Journal of Machine Learning Research 13 (2012) 2529-2565 bm8ted 9/11; Revised 4/12; Published 9/12

Robust Kernel Density Estimation

JooSeuk Kim STANNUM@UMICH.EDU
Clayton D. Scottf CLAYSCOT@UMICH.EDU
Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, Ml 48109-2122 USA

Editor: Kenji Fukumizu

Abstract

We propose a method for nonparametric density estimatianetkhibits robustness to contamina-
tion of the training sample. This method achieves robusttgscombining a traditional kernel
density estimator (KDE) with ideas from classid&destimation. We interpret the KDE based on a
positive semi-definite kernel as a sample mean in the agedadieproducing kernel Hilbert space.
Since the sample mean is sensitive to outliers, we estirhedbustly viaM-estimation, yielding a
robust kernel density estimator (RKDE).

An RKDE can be computed efficiently via a kernelized itemivre-weighted least squares
(IRWLS) algorithm. Necessary and sufficient conditions averyfor kernelized IRWLS to con-
verge to the global minimizer of thd-estimator objective function. The robustness of the RKDE
is demonstrated with a representer theorem, the influenestifun, and experimental results for
density estimation and anomaly detection.

Keywords: outlier, reproducing kernel Hilbert space, kernel trickluence functioniVi-estimation

1. Introduction

The kernel density estimator (KDE) is a well-known nonparametric estimatorieériate or multi-
variate densities, and numerous articles have been written on its propapidisations, and exten-
sions (Silverman, 1986; Scott, 1992). However, relatively little work reenldone to understand
or improve the KDE in situations where the training sample is contaminated. Thes adgresses
a method of nonparametric density estimation that generalizes the KDE, aibisrbbustness to
contamination of the training sample.

Consider training data following a contamination model

X1,.... Xn S (1— p)fo+ pf,

wherefy is the “nominal” density to be estimatef],is the density of the contaminating distribution,
andp < % is the proportion of contamination. Labels are not available, so that thdepmois
unsupervised. The objective is to estimégevhile making no parametric assumptions about the
nominal or contaminating distributions.

*. Also in the Department of Statistics.
1. Shorter versions of this work previously appeared at the Interrst@onference on Acoustics, Speech, and Signal
Processing (Kim and Scott, 2008) and the International Conferenb&aohine Learning (Kim and Scott, 2011).
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Clearly fo cannot be recovered if there ame assumptions orfp, f1 and p. Instead, we will
focus on a set of nonparametric conditions that are reasonable in mactical applications. In
particular, we will assume that, relative to the nominal data, the contaminatedrdata

(a) outlying the densitiedy and f1 have relatively little overlap
(b) diffuse fy is not too spatially concentrated relativeftp
(c) not abundanta minority of the data come frorfy

Although we will not be stating these conditions more precisely, they captaratiition behind
the quantitative results presented below.

As a motivating application, consider anomaly detection in a computer netwodgihe that
several multi-dimensional measuremeXis. .., X, are collected. For example, eahmay record
the volume of traffic along certain links in the network, at a certain instant in t@©hédbra et al.,
2008). If each measurement is collected when the network is in a nominaltbtste data could be
used to construct an anomaly detector by first estimating the defgsitfynominal measurements,
and then thresholding that estimate at some level to obtain decision regiofsrtudately, it is
often difficult to know that the data are free of anomalies, because assi@els (nominal vs.
anomalous) can be a tedious, labor intensive task. Hence, it is ngcessstimate the nominal
density (or a level set thereof) from contaminated data. Furthermordigtndutions of both nom-
inal and anomalous measurements are potentially complex, and it is there&irabde to avoid
parametric models.

The proposed method achieves robustness by combining a traditional Bensity estimator
with ideas fromM-estimation (Huber, 1964; Hampel, 1974). The KDE based on a translatiari-in
ant, positive semi-definite (PSD) kernel is interpreted as a sample mean eptioelucing kernel
Hilbert space (RKHS) associated with the kernel. Since the sample measitveco outliers, we
estimate it robustly viaM-estimation, yielding a robust kernel density estimator (RKDE). We de-
scribe a kernelized iteratively re-weighted least squares (KIRWL ®Yidthgn to efficiently compute
the RKDE, and provide necessary and sufficient conditions for theecgance of KIRWLS to the
RKDE.

We also offer three arguments to support the claim that the RKDE robustiyates the nominal
density and its level sets. First, we characterize the RKDE by a represiembeem. This theorem
shows that the RKDE is a weighted KDE, and the weights are smaller for mtiygngudata points.
Second, we study the influence function of the RKDE, and show throngéxact formula and
numerical results that the RKDE is less sensitive to contamination by outliershadDE. Third,
we conduct experiments on several benchmark data sets that demahstiatproved performance
of the RKDE, relative to competing methods, at both density estimation and andetatstion.

One motivation for this work is that the traditional kernel density estimator is kvelivn to
be sensitive to outliers. Even without contamination, the standard KDE term&testimate the
density in regions where the true density is low. This has motivated sewdtaira to consider
variable kernel density estimators (VKDES), which employ a data-dep¢bdadwidth at each data
point (Breiman et al., 1977; Abramson, 1982; Terrell and Scott, 19b2is bandwidth is adapted
to be larger where the data are less dense, with the aim of decreasingtemaftioned bias.
Such methods have been applied in outlier detection and computer vision &ppsgq&€omaniciu
et al., 2001; Latecki et al., 2007), and are one possible approaclistroonparametric density
estimation. We compare against these methods in our experimental study.
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Density estimation with positive semi-definite kernels has been studied bybkau#tors. Vap-
nik and Mukherjee (2000) optimize a criterion based on the empirical cumellditribution func-
tion over the class of weighted KDEs based on a PSD kernel. ShawerTEmdoDolia (2007)
provide a refined theoretical treatment of this approach. Song et @8 2@lopt a different cri-
terion based on Hilbert space embeddings of probability distributions. garoach is somewhat
similar in that we attempt to match the mean of the empirical distribution in the RKHS,uout o
criterion is different. These methods were also not designed with contahighatiz in mind.

We show that the standard kernel density estimator can be viewed as ttierstidua certain
least squares problem in the RKHS. The use of quadratic criteria in dexsdityjation has also
been previously developed. The aforementioned work of Song et eimiaps the norm-squared
in Hilbert space, whereas Kim (1995), Girolami and He (2003), Kim aocott§2010) and Ma-
hapatruni and Gray (2011) adopt the integrated squared erroe &yain, these methods are not
designed for contaminated data.

Previous work combining robust estimation and kernel methods has fbouigearily on su-
pervised learning problem#i-estimation applied to kernel regression has been studied by various
authors (Christmann and Steinwart, 2007; Debruyne et al., 2008a,beZal, 2008; Wibowo,
2009; Brabanter et al., 2009). Robust surrogate losses for Keaseld classifiers have also been
studied (Xu et al., 2006). In unsupervised learning, a robust wayiofgdkernel principal com-
ponent analysis, called spherical KPCA, has been proposed, whities PCA to feature vectors
projected onto a unit sphere around the spatial median in a kernel fegiace (Debruyne et al.,
2010). The kernelized spatial depth was also proposed to estimate defiibirscnonparametrically
(Chen et al., 2009). To our knowledge, the RKDE is the first applicatidvi-efstimation ideas in
kernel density estimation.

In Section 2 we propose robust kernel density estimation. In Section 3esemnt a representer
theorem for the RKDE. In Section 4 we describe the KIRWLS algorithm antbitsergence. The
influence function is developed in Section 5, Section 6 describes a stoaigattl extension to non-
reproducing kernels, and experimental results are reported in Secti@orrclusions are offered
in Section 8. Section 9 contains proofs of theorems. Matlab code implementiraigauithm is
available atvww.eecs.umich.edu/  ~cscott

2. Robust Kernel Density Estimation

LetX1,...,Xn € RY be a random sample from a distributiBrwith a densityf. The kernel density
estimate off, also called the Parzen window estimate, is a nonparametric estimate given by

fuoe (X) = i_iko(X,Xi)

wherek, is a kernel function with bandwidttr. To ensure thafAKDE(X) is a density, we assume
the kernel function satisfidg(-,-) > 0 and [k (x, -) dx = 1. We will also assume that;(x,x’)
is translation invariant in thatks(x — z,x" — z) = kg(x,X’) for all x,x’, andz.

In addition, we require thaks; be positive semi-definitewhich means that the matrix
(ko(Xi,Xj))1<i,j<m is positive semi-definite for all positive integarsand allxy,...,Xm € RY. Well-
known examples of kernels satisfying all of the above properties aredbedian kernel
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the multivariate Student kernel

W1\ T(vtd)/2) 1 [x—x[?\ "%
N G R S G e I

and the Laplacian kernel
Cd X =X|
ko(x,X') = cdeXp<— o

wherecy is a constant depending on the dimengibiiat ensureg ks (X, -) dx = 1 (Scovel et al.,
2010).

Every PSD kerndt; is associated with a unique Hilbert space of functions called its reproducing
kernel Hilbert space (RKHS) which we will deno#é, andk; is called the reproducing kernel of
H. For everyx, ®(x) £ ks (-,X) is an element of/, and therefore so too is the KDE. See Steinwart
and Christmann (2008) for a thorough treatment of PSD kernels and RKR& our purposes,
the critical property of# is the so-calledeproducing property It states that for aly € # and all
x € RY, g(x) = (D(x),0) 4. As a special case, taking= ks(-,x’), we obtain

Ko (%,X) = (®(X), (X)) 5¢

for all x,x’ € RY. We also note that, by translation invariance, the functidfs) have constant
norm in‘H because

1O(X)[[5 = (P(x), (X)) 5 = ks (X, X) = k5(0,0).
We will denotet = || P(X)|| 4
From this point of view, the KDE can be expressed as

froet) = 3 3 kel X0

the sample mean of the(X;)’s in 4. Equivalently,ﬁDE € H is the solution of
n
min'y [|d(X;) — g3,
geﬂ{i;H (Xi) —dll5,

Being the solution of a least squares problem, the KDE is sensitive to thengeesf outliers
among thed(X;)’s. To reduce the effect of outliers, we propose to Msestimation (Huber, 1964)
to find a robust sample mean of tH¥X;)’s. For a robust loss functiop(x) on x > 0, the robust
kernel density estimate is defined as

n
fRKDE:argminle(HcD(xi)_gH}[)' 2)
geH i=

Well-known examples of robust loss functions are Huber’s or Hampelinlike the quadratic loss,
these loss functions have the property that p’ is bounded. Huber'p andy are given by

() = x?/2 ,0<x<a
- |ax—a?/2 ,a<x
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X ,0<x<a
w(x):{ (3)
a ,a<kx,
and Hampel'p andy are
x?/2 ,0<x<a
() = ax—a?/2 ,a<x<b
Y= a(x—c)2/2(b—c)+a(b+c—a)/2 ,b<x<c
alb+c—a)/2 ,c<X
X ,0<x<a
a ,a<x<b
W(x) = (4)
a-(c—x)/(c—b) ,b<x<c
0 ,C< X

The functiong(x), P(x), andy(x)/x are plotted in Figure 1, for the quadratic, Huber, and Hampel
losses. Note that whilé)(x)/x is constant for the quadratic loss, for Huber’s or Hampel’s loss,
this function is decreasing im This is a desirable property for a robust loss function, which will
be explained later in detail. While our examples and experiments employ Haioel'slampel’s
losses, many other losses can be employed.

We will argue below thafrkpe is a valid density, having the fori_; wiks (-, Xi) with weights
w; that are nonnegative and sum to one. To illustrate the estimator, FiguresBdia¥ a contour
plot of a Gaussian mixture distribution ®?. Figure 2 (b) depicts a contour plot of a KDE based
on a training sample of size 200 from the Gaussian mixture. As we can seeuire Adc) and
(d), when 20 contaminating data points are added, the KDE is significantlgdltetow density
regions, while the RKDE is much less affected.

We remark that the definition of the RKDE does not require Kgabe a reproducing kernel,
only that the functionsP(x) = ks(-,x) belong to a Hilbert space. Indeed, almost all of the results
presented below hold in this more general setting. However, we restriatteation to reproducing
kernels for two reasons. First, with reproducing kernels, inner mtsda# can be easily computed
via the kernel, leading to efficient implementation. Second, the reproducipgty allows us to
interpret the representer theorem and influence function to infer tredgssof the RKDE. With non-
reproducing kernels, these interpretations are less clear. The extémsion-RKHS Hilbert spaces
is discussed in Section 6, with specific examples.

Throughout this paper, we defipgx) = yi(x) /x and consider the following assumptions @n

Y, andd:

(Al) pis non-decreasing(0) =0, andp(x)/x — 0 asx — 0
(A2) (0) £ limy o %X exists and is finite

(A3) wand¢ are continuous

(A4) pand¢ are bounded

(A5) ¢ is Lipschitz continuous

which hold for Huber's and Hampel’s losses, as well as several others
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"""" Quadratic ~ Quadratic
‘‘‘‘‘ Huber '='="Huber
—— Hampel —— Hampel
= 0
= >
X X
(a) p functions (b) Y functions

y(x)/x

(© W(x)/x

Figure 1: The comparison between three diffeq@ix), W(x), andy(x)/x: quadratic, Huber’s, and
Hampel’s.

3. Representer Theorem

In this section, we will describe hovﬁqKDE can be expressed as a weighted combination of the
ks(-,Xj)'s. A formula for the weights explains how a robust sample mea#itranslates to a

robust nonparametric density estimate. We also present necessanyfiacidrg conditions for a
function to be an RKDE. From (2frkpe = argmin,. ,rJ(g), where

39 = 3 p(I9) ~gl) ©)
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(c) KDE with outliers (d) RKDE with outliers

Figure 2: Contours of a nominal density (a) and kernel density estimatds glong with data
samples from the nominal density (0) and contaminating density (x). 200 poeéfsom
the nominal distribution and 20 contaminating points are from a uniform distrifutio

First, let us find necessary conditions fpto be a minimizer ofl. Since the space over which
we are optimizing) is a Hilbert space, the necessary conditions are characterized tHeatigaux
differentials ofJ. Given a vector spac& and a functionT : X — R, the Gateaux differential oF
atx € X with incrementah € X is defined as

— :y_)moT(erO(Z) ~T.
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If 8T (xo; h) is defined for allh € X, a necessary condition fdr to have a minimum axo is that
OT (xp; h) = 0 for allh € X (Luenberger, 1997). From this optimality principle, we can establish the
following lemma.

Lemma 1 Suppose assumptions (Al) and (A2) are satisfied. Then the Gatefeuerdiél of J at
g € A with incremental ke # is

83(g:h) = —(V(9).h),

where V: H — # is given by
Vg = 1 3 0190X) ) (90X) ~0).

A necessary condition forg ﬂqKDE isV(g)=0.

Lemma 1 is used to establish the following representer theorem, so namedebﬁqajg can
be represented as a weighted combination of kernels centered at th®idéta pimilar results are
known for supervised kernel methods (8liopf et al., 2001).

Theorem 2 Suppose assumptions (Al) and (A2) are satisfied. Then,
n
frepe(X) = Ziwiko(X,Xi) (6)
i=

where w > 0, Z{Llwi = 1. Furthermore,

wi 0 o(|®(Xi) — freoe]ls). (7)

It follows thathRKDE is a density. The representer theorem also gives the following interpretatio
of the RKDE. If¢ is decreasing, as is the case for a robust loss,whevill be small when|P(X;) —
frDE|| 47 IS large. Now for anyg € #,

[O(Xi) — 9|2, = (P(Xi) — 9, D(Xi) — Q) s
= [|PX)IIZ, — 2(P(Xi),9) o + |93,
=12 29(Xi) +lgl%.

where the last step follows from the reproducing property. Tagiﬁ:ngRKDE, we see thaty; is small
when frepe(Xj) is small. Therefore, the RKDE is robust in the sense that it down-weigltitgroy
points. R

Theorem 2 provides a necessary conditionfig¢pe to be the minimizer of (5). With an addi-
tional assumption od, this condition is also sufficient.

Theorem 3 Suppose that assumptions (A1) and (A2) are satisfied, and J is strictgxoThen
(6), (7), andy ', w; = 1 are sufficient forfrkpe to be the minimizer of (5).

Since the previous result assundas strictly convex, we give some simple conditions that imply
this property.
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Lemma 4 J is strictly convex provided either of the following conditions is satisfied:
(i) pis strictly convex and non-decreasing.
(if) pis convex, strictly increasing, » 3, and K= (ks(Xi, Xj))[';_; is positive definite.

The second condition implies thatan be strictly convex even for the Huber loss, which is convex
but not strictly convex.

4. KIRWLS Algorithm and Its Convergence

In general, (2) does not have a closed form solution &ache has to be found by an iterative
algorithm. Fortunately, the iteratively re-weighted least squares (IRWlg®)ithm used in classical
M-estimation (Huber, 1964) can be extended to a RKHS usindeheel trick The kernelized
iteratively re-weighted least squares (KIRWLS) algorithm starts with iniwfé’ﬂ eR,i=1...,n
such thawi(o) >0 andzi”:lwi(o) =1, and generates a seque@dék)} by iterating on the following
procedure:

n
k—1
fMZ;M Jo(X)),

W SUexi) — 9,

L Y ddleXg) — F0])

Intuitively, this procedure is seeking a fixed point of Equations (6) a)d The computation of
|®(X;) — f®|, can be done by observing

(X))~ £9)2, = (@(X)) — 19, b(x)) — 1)
= (O(X;), D(X;)), — 2D(X)), T, 4 (F0 §00)

(k=1)

Sincef® =y w7 d(X;), we have

(P(X)),®(X))),, = ka(Xj,X))

(@(X)), 119, :,EN“”&MpM)

<f(k)’ f(k)>}[ —

n n
(k-1), (k1)
W W T Kg (X, X))
2,51

|
i
Recalling thatb(x) = ks (-, X), after thekth iteration
n
19(x) = wak*)ko(x,xi).
i=

Therefore, KIRWLS produces a sequence of weighted KDEs. Thepuatational complexity is
O(r?) per iteration. In our experience, the number of iterations needed is typieallypelow 100.
Initialization and termination are discussed in the experimental study below.
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KIRWLS can also be viewed as a kind of optimization transfer/majorize-minimizarighogn
(Lange et al., 2000; Jacobson and Fessler, 2007) with a quadratigate forp. This perspective
is used in our analysis in Section 9.4, whéf€ is seen to be the solution of a weighted least squares
problem in#.

The next theorem characterizes the convergence of KIRWLS in terr{8(6f¥)}> , and

{93,
Theorem 5 Suppose assumptions (Al) - (A3) are satisfied,qgmx¢lis nonincreasing. Let

S={ge#H|V(g)=0}

and {f0} | be the sequence produced by the KIRWLS algorithm. THg®)Jmonotonically
decreases at every iteration and converges. Afsg,0 and

18 =Sl 2 inf | % —g]l5 =0
ges

as k— oo,

In words, as the number of iterations grow$¢ becomes arbitrarily close to the set of stationary
points ofJ, pointsg € A satisfyingdJ(g;h) =0 Vhe #.

Corollary 6 Suppose that the assumptions in Theorem 5 hold and J is strictly convex{ ﬂﬂ‘?}ﬁ;1
converges to‘ARKDE in the A -norm and the supremum norm.

Proof Convergence in théf/-norm follows from the previous result because under strict convexity
of J, |$| = 1. Convergence in the supremum norm now follows from the reprodywiogerty and
Cauchy-Schwarz because, for aqy

110 (x) — freoe(X)| = (P(X), T — Frioe) 4]
< 1) % — freoel|4-

5. Influence Function for Robust KDE

To quantify the robustness of the RKDE, we study the influence functidrst, Rve recall the
traditional influence function from robust statistics. I€F) be an estimator of a scalar parameter
based on a distributioR. As a measure of robustnessigfthe influence function was proposed by
Hampel (1974). The influence function (IF) foratF is defined as

T(1-s)F+s0x)—T(F)

IF(x’;T,F):Iim0 S ,
S—

wheredy represents a discrete distribution that assigns probability 1 to the goirBasically,

IF (X;T,F) represents ho (F ) changes when the distributiénis contaminated with infinitesimal
probability mass at’. One robustness measurelofs whether the corresponding IF is bounded or
not.
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For example, the maximum likelihood estimator for the unknown mean of a Gawlisigahu-
tion is the sample mean(F),

T(F) = B¢ [X] :/xdF(x). ®)

The influence function fof (F) in (8) is

IF (T, F) = lim (L= SIF +90) ~ T(F)

s—0 S

— X —E¢[X].

Since|lF (X; T,F)| increases without bound asgoes toto, the estimator is considered to be not
robust.

Now, consider a similar concept for a function estimate. Since the estimaternistifu not a
scalar, we should be able to express the change of the function valenake

Definition 7 (IF for function estimate) Let T(x;F) be a function estimate based on F, evaluated
at x. We define the influence function fofxTF) as

IF (x,x; T,F) = lim TOGR) ~T(XF)
s—0 S

where k= (1—s)F + dy.

IF (x,x;T,F) represents the change of the estimated funcficat x when we add infinitesimal
probability mass at’ to F. For example, the standard KDE is

T(6F) = froe(6F) = [ Kol y)dF(Y)
= Er[ks (X, X)]
whereX ~ F. In this case, the influence function is

froe (X; Fs) — frkoe (X F)

IF (x,X; ﬂDE,F) =lim
s—0

s

_ Ilrno EFs[kG(X’X)] ; Er [ko(X,X)]

—iim —SEr (ko (X, X)] 4 8B, [Ko(X, X))]

s—0 S

= —Ef [kO(X7X)] + Eéx/ [ko(X,X)]

= —Er [ko(%, X)] + ko (%, X). ©)
With the empirical distributiorf, = 2 57 ; 8x;,

IF (x,X; fxpe, Fn) = —i.zko(x,xi)Jrko(x,x’). (10)

To investigate the influence function of the RKDE, we generalize its definiticam ¢general
distributiony, writing frpe(-; 1) = f, where

fu = argmin [ p([|®(x) gl »1) ().
geH
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For the robust KDET (x,F) = fARKDE(x; F) = (®(x), fr) 4, we have the following characterization
of the influence function. Led(x) = x@/(x) — Y(x).

Theorem 8 Suppose assumptions (Al1)-(A5) are satisfied. In addition, assurégtha fr as
s— 0. If fg £ limg_o fFS;fF exists, then

IF (x,X'; fricoe, F) = fr(X)

wherefr € # satisfies
(/01000 tellaF ) - e

fe, d(x) — f
/<< ||F¢(X()Xi fr HF3>H (P (x) — fel5) - (P(X) — fF)>dF(x)
H

= (®(X) = fr) - d(IP(X) — fel5)- (11)

Unfortunately, for Huber or Hampels, there is no closed form solution fde of (11). How-
ever, if we work withF, instead ofF, we can findfg, explicitly. Let

1=101,...,1",
K' = [ko (X, X1), ... ks (X', Xn)]",

In be then x nidentity matrix,K £ (ks(Xi, X)), ;_; be the kernel matrixQ be a diagonal matrix
with Qi = a([|P(Xi) — fr, l51) /| P(Xi) — e, 3,

V= 3 00100) = 1 1)

and

)

W= [wg,...,Wn]"

wherew gives the RKDE weights as in (6).

Theorem 9 Suppose assumptions (Al)-(A5) are satisfied. In addition, assumne tha
o fr, — fr, as s— O (satisfied when J is strictly convex)
o the extended kernel matrix Kased or{ X; }1' ; U{X'} is positive definite.

Then,

n

IF (x,X'; frkpE, Fn) = Zaimx,xi) +a’ks(x,X)

1=
where
a’ =n-o(|O(X) - fr,ll4)/y
anda = [ay,...,0pn]T is the solution of the following system of linear equations:
{yln+(In—l-wT)TQ(In—l-WT)K}a
= —np(|P(X) ~ fr,[ls)w—a'(ln—1-w)TQ: (In—1-wT) K.
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—trué - KDE
-~ KDE i - -'RKDE(Huber)
--'RKDE(Huber) " RKDE(Hampel)
RKDE(Hampel) i —s outlier
5 0 15 -5 0 5 10 15
(b)
Figure 3: (a) true density and density estimates. (b) IF as a functienvbenx’ = —5

Note thata’ captures the amount by which the density estimator changesxhe@aresponse to
contamination ax’. Now a’ is given by

o QU —Frlls)
150 o(O(Xi) — fryllar)

For a standard KDE, we hade= 1 anda’ = 1, in agreement with (10). For robust¢(||®(x') —
fe,||47) can be viewed as a measure of “inlyingness”, with more inlying points haviggraalues.
This follows from the discussion just after Theorem 2, which leveragesegproducing property. If
the contaminating point’ is less inlying than the averagg, thena’ < 1. Thus, the RKDE is less
sensitive to outlying points than the KDE.

As mentioned above, in classical robust statistics, the robustness dfraates can be inferred
from the boundedness of the corresponding influence function. Hawthe influence functions
for density estimators are bounded evefpif|| — . Therefore, when we compare the robustness
of density estimates, we compare how close the influence functions are &rthiizction.

Simulation results are shown in Figure 3 for a synthetic univariate distributtogure 3 (a)
shows the density of the distribution, and three estimates. Figure 3 (b) shevesrresponding
influence functions. As we can see in (b), for a peinin the tails ofF, the influence functions for
the robust KDEs are overall smaller, in absolute value, than those of tastetKDE (especially
with Hampel's loss). Additional numerical results are given in Section 7.2.

Finally, it is interesting to note that for any density estimator

~ ~

/IF(x,x’; fA,F)dX: lim JT(x;Fs)dx— [ f(x;F)dx o
Thusa’ = — 31, a; for a robust KDE. This suggests that sin&pe has a smaller increase xit

(compared to the KDE), it will also have a smaller decrease (in absolute)vatae the training
data. Therefore, the norm & (x,X'; frkpe, Fn), viewed as a function of, should be smaller when
X" is an outlier. We confirm this in our experiments in Section 7.
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6. Generalization to Other Hilbert Spaces

So far, we have focused our attention on PSD kernels and viewed thedsB element of the
RKHS associated with the kernel. However, the RKDE can be defined inageoeral setting. In
particular, it is only necessary that the functiebi&) = ks ( -, x) belong to a Hilbert spac#’. Then
one can still obtain all the previous results, that is, Lemmas 1 and 4, The@edn$, 8, and 9,
and Corollary 6 (except convergence in the supremum norm). (Faréhes 8 and 9 it is necessary
to additionally assume th@d(x)||,, is bounded independent ®f) The only necessary change is
that inner products of the for®(x), ®(x’)), can no longer be computed kg x,x’). Thus,K in
Lemma 4(ii), k/,K,K’ in Theorem 9, and various terms in the KIRWLS algorithm should now be
computed with the inner product oH.

It is also interesting to note that this generalization gives a representeetinéar non-RKHS
Hilbert spaces. This contrasts with standard approaches to supele@athg that minimize an
empirical risk plus regularization term. In those cases, a representeeth@ay be more difficult
to obtain when the function class is not an RKHS.

There are some examples of non-RKHS Hilbert spaces where the irogugbrcan still be
computed efficiently. For example, considér= L?(RY) and denote

ko(%,X') = (®(x), D(X))L2(zs)
- /ko(z,x)kc(z,x’)dz.

For the multivariate Gaussian kerni}, = k /25+ FOr the multivariate Cauchy kernel (the multivari-
ate Student kernel with = 1; see Section 2), it holds thi$(x, ') = kag (X, X’) (Berry et al., 1996).
For the multivariate Laplacian product kernel,

ko(X,X) = (2(13>d exp{— ‘X_GX/Hl},

ko(x,X') = (4<13)d fl(lJr W) exp{—”x_oxlul}.

For kernels without a closed-form expression gy the inner product may still be calculated nu-
merically. For radially symmetric kernels this entails a simple one-dimensional Hﬂf{@(x,x’)
depends only ofjx — X||, and these values may be tabulated in advance.

As we noted previously, however, we rely on the reproducing propertgduce robustness of
the RKDE from the representer theorem and the influence function.dfmRIKHS Hilbert spaces,
these arguments are less clear. We have not experimentally investigateepnoducing kernels,
and so cannot comment on the robustness of RKDEs based on suelskenpractice.

itis true that

7. Experiments

The experimental setup is described in 7.1, and results are presented in 7.2

7.1 Experimental Setup

Data, methods, and evaluation are now discussed.
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7.1.1 DaTA

We conduct experiments on 15 benchmark data sets (Banana, B. CRrat®tes, F. Solar, Ger-
man, Heart, Image, Ringnorm, Splice, Thyroid, Twonorm, Waveform, Pimiamn Iris, MNIST),
which were originally used in the task of classification. The data sets aialdeaonline: see
http://www.fml.tuebingen.mpg.de/Members/ for the first 12 data sets and the UGimadearning
repository for the last 3 data sets. There are 100 randomly permuted partfieach data set into
“training” and “test” sets (20 for Image, Splice, and MNIST).

GivenXy,...,Xp~ f = (1—p)- fo+ p- f1, our goal is to estimatéy, or the level sets ofp.
For each data set with two classes, we take one class as the nominal dath fiad the other
class as contamination frofq. For Iris, there are 3 classes and we take one class as nominal data
and the other two as contamination. For MNIST, we choose to use digit Omaimaloand digit 1
as contamination. For MNIST, the original dimension 784 is reduced to 8 viekPCA using a
Gaussian kernel with bandwidth 30. For each data set, the training sanmslistsafng nominal
data andh; contaminating points, wherg = €- ng for € =0, 0.05, 010, 015, 020, 025 and 030.
Note that eacls corresponds to an anomaly proportiprsuch thatp np is always taken to
be the full amount of training data for the nominal class.

I >
T 1+4e

7.1.2 METHODS

In our experiments, we compare three density estimators: the standarl &ensity estimator

(KDE), variable kernel density estimator (VKDE), and robust kerrexisity estimator (RKDE)

with Hampel's loss. For all methods, the Gaussian kernel in (1) is used kertiie functiorks and

the kernel bandwidtls is set as the median distance of a training p#into its nearest neighbor.
The VKDE has a variable bandwidth for each data point,

fykpe(X) = i-zk"‘ (X, Xi),

1/2
S (ﬂ)
fkoe (Xi)

wheren is the mean o{fAKDE(Xi) i, (Abramson, 1982; Comaniciu et al., 2001). There is another
implementation of the VKDE where, is based on the distance toksh nearest neighbor (Breiman
et al., 1977). However, this version did not perform as well and is tber@mitted.

For the RKDE, the parametegs b, andc in (4) are set as follows. First, we compuﬁﬁed,
which is the RKDE obtained witp = | - |, and seth = ||® (X;) — fmed|s Then,ais set to be the
median of{d; }, b the 75th percentile ofd;}, andc the 85th percentile ofd;}. After finding these

parameters, we initializwi(o) such thatf(M) = fAmed and terminate KIRWLS when

and the bandwidtl; is set as

[(FEED) — 3£

10°8.
@y T

7.1.3 B/ALUATION

We evaluate the performance of the three density estimators in three difeténgs. First, we use
the influence function to study sensitivity to outliers. Second and third, weace the methods
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at the tasks of density estimation and anomaly detection, respectively.Hrcase, an appropriate
performance measure is adopted. These are explained in detail in Se2tidio ¢ompare a pair of
methods across multiple data sets, we adopt the Wilcoxon signed-rank tlesix®d, 1945). Given
a performance measure, and given a pair of method€,and compute the differendg between
the performance of two density estimators onithedata set. The data sets are ranked 1 through 15
according to their absolute valugs|, with the largesth;| corresponding to the rank of 15. LB{
be the sum of ranks over these data sets where method 1 beats methotkPRabéd the sum of the
ranks for the other data sets. The signed-rank test stafistianin(R;,Ry) and the corresponding
p-value are used to test whether the performances of the two methodsrafieaidly different. For
example, the critical value af for the signed rank test is 25 at a significance level.060Thus, if
T < 25, the two methods are significantly different at the given significanes, lard the larger of
R; andR; determines the method with better performance.

7.2 Experimental Results

We begin by studying influence functions.

7.2.1 ENSITIVITY USING INFLUENCE FUNCTION

As the first measure of robustness, we compare the influence functioi@Es and RKDEs,
given in (10) and Theorem 9, respectively. To our knowledge, tisane formula for the influence
function of VKDEs, and therefore VKDEs are excluded in the comparisla examinex(x') =
IF(X',x;T,R,) and

B(X) = </(IF(x,x’;T,Fn))2dx> 1/2.

In words,a(x’) reflects the change of the density estimate value at an addedkpamdB(x’) is an
overall impact o’ on the density estimate ov&f'.

In this experimentg is equal to 0, that is, the density estimators are learned from a pure nominal
sample. Then, we take contaminating points from the test sample, each of senies as ax’.
This gives us multiplex(x’)'s andB(x’)’s. The performance measures are the mediafsof') }
and{B(x')} (smaller means better performance). The results using signed rank statistatsown
in Table 1. The results clearly states that for all data sets, RKDEs areffiested by outliers than
KDEs.

7.2.2 KULLBACK-LEIBLER (KL) DIVERGENCE
Second, we present the Kullback-Leibler (KL) divergence betweeasity estimate$ and fo,

D (Fl1 o) = | Ftog ¢

This KL divergence is large whenevérestimatesfy to have mass where it does not. For contami-
nation characterized by propertiés, (b), and(c) in the Introduction, we expect this performance
measure to capture the robustness of a density estimator.

_The computation oDk is done as follows. Since we do not know the nomifaalt is estimated
as fo, a KDE based on a separate nominal sample, obtained from the test datetidoenchmark
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method 1| method 2 a(x') | B(X)
Ry 120 | 120

R> 0 0

RKDE KDE T 0 0

p-value | 0.00 | 0.00

Table 1: The signed-rank statistics gmatalues of the Wilcoxon signed-rank test using the medians
of {a(x')} and{B(x')} as a performance measure.Rf{ is larger tharR,, method 1 is
better than method 2.

data set. Then, the integral is approximated by the sample mean, that is,

~ 10 f(x)
Dk (T fo) = = ) log=——"~
o i; fo(x})

where{x/}"_, is an i.i.d sample from the estimated densﬂtwlth n =2n=2(np+ ny). Note that
the estimated KL divergence can have an infinite value Wﬂaeﬁ) = 0 (to machine precision) and
fA(y) > 0 for somey € RY. The averaged KL divergence over the permutations are used as the
performance measure (smaller means better performance). In Table&gkhaf the three methods
are shown for each data set amd

Table 3 summarizes the results using the Wilcoxon signed-rank test. WhemiGog\RKDES
and KDEs, the results show that KDEs have smaller KL divergence thdpERKvithe = 0. Ase
increases, however, RKDEs estimdgemore accurately than KDEs. The results also demonstrate
that VKDEs are the worst in the sense of KL divergence. Note that ViKPIEce a total mass of
1/n at all X;, whereas the RKDE will place a mass< 1/n at outlying points.

Since KL divergence is not symmetric, we also compute KL divergencedaegify and f,

DKL fo‘ /f |Og ,\))(( dx
:/fo (x)log fo(x) dx—/fo(x)log f(x)dx

This KL divergence is large whenevérestimatesfy not to have mass where it does.
Sincefy is the same when comparing different estimiteve only have to compare the second
term, which is approximated as

/fo )log f(x leogf x")

where{x'}l", is a separate nominal sample, obtained from the test data. Table 4 and Ehstow
with this KL divergence as performance measure, VKDE performs besiinost all data sets and
€. When comparing RKDE and KDE based on Wilcoxon signed-rank Tebgs a large value for
everye which makes it inconclusive whether one method is better than the other.
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Data Set €
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Banana | (3,1,2) (3,1,2) (3,1,2) (3,1,2) (3,12 (3,1,2) (3,12
B. Cancer | (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Diabetes | (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3)
F. Solar | (2,1,3) (2,1,3) (2,1,3) (2,1,3) (213) (2,1,3) (2,1,3)
German | (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Heart 1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Image 2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Ringnorm | (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Splice 1,23 (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Thyroid 2,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Twonorm | (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Waveform | (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3)
Pima Indian| (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3)
Iris 2,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
MNIST 3,12 (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3)

Table 2: The ranks of (RKDE, KDE, VKDE) usinBx.(f|| fo) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKD&two

7.2.3 ANOMALY DETECTION

In this experiment, we apply the density estimators in anomaly detection probfeseshad a pure
sample fromfp, we would estimatéy and use{x : on(x) > A} as a detector. For eadhwe could get

a false negative and false positive probability using test data. By vakyiwg would then obtain a
receiver operating characteristic (ROC) and area under the cutl@)(Alowever, since we have a
contaminated sample, we have to estinfgt®bustly. Robustness can be checked by comparing the
AUC of the anomaly detectors, where the density estimates are based omtamic@ated training
data (higher AUC means better performance).

Examples of the ROCs are shown in Figure 4. The RKDE provides bettatidetprobabilities,
especially at low false alarm rates. This results in higher AUC. For eachlfpmethods and each
€, R1, Ry, T and p-values are shown in Table 7. The results indicate that RKDES are sigptifica
better than KDEs whea > 0.20 with significance level 05. RKDEs are also better than VKDESs
whene > 0.15 but the difference is not significant. We also note that we have aldgated the
kernelized spatial depth (KSD) (Chen et al., 2009) in this setting. While thisodelbes not yield a
density estimate, it does aim to estimate density contours robustly. We founldehedD performs
worse in terms of AUC that either the RKDE or KDE, so those results are omKiedgnd Scott,
2011).
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€
method 1) method 2 000 005 010 0.15 020 025 030
R, | 26 67 78 83 94 101 103
R, | 94 53 42 37 26 19 17
RKDE | KDE T 26 53 42 37 26 19 17
pvalue| 006 072 033 021 006 0.02 0.01
R, | 104 117 117 117 117 119 119
R, | 16 3 3 3 3 1 1
RKDE | VKDE T %6 3 3 3 3 1 1
pvalue| 001 0.00 0.00 0.00 0.0 0.00 0.00
R, O 0 0 0 o0 0 0
R, | 120 120 120 120 120 120 120
VKDE | KDE T o o 0 o0 ©o0 0 0
pvalue| 000 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: The signed-rank statistics gmatalues of the Wilcoxon signed-rank test usbg (|| fo)
as a performance measureRIfis larger tharR,, method 1 is better than method 2.

1 1
>08 g7 >09
s | 7 5
206 20.8
e - I'! e -
a N o
c J c
204 2 0.7
© ) ©
@ , ]
‘.0-.; [/ (]
© 0.2/ — KDE 0.6 — KDE
---RKDE ---RKDE
--'VKDE --'VKDE
0 ‘ ‘ ‘ ‘ 0.5 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
false alarm false alarm
(a) Bananag = 0.2 (b) Iris,e=0.1

Figure 4: Examples of ROCs.

8. Conclusions

When kernel density estimators employ a smoothing kernel that is also a RB&l, kbey may

be viewed adM-estimators in the RKHS associated with the kernel. While the traditional KDE
corresponds to the quadratic loss, the RKDE employs a robust loss tvacbmustness to con-
tamination of the training sample. The RKDE is a weighted kernel density estimiageewmaller
weights are given to more outlying data points. These weights can be congdfibéehtly using
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Data Set €
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Banana | (3,1,2) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,21 (3,21
B. Cancer | (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,21 (3,2,1) (3,21
Diabetes | (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1)
F. Solar | (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
German | (3,2,1) (3,2,1) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Heart 2,3,1) (2,3,1) (2,31 (2,3,1) (2,31 (2,3,1) (2,3,1)
Image (3,2,1) (3,21 (32,1 (3,21 (321 (3,21 (3,21
Ringnorm | (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Splice 2,3,1) (2,3,1) (2,31) (2,3,1) (2,31 (2,3,1) (2,3,1)
Thyroid 2,3,1) (2,3,1) (2,31) (2,3, 1) (2,3,1) (2,31) (2,3,1)
Twonorm | (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1) (2,3,1)
Waveform | (3,2,1) (3,2,1) (3,2,1) (3,2,1) (2,3,1) (2,3,1) (2,3,1)
PimaIndian| (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (3,21 (3,2,1)
Iris 3,2,1) (3,21 (2,31) (2,3, 1) (2,3,1) (2,3,1) (2,3,1)
MNIST 3,21 3,21 (3,21 3,21 (3,21 3,21 (3,2,1)

~

Table 4: The ranks of (RKDE, KDE, VKDE) usinDk_(fo|| f) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKD&two

a kernelized iteratively re-weighted least squares algorithm. The dedensitivity of RKDEs
to contamination is further attested by the influence function, as well asimqés on anomaly
detection and density estimation problems.

Robust kernel density estimators are nonparametric, making no paranssuiogtions on the
data generating distributions. However, their success is still contingergrtaein conditions being
satisfied. Obviously, the percentage of contaminating data must be lesO8tadr experiments
examine contamination up to around 25%. In addition, the contaminating distrimtiste outly-
ing with respect to the nominal distribution. Furthermore, the anomalous canpshould not be
too concentrated, otherwise it may look like a mode of the nominal componeth. &Sgumptions
seem necessary given the unsupervised nature of the problem eaintpéicit in our interpretation
of the representer theorem and influence functions.

Although our focus has been on density estimation, in many applications the ultjoatés
not to estimate a density, but rather to estimate decision regions. Our methpdoiognediately
applicable to such situations, as evidenced by our experiments on anontedyiate It is only
necessary that the kernel be PSD here; the assumption that the lkerefegative and integrate
to one can clearly be dropped. This allows for the use of more generalkesuch as polynomial
kernels, or kernels on non-Euclidean domains such as strings andTreekearning problem here
could be described as one-class classification with contaminated data.

In future work it would be interesting to investigate asymptotics, the biasneritrade-off,
and the efficiency-robustness trade-off of robust kernel densiignators, as well as the impact of
different losses and kernels.
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method 1| method 2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ry a7 52 55 58 64 65 68
Ro 73 68 65 62 56 55 52
T a7 52 55 58 56 55 52

p-value| 0.49 0.68 0.80 0.93 0.85 0.80 0.68

RKDE KDE

RKDE VKDE Ry 120 120 120 120 120 120 120

p-value| 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ry 119 120 120 120 120 120 120

VKDE KDE

p-value| 0.00 0.00 0.00 0.00 0.00 0.00 0.00

~

Table 5: The signed-rank statistics gotalues of the Wilcoxon signed-rank test usgy (fo|| f)
divergence as a performance measureRlfis larger thanR,, method 1 is better than
method 2.

9. Proofs

We begin with three lemmas and proofs. The first lemma will be used in the ppbomma 11
and Theorem 9, the second one in the proof of Lemma 4, and the third oreepnabf of Theorem
5.

Lemma 10 Letzy,...,zy be distinct points irRY. If K = (k(zi,zj)){jjzl is positive definite, then
®(z) =k(-,z)’s are linearly independent.

Proof ${,0;®d(z) =0 implies

m 2

Somal],
= <.;Gi¢(zi), gldj¢(2j)>

i=
m m

= 'zljzlaiajk(Zi’Zj)

0=

H

and from positive definiteness B, a1 = --- = oy, =0. [ |

Lemma 11 Let # be a RKHS associated with a kernel k, andx,, andxs be distinct points in
RY. Assume that K= (k(xi,x;))3;_; is positive definite. For any, € # with g# h, ®(x;) —g and
®(x;) — h are linearly independent for some {1, 2, 3}.
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Data Set €
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Banana | (3,2,1) (3,2,1) (3,2,1) (1,32 (13,2 (1,3,2) (1,3,2)
B. Cancer | (2,1,3) (2,1,3) (2,1,3) (1,3,2) (1,3,2 (1,3,2) (2,3,1)
Diabetes | (3,1,2) (3,2,1) (2,3,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
F. Solar | (2,1,3) (2,1,3) (2,1,3) (2,1,3) (213) (2,1,3) (3,12
German | (2,1,3) (2,1,3) (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3)
Heart 2,3,1) (2,3,1) (2,31 (2,3,1) (2,31 (2,3,1) (2,3,1)
Image 3.1,2 (3,120 (312 (2,3,1) (23.1) (1,3,2 (1,32
Ringnorm | (2,1,3) (2,1,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2,3)
Splice .23 (21,3 (2,130 (2,1,3) (2,1,3) (2,1,3) (2,1,3)
Thyroid 3.1,2) (3,21 (2,31) (2,3, 1) (2,3,1) (2,31) (2,3,1)
Twonorm | (3,2,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
Waveform | (2,3,1) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2) (1,3,2)
PimaIndian| (3,1,2) (3,2,1) (2,3,1) (2,3,1) (2,3,1) (13,2 (1,3,2)
Iris 3,1,2 (1,3,2) (1,32 (13,2 (1,32 (13,2 (1,3,2
MNIST 3,12 3,21 (3,21 3,21 (3,21 3,21 (3,2,1)

~

Table 6: The ranks of (RKDE, KDE, VKDE) usinDk_(fo|| f) as a performance measure. For
example, (2, 1, 3) means that KDE performs best, RKDE next, and VKD&two

method 1| method 2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Ry 26 46 67 90 95 96 99
Ro 94 74 53 30 25 24 21
T 26 46 53 30 25 24 21

p-value| 0.06 045 0.72 0.09 0.05 0.04 0.03
Ry 33 49 58 75 80 90 86
Ro 87 71 62 45 40 30 34
T 33 49 58 45 40 30 34

p-value| 0.14 056 0.93 042 0.28 0.09 0.15
Ry 38 70 79 91 95 96 99
R> 82 50 41 29 25 24 21
T 38 50 41 29 25 24 21

p-value| 0.23 0.60 0.30 0.08 0.05 0.04 0.03

RKDE KDE

RKDE VKDE

VKDE KDE

Table 7: The signed-rank statistics of the Wilcoxon signed-rank test édiligyas a performance
measure. IR; is larger tharR,, method 1 is better than method 2.

Proof We will prove the lemma by contradiction. SuppaBéxi) —g and®(x;) — h are linearly
dependent for all= 1,2, 3. Then, there exist®;, ;) # (0,0) fori = 1,2, 3 such that
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a1(®P(x1) —9) +B1(P(x1) —h) =0 (12)
a2(P(x2) — g) + B2(P(x2) —h) =0 (13)
a3(P(x3) —g) +B3(P(x3) —h) =0 (14)

Note thata; + 3 # O sinceg # h.
First consider the case, = 0. This givesh = ®(x;), andaj # 0 andas # 0. Then, (12) and
(13) simplify to

= B P Pog),
1 1

a3+ B3 B3
T s D(x3) — a—3¢(xz),

respectively. This is contradiction becau®éx;), ®(x2), and®(x3) are linearly independent by

Lemma 10 and g . g g
o1+ P1 3 1 O3+ 3 _

where(a1 +B1)/ay # 0.
Now consider the case wheoe # 0. Subtracting (13) multiplied by, from (12) multiplied
by a» gives
(012 —azBr)h = —az(0g +Br)P(x1) +az(02 + B2) P(X2).
In the above equation; 3, — 2B # 0 because this implies, (01 + 1) = 0 anday (a2 +B2) = 0,
which, in turn, impliesa, = 0. Thereforeh can be expressed As= A1 P(x1) +A2P(x2) where

o0+ Ba) Ay — ag(oz+B2)

A= , = .
YT iR —aoB’ YT aaBe—aoPr
Similarly, from (13) and (14)h = A3®P(x2) + AaP(x3) where

_a3(02+PB) , _ d2(d3+Ps)

A3 = 4= .
azPs—asfs’ a3 — asPz

Therefore, we have = A1 ®P(X1) +A2®P(X2) = A3P(X2) + AaP(X3). Again, from the linear indepen-
dence ofd(xy), P(xz2), andP(x3), we haver; = 0, A2 = A3, A4 = 0. However,A; = 0 leads to

o, =0.
Therefored(x;) — g and®(x;) — h are linearly independent for some {1,2,3}. [

Lemma 12 GivenXy,..., Xy, let D, C H be defined as

@n:{g‘g:ilwi-db(xi), w; >0, iiwizl}

ThenD, is compact.
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Proof Define

A= {(Wl,...,Wn) eR"

n
w; > 0, Wi:].},
2

and a mappingVv

n
W (wy,...,wy) EA— lei-CD(Xi) cH.
i=

Note thatA is compactW is continuous, and, is the image ofA underW. Since the continuous
image of a compact space is also compact (Munkres, 200 compact. |

9.1 Proof of Lemma 1

We begin by calculating the Gateaux differentialofVe consider the two case®(x) — (g+ah) =
0and®d(x) — (g+ah) # 0.

For ®(x) — (g+ah) #0,

3 (@)~ (g-+an).)

= WP~ (g4 ah)llr) - [ P0X) — (g4 )

= W00~ (gt ah)ll) /1000 — (g an) [,
2190 ~ g+ ah),

2,/I®(x) — (g-+ah)[2,
Y(P(x) — (g+ah)|s)

_ 2 (1000 a2~ 2(005) g+ ol )

= P(|P(x) = (g+ah),) -

2||@(x) — (g+ah)|l4

(1000 - @ranl) (o 2
= Lot ran, " (~(200 -+ alni )

= O(P(x) - (g+ah)|ly) - (—(®(x) - (g+ah),h), ). (15)
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For®(x) — (g+ah) =0,

3 p(10(x) — (g-+ath) )

i PUIPEO — (@ (@ 8]o) ~ p(IP(9) ~ (G aN) )
5—0 o)

o plI3Nls) —p(0)
6—0 be)

o P8l
50 o)

~ flimg 02, h=0
. p(d]lh
im0 PG - [Nl h#0

=0
= o(IIP(x) = (g+ah)[ls) - (—(®(x) — (g+ah),h),) (16)
where the second to the last equality comes from (Al) and the last equatityscivom the facts

thatd(x) — (g+ah) = 0and¢(0) is well-defined by (A2).
From (15) and (16), we can conclude that for ant € 4, andx € RY,

3 p(100x) — (g-+th) )
d(l00) = (g+ah)ls) - (=(P(x) - (g+ah),h),) (17)

Therefore,
) 0
6‘](91 h) = ai‘](g_’_ah)‘q:o

= aa< le |d(X g+ah)\|ﬂ))

109
n2 Rl p([[®(Xi) — (g+ah)| )

a=0

a=0

- 5 > $(I90X) - g+ ah)l) - (~(9() ~ (g-+ ah).h),,)

a=0

= ;"’(H@(xi) = Gll) - (®(Xi) —g.h),,
- _<i_i¢(\¢(xi) —9lls) - (®(X3) —9)’h>

= —(V(9).h),

H

The necessary condition fgrto be a minimizer of], that is,g = fARKDE, is thatdJ(g;h) =
0, VYhe H, which leads td/(g) = 0.
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9.2 Proof of Theorem 2

From Lemma 1V ( frkpe) = 0, that is,
10 ~ ~
= Zl¢(\|q’(xi) — frpel #7) - (P(Xi) — frepE) = 0.
i=
Solving for fripe, we havefrikpe = 1 Wi®(X;) where

n -1
Wi = (Z (I)(HCD(XJ) - fRKDEH_’]{)) ¢|(H(D(X,) — fRKDEH;}[)-
=1
Sincep is non-decreasingy; > 0. Clearlyy! ;w; =1

9.3 Proof of Lemma 4

Jis strictly convex o/ if forany 0< A < 1, andg,h € H withg+#h
JAAg+ (1—A)h) <AJ(9)+ (1 —A)I(h).

Note that

JAg+(1-A)h zlp IP(Xi) —=Ag— (1= M)hil5)
le IMP(Xi) =) + (1= N)(D(Xi) =) 5)
< jzlp(?\HCD(Xi) = 0llse + (A=) P(Xi) —hl|5)

< - Zlkp IP(Xi) = glls) + (L =N)p([P(Xi) =il )
= N(g) + (1= N)J(h).
The first inequality comes from the fact thats non-decreasing and

[A(P(Xi) =) + (1= A)(P(Xi) = )| 5y <A[PXi) =gl 4 + (1= M) [[@(Xi) = i[5,

and the second inequality comes from the convexitg.of

Under condition(i), p is strictly convex and thus the second inequality is strict, implylng
strictly convex. Under conditiofii), we will show that the first inequality is strict using proof by
contradiction. Suppose the first inequality holds with equality. Smeestrictly increasing, this
can happen only if

IA(P(Xi) = @) + (1= A)(P(Xi) = h)[|sr = Al|P(Xi) = Gl s + (L= M) [[®(Xi) = |5,

fori=1,...,n. Equivalently, it can happen only (fP(X;) —g) and(®(X;) — h) are linearly depen-

dentforalli=1,...,n. However, frorm > 3 and positive definiteness Kf there exist three distinct
Xi’s, sayZ1, Z,, andZ3 with positive definiteK’ = (ky(Zi, Z; ))I -1 By Lemma 11, it must be the
case that for someec {1,2,3}, (®(Z;) —g) and(P(Z;) — h) are linearly independent. Therefore,
the inequality is strict, and thubkis strictly convex.
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9.4 Proof of Theorem 5
First, we will prove the monotone decreasing property(d@®). Givenr € R, define

) = pr) — S1(r) + 20(1).

If ¢ is nonincreasing, then is a surrogate function g, having the following property (Huber,
1981):

u(r;r) =p(r) (18)
uxr) > p(x), vx (29)

Define
n

Qg 119) = 1 5 u(I2(X) gl 9%) ~ 1)

Note that sincep and¢ are continuousQ)(-; -) is continuous in both arguments.
From (18) and (19), we have

QM fl) == > u(ll®xi) 8o, lo(Xi) = £915)

Il
Sk Sk

M= M=

P(IP(Xi) — 1)

I
(&}
—
—
—
=z
N—

(20)

and

Q(g: ) = (II‘D( ) =0l [P = FH )

M= M-

(Y
Sk Sk

P(IIP(Xi) —gll4)

vge H (21)

<
—
«
=

The next iteratef +1 is the minimizer ofQ(g; f¥) since

n
flert) — Zw-(">q>(xi )

¢ (o ®]14)
= argminzl¢<uq><xi> — 10,0 lo(Xi) — gl
geH i=

= argminQ(g; f) (22)
geH

o o(lle(X ||5{) X
ZIZJ 1 i)

From (20), (21), and (22),
J(F0) = Q(FK; £10y > Q(fk+D: £k) > g(flk+l)y
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and thus](f®) monotonically decreases at every iteration. Sifizef )}, is bounded below
by 0, it converges.

Next, we will prove that every limit poinf* of {f(K} | belongs taS. Since the sequence
{f(")}f:1 lies in the compact seb, (see Theorem 2 and Lemma 12), it has a convergent subse-
quence{ f)1> . Let f* be the limit of{ f )} . Again, from (20), (21), and (22),

Q(f(k'“) k|+1) J(f k|+1)
< ( kl+l)
< Q(f k|+1, (ku))
<Qgf) vge 4,

where the first inequality comes from the monotone decreasing propedtyf 6f). By taking the
limit on the both side of the above inequality, we have

Q(f*; f*) <Q(g; f*) ,vVge #A.

Therefore,
f* =argminQ(g; f*)
geH
n
d([|PCXi) — F*[l4)
D(X;

= 25700 o) )

and thus

5 601900 10 (90X) - ) =0,

This impliesf* € §.

Now we will prove|| f® — s, — 0 by contradiction. Suppose if; || f® —g|| s ~ 0. Then,
there existg > 0 such that/K € N, 3k > K with infgcs || T — g|| s > €. Thus, we can construct an
increasing sequence of indicélg }i>_, such that infes || f*) —g||,, > eforalll =1,2,.... Since
{1 lies in the compact seD,, it has a subsequence converging to soheand we can
choosej such that| f ) — £1),, < /2. Sincef' is also a limit point of{ f W}, T € §. This is
a contradiction because

g < inf || — gl < [[F4) — 7], <g/2
ges
9.5 Proof of Theorem 8
Since the RKDE is given aﬁA‘RKDE(x; F) = fr(X), the influence function for the RKDE is

IF (%, X; Troe, F) = lim JRKOEXGFs) = frkpe(X F)

s—=0 S
— lim st(X) — fF (X)
s—0 S
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and thus we need to finft 2 lims o fFS;fF .

As we generalize the definition of RKDE frofigkpe to fr, the necessary condition( fripe)
also generalizes. However, a few things must be taken care of sinceevdealing with integral
instead of summation. Suppagendd are bounded b’ andB”, respectively. Given a probability
measurgl, define

9) = [ p(IP() ~ gl A @3)
From (17),

d
dJu(g;h) = a*Ju(ngo‘h)’a:o

- aa/p 1(x) — (g+ath) ) dp(x)

a=0

= [ 2p(190 ~ (g+ ah)]L) dux)

a=0

= 40190 = g+ ) - (~(®(x) — (g+ah). ) ) dux)
=~ [ 00196~ gllo) - (90 ~ g}, dux)
— (801900 ~gl)- (00 ~g).h)_dui)

H

The exchange of differential and integral is valid (Lang, 1993) sincehy fixedg,h € #, and
€ (_17 1)

a=0

P (1900~ (@+an )
¢ (Il00) — (g+ah)|) - [—(®(x) — (g+ah), h),,|
2 Loty aran Ty

B” ([IP(X)[ls¢ + 119l 5¢ + 1Dl 5¢) - [1l] ¢
B”- (T+gll s+ Il 57) - [[1l] s < oo

IN A IA

Sinced (|| P(x) — gl|4) - (P(x) —g) is strongly integrable, that is,
J1801960 ~glla) - (900 - 9) |, A < B < o,
its Bochner-integral (Berlinet and Thomas-Agnan, 2004)
9)2 [ 6(1®() ~glar) - (®() ~ g di(x)
is well-defined. Therefore, we have
~( [ #0190~ gl)- (00 - g) .

= —(Vu(9),h),,

H
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From the above condition fdi,, we have

0=Ve(fr)
=(1-9)-Ve(fr) +9\,(fr), Vs [0,1)

Therefore,

0 (l—s)-V,:(f,:s)JrIim S'V5X,(f|:s)
s—0

=lim
s—0

=lim VE ( st)'
s—0

Then,

O:Iirrgé (vps(fps) —Vp(fp)>

(1—9Ve (fr) + 5\, (fr) —Vp(fp))

Ve (fr) —VF(fF)> —ImVe(fe) +lmVs, (fr,)

:Iingé (V,:(f,:s) —VF(fF)> +lmVs, (fr)

—tim % (Ve () ~Ve(fe) ) + Im(190¢) — fe) - (90¢) ~ fe)

s—0

—lim 1(vp<fps> —vF<fF>) + (1P — ) - (D) — fe). (24)

where the last equality comes from the facts that— fr and continuity of.
LetU denote the mapping— f.. Then,

foe m%
s—0 S
:"moU(FJrs(é)(/;F)) —U(F)
=3U(F;8¢ —F) (25)
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wheredU (P; Q) is the Gateaux differential & at P with incrementQ. The first term in (24) is

I|m1<V|:(fFS) VF(fF))
= I|m1<VF(U(Fs))—VF(U(F))>
- mi((vFOU)(FS)—(VFoU)(FQ

= lim 1<(VF oU)(F+5(8¢ —F)) — (V& OU)(F)>

. 6(VF oU)(F; 8¢ —F)
Ve (U(F);8U(F; 8¢ —F))
= OV (fr; 1EF) (26)

where we apply the chain rule of Gateaux differen®G o H)(u; X) = 8G(H (u); dH (u; X)), in the
second to the last equality. Althoudh is technically not a Gateaux differential since the space of
probability distributions is not a vector space, the chain rule still applies.

Thus, we only need to find the Gateaux differentiaVief Forg,h € #

Ve (i) = m 2 (Ve(a +5:h) ~Ve())
= im 2 ( [001060 -5l (000 - g s:dF(x)
~ [ 801000 gl (00 - g)dF(x)
= im 2 [ (60190095l - (1900 gl ) - (900 - GaF(x)
~tim [ (801900 ~g-s-hl)-s-h ) dF i
= 1 2 (0019600~ ~ (1900 gl ) - (9~ GaF(x)

—h- [ lim o(|®(x) ~g—s-hll,) dF ()

_ _/<tIJ’(H¢(X)—9Ha{)-H‘D(X)—QH}[—UJ(!q’(X)—gHﬂ) . <h7¢(X)—g>}[>
o (x) - gll%, 1P(X) — 9l 5
(P(x) —g) dF (x)

~h- [ (1900~ gl dF () @7)

where in the last equality, we use the fact

0 Y (P(x) —g—s-h,h)
2B UI1P0X) =5 hll) =0 (0x) — g -hllg) - 2= = R
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and

o'(x) = dYx) _ Wx—px)

dx x X2

The exchange of limit and integral is valid due to the dominated convergeeceeth since under
the assumption that is bounded and Lipschitz continuous with Lipschitz constant

9([|®(x) —g—s-h[)| <, W¥x

and
I2 (6100095 11,0~ 60100 - g ) - (000~ )|

= 1001000 ~ g —5-til20) (100 ~glLo9)| - [P(X) ~

1
Sbl1se bl (10Ol + 19l )

L JIblls - (1RO o+ l19llo) < o0, 9.

By combining (24), (25), (26), and (27), we have

(o000 %l dF)
<fF, ey
b [ (S (000~ tel)- (000 tr) ) aF
= (@)~ )0 B(X) ~ Fe])
whereq(x) = xg/(x) — Q(x).

H

<
<

9.6 Proof of Theorem 9
With F, instead ofF, (11) becomes

(33 3 4(10(x )= te)

} n <an, ( ) an>}[‘ N ' N
+ ni;< |D(Xi) — fr || q(|P(Xi) — fe,[]) - (P(Xi) an))

= (®(X)—fr) - 0 ([ P(X') — fr,[]). (28)

Letri = [|®(Xi) — fr,[l, ' = [®(X) — fr [l y= 3L, 6(ri) and

o = (fr, ®(X) = T, ) qEQ).

Then, (28) simplifies to

y- an+21dl Xi) = fr,) =n-(®(X) — fr,) - d(r")
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Sincefg, = T, wi®(X;), we can see thd, has a form of_; a;®(X;) 4+ a’®d(x'). By substituting
this, we have

VZ aj®d(Xj) +y-a'dx)+ Zldl< )_kiqu)(Xk))
= n ((D(x’) —kzlwkqa(xk)) ().

SinceK’ is positive definited(X;)’s and®(x’) are linearly independent (see Lemma 10). Therefore,
by comparing the coefficients of ti(X)’s and®(x’) in both sides, we have

Y- o +dj - w- (idi) - wif/) n (29)

ya' =n-(r'). (30)
From (30),0’ = nd(r') /y. Letqgi = q(r;)/r and®(X;) — fr, = Th_; Wi P(Xk) Where

—W , k#£i
Wk’i:{ K #

1—w k=1.

Then,

=}
=}

:qi< S aj®P(X;) +a'd(x ZW"' >H
(

o Wi ik (X, Xi) + o sz (x Xk))

i
A
ﬂ_

1
e —w) Ka+ga'- (& —w) K
i(6—w)" (Ka+a'k))

whereK := (ks(Xi, X))'j_1 is a kernel matrixg denotes théth standard basis vector, aktl=
Ko(X', X1, Ko(X', Xn)] . By letting Q = diag([ch, ..., an]),

d=Q-(Ih—1w")(Ka+a’ K.
Thus, (29) can be expressed in matrix-vector form,

yo+Q-(In—1-wh(Ka+a'-K)—w- (17Q- (In— 1-w")(Ka + o’ -k'))
=—n-wo(r').

Thus,a can be found solving the following linear system of equations,

{V|n+(|n—1'WT)TQ- (Ilh—1-w")- K}a
= —no(rw—a'(lh—1-wHTQ- (Ih—1-whK'.
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Therefore,

IF (x,X'; fripe, Fn) = <¢(X), an>
H

— <¢(X)7idi¢(xi) +0‘/‘D(X/)>}[

— _iqiko(x,xi) + 'K (X, X').

The condition lim_,g an‘S = fg, is implied by the strict convexity af. GivenXy, ..., X, andx/,
defineDn,1 as in Lemma 12. From Theorem & s and fr, are inD,1. With the definition in
(23),

(@) = [ PUI®00 ~ ) dFs()

- 4o .ipwxi) ~gllar) +5PIP(X) — gll).

n

Note thatJr, ; uniformly converges td on Dn4, that is, sug., , [Jr,.(9) —I(9)| — 0 ass— O,
since for anyg € Dny1

|9k,<(9) —J(9)|

S 3 p0190X) ~ gl p(1900) 0l ~ 1 5 p(IO(K) 0l

B ii;p(llq’(xi) —dlls) + s p(IPX) —glls)
S n

S [ 2PE0Fs Py

= 2s-p(21)
where in the inequality we use the fact tipeis nondecreasing and

1P(X) =gl 5 < [|PC) + 19l ¢
<2t

sinceg € Dy, 1, and by the triangle inequality.

Now, lete > 0 andBg(fr,) C # be the open ball centered &t with radiuse. SinceDf ;, =
Dni1\ Be(fr,) is also compact, itz | J(9) is attained by somg* € DfF; by the extreme value
theorem (Adams and Franzosa, 2008). Sifi;és unique Mg = J(g*) —J(fg,) > 0. For sufficiently

smalls, SURcq, , 97, (9) —I(9)| < Me/2 and thus

Me

9~ = <Iks(9) <@+

Me

o Vg € Dny1.
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Therefore,

inf Jr.(9) > inf J(g)—M—
’ ge Dt

9€ Dy, n+1 2
Me
—J(g") - =
@)~

M

:J(an)+M€_7£
Me
=J(f —
(fr) +

> Ik, (fry)

Since the minimum o, . is not attained oDy, ,, fr, € Be(fr,). Sincee is arbitrary, limy_o fr,, =
fe,.
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