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Abstract
We discover a strong relation between two known learning models: stream-based active learning
and perfect selective classification (an extreme case of ‘classification with a reject option’). For
these models, restricted to the realizable case, we show a reduction of active learning to selective
classification that preserves fast rates. Applying this reduction to recent results for selective clas-
sification, we derive exponential target-independent label complexity speedup for actively learning
general (non-homogeneous) linear classifiers when the datadistribution is an arbitrary high dimen-
sional mixture of Gaussians. Finally, we study the relationbetween the proposed technique and
existing label complexity measures, including teaching dimension and disagreement coefficient.
Keywords: classification with a reject option, perfect classification, selective classification, ac-
tive learning, selective sampling, disagreement coefficient, teaching dimension, exploration vs.
exploitation

1. Introduction and Related Work

Active learningis an intriguing learning model that provides the learning algorithm with some con-
trol over the learning process, potentially leading to significantly faster learning. In recent years it
has been gaining considerable recognition as a vital technique for efficiently implementing inductive
learning in many industrial applications where abundance of unlabeled dataexists, and/or in cases
where labeling costs are high. In this paper we expose a strong relation between active learning
andselective classification, another known alternative learning model (Chow, 1970; El-Yaniv and
Wiener, 2010).

Focusing on binary classification in realizable settings we consider standard stream-based active
learning, which is also referred to asonline selective sampling(Atlas et al., 1990; Cohn et al., 1994).
In this model the learner is given an error objectiveε and then sequentially receives unlabeled
examples. At each step, after observing an unlabeled examplex, the learner decides whether or
not to request the label ofx. The learner should terminate the learning process and output a binary
classifier whose true error is guaranteed to be at mostε with high probability. The penalty incurred
by the learner is the number of label requests made and this number is called thelabel complexity.
A label complexity bound ofO(d log(d/ε)) for actively learningε-good classifier from a concept
class with VC-dimensiond, provides an exponential speedup in terms of 1/ε relative to standard
(passive) supervised learning where the sample complexity is typicallyO(d/ε).

The study of (stream-based, realizable) active learning is paved with very interesting theoretical
results. Initially, only a few cases were known where active learning provides significant advan-
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tage over passive learning. Perhaps the most favorable result was anexponential label complexity
speedup for learning homogeneous linear classifiers where the (linearlyseparable) data is uniformly
distributed over the unit sphere. This result was manifested by various authors using various anal-
ysis techniques, for a number of strategies that can all be viewed in hindsight as approximations or
variations of the “CAL algorithm” of Cohn et al. (1994). Among these studies, the earlier theoreti-
cal results (Seung et al., 1992; Freund et al., 1993, 1997; Fine et al., 2002; Gilad-Bachrach, 2007)
considered Bayesian settings and studied the speedup obtained by the Query by Committee (QBC)
algorithm. The more recent results provided PAC style analyses (Dasguptaet al., 2009; Hanneke,
2007a, 2009).

Lack of positive results for other non-toy problems, as well as various additional negative re-
sults that were discovered, led some researchers to believe that active learning is not necessarily
advantageous in general. Among the striking negative results is Dasgupta’s negative example for
actively learning general (non-homogeneous) linear classifiers (even in two dimensions) under the
uniform distribution over the sphere (Dasgupta, 2005).

A number of recent innovative papers proposed alternative models foractive learning. Balcan
et al. (2008) introduced a subtle modification of the traditional label complexitydefinition, which
opened up avenues for new positive results. According to their new definition of “non-verifiable”
label complexity, the active learner is not required to know when to stop the learning process with a
guaranteedε-good classifier. Their main result, under this definition, is that active learning is asymp-
totically better than passive learning in the sense that onlyo(1/ε) labels are required for actively
learning anε-good classifier from a concept class that has a finite VC-dimension. Another result
they accomplished is an exponential label complexity speedup for (non-verifiable) active learning
of non-homogeneous linear classifiers under the uniform distribution over the the unit sphere.

Based on Hanneke’s characterization of active learning in terms of the “disagreement coeffi-
cient” (Hanneke, 2007a), Friedman (2009) recently extended the Balcan et al. results and proved
that a target-dependent exponential speedup can be asymptotically achieved for a wide range of
“smooth” learning problems (in particular, the hypothesis class, the instancespace and the dis-
tribution should all be expressible by smooth functions). He proved that under such smoothness
conditions, for any target hypothesish∗, Hanneke’s disagreement coefficient is bounded above in
terms of a constantc(h∗) that depends on the unknown target hypothesish∗ (and is independent of
δ andε). The resulting label complexity isO(c(h∗)dpolylog(d/ε)) (Hanneke, 2011b). This is a
very general result but thetarget-dependentconstant involved in this bound is only guaranteed to
be finite.

With this impressive progress in the case of target-dependent bounds foractive learning, the
current state of affairs in thetarget-independentbounds for active learning arena leaves much to be
desired. To date the most advanced result in this model, which was already essentially established
by Seung et al. and Freund et al. more than fifteen years ago (Seung etal., 1992; Freund et al., 1993,
1997), is still a target-independent exponential speed up bound for homogeneous linear classifiers
under the uniform distribution over the sphere.

The other learning model we contemplate that will be shown to have strong ties toactive learn-
ing, isselective classification, which is mainly known in the literature as ‘classification with a reject
option.’ This old-timer model, that was already introduced more than fifty years ago (Chow, 1957,
1970), extends standard supervised learning by allowing the classifier toopt out from predictions in
cases where it is not confident. The incentive is to increase classificationreliability over instances
that are not rejected by the classifier. Thus, using selective classification one can potentially achieve
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a lower error rate using the same labeling “budget.” The main quantities that characterize a selective
classifier are its (true) error and coverage rate (or its complement, the rejection rate).

There is already substantial volume of research publications on selectiveclassification, that kept
emerging through the years. The main theme in many of these publications is the implementation of
certain reject mechanisms for specific learning algorithms like support vector machines and neural
networks. Among the few theoretical studies on selective classification, there are various excess risk
bounds for ERM learning (Herbei and Wegkamp, 2006; Bartlett and Wegkamp, 2008; Wegkamp,
2007), and certain coverage/risk guarantees for selective ensemble methods (Freund et al., 2004).
In a recent work (El-Yaniv and Wiener, 2010) the trade-off betweenerror and coverage was exam-
ined and in particular, a new extreme case of selective learning was introduced. In this extreme
case, termed here “perfect selective classification,” the classifier is givenm labeled examples and is
required to instantly output a classifier whose true error is perfectly zerowith certainty. This is of
course potentially doable only if the classifier rejects a sufficient portion ofthe instance space. A
non-trivial result for perfect selective classification is a high probability lower bound on the clas-
sifier coverage (or equivalently, an upper bound on its rejection rate).Such bounds have recently
been presented in El-Yaniv and Wiener (2010).

In Section 3 we present a reduction of active learning to perfect selective classification that
preserves “fast rates.” This reduction enables the luxury of analyzing dynamicactive learning
problems asstatic problems. Relying on a recent result on perfect selective classificationfrom
El-Yaniv and Wiener (2010), in Section 4 we then apply our reduction andconclude that general
(non-homogeneous) linear classifiers are actively learnable at exponential (in 1/ε) label complexity
rate when the data distribution is an arbitrary unknown finite mixture of high dimensional Gaus-
sians. While we obtain exponential label complexity speedup in 1/ε, we incur exponential slow-
down ind2, whered is the problem dimension. Nevertheless, in Section 5 we prove a lower bound
of Ω((logm)(d−1)/2(1+o(1)) on the label complexity, when considering the class of unrestricted
linear classifiers under a Gaussian distribution. Thus, an exponential slowdown ind is unavoidable
in such settings.

Finally, in Section 6 we relate the proposed technique to other complexity measures for active
learning. Proving and using a relation to theteaching dimension(Goldman and Kearns, 1995) we
show, by relying on a known bound for the teaching dimension, that perfect selective classification
with meaningful coverage can be achieved for the case of axis-aligned rectangles under a prod-
uct distribution. We then focus on Hanneke’sdisagreement coefficientand show that the coverage
of perfect selective classification can be bounded below using the disagreement coefficient. Con-
versely, we show that the disagreement coefficient can be bounded above using any coverage bound
for perfect selective classification. Consequently, the results here implythat the disagreement co-
efficient can be sufficiently bounded to ensure fast active learning for the case of linear classifiers
under a mixture of Gaussians.

2. Active Learning and Perfect Selective Classification

In binary classificationthe goal is to learn an accuratebinary classifier, h : X → {±1}, from a
finite labeled training sample. HereX is some instance space and the standard assumption is that
the training sample,Sm = {(xi ,yi)}m

i=1, containingm labeled examples, is drawn i.i.d. from some
unknown distributionP(X,Y) defined overX ×{±1}. The classifierh is chosen from some hy-
pothesis classH . In this paper we focus on therealizable settingwhereby labels are defined by
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some unknowntarget hypothesis h∗ ∈ H . Thus, the underlying distribution reduces toP(X). The
performance of a classifierh is quantified by its true zero-oneerror, R(h) , Pr{h(X) 6= h∗(X)}. A
positive result for a classification problem(H ,P) is a learning algorithm that given an error targetε
and a confidence parameterδ can output, based onSm, an hypothesish whose errorR(h)≤ ε, with
probability of at least 1−δ. A boundB(ε,δ) on the sizem of labeled training sample sufficient for
achieving this is called thesample complexityof the learning algorithm. A classical result is that
any consistent learning algorithm has sample complexity ofO(1

ε (d log(1
ε )+ log(1

δ))), whered is
the VC-dimension ofH (see, e.g., Anthony and Bartlett, 1999).

2.1 Active Learning

We consider the following standard active learning model. In this model the learner sequentially
observes unlabeled instances,x1,x2, . . ., that are sampled i.i.d. fromP(X). After receiving each
xi , the learning algorithm decides whether or not to request its labelh∗(xi), whereh∗ ∈ H is an
unknown target hypothesis. Before the start of the game the algorithm is provided with some desired
error rateε and confidence levelδ. We say that the learning algorithmactively learnedthe problem
instance(H ,P) if at some point it can terminate this process, after observingm instances and
requestingk labels, and output an hypothesish ∈ H whose errorR(h) ≤ ε, with probability of
at least 1−δ. The quality of the algorithm is quantified by the numberk of requested labels, which
is called thelabel complexity. A positive result for a learning problem(H ,P) is a learning algorithm
that can actively learn this problem for any givenε andδ, and for everyh∗, with label complexity
bounded above byL(ε,δ,h∗). If there is a label complexity bound that isO(polylog(1/ε)) we say
that the problem isactively learnable at exponential rate.

2.2 Selective Classification

Following the formulation in El-Yaniv and Wiener (2010) the goal in selectiveclassification is to
learn a pair of functions(h,g) from a labeled training sampleSm (as defined above for passive
learning). The pair(h,g), which is called aselective classifier, consists of a binary classifierh∈H ,
and aselection function, g : X → {0,1}, which qualifies the classifierh as follows. For any sample
x∈ X , the output of the selective classifier is(h,g)(x) , h(x) iff g(x) = 1, and(h,g)(x) , abstain
iff g(x) = 0. Thus, the functiong is a filter that determines a sub-domain ofX over which the
selective classifier will abstain from classifications. A selective classifieris thus characterized by
its coverage, Φ(h,g) , EP{g(x)}, which is theP-weighted volume of the sub-domain ofX that is
not filtered out, and itserror, R(h,g) = E{I(h(X) 6= h∗(X)) ·g(X)}/Φ(h,g), which is the zero-one
loss restricted to the covered sub-domain. Note that this is a “smooth” generalization of passive
learning and, in particular,R(h,g) reduces toR(h) (standard classification) ifg(x) ≡ 1. We expect
to see a trade-off betweenR(h,g) andΦ(h,g) in the sense that smaller error should be obtained by
compromising the coverage. A major issue in selective classification is how to optimally control
this trade-off. In this paper we are concerned with an extreme case of thistrade-off whereby(h,g)
is required to achieve a perfect score ofzero error with certainty. This extreme learning objective
is termedperfect learningin El-Yaniv and Wiener (2010). Thus, for aperfect selective classifier
(h,g) we always haveR(h,g) = 0, and its quality is determined by its guaranteed coverage. A
positive result for (perfect) selective classification problem(H ,P) is a learning algorithm that uses
a labeled training sampleSm (as in passive learning) to output a perfect selective classifier(h,g)
for which Φ(h,g) ≥ BΦ(H ,δ,m) with probability of at least 1− δ, for any givenδ. The bound
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BΦ = BΦ(H ,δ,m) is called acoverage bound(or coverage rate) and its complement, 1−BΦ, is
called arejection bound(or rate). A coverage rateBΦ = 1−O( polylog(m)

m ) (and the corresponding
1−BΦ rejection rate) are qualified asfast.

2.3 The CAL Algorithm and the Consistent Selective Strategy (CSS)

The major players in active learning and in perfect selective classification are the CAL algorithm
and the consistent selective strategy (CSS), respectively. To define them we need the following
definitions.

Definition 1 (Version space, Mitchell, 1977)Given an hypothesis classH and a training sample
Sm, theversion spaceVSH ,Sm

is the set of all hypotheses inH that classify Sm correctly.

Definition 2 (Disagreement set, Hanneke, 2007a; El-Yaniv and Wiener, 2010) LetG ⊂H . The
disagreement setw.r.t. G is defined as

DIS(G), {x∈ X : ∃h1,h2 ∈ G s.t. h1(x) 6= h2(x)} .

Theagreement setw.r.t. G is AGR(G), X \DIS(G).

The main strategy for active learning in the realizable setting (Cohn et al., 1994) is to request
labels only for instances belonging to the disagreement set and output any(consistent) hypothesis
belonging to the version space. This strategy is often called theCAL algorithm. A related strategy
for perfect selective classification was proposed in El-Yaniv and Wiener (2010) and termedconsis-
tent selective strategy (CSS). Given a training setSm, CSS takes the classifierh to be any hypothesis
in VSH ,Sm

(i.e., a consistent learner), and takes a selection functiong that equals one for all points
in the agreement set with respect toVSH ,Sm

, and zero otherwise.

3. From Coverage Bound to Label Complexity Bound

In this section we present a reduction from stream-based active learningto perfect selective clas-
sification. Particularly, we show that if there exists forH a perfect selective classifier with a fast
rejection rate ofO(polylog(m)/m), then the CAL algorithm will actively learnH with exponential
label complexity rate ofO(polylog(1/ε)).

Lemma 3 Let Sm = {(x1,y1), . . . ,(xm,ym)} be a sequence of m labeled samples drawn i.i.d. from
an unknown distribution P(X) and let Si = {(x1,y1), . . . ,(xi ,yi)} be the i-prefix of Sm. Then, with
probability of at least1− δ over random choices of Sm, the following bound holds simultaneously
for all i = 1, . . . ,m−1,

Pr
{

xi+1 ∈ DIS(VSH ,Si
)|Si
}

≤ 1−BΦ

(

H ,
δ

log2(m)
,2⌊log2(i)⌋

)

,

where BΦ(H ,δ,m) is a coverage bound for perfect selective classification with respect to hypothesis
classH , confidenceδ and sample size m .
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Proof For j = 1, . . . ,m, abbreviateDISj , DIS(VSH ,Sj
) andAGRj , AGR(VSH ,Sj

). By definition,
DISj = X \AGRj . By the definitions of a coverage bound and agreement/disagreement sets, with
probability of at least 1−δ over random choices ofSj

BΦ(H ,δ, j)≤ Pr{x∈ AGRj |Sj}= Pr{x 6∈ DISj |Sj}= 1−Pr{x∈ DISj |Sj}.

Applying the union bound we conclude that the following inequality holds simultaneously with high
probability fort = 0, . . . ,⌊log2(m)⌋−1,

Pr{x2t+1 ∈ DIS2t |S2t} ≤ 1−BΦ

(

H ,
δ

log2(m)
,2t
)

. (1)

For all j ≤ i, Sj ⊆ Si , soDISi ⊆ DISj . Therefore, since the samples inSm are all drawn i.i.d., for any
j ≤ i,

Pr{xi+1 ∈ DISi |Si} ≤ Pr
{

xi+1 ∈ DISj |Sj
}

= Pr
{

x j+1 ∈ DISj |Sj
}

.

The proof is complete by settingj = 2⌊log2(i)⌋ ≤ i, and applying inequality (1).

Lemma 4 (Bernstein’s inequality Hoeffding, 1963)Let X1, . . . ,Xn be independent zero-mean ran-
dom variables. Suppose that|Xi | ≤ M almost surely, for all i. Then, for all positive t,

Pr

{

n

∑
i=1

Xi > t

}

≤ exp



− t2/2

∑E
{

X2
j

}

+Mt/3



 .

Lemma 5 Let Zi , i = 1, . . . ,m, be independent Bernoulli random variables with success probabili-
ties pi . Then, for any0< δ < 1, with probability of at least1−δ,

m

∑
i=1

(Zi −E{Zi})≤
√

2ln
1
δ ∑ pi +

2
3

ln
1
δ
.

Proof DefineWi , Zi −E{Zi}= Zi − pi . Clearly,

E{Wi}= 0, |Wi | ≤ 1, E{W2
i }= pi(1− pi).

Applying Bernstein’s inequality (Lemma 4) on theWi ,

Pr

{

n

∑
i=1

Wi > t

}

≤ exp



− t2/2

∑E
[

W2
j

]

+ t/3



= exp

(

− t2/2

∑ pi(1− pi)+ t/3

)

≤ exp

(

− t2/2

∑ pi + t/3

)

.

Equating the right-hand side toδ and solving fort, we have

t2/2

∑ pi + t/3
= ln

1
δ

⇐⇒ t2− t · 2
3

ln
1
δ
−2ln

1
δ ∑ pi = 0,
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and the positive solution of this quadratic equation is

t =
1
3

ln
1
δ
+

√

1
9

ln2 1
δ
+2ln

1
δ ∑ pi <

2
3

ln
1
δ
+

√

2ln
1
δ ∑ pi .

Lemma 6 Let Z1,Z2, . . . ,Zm be a high order Markov sequence of dependent binary random vari-
ables defined in the same probability space. Let X1,X2, . . . ,Xm be a sequence of independent random
variables such that,

Pr{Zi = 1|Zi−1, . . . ,Z1,Xi−1, . . . ,X1}= Pr{Zi = 1|Xi−1, . . . ,X1} .

Define P1 , Pr{Z1 = 1}, and for i= 2, . . . ,m,

Pi , Pr{Zi = 1|Xi−1, . . . ,X1} .

Let b1,b2 . . .bm be given constants independent of X1,X2, . . . ,Xm.1 Assume that Pi ≤ bi simultane-
ously for all i with probability of at least1− δ/2, δ ∈ (0,1). Then, with probability of at least
1−δ,

m

∑
i=1

Zi ≤
m

∑
i=1

bi +

√

2ln
2
δ ∑bi +

2
3

ln
2
δ
.

We proceed with a direct proof of Lemma 6. An alternative proof of this lemma,using super-
martingales, appears in Appendix B.
Proof For i = 1, . . . ,m, letWi be binary random variables satisfying

Pr{Wi = 1|Zi = 1,Xi−1, . . . ,X1},
bi + I(Pi ≤ bi) · (Pi −bi)

Pi
,

Pr{Wi = 1|Zi = 0,Xi−1, . . . ,X1}, max

{

bi −Pi

1−Pi
,0

}

,

Pr{Wi = 1|Wi−1, . . . ,W1,Xi−1, . . . ,X1}= Pr{Wi = 1|Xi−1, . . . ,X1}.

We notice that

Pr{Wi = 1|Xi−1, . . . ,X1} = Pr{Wi = 1,Zi = 1|Xi−1, . . . ,X1}
+ Pr{Wi = 1,Zi = 0|Xi−1, . . . ,X1}
= Pr{Wi = 1|Zi = 1,Xi−1, . . . ,X1}Pr{Zi = 1|Xi−1, . . . ,X1}
+ Pr{Wi = 1|Zi = 0,Xi−1, . . . ,X1}Pr{Zi = 0|Xi−1, . . . ,X1}

=

{

Pi +
bi−Pi
1−Pi

(1−Pi) = bi , Pi ≤ bi ;
bi
Pi
·Pi +0= bi , else.

Hence the distribution of eachWi is independent ofXi−1, . . . ,X1, and theWi are independent Bernoulli
random variables with success probabilitiesbi . By construction ifPi ≤ bi then

Pr{Wi = 1|Zi = 1}=
∫

X
Pr{Wi = 1|Zi = 1,Xi−1, . . . ,X1}= 1.

1. Precisely we require that each of thebi were selected beforeXi are chosen
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By assumptionPi ≤ bi for all i simultaneously with probability of at least 1−δ/2. Therefore,Zi ≤Wi

simultaneously with probability of at least 1− δ/2. We now apply Lemma 5 on theWi . The proof
is then completed using the union bound.

Theorem 7 Let Sm be a sequence of m unlabeled samples drawn i.i.d. from an unknown distribution
P. Then with probability of at least1−δ over choices of Sm, the number of label requests k by the
CAL algorithm is bounded by

k≤ Ψ(H ,δ,m)+

√

2ln
2
δ

Ψ(H ,δ,m)+
2
3

ln
2
δ
,

where

Ψ(H ,δ,m),
m

∑
i=1

(

1−BΦ

(

H ,
δ

2log2(m)
,2⌊log2(i)⌋

))

and BΦ(H ,δ,m) is a coverage bound for perfect selective classification with respect to hypothesis
classH , confidenceδ and sample size m .

Proof According to CAL, the label of samplexi will be requested iffxi ∈ DIS(VSH ,Si−1
). For

i = 1, . . . ,m, let Zi be binary random variables such thatZi , 1 iff CAL requests a label for sample
xi . Applying Lemma 3 we get that for alli = 2, . . . ,m, with probability of at least 1−δ/2

Pr{Zi = 1|Si−1} = Pr
{

xi ∈ DIS(VSH ,Si−1
)|Si−1

}

≤ 1−BΦ

(

H ,
δ

2log2(m)
,2⌊log2(i−1)⌋

)

.

For i = 1, BΦ(H ,δ,1) = 0 and the above inequality trivially holds. An application of Lemma 6 on
the variablesZi completes the proof.

Theorem 7 states an upper bound on the label complexity expressed in termsof m, the size of
the sample provided to CAL. This upper bound is very convenient for directly analyzing the active
learning speedup relative to supervised learning. A standard label complexity upper bound, which
depends on 1/ε, can be extracted using the following simple observation.

Lemma 8 (Hanneke, 2009; Anthony and Bartlett, 1999)Let Sm be a sequence of m unlabeled
samples drawn i.i.d. from an unknown distribution P. LetH be a hypothesis class whose finite VC
dimension is d, and letε andδ be given. If

m≥ 4
ε

(

d ln
12
ε
+ ln

2
δ

)

,

then, with probability of at least1−δ, CAL will output a classifier whose true error is at mostε.

Proof Hanneke (2009) observed that since CAL requests a label wheneverthere is a disagreement
in the version space, it is guaranteed that after processingm examples, CAL will output a clas-
sifier that is consistent with all them examples introduced to it. Therefore, CAL is a consistent
learner. A classical result (Anthony and Bartlett, 1999, Theorem 4.8) isthat any consistent learner
will achieve, with probability of at least 1− δ, a true error not exceedingε after observing at most
4
ε
(

d ln 12
ε + ln 2

δ
)

labeled examples.
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Theorem 9 LetH be a hypothesis class whose finite VC dimension is d. If the rejection rate of CSS

(see definition in Section 2.3) is O

(

polylog(m
δ )

m

)

, then(H ,P) is actively learnable with exponential

label complexity speedup.

Proof Plugging this rejection rate intoΨ (defined in Theorem 7) we have,

Ψ(H ,δ,m),
m

∑
i=1

(

1−BΦ(H ,
δ

log2(m)
,2⌊log2(i)⌋)

)

=
m

∑
i=1

O





polylog
(

i log(m)
δ

)

i



 .

Applying Lemma 41 we get

Ψ(H ,δ,m) = O

(

polylog

(

mlog(m)

δ

))

.

By Theorem 7,k= O
(

polylog
(

m
δ
))

, and an application of Lemma 8 concludes the proof.

4. Label Complexity Bounding Technique and Its Applications

In this section we present a novel technique for deriving target-independent label complexity bounds
for active learning. The technique combines the reduction of Theorem 7 and a general data-
dependent coverage bound for selective classification from El-Yaniv and Wiener (2010). For some
learning problems it is a straightforward technical exercise, involving VC-dimension calculations,
to arrive with exponential label complexity bounds. We show a few applications of this technique
resulting in both reproductions of known label complexity exponential ratesas well as a new one.
The following definitions (El-Yaniv and Wiener, 2010) are required forintroducing the technique.

Definition 10 (Version space compression set)For any hypothesis classH , let Sm be a labeled
sample of m points inducing a version space VSH ,Sm

. Theversion space compression set, S′ ⊆ Sm,
is a smallest subset of Sm satisfying VSH ,Sm

=VSH ,S′ . The (unique) number̂n= n̂(H ,Sm) = |S′| is
called the version space compression setsize.

Remark 11 Our ”version space compression set” is precisely Hanneke’s ”minimumspecifying
set” (Hanneke, 2007b) for f on U with respect to V , where,

f = h∗, U = Sm, V =H [Sm] (see Definition 23).

Definition 12 (Characterizing hypothesis) For any subset of hypothesesG ⊆H , thecharacteriz-
ing hypothesisof G , denoted fG (x), is a binary hypothesis overX (not restricted toH ) obtaining
positive values over the agreement set AGR(G) (Definition 2), and zero otherwise.

Definition 13 (Order-n characterizing set) For each n, letΣn be the set of all possible labeled
samples of size n (all n-subsets, each with all2n possible labelings). The order-ncharacterizing set
ofH , denotedFn, is the set of all characterizing hypotheses fG (x), whereG ⊆H is a version space
induced by some member ofΣn.
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Definition 14 (Characterizing set complexity) LetFn be the order-n characterizing set ofH . The
order-ncharacterizing set complexityofH , denotedγ(H ,n), is the VC-dimension ofFn.

The following theorem, credited to (El-Yaniv and Wiener, 2010, Theorem21), is a powerful
data-dependent coverage bound for perfect selective learning, expressed in terms of the version
space compression set size and the characterizing set complexity.

Theorem 15 (Data-dependent coverage guarantee)For any m, let a1,a2, . . . ,am ∈ R be given,
such that ai ≥ 0 and ∑m

i=1ai ≤ 1. Let (h,g) be perfect selective classifier (CSS, see Section 2.3).
Then, R(h,g) = 0, and for any0≤ δ ≤ 1, with probability of at least1−δ,

Φ(h,g)≥ 1− 2
m

[

γ(H , n̂) ln+

(

2em
γ(H , n̂)

)

+ ln
2

an̂δ

]

,

wheren̂ is the size of the version space compression set andγ(H , n̂) is the order-̂n characterizing
set complexity ofH .

Given an hypothesis classH , our recipe to deriving active learning label complexity bounds
for H is: (i) calculate both ˆn andγ(H , n̂); (ii) apply Theorem 15, obtaining a boundBΦ for the
coverage; (iii) plugBΦ in Theorem 7 to get a label complexity bound expressed as a summation;
(iv) Apply Lemma 41 to obtain a label complexity bound in a closed form.

4.1 Examples

In the following example we derive a label complexity bound for the conceptclass of thresholds
(linear separators inR). Although this is a toy example (for which an exponential rate is well
known) it does exemplify the technique, and in many other cases the application of the technique
is not much harder. LetH be the class of thresholds. We first show that the corresponding version
space compression set size ˆn≤ 2. Assume w.l.o.g. thath∗(x) , I(x> w) for somew∈ (0,1). Let
x− , max{xi ∈ Sm|yi = −1} andx+ , min(xi ∈ Sm|yi = +1). At least one ofx− or x+ exist. Let
S′m = {(x−,−1),(x+,+1)}. ThenVSH ,Sm

=VSH ,S′m
, andn̂= |S′m| ≤ 2. Now,γ(H ,2) = 2, because

the order-2 characterizing set ofH is the class of intervals inR whose VC-dimension is 2. Plugging
these numbers in Theorem 15, and using the assignmenta1 = a2 = 1/2,

BΦ (H ,δ,m) = 1− 2
m

[

2ln(em)+ ln
4
δ

]

= 1−O

(

ln(m/δ)
m

)

.

Next we plugBΦ in Theorem 7 obtaining a raw label complexity

Ψ(H ,δ,m) =
m

∑
i=1

(

1−BΦ

(

H ,
δ

2log2(m)
,2⌊log2(i)⌋

))

=
m

∑
i=1

O

(

ln(log2(m) · i/δ)
i

)

.

Finally, by applying Lemma 41, witha= 1 andb= log2m/δ, we conclude that

Ψ(H ,δ,m) = O
(

ln2
(m

δ

))

.

Thus,H is actively learnable with exponential speedup, and this result applies to any distribution. In
Table 1 we summarize the ˆn andγ(H , n̂) values we calculated for four other hypothesis classes. The
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Hypothesis class Distribution ˆn γ(H , n̂)

Linear separators inR any 2 2

Intervals inR any (target-dependent)2 4 4

Linear separators inR2 any distribution on the unit 4 4
circle (target-dependent)2

Linear separators inRd mixture of Gaussians O
(

(logm)d−1/δ
)

O
(

n̂d/2+1
)

Balanced axis-aligned product distribution O(log(dm/δ)) O(dn̂logn̂)
rectangles inRd

Table 1: The ˆn andγ of various hypothesis spaces achieving exponential rates.

last two cases are fully analyzed in Sections 4.2 and 6.1, respectively. For the other classes, whereγ
andn̂ are constants, it is clear (Theorem 15) that exponential rates are obtained. We emphasize that
the bounds for these two classes are target-dependent as they requirethat Sm include at least one
sample from each class.

4.2 Linear Separators inRd Under Mixture of Gaussians

In this section we state and prove our main example, an exponential label complexity bound for
linear classifiers inRd.

Theorem 16 LetH be the class of all linear binary classifiers inRd, and let the underlying distri-
bution be any mixture of a fixed number of Gaussians inR

d. Then, with probability of at least1−δ
over choices of Sm, the number of label requests k by CAL is bounded by

k= O

(

(logm)d2+1

δ(d+3)/2

)

.

Therefore by Lemma 8 we get k= O(poly(1/δ) · polylog(1/ε)) .

Proof The following is a coverage bound for linear classifiers ind dimensions that holds in our
setting with probability of at least 1−δ (El-Yaniv and Wiener, 2010, Corollary 33),3

Φ(h,g)≥ 1−O

(

(logm)d2

m
· 1

δ(d+3)/2

)

. (2)

2. Target-dependent with at least one sample in each class.
3. This bound uses the fact that for linear classifiers ind dimensions ˆn= O

(

(logm)d−1/δ
)

(El-Yaniv and Wiener, 2010,

Lemma 32), and thatγ(H , n̂) = O
(

n̂d/2+1
)

(El-Yaniv and Wiener, 2010, Lemma 27).
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Plugging this bound in Theorem 7 we obtain,

Ψ(H ,δ,m) =
m

∑
i=1

(

1−BΦ

(

H ,
δ

2log2(m)
,2⌊log2(i)⌋

))

=
m

∑
i=1

O

(

(logi)d2

i
·
(

log2(m)

δ

) d+3
2

)

= O

(

(

log2(m)

δ

) d+3
2

·
m

∑
i=1

(log(i))d2

i

)

.

Finally, an application of Lemma 41 witha= d2 andb= 1 completes the proof.

5. Lower Bound on Label Complexity

In the previous section we have derived an upper bound on the label complexity of CAL for various
classifiers and distributions. In the case of linear classifiers inR

d we have shown an exponential
speed up in terms of 1/ε but also an exponential slow down in terms of the dimensiond. In passive
learning there is a linear dependency in the dimension while in our case (active learning using
CAL) there is an exponential one. Is it an artifact of our bounding technique or a fundamental
phenomenon?

To answer this question we derive an asymptotic lower bound on the label complexity. We show
that the exponential dependency ind is unavoidable (at least asymptotically) for every bounding
technique when considering linear classifier even under a single Gaussian (isotropic) distribution.
The argument is obtained by the observation that CAL has to request a label to any point on the
convex hull of a sampleSm. The bound is obtained using known results from probabilistic geometry,
which bound the first two moments of the number of vertices of a random polytope under the
Gaussian distribution.

Definition 17 (Gaussian polytope)Let X1, ...,Xm be i.i.d. random points inRd with common stan-
dard normal distribution (with zero mean and covariance matrix1

2Id). A Gaussian polytope Pm is
the convex hull of these random points.

Denote byfk(Pm) the number ofk-faces in the Gaussian polytopePm. Note thatf0(Pm) is the number
of vertices inPm. The following two Theorems asymptotically bound the average and varianceof
fk(Pm).

Theorem 18 (Hug et al., 2004, Theorem 1.1)Let X1, ...,Xm be i.i.d. random points inRd with
common standard normal distribution. Then

E fk(Pm) = c(k,d) (logm)
d−1

2 · (1+o(1))

as m→ ∞, where c(k,d) is a constant depending only on k and d.
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Theorem 19 (Hug and Reitzner, 2005, Theorem 1.1)Let X1, ...,Xm be i.i.d. random points inRd

with common standard normal distribution. Then there exists a positive constant cd, depending only
on the dimension, such that

Var( fk(Pm))≤ cd (logm)
d−1

2

for all k ∈ {0, . . . ,d−1}.

We can now use Chebyshev’s inequality to lower bound the number of vertices inPm ( f0(Pm)) with
high probability.

Theorem 20 Let X1, ...,Xm be i.i.d. random points inRd with common standard normal distribution
andδ > 0 be given. Then with probability of at least1−δ,

f0(Pm)≥
(

cd (logm)
d−1

2 − c̃d√
δ
(logm)

d−1
4

)

· (1+o(1))

as m→ ∞, where cd andc̃d are constants depending only on d.

Proof Using Chebyshev’s inequality (in the second inequality), as well as Theorem 19 we get

Pr( f0(Pm)> E f0(Pm)− t) = 1−Pr( f0(Pm)≤ E f0(Pm)− t)

≥ 1−Pr(| f0(Pm)−E f0(Pm)| ≥ t)

≥ 1− Var( f0(Pm))

t2 ≥ 1− cd

t2 (logm)
d−1

2 .

Equating the RHS to 1−δ and solving fort we get

t =

√

cd
(logm)

d−1
2

δ
.

Applying Theorem 18 completes the proof.

Theorem 21 (Lower bound) Let H be the class of linear binary classifiers inRd, and let the
underlying distribution be standard normal distribution inRd. Then there exists a target hypothesis
such that, with probability of at least1− δ over choices of Sm, the number of label requests k by
CAL is bounded by

k≥ cd

2
(logm)

d−1
2 · (1+o(1)).

as m→ ∞, where cd is a constant depending only on d.

Proof Let us look at the Gaussian polytopePm induced by the random sampleSm. As long as all
labels requested by CAL have the same value (the case of minuscule minority class) we note that
every vertex ofPm falls in the region of disagreement with respect to any subset ofSm that do not
include that specific vertex. Therefore, CAL will request label at least for each vertex ofPm. For
sufficiently largem, in particular,

logm≥
(

2c̃d

cd

√
δ

) 4
d−1

,

we conclude the proof by applying Theorem 20.
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6. Relation to Existing Label Complexity Measures

A number of complexity measures to quantify the speedup in active learning have been proposed.
In this section we show interesting relations between our techniques and two well known measures,
namely the teaching dimension (Goldman and Kearns, 1995) and the disagreement coefficient (Han-
neke, 2009).

Considering first the teaching dimension, we prove in Lemma 26 that the version space compres-
sion set size is bounded above, with high probability, by the extended teaching dimension growth
function (introduced by Hanneke, 2007b). Consequently, it follows that perfect selective classifi-
cation with meaningful coverage can be achieved for the case of axis-aligned rectangles under a
product distribution.

We then focus on Hanneke’s disagreement coefficient and show in Theorem 34 that the coverage
of CSS can be bounded below using the disagreement coefficient. Conversely, in Corollary 39 we
show that the disagreement coefficient can be bounded above using any coverage bound for CSS.
Consequently, the results here imply that the disagreement coefficient,θ(ε) grows slowly with 1/ε
for the case of linear classifiers under a mixture of Gaussians.

6.1 Teaching Dimension

The teaching dimension is a label complexity measure proposed by Goldman and Kearns (1995).
The dimension of the hypothesis classH is the minimum number of examples required to present
to any consistent learner in order to uniquely identify any hypothesis in the class.

We now define the following variation of the extended teaching dimension (Heged̈us, 1995)
due to Hanneke. Throughout we use the notationh1(S) = h2(S) to denote the fact that the two
hypotheses agree on the classification of all instances inS.

Definition 22 (Extended Teaching Dimension, Heged̈us, 1995; Hanneke, 2007b)Let V⊆H , m≥
0, U ∈ Xm,

∀ f ∈H , XTD( f ,V,U) = inf {t |∃R⊆U : |{h∈V : h(R) = f (R)}| ≤ 1∧|R| ≤ t} .

Definition 23 (Hanneke, 2007b)For V ⊆H , V[Sm] denotes any subset of V such that

∀h∈V, |
{

h′ ∈V[Sm] : h′(Sm) = h(Sm)
}

|= 1.

Claim 24 Let Sm be a sample of size m,H an hypothesis class, and̂n= n(H ,Sm), the version space
compression set size. Then,

XTD(h∗,H [Sm],Sm) = n̂.

Proof Let Sn̂ ⊆ Sm be a version space compression set. Assume, by contradiction, that thereexist
two hypothesesh1,h2 ∈ H [Sm], each of which agrees on the given classifications of all examples
in Sn̂. Therefore,h1,h2 ∈ VSH ,Sn̂

, and by the definition of version space compression set, we get
h1,h2 ∈VSH ,Sm

. Hence,
|
{

h∈H [Sm] : h(Sm) = h∗(Sm)
}

| ≥ 2,

which contradicts definition 23. Therefore,

|
{

h∈H [Sm] : h(Sn̂) = h∗(Sn̂)
}

| ≤ 1,
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and
XTD(h∗,H [Sm],Sm)≤ |Sn̂|= n̂.

Let R⊂Sm be any subset of size|R|< n̂. Consequently,VSH ,Sm
⊂VSH ,R, and there exist hypothesis,

h′ ∈ VSH ,R, that agrees with all labeled examples inR, but disagrees with at least one example in
Sm. Thus,

h′(Sm) 6= h∗(Sm),

and according to definition 23, there exist hypothesesh1,h2 ∈ H [Sm] such thath1(Sm) = h′(Sm) 6=
h∗(Sm) = h2(Sm). But h1(R) = h2(R) = h∗(R), so

|{h∈V[Sm] : h(R) = h∗(R)}| ≥ 2.

It follows thatXTD(h∗,H [Sm],Sm)≥ n̂.

Definition 25 (XTD Growth Function, Hanneke, 2007b) For m≥ 0, V ⊆H , δ ∈ [0,1],

XTD(V,P,m,δ) = inf
{

t|∀h∈H ,Pr{XTD(h,V[Sm],Sm)> t} ≤ δ
}

.

Lemma 26 Let H be an hypothesis class, P an unknown distribution, andδ > 0. Then, with
probability of at least1−δ,

n̂≤ XTD(H ,P,m,δ).

Proof According to Definition 25, with probability of at least 1−δ,

XTD(h∗,H [Sm],Sm)≤ XTD(H ,P,m,δ).

Applying Claim 24 completes the proof.

Lemma 27 (Balanced Axis-Aligned Rectangles, Hanneke, 2007b, Lemma 4) If P is a product
distribution onRd with continuous CDF, andH is the set of axis-aligned rectangles such that
∀h∈H , PrX∼P{h(X) = +1} ≥ λ, then,

XTD(H ,P,m,δ)≤ O

(

d2

λ
log

dm
δ

)

.

Lemma 28 Blumer et al., 1989, Lemma 3.2.3Let F be a binary hypothesis class of finite VC
dimension d≥ 1. For all k ≥ 1, define the k-fold union,

Fk∪ ,

{

∪k
i=1 fi : fi ∈ F ,1≤ i ≤ k

}

.

Then, for all k≥ 1,
VC(Fk∪)≤ 2dklog2(3k).

Lemma 29 (order-n characterizing set complexity) LetH be the class of axis-aligned rectangles
in R

d. Then,
γ(H ,n)≤ O(dnlogn) .
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Proof Let Sn = S−k ∪S+n−k be a sample of sizen composed ofk negative examples,{x1,x2, . . .xk},
andn−k positive ones. LetH be the class of axis-aligned rectangles. We define,

∀1≤ i ≤ k, Ri , S+n−k∪{(xi ,−1)} .

Notice thatVSH ,Ri
includes all axis aligned rectangles that classify all samples inS+ as positive,

andxi as negative. Therefore, the agreement region ofVSH ,Ri
is composed of two components as

depicted in Figure 1. The first component is the smallest rectangle that bounds the positive samples,
and the second is an unbounded convex polytope defined by up tod hyperplanes intersecting atxi .
Let AGRi be the agreement region ofVSH ,Ri

andAGR the agreement region ofVSH ,Sn
. Clearly,

Ri ⊆ Sn, soVSH ,Sn
⊆VSH ,Ri

, andAGRi ⊆ AGR, and it follows that

k⋃
i=1

AGRi ⊆ AGR.

Assume, by contradiction, thatx∈ AGRbutx 6∈⋃k
i=1AGRi . Therefore, for any 1≤ i ≤ k, there exist

two hypothesesh(i)1 ,h(i)2 ∈ VSH ,Ri
, such that,h(i)1 (x) 6= h(i)2 (x). Assume, without loss of generality,

thath(i)1 (x) = 1. We define

h1 ,

k∧
i=1

h(i)1 and h2 ,

k∧
i=1

h(i)2 ,

meaning thath1 classifies a sample as positive if and only if all hypothesesh(i)1 classify it as positive.
Noting that the intersection of axis-aligned rectangles is itself an axis-alignedrectangle, we know
thath1,h2 ∈H . Moreover, for anyxi we have,h(i)1 (xi) = h(i)2 (xi) =−1, so alsoh1(xi) = h2(xi) =−1,
andh1,h2 ∈VSH ,Sn

. But h1(x) 6= h2(x). Contradiction. Therefore,

AGR=
k⋃

i=1

AGRi .

It is well known that the VC dimension of a hyper-rectangle inR
d is 2d. The VC dimension of

AGRi is bounded by the VC dimension of the union of two hyper-rectangles inR
d. Furthermore,

the VC dimension ofAGR is bounded by the VC dimension of the union of allAGRi . Applying
Lemma 28 twice we get,

VCdim{AGR} ≤ 42dklog2(3k)≤ 42dnlog2(3n).

If k= 0 then the entire sample is positive and the region of agreement is an hyper-rectangle. There-
fore,VCdim{AGR}= 2d. If k= n then the entire sample is negative and the region of agreement is
the points of the samples themselves. Hence,VCdim{AGR}= n. Overall we get that in all cases,

VCdim{AGR} ≤ 42dnlog2(3n) = O(dnlogn) .
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Figure 1: Agreement region ofVSH ,Ri
.

Corollary 30 (Balanced Axis-Aligned Rectangles)Under the same conditions of Lemma 27, the
class of balanced axis-aligned rectangles inR

d can be perfectly selectively learned with fast cover-
age rate.

Proof Applying Lemmas 26 and 27 we get that with probability of at least 1−δ,

n̂≤ O

(

d2

λ
log

dm
δ

)

.

Any balanced axis-aligned rectangle belongs to the class of all axis-aligned rectangles. Therefore,
the coverage of CSS for the class of balanced axis-aligned rectangles isbounded bellow by the
coverage of the class of axis-aligned rectangles. Applying Lemma 29, andassumingm≥ d, we
obtain,

γ(H , n̂) ≤ O

(

d
d2

λ
log

dm
δ

log

(

d2

λ
log

dm
δ

))

≤ O

(

d3

λ
log2 dm

λδ

)

.

Applying Theorem 15 completes the proof.

6.2 Disagreement Coefficient

In this section we show interesting relations between the disagreement coefficient and coverage
bounds in perfect selective classification. We begin by defining, for anhypothesish∈H , the set of
all hypotheses that arer-close toh.

Definition 31 (Hanneke, 2011b, p.337)For any hypothesis h∈H , distribution P overX , and r>
0, define the set B(h, r) of all hypotheses that reside in a ball of radius r around h,

B(h, r),
{

h′ ∈H : Pr
X∼P

{

h′(X) 6= h(X)
}

≤ r
}

.

Theorem 32 (Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 1999, p.53)Let H be a
hypothesis class with VC-dimension d. For any probability distribution P onX ×{±1}, with prob-
ability of at least1−δ over the choice of Sm, any hypothesis h∈H consistent with Sm satisfies

R(h)≤ η(d,m,δ),
2
m

[

d ln
2em

d
+ ln

2
δ

]

.
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For anyG⊆H and distributionP we denote by∆G the volume of the disagreement region ofG,

∆G, Pr{DIS(G)} .

Definition 33 (Disagreement coefficient, Hanneke, 2009)Letε≥ 0. The disagreement coefficient
of the hypothesis classH with respect to the target distribution P is

θ(ε), θh∗(ε) = sup
r>ε

∆B(h∗, r)
r

.

The following theorem formulates an intimate relation between active learning (disagreement coef-
ficient) and selective classification.

Theorem 34 LetH be an hypothesis class with VC-dimension d, P an unknown distribution,ε ≥ 0,
and θ(ε), the corresponding disagreement coefficient. Let(h,g) be a perfect selective classifier
(CSS, see Section 2.3). Then, R(h,g) = 0, and for any0≤ δ ≤ 1, with probability of at least1−δ,

Φ(h,g)≥ 1−θ(ε) ·max{η(d,m,δ),ε} .

Proof Clearly, R(h,g) = 0, and it remains to prove the coverage bound. By Theorem 32, with
probability of at least 1−δ,

∀h∈VSH ,Sm
R(h)≤ η(d,m,δ)≤ max{η(d,m,δ),ε} .

Therefore,
VSH ,Sm

⊆ B(h∗,max{η(d,m,δ),ε}) ,
∆VSH ,Sm

≤ ∆B(h∗,max{η(d,m,δ),ε}) .
By Definition 33, for anyr ′ > ε,

∆B(h∗, r ′)≤ θ(ε)r ′.

Thus, the proof is complete by recalling that

Φ(h,g) = 1−∆VSH ,Sm
.

Theorem 34 tells us that whenever our learning problem (specified by thepair (H ,P)) has a
disagreement coefficient that grows slowly with respect to 1/ε , it can be (perfectly) selectively
learned with a “fast” coverage bound. Consequently, through Theorem 9 we also know that in each
case where there exists a disagreement coefficient that grows slowly withrespect to 1/ε, active
learning with a fast rate can also be deduced directly through a reduction from perfect selective
classification. It follows that as far as fast rates in active learning are concerned, whatever can be
accomplished by bounding the disagreement coefficient, can be accomplished also using perfect
selective classification. This result is summarized in the following corollary.

Corollary 35 LetH be an hypothesis class with VC-dimension d, P an unknown distribution, and
θ(ε), the corresponding disagreement coefficient. Ifθ(ε) = O(polylog(1/ε)), there exists a cov-
erage bound such that an application of Theorem 7 ensures that(H ,P) is actively learnable with
exponential label complexity speedup.
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Proof The proof is established by straightforward applications of Theorems 34 with ε = 1/mand 9.

The following result, due to Hanneke (2011a), implies a coverage upper bound for CSS.

Lemma 36 (Hanneke, 2011a, Proof of Lemma 47)LetH be an hypothesis class, P an unknown
distribution, and r∈ (0,1). Then,

EP∆Dm ≥ (1− r)m∆B(h∗, r) ,

where
Dm ,VSH ,Sm

∩B(h∗, r) . (3)

Theorem 37 (Coverage upper bound)LetH be an hypothesis class, P an unknown distribution,
andδ ∈ (0,1). Then, for any r∈ (0,1), 1> α > δ,

BΦ(H ,δ,m)≤ 1− (1− r)m−α
1−α

∆B(h∗, r) ,

where BΦ(H ,δ,m) is any coverage bound.

Proof Recalling the definition ofDm (3), clearlyDm⊆VSH ,Sm
andDm⊆ B(h∗, r). These inclusions

imply (respectively), by the definition of disagreement set,

∆Dm ≤ ∆VSH ,Sm
, and ∆Dm ≤ ∆B(h∗, r). (4)

Using Markov’s inequality (in inequality (5) of the following derivation) andapplying (4) (in equal-
ity (6)), we thus have,

Pr

{

∆VSH ,Sm
≤ (1− r)m−α

1−α
∆B(h∗, r)

}

≤ Pr

{

∆Dm ≤ (1− r)m−α
1−α

∆B(h∗, r)

}

= Pr

{

∆B(h∗, r)−∆Dm ≥ 1− (1− r)m

1−α
∆B(h∗, r)

}

≤ Pr

{

|∆B(h∗, r)−∆Dm| ≥
1− (1− r)m

1−α
∆B(h∗, r)

}

≤ (1−α) · E{|∆B(h∗, r)−∆Dm|}
(1− (1− r)m)∆B(h∗, r)

(5)

= (1−α) · ∆B(h∗, r)−E∆Dm

(1− (1− r)m)∆B(h∗, r)
. (6)

Applying Lemma 36 we therefore obtain,

≤ (1−α) · ∆B(h∗, r)− (1− r)m∆B(h∗, r)
(1− (1− r)m)∆B(h∗, r)

= 1−α < 1−δ.

Observing that for any coverage bound,

Pr
{

∆VSH ,Sm
≤ 1−BΦ(H ,δ,m)

}

≥ 1−δ,

completes the proof.
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Corollary 38 LetH be an hypothesis class, P an unknown distribution, andδ ∈ (0,1/8). Then for
any m≥ 2,

BΦ(H ,δ,m)≤ 1− 1
7

∆B

(

h∗,
1
m

)

,

where BΦ(H ,δ,m) is any coverage bound.

Proof The proof is established by a straightforward application of Theorem 37 with α = 1/8 and
r = 1/m.

With Corollary 38 we can bound the disagreement coefficient for settings whose coverage bound
is known.

Corollary 39 LetH be an hypothesis class, P an unknown distribution, and BΦ(H ,δ,m) a cover-
age bound. Then the disagreement coefficient is bounded by,

θ(ε)≤ max

{

sup
r∈(ε,1/2)

7· 1−BΦ(H ,1/9,⌊1/r⌋)
r

,2

}

.

Proof Applying Corollary 38 we get that for anyr ∈ (0,1/2),

∆B(h∗, r)
r

≤ ∆B(h∗,1/⌊1/r⌋)
r

≤ 7· 1−BΦ(H ,1/9,⌊1/r⌋)
r

.

Therefore,

θ(ε) = sup
r>ε

∆B(h∗, r)
r

≤ max

{

sup
r∈(ε,1/2)

7· 1−BΦ(H ,1/9,⌊1/r⌋)
r

,2

}

.

Corollary 40 LetH be the class of all linear binary classifiers inRd, and let the underlying distri-
bution be any mixture of a fixed number of Gaussians inR

d. Then

θ(ε)≤ O

(

polylog

(

1
ε

))

.

Proof Applying Corollary 39 together with inequality 2 we get that

θ(ε) ≤ max

{

sup
r∈(ε,1/2)

7· 1−BΦ(H ,1/9,⌊1/r⌋)
r

,2

}

≤ max

{

sup
r∈(ε,1/2)

7
r
·O
(

(log⌊1/r⌋)d2

⌊1/r⌋ ·9d+3
2

)

,2

}

≤ O

(

(

log
1
ε

)d2)

.
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7. Concluding Remarks

For quite a few years, since its inception, the theory of target-independent bounds for noise-free ac-
tive learning managed to handle relatively simple settings, mostly revolving around homogeneous
linear classifiers under the uniform distribution over the sphere. It is likelythat this distributional
uniformity assumption was often adapted to simplify analyses. However, it wasshown by Dasgupta
(2005) that under this distribution, exponential speed up cannot be achieved when considering gen-
eral (non homogeneous) linear classifiers.

The reason for this behavior is related to the two tasks that a good active learner should success-
fully accomplish:explorationandexploitation. Intuitively (and oversimplifying things) exploration
is the task of obtaining at least one sample in each class, and exploitation is the process of refin-
ing the decision boundary by requesting labels of points around the boundary. Dasgupta showed
that exploration cannot be achieved fast enough under the uniform distribution on the sphere. The
source of this difficulty is the fact that under this distribution all training pointsreside on their con-
vex hull. In general, the speed of exploration (using linear classifiers) depends on the size (number
of vertices) of the convex hull of the training set. When using homogeneous linear classifiers, explo-
ration is trivially achieved (under the uniform distribution) and exploitation can achieve exponential
speedup.

So why in thenon-verifiablemodel (Balcan et al., 2008) it is possible to achieve exponential
speedup even when using non homogeneous linear classifiers under theuniform distribution? The
answer is that in the non-verifiable model, label complexity attributed to exploration is encapsulated
in a target-dependent “constant.” Specifically, in Balcan et al. (2008) this constant is explicitly de-
fined to be the probability mass of the minority class. Indeed, in certain noise free settings using
linear classifiers, where the minority class is large enough, exploration is a non issue. In general,
however, exploration is a major bottleneck in practical active learning (Baram et al., 2004; Begleiter
et al., 2008). The present results show how exponential speedup canbe achieved, including explo-
ration, when using different (and perhaps more natural) distributions.

With these good news, a somewhat pessimistic picture arises from the lower bound we obtained
for the exponential dependency on the dimensiond. This negative result is not restricted to stream-
based active learning and readily applies also to the pool-based model. Whilethe bound is only
asymptotic, we conjecture that it also holds for finite samples. Moreover, webelieve that within the
stream- or pool-based settings a similar statement should hold true for any active learning method
(and not necessarily CAL-based querying strategies). This result indicates that when performing
noise free active learning of linear classifiers, aggressive feature selection is beneficial for explo-
ration speedup. We note, however, that it remains open whether a slowdown exponent ofd (rather
thand2) is achievable.

We have exposed interesting relations of the present technique to well known complexity mea-
sures for active learning, namely, the teaching dimension and the disagreement coefficient. These
developments were facilitated by observations made by Hanneke on the teaching dimension and the
disagreement coefficient. These relations gave rise to further observations on active learning, which
are discussed in Section 6 and include exponential speedup for balanced axis-aligned rectangles.
Finally, we note that the intimate relation between selective classification and the disagreement co-
efficient was recently exposed in another result for selective classification where the disagreement
coefficient emerged as a dominating factor in a coverage bound for agnostic selective classification
(El-Yaniv and Wiener, 2011).
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Appendix A.

Lemma 41 For any m≥ 3, a≥ 1, b≥ 1 we get

m

∑
i=1

(

lna(bi)
i

)

<
4
a

lna+1(b(m+1)).

Proof Setting f (x), lna (bx)
x , we have

d f
dx

= (a− lnbx) · lna−1(bx)
x2 .

Therefore,f is monotonically increasing whenx< ea/b, monotonically decreasing function when
x≥ ea/b and its attains its maximum atx= ea/b. Consequently, fori < ea/b−1, or i ≥ ea/b+1,

f (i)≤
∫ i+1

x=i−1
f (x)dx.

Forea/b−1≤ i < ea/b+1,

f (i)≤ f (ea/b) = b
(a

e

)a
≤ aa. (7)

Therefore, ifm< ea−1 we have,

m

∑
i=1

f (i) = lna(b)+
m

∑
i=2

f (i)< 2·
∫ m+1

x=1
f (x)dx≤ 2

a+1
lna+1(b(m+1)).

Otherwise,m≥ ea/b, in which case we overcome the change of slope by adding twice the (upper
bound on the) maximal value (7),

m

∑
i=1

f (i) <
2

a+1
lna+1(b(m+1))+2aa =

2
a+1

lna+1(b(m+1))+
2
a

aa+1

≤ 2
a+1

lna+1(b(m+1))+
2
a

lna+1bm≤ 4
a

lna+1(b(m+1)).
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Appendix B. Alternative Proof of Lemma 6 Using Super Martingales

DefineWk , ∑k
i=1(Zi −bi). We assume that with probability of at least 1−δ/2,

Pr{Zi |Z1, . . . ,Zi−1} ≤ bi , simultaneously for alli. SinceZi is a binary random variable it is easy to
see that (w.h.p.),

EZi{Wi |Z1, . . . ,Zi−1}= Pr{Zi |Z1, . . . ,Zi−1}−bi +Wi−1 ≤Wi−1,

and the sequenceWm
1 , W1, . . . ,Wm is a super-martingale with high probability. We apply the fol-

lowing theorem by McDiarmid that refers to martingales (but can be shown to apply to super-
martingales, by following its original proof).

Theorem 42 (McDiarmid, 1998, Theorem 3.12)Let Y1, . . . ,Yn be a martingale difference sequence
with −ak ≤Yk ≤ 1−ak for each k; let A= 1

n ∑ak. Then, for anyε > 0,

Pr
{

∑Yk ≥ Anε
}

≤ exp(−[(1+ ε) ln(1+ ε)− ε]An)≤ exp

(

− Anε2

2(1+ ε/3)

)

.

In our case,Yk =Wk−Wk−1 = Zk−bk ≤ 1−bk and we apply the (revised) theorem withak , bk

andAn, ∑bk , B. We thus obtain, for any 0< ε < 1,

Pr
{

∑Zk ≥ B+Bε
}

≤ exp

(

− Bε2

2(1+ ε/3)

)

.

Equating the right-hand side toδ/2, we obtain

ε =

(

2
3

ln
2
δ
±
√

4
9

ln2 2
δ
+8Bln

2
δ

)

/2B

≤
(

1
3

ln
2
δ
+

√

1
9

ln2 2
δ
+

√

2Bln
2
δ

)

/B

=

(

2
3

ln
2
δ
+

√

2Bln
2
δ

)

/B.

Applying the union bound completes the proof.
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