack

The following result characterizes the greedy-optimal attack strategy for the model specified in

Axiom 6.

Proposition 7 Let a be an attack direction vector. Then the greedy-optimal attack strategy f against

the online centroid learner is given by

f (ci) := ci +a . (16)

Proof Since by Axiom 6 we have ‖ f (x)− x‖ ≤ r, any valid attack strategy can be written as

f (x) = x+g(x), such that ‖g‖ ≤ r = 1. It follows that

Di+1 = ci+1 ·a

=

(

ci +
1

n
(Bi f (ci)+(1−Bi)xi − ci)

)

·a

= Di +
1

n
(BiDi +Big(ci)·a+(1−Bi)x ·a−Di) .

Since Bi ≥ 0, the greedy-optimal attack strategy should maximize g(ci) · a subject to ||g(ci)|| ≤ 1.

The maximum is clearly attained by setting g(ci) = a.

Note that the displacement measures the projection of the change of the centroid onto the

attack direction vector. Hence it is not surprising that the optimal attack strategy is independent of

the actual position of the learner.

5.3 Attack Effectiveness

The effectiveness of the greedy-optimal attack in the limited control case is characterized in the

following theorem.

Theorem 8 For the displacement Di of the centroid learner under an optimal poisoning attack,

(a) E(Di) = (1−ai)
ν

1−ν

(b) Var(Di) ≤ γi

(

ν

1−ν

)2

+δn ,

where ai :=
(

1− 1−ν
n

)i
, bi =

(

1− 1−ν
n

(

2− 1
n

))i
, γi = ai −bi, and δn := ν2+(1−bi)

(2n−1)(1−ν)2 .

Proof (a) Inserting the greedy-optimal attack strategy of Equation (16) into Equation (15) of Ax-

iom 6, we have:

ci+1 = ci +
1

n
(Bi (ci +a)+(1−Bi)xi − ci) ,

which can be rewritten as:

ci+1 =

(

1− 1−Bi

n

)

ci +
Bi

n
a+

(1−Bi)

n
xi . (17)
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Figure 5: Theoretical behavior of the displacement of a centroid under a poisoning attack for a

bounded fraction of traffic under attacker’s control. The infinite horizon bound of Nelson

et al. is shown for comparison (solid line).

Taking the expectation on the latter equation and noting that by Axiom 6, E(xi) = 0 and E(Bi) = ν,

we have

E (ci+1) =

(

1− 1−ν

n

)

E(ci)+
ν

n
a ,

which by the definition of the displacement translates to

E(Di+1) =

(

1− 1−ν

n

)

E(Di)+
ν

n
.

The statement (a) follows from the latter recursive equation by Proposition 17 (formula of the geo-

metric series). For the more demanding proof of (b), see Appendix A.2.

The following corollary shows the asymptotic behavior of the above theorem.

Corollary 9 For the displacement Di of the centroid learner under an optimal poisoning attack,

(a) E(Di) ≤ ν

1−ν
for all i

(b) Var(Di) → 0 for i,n → ∞ .

Proof The corollary follows from the fact that γi,δn → 0 for i,n → ∞.

The behavior of the above bounds as a function of the number of attack iterations is illustrated

in Figure 5. One can see that the attack’s progress depends on the fraction of the training data

controlled by the attacker. For any ν < 1, the attack progress is bounded by a constant. Hence

the attack’s success critically depends on the value of this constant: if ||A− c0|| < ν/(1− ν), the

attack fails even with infinite effort. This result provides a much stronger security guarantee than

the exponential bound for the infinite horizon case.
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Figure 6: Comparison of the empirical displacement of the centroid under a poisoning attack with

attacker’s limited control (ν = 0.05) with the theoretical bound for the same setup. The

empirical results are averaged over 10 runs.

To empirically investigate the tightness of the derived bound we compute a Monte Carlo simula-

tion of the scenario defined in Axiom 6 with the parameters ν = 0.05, n = 100000, H =R
2, and Px

being a uniform distribution over the unit circle. Figure 6 shows a typical displacement curve over

the first 500,000 attack iterations. One can clearly see that the theoretical bound is closely followed

by the empirical simulation.

6. Poisoning Attack under False Positive Constraints

In the last section we have assumed, that innocuous training points xi are always accepted by the

online centroid learner. It may, however, happen that some innocuous points fall outside of the

hypersphere boundary while an attacker displaces the hypersphere. We have seen that the attacker’s

impact highly depends on the fraction of points he controls. If an attacker succeeds in pushing the

hypersphere far enough for innocuous points to start dropping out, the speed of the hypersphere

displacement increases. Hence additional protection mechanisms are needed to prevent the success

of an attack.

6.1 Learning and Attack Models

Motivated by the above considerations we modify the probabilistic model of the last section as

follows. Again we consider the online centroid learner initially anchored at a position c0 having

a radius r. For the sake of simplicity and without loss of generality we can again assume c0 = 0

and r = 1. Innocuous and adversarial points are mixed into the training data according to a fixed

fraction controlled by a binary random variable Bi. In contrast to Section 5, innocuous points xi are

accepted if and only if they fall within the radius r from the hypersphere’s center ci. In addition, to

avoid the learner being quickly displaced, we require that the false alarm rate, that is, the number of
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innocuous points rejected by the learner, is bounded by α. If the latter is exceeded, we assume the

adversary’s attack to have failed and a safe state of the learner to be loaded.

We formalize this probabilistic model as follows:

Axiom 10 {Bi|i ∈ N} are independent Bernoulli random variables with parameter ν > 0. xi are

i.i.d. random variables in a reproducing kernel Hilbert space H drawn from a fixed but unknown

distribution Px, satisfying E(x) = 0, ‖x‖ ≤ r = 1, and Px·a = P−x·a (symmetry w.r.t. the attack

direction). Bi and x j are mutually independent for each i, j. f : Rd → R
d is an attack strategy

satisfying ‖ f (x)−x‖ ≤ r. {ci|i ∈ N} is a collection of random vectors such that c0 = 0 and

ci+1 = ci +
1

n

(

Bi ( f (ci)− ci)+(1−Bi)I{‖xi−ci‖≤r} (xi − ci)
)

,

if Ex

(

I{‖x−ci‖≤r}
)

≤ 1−α and by ci+1 = 0 otherwise. Moreover, we denote xi := xi ·a.

For simplicity of notation, we refer to a collection of random vectors {ci|i ∈ N} satisfying Ax-

iom 10 as an online centroid learner with maximal false positive rate α in this section. Any function

f satisfying Axiom 10 is called an attack strategy. Optimal attack strategies are characterized in

terms of the displacement as in the previous sections. Note that Ex(·) denotes the conditional ex-

pectation given all remaining random quantities except for x.

The intuition behind the symmetry assumption in Axiom 10 is that it ensures that resetting the

centroid’s center to zero (initiated by the false positive protection) does not lead to a positive shift

of the centroid toward the attack direction.

6.2 Greedy-Optimal Attack and Attack Effectiveness

The following result characterizes the greedy-optimal attack strategy for the model specified in

Axiom 10. We restrict our analysis to greedy-optimal strategies, that is, the ones that maximize the

displacement in each successive iteration.

Proposition 11 Let a be an attack direction vector and consider the centroid learner with maximal

false positive rate α as defined in Axiom 10. Then the greedy-optimal attack strategy f is given by

f (ci) := ci +a .

Proof Since by Axiom 10 we have ‖ f (x)− x‖ ≤ r, any valid attack strategy can be written as

f (x) = x+g(x), such that ‖g‖ ≤ r = 1. It follows that either Di+1 = 0, in which case the optimal f

is arbitrary, or we have

Di+1 = ci+1 ·a

=

(

ci +
1

n
(Bi f (ci)+(1−Bi)xi − ci)

)

·a

= Di +
1

n
(Bi (Di +g(ci))+(1−Bi)xi −Di) .

Since Bi ≥ 0, the greedy-optimal attack strategy should maximize g(ci) · a subject to ||g(ci)|| ≤ 1.

The maximum is clearly attained by setting g(ci) = a.

The estimate of effectiveness of the greedy-optimal attack in the limited control case is given in

the following theorem.
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Theorem 12 For the displacement Di of a centroid learner with maximal false positive rate α under

a poisoning attack,

(a) E(Di) ≤ (1−ai)
ν+α(1−ν)

(1−ν)(1−α)

(b) Var(Di) ≤ γi

ν2

(1−α)2(1−ν)2
+ρ(α)+δn ,

where ai :=
(

1− (1−ν)(1−α)
n

)i

, bi =
(

1− 1−ν
n
(2− 1

n
)(1−α)

)i
, γi = (ai − bi),

ρ(α) = α
(1−ai)(1−bi)(2ν(1−α)+α)

(1− 1
2n
)(1−ν)2(1−α)2

, and δn =
(1−bi)(ν+(1−ν)E(xi

2))
(2n−1)(1−ν)(1−α) , xi := xi ·a.

The proof is technically demanding and is given in Appendix A.3. Despite the more general

proof reasoning, we recover the tightness of the bounds of the previous section for the special case

of α = 0, as shown by the following corollary.

Corollary 13 Suppose a maximal false positive rate of α = 0. Then, the bounds on the expected

displacement Di, as given by Theorem 8 and Theorem 12, coincide. Furthermore, the variance

bound of Theorem 12 upper bounds the one of Theorem 8.

Proof We start by setting α = 0 in Theorem 12(a). Clearly the latter bound coincides with its coun-

terpart in Theorem 8. For the proof of the second part of the corollary, we observe that ρ(0) = 0 and

that the quantities ai,bi, and γi coincide with their counterparts in Theorem 8. Moreover, removing

the distribution dependence by upper bounding E(xi) ≤ 1 reveals that δi is upper bounded by its

counterpart of Theorem 8. Hence, the whole expression on the right hand side of Theorem 12(b) is

upper bounded by its counterpart in Theorem 8(b).

The following corollary shows the asymptotic behavior of the above theorem. It follows from

γi,δn,ρ(α)→ 0 for i,n → ∞, and α → 0, respectively.

Corollary 14 For the displacement Di of the centroid learner with maximal false positive rate α

under an optimal poisoning attack,

(a) E(Di) ≤ ν+α(1−ν)

(1−ν)(1−α)
for all i

(b) Var(Di) → 0 for i,n → ∞,α → 0 .

From the previous theorem, we can see that for small false positive rates α ≈ 0, which are

common in many applications, for example, intrusion detection (see Section 8 for an extensive

empirical analysis), the bound approximately equals the one of the previous section; that is, we

have E(Di) ≤ ν
1−ν + δ where δ > 0 is a small constant with δ → 0. Inverting the bound we obtain

the useful formula

ν ≥ E(Di)

1+E(Di)
, (18)

which gives a lower bound on the minimal ν an adversary has to employ for an attack to succeed.

The illustration of the bound in Theorem 12 is given in Figure 7 for different levels of the false

positive protection α ∈ [0,0.025]. We are especially interested in low false positive rates. One can

see that tightness of the bounds of the previous section is almost entirely preserved. In the extreme

case α = 0, the bounds coincide, as it was shown in Corollary 13.
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Figure 7: Theoretical behavior of the displacement of a centroid under a poisoning attack for dif-

ferent levels of false positive protection α. The predicted displacement curve for α = 0

coincides with the one shown in Figure 6.

7. Generalization to Kernels

For simplicity, we have assumed in the previous sections that the data xi ∈ R
d lies in an Euclidean

space. This assumption does not add any limitations, as all our results can be generalized to the

so-called kernel functions (Schölkopf and Smola, 2002). This is remarkable, as nonlinear kernels

allow one to obtain complex decision functions from the simple centroid model (cf. Figure 1).

Definition 15 (Def. 2.8 in Shawe-Taylor and Cristianini, 2004) A function k : Rd ×R
d → R is

called a kernel if and only if there exists a Hilbert space (H ,〈·〉) and a map φ : Rd → H such

that for all x,y ∈ R
d it holds k(x,y) = 〈φ(x),φ(y)〉. Given a sample x1, . . . ,xn, the matrix K with

i j-th entry k(xi,x j) is called kernel matrix.

Examination of the theoretical results and proofs of the proceeding sections reveals that they, at no

point, require special properties of Euclidean spaces. Instead, all calculations can be carried out in

terms of arbitrary kernels. To this end, we only need to substitute all occurrences of x ∈ R
d in the

proofs by feature vectors φ(x) ∈ H . Likewise, all occurrences of inner products 〈x,y〉 generalize

to scalar products 〈φ(x),φ(y)〉 in the kernel Hilbert space. The scalar product also induces a norm,

defined by ‖w‖ :=
√

〈w,w〉 for all w ∈ H . The expectation operator E : H 7→ H is well-defined

as long as E‖x‖ is finite, which will always be assumed (as a matter of fact, we assume that ‖x‖ is

bounded almost surely; cf. Axiom 6 and Axiom 10).

It is interesting to discuss whether the assumptions on the distribution generating the innocuous

data as imposed by Axiom 6 and Axiom 10 can be fulfilled in Hilbert spaces. For Axiom 6, there is

no restriction at all, but in Axiom 10 we use the assertion P(x−c0)·a = P−(x−c0)·a, which means that

the distribution of the data projection onto the attack direction is required to be point symmetric

w.r.t. c0 ·a, where c0 is the center of the hypersphere before the attack takes place. For example, this
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is fulfilled by distributions that are symmetric with respect to c0 in feature space, and thus naturally

fulfilled by Gaussian distributions with mean c0 (using φ = id) or truncated Gaussians. When using

kernels the symmetry assumption can be invalid, for example, for RBF kernels. However, our

empirical analysis (see next section) shows that our bounds are, nevertheless, sharp in practice.

It is also worth noting that the use of kernels can impose geometric constraints on the optimal

attack. Note that, in practice, the attacker can only construct attack points in the input space and

not directly in the feature space. The attack is then embedded into the feature space. Thus, strictly

speaking, we would need to restrict the search space to feature vectors that have a valid pre-image

when using kernels. However, this can be a hard problem to solve in general (Fogla and Lee,

2006). In Proposition 11, we do not take this additional complication into account. Therefore, we

overestimate the attacker. This is admissible for security analysis; it is the underestimation of the

attack capability that would have been problematic.

8. Case Study: Application to Intrusion Detection

In this section we present an experimental evaluation of the developed analytical instruments in the

context of a particular computer security application: intrusion detection. After a short presentation

of the application, data collection, preprocessing and model selection, we report on experiments

aimed at the verification of the theoretically obtained growth rates for the attack progress as well as

the computation of constant factors for specific real-life exploits.5

8.1 Anomaly-Based Intrusion Detection

Computer systems linked to the Internet are exposed to a plethora of network attacks and mali-

cious code. Numerous threats, which range from simple “drive-by-downloads” of malicious code

to sophisticated self-proliferating worms, target network hosts every day; networked systems are

generally at risk to be remotely compromised and abused for illegal purposes. Sometimes it suffices

for malware to send a single HTTP-request to a vulnerable webserver to infect a vast majority of

computers within minutes (e.g., the Nimda worm). While early attacks were developed rather for

fun than for profit, proliferation of current network attacks is now driven by a criminal underground

economy. Compromised systems are often abused for monetary gains including the distribution

of spam messages and theft of confidential data. The success of these illegal businesses poses a

severe threat to the security of network infrastructures. Alarming reports on an expanding dissem-

ination of advanced attacks render sophisticated security systems indispensable (e.g., Microsoft,

2008; Symantec, 2008).

Conventional defenses against such malicious software rest on abuse detection; that is, iden-

tifying attacks using known patterns of abuse, so-called attack signatures. While abuse detection

effectively protects from known threats, it increasingly fails to be able to cope with the amount and

diversity of attacks. The time span required for crafting a signature from a newly discovered attack

is insufficient for protecting against rapidly propagating malicious code (e.g., Moore et al., 2002;

Shannon and Moore, 2004). Moreover, recent attacks frequently use polymorphic modifications,

which strongly impedes the creation of accurate signatures (Song et al., 2007). Consequently, there

5. The term exploit denotes a sequence of bytes which, given as an input to a vulnerable program, causes execution of

arbitrary, potentially harmful code.
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is currently a strong demand for alternative techniques for detection of attacks during the course of

their propagation.

Anomaly detection methods provide a means for identifying unknown and novel attacks in

network traffic and thereby complement regular security defenses. The centroid anomaly detection

is especially appealing because of its low computational complexity.6 It has been successfully used

in several well-known intrusion detection systems (e.g., Hofmeyr et al., 1998; Lazarevic et al., 2003;

Wang and Stolfo, 2004; Laskov et al., 2004b; Wang et al., 2005, 2006; Rieck and Laskov, 2007).

8.2 Data Corpus and Preprocessing

The data to be used in our case study was collected by recording real HTTP traffic for 10 days

at Fraunhofer Institute FIRST. We consider the data at the level of HTTP requests which are the

basic syntactic elements of the HTTP protocol. To transform the raw data into HTTP requests, we

remove packet headers from the Ethernet, IP and TCP layers, and merge requests spread across

multiple packets. After this point, we consider only request bodies (viewed as a byte string) to be

our data point. The resulting data set comprises 145,069 requests of the average length of 489 bytes,

from which we randomly drew a representative subset of 2950 data points. This data is referred to

as the normal data pool.

The malicious data pool is obtained by a similar procedure applied to the network traffic gen-

erated by examples of real attacks used for penetration testing.7 It contains 69 attack instances

from 20 real exploits obtained from the Metasploit penetration testing framework.8 Attacks were

launched in a virtual network and normalized to match the characteristics of the innocuous HTTP

requests (e.g., URLs were changed to that of a real web server).

As byte sequences are not directly suitable for the application of machine learning algorithms,

we deploy a k-gram spectrum kernel (Leslie et al., 2002; Shawe-Taylor and Cristianini, 2004) for

the computation of inner products. This kernel represents a linear product in a feature space in

which dimensions correspond to subsequences of length k contained in input sequences. To enable

fast comparison of large byte sequences (a typical sequence length is 500–1000 bytes), efficient

algorithms using sorted arrays (Rieck and Laskov, 2008) were implemented. Furthermore, kernel

values are normalized according to

k(x, x̄) 7−→ k(x, x̄)
√

k(x,x)k(x̄, x̄)
(19)

to avoid a dependence on the length of a request payload. The resulting inner products were sub-

sequently used by an RBF kernel. Notice that if k is a kernel (in our case it is; see Leslie et al.,

2002), then the kernel normalized by Equation (19) is a kernel, too. For example, this can be seen

by noting that, for any kernel matrix, this normalization preserves its positive definiteness as it is a

columnwise operation and thus can only change the principal minors by a constant factor.

8.3 Learning Model

The feature space selected for our experiments depends on two parameters: the k-gram length and

the RBF kernel width σ. Prior to the main experiments aimed at the validation of the proposed

6. With suitable parallelization for multicore architectures, processing speeds of over 3 Gbps can be attained.

7. Penetration testing refers to launching real exploits against computer systems to identify potential vulnerabilities.

8. Metasploit can be found at http://www.metasploit.com/.
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security analysis techniques, we investigate optimal model parameters in our feature space. The

parameter range considered is k = 1,2,3 and σ = 2−5,2−4.5, ...,25. Each of the 69 attack instances

is represented by a feature vector. We refer to these embedded attacks as the attack points; that is,

the points in the feature space that the adversary would like to have declared as non-anomalous.

To carry out model selection, we randomly partitioned the innocuous corpus into disjoint train-

ing, validation and test sets (of sizes 1000, 500 and 500). The training set is used for computing the

centroid, the validation set is used for model selection, and the test set is used to evaluate the detec-

tion performance of the centroid. The training set is comprised of the innocuous data only, as the

online centroid learner assumes clean training data. The validation and test sets are mixed with 10

randomly chosen attack instances. We thereby ensure that none of the attack instances mixed into

the validation set has a class label that also occurs in the test data set. When sampling, we realize

this requirement by simply skipping instances that would violate this condition.9 For each partition,

an online centroid learner model is trained on a training set and evaluated on a validation and a test

set, using the normalized AUC[0,0.01] (area under the ROC-curve for false positive rates less that

0.01) as a performance measure.10 For statistical significance, model selection is repeated 1000

times with different randomly drawn partitions. The average values of the normalized AUC[0,0.01]

for the different k values on test partitions are given in Table 2.

It can be seen that the 3-gram model consistently shows better AUC values for both the linear

and the best RBF kernels. We have chosen the linear kernel for the remaining experiments since

it allows one to carry out computations directly in the input space with only a marginal penalty in

detection accuracy.

linear best RBF kernel optimal σ

1-grams 0.913±0.051 0.985±0.021 2−2.5

2-grams 0.979±0.026 0.985±0.025 2−1.5

3-grams 0.987±0.018 0.989±0.017 2−0.5

Table 2: AUC for the linear kernel, the best RBF kernel and the optimal bandwidth σ.

8.4 Intrinsic HTTP Data Dimensionality

As it was shown in Sec. 4.2.3, the dimensionality of the training data plays a crucial role in the

(in)security of the online centroid learner when using the nearest-out update rule. In contrast, the

displacement under the average-out rule is independent of the input dimensionality; we therefore

focus on the nearest-out rule in this section. For the intrusion detection application at hand, the

dimensionality of the chosen feature space (k-grams with k = 3) is 2563, that is, it is rather high.

One would thus expect a dramatic impact of the dimensionality on the displacement (an thus the

insecurity) of the learner. However, the real progress rate depends on the intrinsic dimensionality

of the data. When the latter is smaller than the size of the training data, an attacker can compute

a PCA of the data matrix (Schölkopf et al., 1998) and project the original data into the subspace

spanned by a smaller number of informative components. The following theorem shows that the

dimensionality of the relevant subspace in which attack takes place is bounded by the size of the

9. The latter requirement reflects the goal of anomaly detection to recognize previously unknown attacks.

10. The normalization is such that AUC = 1 holds for a perfect detector.
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training data n, which can be much smaller than the input dimensionality, typically in the range of

100–1000 for realistic applications.

Theorem 16 There exists an optimal solution of problem (11) satisfying

x∗i ∈ span(a,x1, ...,xn) .

The above theorem, which also can be used as a representer theorem for “kernelization” of the

optimal greedy attack, shows that the attack’s efficiency cannot be increased beyond dimensions

with d ≥ n+1. The proof is given in Appendix A.1.

To determine the intrinsic dimensionality of possible training sets drawn from HTTP traffic, we

randomly draw 1000 elements from the innocuous pool, calculate a linear kernel matrix in the space

of 3-grams and compute its eigenvalue decomposition. We then determine the number of leading

eigen-components as a function of the percentage of variance preserved. The results averaged over

100 repetitions are shown in Figure 8.
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Figure 8: Intrinsic dimensionality of the embedded HTTP data. The preserved variance is plotted

as a function of the number of eigencomponents, k, employed for calculation of variance

(solid blue line). The tube indicates standard deviations.

It can be seen that 250 kernel PCA components are needed to preserve 99% of the variance.

This implies that, although the effective dimensionality of the HTTP traffic is significantly smaller

than the number of training data points, it still remains sufficiently high so that the attack progress

rate approaches 1, which is similar to the simple average-out learner.

8.5 Geometrical Constraints of HTTP Data

Several technical difficulties arising from data geometry have to be overcome in launching a poi-

soning attack in practice. However, consideration of the training data geometry provides an attacker

with efficient tools for finding reasonable approximations for the above mentioned tasks.
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(1) Even for the linear kernel, it is hard to craft a poisoning point in the 3-gram input space due

to the high dimensionality of the 3-gram space. An approximately equivalent explicit feature space

can be constructed by applying kernel PCA to the kernel matrix K. By pruning the eigenvalues

“responsible” for dimensions with low variance one can reduce the size of the feature space to the

implicit dimensionality of the problem if the kernel matches the data (Braun et al., 2008). In all

subsequent experiments we used d = 256 as suggested by the experiments in Section 8.4.

(2) The normalization condition (19) requires that a solution lies on a unit sphere.11 Unfor-

tunately, this renders the calculation of the greedy-optimal attack point non-convex. Therefore,

we pursue the following heuristic procedure to enforce normalization: we explicitly project local

solutions (for each Voronoi cell) to a unit sphere, verify their feasibility (the radius and the cell

constraints) and remove infeasible points from the outer loop (10).

(3) In general one cannot expect each feature space vector to correspond to a valid byte se-

quence since not all combinations of k-grams can be “glued” to a valid byte sequence. In fact,

finding a sequence with the best approximation to a given k-gram feature vector is NP-hard (Fogla

and Lee, 2006). Since the optimal attack lies in the span of the training data (cf. Theorem 16) we

can construct an attack byte sequence by concatenating original training sequences with rational

coefficients that approximately match the coefficients of a linear combination. A potential disad-

vantage of this method is the increase of sequence lengths. Large requests are conspicuous and may

consume significant resources on the attacker’s part.

(4) An attack byte sequence must be embedded in a valid HTML protocol frame so that a request

does not cause an error on a server. An HTTP request consists of fixed format headers and a variable

format body. A straightforward way to stealthily introduce arbitrary content is to provide a body in

a request whose method (e.g., GET) does not require one (it is ignored by the server). Alternatively

one can introduce custom headers that are not expected by the server and will be ignored as well.

8.6 Poisoning Attack for Finite Horizon Centroid Learner

The analysis carried out in Section 4 shows that an online centroid learner, in general, does not

provide sufficient security if an attacker fully controls the data. Practical efficiency of a poisoning

attack, however, depends on the dimensionality and geometry of the training data analyzed in the

previous section. Theoretical results were validated in simulations on artificial data presented in

Section 4.2.3. The experiments in this section are intended to verify the results presented in Sec-

tion 4.2.3 in the context of real attacks against HTTP applications. Our experiments focus on the

nearest-out learner as other update rules can be easily attacked with trivial methods.

The experimental protocol is as follows. We randomly draw n = 250 training points from the

innocuous corpus, calculate the center of mass and fix the radius such that the false positive rate on

the training data is α = 0.001. Then we draw a random instance from each of the 20 attack classes

and for each of these 20 attack instances generate a poisoning attack as described in Section 8.5. An

attack succeeds when the attack point is accepted as innocuous by the learning algorithm.

For each attack instance, the number of iterations needed for an attack to succeed and the re-

spective displacement of the center of mass is recorded. Figure 9 shows, for each attack instance,

the behavior of the relative displacement at the point of success as a function of the number of iter-

ations. We interpolate a “displacement curve” from these pointwise values by linear least-squares

11. In the absence of normalization, the high variability of the byte sequence lengths leads to poor accuracy of centroid

anomaly detection.
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Figure 9: Empirical displacement of the nearest-out centroid for 20 different exploits (crosses, lin-

ear fit shown by a red dotted line). Displacement values are shown at the point of success

for each attack. Theoretical bounds are shown for comparison (blue and black lines).

regression. For comparison, the theoretical upper bounds for the average-out and all-in cases are

shown (“all-in” hereby refers to the update strategy given by Equation (1), where points are added

to the training set without removing old ones). Notice that the bound for the all-in strategy is also

almost linear for the small i/n ratios observed in this experiment.

The observed results confirm that the linear progress rate in the full control scenario can be

attained for real data. Compared to the simulations of Section 8.5, the progress rate of an attack is

approximately half the one for the average-out case. This can be attributed to multiple approxima-

tions performed in the attack implementation for real byte sequences. For example, we use a k-gram

spectrum kernel, so each poisoning attack point is restricted to have unit norm in feature space. The

practicality of the poisoning attack is further emphasized by the small number of iterations needed

for an attack to succeed: it suffices to overwrite between 2 and 35 percent of the initial number of

points in the training data to subvert the nearest-out learner.

8.7 Critical Traffic Ratios of HTTP Attacks

For the case of the attacker’s limited control over the data, the success of a poisoning attack largely

depends on attacker’s constraints, as shown in the analysis in Sections 5 and 6. The main goal of the

experiments in this section is therefore to investigate the impact of potential constraints in practice.

In particular, we are interested in the impact of the traffic ratio ν and the false positive rate α.

The analysis in Section 5 (cf. Theorem 8 and Figure 5) shows that the displacement of a poi-

soning attack is bounded from above by a constant depending on the traffic ratio ν controlled by

an attacker. Hence the susceptibility of the learner to a particular attack depends on the value of

this constant. If an attacker does not control a sufficiently large traffic portion and the potential

displacement is bounded by a constant smaller than the distance from the initial center of mass to

3708



SECURITY ANALYSIS OF ONLINE CENTROID ANOMALY DETECTION

the attack point, then the attack fails. To illustrate this observation, we compute critical traffic rates

needed for the success of attacks from each of the 20 attack classes in our malicious pool.

We randomly draw a 1000-element training set from the innocuous pool and calculate its center

of mass (in the space of 3-grams). The radius is fixed such that the false positive rate α = 0.001

on innocuous data is attained. For each of the 20 attack classes we compute the class-wise median

distance to the centroid’s boundary. Using these distance values we calculate the “critical value”

νcrit by solving Theorem 8(c) for ν (cf. Equation (18)). The experiments were repeated 10 times,

with results shown in Table 3.

Attacks Rel. dist. νcrit

ALT-N WebAdmin Overflow 0.058±0.002 0.055±0.002

ApacheChunkedEncoding 0.176±0.002 0.150±0.001

AWStats ConfigDir Execution 0.067±0.002 0.063±0.002

Badblue Ext Overflow 0.168±0.002 0.144±0.001

Barracuda Image Execution 0.073±0.002 0.068±0.002

Edirectory Host 0.153±0.002 0.132±0.001

IAWebmail 0.178±0.002 0.151±0.001

IIS 5.0 IDQ exploit 0.162±0.002 0.140±0.001

Pajax Execute 0.107±0.002 0.097±0.002

PEERCAST URL 0.163±0.002 0.140±0.001

PHP Include 0.097±0.002 0.088±0.002

PHP vBulletin 0.176±0.002 0.150±0.001

PHP XML RPC 0.172±0.002 0.147±0.001

HTTP tunnel 0.160±0.002 0.138±0.001

IIS 4.0 HTR exploit 0.176±0.002 0.149±0.002

IIS 5.0 printer exploit 0.161±0.002 0.138±0.001

IIS unicode attack 0.153±0.002 0.133±0.001

IIS w3who exploit 0.168±0.002 0.144±0.001

IIS 5.0 WebDAV exploit 0.179±0.002 0.152±0.001

rproxy exploit 0.155±0.002 0.134±0.001

Table 3: Relative distances (in radii) of exploits to the boundary of a centroid enclosing all training

points and critical values of parameter ν.

The results indicate that in order to subvert an online centroid learner an attacker needs to control

on average from 5 to 20 percent of traffic (with small variance). This could be a significant limitation

on highly visible sites. Generating sufficiently high bandwidths in this case is likely to make the

attacker’s cost exorbitantly high.

On the other hand, one can see that the traffic rate limiting alone cannot be seen as a sufficient

protection instrument due to its passive nature. In the following section we investigate a different

protection scheme using both the traffic ratio and the false positive rate control.
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Figure 10: Maximal false positive rate within 10000 attack iterations as a function of ν (maximum

taken over 10 runs).

8.8 Poisoning Attack Against Learner with False Positive Protection

The analysis in Section 5 (cf. Theorem 8 and Figure 5) shows that the displacement of a poisoning

attack is bounded from above by a number, depending on the traffic ratio ν and the maximal false

positive rate α. The dependence of this number on α can be used for constructive protection of a

learner against a poisoning attack. The idea is to use the observed false positive rate as a measure

of the attack’s progress, and to turn online updates off if some critical false alarm rate is attained.

8.8.1 EXPERIMENT 1: PRACTICABILITY OF FALSE POSITIVE PROTECTION

The first issue to be decided is what values of α are reasonable from the operational perspective. A

false positive threshold that is too low would lead to a quasi-permanent shutdown of online updates;

a high tolerance to false positives would allow an attack to slip in unnoticed. Hence, we need

to investigate the dependence of the observed false positive rate on the traffic ratio ν under the

attacker’s control.

To this end, we randomly draw 100 samples from the innocuous pool (each sample containing

1000 points), and compute the mean and the radius that encompasses 99.9% of the points. We

may hence view the average radius r (averaged over the 100 samples) as the empirical estimate

of the α = 0.001-quantile of the innocuous pool. Then, we randomly draw another 1000-element

training set from the innocuous pool and use it to calculate the center c. We thus may expect the

resulting initial centroid (c,r) to have a false positive rate of α = 0.001 on the innocuous pool.

Next, the learner is switched online. We randomly draw a 500-element online training set and a

500-element hold-out set from the innocuous pool. The hold-out set is used for the estimation of

the false positive rate for each location of the center. We then proceed by presenting normal data

(drawn with replacement from the online training set) mixed with poisoning attack points (using the

IIS 5.0 WebDAV exploit as target) and measuring the false positive rate for each attack iteration.

Notice that normal data points may also get rejected if they do not fall within the radius r from the

(poisoned) center.
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Figure 11: Simulation of a poisoning attack against IIS 5.0 WebDAV exploit under limited control.

In Figure 10 the maximal observed false positive rate is shown for various values of ν, where the

maximum is taken over all attack iterations and 10 runs. One can see from the plot that α = 0.005

is a reasonable threshold in our setting to ensure that the system’s normal operation is not disrupted

by the false positive protection.

8.8.2 EXPERIMENT 2: ATTACK SIMULATION FOR FALSE POSITIVE PROTECTION

In the previous experiment we have seen that α = 0.005 is a reasonable threshold for the false

positive protection. In this section we illustrate that the critical values from Section 8.7 computed on

the basis of Theorem 8 for the maximal false positive rate of α = 0.005 give a good approximation

of the true impact of a poisoning attack.

To this end, we fix a particular attack in our malicious corpus (IIS WebDAV 5.0 exploit) and run

a poisoning attack against the average-out centroid learner for various values of ν ∈
[0.05,0.10,0.14,0.16] recording the actual displacement curves. One can see from Figure 11 that

the attack succeeds for ν = 0.16 but fails to reach the required relative displacement of Dcrit = 0.18

for ν = 0.14. The theoretical critical traffic ratio for this attack (with false positive rate bounded by

α ≤ 0.005) according to Table 3 is νcrit = 0.152. The experiment shows that the derived bounds are

surprisingly tight in practice.

The IIS WebDAV 5.0 exploit is, in a sense, an extreme case as it constitutes the most pessimistic

scenario for an attacker (farthest away from the normality centroid). In another experiment, we

therefore consider the ALT-N WebAdmin Overflow; that is, the most optimistic scenario for the

attacker and the closest attack to the centroid. The result is shown in Figure 12. We observe from

the figure that the experiment again supports our theory: the predicted critical fraction is ν = 0.055

and indeed this quickly leads to a successful attack. For a slightly smaller ν = 0.45, the attack fails

and the IDS can be considered safe.

8.8.3 IMPLEMENTATION OF A POISONING PROTECTION IN PRACTICE

In Section 5, we have seen that an attacker’s impact on corrupting the training data crucially depends

on the fraction of adversarial points in the training data stream. This implies that a large amount of

innocuous training points must be processed in order for the system to be secure. In Section 6, we

have seen that we can secure the learner by setting a threshold on the false positive rate α. When

a false positive rate exceeds the threshold, further countermeasures such as disabling the online
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Figure 12: Simulation of a poisoning attack against ALT-N WebAdmin Overflow under limited con-

trol.

training process can be triggered. This raises an issue of a reliable estimation of the allowable false

positive rate.

In practice, this can be done; for example, by caching the training data. When the cache exceeds

a certain value at which we have a confident estimation of α (e.g., after 24 hours), the cached training

data can be applied to the learner. Since in applications including intrusion detection we usually deal

with a very large amount of training data, a confident estimation is already possible after a short time

period.

9. Discussion and Conclusions

Understanding of security properties of learning algorithms is essential for their protection against

abuse. In order to prove the immunity of a learning algorithm against manipulated data attacks,

certain security properties must be proved. To this end, we have developed a methodology for

security analysis of learning algorithms and applied it for a specific scenario of online centroid

anomaly detection. Our analysis highlights conditions under which an attacker’s effort to subvert

this algorithm is prohibitively high. We further propose some constructive countermeasures for

protecting online anomaly detection against poisoning attacks.

Our work is related to other research in machine learning for adversarial environments that has

gained significant attention in recent years. A comprehensive survey of a large body of work in

this field can be found in Barreno et al. (2010). The majority of related work targets classification

problems (e.g., Kearns and Li, 1993; Dalvi et al., 2004; Globerson and Roweis, 2006; Dekel and

Shamir, 2008; Dekel et al., 2009). In contrast, our work is focused on anomaly detection methods

that have received much less previous attention. Compared to the closest related work of Nelson

and Joseph (2006), our methods address more realistic attack and learning scenarios. In particular,

we dispense with the assumption of an infinite amount of training data accumulated in the course of

training and analyze more advanced scenarios in which the attacker’s impact is limited by certain

constraints.

Other related work for anomaly detection methods is concerned with the PAYL (Wang and

Stolfo, 2004) and Anagram (Wang et al., 2006) algorithms. Both can be seen as a special case of

centroid anomaly detection with appropriate distance functions. The blending attack considered by
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Fogla et al. (2006); Fogla and Lee (2006) is aimed at evading a trained model at the detection stage

by modifying malicious data to resemble the normal one. It differs from the scenario considered

in our work in that the attack takes place after the model has been trained, whereas the poisoning

attack affects the model in the course of training. Although the exact blending was shown to be

NP-hard for k-gram feature spaces, approximations have been proposed that are good enough in

practice, at least for low values of k. Another related technique is sanitization proposed by Cretu

et al. (2008). It deals with the general problem of cleaning the training data from potential attacks. It

was shown that small amounts of unintentional attacks can be filtered out by building micro-models

based on parts of the training data and rejecting data deemed as anomalous by some micro-models.

This work differs from ours in that it considers offline learning; that is, the sanitization takes place

before before the training data is presented to the learning algorithm. An extension of sanitization to

online learning scenarios has been proposed in Cretu-Ciocarlie et al. (2009). The extended method

uses previously constructed micro-models to sanitize data from which the most recent model is

learned. However, once the attacker has knowledge about individual micro-models, a poisoning

attack similar the one considered in our work can be constructed. If suffices for an attacker to craft

points that are accepted by all micro-models and inject them into the training data to poison a new

micro-model.

Some of the previously developed methods can also be seen to contain parts of the general anal-

ysis methodology proposed in Section 1.1. Dalvi et al. (2004) analyzed the robustness of Bayesian

classification against adversarial impact. The choice of their classifier is motivated by widespread

application of the naive Bayes classification in the domain of spam detection where real examples of

adversarial impact have long been observed. The adversarial classification is considered as a game

between an attacker and a learner. Due to the complexity of analysis, only one move by each party

can be analyzed. Similar to our approach, Dalvi et al. (2004) formalize the problem by defining cost

functions of an attacker and a learner (Step 1) and determine an optimal adversarial strategy (Step

3). Although the attacker’s constraints are not explicitly treated theoretically, several scenarios us-

ing specific constraints have been tested experimentally. No analysis of the attacker’s gain is carried

out; instead, the learner’s direct response to adversarial impact is considered.

A somewhat related approach has been developed for handling worst-case random noise; for

example, random feature deletion (Globerson and Roweis, 2006; Dekel and Shamir, 2008). Similar

to Dalvi et al. (2004), both of these methods construct a classifier that automatically reacts to the

worst-case noise or, equivalently, the optimal adversarial strategy. In both methods, the learning

problem is formulated as large-margin classification using a specially constructed risk function. An

important role in this approach is played by the consideration of constraints (Step 2); for example,

in the form of the maximal number of corruptible features. Although these approaches do not

quantitatively analyze the attacker’s gain, Dekel and Shamir (2008) contains an interesting learning-

theoretic argument that relates classification accuracy and sparseness with the robustness against

adversarial noise.

To summarize, we believe that despite recent evidence of possible attacks against machine learn-

ing and the currently lacking theoretical foundations for learning under adversarial impact, machine

learning algorithms can be protected against such an impact. The key to such a protection lies in

quantitative analysis of the security of machine learning. We have shown that such an analysis

can be rigorously carried out for specific algorithms and attacks. Further work should extend this

analysis to more complex learning algorithms and a wider attack spectrum.
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Appendix A. Auxiliary Material and Proofs

In this appendix we present some helpful Lemmas as well as detailed proofs of the theorems.

A.1 Auxiliary Material for Section 4

This appendix start with a characterization of the greedy-optimal optimization problem in terms of

dual variables.

A.1.1 PROOF OF THEOREM 16

Proof The Lagrangian of optimization problem (11) is given by:

L(x,α,β) = −(x−xi) ·a+
n

∑
j=1

α j (2(x j −xi) ·x−x j ·x j +xi ·xi)

+β

(

x ·x− 2

n

n

∑
j=1

x ·x j +
1

n2

n

∑
j,k=1

x j ·xk − r2

)

.

Since the feasible set of problem (11) is bounded by the spherical constraint and is not empty (xi

trivially is contained in the feasible set), there exists at least one optimal solution x∗i to the primal.

For optimal x∗i , α∗ and β∗, we have the following first order optimality conditions

δL

δx
= 0 : −a− 1

n

n

∑
j=1

x j +2
n

∑
j=1

α∗
j(x j −xi)+β∗

(

2x∗i −
2

n

n

∑
j=1

x j

)

= 0 . (20)

If β∗ 6= 0, the latter equation can be resolved for x∗i leading to:

x∗i =
1

2β∗ a+
n

∑
j=1

(

1

2β∗n
−

α∗
j

β∗ +
1

n

)

x j +
1

β∗

n

∑
j=1

α∗
jxi .

From the latter equation, we see that x is contained in S := span(x1, ...,xn and a).
Now assume β∗ = 0 and x∗i /∈ S. At first, since β∗ = 0, we see from Equation (20) that a is con-

tained in the subspace S := span(x1, ...,xn). Hence the objective, (x− xi) · a, only depends on the
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optimal x via inner products with the data xi. The same naturally holds for the constraints. Hence,

both the objective value and the constraints are invariant under the projection of x∗i onto S, denoted

by P. Hence P(x∗i ) also is an optimal point. Moreover, by construction, P(x∗i )∈ S = span(x∗1, ...,x
∗
n).

A.1.2 THEORETICAL ANALYSIS FOR THE OPTIMAL GREEDY ATTACK

The dependence of an attack’s effectiveness on data dimensionality results from the geometry of

Voronoi cells. Intuitively, the displacement at a single iteration depends on the size of the largest

Voronoi cell in a current working set. Although it is hard to derive a precise estimate on the latter,

the following “average-case” argument sheds some light on the attack’s behavior, especially since

it is the average-case geometry of the working set that determines the overall attack progress.

Consider a simplified case where each of the Voronoi cells C j constitutes a ball of radius r

centered at a data point x j, j = 1, . . . ,n. Clearly, the greedy attack will result in a progress of r/n

(we will move one of the points by r but the center’s displacement will be discounted by 1/n). We

will now use the relationship between the volumes of balls in R
d to relate r, R and d.

The volume of each Voronoi cell C j is given by

Vol(C j) =
π

d
2 rd

Γ
(

d
2
+1
) .

Likewise, the volume of the hypersphere S of radius R is

Vol(S) =
π

d
2 Rd

Γ
(

d
2
+1
) .

Assuming that the Voronoi cells are “tightly packed” in S, we obtain

Vol(S)≈ nVol(C j) .

Hence we conclude that

r ≈ d

√

1

n
R .

One can see that the attacker’s gain approximately represented by the cell radius r is a constant

fraction of the threshold R, which explains the linear progress of the poisoning attack. The slope of

this linear dependence is controlled by two opposing factors: the size of the training data decreases

the attack speed whereas the intrinsic dimensionality of the feature space increases it. Both factors

depend on fixed parameters of the learning problem and cannot be controlled by the algorithm. In

the limit, when d approaches n (the effective dimension is limited by the training data set according

to Theorem 16) the attack progress rate is approximately described by the function n

√

1
n

which

approaches 1 with increasing n.

A.2 Proofs of Section 5

This following proposition is a well-known fact from algebra.

3715



KLOFT AND LASKOV

Proposition 17 (Geometric series) Let (s)i∈N0
be a sequence of real numbers satisfying s0 = 0

and si+1 = qsi + p (or si+1 ≤ qsi + p or si+1 ≥ qsi + p ) for some p,q > 0 . Then

si = p
1−qi

1−q
,
(

and si ≤ p
1−qi

1−q
or si ≥ p

1−qi

1−q

)

, (21)

respectively.

Proof We prove part (a) of the theorem by induction over i ∈ N0, the case of i = 0 being obvious.

In the inductive step we show that if Equation (21) holds for an arbitrary fixed i it also holds for

i+1:

si+1 = qsi + p = q

(

p
1−qi

1−q

)

+ p = p

(

q
1−qi

1−q
+1

)

= p

(

q−qi+1 +1−q

1−q

)

= p

(

1−qi+1

1−q

)

.

The proof of part (b) is analogous.

Proof of Theorem 8(b) Multiplying both sides of Equation (17) with a and substituting Di = ci ·a
results in

Di+1 =

(

1− 1−Bi

n

)

Di +
Bi

n
+

(1−Bi)

n
xi ·a .

Inserting B2
i = Bi and Bi(1−Bi) = 0, which holds because Bi is Bernoulli, into the latter equation,

we have:

D2
i+1 =

(

1−2
1−Bi

n
+

1−Bi

n2

)

D2
i +

Bi

n2
+

(1−Bi)

n2
‖xi‖2 +2

Bi

n
Di +2

(

1− 1

n

)

(1−Bi)

n
Dixi ,

where xi := xi ·a. Taking the expectation on the latter equation, and noting that, by Axiom 6, xi and

Di are independent, we have:

E
(

D2
i+1

)

=

(

1− 1−ν

n

(

2− 1

n

))

E
(

D2
i

)

+2
ν

n
E(Di)+

ν

n2
+

1−ν

n2
E(‖xi ·a‖2)

(1)

≤
(

1− 1−ν

n

(

2− 1

n

))

E
(

D2
i

)

+2
ν

n
E(Di)+

1

n2
, (22)

where (1) holds because, by Axiom 6, we have ‖xi‖2 ≤ r and moreover ‖a‖ = r, r = 1. Inserting

the result of Theorem 8(a) in the latter equation results in the following recursive formula:

E
(

D2
i+1

)

≤
(

1− 1−ν

n

(

2− 1

n

))

E
(

D2
i

)

+2(1−ai)
ν

n

ν

1−ν
+

1

n2
.

By the formula of the geometric series, that is, by Proposition 17, we have:

E
(

D2
i

)

≤
(

2(1−ai)
ν

n

ν

1−ν
+

1

n2

)

1−bi

1−ν
n

(

2− 1
n

) ,
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where bi :=
(

1− 1−ν
n

(

2− 1
n

))i
. Furthermore, by some algebra

E
(

D2
i

)

≤ (1−ai)(1−bi)

1− 1
2n

ν2

(1−ν)2
+

1−bi

(2n−1)(1−ν)
. (23)

We will need the auxiliary formula

(1−ai)(1−bi)

1− 1
2n

− (1−ai)
2 ≤ 1

2n−1
+ai −bi , (24)

which can be verified by some more algebra and employing bi < ai and that ai ranges in the real

interval [0,1]. We finally conclude

Var(Di) = E(D2
i )− (E(Di))

2

Th.12(a); Equation(23)

≤
(

(1−ai)(1−bi)

1− 1
2n

− (1−ai)
2

)

(

ν

1−ν

)2

+
1−bi

(2n−1)(1−ν)2

Equation(24)

≤ γi

(

ν

1−ν

)2

+δn

where we denote γi := ai−bi and δn := ν2+(1−bi)
(2n−1)(1−ν)2 , and use (1−ν)2 ≤ 1−ν ≤ 1 in the inequalities.

This completes the proof.

A.3 Proofs of Section 6

In this appendix we prove one of our main results.

Lemma 18 Let C be a online centroid learner with maximal false positive rate α satisfying the

optimal attack strategy. Denote xi := xi ·a. Then we have:

(a) 0 ≤ E
(

I{‖xi−ci‖>r}D
q
i

)

≤ αE(D
q
i ) , q = 1,2

(b) 0 ≤ E
(

I{‖xi−ci‖≤r}xi

)

≤ α

(c) E
(

I{‖xi−ci‖≤r}xiDi

)

≤ αE(Di) .

Proof

(a) Let q = 1 or q = 2. Since Di is independent of xi (hence constant under the operator Exi
), we

have

Exi

(

I{‖xi−ci‖>r}D
q
i

)

= (Di)
qExi

(

I{‖xi−ci‖>r}
)

.

Hence by Axiom 10

Exi

(

I{‖xi−ci‖>r}D
q
i

)

= 0 ,

if Exi

(

I{‖xi−ci‖>r}
)

> α and 0 ≤ Exi

(

I{‖xi−ci‖>r}
)

≤ α otherwise. Moreover, E(Di)≥ 0 by the sym-

metry assumption in Axiom 10. Taking the full expectation E = Eci
Exi

yields the assertion (a).
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(b) We denote I≤ := I{‖xi−ci‖≤r} and I> := I{‖xi−ci‖>r}. Since

E(I≤xi)+E(I>xi) = E ((I≤+ I>)xi) = E(xi) = 0 ,

we conclude

E(I≤xi) =−E(I>xi) = E(I>(−xi))
(1)

≤ α ,

where (1) holds because ||xi|| ≤ 1 and by Axiom 10 we have E(I>)≤ α.

Furthermore E(I≤xi)≥ 0 is clear.

(c) The proof of (c) is analogous to that of (a) and (b).

Proof of Theorem 12

(a) By Axiom 10, we have

Di+1 ≤ max

(

0,Di +
1

n

(

Bi ( f (ci)− ci)+(1−Bi)I{‖xi−ci‖≤r} (xi − ci)
)

·a
)

. (25)

By Proposition 11 an greedy-optimal attack strategy can be defined by

f (x) = x+a .

Inserting the latter into Equation (25), using Di
Def.
= ci ·a, and taking the expectation, we have

E(Di+1)≤ E

[

I{
Ex(I{‖x−ci‖≤r})≤1−α

}

(

Di +
1

n

(

Bi +(1−Bi)I{‖xi−ci‖≤r} (xi −Di)
)

)]

, (26)

where xi = xi ·a. By the symmetry assumption in Axiom 10, the first term can be omitted, hence the

above equation can be rewritten as

E(Di+1) ≤
(

1− 1−ν

n

)

E(Di)+
ν

n

+
1−ν

n

(

E
(

I{‖xi−ci‖>r}Di

)

+E
(

I{‖xi−ci‖≤r}xi

))

.

Inserting the inequalities (a) and (b) of Lemma 18 into the above equation results in:

E(Di+1) ≤
(

1− 1−ν

n

)

E(Di)+
ν

n
+

1−ν

n
(αE(Di)+α)

=

(

1− (1−ν)(1−α)

n

)

E(Di)+
ν+α(1−ν)

n
.

By the formula of the geometric series, that is, Proposition 17, we have

E(Di+1)≤ (1−ai)
ν+α(1−ν)

(1−ν)(1−α)
,

where ai =
(

1− (1−ν)(1−α)
n

)i

. Moreover we have

E(Di+1)≥ (1−bi)
ν

1−ν
, (27)
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where bi =
(

1− 1−ν
n

)i
, by analogous reasoning. We schematically show this by starting from Equa-

tion (26) and subsequently applying Jensen’s inequality and using the lower bounds of Lemma 18

and the formula for the geometric series. Since bi ≤ ai, we conclude that

E(Di+1)≥ (1−ai)
ν

1−ν
.

(b) Rearranging the terms in Equation (25), we have

Di+1 ≤ max

(

0,

(

1− 1−Bi

n

)

Di +
Bi

n
+

1−Bi

n
I{‖xi−ci‖≤r}xi

+
1−Bi

n
I{‖xi−ci‖>r}Di

)

.

Squaring the latter equation on both sides and using the fact that Bi, I{‖xi−ci‖≤r} and I{‖xi−ci‖>r} are

binary-valued yields

D2
i+1 ≤

(

1− 1−Bi

n

(

2− 1

n

))

D2
i +2

Bi

n
Di +

(

1−Bi

n

(

2− 1

n

))

I{‖xi−ci‖>r}Di

+2
1−Bi

n

(

1− 1

n

)

I{‖xi−ci‖≤r}xiDi +
1−Bi

n2
I{‖xi−ci‖≤r}xi

2 +
Bi

n2
.

Taking expectation of the above equation, by Lemma 18, we have

E(D2
i+1) ≤

(

1− 1−ν

n

(

2− 1

n
)(1−α)

))

E(D2
i )

+2

(

ν

n
+α

1−ν

n

(

1− 1

n

))

E(Di)+
ν+(1−ν)E(xi

2)

n2
.

We are now in an equivalent situation as in the proof of Theorem 7, right after Equation (22).

Similary, we insert the result of (a) into the above equation, obtaining

E(D2
i+1)≤

(

1− 1−ν

n

(

2− 1

n
)(1−α)

))

E(D2
i )

+2

(

ν

n
+α

1−ν

n

(

1− 1

n

))

(1−ai)
ν+α(1−ν)

(1−ν)(1−α)
+

ν+(1−ν)E(xi
2)

n2

≤
(

1− 1−ν

n

(

2− 1

n

)

(1−α)

)

E(D2
i )+2(1−ai)

(ν+α(1−ν))2

n(1−ν)(1−α)

+
ν+(1−ν)E(xi

2)

n2
.

By the formula of the geometric series we obtain

E(D2
i ) ≤

(

2(1−ai)
(ν+α(1−ν))2

n(1−ν)(1−α)
+

ν+(1−ν)E(xi
2)

n2

)

1−bi

1−ν
n
(2− 1

n
)(1−α)

≤ (1−ai)(1−bi)(ν+α(1−ν))2

(1− 1
2n
)(1−ν)2(1−α)2

+
(1−bi)(ν+(1−ν)E(xi

2))

(2n−1)(1−ν)(1−α)
, (28)
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where bi =
(

1− 1−ν
n
(2− 1

n
)(1−α)

)i
. We finally conclude

Var(Di) = E(D2
i )− (E(Di))

2

(27),(28)

≤ (1−ai)(1−bi)(ν+α(1−ν))2

(1− 1
2n
)(1−ν)2(1−α)2

+
(1−bi)(ν+(1−ν)E(xi

2))

(2n−1)(1−ν)(1−α)
− (1−ai)

2 ν2

(1−ν)2

(1)

≤ γi

ν2

(1−α)2(1−ν)2
+ρ(α)+δn ,

defining γi = ai −bi, ρ(α) = α
(1−ai)(1−bi)(2ν(1−α)+α)

(1− 1
2n
)(1−ν)2(1−α)2

, and δn =
(1−bi)(ν+(1−ν)E(xi

2))
(2n−1)(1−ν)(1−α) , where (1) can

be verified employing some algebra and using the auxiliary formula Equation (24), which holds for

all 0 < bi < ai < 1. This completes the proof of (b).

Statements (c) and (d) are easily derived from (a) and (b) by noting hat 0 ≤ ai < 1, ai → 1 for

i → ∞ and δ(n)→ 0 for n → ∞. This completes the proof of the theorem.
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