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Abstract
Random forests are a scheme proposed by Leo Breiman in the 2000’s for building a predictor
ensemble with a set of decision trees that grow in randomly selected subspaces of data. Despite
growing interest and practical use, there has been little exploration of the statistical properties of
random forests, and little is known about the mathematical forces driving the algorithm. In this
paper, we offer an in-depth analysis of a random forests model suggested by Breiman (2004),
which is very close to the original algorithm. We show in particular that the procedure is consistent
and adapts to sparsity, in the sense that its rate of convergence depends only on the number of strong
features and not on how many noise variables are present.
Keywords: random forests, randomization, sparsity, dimension reduction, consistency, rate of
convergence

1. Introduction

In a series of papers and technical reports, Breiman (1996, 2000, 2001, 2004) demonstrated that
substantial gains in classification and regression accuracy can be achieved by using ensembles of
trees, where each tree in the ensemble is grown in accordance with a random parameter. Final
predictions are obtained by aggregating over the ensemble. As the base constituents of the ensemble
are tree-structured predictors, and since each of these trees is constructed using an injection of
randomness, these procedures are called “random forests.”

1.1 Random Forests

Breiman’s ideas were decisively influenced by the early work of Amit and Geman (1997) on geomet-
ric feature selection, the random subspace method of Ho (1998) and the random split selection ap-
proach of Dietterich (2000). As highlighted by various empirical studies (see for instance Breiman,
2001; Svetnik et al., 2003; Diaz-Uriarte and de Andrés, 2006; Genuer et al., 2008, 2010), random
forests have emerged as serious competitors to state-of-the-art methods such as boosting (Freund
and Shapire, 1996) and support vector machines (Shawe-Taylor andCristianini, 2004). They are
fast and easy to implement, produce highly accurate predictions and can handle a very large number
of input variables without overfitting. In fact, they are considered to be one of the most accurate
general-purpose learning techniques available. The survey by Genuer et al. (2008) may provide the
reader with practical guidelines and a good starting point for understanding the method.
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In Breiman’s approach, each tree in the collection is formed by first selecting at random, at each
node, a small group of input coordinates (also called features or variables hereafter) to split on and,
secondly, by calculating the best split based on these features in the training set. The tree is grown
using CART methodology (Breiman et al., 1984) to maximum size, without pruning. This subspace
randomization scheme is blended with bagging (Breiman, 1996; Bühlmann and Yu, 2002; Buja and
Stuetzle, 2006; Biau et al., 2010) to resample, with replacement, the training data set each time a
new individual tree is grown.

Although the mechanism appears simple, it involves many different driving forces which make
it difficult to analyse. In fact, its mathematical properties remain to date largely unknown and, up
to now, most theoretical studies have concentrated on isolated parts or stylized versions of the algo-
rithm. Interesting attempts in this direction are by Lin and Jeon (2006), who establish a connection
between random forests and adaptive nearest neighbor methods (seealso Biau and Devroye, 2010,
for further results); Meinshausen (2006), who studies the consistency of random forests in the con-
text of conditional quantile prediction; and Biau et al. (2008), who offerconsistency theorems for
various simplified versions of random forests and other randomized ensemble predictors. Neverthe-
less, the statistical mechanism of “true” random forests is not yet fully understood and is still under
active investigation.

In the present paper, we go one step further into random forests by working out and solidifying
the properties of a model suggested by Breiman (2004). Though this modelis still simple compared
to the “true” algorithm, it is nevertheless closer to reality than any other schemewe are aware of.
The short draft of Breiman (2004) is essentially based on intuition and mathematical heuristics,
some of them are questionable and make the document difficult to read and understand. However,
the ideas presented by Breiman are worth clarifying and developing, and they will serve as a starting
point for our study.

Before we formalize the model, some definitions are in order. Throughout the document, we
suppose that we are given a training sampleDn = {(X1,Y1), . . . ,(Xn,Yn)} of i.i.d. [0,1]d×R-valued
random variables (d≥ 2) with the same distribution as an independent generic pair(X,Y) satisfying
EY2 < ∞. The space[0,1]d is equipped with the standard Euclidean metric. For fixedx ∈ [0,1]d,
our goal is to estimate the regression functionr(x) = E[Y|X = x] using the dataDn. In this respect,
we say that a regression function estimatern is consistent ifE[rn(X)− r(X)]2 → 0 asn→ ∞. The
main message of this paper is that Breiman’s procedure is consistent and adapts to sparsity, in the
sense that its rate of convergence depends only on the number of strongfeatures and not on how
many noise variables are present.

1.2 The Model

Formally, a random forest is a predictor consisting of a collection of randomized base regression
trees{rn(x,Θm,Dn),m≥ 1}, whereΘ1,Θ2, . . . are i.i.d. outputs of a randomizing variableΘ. These
random trees are combined to form the aggregated regression estimate

r̄n(X,Dn) = EΘ [rn(X,Θ,Dn)] ,

whereEΘ denotes expectation with respect to the random parameter, conditionally onX and the data
setDn. In the following, to lighten notation a little, we will omit the dependency of the estimates
in the sample, and write for example ¯rn(X) instead of ¯rn(X,Dn). Note that, in practice, the above
expectation is evaluated by Monte Carlo, that is, by generatingM (usually large) random trees,
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and taking the average of the individual outcomes (this procedure is justified by the law of large
numbers, see the appendix in Breiman, 2001). The randomizing variableΘ is used to determine
how the successive cuts are performed when building the individual trees, such as selection of the
coordinate to split and position of the split.

In the model we have in mind, the variableΘ is assumed to be independent ofX and the training
sampleDn. This excludes in particular any bootstrapping or resampling step in the training set. This
also rules out any data-dependent strategy to build the trees, such as searching for optimal splits by
optimizing some criterion on the actual observations. However, we allowΘ to be based on a second
sample, independent of, but distributed as,Dn. This important issue will be thoroughly discussed
in Section 3.

With these warnings in mind, we will assume that each individual random tree isconstructed in
the following way. All nodes of the tree are associated with rectangular cellssuch that at each step of
the construction of the tree, the collection of cells associated with the leaves ofthe tree (i.e., external
nodes) forms a partition of[0,1]d. The root of the tree is[0,1]d itself. The following procedure is
then repeated⌈log2kn⌉ times, where log2 is the base-2 logarithm,⌈.⌉ the ceiling function andkn ≥ 2
a deterministic parameter, fixed beforehand by the user, and possibly depending onn.

1. At each node, a coordinate ofX = (X(1), . . . ,X(d)) is selected, with thej-th feature having a
probability pn j ∈ (0,1) of being selected.

2. At each node, once the coordinate is selected, the split is at the midpoint of the chosen side.

Each randomized treern(X,Θ) outputs the average over allYi for which the corresponding
vectorsX i fall in the same cell of the random partition asX. In other words, lettingAn(X,Θ) be the
rectangular cell of the random partition containingX,

rn(X,Θ) =
∑n

i=1Yi1[X i∈An(X,Θ)]

∑n
i=11[X i∈An(X,Θ)]

1En(X,Θ),

where the eventEn(X,Θ) is defined by

En(X,Θ) =

[

n

∑
i=1

1[X i∈An(X,Θ)] 6= 0

]

.

(Thus, by convention, the estimate is set to 0 on empty cells.) Taking finally expectation with respect
to the parameterΘ, the random forests regression estimate takes the form

r̄n(X) = EΘ [rn(X,Θ)] = EΘ

[

∑n
i=1Yi1[X i∈An(X,Θ)]

∑n
i=11[X i∈An(X,Θ)]

1En(X,Θ)

]

.

Let us now make some general remarks about this random forests model. First of all, we note
that, by construction, each individual tree has exactly 2⌈log2 kn⌉ (≈ kn) terminal nodes, and each leaf
has Lebesgue measure 2−⌈log2 kn⌉ (≈ 1/kn). Thus, ifX has uniform distribution on[0,1]d, there will
be on average aboutn/kn observations per terminal node. In particular, the choicekn = n induces
a very small number of cases in the final leaves, in accordance with the ideathat the single trees
should not be pruned.

Next, we see that, during the construction of the tree, at each node, eachcandidate coordinate
X( j) may be chosen with probabilitypn j ∈ (0,1). This implies in particular∑d

j=1 pn j = 1. Although
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we do not precise for the moment the way these probabilities are generated,we stress that they may
be induced by a second sample. This includes the situation where, at each node, randomness is
introduced by selecting at random (with or without replacement) a small group of input features to
split on, and choosing to cut the cell along the coordinate—inside this group—which most decreases
some empirical criterion evaluated on the extra sample. This scheme is close to what the original
random forests algorithm does, the essential difference being that the latter algorithm uses the actual
data set to calculate the best splits. This point will be properly discussed in Section 3.

Finally, the requirement that the splits are always achieved at the middle of thecell sides is
mainly technical, and it could eventually be replaced by a more involved random mechanism—
based on the second sample—at the price of a much more complicated analysis.

The document is organized as follows. In Section 2, we prove that the random forests regression
estimate ¯rn is consistent and discuss its rate of convergence. As a striking result, weshow under a
sparsity framework that the rate of convergence depends only on the number of active (or strong)
variables and not on the dimension of the ambient space. This feature is particularly desirable in
high-dimensional regression, when the number of variables can be much larger than the sample
size, and may explain why random forests are able to handle a very large number of input variables
without overfitting. Section 3 is devoted to a discussion, and a small simulation study is presented
in Section 4. For the sake of clarity, proofs are postponed to Section 5.

2. Asymptotic Analysis

Throughout the document, we denote byNn(X,Θ) the number of data points falling in the same cell
asX, that is,

Nn(X,Θ) =
n

∑
i=1

1[X i∈An(X,Θ)].

We start the analysis with the following simple theorem, which shows that the random forests esti-
mate ¯rn is consistent.

Theorem 1 Assume that the distribution ofX has support on[0,1]d. Then the random forests
estimatērn is consistent whenever pn j logkn → ∞ for all j = 1, . . . ,d and kn/n→ 0 as n→ ∞.

Theorem 1 mainly serves as an illustration of how the consistency problem ofrandom forests
predictors may be attacked. It encompasses, in particular, the situation where, at each node, the
coordinate to split is chosen uniformly at random over thed candidates. In this “purely random”
model, pn j = 1/d, independently ofn and j, and consistency is ensured as long askn → ∞ and
kn/n → 0. This is however a radically simplified version of the random forests usedin practice,
which does not explain the good performance of the algorithm. To achieve this goal, a more in-
depth analysis is needed.

There is empirical evidence that many signals in high-dimensional spaces admit a sparse rep-
resentation. As an example, wavelet coefficients of images often exhibit exponential decay, and a
relatively small subset of all wavelet coefficients allows for a good approximation of the original
image. Such signals have few non-zero coefficients and can thereforebe described as sparse in
the signal domain (see for instance Bruckstein et al., 2009). Similarly, recent advances in high-
throughput technologies—such as array comparative genomic hybridization—indicate that, despite
the huge dimensionality of problems, only a small number of genes may play a rolein determining
the outcome and be required to create good predictors (van’t Veer et al.,2002, for instance). Sparse
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estimation is playing an increasingly important role in the statistics and machine learning commu-
nities, and several methods have recently been developed in both fields, which rely upon the notion
of sparsity (e.g., penalty methods like the Lasso and Dantzig selector, see Tibshirani, 1996; Cand̀es
and Tao, 2005; Bunea et al., 2007; Bickel et al., 2009, and the references therein).

Following this idea, we will assume in our setting that the target regression function r(X) =
E[Y|X], which is initially a function ofX = (X(1), . . . ,X(d)), depends in fact only on a nonempty
subsetS (for S trong) of thed features. In other words, lettingXS = (Xj : j ∈ S) andS= CardS ,
we have

r(X) = E[Y|XS ]

or equivalently, for anyx ∈ [0,1]d,

r(x) = r⋆(xS ) µ-a.s., (1)

whereµ is the distribution ofX and r⋆ : [0,1]S → R is the section ofr corresponding toS . To
avoid trivialities, we will assume throughout thatS is nonempty, withS≥ 2. The variables in the
setW = {1, . . . ,d}− S (for W eak) have thus no influence on the response and could be safely
removed. In the dimension reduction scenario we have in mind, the ambient dimension d can be
very large, much larger than the sample sizen, but we believe that the representation is sparse,
that is, that very few coordinates ofr are non-zero, with indices corresponding to the setS . Note
however that representation (1) does not forbid the somehow undesirable case whereS= d. As
such, the valueScharacterizes the sparsity of the model: The smallerS, the sparserr.

Within this sparsity framework, it is intuitively clear that the coordinate-samplingprobabilities
should ideally satisfy the constraintspn j = 1/S for j ∈ S (and, consequently,pn j = 0 otherwise).
However, this is a too strong requirement, which has no chance to be satisfied in practice, except
maybe in some special situations where we know beforehand which variables are important and
which are not. Thus, to stick to reality, we will rather require in the following that pn j = (1/S)(1+
ξn j) for j ∈ S (and pn j = ξn j otherwise), wherepn j ∈ (0,1) and eachξn j tends to 0 asn tends
to infinity. We will see in Section 3 how to design a randomization mechanism to obtainsuch
probabilities, on the basis of a second sample independent of the training set Dn. At this point,
it is important to note that the dimensionsd andS are held constant throughout the document. In
particular, these dimensions arenot functions of the sample sizen, as it may be the case in other
asymptotic studies.

We have now enough material for a deeper understanding of the randomforests algorithm. To
lighten notation a little, we will write

Wni(X,Θ) =
1[X i∈An(X,Θ)]

Nn(X,Θ)
1En(X,Θ),

so that the estimate takes the form

r̄n(X) =
n

∑
i=1

EΘ [Wni(X,Θ)]Yi .

Let us start with the variance/bias decomposition

E [r̄n(X)− r(X)]2 = E [r̄n(X)− r̃n(X)]2+E [r̃n(X)− r(X)]2 , (2)
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where we set

r̃n(X) =
n

∑
i=1

EΘ [Wni(X,Θ)] r(X i).

The two terms of (2) will be examined separately, in Proposition 2 and Proposition 4, respectively.
Throughout, the symbolV denotes variance.

Proposition 2 Assume thatX is uniformly distributed on[0,1]d and, for allx ∈ R
d,

σ2(x) = V[Y |X = x]≤ σ2

for some positive constantσ2. Then, if pn j = (1/S)(1+ξn j) for j ∈ S ,

E [r̄n(X)− r̃n(X)]2 ≤Cσ2
(

S2

S−1

)S/2d

(1+ξn)
kn

n(logkn)S/2d
,

where

C=
288
π

(

π log2
16

)S/2d

.

The sequence(ξn) depends on the sequences{(ξn j) : j ∈ S} only and tends to0 as n tends to infinity.

Remark 3 A close inspection of the end of the proof of Proposition 2 reveals that

1+ξn = ∏
j∈S

[

(1+ξn j)
−1
(

1−
ξn j

S−1

)−1
]1/2d

.

In particular, if a< pn j < b for some constants a,b∈ (0,1), then

1+ξn ≤

(

S−1
S2a(1−b)

)S/2d

.

The main message of Proposition 2 is that the variance of the forests estimate is
O(kn/(n(logkn)

S/2d)). This result is interesting by itself since it shows the effect of aggregation
on the variance of the forest. To understand this remark, recall that individual (random or not) trees
are proved to be consistent by letting the number of cases in each terminal node become large (see
Devroye et al., 1996, Chapter 20), with a typical variance of the orderkn/n. Thus, for such trees, the
choicekn = n (i.e., about one observation on average in each terminal node) is clearly not suitable
and leads to serious overfitting and variance explosion. On the other hand, the variance of the forest
is of the orderkn/(n(logkn)

S/2d). Therefore, lettingkn = n, the variance is of the order 1/(logn)S/2d,
a quantity which still goes to 0 asn grows! Proof of Proposition 2 reveals that this log term is a
by-product of theΘ-averaging process, which appears by taking into consideration the correlation
between trees. We believe that it provides an interesting perspective on why random forests are still
able to do a good job, despite the fact that individual trees are not pruned.

Note finally that the requirement thatX is uniformly distributed on the hypercube could be
safely replaced by the assumption thatX has a density with respect to the Lebesgue measure on
[0,1]d and the density is bounded from above and from below. The case wherethe density ofX is
not bounded from below necessitates a specific analysis, which we believe is beyond the scope of
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the present paper. We refer the reader to Biau and Devroye (2010) for results in this direction (see
also Remark 10 in Section 5).

Let us now turn to the analysis of the bias term in equality (2). Recall thatr⋆ denotes the section
of r corresponding toS .

Proposition 4 Assume thatX is uniformly distributed on[0,1]d and r⋆ is L-Lipschitz on[0,1]S.
Then, if pn j = (1/S)(1+ξn j) for j ∈ S ,

E [r̃n(X)− r(X)]2 ≤
2SL2

k
0.75

Slog2(1+γn)
n

+

[

sup
x∈[0,1]d

r2(x)

]

e−n/2kn,

whereγn = min j∈S ξn j tends to0 as n tends to infinity.

This result essentially shows that the rate at which the bias decreases to 0 depends on the number
of strong variables, not ond. In particular, the quantitykn

−(0.75/(Slog2))(1+γn) should be compared
with the ordinary partitioning estimate bias, which is of the orderkn

−2/d under the smoothness
conditions of Proposition 4 (see for instance Györfi et al., 2002). In this respect, it is easy to see that
kn

−(0.75/(Slog2))(1+γn) = o(kn
−2/d) as soon asS≤ ⌊0.54d⌋ (⌊.⌋ is the integer part function). In other

words, when the number of active variables is less than (roughly) half ofthe ambient dimension, the
bias of the random forests regression estimate decreases to 0 much fasterthan the usual rate. The
restrictionS≤ ⌊0.54d⌋ is not severe, since in all practical situations we have in mind,d is usually
very large with respect toS (this is, for instance, typically the case in modern genome biology
problems, whered may be of the order of billion, and in any case much larger than the actual number
of active features). Note at last that, contrary to Proposition 2, the terme−n/2kn prevents the extreme
choicekn = n (about one observation on average in each terminal node). Indeed, an inspection of the
proof of Proposition 4 reveals that this term accounts for the probability that Nn(X,Θ) is precisely
0, that is,An(X,Θ) is empty.

Recalling the elementary inequalityze−nz≤ e−1/n for z∈ [0,1], we may finally join Proposition
2 and Proposition 4 and state our main theorem.

Theorem 5 Assume thatX is uniformly distributed on[0,1]d, r⋆ is L-Lipschitz on[0,1]S and, for
all x ∈ R

d,
σ2(x) = V[Y |X = x]≤ σ2

for some positive constantσ2. Then, if pn j = (1/S)(1+ ξn j) for j ∈ S , letting γn = min j∈S ξn j, we
have

E [r̄n(X)− r(X)]2 ≤ Ξn
kn

n
+

2SL2

k
0.75

Slog2(1+γn)
n

,

where

Ξn =Cσ2
(

S2

S−1

)S/2d

(1+ξn)+2e−1

[

sup
x∈[0,1]d

r2(x)

]

and

C=
288
π

(

π log2
16

)S/2d

.

The sequence(ξn) depends on the sequences{(ξn j) : j ∈ S} only and tends to0 as n tends to infinity.
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As we will see in Section 3, it may be safely assumed that the randomization process allows for
ξn j logn → 0 asn → ∞, for all j ∈ S . Thus, under this condition, Theorem 5 shows that with the
optimal choice

kn ∝ n1/(1+ 0.75
Slog2),

we get

E [r̄n(X)− r(X)]2 = O
(

n
−0.75

Slog2+0.75

)

.

This result can be made more precise. Denote byFS the class of(L,σ2)-smooth distributions(X,Y)
such thatX has uniform distribution on[0,1]d, the regression functionr⋆ is Lipschitz with constant
L on [0,1]S and, for allx ∈ R

d, σ2(x) = V[Y |X = x]≤ σ2.

Corollary 6 Let

Ξ =Cσ2
(

S2

S−1

)S/2d

+2e−1

[

sup
x∈[0,1]d

r2(x)

]

and

C=
288
π

(

π log2
16

)S/2d

.

Then, if pn j = (1/S)(1+ξn j) for j ∈ S , with ξn j logn→ 0 as n→ ∞, for the choice

kn ∝
(

L2

Ξ

)1/(1+ 0.75
Slog2)

n1/(1+ 0.75
Slog2),

we have

limsup
n→∞

sup
(X,Y)∈FS

E [r̄n(X)− r(X)]2

(

ΞL
2Slog2

0.75

)
0.75

Slog2+0.75
n

−0.75
Slog2+0.75

≤ Λ,

whereΛ is a positive constant independent of r, L andσ2.

This result reveals the fact that theL2-rate of convergence of ¯rn(X) to r(X) depends only on the
numberSof strong variables, and not on the ambient dimensiond. The main message of Corollary 6
is that if we are able to properly tune the probability sequences(pn j)n≥1 and make them sufficiently
fast to track the informative features, then the rate of convergence of the random forests estimate

will be of the ordern
−0.75

Slog2+0.75 . This rate is strictly faster than the usual raten−2/(d+2) as soon as
S≤ ⌊0.54d⌋. To understand this point, just recall that the raten−2/(d+2) is minimax optimal for the
classFd (see, for example Ibragimov and Khasminskii, 1980, 1981, 1982), seen as a collection of
regression functions over[0,1]d, not [0,1]S. However, in our setting, the intrinsic dimension of the
regression problem isS, notd, and the random forests estimate cleverly adapts to the sparsity of the
problem. As an illustration, Figure 1 shows the plot of the functionS 7→ 0.75/(Slog2+0.75) for S
ranging from 2 tod = 100.

It is noteworthy that the rate of convergence of theξn j to 0 (and, consequently, the rate at which
the probabilitiespn j approach 1/S for j ∈ S ) will eventually depend on the ambient dimensiond
through the ratioS/d. The same is true for the Lipschitz constantL and the factor supx∈[0,1]d r2(x)
which both appear in Corollary 6. To figure out this remark, remember firstthat the support ofr is
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Figure 1: Solid line: Plot of the functionS 7→ 0.75/(Slog2+0.75) for Sranging from 2 tod= 100.
Dotted line: Plot of the minimax rate powerS 7→ 2/(S+2). The horizontal line shows
the value of thed-dimensional rate power 2/(d+2)≈ 0.0196.

contained inRS, so that the later supremum (respectively, the Lipschitz constant) is in facta supre-
mum (respectively, a Lipschitz constant) overR

S, notoverRd. Next, denote byCp(s) the collection
of functionsη : [0,1]p → [0,1] for which each derivative of orders satisfies a Lipschitz condition.
It is well known that theε-entropy log2(Nε) of Cp(s) is Φ(ε−p/(s+1)) asε ↓ 0 (Kolmogorov and
Tihomirov, 1961), wherean = Φ(bn) means thatan = O(bn) andbn = O(an). Here we have an
interesting interpretation of the dimension reduction phenomenon: Working withLipschitz func-
tions onRS (that is,s= 0) is roughly equivalent to working with functions onRd for which all
[(d/S)−1]-th order derivatives are Lipschitz! For example, ifS= 1 andd = 25, (d/S)−1 = 24
and, as there are 2524 such partial derivatives inR25, we note immediately the potential benefit of
recovering the “true” dimensionS.

Remark 7 The reduced-dimensional rate n
−0.75

Slog2+0.75 is strictly larger than the S-dimensional optimal
rate n−2/(S+2), which is also shown in Figure 1 for S ranging from2 to 100. We do not know whether
the latter rate can be achieved by the algorithm.

Remark 8 The optimal parameter kn of Corollary 6 depends on the unknown distribution of(X,Y),
especially on the smoothness of the regression function and the effective dimension S. To correct this
situation, adaptive (i.e., data-dependent) choices of kn, such as data-splitting or cross-validation,
should preserve the rate of convergence of the estimate. Another routewe may follow is to analyse
the effect of bootstrapping the sample before growing the individual trees (i.e., bagging). It is our
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belief that this procedure should also preserve the rate of convergence, even for overfitted trees
(kn ≈ n), in the spirit of Biau et al. (2010). However, such a study is beyond the scope of the present
paper.

Remark 9 For further references, it is interesting to note that Proposition 2 (varianceterm) is a
consequence of aggregation, whereas Proposition 4 (bias term) is a consequence of randomization.

It is also stimulating to keep in mind the following analysis, which has been suggested to us by
a referee. Suppose, to simplify, that Y= r(X) (no-noise regression) and that∑n

i=1Wni(X,Θ) = 1 a.s.
In this case, the variance term is 0 and we have

r̄n(X) = r̃n(X) =
n

∑
i=1

EΘ [Wni(Θ,X)]Yi .

SetZn = (Y,Y1, . . . ,Yn). Then

E [r̄n(X)− r(X)]2 = E [r̄n(X)−Y]2

= E

[

E

[

(r̄n(X)−Y)2 |Zn

]]

= E

[

E

[

(r̄n(X)−E[r̄n(X) |Zn])
2 |Zn

]]

+E [E[r̄n(X) |Zn]−Y]2 .

The conditional expectation in the first of the two terms above may be rewritten under the form

E
[

Cov
(

EΘ [rn(X,Θ)] ,EΘ′

[

rn(X,Θ′)
]

|Zn
)]

,

whereΘ′ is distributed as, and independent of,Θ. Attention shows that this last term is indeed equal
to

E
[

EΘ,Θ′Cov
(

rn(X,Θ), rn(X,Θ′) |Zn
)]

.

The key observation is that if trees have strong predictive power, then they can be unconditionally
strongly correlated while being conditionally weakly correlated. This opensan interesting line of
research for the statistical analysis of the bias term, in connection with Amit (2002) and Blanchard
(2004) conditional covariance-analysis ideas.

3. Discussion

The results which have been obtained in Section 2 rely on appropriate behavior of the probability
sequences(pn j)n≥1, j = 1, . . . ,d. We recall that these sequences should be in(0,1) and obey the
constraintspn j = (1/S)(1+ ξn j) for j ∈ S (andpn j = ξn j otherwise), where the(ξn j)n≥1 tend to 0
asn tends to infinity. In other words, at each step of the construction of the individual trees, the
random procedure should track and preferentially cut the strong coordinates. In this more informal
section, we briefly discuss a random mechanism for inducing such probability sequences.

Suppose, to start with an imaginary scenario, that we already know which coordinates are strong,
and which are not. In this ideal case, the random selection procedure described in the introduction
may be easily made more precise as follows. A positive integerMn—possibly depending onn—is
fixed beforehand and the following splitting scheme is iteratively repeated ateach node of the tree:

1. Select at random, with replacement,Mn candidate coordinates to split on.
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2. If the selection is all weak, then choose one at random to split on. If there is more than one
strong variable elected, choose one at random and cut.

Within this framework, it is easy to see that each coordinate inS will be cut with the “ideal” proba-
bility

p⋆n =
1
S

[

1−

(

1−
S
d

)Mn
]

.

Though this is an idealized model, it already gives some information about the choice of the param-
eterMn, which, in accordance with the results of Section 2 (Corollary 6), should satisfy

(

1−
S
d

)Mn

logn→ 0 asn→ ∞.

This is true as soon as

Mn → ∞ and
Mn

logn
→ ∞ asn→ ∞.

This result is consistent with the general empirical finding thatMn (calledmtry in the R package
RandomForests) does not need to be very large (see, for example, Breiman, 2001), but not with the
widespread belief thatMn should not depend onn. Note also that if theMn features are chosen at
randomwithout replacement, then things are even more simple since, in this case,p⋆n = 1/S for all
n large enough.

In practice, we have only a vague idea about the size and content of the set S . However, to
circumvent this problem, we may use the observations of an independent second setD ′

n (say, of
the same size asDn) in order to mimic the ideal split probabilityp⋆n. To illustrate this mechanism,
suppose—to keep things simple—that the model is linear, that is,

Y = ∑
j∈S

a jX
( j)+ ε,

whereX = (X(1), . . . ,X(d)) is uniformly distributed over[0,1]d, thea j are non-zero real numbers,
andε is a zero-mean random noise, which is assumed to be independent ofX and with finite vari-
ance. Note that, in accordance with our sparsity assumption,r(X) = ∑ j∈S a jX( j) depends onXS

only.
Assume now that we have done some splitting and arrived at a current setof terminal nodes.

Consider any of these nodes, sayA = ∏d
j=1A j , fix a coordinatej ∈ {1, . . . ,d}, and look at the

weighted conditional varianceV[Y|X( j) ∈ A j ]P(X( j) ∈ A j). It is a simple exercise to prove that ifX
is uniform andj ∈ S , then the split on thej-th side which most decreases the weighted conditional
variance is at the midpoint of the node, with a variance decrease equal toa2

j/16> 0. On the other
hand, if j ∈W , the decrease of the variance is always 0, whatever the location of the split.

On the practical side, the conditional variances are of course unknown, but they may be esti-
mated by replacing the theoretical quantities by their respective sample estimates(as in the CART
procedure, see Breiman, 2001, Chapter 8, for a thorough discussion) evaluated on the second sample
D ′

n. This suggests the following procedure, at each node of the tree:

1. Select at random, with replacement,Mn candidate coordinates to split on.
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2. For each of theMn elected coordinates, calculate the best split, that is, the split which most
decreases the within-node sum of squares on the second sampleD ′

n.

3. Select one variable at random among the coordinates which output the best within-node sum
of squares decreases, and cut.

This procedure is indeed close to what the random forests algorithm does. The essential dif-
ference is that we suppose to have at hand a second sampleD ′

n, whereas the original algorithm
performs the search of the optimal cuts on the original observationsDn. This point is important,
since the use of an extra sample preserves the independence ofΘ (the random mechanism) andDn

(the training sample). We do not know whether our results are still true ifΘ depends onDn (as
in the CART algorithm), but the analysis does not appear to be simple. Note alsothat, at step 3,
a threshold (or a test procedure, as suggested in Amaratunga et al., 2008) could be used to choose
among the most significant variables, whereas the actual algorithm just selects the best one. In fact,
depending on the context and the actual cut selection procedure, the informative probabilitiespn j

( j ∈ S ) may obey the constraintspn j → p j asn→ ∞ (thus,p j is not necessarily equal to 1/S), where
the p j are positive and satisfy∑ j∈S p j = 1. This should not affect the results of the article.

This empirical randomization scheme leads to complicate probabilities of cuts which, this time,
vary at each node of each tree and are not easily amenable to analysis. Nevertheless, observing that
the average number of cases per terminal node is aboutn/kn, it may be inferred by the law of large
numbers that each variable inS will be cut with probability

pn j ≈
1
S

[

1−

(

1−
S
d

)Mn
]

(1+ζn j),

whereζn j is of the orderO(kn/n), a quantity which anyway goes fast to 0 asn tends to infinity. Put
differently, for j ∈ S ,

pn j ≈
1
S
(1+ξn j) ,

where ξn j goes to 0 and satisfies the constraintξn j logn → 0 as n tends to infinity, provided
kn logn/n → 0, Mn → ∞ and Mn/ logn → ∞. This is coherent with the requirements of Corol-
lary 6. We realize however that this is a rough approach, and that more theoretical work is needed
here to fully understand the mechanisms involved in CART and Breiman’s original randomization
process.

It is also noteworthy that random forests use the so-called out-of-bag samples (i.e., the boot-
strapped data which are not used to fit the trees) to construct a variable importance criterion, which
measures the prediction strength of each feature (see, e.g., Genuer et al., 2010). As far as we are
aware, there is to date no systematic mathematical study of this criterion. It is ourbelief that such
a study would greatly benefit from the sparsity point of view developed in the present paper, but is
unfortunately much beyond its scope. Lastly, it would also be interesting to work out and extend
our results to the context of unsupervised learning of trees. A good route to follow with this respect
is given by the strategies outlined in Section 5.5 of Amit and Geman (1997).

4. A Small Simulation Study

Even though the first vocation of the present paper is theoretical, we offer in this short section some
experimental results on synthetic data. Our aim is not to provide a thorough practical study of the
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random forests method, but rather to illustrate the main ideas of the article. As for now, we let
U([0,1]d) (respectively,N (0,1)) be the uniform distribution over[0,1]d (respectively, the standard
Gaussian distribution). Specifically, three models were tested:

1. [Sinus] For x ∈ [0,1]d, the regression function takes the form

r(x) = 10sin(10πx(1)).

We letY = r(X)+ ε andX ∼U([0,1]d) (d ≥ 1), with ε ∼N (0,1).

2. [Friedman #1] This is a model proposed in Friedman (1991). Here,

r(x) = 10sin(πx(1)x(2))+20(x(3)− .05)2+10x(4)+5x(5)

andY = r(X)+ ε, whereX ∼U([0,1]d) (d ≥ 5) andε ∼N (0,1).

3. [Tree] In this example, we letY = r(X)+ ε, whereX ∼U([0,1]d) (d ≥ 5), ε ∼N (0,1) and
the functionr has itself a tree structure. This tree-type function, which is shown in Figure2,
involves only five variables.

Figure 2: The tree used as regression function in the modelTree.

We note that, although the ambient dimensiond may be large, the effective dimension of model
1 isS= 1, whereas model 2 and model 3 haveS= 5. In other words,S = {1} for model 1, whereas
S = {1, . . . ,5} for model 2 and model 3. Observe also that, in our context, the modelTree should
be considered as a “no-bias” model, on which the random forests algorithm is expected to perform
well.

In a first series of experiments, we letd = 100 and, for each of the three models and different
values of the sample sizen, we generated a learning set of sizen and fitted a forest (10000 trees)
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with mtry= d. For j = 1, . . . ,d, the ratio (number of times thej-th coordinate is split)/(total number
of splits over the forest) was evaluated, and the whole experiment was repeated 100 times. Figure 3,
Figure 4 and Figure 5 report the resulting boxplots for each of the first twenty variables and different
values ofn. These figures clearly enlighten the fact that, asn grows, the probability of cuts does
concentrate on the informative variables only and support the assumption thatξn j → 0 asn→ ∞ for
eachj ∈ S .

Figure 3: Boxplots of the empirical probabilities of cuts for modelSinus(S = {1}).

Next, in a second series of experiments, for each model, for different values ofd and for sample
sizesn ranging from 10 to 1000, we generated a learning set of sizen, a test set of size 50000 and
evaluated the mean squared error (MSE) of the random forests (RF) method via the Monte Carlo
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Figure 4: Boxplots of the empirical probabilities of cuts for modelFriedman #1 (S = {1, . . . ,5}).

approximation

MSE≈
1

50000

50000

∑
j=1

[RF(test data #j)− r(test data #j)]2 .

All results were averaged over 100 data sets. The random forests algorithm was performed with
the parametermtry automatically tuned by the R packageRandomForests, 1000 random trees and
the minimum node size set to 5 (which is the default value for regression). Besides, in order to
compare the “true” algorithm with the approximate model discussed in the present document, an
alternative method was also tested. This auxiliary algorithm has characteristics which are identical
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Figure 5: Boxplots of the empirical probabilities of cuts for modelTree (S = {1, . . . ,5}).

to the original ones (samemtry, same number of random trees),with the notable difference that now
the maximum number of nodes is fixed beforehand. For the sake of coherence, since the minimum
node size is set to 5 in theRandomForests package, the number of terminal nodes in the custom
algorithm was calibrated to⌈n/5⌉. It must be stressed that the essential difference between the
standard random forests algorithm and the alternative one is that the number of cases in the final
leaves is fixed in the former, whereas the latter assumes a fixed number of terminal nodes. In
particular, in both algorithms, cuts are performed using the actual sample, just as CART does. To
keep things simple, no data-splitting procedure has been incorporated in themodified version.
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Figure 6, Figure 7 and Figure 8 illustrate the evolution of the MSE value with respect ton and
d, for each model and the two tested procedures. First, we note that the overall performance of the
alternative method is very similar to the one of the original algorithm. This confirmsour idea that
the model discussed in the present paper is a good approximation of the authentic Breiman’s forests.
Next, we see that for a sufficiently largen, the capabilities of the forests are nearly independent of
d, in accordance with the idea that the (asymptotic) rate of convergence of the method should only
depend on the “true” dimensionalityS(Theorem 5). Finally, as expected, it is noteworthy that both
algorithms perform well on the third model, which has been precisely designed for a tree-structured
predictor.

Figure 6: Evolution of the MSE for modelSinus(S= 1).

5. Proofs

Throughout this section, we will make repeated use of the following two facts.

Fact 1 Let Kn j(X,Θ) be the number of times the terminal node An(X,Θ) is split on the j-th coordi-
nate ( j= 1, . . . ,d). Then, conditionally onX, Kn j(X,Θ) has binomial distribution with parameters
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Figure 7: Evolution of the MSE for modelFriedman #1 (S= 5).

⌈log2kn⌉ and pn j (by independence ofX andΘ). Moreover, by construction,

d

∑
j=1

Kn j(X,Θ) = ⌈log2kn⌉.

Recall that we denote byNn(X,Θ) the number of data points falling in the same cell asX, that is,

Nn(X,Θ) =
n

∑
i=1

1[X i∈An(X,Θ)].

Let λ be the Lebesgue measure on[0,1]d.

Fact 2 By construction,
λ(An(X,Θ)) = 2−⌈log2 kn⌉.

In particular, if X is uniformly distributed on[0,1]d, then the distribution of Nn(X,Θ) conditionally
onX andΘ is binomial with parameters n and2−⌈log2 kn⌉ (by independence of the random variables
X,X1, . . . ,Xn,Θ).
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Figure 8: Evolution of the MSE for modelTree (S= 5).

Remark 10 If X is not uniformly distributed but has a probability density f on[0,1]d, then, con-
ditionally onX andΘ, Nn(X,Θ) is binomial with parameters n andP(X1 ∈ An(X,Θ) |X,Θ). If f
is bounded from above and from below, this probability is of the orderλ(An(X,Θ)) = 2−⌈log2 kn⌉,
and the whole approach can be carried out without difficulty. On the otherhand, for more general
densities, the binomial probability depends onX, and this makes the analysis significantly harder.

5.1 Proof of Theorem 1

Observe first that, by Jensen’s inequality,

E [r̄n(X)− r(X)]2 = E [EΘ [rn(X,Θ)− r(X)]]2

≤ E [rn(X,Θ)− r(X)]2 .

A slight adaptation of Theorem 4.2 in Györfi et al. (2002) shows that ¯rn is consistent if both
diam(An(X,Θ))→ 0 in probability andNn(X,Θ)→ ∞ in probability.

Let us first prove thatNn(X,Θ)→ ∞ in probability. To see this, consider the random tree parti-
tion defined byΘ, which has by construction exactly 2⌈log2 kn⌉ rectangular cells, sayA1, . . . ,A2⌈log2kn⌉ .
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Let N1, . . . ,N2⌈log2kn⌉ denote the number of observations amongX,X1, . . . ,Xn falling in these 2⌈log2 kn⌉

cells, and letC = {X,X1, . . . ,Xn} denote the set of positions of thesen+1 points. Since these points
are independent and identically distributed, fixing the setC andΘ, the conditional probability that
X falls in theℓ-th cell equalsNℓ/(n+1). Thus, for every fixedM ≥ 0,

P(Nn(X,Θ)< M) = E [P(Nn(X,Θ)< M |C ,Θ)]

= E



 ∑
ℓ=1,...,2⌈log2kn⌉:Nℓ<M

Nℓ

n+1





≤
M2⌈log2 kn⌉

n+1

≤
2Mkn

n+1
,

which converges to 0 by our assumption onkn.
It remains to show that diam(An(X,Θ))→ 0 in probability. To this aim, letVn j(X,Θ) be the size

of the j-th dimension of the rectangle containingX. Clearly, it suffices to show thatVn j(X,Θ)→ 0
in probability for all j = 1, . . . ,d. To this end, note that

Vn j(X,Θ)
D
= 2−Kn j(X,Θ),

where, conditionally onX, Kn j(X,Θ) has a binomialB(⌈log2kn⌉, pn j) distribution, representing the
number of times the box containingX is split along thej-th coordinate (Fact 1). Thus

E [Vn j(X,Θ)] = E

[

2−Kn j(X,Θ)
]

= E

[

E

[

2−Kn j(X,Θ) |X
]]

= (1− pn j/2)⌈log2 kn⌉,

which tends to 0 aspn j logkn → ∞.

5.2 Proof of Proposition 2

Recall that

r̄n(X) =
n

∑
i=1

EΘ [Wni(X,Θ)]Yi ,

where

Wni(X,Θ) =
1[X i∈An(X,Θ)]

Nn(X,Θ)
1En(X,Θ)

and
En = [Nn(X,Θ) 6= 0] .

Similarly,

r̃n(X) =
n

∑
i=1

EΘ [Wni(X,Θ)] r(X i).
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We have

E [r̄n(X)− r̃n(X)]2 = E

[

n

∑
i=1

EΘ [Wni(X,Θ)] (Yi − r(X i))

]2

= E

[

n

∑
i=1

E
2
Θ [Wni(X,Θ)] (Yi − r(X i))

2

]

(the cross terms are 0 sinceE[Yi |X i ] = r(X i))

= E

[

n

∑
i=1

E
2
Θ [Wni(X,Θ)]σ2(X i)

]

≤ σ2
E

[

n

∑
i=1

E
2
Θ [Wni(X,Θ)]

]

= nσ2
E
[

E
2
Θ [Wn1(X,Θ)]

]

,

where we used a symmetry argument in the last equality. Observe now that

E
2
Θ [Wn1(X,Θ)] = EΘ [Wn1(X,Θ)]EΘ′

[

Wn1(X,Θ′)
]

(whereΘ′ is distributed as, and independent of,Θ)

= EΘ,Θ′

[

Wn1(X,Θ)Wn1(X,Θ′)
]

= EΘ,Θ′

[

1[X1∈An(X,Θ)]1[X1∈An(X,Θ′)]

Nn(X,Θ)Nn(X,Θ′)
1En(X,Θ)1En(X,Θ′)

]

= EΘ,Θ′

[

1[X1∈An(X,Θ)∩An(X,Θ′)]

Nn(X,Θ)Nn(X,Θ′)
1En(X,Θ)1En(X,Θ′)

]

.

Consequently,

E [r̄n(X)− r̃n(X)]2 ≤ nσ2
E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]

Nn(X,Θ)Nn(X,Θ′)
1En(X,Θ)1En(X,Θ′)

]

.
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Therefore

E [r̄n(X)− r̃n(X)]2

≤ nσ2
E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]
(

1+∑n
i=21[X i∈An(X,Θ)]

)(

1+∑n
i=21[X i∈An(X,Θ′)]

)

]

= nσ2
E

[

E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]
(

1+∑n
i=21[X i∈An(X,Θ)]

)

×
1

(

1+∑n
i=21[X i∈An(X,Θ′)]

) |X,X1,Θ,Θ′

]]

= nσ2
E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]E

[

1
(

1+∑n
i=21[X i∈An(X,Θ)]

)

×
1

(

1+∑n
i=21[X i∈An(X,Θ′)]

) |X,X1,Θ,Θ′

]]

= nσ2
E

[

1[X1∈An(X,Θ)∩An(X,Θ′)]E

[

1
(

1+∑n
i=21[X i∈An(X,Θ)]

)

×
1

(

1+∑n
i=21[X i∈An(X,Θ′)]

) |X,Θ,Θ′

]]

by the independence of the random variablesX,X1, . . . ,Xn,Θ,Θ′. Using the Cauchy-Schwarz in-
equality, the above conditional expectation can be upper bounded by

E
1/2

[

1
(

1+∑n
i=21[X i∈An(X,Θ)]

)2 |X,Θ

]

×E
1/2

[

1
(

1+∑n
i=21[X i∈An(X,Θ′)]

)2 |X,Θ′

]

≤
3×22⌈log2 kn⌉

n2

(by Fact 2 and technical Lemma 11)

≤
12k2

n

n2 .

It follows that

E [r̄n(X)− r̃n(X)]2 ≤
12σ2k2

n

n
E
[

1[X1∈An(X,Θ)∩An(X,Θ′)]

]

=
12σ2k2

n

n
E
[

EX1

[

1[X1∈An(X,Θ)∩An(X,Θ′)]

]]

=
12σ2k2

n

n
E
[

PX1

(

X1 ∈ An(X,Θ)∩An(X,Θ′)
)]

. (3)

Next, using the fact thatX1 is uniformly distributed over[0,1]d, we may write

PX1

(

X1 ∈ An(X,Θ)∩An(X,Θ′)
)

= λ
(

An(X,Θ)∩An(X,Θ′)
)

=
d

∏
j=1

λ
(

An j(X,Θ)∩An j(X,Θ′)
)

,
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where

An(X,Θ) =
d

∏
j=1

An j(X,Θ) and An(X,Θ′) =
d

∏
j=1

An j(X,Θ′).

On the other hand, we know (Fact 1) that, for allj = 1, . . . ,d,

λ(An j(X,Θ))
D
= 2−Kn j(X,Θ),

where, conditionally onX, Kn j(X,Θ) has a binomialB(⌈log2kn⌉, pn j) distribution and, similarly,

λ
(

An j(X,Θ′)
) D
= 2−K′

n j(X,Θ′),

where, conditionally onX, K′
n j(X,Θ′) is binomialB(⌈log2kn⌉, pn j) and independent ofKn j(X,Θ).

In the rest of the proof, to lighten notation, we writeKn j andK′
n j instead ofKn j(X,Θ) andK′

n j(X,Θ′),
respectively. Clearly,

λ
(

An j(X,Θ)∩An j(X,Θ′)
)

≤2−max(Kn j,K′
n j)

= 2−K′
n j2−(Kn j−K′

n j)+

and, consequently,

d

∏
j=1

λ
(

An j(X,Θ)∩An j(X,Θ′)
)

≤2−⌈log2 kn⌉
d

∏
j=1

2−(Kn j−K′
n j)+

(since, by Fact 1,∑d
j=1Kn j = ⌈log2kn⌉). Plugging this inequality into (3) and applying Hölder’s

inequality, we obtain

E [r̄n(X)− r̃n(X)]2 ≤
12σ2kn

n
E

[

d

∏
j=1

2−(Kn j−K′
n j)+

]

=
12σ2kn

n
E

[

E

[

d

∏
j=1

2−(Kn j−K′
n j)+ |X

]]

≤
12σ2kn

n
E

[

d

∏
j=1

E
1/d
[

2−d(Kn j−K′
n j)+ |X

]

]

.

Each term in the product may be bounded by technical Proposition 13, andthis leads to

E [r̄n(X)− r̃n(X)]2 ≤
288σ2kn

πn

d

∏
j=1

min

(

1,

[

π
16⌈log2kn⌉pn j(1− pn j)

]1/2d
)

≤
288σ2kn

πn

d

∏
j=1

min

(

1,

[

π log2
16(logkn)pn j(1− pn j)

]1/2d
)

.

Using the assumption on the form of thepn j, we finally conclude that

E [r̄n(X)− r̃n(X)]2 ≤Cσ2
(

S2

S−1

)S/2d

(1+ξn)
kn

n(logkn)S/2d
,
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where

C=
288
π

(

π log2
16

)S/2d

and

1+ξn = ∏
j∈S

[

(1+ξn j)
−1
(

1−
ξn j

S−1

)−1
]1/2d

.

Clearly, the sequence(ξn), which depends on the{(ξn j) : j ∈ S} only, tends to 0 asn tends to
infinity.

5.3 Proof of Proposition 4

We start with the decomposition

E [r̃n(X)− r(X)]2

= E

[

n

∑
i=1

EΘ [Wni(X,Θ)] (r(X i)− r(X))+

(

n

∑
i=1

EΘ [Wni(X,Θ)]−1

)

r(X)

]2

=E

[

EΘ

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))+

(

n

∑
i=1

Wni(X,Θ)−1

)

r(X)

]]2

≤ E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))+

(

n

∑
i=1

Wni(X,Θ)−1

)

r(X)

]2

,

where, in the last step, we used Jensen’s inequality. Consequently,

E [r̃n(X)− r(X)]2

≤ E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

+E
[

r(X)1Ec
n(X,Θ)

]2

≤ E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

+

[

sup
x∈[0,1]d

r2(x)

]

P(Ec
n(X,Θ)) . (4)
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Let us examine the first term on the right-hand side of (4). Observe that, by the Cauchy-Schwarz
inequality,

E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

≤ E

[

n

∑
i=1

√

Wni(X,Θ)
√

Wni(X,Θ) |r(X i)− r(X)|

]2

≤ E

[(

n

∑
i=1

Wni(X,Θ)

)(

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))2

)]

≤ E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))2

]

(since the weights are subprobability weights).

Thus, denoting by‖X‖S the norm ofX evaluated over the components inS , we obtain

E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

≤ E

[

n

∑
i=1

Wni(X,Θ)(r⋆(X iS )− r⋆(XS ))
2

]

≤ L2
n

∑
i=1

E
[

Wni(X,Θ)‖X i −X‖2
S

]

= nL2
E
[

Wn1(X,Θ)‖X1−X‖2
S

]

(by symmetry).

But

E
[

Wn1(X,Θ)‖X1−X‖2
S

]

= E

[

‖X1−X‖2
S

1[X1∈An(X,Θ)]

Nn(X,Θ)
1En(X,Θ)

]

= E

[

‖X1−X‖2
S

1[X1∈An(X,Θ)]

1+∑n
i=21[X i∈An(X,Θ)]

]

= E

[

E

[

‖X1−X‖2
S

1[X1∈An(X,Θ)]

1+∑n
i=21[X i∈An(X,Θ)]

|X,X1,Θ
]]

.

Thus,

E
[

Wn1(X,Θ)‖X1−X‖2
S

]

= E

[

‖X1−X‖2
S1[X1∈An(X,Θ)]E

[

1
1+∑n

i=21[X i∈An(X,Θ)]
|X,X1,Θ

]]

= E

[

‖X1−X‖2
S1[X1∈An(X,Θ)]E

[

1
1+∑n

i=21[X i∈An(X,Θ)]
|X,Θ

]]

(by the independence of the random variablesX,X1, . . . ,Xn,Θ).
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By Fact 2 and technical Lemma 11,

E

[

1
1+∑n

i=21[X i∈An(X,Θ)]
|X,Θ

]

≤
2⌈log2 kn⌉

n
≤

2kn

n
.

Consequently,

E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

≤ 2L2knE
[

‖X1−X‖2
S1[X1∈An(X,Θ)]

]

.

Letting

An(X,Θ) =
d

∏
j=1

An j(X,Θ),

we obtain

E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

≤ 2L2kn ∑
j∈S

E

[

|X( j)
1 −X( j)|21[X1∈An(X,Θ)]

]

= 2L2kn ∑
j∈S

E

[

ρ j(X,X1,Θ)E
X( j)

1

[

|X( j)
1 −X( j)|21

[X( j)
1 ∈An j(X,Θ)]

]]

where, in the last equality, we set

ρ j(X,X1,Θ) = ∏
t=1,...,d,t 6= j

1
[X(t)

1 ∈Ant(X,Θ)]
.

Therefore, using the fact thatX1 is uniformly distributed over[0,1]d,

E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

≤ 2L2kn ∑
j∈S

E
[

ρ j(X,X1,Θ)λ3(An j(X,Θ))
]

.

Observing that

λ(An j(X,Θ))×E
[X(t)

1 : t=1,...,d,t 6= j]
[ρ j(X,X1,Θ)]

= λ(An(X,Θ))

= 2−⌈log2 kn⌉

(Fact 2),

we are led to

E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

≤ 2L2 ∑
j∈S

E
[

λ2(An j(X,Θ))
]

= 2L2 ∑
j∈S

E

[

2−2Kn j(X,Θ)
]

= 2L2 ∑
j∈S

E

[

E

[

2−2Kn j(X,Θ) |X
]]

,
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where, conditionally onX, Kn j(X,Θ) has a binomialB(⌈log2kn⌉, pn j) distribution (Fact 1). Conse-
quently,

E

[

n

∑
i=1

Wni(X,Θ)(r(X i)− r(X))

]2

≤ 2L2 ∑
j∈S

(1−0.75pn j)
⌈log2 kn⌉

≤ 2L2 ∑
j∈S

exp

(

−
0.75
log2

pn j logkn

)

= 2L2 ∑
j∈S

1

k
0.75

Slog2(1+ξn j)
n

≤
2SL2

k
0.75

Slog2(1+γn)
n

,

with γn = min j∈S ξn j.
To finish the proof, it remains to bound the second term on the right-hand side of (4), which is

easier. Just note that

P(Ec
n(X,Θ)) = P

(

n

∑
i=1

1[X i∈An(X,Θ)] = 0

)

= E

[

P

(

n

∑
i=1

1[X i∈An(X,Θ)] = 0|X,Θ

)]

=
(

1−2−⌈log2 kn⌉
)n

(by Fact 2)

≤ e−n/2kn.

Putting all the pieces together, we finally conclude that

E [r̃n(X)− r(X)]2 ≤
2SL2

k
0.75

Slog2(1+γn)
n

+

[

sup
x∈[0,1]d

r2(x)

]

e−n/2kn,

as desired.

5.4 Some Technical Results

The following result is an extension of Lemma 4.1 in Györfi et al. (2002). Its proof is given here for
the sake of completeness.

Lemma 11 Let Z be a binomialB(N, p) random variable, with p∈ (0,1]. Then

(i)

E

[

1
1+Z

]

≤
1

(N+1)p
.
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(ii)

E

[

1
Z

1[Z≥1]

]

≤
2

(N+1)p
.

(iii )

E

[

1
1+Z2

]

≤
3

(N+1)(N+2)p2 .

Proof To prove statement(i), we write

E

[

1
1+Z

]

=
N

∑
j=0

1
1+ j

(

N
j

)

p j(1− p)N− j

=
1

(N+1)p

N

∑
j=0

(

N+1
j +1

)

p j+1(1− p)N− j

≤
1

(N+1)p

N+1

∑
j=0

(

N+1
j

)

p j(1− p)N+1− j

=
1

(N+1)p
.

The second statement follows from the inequality

E

[

1
Z

1[Z≥1]

]

≤ E

[

2
1+Z

]

and the third one by observing that

E

[

1
1+Z2

]

=
N

∑
j=0

1
1+ j2

(

N
j

)

p j(1− p)N− j .

Therefore

E

[

1
1+Z2

]

=
1

(N+1)p

N

∑
j=0

1+ j
1+ j2

(

N+1
j +1

)

p j+1(1− p)N− j

≤
3

(N+1)p

N

∑
j=0

1
2+ j

(

N+1
j +1

)

p j+1(1− p)N− j

≤
3

(N+1)p

N+1

∑
j=0

1
1+ j

(

N+1
j

)

p j(1− p)N+1− j

≤
3

(N+1)(N+2)p2

(by (i)).
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Lemma 12 Let Z1 and Z2 be two independent binomialB(N, p) random variables. Set, for all
z∈ C

⋆, ϕ(z) = E[zZ1−Z2]. Then

(i) For all z∈ C
⋆,

ϕ(z) =
[

p(1− p)(z+z−1)+1−2p(1− p)
]N

.

(ii) For all j ∈ N,

P(Z1−Z2 = j) =
1

2πi

∫
Γ

ϕ(z)
zj+1 dz,

whereΓ is the positively oriented unit circle.

(iii ) For all d ≥ 1,

E

[

2−d(Z1−Z2)+
]

≤
24
π

∫ 1

0
exp
(

−4Np(1− p)t2)dt.

Proof Statement(i) is clear and(ii) is an immediate consequence of Cauchy’s integral formula
(Rudin, 1987). To prove statement(iii ), write

E

[

2−d(Z1−Z2)+
]

=
N

∑
j=0

2−d j
P((Z1−Z2)+ = j)

=
N

∑
j=0

2−d j
P(Z1−Z2 = j)

≤
∞

∑
j=0

2−d j
P(Z1−Z2 = j)

=
1

2πi

∫
Γ

ϕ(z)
z

∞

∑
j=0

(

2−d

z

) j

dz

(by statement(ii))

=
1
2π

∫ π

−π

ϕ(eiθ)

1−2−de−iθ dθ

(by settingz= eiθ,θ ∈ [−π,π])

=
2d−1

π

∫ π

−π
[1+2p(1− p)(cosθ−1)]N

eiθ

2deiθ −1
dθ

(by statement(i)).

Noting that
eiθ

2deiθ −1
=

2d −eiθ

22d −2d+1cosθ+1
,

we obtain

E

[

2−d(Z1−Z2)+
]

≤
2d−1

π

∫ π

−π
[1+2p(1− p)(cosθ−1)]N

2d −cosθ
22d −2d+1cosθ+1

dθ.
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The bound
2d −cosθ

22d −2d+1cosθ+1
≤

2d +1
(2d −1)2

leads to

E

[

2−d(Z1−Z2)+
]

≤
2d−1(2d +1)
π(2d −1)2

∫ π

−π
[1+2p(1− p)(cosθ−1)]N dθ

=
2d(2d +1)
π(2d −1)2

∫ π

0
[1+2p(1− p)(cosθ−1)]N dθ

=
2d(2d +1)
π(2d −1)2

∫ π

0

[

1−4p(1− p)sin2(θ/2)
]N

dθ

(cosθ−1=−2sin2(θ/2))

=
2d+1(2d +1)
π(2d −1)2

∫ π/2

0

[

1−4p(1− p)sin2 θ
]N

dθ.

Using the elementary inequality(1−z)N ≤ e−Nz for z∈ [0,1] and the change of variable

t = tan(θ/2),

we finally obtain

E

[

2−d(Z1−Z2)+
]

≤
2d+2(2d +1)
π(2d −1)2

∫ 1

0
exp

(

−
16Np(1− p)t2

(1+ t2)2

)

1
1+ t2dt

≤Cd

∫ 1

0
exp
(

−4Np(1− p)t2)dt,

with

Cd =
2d+2(2d +1)
π(2d −1)2 .

The conclusion follows by observing thatCd ≤ 24/π for all d ≥ 1.

Evaluating the integral in statement(iii ) of Lemma 12 leads to the following proposition:

Proposition 13 Let Z1 and Z2 be two independent binomialB(N, p) random variables, with p∈
(0,1). Then, for all d≥ 1,

E

[

2−d(Z1−Z2)+
]

≤
24
π

min

(

1,
√

π
16Np(1− p)

)

.
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