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Abstract

We discover a strong relation between two known learning et®adstream-based active learning
and perfect selective classification (an extreme case a$sdication with a reject option’). For
these models, restricted to the realizable case, we shoduatien of active learning to selective
classification that preserves fast rates. Applying thisicidn to recent results for selective clas-
sification, we derive exponential target-independentllabmplexity speedup for actively learning
general (non-homogeneous) linear classifiers when thedisitébution is an arbitrary high dimen-
sional mixture of Gaussians. Finally, we study the relatietween the proposed technique and
existing label complexity measures, including teachingetision and disagreement coefficient.
Keywords: classification with a reject option, perfect classificatisalective classification, ac-
tive learning, selective sampling, disagreement coefftcieeaching dimension, exploration vs.
exploitation

1. Introduction and Related Work

Active learnings an intriguing learning model that provides the learning algorithm with some con
trol over the learning process, potentially leading to significantly fastenilegr In recent years it
has been gaining considerable recognition as a vital technique for efifjdi@mplementing inductive
learning in many industrial applications where abundance of unlabeledxiata, and/or in cases
where labeling costs are high. In this paper we expose a strong relatiwedreactive learning
andselective classificatiranother known alternative learning model (Chow, 1970; El-Yaniv and
Wiener, 2010).

Focusing on binary classification in realizable settings we consider sthstdzsam-based active
learning which is also referred to amline selective samplindtlas et al., 1990; Cohn et al., 1994).
In this model the learner is given an error object&vand then sequentially receives unlabeled
examples. At each step, after observing an unlabeled exampie learner decides whether or
not to request the label of The learner should terminate the learning process and output a binary
classifier whose true error is guaranteed to be at medth high probability. The penalty incurred
by the learner is the number of label requests made and this number is calladegheomplexity
A label complexity bound 0O(dlog(d/¢)) for actively learninge-good classifier from a concept
class with VC-dimensioml, provides an exponential speedup in terms (f felative to standard
(passive) supervised learning where the sample complexity is typioédlye).

The study of (stream-based, realizable) active learning is paved witlinteresting theoretical
results. Initially, only a few cases were known where active learningiges significant advan-
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tage over passive learning. Perhaps the most favorable result veepamential label complexity
speedup for learning homogeneous linear classifiers where the (lisegdyable) data is uniformly
distributed over the unit sphere. This result was manifested by varidgberawsing various anal-
ysis techniques, for a number of strategies that can all be viewed in hm@si@pproximations or
variations of the “CAL algorithm” of Cohn et al. (1994). Among these studies earlier theoreti-
cal results (Seung et al., 1992; Freund et al., 1993, 1997; Fine e0@R; &ilad-Bachrach, 2007)
considered Bayesian settings and studied the speedup obtained by tgdo@Tommittee (QBC)

algorithm. The more recent results provided PAC style analyses (Dasgiugita 2009; Hanneke,
2007a, 2009).

Lack of positive results for other non-toy problems, as well as variddgianal negative re-
sults that were discovered, led some researchers to believe that aativmdeis not necessarily
advantageous in general. Among the striking negative results is Dasgupggtive example for
actively learning general (non-homogeneous) linear classifiera jauao dimensions) under the
uniform distribution over the sphere (Dasgupta, 2005).

A number of recent innovative papers proposed alternative modedtioe learning. Balcan
et al. (2008) introduced a subtle modification of the traditional label complebitiition, which
opened up avenues for new positive results. According to their newititadi of “non-verifiable”
label complexity, the active learner is not required to know when to stop dneiifey process with a
guaranteed-good classifier. Their main result, under this definition, is that activeilegirs asymp-
totically better than passive learning in the sense that ofilye) labels are required for actively
learning are-good classifier from a concept class that has a finite VC-dimensionthAnecesult
they accomplished is an exponential label complexity speedup for (mifiatste) active learning
of non-homogeneous linear classifiers under the uniform distributiontbgehe unit sphere.

Based on Hanneke’s characterization of active learning in terms of tkadictement coeffi-
cient” (Hanneke, 2007a), Friedman (2009) recently extended the iBetcal. results and proved
that a target-dependent exponential speedup can be asymptoticallyeacfoe a wide range of
“smooth” learning problems (in particular, the hypothesis class, the ins&paee and the dis-
tribution should all be expressible by smooth functions). He proved th@grusuch smoothness
conditions, for any target hypothedis, Hanneke’s disagreement coefficient is bounded above in
terms of a constart(h*) that depends on the unknown target hypothksi@nd is independent of
o ande). The resulting label complexity i® (c(h*) d polylog(d/e)) (Hanneke, 2011b). This is a
very general result but thrget-dependentonstant involved in this bound is only guaranteed to
be finite.

With this impressive progress in the case of target-dependent boundstiee learning, the
current state of affairs in thearget-independertounds for active learning arena leaves much to be
desired. To date the most advanced result in this model, which was alreselytially established
by Seung et al. and Freund et al. more than fifteen years ago (Seaindl€02; Freund et al., 1993,
1997), is still a target-independent exponential speed up bound foodeneous linear classifiers
under the uniform distribution over the sphere.

The other learning model we contemplate that will be shown to have strong tetite learn-
ing, isselective classificatigiwhich is mainly known in the literature as ‘classification with a reject
option.” This old-timer model, that was already introduced more than fiftysyago (Chow, 1957,
1970), extends standard supervised learning by allowing the classifipt tmt from predictions in
cases where it is not confident. The incentive is to increase classificatiahility over instances
that are not rejected by the classifier. Thus, using selective classificatéocan potentially achieve
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a lower error rate using the same labeling “budget.” The main quantities thistatbrize a selective
classifier are its (true) error and coverage rate (or its complement, tletionajeate).

There is already substantial volume of research publications on seleletbgification, that kept
emerging through the years. The main theme in many of these publications is thenenpdéion of
certain reject mechanisms for specific learning algorithms like supportrveetchines and neural
networks. Among the few theoretical studies on selective classificatior, dhe various excess risk
bounds for ERM learning (Herbei and Wegkamp, 2006; Bartlett andkérag, 2008; Wegkamp,
2007), and certain coverage/risk guarantees for selective ensemtblednéFreund et al., 2004).
In a recent work (El-Yaniv and Wiener, 2010) the trade-off betwerar and coverage was exam-
ined and in particular, a new extreme case of selective learning was ing@dun this extreme
case, termed here “perfect selective classification,” the classifieraagilabeled examples and is
required to instantly output a classifier whose true error is perfectlywihocertainty. This is of
course potentially doable only if the classifier rejects a sufficient portidghefnstance space. A
non-trivial result for perfect selective classification is a high prdigtower bound on the clas-
sifier coverage (or equivalently, an upper bound on its rejection r&a¢h bounds have recently
been presented in El-Yaniv and Wiener (2010).

In Section 3 we present a reduction of active learning to perfect sedeclissification that
preserves “fast rates.” This reduction enables the luxury of angydymamicactive learning
problems asstatic problems. Relying on a recent result on perfect selective classificlktom
El-Yaniv and Wiener (2010), in Section 4 we then apply our reductioncamg¢lude that general
(non-homogeneous) linear classifiers are actively learnable at erpai(in 1/€) label complexity
rate when the data distribution is an arbitrary unknown finite mixture of high diroeal Gaus-
sians. While we obtain exponential label complexity speedup/& We incur exponential slow-
down ind?, whered is the problem dimension. Nevertheless, in Section 5 we prove a lower bound
of Q((logm)(@-1/2(1 4+ 0(1)) on the label complexity, when considering the class of unrestricted
linear classifiers under a Gaussian distribution. Thus, an exponential@hn ind is unavoidable
in such settings.

Finally, in Section 6 we relate the proposed technigue to other complexity nesdfsuractive
learning. Proving and using a relation to tleaching dimensiofGoldman and Kearns, 1995) we
show, by relying on a known bound for the teaching dimension, thatgieséective classification
with meaningful coverage can be achieved for the case of axis-aliggotangles under a prod-
uct distribution. We then focus on Hannekdisagreement coefficieand show that the coverage
of perfect selective classification can be bounded below using thereesagnt coefficient. Con-
versely, we show that the disagreement coefficient can be bounded abing any coverage bound
for perfect selective classification. Consequently, the results here timgiythe disagreement co-
efficient can be sufficiently bounded to ensure fast active learninthéocase of linear classifiers
under a mixture of Gaussians.

2. Active Learning and Perfect Selective Classification

In binary classificatiorthe goal is to learn an accurabinary classifier h: X — {£1}, from a

finite labeled training sample. Hepéis some instance space and the standard assumption is that
the training sampleSy, = {(xi,yi)}{";, containingm labeled examples, is drawn i.i.d. from some
unknown distributionP(X,Y) defined ovetx x {£1}. The classifieh is chosen from some hy-
pothesis clasg/. In this paper we focus on threalizable settingvhereby labels are defined by
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some unknownarget hypothesis*he #. Thus, the underlying distribution reducesR(X). The
performance of a classifiéris quantified by its true zero-oreror, R(h) = Pr{h(X) # h*(X)}. A
positive result for a classification proble, P) is a learning algorithm that given an error target
and a confidence parametecan output, based d&,, an hypothesit whose erroR(h) < g, with
probability of at least + 6. A boundB(g,8) on the sizam of labeled training sample sufficient for
achieving this is called theample complexitgf the learning algorithm. A classical result is that
any consistent learning algorithm has sample complexit@@f(dlog(1) +log(3))), whered is
the VC-dimension of/ (see, e.g., Anthony and Bartlett, 1999).

2.1 Active Learning

We consider the following standard active learning model. In this model tmedesequentially
observes unlabeled instances, X, ..., that are sampled i.i.d. frofR(X). After receiving each
Xi, the learning algorithm decides whether or not to request its lailfgl), whereh* € # is an
unknown target hypothesis. Before the start of the game the algorithiovsipd with some desired
error ratee and confidence levé. We say that the learning algorithactively learnedhe problem
instance(#,P) if at some point it can terminate this process, after obsermnigstances and
requestingk labels, and output an hypothedis= # whose erroR(h) < g, with probability of
at least - 8. The quality of the algorithm is quantified by the numkef requested labels, which
is called thdabel complexity A positive result for a learning proble(t, P) is a learning algorithm
that can actively learn this problem for any giveandd, and for everyh*, with label complexity
bounded above bl (g, d,h*). If there is a label complexity bound that@ polylog(1/¢€)) we say
that the problem iactively learnable at exponential rate

2.2 Selective Classification

Following the formulation in El-Yaniv and Wiener (2010) the goal in seleathassification is to
learn a pair of functiongh,g) from a labeled training sampl&, (as defined above for passive
learning). The paith,g), which is called aelective classifierconsists of a binary classifiare #,

and aselection functiong : X — {0, 1}, which qualifies the classifidras follows. For any sample

x € X, the output of the selective classifier(is g)(x) = h(x) iff g(x) = 1, and(h,g)(x) = abstain

iff g(x) =0. Thus, the functiony is a filter that determines a sub-domain.sfover which the
selective classifier will abstain from classifications. A selective class#fifrus characterized by
its coverage @(h,g) £ Ep{g(x)}, which is theP-weighted volume of the sub-domain &fthat is

not filtered out, and iterror, R(h,g) = E{I(h(X) # h*(X))-g(X)}/®(h,g), which is the zero-one
loss restricted to the covered sub-domain. Note that this is a “smooth” djeatom of passive
learning and, in particulaR(h,g) reduces tdR(h) (standard classification) g(x) = 1. We expect

to see a trade-off betwedR({h,g) and®(h,g) in the sense that smaller error should be obtained by
compromising the coverage. A major issue in selective classification is howtitoadly control

this trade-off. In this paper we are concerned with an extreme case ofatiesoff whereby(h, g)

is required to achieve a perfect scorezefo error with certainty This extreme learning objective

is termedperfect learningin El-Yaniv and Wiener (2010). Thus, forerfect selective classifier
(h,g) we always haveR(h,g) = 0, and its quality is determined by its guaranteed coverage. A
positive result for (perfect) selective classification problghh P) is a learning algorithm that uses

a labeled training sampl&, (as in passive learning) to output a perfect selective classtigy)

for which ®(h,g) > Bo(#,0,m) with probability of at least 1§, for any givend. The bound
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Bo = Bo(H,0,m) is called acoverage boundor coverage ratgand its complement, 4 Bo, is

called arejection boundor rate). A coverage rat®, =1— O(%og(m)) (and the corresponding
1— Bo rejection rate) are qualified &ast

2.3 The CAL Algorithm and the Consistent Selective Strategy (CSS)

The major players in active learning and in perfect selective classificatiotha CAL algorithm
and the consistent selective strategy (CSS), respectively. To deémewre need the following
definitions.

Definition 1 (Version space, Mitchell, 1977)Given an hypothesis clagg and a training sample
Sm, theversion spac¥ Sy, g, is the set of all hypotheses # that classify § correctly.

Definition 2 (Disagreement set, Hanneke, 2007a; El-Yaniv and Wieng2010) LetG C H. The
disagreement set.r.t. G is defined as

DIS(G) 2 {xe X:3h;,h, € G st h(X)#mX)]}.

Theagreement sat.r.t. G is AGRG) = X \ DIS(G).

The main strategy for active learning in the realizable setting (Cohn et al4) 19% request
labels only for instances belonging to the disagreement set and outp(ttarsistent) hypothesis
belonging to the version space. This strategy is often calle@#iealgorithm A related strategy
for perfect selective classification was proposed in El-Yaniv and &ié2010) and termedonsis-
tent selective strategy (CS$&iven a training seb,, CSS takes the classifibtto be any hypothesis
inVSy g, (i.e., a consistent learner), and takes a selection fungtibiat equals one for all points
in the agreement set with respecM§;,; g , and zero otherwise.

3. From Coverage Bound to Label Complexity Bound

In this section we present a reduction from stream-based active ledampegfect selective clas-
sification. Particularly, we show that if there exists fdra perfect selective classifier with a fast
rejection rate oD(polylogm)/m), then the CAL algorithm will actively lears/ with exponential
label complexity rate oO(polylog(1/e)).

Lemma 3 Let Sy = {(X1,¥1),---,(Xm,Ym)} be a sequence of m labeled samples drawn i.i.d. from
an unknown distribution fX) and let $= {(x1,¥1),...,(X,¥i)} be the i-prefix of & Then, with
probability of at leastl — & over random choices of;$the following bound holds simultaneously
foralli=1,.... m—1,

6 1
. _ [log,(i)]
PI‘{XH_1€D|S(VSH7S)|S|} <1-Bo <,7‘[,| N )72 2 )7

where By(#,0,m) is a coverage bound for perfect selective classification with respect titggis
class#, confidence& and sample size m .
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Proof Forj=1,...,m, abbreviatDISj £ DIS(VS, s ) andAGR = AGRV S, g ). By definition,
DIS; = X \ AGR,. By the definitions of a coverage bound and agreement/disagreememnwisiets
probability of at least -  over random choices &

Bo(H,9, j) < Pr{xe AGR||Sj} = Pr{x ¢ DIS;j|S;} = 1—Pr{x € DIS;j|S;}.
Applying the union bound we conclude that the following inequality holds simetiasly with high

probability fort =0, ..., |log,(m) | — 1,

o)
<1-— —— 2.
Pr{xx,1 € DISx|Sx} <1—Bo <,‘7‘[, |ng<m)’2> Q)
Forallj <i, S C §, soDIS C DIS;. Therefore, since the samples3q are all drawn i.i.d., for any
j <i,
Pr{x1 € DIS|S} < Pr{x1 € DIS||S;} = Pr{xj;1 € DISj|S;} .
The proof is complete by settinig= 21'°%()} < i and applying inequality (1). [ |

Lemma 4 (Bernstein’s inequality Hoeffding, 1963)Let X, ..., X, be independent zero-mean ran-
dom variables. Suppose thag| < M almost surely, for all i. Then, for all positive t,

n . B t2/2
Pr{izlx' >t} = EXp( zE{xJ?}+Mt/3> '

Lemmab5 LetZ,i=1,...,m, be independent Bernoulli random variables with success probabili-
ties p. Then, for any < & < 1, with probability of at least. — 9,

_i(zi —E{Z}) < \/2|n%z pi+§|n%.

Proof DefineW = Z —E{Z} = Z — p;. Clearly,

E{W}=0, [W|<1 E{W}=p(l-p).

Applying Bernstein’s inequality (Lemma 4) on tki¢,

L t2/2 _ t2/2
Pr{i;w,>t} : exp(zE[V\/jz}th/B)eXp(Zpi(lpi)+t/3>

Equating the right-hand side &oand solving foit, we have

t2/2 1 , 2.1 1
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and the positive solution of this quadratic equation is

1.1 1,1 2.1
éI S \/gln S+2Inazp. In +\/2In62p,

Lemmab6 Let 4,25,...,Zy be a high order Markov sequence of dependent binary random vari-
ables defined in the same probability space. LekX ..., Xy be a sequence of independent random
variables such that,
PI’{Zi = 1|Zi_1, o Z1, X1, . ,Xl} = PI’{Zi = 1’)(5_1, e ,Xj_} .
Define R 2 Pr{Z; =1}, and fori=2,...,m,
P2Pr{Z=1X_1,....X}.

Let by, b,...bm be given constants independent af %, ..., Xm.! Assume that;”< b; simultane-
ously for all i with probability of at leastL— /2, 6 € (0,1). Then, with probability of at least

1-9,
m m 2 2. 2
Zi<Sb+4/2In=N bi+=In<.
LR TR

We proceed with a direct proof of Lemma 6. An alternative proof of this lemumsig super-
martingales, appears in Appendix B.
Proof Fori=1,...,m, letW be binary random variables satisfying

a b+ IR <b)-(R—b)

PHW =1/Z = 1,X_1,...,%} 5 ,
|

i — P
PfW =1|Z = 0,X_1,..., X1} £ max{t; P' ,o},
—

PF{W = 1|VV|_1, ... ,Wl,Xi_l, ... ,Xl} = Pr{VV. = 1’)(5_1, ... ,Xl}.
We notice that

Pr{W = 1|Xi_1,..., Xt}

PrW = 1,Z = 1[X_1,..., X}
PrW = 1,Z = 0X_1,..., X1}
PrW = 1/Zi = 1,X_1,..., X} PHZi = 1[X_1,..., X1}
4 PHW =1Zi = 0,X_1,..., X} P{Z = 0X_1,..., X1}
{P.#ipl(l—P) b, R<b;

2-P+0=h; else.

+

Hence the distribution of eadM is independent oX;_1, ..., X1, and theM are independent Bernoulli
random variables with success probabilitigsBy construction if®, < b; then

P{W =1z =1} = / PfW =1|Z =1, %_1,.... X%} =1
X

1. Precisely we require that each of thevere selected befod§ are chosen
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By assumptior® < b; for all i simultaneously with probability of at least1d/2. Thereforez; <W
simultaneously with probability of at least-16/2. We now apply Lemma 5 on th&f. The proof
is then completed using the union bound. [ |

Theorem 7 Let §, be a sequence of m unlabeled samples drawn i.i.d. from an unknown disimibu
P. Then with probability of at least— & over choices of § the number of label requests k by the
CAL algorithm is bounded by

k< W(}[,é,m)+\/2In§lv(}[,6,m)+§ln§,

where

m be) .
Y _ __ =7 ollogy(i)]
CELESY (1 Bo (}[, a2 ))

and Byp(H,0,m) is a coverage bound for perfect selective classification with respect wthggis
class#, confidence& and sample size m .

Proof According to CAL, the label of samplg will be requested iffs; € DIS(VS, g ,). For

i=1,...,m, letZ be binary random variables such tiZa& 1 iff CAL requests a label for sample
;. Applying Lemma 3 we get that for all= 2, ..., m, with probability of at least + 6/2

5 .
1S — . V<1 llogo(i-1)] )
PH{zZ =1|S_1} Pr{x e DIS(VSy 5 ,)IS 1} <1-Bo (ﬂ, 2Iogz(m)’2
Fori =1, Bo(#,d,1) = 0 and the above inequality trivially holds. An application of Lemma 6 on
the variable; completes the proof. [ |

Theorem 7 states an upper bound on the label complexity expressed inofemm#he size of
the sample provided to CAL. This upper bound is very convenient foctijranalyzing the active
learning speedup relative to supervised learning. A standard labellextgpupper bound, which
depends on /g, can be extracted using the following simple observation.

Lemma 8 (Hanneke, 2009; Anthony and Bartlett, 1999)Let S, be a sequence of m unlabeled
samples drawn i.i.d. from an unknown distribution P. Eebe a hypothesis class whose finite VC
dimension is d, and letand d be given. If

4 12 2
m>—-(din—+In< ),
€ € o)

then, with probability of at least — 8, CAL will output a classifier whose true error is at mest

Proof Hanneke (2009) observed that since CAL requests a label whetheveris a disagreement
in the version space, it is guaranteed that after procesaiegamples, CAL will output a clas-
sifier that is consistent with all then examples introduced to it. Therefore, CAL is a consistent
learner. A classical result (Anthony and Bartlett, 1999, Theorem 418pisany consistent learner
will achieve, with probability of at least 4 d, a true error not exceedirgafter observing at most

4 (dIn2+1n2) labeled examples. u
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Theorem 9 LetH be a hypothesis class whose finite VC dimension is d. If the rejection ra&f C
(see definition in Section 2.3) isé}%), then(#,P) is actively learnable with exponential

label complexity speedup.

Proof Plugging this rejection rate intd (defined in Theorem 7) we have,

m

"Tog,(m) 2 i

Applying Lemma 41 we get
W(H,5,m) =0 <po|ylog ( mlog(m) )) :

By Theorem 7k = O(polylog(¥)), and an application of Lemma 8 concludes the proof. W

4. Label Complexity Bounding Technique and Its Applications

In this section we present a novel technique for deriving target-inatbgrd label complexity bounds
for active learning. The technique combines the reduction of Theoremd7aageneral data-
dependent coverage bound for selective classification from EWYamd Wiener (2010). For some
learning problems it is a straightforward technical exercise, involvingdiftension calculations,
to arrive with exponential label complexity bounds. We show a few applicaidd this technique

resulting in both reproductions of known label complexity exponential r@desell as a new one.
The following definitions (El-Yaniv and Wiener, 2010) are requiredifidroducing the technique.

Definition 10 (Version space compression setffor any hypothesis clas#/, let S, be a labeled
sample of m points inducing a version space,)\ss Theversion space compression,s8tC Sy,
is a smallest subset ofSatisfying V§ g, =V Sy g. The (unique) numbet = A(#H,Sy) = [S| is
called the version space compressionsze

Remark 11 Our "version space compression set” is precisely Hanneke’s "mininggacifying
set” (Hanneke, 2007b) for f on U with respect to V, where,

f=h", U=S, V=%H[S, (see Definition23)

Definition 12 (Characterizing hypothesis) For any subset of hypotheségsC #, thecharacteriz-
ing hypothesiof G, denoted §(x), is a binary hypothesis ovex (not restricted ta#/) obtaining
positive values over the agreement set AGR(Definition 2), and zero otherwise.

Definition 13 (Order-n characterizing set) For each n, letz,, be the set of all possible labeled
samples of size n (all n-subsets, each witl2alpbossible labelings). The ordergharacterizing set
of #(, denotedf,, is the set of all characterizing hypothesggﬁ), whereG C # is a version space
induced by some memberXf.
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Definition 14 (Characterizing set complexity) Let 7, be the order-n characterizing set #f. The
order-ncharacterizing set complexitf #, denotedy(H,n), is the VC-dimension of;,.

The following theorem, credited to (El-Yaniv and Wiener, 2010, Theo2dy is a powerful
data-dependent coverage bound for perfect selective learnipgessed in terms of the version
space compression set size and the characterizing set complexity.

Theorem 15 (Data-dependent coverage guarantedjor any m, let a,a,...,an € R be given,
such that a> 0and Y, & < 1. Let(h,g) be perfect selective classifier (CSS, see Section 2.3).
Then, Rh,g) =0, and for any0 < & < 1, with probability of at leasfl. — J,

2 2em 2
>1-— = - I
®(h,g) >1 - {y(}[ n)In. (y(}[,n)) +In aﬁé] ,
wheref is the size of the version space compression seyyaff i) is the orderf characterizing
set complexity of{.

Given an hypothesis clas®, our recipe to deriving active learning label complexity bounds
for A is: (i) calculate botmandy(#,f); (ii) apply Theorem 15, obtaining a bour} for the
coverage; (iii) plugBe in Theorem 7 to get a label complexity bound expressed as a summation;
(iv) Apply Lemma 41 to obtain a label complexity bound in a closed form.

4.1 Examples

In the following example we derive a label complexity bound for the conclgsis of thresholds
(linear separators ifR). Although this is a toy example (for which an exponential rate is well
known) it does exemplify the technique, and in many other cases the appiicdtibe technique

is not much harder. Let! be the class of thresholds. We first show that the corresponding rersio
space compression set size 2. Assume w.l.0.g. thdt*(x) = I(x > w) for somew € (0,1). Let

x_ 2 max{x € Synlyi = —1} andx, £ min(x € Sylyi = +1). At least one of_ or x, exist. Let
Sh=1{(x-,=1),(x+,+1)}. ThenVSy g, =V Sy g , andri= |§,| < 2. Now,y(#,2) = 2, because
the order-2 characterizing set#f is the class of intervals iR whose VC-dimension is 2. Plugging
these numbers in Theorem 15, and using the assignenent, = 1/2,

B 2 4] In(m/d)
Bo (#,0,m) = l_ﬁ [2In(em)+|n 6] =1-0 <m> .
Next we plugBe in Theorem 7 obtaining a raw label complexity

w}[’é’m):i_i(l_Bq’(}[’Zlogi() Hliogy(i) )) ZlO<|n|ogz |/6)>.

Finally, by applying Lemma 41, with = 1 andb = log, m/d, we conclude that

W(H,5,m) =0 (In2 (g)) .

Thus,# is actively learnable with exponential speedup, and this result applieg thsaribution. In
Table 1 we summarize theahdy(#,A) values we calculated for four other hypothesis classes. The
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Hypothesis class Distribution n-" Y(H,A)
Linear separators iR any 2 2
Intervals inR any (target-dependent) 4 4
Linear separators iR®> any distribution on the unit 4 4

circle (target-dependent)
Linear separators iR? mixture of Gaussians O((logm)4-1/8) O(A%/2+1)

Balanced axis-aligned  product distribution O(log(dm/d)) O(dhlogn)
rectangles irRY

Table 1: Then'andy of various hypothesis spaces achieving exponential rates.

last two cases are fully analyzed in Sections 4.2 and 6.1, respectivelheé-other classes, wheye
andnrare constants, it is clear (Theorem 15) that exponential rates areaxht&ife emphasize that
the bounds for these two classes are target-dependent as they thgu8g include at least one
sample from each class.

4.2 Linear Separators inRY Under Mixture of Gaussians

In this section we state and prove our main example, an exponential labelexitynjpound for
linear classifiers imRkY.

Theorem 16 Let # be the class of all linear binary classifiersRf', and let the underlying distri-
bution be any mixture of a fixed number of GaussiarR4nThen, with probability of at least— &
over choices of § the number of label requests k by CAL is bounded by

B (log m)d2+l
k=0 <5<d+s>/z -
Therefore by Lemma 8 we getkO (poly(1/d) - polylog(1/¢)).

Proof The following is a coverage bound for linear classifierslidimensions that holds in our
setting with probability of at least4 & (El-Yaniv and Wiener, 2010, Corollary 33),

logm® 1
*(hg=1-0 <( Ogr;n = 5(d+3)/2> - (2)

2. Target-dependent with at least one sample in each class.
3. This bound uses the fact that for linear classifies dimensions1= O ((log m)d*1/6) (El-Yaniv and Wiener, 2010,

Lemma 32), and that(#,A) = O (ﬁd/2+1> (El-Yaniv and Wiener, 2010, Lemma 27).
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Plugging this bound in Theorem 7 we obtain,

W(H,8,m) = ii <1—Bq, (ﬂ’zmi(wzuogzw»
_ Zo(logl <Iog%<m>>z>
logy(m)\ 7 I (log(i))*
o(( 5 > 20 )

Finally, an application of Lemma 41 with= d? andb = 1 completes the proof. |

5. Lower Bound on Label Complexity

In the previous section we have derived an upper bound on the |labglexity of CAL for various
classifiers and distributions. In the case of linear classifie®®%inve have shown an exponential
speed up in terms of/E but also an exponential slow down in terms of the dimensdioim passive
learning there is a linear dependency in the dimension while in our casee(d&efitning using
CAL) there is an exponential one. Is it an artifact of our bounding tegfmor a fundamental
phenomenon?

To answer this question we derive an asymptotic lower bound on the laibglexity. We show
that the exponential dependencydris unavoidable (at least asymptotically) for every bounding
technique when considering linear classifier even under a single Gajssitopic) distribution.
The argument is obtained by the observation that CAL has to requestladadogy point on the
convex hull of a sampl&;. The bound is obtained using known results from probabilistic geometry,
which bound the first two moments of the number of vertices of a random peyader the
Gaussian distribution.

Definition 17 (Gaussian polytope)Let X, ..., Xm be i.i.d. random points iR with common stan-
dard normal distribution (with zero mean and covariance ma%lia(). A Gaussian polytopeqPis
the convex hull of these random points.

Denote byfy(Py) the number ok-faces in the Gaussian polytopg. Note thatfy(Py) is the number
of vertices inPy,. The following two Theorems asymptotically bound the average and var@nce

fi(Pm).

Theorem 18 (Hug et al., 2004, Theorem 1.1} et X, ...,Xm be i.i.d. random points iR? with
common standard normal distribution. Then

Efi(Pm) = Coea (logm) 7 - (1+0(2))

as m— oo, where ¢ 4) is a constant depending only on k and d.
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Theorem 19 (Hug and Reitzner, 2005, Theorem 1.1)et Xy, ..., Xy, be i.i.d. random points ifR9
with common standard normal distribution. Then there exists a positivéartregg, depending only
on the dimension, such that

Var (fx(Pm)) < cd(logm)LEl
forallk € {0,...,d—1}.

We can now use Chebyshev’s inequality to lower bound the number ofe®iti€y, (fo(Pm)) with
high probability.

Theorem 20 Let X, ..., Xm be i.i.d. random points iR with common standard normal distribution
andd > 0 be given. Then with probability of at leakt- ,

fo(Pm) > (cd (Iogm)% -

as m— oo, where @ and&y are constants depending only on d.
Proof Using Chebyshev’s inequality (in the second inequality), as well as Ehe@® we get

Pr(fo(Pm) > Efo(Pn) —t) = 1—Pr(fo(Pm) <Efo(Pn)—t)
> 1—Pr(|fo(Pn) —Efo(Pm)| >1t)

Var (fo(P, (o d-1
> 1—(tz(m))21—t2(|09m) 2
Equating the RHS to 4 d and solving fort we get
d—1
(logm) 2
t= —
“3
Applying Theorem 18 completes the proof. |

Theorem 21 (Lower bound) Let # be the class of linear binary classifiers B, and let the
underlying distribution be standard normal distributionltY. Then there exists a target hypothesis
such that, with probability of at least— & over choices of § the number of label requests k by

CAL is bounded by

k> %(logm)%(uo(l)).

as m— o, where g is a constant depending only on d.

Proof Let us look at the Gaussian polytopg induced by the random samphs,. As long as all
labels requested by CAL have the same value (the case of minuscule mincsiy wia note that
every vertex ofP, falls in the region of disagreement with respect to any subsg&,d¢hat do not
include that specific vertex. Therefore, CAL will request label attléaseach vertex oPy,. For

sufficiently largem, in particular,
4

264 \ 1
logm > () :
cav/d
we conclude the proof by applying Theorem 20. |
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6. Relation to Existing Label Complexity Measures

A number of complexity measures to quantify the speedup in active learniggtdegen proposed.
In this section we show interesting relations between our techniques andehknewn measures,
namely the teaching dimension (Goldman and Kearns, 1995) and the disagtemefficient (Han-
neke, 2009).

Considering first the teaching dimension, we prove in Lemma 26 that the nefz@e compres-
sion set size is bounded above, with high probability, by the extendeditigadimension growth
function (introduced by Hanneke, 2007b). Consequently, it follows pibéect selective classifi-
cation with meaningful coverage can be achieved for the case of axigdliggectangles under a
product distribution.

We then focus on Hanneke’s disagreement coefficient and show ordine84 that the coverage
of CSS can be bounded below using the disagreement coefficient. ISelyyén Corollary 39 we
show that the disagreement coefficient can be bounded above usimgarage bound for CSS.
Consequently, the results here imply that the disagreement coeffigiehgrows slowly with J/¢
for the case of linear classifiers under a mixture of Gaussians.

6.1 Teaching Dimension

The teaching dimension is a label complexity measure proposed by GoldmareanusK1995).
The dimension of the hypothesis clagsis the minimum number of examples required to present
to any consistent learner in order to uniquely identify any hypothesis inidiss.c

We now define the following variation of the extended teaching dimensionediieg 1995)
due to Hanneke. Throughout we use the notatigff) = hy(S) to denote the fact that the two
hypotheses agree on the classification of all instanc8s in

Definition 22 (Extended Teaching Dimension, Hegeibs, 1995; Hanneke, 2007b) etV C A, m>
o,Uexm

VieH, XTD(f,V,U)=inf{t|GRCU:|{heV :hR) =f(R)}| <1IA|IR <t}.
Definition 23 (Hanneke, 2007b)For V C 4, V[Sy] denotes any subset of V such that
VheV, | {h’ eVI[Sn (S = h(sn)} | =1

Claim 24 Let S, be a sample of size m{ an hypothesis class, ad=n(#, S;), the version space
compression set size. Then,
XTD(h*, H[Sy|,Sn) = f.

Proof Let & C Sy be a version space compression set. Assume, by contradiction, thagxistre
two hypotheses, h, € H[Sy|, each of which agrees on the given classifications of all examples
in &. Thereforehy,h; € VS, g, and by the definition of version space compression set, we get
h1,h, €V Sy 5, Hence,

[{he H[Sn] - h(Sn) =h"(Sn)}| > 2

which contradicts definition 23. Therefore,

[{he H[Sy] :h(S) =h*(S)}| < 1,
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and
XT D(N", 7S], Sm) < |Sal =

LetRC Sy be any subset of siz& < fi. Consequently/ S;; 5 CV Sy g, and there exist hypothesis,
h" € VS, g, that agrees with all labeled examplesRnbut disagrees with at least one example in
Sh. Thus,

W (Sn) # h*(Sw),

and according to definition 23, there exist hypothdseh, € H[Sy] such thah(Sy) = W (Sy) #
h*(Sn) = h2(Sm)- Buthi(R) = hy(R) = h*(R), so

[{he V[Su :h(R) =W (R)}| > 2
It follows thatX T D(h*, H[Sy|, Sm) > f. [ |

Definition 25 (XTD Growth Function, Hanneke, 2007b) Form> 0,V C #, 5 € [0, 1],
XTD(V,P,m,3) =inf {t|Vh € #,Pr{XTD(h,V[Sy],Sn) >t} < &}.

Lemma 26 Let # be an hypothesis class, P an unknown distribution, &nd 0. Then, with
probability of at leastL — 9,
A< XTD(H,P,m,0).

Proof According to Definition 25, with probability of at least19,
XTD(h*, H[Sy],Sn) < XTD(H,P,m,d).

Applying Claim 24 completes the proof. |

Lemma 27 (Balanced Axis-Aligned Rectangles, Hanneke, 2007b, Lenard) If P is a product
distribution onRY with continuous CDF, and is the set of axis-aligned rectangles such that
vhe #H, PI’XNP{h(X) = —i—l} > A, then,

2
XTD(H,P,m,d) < O(‘ilogdgn)

Lemma 28 Blumer et al., 1989, Lemma 3.2.83et ¥ be a binary hypothesis class of finite VC
dimension d> 1. For all k > 1, define the k-fold union,

Then, for all k> 1,
VC(%,) < 2dklog, (3K).

Lemma 29 (order characterizing set complexity) Let # be the class of axis-aligned rectangles

in RY. Then,
Y(#H,n) < O(dnlogn).
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Proof LetS, =S USLk be a sample of size composed ok negative examplegx, X2, ... X},
andn— k positive ones. Le#/ be the class of axis-aligned rectangles. We define,

vi<i<k, R=S",U{(x,—-1)}.

Notice thatV S,/ r includes all axis aligned rectangles that classify all samples“ias positive,
andx; as negative. Therefore, the agreement regiovi 8f g is composed of two components as
depicted in Figure 1. The first component is the smallest rectangle thad®thumpositive samples,
and the second is an unbounded convex polytope defined bydipytperplanes intersecting mt
Let AGR be the agreement region V@{,R and AGRthe agreement region MS]{&. Clearly,

R C &, s0VSy s, CVSy R, andAGR C AGR and it follows that

k
| JAGR C AGR
i=1

Assume, by contradiction, that= AGRbutx g_U!‘ZlAGR. Therefore, for any X i <Kk, there exist
two hypotheseﬁ(l'),h(z') €VSy R, such thath(l')(x) # h(z')(x). Assume, without loss of generality,
thath(l')(x) = 1. We define
ko ko
2 AR and h2 AR,
i=1 i=1
meaning thah; classifies a sample as positive if and only if all hypothé‘éiéslassify it as positive.
Noting that the intersection of axis-aligned rectangles is itself an axis-aligrutangle, we know

thathy, h, € H. Moreover, for any; we haveh(li)(xi) = h(zi)(xi) = —1,soalsd(x) = hy(x)=—1,
andhy,h; € VS, 5. Buthy(x) # hp(x). Contradiction. Therefore,

k
AGR= | JAGR.
i=1

It is well known that the VC dimension of a hyper-rectangleRitis 2d. The VC dimension of
AGR is bounded by the VC dimension of the union of two hyper-rectangl@&inFurthermore,
the VC dimension oAGRis bounded by the VC dimension of the union of AER. Applying
Lemma 28 twice we get,

VCdim{AGR} < 42dklog,(3k) < 42dnlog,(3n).

If k=0 then the entire sample is positive and the region of agreement is an legtengle. There-
fore,VCdim{AGR} = 2d. If k= nthen the entire sample is negative and the region of agreement is
the points of the samples themselves. Hele@dim{AGR} = n. Overall we get that in all cases,

VCdim{AGR} < 42dnlog,(3n) = O(dnlogn).
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Figure 1: Agreement region ™S,/ .

Corollary 30 (Balanced Axis-Aligned Rectangles)Under the same conditions of Lemma 27, the
class of balanced axis-aligned rectangleRitican be perfectly selectively learned with fast cover-
age rate.

Proof Applying Lemmas 26 and 27 we get that with probability of at leastd]
. d? dm
< —log— |.
A<O ( X log 5 >

Any balanced axis-aligned rectangle belongs to the class of all axis-dligatangles. Therefore,
the coverage of CSS for the class of balanced axis-aligned rectandiesirisied bellow by the
coverage of the class of axis-aligned rectangles. Applying Lemma 2%ssuningn > d, we
obtain,

R d?> dm d?>, dm d® ,dm
< —log— —log— ) | <O =— — .
Y(H,A) < O(d)\log 5 Iog(xlog a_)>>_O<)\Iog Aé)

Applying Theorem 15 completes the proof. |

6.2 Disagreement Coefficient

In this section we show interesting relations between the disagreementiemefind coverage
bounds in perfect selective classification. We begin by defining, foryaonthesih € #, the set of
all hypotheses that areclose toh.

Definition 31 (Hanneke, 2011b, p.337)or any hypothesis & #/, distribution P overx, and r >
0, define the set@,r) of all hypotheses that reside in a ball of radius r around h,

B(h,r) 2 {h’ €2 Pr{W(X)£h(X)} < r}.

Theorem 32 (Vapnik and Chervonenkis, 1971; Anthony and Bartlet, 1999, p.53)Let A be a
hypothesis class with VC-dimension d. For any probability distribution Xon{+1}, with prob-
ability of at leastl — 6 over the choice of g any hypothesis b # consistent with § satisfies

22 4n2m, n2
R(h) <n(d,m,d) = - [dln q +In 6]'
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For anyG C # and distributiorP we denote byAG the volume of the disagreement regionGf
AG = Pr{DIS(G)}.

Definition 33 (Disagreement coefficient, Hanneke, 2009)ete > 0. The disagreement coefficient
of the hypothesis clasg with respect to the target distribution P is
AB(h*,r
0(g) 2 B (g) = supg.
r>¢ r
The following theorem formulates an intimate relation between active learnisagf@ement coef-
ficient) and selective classification.

Theorem 34 Let# be an hypothesis class with VC-dimension d, P an unknown distribation,
and 6(g), the corresponding disagreement coefficient. (tegy) be a perfect selective classifier
(CSS, see Section 2.3). Thefihfg) = 0, and for any0 < 6 < 1, with probability of at leasf. — 5,

®(h,g) > 1—06(¢g) -max{n(d,m,d),e}.

Proof Clearly, R(h,g) = 0, and it remains to prove the coverage bound. By Theorem 32, with
probability of at least 1 9,

VheVs, s, R(h) <n(d,m3d) <max{n(d,m3J),e}.

Therefore,
VSy s, € B(h",max{n(d,m3J),e}),

AVS, g, < AB(h*,max{n(d,m,d),e}).

By Definition 33, for anyr’ > ¢,
AB(h*,r') < 8(e)r'.

Thus, the proof is complete by recalling that

®(h,g) =1-AVSy5g,.
|

Theorem 34 tells us that whenever our learning problem (specified byainé#, P)) has a
disagreement coefficient that grows slowly with respect to lit can be (perfectly) selectively
learned with a “fast” coverage bound. Consequently, through Theree also know that in each
case where there exists a disagreement coefficient that grows slowlyesitlect to le, active
learning with a fast rate can also be deduced directly through a reductionderfect selective
classification. It follows that as far as fast rates in active learning @meerned, whatever can be
accomplished by bounding the disagreement coefficient, can be accoedpétdo using perfect
selective classification. This result is summarized in the following corollary.

Corollary 35 Let# be an hypothesis class with VC-dimension d, P an unknown distribution, and
0(¢), the corresponding disagreement coefficientd(i) = O(polylog(1/¢)), there exists a cov-
erage bound such that an application of Theorem 7 ensureq #faP) is actively learnable with
exponential label complexity speedup.
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Proof The proof is established by straightforward applications of TheoremstB4w 1/mand 9.
[ |

The following result, due to Hanneke (2011a), implies a coverage umperddfor CSS.

Lemma 36 (Hanneke, 2011a, Proof of Lemma 47).et # be an hypothesis class, P an unknown
distribution, and re (0,1). Then,

EpADy, > (1—r)MAB(h*,r),
where
Dm2VS, 5, NB(h*r). (3)

Theorem 37 (Coverage upper bound)Let # be an hypothesis class, P an unknown distribution,
andd € (0,1). Then, for any = (0,1), 1> a >,
1-r"—a

<1-—
Bq;(}[,é,m)_l 1-a

AB(h,r),
where By(#H,8,m) is any coverage bound.

Proof Recalling the definition oD (3), clearlyDy CV Sy g, andDm € B(h*,r). These inclusions
imply (respectively), by the definition of disagreement set,

ADm < AVSy s, and ADm < AB(h,r). (4)

Using Markov’s inequality (in inequality (5) of the following derivation) aagplying (4) (in equal-
ity (6)), we thus have,

(1_1r_)':;_°‘AB(h*7r)} < Pr{ADm < (1_1r_)r;_GAB(h*,r)}

1-@A-n)" r)mAB(h*,r)}

Pr {Avsﬂysm <

= Pr {AB(h*,r) —ADp >

IN

_ _ m
Pr{|AB(h*, r)—ADm| > 11(1_O(r)AB(h*,r)}

- (Ii ﬁA(f Ehry% ABA (?1?,’3) ®)

- (1-a) (16Ez§h—7rr))m) AEE?(E;T’ 5 ®)

Applying Lemma 36 we therefore obtain,

AB(h,r) — (1—r)MAB(h",r)
(1—(1—r)™AB(h*,r)

Observing that for any coverage bound,

Pr{avVS, s, <1-Bo(#,8,m)}>1-8

IN

< (1-a) =1l-a<1-2o.

completes the proof. |
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Corollary 38 Let# be an hypothesis class, P an unknown distribution,@ad 0,1/8). Then for
any m> 2,

1 1
Bcb(}[,é, m) S 1— ?AB <h*, m> P
where By (4,5, m) is any coverage bound.

Proof The proof is established by a straightforward application of Theoremi@izon= 1/8 and
r=1/m. [ |

With Corollary 38 we can bound the disagreement coefficient for settingsewtoverage bound

is known.

Corollary 39 Let A be an hypothesis class, P an unknown distribution, apB, d,m) a cover-
age bound. Then the disagreement coefficient is bounded by,

B(S)Smax{ sup 7. 17 Be(H,1/5, Ll/rj)jz}.
re(e,1/2) r

Proof Applying Corollary 38 we get that for anye (0,1/2),

BB(hr) _ AB(W.1/|1/r]) _ ., 1-Bo(7,1/9,[1/r])

r - r r

Therefore,

9(8) — Supm

r>¢

Smax{ oup 7. 1= Bo(01/9 Ll/rJ>’2}.
re(e,1/2) r

Corollary 40 Let# be the class of all linear binary classifiersRf', and let the underlying distri-
bution be any mixture of a fixed number of Gaussiari®4nThen

B(e) <O (polylog(i)) .

Proof Applying Corollary 39 together with inequality 2 we get that

1 Bo(9,1/9,1/r)) 2}
: ,

B8(e) < maxq sup 7-
re(e,1/2)

7 ((log[1/r)* e e
< max{reifjl;/)z)r O( r] 9 ),2}§O<(Iogs> )
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7. Concluding Remarks

For quite a few years, since its inception, the theory of target-indepehdands for noise-free ac-
tive learning managed to handle relatively simple settings, mostly revolvingnadfoomogeneous
linear classifiers under the uniform distribution over the sphere. It is littely this distributional
uniformity assumption was often adapted to simplify analyses. However, ishvagn by Dasgupta
(2005) that under this distribution, exponential speed up cannot evadhwhen considering gen-
eral (non homogeneous) linear classifiers.

The reason for this behavior is related to the two tasks that a good actimeldshould success-
fully accomplish:explorationandexploitation Intuitively (and oversimplifying things) exploration
is the task of obtaining at least one sample in each class, and exploitation i®tespof refin-
ing the decision boundary by requesting labels of points around the agunbasgupta showed
that exploration cannot be achieved fast enough under the unifotribdi®on on the sphere. The
source of this difficulty is the fact that under this distribution all training paiessde on their con-
vex hull. In general, the speed of exploration (using linear classifie@@mds on the size (number
of vertices) of the convex hull of the training set. When using homogeiguear classifiers, explo-
ration is trivially achieved (under the uniform distribution) and exploitatiomaehieve exponential
speedup.

So why in thenon-verifiablemodel (Balcan et al., 2008) it is possible to achieve exponential
speedup even when using non homogeneous linear classifiers undeifdren distribution? The
answer is that in the non-verifiable model, label complexity attributed to exjfwora encapsulated
in a target-dependent “constant.” Specifically, in Balcan et al. (20@8tnstant is explicitly de-
fined to be the probability mass of the minority class. Indeed, in certain n@eseséttings using
linear classifiers, where the minority class is large enough, explorationas &sue. In general,
however, exploration is a major bottleneck in practical active learningafBat al., 2004; Begleiter
et al., 2008). The present results show how exponential speeduearhieved, including explo-
ration, when using different (and perhaps more natural) distributions.

With these good news, a somewhat pessimistic picture arises from the lowat @ obtained
for the exponential dependency on the dimensiofthis negative result is not restricted to stream-
based active learning and readily applies also to the pool-based model. hibwund is only
asymptotic, we conjecture that it also holds for finite samples. Moreovedrgelieve that within the
stream- or pool-based settings a similar statement should hold true for avg laetining method
(and not necessarily CAL-based querying strategies). This residtaied that when performing
noise free active learning of linear classifiers, aggressive feagleet®n is beneficial for explo-
ration speedup. We note, however, that it remains open whether a stovedgonent ofl (rather
thand?) is achievable.

We have exposed interesting relations of the present technique to welhlkcamplexity mea-
sures for active learning, namely, the teaching dimension and the disagreeoefficient. These
developments were facilitated by observations made by Hanneke on thimgedithension and the
disagreement coefficient. These relations gave rise to further otisesvan active learning, which
are discussed in Section 6 and include exponential speedup for bdlaxisealigned rectangles.
Finally, we note that the intimate relation between selective classification ands#greement co-
efficient was recently exposed in another result for selective clestsiicwhere the disagreement
coefficient emerged as a dominating factor in a coverage bound fostggelective classification
(El-Yaniv and Wiener, 2011).
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Appendix A.

Lemma4l Forany m> 3,a> 1, b> 1 we get

i ('”ai(bi)> < glna“(b(er 1).

- In? (b
Proof Settingf (x) 2 ™" 'we have
df In~1(bx)

Therefore,f is monotonically increasing when< €*/b, monotonically decreasing function when
x> €*/b and its attains its maximum at= €?/b. Consequently, for< €/b— 1, ori > €?/b+ 1,

Fore?/b—1<i<ée?/b+1,
£i) < f(@/b):b(—)agaa. 7

Therefore, ifm < €8 — 1 we have,

m m ) m+-1 2
Y f=in®)+3 () <2'/x:1 f(dx< 5 N (b(m- 1),

Otherwisem > €?/b, in which case we overcome the change of slope by adding twice the (upper

bound on the) maximal value (7),

m
: 2 a+1 a_ 2 a+l g at+l
i;f(l) < a+1|n (b(m+1)) +2a% = a+1|n (b(m+1))+ 2
2 atl 2 a+l 4 a+l
< ﬁIn (b(m+ 1))+5In bm< glIn (b(m+1)).
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Appendix B. Alternative Proof of Lemma 6 Using Super Martingales

DefineW, = zik:l(zi —bj). We assume that with probability of at least /2,
Pr{Z|Zi,...,Zi_1} <bj, simultaneously for all. Sincez; is a binary random variable it is easy to
see that (w.h.p.),

Ez{W[Z1,...,Z4-1} =PHZ|Zy,....Z 1} —bi+W_1 <W_4,
and the sequendd™ £ W, ..., W, is a super-martingale with high probability. We apply the fol-
lowing theorem by McDiarmid that refers to martingales (but can be showppty do super-

martingales, by following its original proof).

Theorem 42 (McDiarmid, 1998, Theorem 3.12)LetVY;,..., Y, be a martingale difference sequence
with —ax < Y < 1— g for each k; let A= %zak. Then, for any > 0,

Pr{ Yi>Are} < exp(~[(1+&)In(1+e) —€An) < ex"(‘aﬁ%) '

In our caseYk = W —Wk_1 = Zx — b < 1— by and we apply the (revised) theorem with2 by
andAn£ 5 by £ B. We thus obtain, for any @ € < 1,

2
Pr{ Z«>B+Be} < exp<—2<1i€8/3)> .

Equating the right-hand side &2, we obtain

B 4 ,2 2
£ = ( i\/gln 6+8Bln5>/28
1,2 \/ 2
< In6+\/9In S+ 28In6>/B
2 2 2

Applying the union bound completes the proof.
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