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Abstract

We derive an upper bound on the local Rademacher complexity of ℓp-norm multiple kernel learn-

ing, which yields a tighter excess risk bound than global approaches. Previous local approaches

analyzed the case p = 1 only while our analysis covers all cases 1 ≤ p ≤ ∞, assuming the different

feature mappings corresponding to the different kernels to be uncorrelated. We also show a lower

bound that shows that the bound is tight, and derive consequences regarding excess loss, namely

fast convergence rates of the order O(n−
α

1+α ), where α is the minimum eigenvalue decay rate of the

individual kernels.

Keywords: multiple kernel learning, learning kernels, generalization bounds, local Rademacher

complexity

1. Introduction

Propelled by the increasing “industrialization” of modern application domains such as bioinformat-

ics or computer vision leading to the accumulation of vast amounts of data, the past decade expe-

rienced a rapid professionalization of machine learning methods. Sophisticated machine learning

solutions such as the support vector machine can nowadays almost completely be applied out-of-

the-box (Bouckaert et al., 2010). Nevertheless, a displeasing stumbling block towards the complete

automatization of machine learning remains that of finding the best abstraction or kernel (Schölkopf

et al., 1998; Müller et al., 2001) for a problem at hand.

In the current state of research, there is little hope that in the near future a machine will be able

to automatically engineer the perfect kernel for a particular problem (Searle, 1980). However, by

restricting to a less general problem, namely to a finite set of base kernels the algorithm can pick
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from, one might hope to achieve automatic kernel selection: clearly, cross-validation based model

selection (Stone, 1974) can be applied if the number of base kernels is decent. Still, the performance

of such an algorithm is limited by the performance of the best kernel in the set.

In the seminal work of Lanckriet et al. (2004) it was shown that it is computationally feasible to

simultaneously learn a support vector machine and a linear combination of kernels at the same time,

if we require the so-formed kernel combinations to be positive definite and trace-norm normalized.

Though feasible for small sample sizes, the computational burden of this so-called multiple kernel

learning (MKL) approach is still high. By further restricting the multi-kernel class to only contain

convex combinations of kernels, the efficiency can be considerably improved, so that ten thousands

of training points and thousands of kernels can be processed (Sonnenburg et al., 2006).

However, these computational advances come at a price. Empirical evidence has accumulated

showing that sparse-MKL optimized kernel combinations rarely help in practice and frequently are

to be outperformed by a regular SVM using an unweighted-sum kernel K = ∑m Km (Cortes et al.,

2008; Gehler and Nowozin, 2009), leading for instance to the provocative question “Can learning

kernels help performance?” (Cortes, 2009).

A first step towards a model of learning the kernel that is useful in practice was achieved in Kloft

et al. (2008), Cortes et al. (2009), Kloft et al. (2009) and Kloft et al. (2011), where an ℓq-norm, q≥ 1,

rather than an ℓ1 penalty was imposed on the kernel combination coefficients. The ℓq-norm MKL is

an empirical minimization algorithm that operates on the multi-kernel class consisting of functions

f : x 7→ 〈w,φk(x)〉 with ‖w‖k ≤ D, where φk is the kernel mapping into the reproducing kernel

Hilbert space (RKHS) Hk with kernel k and norm ‖.‖k, while the kernel k itself ranges over the set

of possible kernels
{

k = ∑M
m=1 θmkm

∣∣∣ ‖θ‖q ≤ 1, θ ≥ 0
}

.

In Figure 1, we reproduce exemplary results taken from Kloft et al. (2009, 2011) (see also

references therein for further evidence pointing in the same direction). We first observe that, as

expected, ℓq-norm MKL enforces strong sparsity in the coefficients θm when q = 1, and no sparsity

at all for q = ∞, which corresponds to the SVM with an unweighted-sum kernel, while intermediate

values of q enforce different degrees of soft sparsity (understood as the steepness of the decrease

of the ordered coefficients θm). Crucially, the performance (as measured by the AUC criterion) is

not monotonic as a function of q; q = 1 (sparse MKL) yields significantly worse performance than

q = ∞ (regular SVM with sum kernel), but optimal performance is attained for some intermediate

value of q. This is an empirical strong motivation to theoretically study the performance of ℓq-MKL

beyond the limiting cases q = 1 or q = ∞.

A conceptual milestone going back to the work of Bach et al. (2004) and Micchelli and Pontil

(2005) is that the above multi-kernel class can equivalently be represented as a block-norm regu-

larized linear class in the product Hilbert space H := H1 ×·· ·×HM, where Hm denotes the RKHS

associated to kernel km, 1 ≤ m ≤ M. More precisely, denoting by φm the kernel feature mapping

associated to kernel km over input space X , and φ : x ∈ X 7→ (φ1(x), . . . ,φM(x)) ∈ H , the class of

functions defined above coincides with

Hp,D,M =
{

fw : x 7→ 〈w,φ(x)〉
∣∣ w = (w(1), . . . ,w(M)),‖w‖2,p ≤ D

}
, (1)

where there is a one-to-one mapping of q ∈ [1,∞] to p ∈ [1,2] given by p = 2q
q+1

(see Appendix A

for a derivation). The ℓ2,p-norm is defined here as
∥∥w
∥∥

2,p
:=
∥∥(‖w(1)‖k1

, . . . ,‖w(M)‖kM

)∥∥
p
=

(
∑M

m=1

∥∥w(m)
∥∥p

km

)1/p
; for simplicity, we will frequently write

∥∥w(m)
∥∥

2
=
∥∥w(m)

∥∥
km

.
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Figure 1: Splice site detection experiment in Kloft et al. (2009, 2011). LEFT: The Area under ROC

curve as a function of the training set size is shown. The regular SVM is equivalent to

q = ∞ (or p = 2). RIGHT: The optimal kernel weights θm as output by ℓq-norm MKL are

shown.

Clearly, the complexity of the class (1) will be greater than one that is based on a single kernel

only. However, it is unclear whether the increase is decent or considerably high and—since there is

a free parameter p—how this relates to the choice of p. To this end the main aim of this paper is to

analyze the sample complexity of the above hypothesis class (1). An analysis of this model, based

on global Rademacher complexities, was developed by Cortes et al. (2010). In the present work,

we base our main analysis on the theory of local Rademacher complexities, which allows to derive

improved and more precise rates of convergence.

1.1 Outline of the Contributions

This paper makes the following contributions:

• Upper bounds on the local Rademacher complexity of ℓp-norm MKL are shown, from which

we derive an excess risk bound that achieves a fast convergence rate of the order

O(M1+ 2
1+α

(
1

p∗−1
)

n−
α

1+α ), where α is the minimum eigenvalue decay rate of the individual

kernels1 (previous bounds for ℓp-norm MKL only achieved O(M
1

p∗ n−
1
2 ).

• A lower bound is shown that besides absolute constants matches the upper bounds, showing

that our results are tight.

• The generalization performance of ℓp-norm MKL as guaranteed by the excess risk bound is

studied for varying values of p, shedding light on the appropriateness of a small/large p in

various learning scenarios.

1. That is, it ∃d > 0 and α > 1 such that for all m = 1, . . . ,M it holds λ
(m)
j ≤ d j−α, where λ

(m)
j is the jth eigenvalue of

the mth kernel (sorted in descending order).
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Furthermore, we also present a simple proof of a global Rademacher bound similar to the one

shown in Cortes et al. (2010). A comparison of the rates obtained with local and global Rademacher

analysis, respectively, can be found in Section 6.1.

1.2 Notation

For notational simplicity we will omit feature maps and directly view φ(x) and φm(x) as ran-

dom variables x and x(m) taking values in the Hilbert space H and Hm, respectively, where x =
(x(1), . . . ,x(M)). Correspondingly, the hypothesis class we are interested in reads Hp,D,M =

{
fw :

x 7→ 〈w,x〉
∣∣ ‖w‖2,p ≤ D

}
. If D or M are clear from the context, we sometimes synonymously

denote Hp = Hp,D = Hp,D,M. We will frequently use the notation (u(m))M
m=1 for the element u =

(u(1), . . . ,u(M)) ∈ H = H1 × . . .×HM.

We denote the kernel matrices corresponding to k and km by K and Km, respectively. Note that

we are considering normalized kernel Gram matrices, that is, the i jth entry of K is 1
n
k(xi,x j). We

will also work with covariance operators in Hilbert spaces. In a finite dimensional vector space, the

(uncentered) covariance operator can be defined in usual vector/matrix notation as Exx⊤. Since

we are working with potentially infinite-dimensional vector spaces, we will use instead of xx⊤ the

tensor notation x⊗x∈HS(H ), which is a Hilbert-Schmidt operator H 7→H defined as (x⊗x)u=
〈x,u〉x. The space HS(H ) of Hilbert-Schmidt operators on H is itself a Hilbert space, and the

expectation Ex⊗x is well-defined and belongs to HS(H ) as soon as E‖x‖2
is finite, which will

always be assumed (as a matter of fact, we will often assume that ‖x‖ is bounded a.s.). We denote

by J = Ex⊗x, Jm = Ex(m)⊗x(m) the uncentered covariance operators corresponding to variables

x, x(m); it holds that tr(J) = E‖x‖2
2 and tr(Jm) = E

∥∥x(m)
∥∥2

2
.

Finally, for p ∈ [1,∞] we use the standard notation p∗ to denote the conjugate of p, that is,

p∗ ∈ [1,∞] and 1
p
+ 1

p∗ = 1.

2. Global Rademacher Complexities in Multiple Kernel Learning

We first review global Rademacher complexities (GRC) in MKL. Let x1, . . . ,xn be an i.i.d. sample

drawn from P. The global Rademacher complexity is defined as

R(Hp) = E sup
fw∈Hp

〈w,
1

n

n

∑
i=1

σixi〉 (2)

where (σi)1≤i≤n is an i.i.d. family (independent of (xi) ) of Rademacher variables (random signs).

Its empirical counterpart is denoted by R̂(Hp) =
E
[
R(Hp)

∣∣x1, . . . ,xn

]
= Eσ sup fw∈Hp

〈w, 1
n ∑n

i=1 σixi〉. The interest in the global Rademacher com-

plexity comes from that if known it can be used to bound the generalization error (Koltchinskii,

2001; Bartlett and Mendelson, 2002).

In the recent paper of Cortes et al. (2010) it was shown using a combinatorial argument that the

empirical version of the global Rademacher complexity can be bounded as

R̂(Hp)≤ D

√
cp∗

2n

∥∥∥
(

tr(Km)
)M

m=1

∥∥∥
p∗
2

,

where c = 23
22

and tr(K) denotes the trace of the kernel matrix K.
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We will now show a quite short proof of this result, extending it to the whole range p∈ [1,∞], but

at the expense of a slightly worse constant, and then present a novel bound on the population version

of the GRC. The proof presented here is based on the Khintchine-Kahane inequality (Kahane, 1985)

using the constants taken from Lemma 3.3.1 and Proposition 3.4.1 in Kwapién and Woyczyński

(1992).

Lemma 1 (Khintchine-Kahane inequality). Let be v1, . . . ,vM ∈ H . Then, for any q ≥ 1, it holds

Eσ

∥∥
n

∑
i=1

σivi

∥∥q

2
≤
(

c
n

∑
i=1

∥∥vi

∥∥2

2

) q
2
,

where c = max(1,q∗−1). In particular the result holds for c = q∗.

Proposition 2 (Global Rademacher complexity, empirical version). For any p ≥ 1 the empirical

version of global Rademacher complexity of the multi-kernel class Hp can be bounded as

∀t ≥ p : R̂(Hp)≤ D

√
t∗

n

∥∥∥
(

tr(Km)
)M

m=1

∥∥∥
t∗
2

.

Proof First note that it suffices to prove the result for t = p as trivially ‖x‖2,t ≤ ‖x‖2,p holds for all

t ≥ p and therefore R(Hp)≤ R(Ht).
We can use a block-structured version of Hölder’s inequality (cf. Lemma 15) and the Khintchine-

Kahane (K.-K.) inequality (cf. Lemma 1) to bound the empirical version of the global Rademacher

complexity as follows:

R̂(Hp)
def.
= Eσ sup

fw∈Hp

〈w,
1

n

n

∑
i=1

σixi〉

Hölder

≤ DEσ

∥∥∥1

n

n

∑
i=1

σixi

∥∥∥
2,p∗

Jensen

≤ D
(
Eσ

M

∑
m=1

∥∥∥1

n

n

∑
i=1

σix
(m)
i

∥∥∥
p∗

2

) 1
p∗

K.-K.

≤ D

√
p∗

n

( M

∑
m=1

( 1

n

n

∑
i=1

∥∥x(m)
i

∥∥2

2

︸ ︷︷ ︸
=tr(Km)

) p∗
2
) 1

p∗

= D

√
p∗

n

∥∥∥
(

tr(Km)
)M

m=1

∥∥∥
p∗
2

,

what was to show.

Note that there is a very good reason to state the above bound in terms of t ≥ p instead of solely

in terms of p: the Rademacher complexity R̂(Hp) is not monotonic in p and thus it is not always

the best choice to take t := p in the above bound. This can be readily seen, for example, for the

easy case where all kernels have the same trace—in that case the bound translates into R̂(Hp) ≤
D

√
t∗M

2
t∗ tr(K1)

n
. Interestingly, the function x 7→ xM2/x is not monotone and attains its minimum for
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x = 2logM, where log denotes the natural logarithm with respect to the base e. This has interesting

consequences: for any p ≤ (2logM)∗ we can take the bound R̂(Hp) ≤ D

√
e log(M) tr(K1)

n
, which has

only a mild dependency on the number of kernels; note that in particular we can take this bound for

the ℓ1-norm class R̂(H1) for all M > 1.

The above proof is very simple. However, computing the population version of the global

Rademacher complexity of MKL is somewhat more involved and to the best of our knowledge has

not been addressed yet by the literature. To this end, note that from the previous proof we obtain

R(Hp)≤ED
√

p∗/n
(

∑M
m=1

(
1
n ∑n

i=1

∥∥x(m)
i

∥∥2

2

) p∗
2
) 1

p∗ . We thus can use Jensen’s inequality to move the

expectation operator inside the root,

R(Hp)≤D
√

p∗/n
( M

∑
m=1

E
(1

n

n

∑
i=1

∥∥x(m)
i

∥∥2

2

) p∗
2

) 1
p∗
, (3)

but now need a handle on the
p∗

2
-th moments. To this aim we use the inequalities of Rosenthal

(1970) and Young (e.g., Steele, 2004) to show the following Lemma.

Lemma 3 (Rosenthal + Young). Let X1, . . . ,Xn be independent nonnegative random variables sat-

isfying ∀i : Xi ≤ B < ∞ almost surely. Then, denoting Cq = (2qe)q, for any q ≥ 1
2

it holds

E

(
1

n

n

∑
i=1

Xi

)q

≤Cq

((B

n

)q

+
(1

n

n

∑
i=1

EXi

)q
)
.

The proof is defered to Appendix B. It is now easy to show:

Corollary 4 (Global Rademacher complexity, population version). Assume the kernels are uni-

formly bounded, that is, ‖k‖∞ ≤ B < ∞, almost surely. Then for any p ≥ 1 the population version of

global Rademacher complexity of the multi-kernel class Hp can be bounded as

∀t ≥ p : R(Hp,D,M)≤ D t∗
√

e

n

∥∥∥
(

tr(Jm)
)M

m=1

∥∥∥
t∗
2

+

√
BeDM

1
t∗ t∗

n
.

For t ≥ 2 the right-hand term can be discarded and the result also holds for unbounded kernels.

Proof As above in the previous proof it suffices to prove the result for t = p. From (3) we conclude

by the previous Lemma

R(Hp)≤ D

√
p∗

n

(
M

∑
m=1

(ep∗)
p∗
2

((B

n

) p∗
2
+
(
E

1

n

n

∑
i=1

∥∥x(m)
i

∥∥2

2

︸ ︷︷ ︸
=tr(Jm)

) p∗
2

)) 1
p∗

≤ Dp∗
√

e

n

∥∥∥
(

tr(Jm)
)M

m=1

∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
,

where for the last inequality we use the subadditivity of the root function. Note that for p ≥ 2 it is

p∗/2 ≤ 1 and thus it suffices to employ Jensen’s inequality instead of the previous lemma so that

we come along without the last term on the right-hand side.

For example, when the traces of the kernels are bounded, the above bound is essentially determined

by O
(

p∗M
1

p∗√
n

)
. We can also remark that by setting t = (log(M))∗ we obtain the bound R(H1) =

O
(

logM√
n

)
.
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2.1 Relation to Other Work

As discussed by Cortes et al. (2010), the above results lead to a generalization bound that improves

on a previous result based on covering numbers by Srebro and Ben-David (2006). Another recently

proposed approach to theoretically study MKL uses the Rademacher chaos complexity (RCC) (Ying

and Campbell, 2009). The RCC is actually itself an upper bound on the usual Rademacher com-

plexity. In their discussion, Cortes et al. (2010) observe that in the case p = 1 (traditional MKL),

the bound of Proposition 2 grows logarithmically in the number of kernels M, and claim that the

RCC approach would lead to a bound which is multiplicative in M. However, a closer look at the

work of Ying and Campbell (2009) shows that this is not correct; in fact the RCC also leads to a

logarithmic dependence in M when p = 1. This is because the RCC of a kernel class is the same as

the RCC of its convex hull, and the RCC of the base class containing only the M individual kernels

is logarithmic in M. This convex hull argument, however, only works for p = 1; we are unaware

of any existing work trying to estimate the RCC or comparing it to the above approach in the case

p > 1.

3. The Local Rademacher Complexity of Multiple Kernel Learning

We first give a gentle introduction to local Rademacher complexities in general and then present

the main result of this paper: a lower and an upper bound on the local Rademacher complexity of

ℓp-norm multiple kernel learning.

3.1 Local Rademacher Complexities in a Nutshell

Let x1, . . . ,xn be an i.i.d. sample drawn from P; denote by E the expectation operator corresponding

to P; let F be a class of functions mapping xi to R. Then the local Rademacher complexity is

defined as

Rr(F ) = E sup
f∈F :P f 2≤r

1

n

n

∑
i=1

σi f (xi) , (4)

where P f 2 := E( f (x))2. In a nutshell, when comparing the global and local Rademacher complex-

ities, that is, (2) and (4), we observe that the local one involves the additional constraint P f 2 ≤ r

on the (uncentered) “variance” of functions. It allows us to sort the functions according to their

variances and discard the ones with suboptimal high variance. We can do so by, instead of McDi-

armid’s inequality, using more powerful concentration inequalities such as Talagrand’s inequality

(Talagrand, 1995). Roughly speaking, the local Rademacher complexity allows us to consider the

problem at various scales simultaneously, leading to refined bounds. We will discuss this argument

in more detail now. Our presentation is based on Koltchinskii (2006).

First, note that the classical (global) Rademacher theory of Bartlett and Mendelson (2002) and

Koltchinskii (2001) gives an excess risk bound of the following form: ∃C > 0 so that with probabil-

ity larger then 1− exp(−t) it holds

∣∣P f̂ −P f ∗
∣∣≤C

(
R(F )+

√
t

n

)
=: δ , (5)

where f̂ := argmin f∈F
1
n ∑n

i=1 f (xi), f ∗ := argmin f∈F P f , and P f :=E f (x). We denote the bound’s

value by δ and observe that, remarkably, if we consider the restricted class
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Fδ := { f ∈ F : |P f −P f ∗| ≤ δ}, we have by (5) that f̂ ∈ Fδ (and trivially f ∗ ∈ Fδ). This is re-

markable and of significance because we can now state: with probability larger than 1− exp(−2t)
it holds

∣∣P f̂ −P f ∗
∣∣≤C

(
R(Fδ)+

√
t

n

)
. (6)

The striking fact about the above inequality is that it depends on the complexity of the restricted

class—no longer on the one of the original class; usually the complexity of the restricted class will

be smaller than the one of the original class. Moreover, we can again denote the right-hand side of

(6) by δnew and repeat the argumentation. This way, we can step by step decrease the bound’s value.

If the bound (seen as a function in δ) defines a contraction, the limit of this iterative procedure is

given by the fixed point of the bound.

This method has a serious limitation: although we can step by step decrease the Rademacher

complexity occurring in the bound, the term
√

t/n stays as it is and thus will hinder us from attaining

a rate faster than O(
√

1/n). It would be desirable to have the term shrinking when passing to

a smaller class Fδ. Can we replace the undesirable term by a more favorable one? And what

properties would such a term need to have?

One of the basic foundations of learning theory are concentration inequalities (e.g., Bousquet

et al., 2004). Even the most modern proof technique such as the fixed-point argument presented

above can fail if it is built upon an insufficiently precise concentration inequality. As mentioned

above, the stumbling block is the presence of the term
√

t/n in the bound (5). The latter is a

byproduct from the application of McDiarmid’s inequality (McDiarmid, 1989)—a uniform version

of Höffding’s inequality—,which is used in Bartlett and Mendelson (2002) and Koltchinskii (2001)

to relate the global Rademacher complexity with the excess risk.

The core idea now is that we can, instead of McDiarmid’s inequality, use Talagrand’s inequality

(Talagrand, 1995), which is a uniform version of Bernstein’s inequality. This gives

∣∣P f̂ −P f ∗
∣∣≤C

(
R(F )+σ(F )

√
t

n
+

t

n

)
=: δ . (7)

Hereby σ2(F ) := sup f∈F E f 2 is a bound on the (uncentered) “variance” of the functions considered.

Now, denoting the right-hand side of (7) by δ, we obtain the following bound for the restricted class:

∃C > 0 so that with probability larger then 1− exp(−2t) it holds

∣∣P f̂ −P f ∗
∣∣≤C

(
R(Fδ)+σ(Fδ)

√
t

n
+

t

n

)
. (8)

As above, we denote the right-hand side of (8) by δnew and repeat the argumentation. In general, we

can expect the variance σ2(Fδ) to decrease step by step and if, seen as a function of δ, the bound

defines a contraction, the limit is given by the fixed point of the bound.

It turns out that by this technique we can obtain fast convergence rates of the excess risk in the

number of training examples n, which would be impossible by using global techniques such as the

global Rademacher complexity or the Rademacher chaos complexity (Ying and Campbell, 2009),

which—we recall—is in itself an upper bound on the global Rademacher complexity.
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3.2 The Local Rademacher Complexity of MKL

In the context of ℓp-norm multiple kernel learning, we consider the hypothesis class Hp as defined

in (1). Thus, given an i.i.d. sample x1, . . . ,xn drawn from P, the local Rademacher complexity is

given by Rr(Hp) = Esup fw∈Hp:P f 2
w
≤r〈w, 1

n ∑n
i=1 σixi〉, where P f 2

w := E( fw(x))
2.

We will need the following assumption for the case 1 ≤ p ≤ 2:

Assumption (A) (low-correlation). There exists a cδ ∈ (0,1] such that, for any m 6= m′ and wm ∈
Hm ,wm′ ∈ Hm′ , the Hilbert-space-valued variables x(1), . . . ,x(M) satisfy

cδ

M

∑
m=1

E

〈
wm,x

(m)
〉2

≤ E
( M

∑
m=1

〈
wm,x

(m)
〉)2

.

Since Hm,Hm′ are RKHSs with kernels km,km′ , if we go back to the input random variable

in the original space X ∈ X , the above property means that for any fixed t, t ′ ∈ X , the variables

km(X , t) and km′(X , t ′) have a low correlation. In the most extreme case, cδ = 1, the variables are

completely uncorrelated. This is the case, for example, if the original input space X is R
M , the

original input variable X ∈ X has independent coordinates, and the kernels k1, . . . ,kM each act on

a different coordinate. Such a setting was considered in particular by Raskutti et al. (2010) in the

setting of ℓ1-penalized MKL. We discuss this assumption in more detail in Section 6.3.

Note that, as self-adjoint, positive Hilbert-Schmidt operators, covariance operators enjoy dis-

crete eigenvalue-eigenvector decompositions J = Ex⊗ x = ∑∞
j=1 λ ju j ⊗u j and Jm = Ex(m) ⊗

x(m) = ∑∞
j=1 λ

(m)
j u

(m)
j ⊗u

(m)
j , where (u j) j≥1 and (u

(m)
j ) j≥1 form orthonormal bases of H and Hm,

respectively.

We are now equipped to state our main results:

Theorem 5 (Local Rademacher complexity, p ∈ [1,2] ). Assume that the kernels are uniformly

bounded (‖k‖∞ ≤ B < ∞) and that Assumption (A) holds. The local Rademacher complexity of the

multi-kernel class Hp can be bounded for any 1 ≤ p ≤ 2 as

∀t ∈ [p,2] : Rr(Hp)≤

√√√√16

n

∥∥∥∥
( ∞

∑
j=1

min
(

rM1− 2
t∗ ,ceD2t∗2λ

(m)
j

))M

m=1

∥∥∥∥
t∗
2

+

√
BeDM

1
t∗ t∗

n
.

Theorem 6 (Local Rademacher complexity, p ≥ 2). The local Rademacher complexity of the multi-

kernel class Hp can be bounded for any p ≥ 2 as

Rr(Hp)≤
√

2

n

∞

∑
j=1

min(r,D2M
2

p∗−1
λ j).

Remark 7. Note that for the case p = 1, by using t = (log(M))∗ in Theorem 5, we obtain the bound

Rr(H1)≤

√√√√16

n

∥∥∥∥
( ∞

∑
j=1

min
(

rM,e3D2(logM)2λ
(m)
j

))M

m=1

∥∥∥∥
∞

+

√
Be

3
2 D log(M)

n
,

for all M ≥ e2 (see below after the proof of Theorem 5 for a detailed justification).
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Remark 8. The result of Theorem 6 for p ≥ 2 can be proved using considerably simpler tech-

niques and without imposing assumptions on boundedness nor on uncorrelation of the kernels.

If in addition the variables (x(m)) are centered and uncorrelated, then the spectra are related

as follows : spec(J) =
⋃M

m=1 spec(Jm); that is, {λi, i ≥ 1} =
⋃M

m=1

{
λ
(m)
i , i ≥ 1

}
. Then one can

write equivalently the bound of Theorem 6 as Rr(Hp) ≤
√

2
n ∑M

m=1 ∑∞
j=1 min(r,D2M

2
p∗−1

λ
(m)
j ) =√

2
n

∥∥∥
(

∑∞
j=1 min(r,D2M

2
p∗−1

λ
(m)
j )
)M

m=1

∥∥∥
1

. However, the main intended focus of this paper is on the

more challenging case 1 ≤ p ≤ 2 which is usually studied in multiple kernel learning and relevant

in practice.

Remark 9. It is interesting to compare the above bounds for the special case p = 2 with the ones

of Bartlett et al. (2005). The main term of the bound of Theorem 6 (taking t = p = 2) is then

essentially determined by O
(√

1
n ∑M

m=1 ∑∞
j=1 min

(
r,λ

(m)
j

))
. If the variables (x(m)) are centered and

uncorrelated, by the relation between the spectra stated in Remark 8, this is equivalently of order

O
(√

1
n ∑∞

j=1 min
(
r,λ j

))
, which is also what we obtain through Theorem 6, and coincides with the

rate shown in Bartlett et al. (2005).

Proof of Theorem 5 The proof is based on first relating the complexity of the class Hp with its

centered counterpart, that is, where all functions fw ∈ Hp are centered around their expected value.

Then we compute the complexity of the centered class by decomposing the complexity into blocks,

applying the no-correlation assumption, and using the inequalities of Hölder and Rosenthal. Then

we relate it back to the original class, which we in the final step relate to a bound involving the

truncation of the particular spectra of the kernels. Note that it suffices to prove the result for t = p

as trivially R(Hp)≤ R(Ht) for all p ≤ t.

STEP 1: RELATING THE ORIGINAL CLASS WITH THE CENTERED CLASS. In order to exploit

the no-correlation assumption, we will work in large parts of the proof with the centered class

H̃p =
{

f̃w
∣∣ ‖w‖2,p ≤ D

}
, wherein f̃w : x 7→ 〈w, x̃〉, and x̃ := x−Ex. We start the proof by

noting that f̃w(x) = fw(x)− 〈w,Ex〉 = fw(x)−E〈w,x〉 = fw(x)−E fw(x), so that, by the

bias-variance decomposition, it holds that

P f 2
w = E fw(x)

2 = E( fw(x)−E fw(x))
2 +(E fw(x))

2 = P f̃ 2
w +

(
P fw

)2
. (9)

Furthermore we note that by Jensen’s inequality

∥∥Ex
∥∥

2,p∗ =

(
M

∑
m=1

∥∥Ex(m)
∥∥p∗

2

) 1
p∗

=

(
M

∑
m=1

〈
Ex(m),Ex(m)

〉 p∗
2

) 1
p∗

Jensen

≤
(

M

∑
m=1

E
〈
x(m),x(m)

〉 p∗
2

) 1
p∗

=

√∥∥∥
(

tr(Jm)
)M

m=1

∥∥∥
p∗
2

(10)
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so that we can express the complexity of the centered class in terms of the uncentered one as follows:

Rr(Hp) = E sup
fw∈Hp,

P f 2
w
≤r

〈
w,

1

n

n

∑
i=1

σixi

〉

≤ E sup
fw∈Hp,

P f 2
w
≤r

〈
w,

1

n

n

∑
i=1

σix̃i

〉
+E sup

fw∈Hp,

P f 2
w
≤r

〈
w,

1

n

n

∑
i=1

σiEx
〉

Concerning the first term of the above upper bound, using (9) we have P f̃ 2
w ≤ P f 2

w , and thus

E sup
fw∈Hp,

P f 2
w
≤r

〈
w,

1

n

n

∑
i=1

σix̃i

〉
≤ E sup

fw∈Hp,

P f̃ 2
w
≤r

〈
w,

1

n

n

∑
i=1

σix̃i

〉
= Rr(H̃p).

Now to bound the second term, we write

E sup
fw∈Hp,

P f 2
w
≤r

〈
w,

1

n

n

∑
i=1

σiEx
〉
= E

∣∣∣∣∣
1

n

n

∑
i=1

σi

∣∣∣∣∣ sup
fw∈Hp,

P f 2
w
≤r

〈w,Ex〉

≤ sup
fw∈Hp,

P f 2
w
≤r

〈
w,Ex

〉

E

(
1

n

n

∑
i=1

σi

)2



1
2

=
√

n sup
fw∈Hp,

P f 2
w
≤r

〈w,Ex〉 .

Now observe finally that we have

〈w,Ex〉
Hölder

≤ ‖w‖2,p ‖Ex‖2,p∗
(10)

≤ ‖w‖2,p

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

as well as

〈w,Ex〉= E fw(x)≤
√

P f 2
w.

We finally obtain, putting together the steps above,

Rr(Hp)≤ Rr(H̃p)+n−
1
2 min

(√
r,D

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

)
(11)

This shows that we at the expense of the additional summand on the right hand side we can work

with the centered class instead of the uncentered one.

STEP 2: BOUNDING THE COMPLEXITY OF THE CENTERED CLASS. Since the (centered)

covariance operator Ex̃(m)⊗ x̃(m) is also a self-adjoint Hilbert-Schmidt operator on Hm, there exists

an eigendecomposition

Ex̃(m)⊗ x̃(m) =
∞

∑
j=1

λ̃
(m)
j ũ

(m)
j ⊗ ũ

(m)
j , (12)
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wherein (ũ
(m)
j ) j≥1 is an orthogonal basis of Hm. Furthermore, the no-correlation assumption (A)

entails Ex̃(l)⊗ x̃(m) = 0 for all l 6= m. As a consequence,

P f̃ 2
w = E( fw(x̃))

2 = E

( M

∑
m=1

〈
wm, x̃

(m)
〉)2

=
M

∑
l,m=1

〈
wl,
(
Ex̃(l)⊗ x̃(m)

)
wm

〉

(A)

≥ cδ

M

∑
m=1

〈
wm,

(
Ex̃(m)⊗ x̃(m)

)
wm

〉
=

M

∑
m=1

∞

∑
j=1

λ̃
(m)
j

〈
wm, ũ

(m)
j

〉2

(13)

and, for all j and m,

E

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j

〉2

= E
1

n2

n

∑
i,l=1

σiσl

〈
x̃
(m)
i , ũ

(m)
j

〉〈
x̃
(m)
l , ũ

(m)
j

〉
σ i.i.d.
= E

1

n2

n

∑
i=1

〈
x̃
(m)
i , ũ

(m)
j

〉2

=
1

n

〈
ũ
(m)
j ,
( 1

n

n

∑
i=1

Ex̃
(m)
i ⊗ x̃

(m)
i

︸ ︷︷ ︸
=Ex̃(m)⊗x̃(m)

)
ũ
(m)
j

〉
=

λ̃
(m)
j

n
. (14)

Now, let h1, . . . ,hM be arbitrary nonnegative integers. We can express the local Rademacher

complexity in terms of the eigendecomposition (12) as follows

Rr(H̃p) = E sup
fw∈H̃p:P f̃ 2

w
≤r

〈
w,

1

n

n

∑
i=1

σix̃i

〉

= E sup
fw∈H̃p:P f̃ 2

w
≤r

〈(
w(m)

)M

m=1
,
(1

n

n

∑
i=1

σix̃
(m)
i

)M

m=1

〉

= E sup
fw∈H̃p:P f̃ 2

w
≤r

〈
w,
( ∞

∑
j=1

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉

(⋆)
= E sup

P f̃ 2
w
≤r

〈 ( hm

∑
j=1

√
λ̃
(m)
j 〈w(m), ũ

(m)
j 〉ũ(m)

j

)M

m=1
,

( hm

∑
j=1

√
λ̃
(m)
j

−1

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉

+ E sup
fw∈H̃p

〈
w,
( ∞

∑
j=hm+1

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉

C.-S., Jensen

≤ sup
P f̃ 2

w
≤r

[(
M

∑
m=1

hm

∑
j=1

λ̃
(m)
j 〈w(m), ũ

(m)
j 〉2

) 1
2

×
(

M

∑
m=1

hm

∑
j=1

(
λ̃
(m)
j

)−1

E
〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j

〉2

) 1
2
]

+ E sup
fw∈H̃p

〈
w,
( ∞

∑
j=hm+1

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉
,
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where for (⋆) we use the linearity of the scalar product, so that (13) and (14) yield

Rr(H̃p)
(13), (14)

≤

√
rc−1

δ ∑M
m=1 hm

n
+E sup

fw∈H̃p

〈
w,
( ∞

∑
j=hm+1

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

〉

Hölder

≤

√
rc−1

δ ∑M
m=1 hm

n
+DE

∥∥∥∥
( ∞

∑
j=hm+1

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

∥∥∥∥
2,p∗

.

STEP 3: KHINTCHINE-KAHANE’S AND ROSENTHAL’S INEQUALITIES. We can now use

the Khintchine-Kahane (K.-K.) inequality (see Lemma 1 in Appendix B) to further bound the right

term in the above expression as follows

E

∥∥∥∥
( ∞

∑
j=hm+1

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

)M

m=1

∥∥∥∥
2,p∗

Jensen

≤ E

(
M

∑
m=1

Eσ

∥∥∥∥
∞

∑
j=hm+1

〈1

n

n

∑
i=1

σix̃
(m)
i , ũ

(m)
j 〉ũ(m)

j

∥∥∥∥
p∗

Hm

) 1
p∗

K.-K.

≤
√

p∗

n
E

(
M

∑
m=1

( ∞

∑
j=hm+1

1

n

n

∑
i=1

〈x̃(m)
i , ũ

(m)
j 〉2

) p∗
2

) 1
p∗

Jensen

≤
√

p∗

n

(
M

∑
m=1

E

( ∞

∑
j=hm+1

1

n

n

∑
i=1

〈x̃(m)
i , ũ

(m)
j 〉2

) p∗
2

) 1
p∗

,

Note that for p ≥ 2 it holds that p∗/2 ≤ 1, and thus it suffices to employ Jensen’s inequality once

again in order to move the expectation operator inside the inner term. In the general case we need a

handle on the
p∗

2
-th moments and to this end employ Lemma 3 (Rosenthal + Young), which yields

(
M

∑
m=1

E

( ∞

∑
j=hm+1

1

n

n

∑
i=1

〈x̃(m)
i , ũ

(m)
j 〉2

) p∗
2

) 1
p∗

R+Y

≤
(

M

∑
m=1

(ep∗)
p∗
2

((B

n

) p∗
2
+
( ∞

∑
j=hm+1

1

n

n

∑
i=1

E〈x̃(m)
i , ũ

(m)
j 〉2

︸ ︷︷ ︸
=λ̃

(m)
j

) p∗
2

) ) 1
p∗

(∗)
≤

√√√√ep∗

(
BM

2
p∗

n
+

(
M

∑
m=1

( ∞

∑
j=hm+1

λ̃
(m)
j

) p∗
2

) 2
p∗
)

=

√√√√ep∗

(
BM

2
p∗

n
+

∥∥∥∥∥

( ∞

∑
j=hm+1

λ̃
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

)

≤

√√√√ep∗

(
BM

2
p∗

n
+

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

)
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where for (∗) we used the subadditivity of p∗√· and in the last step we applied the Lidskii-Mirsky-

Wielandt theorem which gives ∀ j,m : λ̃
(m)
j ≤ λ

(m)
j . Thus by the subadditivity of the root function

Rr(H̃p) ≤

√
rc−1

δ ∑M
m=1 hm

n
+D

√√√√ep∗2

n

(
BM

2
p∗

n
+

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

)

=

√
rc−1

δ ∑M
m=1 hm

n
+

√√√√ep∗2D2

n

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
. (15)

STEP 4: BOUNDING THE COMPLEXITY OF THE ORIGINAL CLASS. Now note that for all

nonnegative integers hm we either have

n−
1
2 min

(√
rc−1

δ ,D

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

)
≤

√√√√ep∗2D2

n

∥∥∥
( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

(in case all hm are zero) or it holds

n−
1
2 min

(√
rc−1

δ ,D

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

)
≤

√
rc−1

δ ∑M
m=1 hm

n

(in case that at least one hm is nonzero) so that in any case we get

n−
1
2 min

(√
rc−1

δ ,D

√∥∥( tr(Jm)
)M

m=1

∥∥
p∗
2

)

≤

√
rc−1

δ ∑M
m=1 hm

n
+

√√√√ep∗2D2

n

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

. (16)

Thus the following preliminary bound follows from (11) by (15) and (16):

Rr(Hp)≤

√
4rc−1

δ ∑M
m=1 hm

n
+

√√√√4ep∗2D2

n

∥∥∥∥∥

( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
, (17)

for all nonnegative integers hm ≥ 0. We could stop here as the above bound is already the one that

will be used in the subsequent section for the computation of the excess loss bounds. However, we

can work a little more on the form of the bound to gain more insight on its properties—we will show

that it is related to the truncation of the spectra at the scale r.

STEP 5: RELATING THE BOUND TO THE TRUNCATION OF THE SPECTRA OF THE KERNELS.

To this end, notice that for all nonnegative real numbers A1,A2 and any a1,a2 ∈ R
m
+ it holds for all

q ≥ 1

√
A1 +

√
A2 ≤

√
2(A1 +A2) (18)

‖a1‖q +‖a2‖q ≤ 2
1− 1

q ‖a1 +a2‖q ≤ 2‖a1 +a2‖q (19)
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(the first statement follows from the concavity of the square root function and the second one is

proved in appendix B; see Lemma 17) and thus

Rr(Hp)

(18)

≤

√√√√8

(
rc−1

δ ∑M
m=1 hm

n
+

ep∗2D2

n

∥∥∥∥
( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

)
+

√
BeDM

1
p∗ p∗

n

ℓ1-to-ℓ p∗
2≤

√√√√8

n

(
rc−1

δ M
1− 2

p∗

∥∥∥∥
(

hm

)M

m=1

∥∥∥∥
p∗
2

+ ep∗2D2

∥∥∥∥
( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

)
+

√
BeDM

1
p∗ p∗

n

(19)

≤

√√√√16

n

∥∥∥∥
(

rc−1
δ M

1− 2
p∗ hm + ep∗2D2

∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
,

where to obtain the second inequality we applied that for all non-negative a∈R
M and 0< q< p≤∞

it holds2

(ℓq-to-ℓp conversion) ‖a‖q = 〈1,aq〉
1
q

Hölder

≤
(
‖1‖(p/q)∗ ‖aq‖p/q

)1/q

= M
1
q
− 1

p ‖a‖p . (20)

Since the above holds for all nonnegative integers hm, it follows

Rr(Hp) ≤

√√√√16

n

∥∥∥∥
(

min
hm≥0

rc−1
δ M

1− 2
p∗ hm + ep∗2D2

∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n

=

√√√√16

n

∥∥∥∥
( ∞

∑
j=1

min
(

rc−1
δ M

1− 2
p∗ ,ep∗2D2λ

(m)
j

))M

m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n
,

which completes the proof of the theorem.

Proof of Remark 7 To see that Remark 7 holds notice that R(H1) ≤ R(Hp) for all p ≥ 1 and thus

by choosing p = (log(M))∗ the above bound implies

Rr(H1) ≤

√√√√16

n

∥∥∥∥
( ∞

∑
j=1

min
(

rc−1
δ M

1− 2
p∗ ,ep∗2D2λ

(m)
j

))M

m=1

∥∥∥∥
p∗
2

+

√
BeDM

1
p∗ p∗

n

ℓ p∗
2

−to−ℓ∞

≤

√√√√16

n

∥∥∥∥
( ∞

∑
j=1

min
(

rc−1
δ M,ep∗2M

2
p∗ D2λ

(m)
j

))M

m=1

∥∥∥∥
∞

+

√
BeDM

1
p∗ p∗

n

=

√√√√16

n

∥∥∥∥
( ∞

∑
j=1

min
(

rc−1
δ M,e3D2(logM)2λ

(m)
j

))M

m=1

∥∥∥∥
∞

+

√
Be

3
2 D(logM)

n
,

which completes the proof.

2. We denote by a
q the vector with entries a

q
i and by 1 the vector with entries all 1.
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Proof of Theorem 6.

The eigendecomposition Ex⊗x= ∑∞
j=1 λ ju j ⊗u j yields

P f 2
w = E( fw(x))

2 = E〈w,x〉2 =
〈
w,(Ex⊗x)w

〉
=

∞

∑
j=1

λ j

〈
w,u j

〉2
, (21)

and, for all j

E

〈1

n

n

∑
i=1

σixi,u j

〉2

= E
1

n2

n

∑
i,l=1

σiσl

〈
xi,u j

〉〈
xl ,u j

〉 σ i.i.d.
= E

1

n2

n

∑
i=1

〈
xi,u j

〉2

=
1

n

〈
u j,
( 1

n

n

∑
i=1

Exi ⊗xi

︸ ︷︷ ︸
=Ex⊗x

)
u j

〉
=

λ j

n
. (22)

Therefore, we can use, for any nonnegative integer h, the Cauchy-Schwarz inequality and a block-

structured version of Hölder’s inequality (see Lemma 15) to bound the local Rademacher complexity

as follows:

Rr(Hp) = E sup
fw∈Hp:P f 2

w
≤r

〈
w,

1

n

n

∑
i=1

σixi

〉

= E sup
fw∈Hp:P f 2

w
≤r

〈 h

∑
j=1

√
λ j〈w,u j〉u j,

h

∑
j=1

√
λ j

−1

〈1

n

n

∑
i=1

σixi,u j〉u j

〉

+
〈
w,

∞

∑
j=h+1

〈1

n

n

∑
i=1

σixi,u j〉u j

〉

C.-S., (21), (22)

≤
√

rh

n
+E sup

fw∈Hp

〈
w,

∞

∑
j=h+1

〈1

n

n

∑
i=1

σixi,u j〉u j

〉

Hölder

≤
√

rh

n
+DE

∥∥∥∥
∞

∑
j=h+1

〈1

n

n

∑
i=1

σixi,u j〉u j

∥∥∥∥
2,p∗

ℓ p∗
2

−to−ℓ2

≤
√

rh

n
+DM

1
p∗−

1
2E

∥∥∥∥
∞

∑
j=h+1

〈1

n

n

∑
i=1

σixi,u j〉u j

∥∥∥∥
H

Jensen

≤
√

rh

n
+DM

1
p∗−

1
2

( ∞

∑
j=h+1

E〈1

n

n

∑
i=1

σixi,u j〉2

︸ ︷︷ ︸
(22)

≤ λ j
n

) 1
2

≤
√

rh

n
+

√√√√D2M
2

p∗−1

n

∞

∑
j=h+1

λ j.

Since the above holds for all h, the result now follows from
√

A+
√

B ≤
√

2(A+B) for all nonneg-

ative real numbers A,B (which holds by the concavity of the square root function):

Rr(Hp)≤
√

2

n
min

0≤h≤n

(
rh+D2M

2
p∗−1

∞

∑
j=h+1

λ j

)
=

√
2

n

∞

∑
j=1

min(r,D2M
2

p∗−1
λ j).
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4. Lower Bound

In this subsection we investigate the tightness of our bound on the local Rademacher complexity of

Hp. To derive a lower bound we consider the particular case where variables x(1), . . . ,x(M) are i.i.d.

For example, this happens if the original input space X is RM, the original input variable X ∈ X has

i.i.d. coordinates, and the kernels k1, . . . ,kM are identical and each act on a different coordinate of

X .

Lemma 10. Assume that the variables x(1), . . . ,x(M) are centered and identically independently

distributed. Then, the following lower bound holds for the local Rademacher complexity of Hp for

any p ≥ 1:

Rr(Hp,D,M) ≥ RrM(H1,DM1/p∗ ,1).

Proof First note that since the x(i) are centered and uncorrelated, that

P f 2
w =

( M

∑
m=1

〈
wm,x

(m)
〉)2

=
M

∑
m=1

〈
wm,x

(m)
〉2
.

Now it follows

Rr(Hp,D,M) = E sup

w:
P f 2

w
≤ r

‖w‖2,p ≤ D

〈
w,

1

n

n

∑
i=1

σixi

〉

= E sup

w: ∑M
m=1

〈
w

(m) ,x(m)
〉2 ≤ r

‖w‖2,p ≤ D

〈
w,

1

n

n

∑
i=1

σixi

〉

≥ E sup

w:

∀m :
〈
w

(m) ,x(m)
〉2 ≤ r/M∥∥∥w(m)

∥∥∥
2,p

≤ D
∥∥∥w(1)

∥∥∥= · · ·=
∥∥∥w(M)

∥∥∥

〈
w,

1

n

n

∑
i=1

σixi

〉

= E sup

w:
∀m :

〈
w

(m) ,x(m)
〉2 ≤ r/M

∀m :

∥∥∥w(m)
∥∥∥

2
≤ DM

− 1
p

M

∑
m=1

〈
w(m),

1

n

n

∑
i=1

σix
(m)
i

〉

=
M

∑
m=1

E sup

w(m):

〈
w

(m) ,x(m)
〉2 ≤ r/M∥∥∥w(m)

∥∥∥
2
≤ DM

− 1
p

〈
w(m),

1

n

n

∑
i=1

σix
(m)
i

〉
,
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so that we can use the i.i.d. assumption on x(m) to equivalently rewrite the last term as follows:

Rr(Hp,D,M)
x(m) i.i.d.

≥ E sup

w(1):

〈
w

(1) ,x(1)
〉2 ≤ r/M∥∥∥w(1)

∥∥∥
2
≤ DM

− 1
p

〈
Mw(1),

1

n

n

∑
i=1

σix
(1)
i

〉

= E sup

w(1):

〈
Mw

(1) ,x(1)
〉2 ≤ rM

∥∥∥Mw
(1)
∥∥∥

2
≤ DM

1
p∗

〈
Mw(1),

1

n

n

∑
i=1

σix
(1)
i

〉

= E sup

w(1):

〈
w

(1) ,x(1)
〉2 ≤ rM

∥∥∥w(1)
∥∥∥

2
≤ DM

1
p∗

〈
w(1),

1

n

n

∑
i=1

σix
(1)
i

〉

= RrM(H1,DM1/p∗ ,1)

In Mendelson (2003) it was shown that there is an absolute constant c so that if λ(1) ≥ 1
n

then for all

r ≥ 1
n

it holds Rr(H1,1,1) ≥
√

c
n ∑∞

j=1 min(r,λ
(1)
j ). Closer inspection of the proof reveals that more

generally it holds Rr(H1,D,1) ≥
√

c
n ∑∞

j=1 min(r,D2λ
(1)
j ) if λ

(m)
1 ≥ 1

nD2 so that we can use that result

together with the previous lemma to obtain:

Theorem 11 (Lower bound). Assume that the kernels are centered and identically independently

distributed. Then, the following lower bound holds for the local Rademacher complexity of Hp.

There is an absolute constant c such that if λ(1) ≥ 1
nD2 then for all r ≥ 1

n
and p ≥ 1,

Rr(Hp,D,M) ≥
√

c

n

∞

∑
j=1

min(rM,D2M2/p∗λ
(1)
j ). (23)

We would like to compare the above lower bound with the upper bound of Theorem 5. To this

end note that for centered identical independent kernels the upper bound reads

Rr(Hp)≤
√

16

n

∞

∑
j=1

min
(

rM,ceD2 p∗2M
2

p∗ λ
(1)
j

)
+

√
BeDM

1
p∗ p∗

n
,

which is of the order O
(√

∑∞
j=1 min

(
rM,D2M

2
p∗ λ

(1)
j

))
and, disregarding the quickly converging

term on the right hand side and absolute constants, again matches the upper bounds of the previous

section. A similar comparison can be performed for the upper bound of Theorem 6: by Remark 8

the bound reads

Rr(Hp)≤
√

2

n

∥∥∥
( ∞

∑
j=1

min(r,D2M
2

p∗−1
λ
(m)
j )
)M

m=1

∥∥∥
1
,

which for i.i.d. kernels becomes

√
2/n∑∞

j=1 min
(
rM,D2M

2
p∗ λ

(1)
j

)
and thus, besides absolute con-

stants, matches the lower bound. This shows that the upper bounds of the previous section are

tight.
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5. Excess Risk Bounds

In this section we show an application of our results to prediction problems, such as classification

or regression. To this aim, in addition to the data x1, . . . ,xn introduced earlier in this paper, let

also a label sequence y1, . . . ,yn ⊂ [−1,1] be given that is i.i.d. generated from a probability dis-

tribution. The goal in statistical learning is to find a hypothesis f from a pregiven class F that

minimizes the expected loss E l( f (x),y), where l : R2 7→ [−1,1] is a predefined loss function that

encodes the objective of the given learning/prediction task at hand. For example, the hinge loss

l(t,y) = max(0,1− yt) and the squared loss l(t,y) = (t − y)2 are frequently used in classification

and regression problems, respectively.

Since the distribution generating the example/label pairs is unknown, the optimal decision func-

tion

f ∗ := argmin
f∈F

E l( f (x),y)

can not be computed directly and a frequently used method consists of instead minimizing the

empirical loss,

f̂ := argmin
f∈F

1

n

n

∑
i=1

l( f (xi),yi).

In order to evaluate the performance of this so-called empirical risk minimization (ERM) algorithm

we study the excess loss,

P(l f̂ − l f ∗) := E l( f̂ (x),y)−E l( f ∗(x),y).

In Bartlett et al. (2005) and Koltchinskii (2006) it was shown that the rate of convergence of the

excess risk is basically determined by the fixed point of the local Rademacher complexity. For

example, the following result is a slight modification of Corollary 5.3 in Bartlett et al. (2005) that is

well-tailored to the class studied in this paper.3

Lemma 12. Let F be an absolute convex class ranging in the interval [a,b] and let l be a Lipschitz

continuous loss with constant L. Assume there is a positive constant F such that

∀ f ∈ F : P( f − f ∗)2 ≤ F P(l f − l f ∗). (24)

Then, denoting by r∗ the fixed point of

2FL R r

4L2
(F )

for all x > 0 with probability at least 1− e−x the excess loss can be bounded as

P(l f̂ − l f ∗)≤ 7
r∗

F
+

(11L(b−a)+27F)x

n
.

Note that condition (24) on the loss function is fulfilled, for example, when the kernel is uni-

formly bounded and the loss function is strongly convex and Lipschitz continuous on the domain

considered (Bartlett et al., 2006). This includes, for example, the squared loss as defined above, the

3. We exploit the improved constants from Theorem 3.3 in Bartlett et al. (2005) because an absolute convex class is

star-shaped. Compared to Corollary 5.3 in Bartlett et al. (2005) we also use a slightly more general function class

ranging in [a,b] instead of the interval [−1,1]. This is also justified by Theorem 3.3.
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logistic loss l(t,y) = ln(1+ exp(−yt)), and the exponential loss l(t,y) = exp(−yt). The case of

the hinge loss (see definition above) is more delicate, since it is not a strongly convex loss function.

In general, the hinge loss does not satisfy (24) on an arbitrary convex class F ; for this reason, there

is no direct, general “fast rate” excess loss analogue to the popular margin-radius bounds obtained

through global Rademacher analysis. Nevertheless, local Rademacher complexity analysis can still

be put to good use for algorithms based on the hinge loss. In fact, the hinge loss satisfies, under an

additional ”noise exponent condition” assumption, a restricted version of (24), namely, when f ∗ is

taken equal to the Bayes classifier. This can be used to study theoretically the behavior of penal-

ized ERM methods such as the support vector machine, and more precisely to obtain oracle-type

inequalities (this roughly means that the penalized ERM can be shown to pick a correct trade-off

of bias and estimation error, leading to fast convergence rates). In this sense, the local Rademacher

complexity bound we have presented here can in principle be plugged in into the SVM analysis of

Blanchard et al. (2008), directly replacing the local Rademacher analysis for a single kernel studied

there under setting (S1); see also Steinwart and Christmann (2008, Chapter 8) for a comparable

analysis. This more elaborate analysis does, however, not fall directly into the scope of the com-

parably simpler result of Lemma 12, which considers simple ERM over a fixed model, so that we

refer the reader to the references cited above for more details.

Lemma 12 shows that in order to obtain an excess risk bound on the multi-kernel class Hp it

suffices to compute the fixed point of our bound on the local Rademacher complexity presented in

Section 3. To this end we show:

Lemma 13. Assume that ‖k‖∞ ≤ B almost surely and assumption (A) holds; let p ∈ [1,2]. For the

fixed point r∗ of the local Rademacher complexity 2FLR r

4L2
(Hp) it holds

r∗ ≤ min
0≤hm≤∞

4c−1
δ F2 ∑M

m=1 hm

n
+8FL

√√√√ep∗2D2

n

∥∥∥∥
( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+
4
√

BeDFLM
1

p∗ p∗

n
.

Proof For this proof we make use of the bound (17) on the local Rademacher complexity. Defining

a =
4c−1

δ F2 ∑M
m=1 hm

n
and b = 4FL

√√√√ep∗2D2

n

∥∥∥∥
( ∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+
2
√

BeDFLM
1

p∗ p∗

n
,

in order to find a fixed point of (17) we need to solve for r =
√

ar+b, which is equivalent to solving

r2 − (a+ 2b)r+ b2 = 0 for a positive root. Denote this solution by r∗. It is then easy to see that

r∗ ≥ a+2b. Resubstituting the definitions of a and b yields the result.

We now address the issue of computing actual rates of convergence of the fixed point r∗ under the

assumption of algebraically decreasing eigenvalues of the kernel matrices, this means, we assume

∃dm : λ
(m)
j ≤ dm j−αm for some αm > 1. This is a common assumption and, for example, met for

finite rank kernels and convolution kernels (Williamson et al., 2001). Notice that this implies

∞

∑
j=hm+1

λ
(m)
j ≤ dm

∞

∑
j=hm+1

j−αm ≤ dm

∫ ∞

hm

x−αmdx = dm

[ 1

1−αm

x1−αm

]∞

hm

= − dm

1−αm

h1−αm
m . (25)
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To exploit the above fact, first note that by ℓp-to-ℓq conversion

4c−1
δ F2 ∑M

m=1 hm

n
≤ 4F

√
c−1

δ F2M ∑M
m=1 h2

m

n2
≤ 4F

√
c−1

δ F2M
2− 2

p∗
∥∥(h2

m)
)M

m=1

∥∥
2/p∗

n2

so that we can translate the result of the previous lemma by (18), (19), and (20) into

r∗ ≤ min
0≤hm≤∞

8F

√√√√1

n

∥∥∥∥
(

c−1
δ F2M

2− 2
p∗ h2

m

n
+4ep∗2D2L2

∞

∑
j=hm+1

λ
(m)
j

)M

m=1

∥∥∥∥
p∗
2

+
4
√

BeDFLM
1

p∗ p∗

n
. (26)

Inserting the result of (25) into the above bound and setting the derivative with respect to hm to zero

we find the optimal hm as

hm =
(

4cδdmep∗2D2F−2L2M
2

p∗−2
n
) 1

1+αm
.

Resubstituting the above into (26) we note that

r∗ = O

(√∥∥∥
(

n
− 2αm

1+αm

)M

m=1

∥∥∥
p∗
2

)

so that we observe that the asymptotic rate of convergence in n is determined by the kernel with

the smallest decreasing spectrum (i.e., smallest αm). Denoting dmax := maxm=1,...,M dm, αmin :=

minm=1,...,M αm, and hmax :=
(
4cδdmaxep∗2D2F−2L2M

2
p∗−2

n
) 1

1+αmin we can upper-bound (26) by

r∗ ≤ 8F

√
3−αmin

1−αmin

c−1
δ F2M2h2

maxn−2 +
4
√

BeDFLM
1

p∗ p∗

n

≤ 8

√
3−αmin

1−αmin

c−1
δ F2Mhmaxn−1 +

4
√

BeDFLM
1

p∗ p∗

n

≤ 16

√
e

3−αmin

1−αmin

c−1
δ (dmaxD2L2 p∗2)

1
1+αmin F

2αmin
1+αmin M

1+ 2
1+αmin

(
1

p∗−1
)

n
− αmin

1+αmin

+
4
√

BeDFLM
1

p∗ p∗

n
. (27)

We have thus proved the following theorem, which follows by the above inequality, Lemma 12, and

the fact that our class Hp ranges in BDM
1

p∗ .

Theorem 14. Assume that ‖k‖∞ ≤ B, assumption (A) holds, and it ∃dmax > 0 and α := αmin > 1

such that for all m = 1, . . . ,M it holds λ
(m)
j ≤ dmax j−α. Let l be a Lipschitz continuous loss with

constant L and assume there is a positive constant F such that ∀ f ∈ F : P( f − f ∗)2 ≤ F P(l f − l f ∗).
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Then for all x > 0 with probability at least 1− e−x the excess loss of the multi-kernel class Hp can

be bounded for p ∈ [1, . . . ,2] as

P(l f̂ − l f ∗) ≤ min
t∈[p,2]

186

√
3−α

1−α
c

1−α
1+α

δ

(
dmaxD2L2t∗2

) 1
1+α F

α−1
α+1 M

1+ 2
1+α

(
1
t∗−1
)

n−
α

1+α

+
47
√

BDLM
1
t∗ t∗

n
+

(22BDLM
1
t∗ +27F)x

n

We see from the above bound that convergence can be almost as slow as O
(

p∗M
1

p∗ n−
1
2

)
(if at

least one αm ≈ 1 is small and thus αmin is small) and almost as fast as O
(
n−1
)

(if αm is large for all

m and thus αmin is large). For example, the latter is the case if all kernels have finite rank and also

the convolution kernel is an example of this type.

Notice that we of course could repeat the above discussion to obtain excess risk bounds for the

case p ≥ 2 as well, but since it is very questionable that this will lead to new insights, it is omitted

for simplicity.

6. Discussion

In this section we compare the obtained local Rademacher bound with the global one, discuss related

work as well as the assumption (A), and give a practical application of the bounds by studying the

appropriateness of small/large p in various learning scenarios.

6.1 Global vs. Local Rademacher Bounds

In this section, we discuss the rates obtained from the bound in Theorem 14 for the excess risk and

compare them to the rates obtained using the global Rademacher complexity bound of Corollary 4.

To simplify somewhat the discussion, we assume that the eigenvalues satisfy λ
(m)
j ≤ d j−α (with

α > 1) for all m and concentrate on the rates obtained as a function of the parameters n,α,M,D
and p, while considering other parameters fixed and hiding them in a big-O notation. Using this

simplification, the bound of Theorem 14 reads

∀t ∈ [p,2] : P(l f̂ − l f ∗) = O
((

t∗D
) 2

1+α M
1+ 2

1+α

(
1
t∗−1
)

n−
α

1+α

)
(28)

(
and P(l f̂ − l f ∗) = O

((
D logM

) 2
1+α M

α−1
α+1

)
for p = 1

)
. On the other hand, the global Rademacher

complexity directly leads to a bound on the supremum of the centered empirical process indexed by

F and thus also provides a bound on the excess risk (see, e.g., Bousquet et al., 2004). Therefore,

using Corollary 4, wherein we upper bound the trace of each Jm by the constant B (and subsume it

under the O-notation), we have a second bound on the excess risk of the form

∀t ∈ [p,2] : P(l f̂ − l f ∗) = O
(

t∗DM
1
t∗ n−

1
2

)
. (29)

First consider the case where p ≥ (logM)∗, that is, the best choice in (28) and (29) is t = p. Clearly,

if we hold all other parameters fixed and let n grow to infinity, the rate obtained through the local

Rademacher analysis is better since α > 1. However, it is also of interest to consider what happens

when the number of kernels M and the ℓp ball radius D can grow with n. In general, we have a bound
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on the excess risk given by the minimum of (28) and (29); a straightforward calculation shows that

the local Rademacher analysis improves over the global one whenever

M
1
p

D
= O(

√
n).

Interestingly, we note that this “phase transition” does not depend on α (i.e., the “complexity” of

the individual kernels), but only on p.

If p ≤ (logM)∗, the best choice in (28) and (29) is t = (logM)∗. In this case taking the minimum

of the two bounds reads

∀p ≤ (logM)∗ : P(l f̂ − l f ∗)≤ O
(

min(D(logM)n−
1
2 ,
(
D logM

) 2
1+α M

α−1
1+α n−

α
1+α )

)
, (30)

and the phase transition when the local Rademacher bound improves over the global one occurs for

M

D logM
= O(

√
n).

Finally, it is also interesting to observe the behavior of (28) and (29) as α → ∞. In this case, it means

that only one eigenvalue is nonzero for each kernel, that is, each kernel space is one-dimensional.

In other words, in this case we are in the case of “classical” aggregation of M basis functions, and

the minimum of the two bounds reads

∀t ∈ [p,2] : P(l f̂ − l f ∗)≤ O
(

min(Mn−1, t∗DM
1
t∗ n−

1
2

)
. (31)

In this configuration, observe that the local Rademacher bound is O(M/n) and does not depend on

D, nor p, any longer; in fact, it is the same bound that one would obtain for the empirical risk mini-

mization over the space of all linear combinations of the M base functions, without any restriction on

the norm of the coefficients—the ℓp-norm constraint becomes void. The global Rademacher bound

on the other hand, still depends crucially on the ℓp norm constraint. This situation is to be compared

to the sharp analysis of the optimal convergence rate of convex aggregation of M functions obtained

by Tsybakov (2003) in the framework of squared error loss regression, which are shown to be

O

(
min

(
M

n
,

√
1

n
log

(
M√

n

)))
.

This corresponds to the setting studied here with D = 1, p = 1 and α → ∞, and we see that the

bound (30) recovers (up to log factors) in this case this sharp bound and the related phase transition

phenomenon.

6.2 Discussion of Related Work

We recently learned about independent, closely related work by Suzuki (2011), which has been

developed in parallel to ours. The setup considered there somewhat differs from ours: first of all,

it is required that the Bayes hypothesis is contained in the class w∗ ∈ H (which is not required in

the present work); second, the conditional distribution is assumed to be expressible in terms of the

Bayes hypothesis. Similar assumptions are also required in Bach (2008) in the context of sparse

recovery. Finally, the analysis there is carried out for the squared loss only, while ours holds more
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generally for, for example, strongly convex Lipschitz losses. However, a similarity to our setup is

that an algebraic decay of the eigenvalues of the kernel matrices is assumed for the computation of

the excess risk bounds and that a so-called incoherence assumption is imposed on the kernels, which

is similar to our Assumption (A). Also, we do not spell out the whole analysis for inhomogeneous

eigenvalue decays as Suzuki (2011) does—nevertheless, our analysis can be easily adapted to this

case at the expense of longer, less-readable bounds.

We now compare the excess risk bounds of Suzuki (2011) for the case of homogeneous eigen-

value decays, that is,

P(l f̂ − l f ∗) = O
((

D
) 2

1+α M
1+ 2

1+α

(
1

p∗−1
)

n−
α

1+α

)
,

to the ones shown in this paper, that is, (28)—we thereby disregard constants and the O(n−1) terms.

Roughly speaking, the proof idea in Suzuki (2011) is to exploit existing bounds on the LRC of

single-kernel learning (Steinwart and Christmann, 2008) by combining Talagrand’s inequality (Ta-

lagrand, 1995) and the peeling technique (van de Geer, 2000). This way the Khintchine-Kahane,

which introduces a factor of (p∗)
2

1+α into our bounds, is avoided.

We observe that, importantly, both bounds have the same dependency in D, M, and n, although

being derived by a completely different technique. Regarding the dependency in p, we observe that

our bound involves a factor of (t∗)
2

1+α (for some t ∈ [p,2] that is not present in the bound of Suzuki

(2011). However, it can be easily shown that this factor is never of higher order than log(M) and

thus can be neglected:

1. If p ≤ (log(M))∗, then t = log(M) is optimal in our bound so that the term (t∗)
2

1+α becomes

(log(M))
2

1+α .

2. If p≥ (log(M))∗, then p∗ ≤ log(M) so that the term (t∗)
2

1+α is smaller equal than (log(M))
2

1+α .

We can thus conclude that, besides a logarithmic factor in M as well as constants and O(n−1) terms,

our bound coincides with the rate shown in Suzuki (2011).

6.3 Discussion of Assumption (A)

Assumption (A) is arguably quite a strong hypothesis for the validity of our results (needed for

1 ≤ p ≤ 2), which was not required for the global Rademacher bound. A similar assumption is also

made in the recent works of Suzuki (2011) and Koltchinskii and Yuan (2010). In the latter paper, a

related MKL algorithm using a mixture of an ℓ1-type penalty and an empirical ℓ2 penalty is studied

(this should not be confused with ℓp=1-norm MKL, which does not involve an empirical penalty and

which, for p= 1, is contained in the ℓp-norm MKL methodology studied in this paper). Koltchinskii

and Yuan (2010) derive bounds that depend on the “sparsity pattern” of the Bayes function, that is,

how many coefficients w∗
m are non-zero, using an Restricted Isometry Property (RIP) assumption.

If the kernel spaces are one-dimensional, in which case ℓ1-penalized MKL reduces qualitatively

to standard lasso-type methods, this assumption is known to be necessary to grant the validity of

bounds taking into account the sparsity pattern of the Bayes function.4

4. We also mention another work by Raskutti et al. (2010), investigating the same algorithm as Koltchinskii and Yuan

(2010), but employing a somewhat more restrictive assumption on the uncorrelatedness of the kernels, which corre-

sponds to taking cδ = 1 in assumption (A).
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In the present work, our analysis stays deliberately “agnostic” (or worst-case) with respect to the

true sparsity pattern (in part because experimental evidence seems to point towards the fact that the

Bayes function is not strongly sparse); correspondingly it could legitimately be hoped that the RIP

condition, or Assumption (A), could be substantially relaxed. Considering again the special case of

one-dimensional kernel spaces and the discussion about the qualitatively equivalent case α → ∞ in

the previous section, it can be seen that Assumption (A) is indeed unnecessary for bound (31) to

hold, and more specifically for the rate of M/n obtained through local Rademacher analysis in this

case. However, as we discussed, what happens in this specific case is that the local Rademacher

analysis becomes oblivious to the ℓp-norm constraint, and we are left with the standard parametric

convergence rate in dimension M. In other words, with one-dimensional kernel spaces, the two con-

straints (on the L2(P)-norm of the function and on the ℓp block-norm of the coefficients) appearing

in the definition of local Rademacher complexity are essentially not active simultaneously. Unfor-

tunately, it is clear that this property is not true anymore for kernels of higher complexity (i.e., with

a non-trivial decay rate of the eigenvalues). This is a specificity of the kernel setting as compared

to combinations of a dictionary of M simple functions, and Assumption (A) was in effect used to

“align” the two constraints. To sum up, Assumption (A) is used here for a different purpose from

that of the RIP in sparsity analyses of ℓ1 regularization methods; it is not clear to us at this point

if this assumption is necessary or if uncorrelated variables x(m) constitutes a “worst case” for our

analysis. We did not suceed so far in relinquishing this assumption for p ≤ 2, and this question

remains open.

Besides the work of Suzuki (2011), there is, up to our knowledge, no previous existing analysis

of the ℓp-MKL setting for p > 1; the recent works of Raskutti et al. (2010) and Koltchinskii and

Yuan (2010) focus on the case p = 1 and on the sparsity pattern of the Bayes function. A refined

analysis of ℓp-regularized methods in the case of combination of M basis functions was laid out by

Koltchinskii (2009), also taking into account the possible soft sparsity pattern of the Bayes function.

Extending the ideas underlying the latter analysis into the kernel setting is likely to open interesting

developments.

6.4 Analysis of the Impact of the Norm Parameter p on the Accuracy of ℓp-norm MKL

As outlined in the introduction, there is empirical evidence that the performance of ℓp-norm MKL

crucially depends on the choice of the norm parameter p (cf. Figure 1 in the introduction). The

aim of this section is to relate the theoretical analysis presented here to this empirically observed

phenomenon. We believe that this phenomenon can be (at least partly) explained on base of our

excess risk bound obtained in the last section. To this end we will analyze the dependency of the

excess risk bounds on the chosen norm parameter p. We will show that the optimal p depends

on the geometrical properties of the learning problem and that in general—depending on the true

geometry—any p can be optimal. Since our excess risk bound is only formulated for p ≤ 2, we will

limit the analysis to the range p ∈ [1,2].
To start with, first note that the choice of p only affects the excess risk bound in the factor (cf.

Theorem 14 and Equation (28))

νt := min
t∈[p,2]

(
Dpt∗

) 2
1+α M

1+ 2
1+α

(
1
t∗−1
)
.

So we write the excess risk as P(l f̂ − l f ∗) = O(νt) and hide all variables and constants in the O-

notation for the whole section (in particular the sample size n is considered a constant for the pur-
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Figure 2: 2D-Illustration of the three learning scenarios analyzed in this section: LEFT: A soft

sparse w∗; CENTER: an intermediate non-sparse w∗; RIGHT: an almost-uniformly

non-sparse w∗. Each scenario has a Bayes hypothesis w∗ with a different soft spar-

sity (parametrized by β). The colored lines show the smallest ℓp-ball containing the

Bayes hypothesis. We observe that the radii of the hypothesis classes depend on the

sparsity of w∗ and the parameter p.

poses of the present discussion). It might surprise the reader that we consider the term in D in the

bound although it seems from the bound that it does not depend on p. This stems from a subtle

reason that we have ignored in this analysis so far: D is related to the approximation properties of

the class, that is, its ability to attain the Bayes hypothesis. For a “fair” analysis we should take the

approximation properties of the class into account.

To illustrate this, let us assume that the Bayes hypothesis belongs to the space H and can be

represented by w∗; assume further that the block components satisfy ‖w∗
m‖2 = m−β, m = 1, . . . ,M,

where β ≥ 0 is a parameter parameterizing the “soft sparsity” of the components. For example,

the cases β ∈ {0.5,1,2} are shown in Figure 2 for M = 2 and assuming that each kernel has rank

1 (thus being isomorphic to R). If n is large, the best bias-complexity tradeoff for a fixed p will

correspond to a vanishing bias, so that the best choice of D will be close to the minimal value such

that w∗ ∈ Hp,D, that is, Dp = ||w∗||p. Plugging in this value for Dp, the bound factor νp becomes

νp := ‖w∗‖
2

1+α
p min

t∈[p,2]
t∗

2
1+α M

1+ 2
1+α

(
1
t∗−1
)
. (32)

We can now plot the value νp as a function of p for special choices of α, M, and β. We realized

this simulation for α = 2, M = 1000, and β ∈ {0.5,1,2}, which means we generated three learning

scenarios with different levels of soft sparsity parametrized by β. The results are shown in Figure 3.

Note that the soft sparsity of w∗ is increased from the left hand to the right hand side. We observe

that in the “soft sparsest” scenario (β = 2, shown on the left-hand side) the minimum is attained

for a quite small p = 1.2, while for the intermediate case (β = 1, shown at the center) p = 1.4 is

optimal, and finally in the uniformly non-sparse scenario (β = 2, shown on the right-hand side) the

choice of p = 2 is optimal (although even a higher p could be optimal, but our bound is only valid

for p ∈ [1,2]).
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Figure 3: Results of the simulation for the three analyzed learning scenarios (which were illustrated

in Figure 2). The value of the bound factor νt is plotted as a function of p. The minimum

is attained depending on the true soft sparsity of the Bayes hypothesis w∗ (parametrized

by β).

This means that if the true Bayes hypothesis has an intermediately dense representation, our

bound gives the strongest generalization guarantees to ℓp-norm MKL using an intermediate choice

of p. This is also intuitive: if the truth exhibits some soft sparsity but is not strongly sparse, we

expect non-sparse MKL to perform better than strongly sparse MKL or the unweighted-sum kernel

SVM.

6.5 An Experiment on Synthetic Data

We now present a toy experiment that is meant to check the validity of the theory presented in

the previous sections. To this end, we construct learning scenarios where we know the underlying

ground truth (more precisely, the ℓp-norm of the Bayes hypothesis) and check whether the param-

eter p that minimizes our bound coincides with the optimal p observed empirically, that is, when

applying ℓp-norm MKL to the training data. Our analysis is based on the proven synthetic data de-

scribed in Kloft et al. (2011) and being available from http://mldata.org/repository/data/

viewslug/mkl-toy/. For completeness, we summarize the experimental description and the em-

pirical results here. Note that we have extended the analysis to the whole range p ∈ [1,∞] (only

p ∈ [1,2] was studied in Kloft et al., 2011).

6.5.1 EXPERIMENTAL SETUP AND EMPIRICAL RESULTS

We construct six artificial data sets as described in Kloft et al. (2011), in which we vary the degree of

sparsity of the true Bayes hypothesis w. For each data set, we generate an n = 50-element, balanced

sample D = {(xi,yi)}n
i=1 from two d = 50-dimensional isotropic Gaussian distributions with equal

covariance matrices C = Id×d and equal, but opposite, means µ+ = ρ
‖w‖2

w and µ− =−µ+. Figure 4

shows bar plots of the w of the various scenarios considered. The components wi are binary valued;

hence, the fraction of zero components, which we define by sparsity(w) := 1 − 1
d ∑d

i=1 wi, is a

measure for the feature sparsity of the learning problem.
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Figure 4: Toy experiment: illustration of the experimental design. We study six scenarios differing

the sparsity of the Bayes hypothesis considered.

For each of the w we generate m = 250 data sets D1, . . . ,Dm fixing ρ = 1.75. Then, each

feature is input into a linear kernel and the resulting kernel matrices are multiplicatively normalized

as described in Kloft et al. (2011). Next, classification models are computed by training ℓp-norm

MKL for p = 1,4/3,2,4,∞ on each Di. Soft margin parameters C are tuned on independent 1,000-

elemental validation sets by grid search over C ∈
{

10i
∣∣ i=−4,−3.5, . . . ,0

}
(optimal Cs are attained

in the interior of the grid). The relative duality gaps were optimized up to a precision of 10−3. The

simulation is realized for n= 50. We report on test errors evaluated on 1,000-elemental independent

test sets.

The results in terms of test errors are shown in Figure 5 (top). As expected, ℓ1-norm MKL

performs best and reaches the Bayes error in the sparsest scenario. In contrast, the vanilla SVM

using a uniform kernel combination performs best when all kernels are equally informative. The

non-sparse ℓ4/3-norm MKL variants perform best in the balanced scenarios, that is, when the noise

level is ranging in the interval 64%-92%. Intuitively, the non-sparse ℓ4/3-norm MKL is the most

robust MKL variant, achieving test errors of less than 12% in all scenarios. Tuning the sparsity

parameter p for each experiment, ℓp-norm MKL achieves low test error across all scenarios.

6.5.2 BOUND

We evaluate the theoretical bound factor (32) (simply setting α = 1) for the six learning scenarios

considered. To furthermore analyze whether the p that are minimizing the bound are reflected in

the empirical results, we compute the test errors of the various MKL variants again, using the setup

above except that we employ a local search for finding the optimal p. The results are shown in

Figure 5 (bottom). We observe a striking coincidence of the optimal p as predicted by the bound

and the p that worked best empirically: In the sparsest scenario (shown on the lower right-hand

side), the bound predicts p ∈ [1,1.14] to be optimal and indeed, in the experiments, all p ∈ [1,1.15]
performed best (and equally well) while p = 1.19, already has a slightly (but significantly) worse

test error—in striking match with our bounds. In the second sparsest scenario, the bound predicts

p = 1.25 and we empirically found p = 1.26. In the non-sparse scenarios, intermediate values

of p ∈ [1,2] are optimal (see Figure for details)—again we can observe a good accordance of the
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Figure 5: Toy experiment: empirical results (top) and theoretical bounds (bottom).

empirical and theoretical values. In the extreme case, that is, the uniform scenario, the bound

indicates a p that lies well beyond the valid interval of the bound (i.e., p > 2) and this is also what

we observe empirically: p ∈ [4,∞] worked best in our experiments.

6.5.3 SUMMARY AND DISCUSSION

We can conclude that the empirical results indicate the validity of our theory: the theoretical bounds

reflect the empirically observed optimal p in the idealized setup where we know the underlying

ground true, that is, the ℓp-norm of the Bayes hypothesis. We also observed that the optimality of

a particular p strongly depends on the geometry of the learning task: the sparsity of the underlying

Bayes hypothesis w. This raises the question into which scenarios practical applications fall. For

example, do we rather encounter a “sparse” or non-sparse scenario in bioinformatics? However, this

investigation is beyond the scope of this paper (see Chapter 5 in Kloft (2011) for an analysis aiming

in that direction).
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The results of our analysis are especially surprising, when recalling the result of Suzuki (2011)

discussed in Section 6.2. For the setup of homogeneous eigenvalue decay of the kernels as consid-

ered in the toy experiment setup here, their bound is optimal for p = 1, regardless of the sparsity of

the Bayes hypothesis. This is counter-intuitive and in strong contrast to our empirical analysis on

synthetic data, where the optimality of a certain value of the norm parameter p crucially depends on

the sparsity of the Bayes hypothesis. At this point we have no explanation for this behavior and this

leaves an open issue for relating theory to empirical results. The analysis carried out in this paper

may serve as a starting point for subsequent analyses aiming in that direction.

7. Conclusion

We derived a sharp upper bound on the local Rademacher complexity of ℓp-norm multiple kernel

learning under the assumption of uncorrelated kernels. We also proved a lower bound that matches

the upper one and shows that our result is tight. Using the local Rademacher complexity bound,

we derived an excess risk bound that attains the fast rate of O(n−
α

1+α ), where α is the minimum

eigenvalue decay rate of the individual kernels.

In a practical case study, we found that the optimal value of that bound depends on the true

Bayes-optimal kernel weights. If the true weights exhibit soft sparsity but are not strongly sparse,

then the generalization bound is minimized for an intermediate p. This is not only intuitive but also

supports empirical studies showing that sparse MKL (p = 1) rarely works in practice, while some

intermediate choice of p can improve performance.

Of course, this connection is only valid if the optimal kernel weights are likely to be non-sparse

in practice. Indeed, related research points in that direction. For example, already weak connectivity

in a causal graphical model may be sufficient for all variables to be required for optimal predictions,

and even the prevalence of sparsity in causal flows is being questioned (e.g., for the social sciences

Gelman, 2010, argues that “There are (almost) no true zeros”).

Finally, we note that there seems to be a certain preference for sparse models in the scientific

community. However, previous MKL research has shown that non-sparse models may improve

quite impressively over sparse ones in practical applications. The present analysis supports this by

showing that the reason for this might be traced back to non-sparse MKL attaining better general-

ization bounds in non-sparse learning scenarios. We remark that this point of view is also supported

by related analyses.

For example, it was shown by Leeb and Pötscher (2008) in a fixed design setup that any sparse

estimator (i.e., satisfying the oracle property of correctly predicting the zero values of the true target

w∗) has a maximal scaled mean squared error (MSMSE) that diverges to ∞. This is somewhat

suboptimal since, for example, least-squares regression has a converging MSMSE. Although this

is an asymptotic result, it might also be one of the reasons for finding excellent (non-asymptotic)

results in non-sparse MKL. In another, recent study of Xu et al. (2008), it was shown that no sparse

algorithm can be algorithmically stable. This is noticeable because algorithmic stability is connected

with generalization error (Bousquet and Elisseeff, 2002).
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Appendix A. Relation of MKL to Block-Norm Formulation

For completeness, we show in this appendix the relation of kernel weights formulation of MKL to

block-norm formulation.

A.1 The Case p∈ [1,2]

We show that denoting w = (w(1), . . . ,w(M)), for any q ∈ [1,∞], the hypothesis class

{
f : x 7→

M

∑
m=1

〈
wm,

√
θmφm(x)

〉 ∣∣ ‖w‖2 ≤ D, ‖θ‖q ≤ 1
}
, (33)

is identical to the block norm class

Hp,D,M =
{

f : x 7→ 〈w,φ(x)〉
∣∣ ‖w‖2,p ≤ D

}
(34)

where p := 2q
q+1

. This is known since Micchelli and Pontil (2005). To this end, first we rewrite (33)

as

Hp,D,M =
{

f : x 7→ 〈w,φ(x)〉
∣∣∣

M

∑
m=1

‖wm‖2
2

θm

≤ D2, ‖θ‖q ≤ 1
}
. (35)

However, solving

inf
θ

1

2

M

∑
m=1

‖wm‖2
2

θm

, s.t. ‖θ‖q ≤ 1

for fixed w > 0, the optimal θ is attained at

θm =
‖wm‖

2
q+1

2(
∑M

m′=1 ‖wm′‖
2q

q+1

2

)1/q
, ∀m = 1, . . . ,M.

Plugging the latter into (35), we obtain (34) with p = 2q
q+1

, which was to show.
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A.2 The Case p∈ ]2,∞]

Even if p > 2, we can obtain an alternative formulation of the block norm MKL problem, as

shown in Aflalo et al. (2011), by the definition of the dual norm ‖·‖∗ of a norm ‖·‖, that is,

‖x‖∗ = supy 〈x,y〉−‖y‖, it holds

‖w‖2
2,p =

∥∥∥
(
‖wm‖2

2

)M

m=1

∥∥∥
p/2

= sup
θ:‖θ‖(p/2)∗≤1

M

∑
m=1

θm ‖wm‖2
2 .

Thus defining q := (p/2)∗ we can obtain a learning-the-kernel MKL formulation from the above

equation. A difference to the case p < 2 lies in the kernel weights θm appearing in the nominator

instead of the denominator.

Appendix B. Lemmata and Proofs

The following result gives a block-structured version of Hölder’s inequality (e.g., Steele, 2004).

Lemma 15 (Block-structured Hölder inequality). Let x = (x(1), . . . ,x(m)), y = (y(1), . . . ,y(m)) ∈
H = H1 ×·· ·×HM. Then, for any p ≥ 1, it holds

〈x,y〉 ≤ ‖x‖2,p‖y‖2,p∗ .

Proof By the Cauchy-Schwarz inequality (C.-S.), we have for all x,y ∈ H :

〈x,y〉 =
M

∑
m=1

〈x(m),y(m)〉
C.-S.

≤
M

∑
m=1

‖x‖2‖y‖2

=
〈
(‖x(1)‖2, . . . ,‖x(M)‖2),(‖y(1)‖2, . . . ,‖y(M)‖2)

〉
.

Hölder

≤ ‖x‖2,p‖y‖2,p∗

Proof of Lemma 3 (Rosenthal + Young) It is clear that the result trivially holds for 1
2
≤ p ≤ 1

with Cq = 1 by Jensen’s inequality . In the case p ≥ 1, we apply Rosenthal’s inequality (Rosenthal,

1970) to the sequence X1, . . . ,Xn thereby using the optimal constants computed in Ibragimov and

Sharakhmetov (2001), that are, Cq = 2 (q ≤ 2) and Cq = EZq (q ≥ 2), respectively, where Z is a

random variable distributed according to a Poisson law with parameter λ = 1. This yields

E

(
1

n

n

∑
i=1

Xi

)q

≤Cq max

(
1

nq

n

∑
i=1

EX
q
i ,

(
1

n

n

∑
i=1

Xi

)q)
. (36)

By using that Xi ≤ B holds almost surely, we could readily obtain a bound of the form Bq

nq−1 on the

first term. However, this is loose and for q = 1 does not converge to zero when n → ∞. Therefore,
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we follow a different approach based on Young’s inequality (e.g., Steele, 2004):

1

nq

n

∑
i=1

EX
q
i ≤

(
B

n

)q−1
1

n

n

∑
i=1

EXi

Young

≤ 1

q∗

(
B

n

)q∗(q−1)

+
1

q

(
1

n

n

∑
i=1

EXi

)q

=
1

q∗

(
B

n

)q

+
1

q

(
1

n

n

∑
i=1

EXi

)q

.

It thus follows from (36) that for all q ≥ 1
2

E

(
1

n

n

∑
i=1

Xi

)q

≤Cq

((B

n

)q

+
(1

n

n

∑
i=1

EXi

)q

)
,

where Cq can be taken as 2 (q ≤ 2) and EZq (q ≥ 2), respectively, where Z is Poisson-distributed. In

the subsequent Lemma 16 we show EZq ≤ (q+e)q. Clearly, for q≥ 1
2

it holds q+e≤ qe+eq= 2eq

so that in any case Cq ≤ max(2,2eq)≤ 2eq, which concludes the result.

We use the following Lemma gives a handle on the q-th moment of a Poisson-distributed random

variable and is used in the previous Lemma.

Lemma 16. For the q-moment of a random variable Z distributed according to a Poisson law with

parameter λ = 1, the following inequality holds for all q ≥ 1:

EZq def.
=

1

e

∞

∑
k=0

kq

k!
≤ (q+ e)q.

Proof We start by decomposing EZq as follows:

E
q =

1

e

(
0+

q

∑
k=1

kq

k!
+

∞

∑
k=q+1

kq

k!

)

=
1

e

(
q

∑
k=1

kq−1

(k−1)!
+

∞

∑
k=q+1

kq

k!

)

≤ 1

e

(
qq +

∞

∑
k=q+1

kq

k!

)
(37)

(38)
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Note that by Stirling’s approximation it holds k! =
√

2πeτk k
(

k
e

)q
with 1

12k+1
< τk <

1
12k

for all q.

Thus

∞

∑
k=q+1

kq

k!
=

∞

∑
k=q+1

1√
2πeτk k

ekk−(k−q)

=
∞

∑
k=1

1√
2πeτk+q(k+q)

ek+qk−k

= eq
∞

∑
k=1

1√
2πeτk+q(k+q)

(e

k

)k

(∗)
≤ eq

∞

∑
k=1

1√
2πeτk k

(e

k

)k

Stirling
= eq

∞

∑
k=1

1

k!

= eq+1

where for (∗) note that eτk k ≤ eτk+q(k+ q) can be shown by some algebra using 1
12k+1

< τk <
1

12k
.

Now by (37)

EZq =
1

e

(
qq + eq+1

)
≤ qq + eq ≤ (q+ e)q,

which was to show.

Lemma 17. For any a,b ∈ R
m
+ it holds for all q ≥ 1

‖a‖q +‖b‖q ≤ 2
1− 1

q ‖a+b‖q ≤ 2‖a+b‖q .

Proof Let a = (a1, . . . ,am) and b = (b1, . . . ,bm). Because all components of a,b are nonnegative,

we have

∀i = 1, . . . ,m : a
q
i +b

q
i ≤

(
ai +bi

)q

and thus

‖a‖q
q +‖b‖q

q ≤ ‖a+b‖q
q . (39)

We conclude by ℓq-to-ℓ1 conversion (see (20))

‖a‖q +‖b‖q =
∥∥(‖a‖q ,‖b‖q

)∥∥
1

(20)

≤ 2
1− 1

q

∥∥(‖a‖q ,‖b‖q

)∥∥
q
= 2

1− 1
q
(
‖a‖q

q +‖b‖q
q

) 1
q

(39)

≤ 2
1− 1

q ‖a+b‖q ,

which completes the proof.
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Poincaré, Probabilités et Statistiques, 45(1):7–57, 2009.

V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. Annals of Statistics, 38(6):

3660–3695, 2010.

S. Kwapién and W. A. Woyczyński. Random Series and Stochastic Integrals: Single and Multiple.
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