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Abstract
We propose a method for nonparametric density estimation that exhibits robustness to contamina-
tion of the training sample. This method achieves robustness by combining a traditional kernel
density estimator (KDE) with ideas from classicalM-estimation. We interpret the KDE based on a
positive semi-definite kernel as a sample mean in the associated reproducing kernel Hilbert space.
Since the sample mean is sensitive to outliers, we estimate it robustly viaM-estimation, yielding a
robust kernel density estimator (RKDE).

An RKDE can be computed efficiently via a kernelized iteratively re-weighted least squares
(IRWLS) algorithm. Necessary and sufficient conditions are given for kernelized IRWLS to con-
verge to the global minimizer of theM-estimator objective function. The robustness of the RKDE
is demonstrated with a representer theorem, the influence function, and experimental results for
density estimation and anomaly detection.

Keywords: outlier, reproducing kernel Hilbert space, kernel trick, influence function,M-estimation

1. Introduction

The kernel density estimator (KDE) is a well-known nonparametric estimator ofunivariate or multi-
variate densities, and numerous articles have been written on its properties,applications, and exten-
sions (Silverman, 1986; Scott, 1992). However, relatively little work has been done to understand
or improve the KDE in situations where the training sample is contaminated. This paper addresses
a method of nonparametric density estimation that generalizes the KDE, and exhibits robustness to
contamination of the training sample.1

Consider training data following a contamination model

X1, . . . ,Xn
iid∼ (1− p) f0+ p f1,

wheref0 is the “nominal” density to be estimated,f1 is the density of the contaminating distribution,
and p < 1

2 is the proportion of contamination. Labels are not available, so that the problem is
unsupervised. The objective is to estimatef0 while making no parametric assumptions about the
nominal or contaminating distributions.

∗. Also in the Department of Statistics.
1. Shorter versions of this work previously appeared at the International Conference on Acoustics, Speech, and Signal

Processing (Kim and Scott, 2008) and the International Conference onMachine Learning (Kim and Scott, 2011).
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Clearly f0 cannot be recovered if there areno assumptions onf0, f1 and p. Instead, we will
focus on a set of nonparametric conditions that are reasonable in many practical applications. In
particular, we will assume that, relative to the nominal data, the contaminated dataare

(a) outlying: the densitiesf0 and f1 have relatively little overlap

(b) diffuse: f1 is not too spatially concentrated relative tof0

(c) not abundant: a minority of the data come fromf1

Although we will not be stating these conditions more precisely, they capture the intuition behind
the quantitative results presented below.

As a motivating application, consider anomaly detection in a computer network. Imagine that
several multi-dimensional measurementsX1, . . . ,Xn are collected. For example, eachX i may record
the volume of traffic along certain links in the network, at a certain instant in time (Chhabra et al.,
2008). If each measurement is collected when the network is in a nominal state, these data could be
used to construct an anomaly detector by first estimating the densityf0 of nominal measurements,
and then thresholding that estimate at some level to obtain decision regions. Unfortunately, it is
often difficult to know that the data are free of anomalies, because assigning labels (nominal vs.
anomalous) can be a tedious, labor intensive task. Hence, it is necessary to estimate the nominal
density (or a level set thereof) from contaminated data. Furthermore, thedistributions of both nom-
inal and anomalous measurements are potentially complex, and it is therefore desirable to avoid
parametric models.

The proposed method achieves robustness by combining a traditional kernel density estimator
with ideas fromM-estimation (Huber, 1964; Hampel, 1974). The KDE based on a translation invari-
ant, positive semi-definite (PSD) kernel is interpreted as a sample mean in the reproducing kernel
Hilbert space (RKHS) associated with the kernel. Since the sample mean is sensitive to outliers, we
estimate it robustly viaM-estimation, yielding a robust kernel density estimator (RKDE). We de-
scribe a kernelized iteratively re-weighted least squares (KIRWLS) algorithm to efficiently compute
the RKDE, and provide necessary and sufficient conditions for the convergence of KIRWLS to the
RKDE.

We also offer three arguments to support the claim that the RKDE robustly estimates the nominal
density and its level sets. First, we characterize the RKDE by a representer theorem. This theorem
shows that the RKDE is a weighted KDE, and the weights are smaller for more outlying data points.
Second, we study the influence function of the RKDE, and show through an exact formula and
numerical results that the RKDE is less sensitive to contamination by outliers thanthe KDE. Third,
we conduct experiments on several benchmark data sets that demonstratethe improved performance
of the RKDE, relative to competing methods, at both density estimation and anomalydetection.

One motivation for this work is that the traditional kernel density estimator is well-known to
be sensitive to outliers. Even without contamination, the standard KDE tends tooverestimate the
density in regions where the true density is low. This has motivated several authors to consider
variable kernel density estimators (VKDEs), which employ a data-dependent bandwidth at each data
point (Breiman et al., 1977; Abramson, 1982; Terrell and Scott, 1992).This bandwidth is adapted
to be larger where the data are less dense, with the aim of decreasing the aforementioned bias.
Such methods have been applied in outlier detection and computer vision applications (Comaniciu
et al., 2001; Latecki et al., 2007), and are one possible approach to robust nonparametric density
estimation. We compare against these methods in our experimental study.
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Density estimation with positive semi-definite kernels has been studied by several authors. Vap-
nik and Mukherjee (2000) optimize a criterion based on the empirical cumulative distribution func-
tion over the class of weighted KDEs based on a PSD kernel. Shawe-Taylor and Dolia (2007)
provide a refined theoretical treatment of this approach. Song et al. (2008) adopt a different cri-
terion based on Hilbert space embeddings of probability distributions. Our approach is somewhat
similar in that we attempt to match the mean of the empirical distribution in the RKHS, but our
criterion is different. These methods were also not designed with contaminated data in mind.

We show that the standard kernel density estimator can be viewed as the solution to a certain
least squares problem in the RKHS. The use of quadratic criteria in densityestimation has also
been previously developed. The aforementioned work of Song et al. optimizes the norm-squared
in Hilbert space, whereas Kim (1995), Girolami and He (2003), Kim and Scott (2010) and Ma-
hapatruni and Gray (2011) adopt the integrated squared error. Once again, these methods are not
designed for contaminated data.

Previous work combining robust estimation and kernel methods has focused primarily on su-
pervised learning problems.M-estimation applied to kernel regression has been studied by various
authors (Christmann and Steinwart, 2007; Debruyne et al., 2008a,b; Zhuet al., 2008; Wibowo,
2009; Brabanter et al., 2009). Robust surrogate losses for kernel-based classifiers have also been
studied (Xu et al., 2006). In unsupervised learning, a robust way of doing kernel principal com-
ponent analysis, called spherical KPCA, has been proposed, which applies PCA to feature vectors
projected onto a unit sphere around the spatial median in a kernel featurespace (Debruyne et al.,
2010). The kernelized spatial depth was also proposed to estimate depth contours nonparametrically
(Chen et al., 2009). To our knowledge, the RKDE is the first application ofM-estimation ideas in
kernel density estimation.

In Section 2 we propose robust kernel density estimation. In Section 3 we present a representer
theorem for the RKDE. In Section 4 we describe the KIRWLS algorithm and itsconvergence. The
influence function is developed in Section 5, Section 6 describes a straightforward extension to non-
reproducing kernels, and experimental results are reported in Section 7. Conclusions are offered
in Section 8. Section 9 contains proofs of theorems. Matlab code implementing our algorithm is
available atwww.eecs.umich.edu/ ˜ cscott .

2. Robust Kernel Density Estimation

Let X1, . . . ,Xn ∈ R
d be a random sample from a distributionF with a densityf . The kernel density

estimate off , also called the Parzen window estimate, is a nonparametric estimate given by

f̂KDE (x) =
1
n

n

∑
i=1

kσ (x,X i)

wherekσ is a kernel function with bandwidthσ. To ensure that̂fKDE(x) is a density, we assume
the kernel function satisfieskσ( · , ·) ≥ 0 and

∫
kσ (x, ·) dx = 1. We will also assume thatkσ(x,x′)

is translation invariant, in thatkσ(x−z,x′−z) = kσ(x,x′) for all x,x′, andz.
In addition, we require thatkσ be positive semi-definite, which means that the matrix

(kσ(xi ,x j))1≤i, j≤m is positive semi-definite for all positive integersm and allx1, . . . ,xm ∈ R
d. Well-

known examples of kernels satisfying all of the above properties are the Gaussian kernel

kσ(x,x′) =
(

1√
2πσ

)d

exp

(
−‖x−x′‖2

2σ2

)
, (1)
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the multivariate Student kernel

kσ(x,x′) =
(

1√
πσ

)d

· Γ
(
(ν+d)/2

)

Γ(ν/2)
·
(

1+
1
ν
· ‖x−x′‖2

σ2

)− ν+d
2

,

and the Laplacian kernel

kσ(x,x′) =
cd

σd exp

(
−‖x−x′‖

σ

)

wherecd is a constant depending on the dimensiond that ensures
∫

kσ (x, ·) dx = 1 (Scovel et al.,
2010).

Every PSD kernelkσ is associated with a unique Hilbert space of functions called its reproducing
kernel Hilbert space (RKHS) which we will denoteH , andkσ is called the reproducing kernel of
H . For everyx, Φ(x), kσ(·,x) is an element ofH , and therefore so too is the KDE. See Steinwart
and Christmann (2008) for a thorough treatment of PSD kernels and RKHSs. For our purposes,
the critical property ofH is the so-calledreproducing property. It states that for allg∈ H and all
x ∈ R

d, g(x) = 〈Φ(x),g〉H . As a special case, takingg= kσ(·,x′), we obtain

kσ(x,x′) = 〈Φ(x),Φ(x′)〉H
for all x,x′ ∈ R

d. We also note that, by translation invariance, the functionsΦ(x) have constant
norm inH because

‖Φ(x)‖2
H
= 〈Φ(x),Φ(x)〉H = kσ(x,x) = kσ(0,0).

We will denoteτ = ‖Φ(x)‖H .
From this point of view, the KDE can be expressed as

f̂KDE(·) =
1
n

n

∑
i=1

kσ(·,X i)

=
1
n

n

∑
i=1

Φ(X i),

the sample mean of theΦ(X i)’s in H . Equivalently, f̂KDE ∈H is the solution of

min
g∈H

n

∑
i=1

‖Φ(X i)−g‖2
H
.

Being the solution of a least squares problem, the KDE is sensitive to the presence of outliers
among theΦ(X i)’s. To reduce the effect of outliers, we propose to useM-estimation (Huber, 1964)
to find a robust sample mean of theΦ(X i)’s. For a robust loss functionρ(x) on x ≥ 0, the robust
kernel density estimate is defined as

f̂RKDE = argmin
g∈H

n

∑
i=1

ρ
(
‖Φ(X i)−g‖H

)
. (2)

Well-known examples of robust loss functions are Huber’s or Hampel’sρ. Unlike the quadratic loss,
these loss functions have the property thatψ , ρ′ is bounded. Huber’sρ andψ are given by

ρ(x) =

{
x2/2 , 0≤ x≤ a

ax−a2/2 , a< x
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ψ(x) =

{
x , 0≤ x≤ a

a , a< x,
(3)

and Hampel’sρ andψ are

ρ(x) =





x2/2 , 0≤ x< a

ax−a2/2 , a≤ x< b

a(x−c)2/2(b−c)+a(b+c−a)/2 , b≤ x< c

a(b+c−a)/2 , c≤ x

ψ(x) =





x , 0≤ x< a

a , a≤ x< b

a· (c−x)/(c−b) , b≤ x< c

0 , c≤ x.

(4)

The functionsρ(x),ψ(x), andψ(x)/x are plotted in Figure 1, for the quadratic, Huber, and Hampel
losses. Note that whileψ(x)/x is constant for the quadratic loss, for Huber’s or Hampel’s loss,
this function is decreasing inx. This is a desirable property for a robust loss function, which will
be explained later in detail. While our examples and experiments employ Huber’sand Hampel’s
losses, many other losses can be employed.

We will argue below that̂fRKDE is a valid density, having the form∑n
i=1wikσ(·,X i) with weights

wi that are nonnegative and sum to one. To illustrate the estimator, Figure 2 (a)shows a contour
plot of a Gaussian mixture distribution onR2. Figure 2 (b) depicts a contour plot of a KDE based
on a training sample of size 200 from the Gaussian mixture. As we can see in Figure 2 (c) and
(d), when 20 contaminating data points are added, the KDE is significantly altered in low density
regions, while the RKDE is much less affected.

We remark that the definition of the RKDE does not require thatkσ be a reproducing kernel,
only that the functionsΦ(x) = kσ(·,x) belong to a Hilbert space. Indeed, almost all of the results
presented below hold in this more general setting. However, we restrict our attention to reproducing
kernels for two reasons. First, with reproducing kernels, inner products inH can be easily computed
via the kernel, leading to efficient implementation. Second, the reproducing property allows us to
interpret the representer theorem and influence function to infer robustness of the RKDE. With non-
reproducing kernels, these interpretations are less clear. The extension to non-RKHS Hilbert spaces
is discussed in Section 6, with specific examples.

Throughout this paper, we defineϕ(x), ψ(x)/x and consider the following assumptions onρ,
ψ, andϕ:

(A1) ρ is non-decreasing,ρ(0) = 0, andρ(x)/x→ 0 asx→ 0

(A2) ϕ(0), limx→0
ψ(x)

x exists and is finite

(A3) ψ andϕ are continuous

(A4) ψ andϕ are bounded

(A5) ϕ is Lipschitz continuous

which hold for Huber’s and Hampel’s losses, as well as several others.
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Figure 1: The comparison between three differentρ(x), ψ(x), andψ(x)/x: quadratic, Huber’s, and
Hampel’s.

3. Representer Theorem

In this section, we will describe hoŵfRKDE can be expressed as a weighted combination of the
kσ( · ,X i)’s. A formula for the weights explains how a robust sample mean inH translates to a
robust nonparametric density estimate. We also present necessary and sufficient conditions for a
function to be an RKDE. From (2),̂fRKDE = argming∈H J(g), where

J(g) =
1
n

n

∑
i=1

ρ(‖Φ(X i)−g‖H ). (5)
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(b) KDE without outliers
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(c) KDE with outliers
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(d) RKDE with outliers

Figure 2: Contours of a nominal density (a) and kernel density estimates (b-d) along with data
samples from the nominal density (o) and contaminating density (x). 200 pointsare from
the nominal distribution and 20 contaminating points are from a uniform distribution.

First, let us find necessary conditions forg to be a minimizer ofJ. Since the space over which
we are optimizingJ is a Hilbert space, the necessary conditions are characterized throughGateaux
differentials ofJ. Given a vector spaceX and a functionT : X → R, the Gateaux differential ofT
atx∈ X with incrementalh∈ X is defined as

δT(x;h) = lim
α→0

T(x+αh)−T(x)
α

.
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If δT(x0;h) is defined for allh ∈ X , a necessary condition forT to have a minimum atx0 is that
δT(x0;h) = 0 for all h∈ X (Luenberger, 1997). From this optimality principle, we can establish the
following lemma.

Lemma 1 Suppose assumptions (A1) and (A2) are satisfied. Then the Gateaux differential of J at
g∈H with incremental h∈H is

δJ(g;h) =−
〈
V(g),h

〉
H

where V: H →H is given by

V(g) =
1
n

n

∑
i=1

ϕ(‖Φ(X i)−g‖H ) ·
(
Φ(X i)−g

)
.

A necessary condition for g= f̂RKDE is V(g) = 0.

Lemma 1 is used to establish the following representer theorem, so named because f̂RKDE can
be represented as a weighted combination of kernels centered at the data points. Similar results are
known for supervised kernel methods (Schölkopf et al., 2001).

Theorem 2 Suppose assumptions (A1) and (A2) are satisfied. Then,

f̂RKDE(x) =
n

∑
i=1

wikσ(x,X i) (6)

where wi ≥ 0, ∑n
i=1wi = 1. Furthermore,

wi ∝ ϕ(‖Φ(X i)− f̂RKDE‖H ). (7)

It follows that f̂RKDE is a density. The representer theorem also gives the following interpretation
of the RKDE. Ifϕ is decreasing, as is the case for a robust loss, thenwi will be small when‖Φ(X i)−
f̂RKDE‖H is large. Now for anyg∈H ,

‖Φ(X i)−g‖2
H
= 〈Φ(X i)−g,Φ(X i)−g〉H
= ‖Φ(X i)‖2

H
−2〈Φ(X i),g〉H +‖g‖2

H

= τ2−2g(X i)+‖g‖2
H
,

where the last step follows from the reproducing property. Takingg= f̂RKDE, we see thatwi is small
when f̂RKDE(X i) is small. Therefore, the RKDE is robust in the sense that it down-weights outlying
points.

Theorem 2 provides a necessary condition forf̂RKDE to be the minimizer of (5). With an addi-
tional assumption onJ, this condition is also sufficient.

Theorem 3 Suppose that assumptions (A1) and (A2) are satisfied, and J is strictly convex. Then
(6), (7), and∑n

i=1wi = 1 are sufficient forf̂RKDE to be the minimizer of (5).

Since the previous result assumesJ is strictly convex, we give some simple conditions that imply
this property.
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Lemma 4 J is strictly convex provided either of the following conditions is satisfied:

(i) ρ is strictly convex and non-decreasing.

(ii) ρ is convex, strictly increasing, n≥ 3, and K= (kσ(X i ,X j))
n
i, j=1 is positive definite.

The second condition implies thatJ can be strictly convex even for the Huber loss, which is convex
but not strictly convex.

4. KIRWLS Algorithm and Its Convergence

In general, (2) does not have a closed form solution andf̂RKDE has to be found by an iterative
algorithm. Fortunately, the iteratively re-weighted least squares (IRWLS)algorithm used in classical
M-estimation (Huber, 1964) can be extended to a RKHS using thekernel trick. The kernelized
iteratively re-weighted least squares (KIRWLS) algorithm starts with initialw(0)

i ∈ R , i = 1, . . . ,n

such thatw(0)
i ≥ 0 and∑n

i=1w(0)
i = 1, and generates a sequence{ f (k)} by iterating on the following

procedure:

f (k) =
n

∑
i=1

w(k−1)
i Φ(X i),

w(k)
i =

ϕ(‖Φ(X i)− f (k)‖H )

∑n
j=1 ϕ(‖Φ(X j)− f (k)‖H )

.

Intuitively, this procedure is seeking a fixed point of Equations (6) and (7). The computation of
‖Φ(X j)− f (k)‖H can be done by observing

‖Φ(X j)− f (k)‖2
H
=
〈

Φ(X j)− f (k),Φ(X j)− f (k)
〉
H

=
〈
Φ(X j),Φ(X j)

〉
H
−2

〈
Φ(X j), f (k)

〉
H
+
〈

f (k), f (k)
〉
H
.

Since f (k) = ∑n
i=1w(k−1)

i Φ(X i), we have

〈
Φ(X j),Φ(X j)

〉
H

= kσ(X j ,X j)

〈
Φ(X j), f (k)

〉
H

=
n

∑
i=1

w(k−1)
i kσ(X j ,X i)

〈
f (k), f (k)

〉
H

=
n

∑
i=1

n

∑
l=1

w(k−1)
i w(k−1)

l kσ(X i ,X l ).

Recalling thatΦ(x) = kσ(·,x), after thekth iteration

f (k)(x) =
n

∑
i=1

w(k−1)
i kσ (x,X i) .

Therefore, KIRWLS produces a sequence of weighted KDEs. The computational complexity is
O(n2) per iteration. In our experience, the number of iterations needed is typicallywell below 100.
Initialization and termination are discussed in the experimental study below.
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KIRWLS can also be viewed as a kind of optimization transfer/majorize-minimize algorithm
(Lange et al., 2000; Jacobson and Fessler, 2007) with a quadratic surrogate forρ. This perspective
is used in our analysis in Section 9.4, wheref (k) is seen to be the solution of a weighted least squares
problem inH .

The next theorem characterizes the convergence of KIRWLS in terms of{J( f (k))}∞
k=1 and

{ f (k)}∞
k=1.

Theorem 5 Suppose assumptions (A1) - (A3) are satisfied, andϕ(x) is nonincreasing. Let

S =
{

g∈H
∣∣V(g) = 0

}

and { f (k)}∞
k=1 be the sequence produced by the KIRWLS algorithm. Then, J( f (k)) monotonically

decreases at every iteration and converges. Also,S 6= /0 and

‖ f (k)−S‖H , inf
g∈S

‖ f (k)−g‖H → 0

as k→ ∞.

In words, as the number of iterations grows,f (k) becomes arbitrarily close to the set of stationary
points ofJ, pointsg∈H satisfyingδJ(g;h) = 0 ∀h∈H .

Corollary 6 Suppose that the assumptions in Theorem 5 hold and J is strictly convex. Then{ f (k)}∞
k=1

converges tôfRKDE in theH -norm and the supremum norm.

Proof Convergence in theH -norm follows from the previous result because under strict convexity
of J, |S |= 1. Convergence in the supremum norm now follows from the reproducingproperty and
Cauchy-Schwarz because, for anyx,

| f (k)(x)− f̂RKDE(x)|= |〈Φ(x), f (k)− f̂RKDE〉H |
≤ τ‖ f (k)− f̂RKDE‖H .

5. Influence Function for Robust KDE

To quantify the robustness of the RKDE, we study the influence function. First, we recall the
traditional influence function from robust statistics. LetT(F) be an estimator of a scalar parameter
based on a distributionF . As a measure of robustness ofT, the influence function was proposed by
Hampel (1974). The influence function (IF) forT atF is defined as

IF (x′;T,F) = lim
s→0

T((1−s)F +sδx′)−T(F)

s
,

whereδx′ represents a discrete distribution that assigns probability 1 to the pointx′. Basically,
IF (x′;T,F) represents howT(F) changes when the distributionF is contaminated with infinitesimal
probability mass atx′. One robustness measure ofT is whether the corresponding IF is bounded or
not.
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For example, the maximum likelihood estimator for the unknown mean of a Gaussiandistribu-
tion is the sample meanT(F),

T(F) = EF [X] =
∫

xdF(x). (8)

The influence function forT(F) in (8) is

IF (x′;T,F) = lim
s→0

T((1−s)F +sδx′)−T(F)

s
= x′−EF [X].

Since|IF (x′;T,F)| increases without bound asx′ goes to±∞, the estimator is considered to be not
robust.

Now, consider a similar concept for a function estimate. Since the estimate is a function, not a
scalar, we should be able to express the change of the function value at everyx.

Definition 7 (IF for function estimate) Let T(x;F) be a function estimate based on F, evaluated
at x. We define the influence function for T(x;F) as

IF (x,x′;T,F) = lim
s→0

T(x;Fs)−T(x;F)
s

where Fs = (1−s)F +sδx′ .

IF (x,x′;T,F) represents the change of the estimated functionT at x when we add infinitesimal
probability mass atx′ to F . For example, the standard KDE is

T(x;F) = f̂KDE(x;F) =
∫

kσ(x,y)dF(y)

= EF [kσ(x,X)]

whereX ∼ F . In this case, the influence function is

IF (x,x′; f̂KDE,F) = lim
s→0

f̂KDE(x;Fs)− f̂KDE(x;F)

s

= lim
s→0

EFs[kσ(x,X)]−EF [kσ(x,X)]

s

= lim
s→0

−sEF [kσ(x,X)]+sEδx′ [kσ(x,X)]

s
=−EF [kσ(x,X)]+Eδx′ [kσ(x,X)]

=−EF [kσ(x,X)]+kσ(x,x′). (9)

With the empirical distributionFn =
1
n ∑n

i=1 δX i ,

IF (x,x′; f̂KDE,Fn) =−1
n

n

∑
i=1

kσ(x,X i)+kσ(x,x′). (10)

To investigate the influence function of the RKDE, we generalize its definition toa general
distributionµ, writing f̂RKDE( · ;µ) = fµ where

fµ = argmin
g∈H

∫
ρ(‖Φ(x)−g‖H )dµ(x).
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For the robust KDE,T(x,F) = f̂RKDE(x;F) = 〈Φ(x), fF〉H , we have the following characterization
of the influence function. Letq(x) = xψ′(x)−ψ(x).

Theorem 8 Suppose assumptions (A1)-(A5) are satisfied. In addition, assume that fFs → fF as
s→ 0. If ḟF , lims→0

fFs− fF
s exists, then

IF (x,x′; f̂RKDE,F) = ḟF(x)

where ḟF ∈H satisfies
(∫

ϕ(‖Φ(x)− fF‖H )dF

)
· ḟF

+
∫ (〈

ḟF ,Φ(x)− fF
〉
H

‖Φ(x)− fF‖3
H

·q(‖Φ(x)− fF‖H ) ·
(
Φ(x)− fF

))
dF(x)

= (Φ(x′)− fF) ·ϕ(‖Φ(x′)− fF‖H ). (11)

Unfortunately, for Huber or Hampel’sρ, there is no closed form solution foṙfF of (11). How-
ever, if we work withFn instead ofF , we can findḟFn explicitly. Let

1= [1, . . . ,1]T ,

k′ = [kσ(x′,X1), . . . ,kσ(x′,Xn)]
T ,

In be then×n identity matrix,K , (kσ(X i ,X j))
n
i=1, j=1 be the kernel matrix,Q be a diagonal matrix

with Qii = q(‖Φ(X i)− fFn‖H )/‖Φ(X i)− fFn‖3
H

,

γ =
n

∑
i=1

ϕ(‖Φ(X i)− fFn‖H ),

and
w = [w1, . . . ,wn]

T ,

wherew gives the RKDE weights as in (6).

Theorem 9 Suppose assumptions (A1)-(A5) are satisfied. In addition, assume that

• fFn,s → fFn as s→ 0 (satisfied when J is strictly convex)

• the extended kernel matrix K′ based on{X i}n
i=1

⋃{x′} is positive definite.

Then,

IF (x,x′; f̂RKDE,Fn) =
n

∑
i=1

αikσ(x,X i)+α′kσ(x,x′)

where
α′ = n·ϕ(‖Φ(x′)− fFn‖H )/γ

andα = [α1, . . . ,αn]
T is the solution of the following system of linear equations:

{
γIn+(In−1·wT)TQ(In−1·wT)K

}
α

= −nϕ(‖Φ(x′)− fFn‖H )w−α′(In−1·wT)TQ· (In−1·wT) ·k′.
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Figure 3: (a) true density and density estimates. (b) IF as a function ofx whenx′ =−5

Note thatα′ captures the amount by which the density estimator changes nearx′ in response to
contamination atx′. Now α′ is given by

α′ =
ϕ(‖Φ(x′)− fFn‖H )

1
n ∑n

i=1 ϕ(‖Φ(X i)− fFn‖H )
.

For a standard KDE, we haveϕ ≡ 1 andα′ = 1, in agreement with (10). For robustρ, ϕ(‖Φ(x′)−
fFn‖H ) can be viewed as a measure of “inlyingness”, with more inlying points having larger values.
This follows from the discussion just after Theorem 2, which leverages the reproducing property. If
the contaminating pointx′ is less inlying than the averageX i , thenα′ < 1. Thus, the RKDE is less
sensitive to outlying points than the KDE.

As mentioned above, in classical robust statistics, the robustness of an estimator can be inferred
from the boundedness of the corresponding influence function. However, the influence functions
for density estimators are bounded even if‖x′‖ → ∞. Therefore, when we compare the robustness
of density estimates, we compare how close the influence functions are to the zero function.

Simulation results are shown in Figure 3 for a synthetic univariate distribution.Figure 3 (a)
shows the density of the distribution, and three estimates. Figure 3 (b) showsthe corresponding
influence functions. As we can see in (b), for a pointx′ in the tails ofF , the influence functions for
the robust KDEs are overall smaller, in absolute value, than those of the standard KDE (especially
with Hampel’s loss). Additional numerical results are given in Section 7.2.

Finally, it is interesting to note that for any density estimatorf̂ ,

∫
IF (x,x′; f̂ ,F)dx = lim

s→0

∫
f̂ (x;Fs)dx− ∫

f̂ (x;F)dx
s

= 0.

Thusα′ = −∑n
i=1 αi for a robust KDE. This suggests that sincef̂RKDE has a smaller increase atx′

(compared to the KDE), it will also have a smaller decrease (in absolute value) near the training
data. Therefore, the norm ofIF (x,x′; f̂RKDE,Fn), viewed as a function ofx, should be smaller when
x′ is an outlier. We confirm this in our experiments in Section 7.
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6. Generalization to Other Hilbert Spaces

So far, we have focused our attention on PSD kernels and viewed the KDEas an element of the
RKHS associated with the kernel. However, the RKDE can be defined in a more general setting. In
particular, it is only necessary that the functionsΦ(x) = kσ( · ,x) belong to a Hilbert spaceH . Then
one can still obtain all the previous results, that is, Lemmas 1 and 4, Theorems2, 3, 5, 8, and 9,
and Corollary 6 (except convergence in the supremum norm). (For Theorems 8 and 9 it is necessary
to additionally assume that‖Φ(x)‖H is bounded independent ofx.) The only necessary change is
that inner products of the form〈Φ(x),Φ(x′)〉H can no longer be computed askσ(x,x′). Thus,K in
Lemma 4(ii) , k′,K,K′ in Theorem 9, and various terms in the KIRWLS algorithm should now be
computed with the inner product onH .

It is also interesting to note that this generalization gives a representer theorem for non-RKHS
Hilbert spaces. This contrasts with standard approaches to supervisedlearning that minimize an
empirical risk plus regularization term. In those cases, a representer theorem may be more difficult
to obtain when the function class is not an RKHS.

There are some examples of non-RKHS Hilbert spaces where the inner product can still be
computed efficiently. For example, considerH = L2(Rd) and denote

k̃σ(x,x′) = 〈Φ(x),Φ(x′)〉L2(Rd)

=
∫

kσ(z,x)kσ(z,x′)dz.

For the multivariate Gaussian kernel,k̃σ = k√2σ. For the multivariate Cauchy kernel (the multivari-
ate Student kernel withν = 1; see Section 2), it holds thatk̃σ(x,x′) = k2σ(x,x′) (Berry et al., 1996).
For the multivariate Laplacian product kernel,

kσ(x,x′) =
1

(2σ)d exp

{
−‖x−x′‖1

σ

}
,

it is true that

k̃σ(x,x′) =
1

(4σ)d

d

∏
l=1

(
1+

|xl −x′l |
σ

)
exp

{
−‖x−x′‖1

σ

}
.

For kernels without a closed-form expression fork̃σ, the inner product may still be calculated nu-
merically. For radially symmetric kernels this entails a simple one-dimensional table,as k̃σ(x,x′)
depends only on‖x−x′‖, and these values may be tabulated in advance.

As we noted previously, however, we rely on the reproducing propertyto deduce robustness of
the RKDE from the representer theorem and the influence function. For non-RKHS Hilbert spaces,
these arguments are less clear. We have not experimentally investigated non-reproducing kernels,
and so cannot comment on the robustness of RKDEs based on such kernels in practice.

7. Experiments

The experimental setup is described in 7.1, and results are presented in 7.2.

7.1 Experimental Setup

Data, methods, and evaluation are now discussed.
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7.1.1 DATA

We conduct experiments on 15 benchmark data sets (Banana, B. Cancer, Diabetes, F. Solar, Ger-
man, Heart, Image, Ringnorm, Splice, Thyroid, Twonorm, Waveform, Pima Indian, Iris, MNIST),
which were originally used in the task of classification. The data sets are available online: see
http://www.fml.tuebingen.mpg.de/Members/ for the first 12 data sets and the UCI machine learning
repository for the last 3 data sets. There are 100 randomly permuted partitions of each data set into
“training” and “test” sets (20 for Image, Splice, and MNIST).

Given X1, . . . ,Xn ∼ f = (1− p) · f0+ p · f1, our goal is to estimatef0, or the level sets off0.
For each data set with two classes, we take one class as the nominal data from f0 and the other
class as contamination fromf1. For Iris, there are 3 classes and we take one class as nominal data
and the other two as contamination. For MNIST, we choose to use digit 0 as nominal and digit 1
as contamination. For MNIST, the original dimension 784 is reduced to 8 via kernel PCA using a
Gaussian kernel with bandwidth 30. For each data set, the training sample consists ofn0 nominal
data andn1 contaminating points, wheren1 = ε ·n0 for ε = 0, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30.
Note that eachε corresponds to an anomaly proportionp such thatp= ε

1+ε . n0 is always taken to
be the full amount of training data for the nominal class.

7.1.2 METHODS

In our experiments, we compare three density estimators: the standard kernel density estimator
(KDE), variable kernel density estimator (VKDE), and robust kernel density estimator (RKDE)
with Hampel’s loss. For all methods, the Gaussian kernel in (1) is used as thekernel functionkσ and
the kernel bandwidthσ is set as the median distance of a training pointX i to its nearest neighbor.

The VKDE has a variable bandwidth for each data point,

f̂VKDE(x) =
1
n

n

∑
i=1

kσi (x,X i),

and the bandwidthσi is set as

σi = σ ·
(

η
f̂KDE(X i)

)1/2

whereη is the mean of{ f̂KDE(X i)}n
i=1 (Abramson, 1982; Comaniciu et al., 2001). There is another

implementation of the VKDE whereσi is based on the distance to itsk-th nearest neighbor (Breiman
et al., 1977). However, this version did not perform as well and is therefore omitted.

For the RKDE, the parametersa, b, andc in (4) are set as follows. First, we computêfmed,
which is the RKDE obtained withρ = | · |, and setdi = ‖Φ(X i)− f̂med‖H . Then,a is set to be the
median of{di}, b the 75th percentile of{di}, andc the 85th percentile of{di}. After finding these

parameters, we initializew(0)
i such thatf (1) = f̂med and terminate KIRWLS when

|J( f (k+1))−J( f (k))|
J( f (k))

< 10−8.

7.1.3 EVALUATION

We evaluate the performance of the three density estimators in three different settings. First, we use
the influence function to study sensitivity to outliers. Second and third, we compare the methods
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at the tasks of density estimation and anomaly detection, respectively. In each case, an appropriate
performance measure is adopted. These are explained in detail in Section 7.2. To compare a pair of
methods across multiple data sets, we adopt the Wilcoxon signed-rank test (Wilcoxon, 1945). Given
a performance measure, and given a pair of methods andε, we compute the differencehi between
the performance of two density estimators on theith data set. The data sets are ranked 1 through 15
according to their absolute values|hi |, with the largest|hi | corresponding to the rank of 15. LetR1

be the sum of ranks over these data sets where method 1 beats method 2, andlet R2 be the sum of the
ranks for the other data sets. The signed-rank test statisticT , min(R1,R2) and the corresponding
p-value are used to test whether the performances of the two methods are significantly different. For
example, the critical value ofT for the signed rank test is 25 at a significance level of 0.05. Thus, if
T ≤ 25, the two methods are significantly different at the given significance level, and the larger of
R1 andR2 determines the method with better performance.

7.2 Experimental Results

We begin by studying influence functions.

7.2.1 SENSITIVITY USING INFLUENCE FUNCTION

As the first measure of robustness, we compare the influence functions for KDEs and RKDEs,
given in (10) and Theorem 9, respectively. To our knowledge, thereis no formula for the influence
function of VKDEs, and therefore VKDEs are excluded in the comparison. We examineα(x′) =
IF (x′,x′;T,Fn) and

β(x′) =
(∫ (

IF (x,x′;T,Fn)
)2

dx
)1/2

.

In words,α(x′) reflects the change of the density estimate value at an added pointx′ andβ(x′) is an
overall impact ofx′ on the density estimate overRd.

In this experiment,ε is equal to 0, that is, the density estimators are learned from a pure nominal
sample. Then, we take contaminating points from the test sample, each of whichserves as anx′.
This gives us multipleα(x′)’s andβ(x′)’s. The performance measures are the medians of{α(x′)}
and{β(x′)} (smaller means better performance). The results using signed rank statisticsare shown
in Table 1. The results clearly states that for all data sets, RKDEs are less affected by outliers than
KDEs.

7.2.2 KULLBACK -LEIBLER (KL) DIVERGENCE

Second, we present the Kullback-Leibler (KL) divergence between density estimateŝf and f0,

DKL( f̂ || f0) =
∫

f̂ (x) log
f̂ (x)
f0(x)

dx.

This KL divergence is large whenever̂f estimatesf0 to have mass where it does not. For contami-
nation characterized by properties(a), (b), and(c) in the Introduction, we expect this performance
measure to capture the robustness of a density estimator.

The computation ofDKL is done as follows. Since we do not know the nominalf0, it is estimated
as f̃0, a KDE based on a separate nominal sample, obtained from the test data foreach benchmark
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method 1 method 2 α(x′) β(x′)

RKDE KDE

R1 120 120
R2 0 0
T 0 0

p-value 0.00 0.00

Table 1: The signed-rank statistics andp-values of the Wilcoxon signed-rank test using the medians
of {α(x′)} and{β(x′)} as a performance measure. IfR1 is larger thanR2, method 1 is
better than method 2.

data set. Then, the integral is approximated by the sample mean, that is,

DKL( f̂ || f0)≈
1
n′

n′

∑
i=1

log
f̂ (x′i)

f̃0(x′i)

where{x′i}n′
i=1 is an i.i.d sample from the estimated densityf̂ with n′ = 2n= 2(n0+n1). Note that

the estimated KL divergence can have an infinite value whenf̃0(y) = 0 (to machine precision) and
f̂ (y) > 0 for somey ∈ R

d. The averaged KL divergence over the permutations are used as the
performance measure (smaller means better performance). In Table 2, therank of the three methods
are shown for each data set andε.

Table 3 summarizes the results using the Wilcoxon signed-rank test. When comparing RKDEs
and KDEs, the results show that KDEs have smaller KL divergence than RKDEs withε = 0. As ε
increases, however, RKDEs estimatef0 more accurately than KDEs. The results also demonstrate
that VKDEs are the worst in the sense of KL divergence. Note that VKDEs place a total mass of
1/n at allX i , whereas the RKDE will place a masswi < 1/n at outlying points.

Since KL divergence is not symmetric, we also compute KL divergence between f0 and f̂ ,

DKL( f0 || f̂ ) =
∫

f0(x) log
f0(x)

f̂ (x)
dx

=
∫

f0(x) log f0(x)dx−
∫

f0(x) log f̂ (x)dx

This KL divergence is large whenever̂f estimatesf0 not to have mass where it does.
Since f0 is the same when comparing different estimatef̂ , we only have to compare the second

term, which is approximated as

−
∫

f0(x) log f̂ (x)dx ≈− 1
n′′

n′′

∑
i=1

log f̂ (x′′i ),

where{x′′i }n′′
i=1 is a separate nominal sample, obtained from the test data. Table 4 and 5 showthat

with this KL divergence as performance measure, VKDE performs best for almost all data sets and
ε. When comparing RKDE and KDE based on Wilcoxon signed-rank test,T has a large value for
everyε which makes it inconclusive whether one method is better than the other.
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Data Set ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Banana (3,1,2) (3,1,2) (3,1,2) (3,1,2) (3,1,2) (3,1,2) (3,1,2)
B. Cancer (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Diabetes (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3)
F. Solar (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3)
German (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Heart (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Image (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)

Ringnorm (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Splice (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)

Thyroid (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Twonorm (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Waveform (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3)

Pima Indian (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3)
Iris (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)

MNIST (3,1,2) (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3)

Table 2: The ranks of (RKDE, KDE, VKDE) usingDKL( f̂ || f0) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKDE worst.

7.2.3 ANOMALY DETECTION

In this experiment, we apply the density estimators in anomaly detection problems. If we had a pure
sample fromf0, we would estimatef0 and use{x : f̂0(x)> λ} as a detector. For eachλ, we could get
a false negative and false positive probability using test data. By varyingλ, we would then obtain a
receiver operating characteristic (ROC) and area under the curve (AUC). However, since we have a
contaminated sample, we have to estimatef0 robustly. Robustness can be checked by comparing the
AUC of the anomaly detectors, where the density estimates are based on the contaminated training
data (higher AUC means better performance).

Examples of the ROCs are shown in Figure 4. The RKDE provides better detection probabilities,
especially at low false alarm rates. This results in higher AUC. For each pair of methods and each
ε, R1, R2, T and p-values are shown in Table 7. The results indicate that RKDEs are significantly
better than KDEs whenε ≥ 0.20 with significance level 0.05. RKDEs are also better than VKDEs
whenε ≥ 0.15 but the difference is not significant. We also note that we have also evaluated the
kernelized spatial depth (KSD) (Chen et al., 2009) in this setting. While this method does not yield a
density estimate, it does aim to estimate density contours robustly. We found thatthe KSD performs
worse in terms of AUC that either the RKDE or KDE, so those results are omitted (Kim and Scott,
2011).
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method 1 method 2
ε

0.00 0.05 0.10 0.15 0.20 0.25 0.30

RKDE KDE

R1 26 67 78 83 94 101 103
R2 94 53 42 37 26 19 17
T 26 53 42 37 26 19 17

p-value 0.06 0.72 0.33 0.21 0.06 0.02 0.01

RKDE VKDE

R1 104 117 117 117 117 119 119
R2 16 3 3 3 3 1 1
T 16 3 3 3 3 1 1

p-value 0.01 0.00 0.00 0.00 0.00 0.00 0.00

VKDE KDE

R1 0 0 0 0 0 0 0
R2 120 120 120 120 120 120 120
T 0 0 0 0 0 0 0

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: The signed-rank statistics andp-values of the Wilcoxon signed-rank test usingDKL( f̂ || f0)
as a performance measure. IfR1 is larger thanR2, method 1 is better than method 2.
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Figure 4: Examples of ROCs.

8. Conclusions

When kernel density estimators employ a smoothing kernel that is also a PSD kernel, they may
be viewed asM-estimators in the RKHS associated with the kernel. While the traditional KDE
corresponds to the quadratic loss, the RKDE employs a robust loss to achieve robustness to con-
tamination of the training sample. The RKDE is a weighted kernel density estimate, where smaller
weights are given to more outlying data points. These weights can be computedefficiently using
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Data Set ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Banana (3,1,2) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)
B. Cancer (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)
Diabetes (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)
F. Solar (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
German (3,2,1) (3,2,1) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Heart (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Image (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)

Ringnorm (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Splice (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)

Thyroid (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Twonorm (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Waveform (3,2,1) (3,2,1) (3,2,1) (3,2,1) (2,3,1) (2,3,1) (2,3,1)

Pima Indian (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)
Iris (3,2,1) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)

MNIST (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)

Table 4: The ranks of (RKDE, KDE, VKDE) usingDKL( f0 || f̂ ) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKDE worst.

a kernelized iteratively re-weighted least squares algorithm. The decreased sensitivity of RKDEs
to contamination is further attested by the influence function, as well as experiments on anomaly
detection and density estimation problems.

Robust kernel density estimators are nonparametric, making no parametric assumptions on the
data generating distributions. However, their success is still contingent oncertain conditions being
satisfied. Obviously, the percentage of contaminating data must be less than 50%; our experiments
examine contamination up to around 25%. In addition, the contaminating distributionmust be outly-
ing with respect to the nominal distribution. Furthermore, the anomalous component should not be
too concentrated, otherwise it may look like a mode of the nominal component. Such assumptions
seem necessary given the unsupervised nature of the problem, and are implicit in our interpretation
of the representer theorem and influence functions.

Although our focus has been on density estimation, in many applications the ultimategoal is
not to estimate a density, but rather to estimate decision regions. Our methodology is immediately
applicable to such situations, as evidenced by our experiments on anomaly detection. It is only
necessary that the kernel be PSD here; the assumption that the kernel be nonnegative and integrate
to one can clearly be dropped. This allows for the use of more general kernels, such as polynomial
kernels, or kernels on non-Euclidean domains such as strings and trees. The learning problem here
could be described as one-class classification with contaminated data.

In future work it would be interesting to investigate asymptotics, the bias-variance trade-off,
and the efficiency-robustness trade-off of robust kernel density estimators, as well as the impact of
different losses and kernels.
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method 1 method 2
ε

0.00 0.05 0.10 0.15 0.20 0.25 0.30

RKDE KDE

R1 47 52 55 58 64 65 68
R2 73 68 65 62 56 55 52
T 47 52 55 58 56 55 52

p-value 0.49 0.68 0.80 0.93 0.85 0.80 0.68

RKDE VKDE

R1 0 0 0 0 0 0 0
R2 120 120 120 120 120 120 120
T 0 0 0 0 0 0 0

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VKDE KDE

R1 119 120 120 120 120 120 120
R2 1 0 0 0 0 0 0
T 1 0 0 0 0 0 0

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: The signed-rank statistics andp-values of the Wilcoxon signed-rank test usingDKL( f0 || f̂ )
divergence as a performance measure. IfR1 is larger thanR2, method 1 is better than
method 2.

9. Proofs

We begin with three lemmas and proofs. The first lemma will be used in the proofsof Lemma 11
and Theorem 9, the second one in the proof of Lemma 4, and the third one in the proof of Theorem
5.

Lemma 10 Let z1, . . . ,zm be distinct points inRd. If K = (k(zi ,z j))
n
i, j=1 is positive definite, then

Φ(zi) = k( · ,zi)’s are linearly independent.

Proof ∑m
i=1 αiΦ(zi) = 0 implies

0=

∥∥∥∥
m

∑
i=1

αiΦ(zi)

∥∥∥∥
2

H

=

〈 m

∑
i=1

αiΦ(zi),
m

∑
j=1

α jΦ(z j)

〉

H

=
m

∑
i=1

m

∑
j=1

αiα jk(zi ,z j)

and from positive definiteness ofK, α1 = · · ·= αm = 0.

Lemma 11 LetH be a RKHS associated with a kernel k, andx1, x2, andx3 be distinct points in
R

d. Assume that K= (k(xi ,x j))
3
i, j=1 is positive definite. For any g,h∈H with g 6= h, Φ(xi)−g and

Φ(xi)−h are linearly independent for some i∈ {1,2,3}.
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Data Set ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Banana (3,2,1) (3,2,1) (3,2,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
B. Cancer (2,1,3) (2,1,3) (2,1,3) (1,3,2) (1,3,2) (1,3,2) (2,3,1)
Diabetes (3,1,2) (3,2,1) (2,3,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
F. Solar (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (3,1,2)
German (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3)
Heart (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Image (3,1,2) (3,1,2) (3,1,2) (2,3,1) (2,3,1) (1,3,2) (1,3,2)

Ringnorm (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Splice (1,2,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3)

Thyroid (3,1,2) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Twonorm (3,2,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
Waveform (2,3,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2)

Pima Indian (3,1,2) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (1,3,2) (1,3,2)
Iris (3,1,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2)

MNIST (3,1,2) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)

Table 6: The ranks of (RKDE, KDE, VKDE) usingDKL( f0 || f̂ ) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKDE worst.

method 1 method 2
ε

0.00 0.05 0.10 0.15 0.20 0.25 0.30

RKDE KDE

R1 26 46 67 90 95 96 99
R2 94 74 53 30 25 24 21
T 26 46 53 30 25 24 21

p-value 0.06 0.45 0.72 0.09 0.05 0.04 0.03

RKDE VKDE

R1 33 49 58 75 80 90 86
R2 87 71 62 45 40 30 34
T 33 49 58 45 40 30 34

p-value 0.14 0.56 0.93 0.42 0.28 0.09 0.15

VKDE KDE

R1 38 70 79 91 95 96 99
R2 82 50 41 29 25 24 21
T 38 50 41 29 25 24 21

p-value 0.23 0.60 0.30 0.08 0.05 0.04 0.03

Table 7: The signed-rank statistics of the Wilcoxon signed-rank test usingAUC as a performance
measure. IfR1 is larger thanR2, method 1 is better than method 2.

Proof We will prove the lemma by contradiction. SupposeΦ(xi)− g andΦ(xi)− h are linearly
dependent for alli = 1,2,3. Then, there exists(αi ,βi) 6= (0,0) for i = 1,2,3 such that
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α1(Φ(x1)−g)+β1(Φ(x1)−h) = 0 (12)

α2(Φ(x2)−g)+β2(Φ(x2)−h) = 0 (13)

α3(Φ(x3)−g)+β3(Φ(x3)−h) = 0. (14)

Note thatαi +βi 6= 0 sinceg 6= h.
First consider the caseα2 = 0. This givesh= Φ(x2), andα1 6= 0 andα3 6= 0. Then, (12) and

(13) simplify to

g=
α1+β1

α1
Φ(x1)−

β1

α1
Φ(x2),

g=
α3+β3

α3
Φ(x3)−

β3

α3
Φ(x2),

respectively. This is contradiction becauseΦ(x1), Φ(x2), andΦ(x3) are linearly independent by
Lemma 10 and

α1+β1

α1
Φ(x1)+

(
β3

α3
− β1

α1

)
Φ(x2)−

α3+β3

α3
Φ(x3) = 0

where(α1+β1)/α1 6= 0.
Now consider the case whereα2 6= 0. Subtracting (13) multiplied byα1 from (12) multiplied

by α2 gives
(α1β2−α2β1)h=−α2(α1+β1)Φ(x1)+α1(α2+β2)Φ(x2).

In the above equationα1β2−α2β1 6= 0 because this impliesα2(α1+β1) = 0 andα1(α2+β2) = 0,
which, in turn, impliesα2 = 0. Therefore,h can be expressed ash= λ1Φ(x1)+λ2Φ(x2) where

λ1 =− α2(α1+β1)

α1β2−α2β1
, λ2 =

α1(α2+β2)

α1β2−α2β1
.

Similarly, from (13) and (14),h= λ3Φ(x2)+λ4Φ(x3) where

λ3 =− α3(α2+β2)

α2β3−α3β2
, λ4 =

α2(α3+β3)

α2β3−α3β2
.

Therefore, we haveh= λ1Φ(x1)+λ2Φ(x2) = λ3Φ(x2)+λ4Φ(x3). Again, from the linear indepen-
dence ofΦ(x1), Φ(x2), andΦ(x3), we haveλ1 = 0, λ2 = λ3, λ4 = 0. However,λ1 = 0 leads to
α2 = 0.

ThereforeΦ(xi)−g andΦ(xi)−h are linearly independent for somei ∈ {1,2,3}.

Lemma 12 GivenX1, . . . ,Xn, letDn ⊂H be defined as

Dn =

{
g

∣∣∣∣g=
n

∑
i=1

wi ·Φ(X i), wi ≥ 0,
n

∑
i=1

wi = 1

}

ThenDn is compact.
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Proof Define

A=

{
(w1, . . . ,wn) ∈ R

n

∣∣∣∣wi ≥ 0,
n

∑
i=1

wi = 1

}
,

and a mappingW

W : (w1, . . . ,wn) ∈ A→
n

∑
i=1

wi ·Φ(X i) ∈H .

Note thatA is compact,W is continuous, andDn is the image ofA underW. Since the continuous
image of a compact space is also compact (Munkres, 2000),Dn is compact.

9.1 Proof of Lemma 1

We begin by calculating the Gateaux differential ofJ. We consider the two cases:Φ(x)−(g+αh)=
0 andΦ(x)− (g+αh) 6= 0.

For Φ(x)− (g+αh) 6= 0,

∂
∂α

ρ
(
‖Φ(x)− (g+αh)‖H

)

= ψ
(
‖Φ(x)− (g+αh)‖H

)
· ∂

∂α
‖Φ(x)− (g+αh)‖H

= ψ
(
‖Φ(x)− (g+αh)‖H

)
· ∂

∂α

√
‖Φ(x)− (g+αh)‖2

H

= ψ
(
‖Φ(x)− (g+αh)‖H

)
·

∂
∂α‖Φ(x)− (g+αh)‖2

H

2
√
‖Φ(x)− (g+αh)‖2

H

=
ψ
(
‖Φ(x)− (g+αh)‖H

)

2‖Φ(x)− (g+αh)‖H
· ∂

∂α

(
‖Φ(x)−g‖2

H
−2

〈
Φ(x)−g,αh

〉
H
+α2‖h‖2

H

)

=
ψ
(
‖Φ(x)− (g+αh)‖H

)

‖Φ(x)− (g+αh)‖H
·
(
−
〈
Φ(x)−g,h

〉
H
+α‖h‖2

H

)

= ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
. (15)
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For Φ(x)− (g+αh) = 0,

∂
∂α

ρ
(
‖Φ(x)− (g+αh)‖H

)

= lim
δ→0

ρ
(
‖Φ(x)− (g+(α+δ)h)‖H

)
−ρ

(
‖Φ(x)− (g+αh)‖H

)

δ

= lim
δ→0

ρ
(
‖δh‖H

)
−ρ

(
0
)

δ

= lim
δ→0

ρ
(
δ‖h‖H

)

δ

=

{
limδ→0

ρ(0)
δ , h= 0

limδ→0
ρ(δ‖h‖H )

δ‖h‖H · ‖h‖H , h 6= 0

= 0

= ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
(16)

where the second to the last equality comes from (A1) and the last equality comes from the facts
thatΦ(x)− (g+αh) = 0 andϕ(0) is well-defined by (A2).

From (15) and (16), we can conclude that for anyg, h∈H , andx ∈ R
d,

∂
∂α

ρ
(
‖Φ(x)− (g+αh)‖H

)

= ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
(17)

Therefore,

δJ(g;h) =
∂

∂α
J(g+αh)

∣∣
α=0

=
∂

∂α

(
1
n

n

∑
i=1

ρ
(
‖Φ(X i)− (g+αh)‖H

))∣∣∣∣
α=0

=
1
n

n

∑
i=1

∂
∂α

ρ
(
‖Φ(X i)− (g+αh)‖H

)∣∣∣∣
α=0

=
1
n

n

∑
i=1

ϕ
(
‖Φ(X i)− (g+αh)‖H

)
·
(
−
〈
Φ(X i)− (g+αh),h

〉
H

)∣∣∣∣
α=0

= −1
n

n

∑
i=1

ϕ
(
‖Φ(X i)−g‖H

)
·
〈
Φ(X i)−g,h

〉
H

= −
〈

1
n

n

∑
i=1

ϕ
(
‖Φ(X i)−g‖H

)
·
(
Φ(X i)−g

)
,h

〉

H

= −
〈
V(g),h

〉
H
.

The necessary condition forg to be a minimizer ofJ, that is,g = f̂RKDE, is thatδJ(g;h) =
0, ∀h∈H , which leads toV(g) = 0.
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9.2 Proof of Theorem 2

From Lemma 1,V( f̂RKDE) = 0, that is,

1
n

n

∑
i=1

ϕ(‖Φ(X i)− f̂RKDE‖H ) · (Φ(X i)− f̂RKDE) = 0.

Solving for f̂RKDE, we havef̂RKDE = ∑n
i=1wiΦ(X i) where

wi =

( n

∑
j=1

ϕ(‖Φ(X j)− f̂RKDE‖H )

)−1

·ϕ(‖Φ(X i)− f̂RKDE‖H ).

Sinceρ is non-decreasing,wi ≥ 0. Clearly∑n
i=1wi = 1

9.3 Proof of Lemma 4

J is strictly convex onH if for any 0< λ < 1, andg,h∈H with g 6= h

J(λg+(1−λ)h)< λJ(g)+(1−λ)J(h).

Note that

J(λg+(1−λ)h) =
1
n

n

∑
i=1

ρ
(
‖Φ(X i)−λg− (1−λ)h‖H

)

=
1
n

n

∑
i=1

ρ
(
‖λ(Φ(X i)−g)+(1−λ)(Φ(X i)−h)‖H

)

≤ 1
n

n

∑
i=1

ρ
(
λ‖Φ(X i)−g‖H +(1−λ)‖Φ(X i)−h‖H

)

≤ 1
n

n

∑
i=1

λρ
(
‖Φ(X i)−g‖H

)
+(1−λ)ρ

(
‖Φ(X i)−h‖H

)

= λJ(g)+(1−λ)J(h).

The first inequality comes from the fact thatρ is non-decreasing and

‖λ(Φ(X i)−g)+(1−λ)(Φ(X i)−h)‖H ≤ λ‖Φ(X i)−g‖H +(1−λ)‖Φ(X i)−h‖H ,

and the second inequality comes from the convexity ofρ.
Under condition(i), ρ is strictly convex and thus the second inequality is strict, implyingJ is

strictly convex. Under condition(ii) , we will show that the first inequality is strict using proof by
contradiction. Suppose the first inequality holds with equality. Sinceρ is strictly increasing, this
can happen only if

‖λ(Φ(X i)−g)+(1−λ)(Φ(X i)−h)‖H = λ‖Φ(X i)−g‖H +(1−λ)‖Φ(X i)−h‖H ,

for i = 1, . . . ,n. Equivalently, it can happen only if(Φ(X i)−g) and(Φ(X j)−h) are linearly depen-
dent for alli = 1, . . . ,n. However, fromn≥ 3 and positive definiteness ofK, there exist three distinct
X i ’s, sayZ1, Z2, andZ3 with positive definiteK′ = (kσ(Z i ,Z j))

3
i, j=1. By Lemma 11, it must be the

case that for somei ∈ {1,2,3}, (Φ(Z i)−g) and(Φ(Z i)−h) are linearly independent. Therefore,
the inequality is strict, and thusJ is strictly convex.
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9.4 Proof of Theorem 5

First, we will prove the monotone decreasing property ofJ( f (k)). Givenr ∈ R, define

u(x; r) = ρ(r)− 1
2

rψ(r)+
1
2

ϕ(r)x2.

If ϕ is nonincreasing, thenu is a surrogate function ofρ, having the following property (Huber,
1981):

u(r; r) = ρ(r) (18)

u(x; r)≥ ρ(x), ∀x. (19)

Define

Q(g; f (k)) =
1
n

n

∑
i=1

u
(
‖Φ(X i)−g‖H ,‖Φ(X i)− f (k)‖H

)
.

Note that sinceψ andϕ are continuous,Q( · ; ·) is continuous in both arguments.
From (18) and (19), we have

Q( f (k); f (k)) =
1
n

n

∑
i=1

u
(
‖Φ(X i)− f (k)‖H ,‖Φ(X i)− f (k)‖H

)

=
1
n

n

∑
i=1

ρ(‖Φ(X i)− f (k)‖H )

= J( f (k)) (20)

and

Q(g; f (k)) =
1
n

n

∑
i=1

u
(
‖Φ(X i)−g‖H ,‖Φ(X i)− f (k)‖H

)

≥ 1
n

n

∑
i=1

ρ
(
‖Φ(X i)−g‖H )

= J(g), ∀g∈H (21)

The next iteratef (k+1) is the minimizer ofQ(g; f (k)) since

f (k+1) =
n

∑
i=1

w(k)
i Φ(X i)

=
n

∑
i=1

ϕ(‖Φ(X i)− f (k)‖H )

∑n
j=1 ϕ(‖Φ(X j)− f (k)‖H )

Φ(X i)

= argmin
g∈H

n

∑
i=1

ϕ(‖Φ(X i)− f (k)‖H ) · ‖Φ(X i)−g‖2
H

= argmin
g∈H

Q(g; f (k)) (22)

From (20), (21), and (22),

J( f (k)) = Q( f (k); f (k))≥ Q( f (k+1); f (k))≥ J( f (k+1))
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and thusJ( f (k)) monotonically decreases at every iteration. Since{J( f (k))}∞
k=1 is bounded below

by 0, it converges.
Next, we will prove that every limit pointf ∗ of { f (k)}∞

k=1 belongs toS . Since the sequence
{ f (k)}∞

k=1 lies in the compact setDn (see Theorem 2 and Lemma 12), it has a convergent subse-
quence{ f (kl )}∞

l=1. Let f ∗ be the limit of{ f (kl )}∞
l=1. Again, from (20), (21), and (22),

Q( f (kl+1); f (kl+1)) = J( f (kl+1))

≤ J( f (kl+1))

≤ Q( f (kl+1); f (kl ))

≤ Q(g; f (kl )) ,∀g∈H ,

where the first inequality comes from the monotone decreasing property ofJ( f (k)). By taking the
limit on the both side of the above inequality, we have

Q( f ∗; f ∗)≤ Q(g; f ∗) ,∀g∈H .

Therefore,

f ∗ = argmin
g∈H

Q(g; f ∗)

=
n

∑
i=1

ϕ(‖Φ(X i)− f ∗‖H )

∑n
j=1 ϕ(‖Φ(X j)− f ∗‖H )

Φ(X i)

and thus

n

∑
i=1

ϕ(‖Φ(X i)− f ∗‖H ) · (Φ(X i)− f ∗) = 0.

This implies f ∗ ∈ S .
Now we will prove‖ f (k)−S‖H → 0 by contradiction. Suppose infg∈S ‖ f (k)−g‖H 9 0. Then,

there existsε > 0 such that∀K ∈N, ∃k> K with infg∈S ‖ f (k)−g‖H ≥ ε. Thus, we can construct an
increasing sequence of indices{kl}∞

l=1 such that infg∈S ‖ f (kl )−g‖H ≥ ε for all l = 1,2, . . . . Since
{ f (kl )}∞

l=1 lies in the compact setDn, it has a subsequence converging to somef †, and we can
choosej such that‖ f (k j )− f †‖H < ε/2. Sincef † is also a limit point of{ f (k)}∞

k=1, f † ∈ S . This is
a contradiction because

ε ≤ inf
g∈S

‖ f (k j )−g‖H ≤ ‖ f (k j )− f †‖H ≤ ε/2.

9.5 Proof of Theorem 8

Since the RKDE is given aŝfRKDE(x;F) = fF(x), the influence function for the RKDE is

IF (x,x′; f̂RKDE,F) = lim
s→0

f̂RKDE(x;Fs)− f̂RKDE(x;F)
s

= lim
s→0

fFs(x)− fF(x)
s
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and thus we need to finḋfF , lims→0
fFs− fF

s .

As we generalize the definition of RKDE from̂fRKDE to fF , the necessary conditionV( f̂RKDE)
also generalizes. However, a few things must be taken care of since we are dealing with integral
instead of summation. Supposeψ andϕ are bounded byB′ andB′′, respectively. Given a probability
measureµ, define

Jµ(g) =
∫

ρ(‖Φ(x)−g‖H )dµ(x). (23)

From (17),

δJµ(g;h) =
∂

∂α
Jµ(g+αh)

∣∣
α=0

=
∂

∂α

∫
ρ
(
‖Φ(x)− (g+αh)‖H

)
dµ(x)

∣∣∣∣
α=0

=
∫ ∂

∂α
ρ
(
‖Φ(x)− (g+αh)‖H

)
dµ(x)

∣∣∣∣
α=0

=
∫

ϕ
(
‖Φ(x)− (g+αh)‖H

)
·
(
−
〈
Φ(x)− (g+αh),h

〉
H

)
dµ(x)

∣∣∣∣
α=0

= −
∫

ϕ
(
‖Φ(x)−g‖H

)
·
〈
Φ(x)−g,h

〉
H

dµ(x)

= −
∫ 〈

ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)
,h

〉

H

dµ(x).

The exchange of differential and integral is valid (Lang, 1993) since for any fixedg,h ∈ H , and
α ∈ (−1,1)

∣∣∣∣
∂

∂α
ρ
(
‖Φ(x)− (g+αh)‖H

)∣∣∣∣
= ϕ

(
‖Φ(x)− (g+αh)‖

)
·
∣∣−

〈
Φ(x)− (g+αh),h

〉
H

∣∣
≤ B′′ · ‖Φ(x)− (g+αh)‖ · ‖h‖H
≤ B′′ ·

(
‖Φ(x)‖H +‖g‖H +‖h‖H

)
· ‖h‖H

≤ B′′ ·
(
τ+‖g‖H +‖h‖H

)
· ‖h‖H < ∞.

Sinceϕ(‖Φ(x)−g‖H ) ·
(
Φ(x)−g

)
is strongly integrable, that is,

∫ ∥∥ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)∥∥
H

dµ(x)≤ B′ < ∞,

its Bochner-integral (Berlinet and Thomas-Agnan, 2004)

Vµ(g),
∫

ϕ(‖Φ(x)−g‖H ) · (Φ(x)−g)dµ(x)

is well-defined. Therefore, we have

δJµ(g;h) =−
〈∫

ϕ
(
‖Φ(x)−g‖H

)
·
(
Φ(x)−g

)
dµ(x),h

〉

H

=−
〈
Vµ(g),h

〉
H
.
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andVµ( fµ) = 0.

From the above condition forfFs, we have

0=VFs( fFs)

= (1−s) ·VF( fFs)+sVδx′ ( fFs), ∀s∈ [0,1)

Therefore,

0= lim
s→0

(1−s) ·VF( fFs)+ lim
s→0

s·Vδx′ ( fFs)

= lim
s→0

VF( fFs).

Then,

0= lim
s→0

1
s

(
VFs( fFs)−VF( fF)

)

= lim
s→0

1
s

(
(1−s)VF( fFs)+sVδx′ ( fFs)−VF( fF)

)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
− lim

s→0
VF( fFs)+ lim

s→0
Vδx′ ( fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ lim

s→0
Vδx′ ( fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ lim

s→0
ϕ(‖Φ(x′)− fFs‖) · (Φ(x′)− fFs)

= lim
s→0

1
s

(
VF( fFs)−VF( fF)

)
+ϕ(‖Φ(x′)− fF‖) · (Φ(x′)− fF). (24)

where the last equality comes from the facts thatfFs → fF and continuity ofϕ.

Let U denote the mappingµ 7→ fµ. Then,

ḟF , lim
s→0

fFs − fF
s

= lim
s→0

U(Fs)−U(F)
s

= lim
s→0

U
(
(1−s)F +sδx′

)
−U(F)

s

= lim
s→0

U
(
F +s(δx′ −F)

)
−U(F)

s
= δU(F ;δx′ −F) (25)
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whereδU(P;Q) is the Gateaux differential ofU atP with incrementQ. The first term in (24) is

lim
s→0

1
s

(
VF

(
fFs

)
−VF

(
fF
))

= lim
s→0

1
s

(
VF

(
U(Fs)

)
−VF

(
U(F)

))

= lim
s→0

1
s

(
(VF ◦U)

(
Fs)− (VF ◦U)(F)

)

= lim
s→0

1
s

(
(VF ◦U)

(
F +s(δx′ −F)

)
− (VF ◦U)(F)

)

= δ(VF ◦U)(F;δx′ −F)

= δVF
(
U(F);δU(F;δx′ −F)

)

= δVF
(

fF ; ḟF
)

(26)

where we apply the chain rule of Gateaux differential,δ(G◦H)(u;x) = δG(H(u);δH(u;x)), in the
second to the last equality. AlthougḣfF is technically not a Gateaux differential since the space of
probability distributions is not a vector space, the chain rule still applies.

Thus, we only need to find the Gateaux differential ofVF . Forg,h∈H

δVF(g;h) = lim
s→0

1
s

(
VF(g+s·h)−VF(g)

)

= lim
s→0

1
s

(∫
ϕ(‖Φ(x)−g−s·h‖H ) · (Φ(x)−g−s·h)dF(x)

−
∫

ϕ(‖Φ(x)−g‖H ) · (Φ(x)−g)dF(x)
)

= lim
s→0

1
s

∫ (
ϕ(‖Φ(x)−g−s·h‖H )−ϕ(‖Φ(x)−g‖H )

)
· (Φ(x)−g)dF(x)

− lim
s→0

1
s

∫ (
ϕ(‖Φ(x)−g−s·h‖H ) ·s·h

)
dF(x)

=
∫

lim
s→0

1
s

(
ϕ(‖Φ(x)−g−s·h‖H )−ϕ(‖Φ(x)−g‖H )

)
· (Φ(x)−g)dF(x)

−h·
∫

lim
s→0

ϕ(‖Φ(x)−g−s·h‖H )dF(x)

= −
∫ (

ψ′(‖Φ(x)−g‖H ) · ‖Φ(x)−g‖H −ψ(‖Φ(x)−g‖H )

‖Φ(x)−g‖2
H

· 〈h,Φ(x)−g〉H
‖Φ(x)−g‖H

)

·
(
Φ(x)−g

)
dF(x)

−h·
∫

ϕ(‖Φ(x)−g‖H )dF(x) (27)

where in the last equality, we use the fact

∂
∂s

ϕ(‖Φ(x)−g−s·h‖H ) = ϕ′(‖Φ(x)−g−s·h‖H ) · 〈Φ(x)−g−s·h,h〉H
‖Φ(x)−g−s·h‖H
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and

ϕ′(x) =
d
dx

ψ(x)
x

=
ψ′(x)x−ψ(x)

x2 .

The exchange of limit and integral is valid due to the dominated convergence theorem since under
the assumption thatϕ is bounded and Lipschitz continuous with Lipschitz constantL,

∣∣ϕ(‖Φ(x)−g−s·h‖)
∣∣< ∞, ∀x

and
∥∥∥∥

1
s

(
ϕ(‖Φ(x)−g−s·h‖H )−ϕ(‖Φ(x)−g‖H )

)
·
(
Φ(x)−g

)∥∥∥∥
H

=
1
s

∣∣ϕ(‖Φ(x)−g−s·h‖H )−ϕ(‖Φ(x)−g‖H )
∣∣ · ‖Φ(x)−g‖H

≤ 1
s
L · ‖s·h‖H ·

(
‖Φ(x)‖H +‖g‖H

)

≤ L · ‖h‖H ·
(
‖Φ(x)‖H +‖g‖H

)
< ∞, ∀x.

By combining (24), (25), (26), and (27), we have
(∫

ϕ(‖Φ(x)− fF‖)dF

)
· ḟF

+
∫ (〈

ḟF ,Φ(x)− fF
〉
H

‖Φ(x)− fF‖3 ·q(‖Φ(x)− fF‖) ·
(
Φ(x)− fF

))
dF(x)

= (Φ(x′)− fF) ·ϕ(‖Φ(x′)− fF‖)

whereq(x) = xψ′(x)−ψ(x).

9.6 Proof of Theorem 9

With Fn instead ofF , (11) becomes
(

1
n

n

∑
i=1

ϕ(‖Φ(X i)− fFn‖)
)
· ḟFn

+
1
n

n

∑
i=1

(〈
ḟFn,Φ(X i)− fFn

〉
H

‖Φ(X i)− fFn‖3 ·q(‖Φ(X i)− fFn‖) ·
(
Φ(X i)− fFn

))

= (Φ(x′)− fFn) ·ϕ(‖Φ(x′)− fFn‖). (28)

Let r i = ‖Φ(X i)− fFn‖, r ′ = ‖Φ(x′)− fFn‖, γ = ∑n
i=1 ϕ(r i) and

di =
〈

ḟFn,Φ(X i)− fFn

〉
H
· q(r i)

r3
i

.

Then, (28) simplifies to

γ · ḟFn +
n

∑
i=1

di ·
(
Φ(X i)− fFn

)
= n· (Φ(x′)− fFn) ·ϕ(r ′)
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SincefFn =∑n
i=1wiΦ(X i), we can see thaṫfFn has a form of∑n

i=1 αiΦ(X i)+α′Φ(x′). By substituting
this, we have

γ
n

∑
j=1

α jΦ(X j)+ γ ·α′Φ(x′)+
n

∑
i=1

di

(
Φ(X i)−

n

∑
k=1

wkΦ(Xk)

)

= n·
(

Φ(x′)−
n

∑
k=1

wkΦ(Xk)

)
·ϕ(r ′).

SinceK′ is positive definite,Φ(X i)’s andΦ(x′) are linearly independent (see Lemma 10). Therefore,
by comparing the coefficients of theΦ(X j)’s andΦ(x′) in both sides, we have

γ ·α j +d j −w j ·
( n

∑
i=1

di

)
=−w j

ψ(r ′)
r ′

·n (29)

γα′ = n·ϕ(r ′). (30)

From (30),α′ = nϕ(r ′)/γ. Let qi = q(r i)/r3
i andΦ(X i)− fFn = ∑n

k=1wk,iΦ(Xk) where

wk,i =

{
−wk , k 6= i

1−wk , k= i.

Then,

di =
q(r i)

r3
i

〈
ḟFn,Φ(X i)− fFn

〉

H

= qi

〈 n

∑
j=1

α jΦ(X j)+α′Φ(x′),
n

∑
k=1

wk,iΦ(Xk)

〉

H

= qi

( n

∑
j=1

n

∑
k=1

α jwk,ikσ(X j ,Xk)+α′
n

∑
k=1

wk,ikσ(x′,Xk)

)

= qi(ei −w)TKα+qiα′ · (ei −w)Tk′

= qi(ei −w)T(Kα+α′k′)

whereK := (kσ(X i ,X j))
n
i, j=1 is a kernel matrix,ei denotes theith standard basis vector, andk′ =

[kσ(x′,X1, . . . ,kσ(x′,Xn)]
T . By lettingQ= diag([q1, . . . ,qn]),

d = Q· (In−1wT)(Kα+α′ ·k′).

Thus, (29) can be expressed in matrix-vector form,

γα+Q· (In−1·wT)(Kα+α′ ·k′)−w ·
(
1TQ· (In−1·wT)(Kα+α′ ·k′)

)

=−n·wϕ(r ′).

Thus,α can be found solving the following linear system of equations,
{

γIn+(In−1·wT)TQ· (In−1·wT) ·K
}

α

= −n·ϕ(r ′)w−α′(In−1·wT)TQ· (In−1·wT)k′.
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Therefore,

IF (x,x′; f̂RKDE,Fn) =

〈
Φ(x), ḟFn

〉

H

=

〈
Φ(x),

n

∑
i=1

αiΦ(X i)+α′Φ(x′)
〉

H

=
n

∑
i=1

αikσ(x,X i)+α′kσ(x,x′).

The condition lims→0 fFn,s = fFn is implied by the strict convexity ofJ. GivenX1, . . . ,Xn andx′,
defineDn+1 as in Lemma 12. From Theorem 2,fFn,s and fFn are inDn+1. With the definition in
(23),

JFn,s(g) =
∫

ρ(‖Φ(x)−g‖H )dFn,s(x)

=
(1−s)

n

n

∑
i=1

ρ(‖Φ(X i)−g‖H )+s·ρ(‖Φ(x′)−g‖H ).

Note thatJFn,s uniformly converges toJ onDn+1, that is, supg∈Dn+1
|JFn,s(g)− J(g)| → 0 ass→ 0,

since for anyg∈Dn+1

∣∣JFn,s(g)−J(g)
∣∣

=

∣∣∣∣
(1−s)

n

n

∑
i=1

ρ(‖Φ(X i)−g‖H )+s·ρ(‖Φ(x′)−g‖H )− 1
n

n

∑
i=1

ρ(‖Φ(X i)−g‖H )

∣∣∣∣

=
s
n

n

∑
i=1

ρ(‖Φ(X i)−g‖H )+s·ρ(‖Φ(x′)−g‖H )

≤ s
n

n

∑
i=1

ρ(2τ)+s·ρ(2τ)

= 2s·ρ(2τ)

where in the inequality we use the fact thatρ is nondecreasing and

‖Φ(x)−g‖H ≤ ‖Φ(x)‖+‖g‖H
≤ 2τ.

sinceg∈Dn+1, and by the triangle inequality.
Now, let ε > 0 andBε( fFn) ⊂ H be the open ball centered atfFn with radiusε. SinceDε

n+1 ,

Dn+1 \Bε( fFn) is also compact, infg∈Dε
n+1

J(g) is attained by someg∗ ∈ Dε
n+1 by the extreme value

theorem (Adams and Franzosa, 2008). SincefFn is unique,Mε = J(g∗)−J( fFn)> 0. For sufficiently
smalls, supg∈Dn+1

|JFn,s(g)−J(g)|< Mε/2 and thus

J(g)− Mε

2
< JFn,s(g)< J(g)+

Mε

2
, ∀g∈Dn+1.
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Therefore,

inf
g∈Dε

n+1

JFn,s(g)> inf
g∈Dε

n+1

J(g)− Mε

2

= J(g∗)− Mε

2

= J( fFn)+Mε −
Mε

2

= J( fFn)+
Mε

2
> JFn,s( fFn).

Since the minimum ofJFn,s is not attained onDε
n+1, fFn,s ∈Bε( fFn). Sinceε is arbitrary, lims→0 fFn,s =

fFn.
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