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Abstract
We unify f -divergences, Bregman divergences, surrogate regret bounds, proper scoring rules, cost
curves, ROC-curves and statistical information. We do thisby systematically studying integral and
variational representations of these objects and in so doing identify their representation primitives
which all are related to cost-sensitive binary classification. As well as developing relationships
between generative and discriminative views of learning, the new machinery leads to tight and
more general surrogate regret bounds and generalised Pinsker inequalities relatingf -divergences
to variational divergence. The new viewpoint also illuminates existing algorithms: it provides a
new derivation of Support Vector Machines in terms of divergences and relates maximum mean
discrepancy to Fisher linear discriminants.
Keywords: classification, loss functions, divergence, statistical information, regret bounds

1. Introduction

Some of the simplest machine learning problems concern binary experiments. There it is assumed
that observations are drawn from a mixture of two distributions (one for each class). These distribu-
tions determine many important objects related to the learning problems they underpin such as risk,
divergence and information. Our aim in this paper is to present all of theseobjects in a coherent
framework explaining exactly how they relate to each other. Doing so bringsconceptual clarity to
the area as well as providing the means for a number of new technical results.

1.1 Motivation

There are many different notions that underpin the definition of machine learning problems. These
include information, loss, risk, regret, ROC (Receiver Operating Characteristic) curves and the area
under them, Bregman divergences and distance or divergence between probability distributions. On
the surface, the problem of estimating whether two distributions are the same (as measured by, say,
their Kullback-Leibler divergence) is different to the problem of minimisationof expected risk in
a prediction problem. One goal of the present paper is to show how this superficial difference is
indeed only superficial—deeper down they are the same problem and analytical and algorithmic
insights for one can be transferred to the other.

Machine learning as an engineering discipline is still young.1 There is no agreed language to
describe machine learning problems (such is usually done with an informal mixture of English and

1. Bousquet (2006) has articulated the need for an agreed vocabulary, a clear statement of the main problems, and to
“revisit what has been done or discovered so far with a fresh look”.

c©2011 Mark D. Reid and Robert C. Williamson.
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mathematics). There is very little in the way of composability of machine learning solutions. That
is, given the solution to one problem, use it to solve another. Of course onewould like to not merely
be able to do this, but to be certain what one might lose in doing so. In order todo that, one needs
to be able to provide theoretical guarantees on how well the original problem will be solved by
solving the surrogate problem. Related to these issues is the fact that there are no well understood
primitives for machine learning. Indeed, what does that even mean? All of these issues are the
underlying motivation for this paper.

Our long term goal (towards which this paper is but the first step) is to turn the field of ma-
chine learning into a more well founded engineering discipline with an agreedlanguage and well
understood composition rules. Our motivation is that until one can start building systems modu-
larly, one is largely restricted to starting from scratch for each new problem, rather than obtaining
the efficiency benefits of re-use.2

We are comparingproblems, not solutions or algorithms. Whilst there have been attempts to
provide a degree of unification at the level of algorithms (Altun and Smola, 2006), there are in-
trinsic limits to such a research program. The most fundamental is that (surprisingly) there is no
satisfactory formal definition of what an algorithm really is Blass and Gurevich (2003), nor how two
algorithms can be compared with a view to determining if they are the same (Blass etal., 2009).

We have started with binary experiments because they are simple and widely used. As we will
show, by pursuing the high level research agenda summarised above, we have managed to unify
all of the disparate concepts mentioned and furthermore have simultaneouslysimplified and gen-
eralised two fundamental results: Pinsker inequalities betweenf -divergences and surrogate regret
bounds. The proofs of these new results rely essentially on the decomposition into primitive prob-
lems.

1.2 Novelty and Significance

Our initial goal was to present existing material in a unified way. We have indeed done that. In
doing so we have developed new (and simpler) proofs of existing results.Additionally we have
developed some novel technical results. The key ones are:

1. A link between the weighted integral representations for proper scoring rules and those for
f -divergences which allows the transformation from one to the other (Theorem 10);

2. A unified derivation of the integral representations in terms of Taylor series showing their
equivalence (Theorem 18);

2. Abelson et al. (1996) described the principles of constructing software with the aid of (Locke, 1690, Chapter 12,
paragraph 1):

The acts of the mind, wherein it exerts its power over simple ideas, are chiefly these three: (1) Combining
several simple ideas into one compound one; and thus allcomplex ideasare made. (2) The second is
bringing two ideas, whether simple or complex, together, and setting them byone another, so as to take
a view of them at once, without uniting them into one; by which it gets all itsideas of relations. (3) The
third is separating them from all other ideas that accompany them in their real existence; this is called
abstraction: and thus all itsgeneral ideasare made

Modularity is central to computer hardware (Baldwin and Clark, 2006b,a) and other engineering disciplines (Ger-
shenson et al., 2003) and plays a central role in some models of economic development (Varian, 2003; Weitzman,
1998; Mokyr, 1992). The reason modularity works is that componentscan be combined orcomposed.
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3. Use of these representations to derive new bounds for divergences, Bayes risks and regrets:
“surrogate regret bounds”(Theorem 25) and Pinsker inequalities (Theorem 30);

4. Showing that statistical information (and hencef -divergence) are both Bregman informa-
tions;

5. The derivation of SVMs from a variational perspective which provides a clearer explanation
of the link between MMD (Maximum Mean Discrepancy) and SVMs (SupportVector Ma-
chines) §H;

6. Explicit formulae relating Bayes risk to the Neyman-Pearson function, which allows the trans-
formation of risk curves to ROC curves and vice versa (Theorem 22).

The significance of these new connections is that they show that the choiceof loss function
(scoring rule),f -divergence and Bregman divergence (regret) are intimately related—choosing one
implies choices for the others. Furthermore we show there are more intuitively usable parameter-
isations for f -divergences and scoring rules (their corresponding weight functions). The weight
functions have the advantage that if two weight functions match, then the corresponding objects
are identical. That is not the case for thef parameterising anf -divergence or the convex func-
tion parameterising a Bregman divergence. As well as the theoretical interest in such connections,
these alternate representations suggest new algorithms for empirically estimating such quantities.
We have represented all of the connections graphically in figure 1. The various symbols are defined
below; the point of the picture here is to see the overall goal of the paper—the relating of a range of
diverse concepts.

Given the broad scope of our work, there is of course much prior work, too much to summarise
in this introduction. Appendix C summarises the main precursors and related work.

1.3 Paper Outline and Key Contributions

The following is an outline of the main structure of this paper section by section highlighting the
contributions and novelty. A knowledgeable reader only interested in the core new results should be
able to just read Sections 4–8 plus Appendix H with the aid of Table 1. More tedious and technical
proofs and digressions are in the appendices.

§2 Many of the properties of the objects studied in this paper are directly derived from well-known
properties of convex functions. In particular, a generalised form of Taylor’s theorem and
Jensen’s inequality underpin many of the new results. Although elementary,we have started
from this point because it shows how fundamental are the connections drawn later in the paper
are. We rederive Savage’s famous theorem (Theorem 7) from our perspective.

§3 One of the simplest type of statistical problems is that of distinguishing between two distribu-
tions. Such a problem is known as abinary experiment. Two classes ofmeasures of diver-
gencebetween the distributions are introduced: the class of Csiszár f -divergences and the
class of Bregman divergences.

§4 When additional assumptions are made about a binary experiment—specifically, a prior proba-
bility for each of the two distributions—it becomes possible to talk aboutrisk and statistical
informationof an experiment that is defined with respect to a loss function. A key result is
Theorem 10 which shows thatf -divergence, statistical information and Bregman divergence
are all fundamentally equivalent.
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§5 A key technique we use is that of an integral representation. We show that integral represen-
tations of f -divergences and proper losses and statistical information are all essentially the
same (Theorem 18). We explicitly compare the primitives for each of these representations
and show their natural interpretation.

§6 The weight function view also illuminates various “graphical representations” of binary exper-
iments, such as ROC curves. We unify several graphical representations for binary experi-
ments and present new explicit formulae relating Bayes risk to the Neyman-Pearson function,
which allows the transformation of risk curves to ROC curves and vice versa (Theorem 22).

§7 The various equivalences developed in the above sections are then used to derive new tight
inequalities of interest in Machine Learning, The first is a We derive an explicit form for
surrogate regret bounds for proper losses in terms of the weight function corresponding to the
proper loss (Theorem 25). These are tight bounds on the conditional risk with respect to an
arbitrary cost-sensitive misclassification loss when all is known is the value of the conditional
risk with respect to an arbitrary proper loss. The result generalises existing results in two
key ways. We also generalise the classical Pinsker inequality by derivingtight bounds on an
arbitrary f -divergence when the value of several generalised variational divergences between
the same distributions is known (Theorem 30). A side-effect is an explicit formula for the best
possible bound on KL-divergence given knowledge of the classical variational divergence.

§8 Another representation of risks is a variational one. We systematically explore the relationship
between Bayes risk and variational divergence, building upon classical results. An interesting
consequence of our analysis is presented in Appendix H where we showthat maximum mean
discrepancy (MMD)—a kernel approach to hypothesis testing and divergence estimation—is
essentially SVM learning in disguise. In doing so we present a novel, simple and interesting
alternate derivation of the Support Vector Machine.

1.4 Notational Conventions

Here we record elementary notation and the conventions we adopt throughout the paper. Key no-
tations are tabulated in table 1. We writex∧ y := min(x,y), x∨ y := max(x,y), (x)+ := x∨ 0,
(x)− := x∧0 and the Iverson bracketJpK = 1 if p is true andJpK = 0 otherwise (Knuth, 1992). The
generalised functionδ(·) is defined by

∫ b
a δ(x) f (x)dx= f (0)when f is continuous at 0 anda< 0< b

(Antosik et al., 1973; Friedlander, 1982). The unit stepU(x) =
∫ x
−∞ δ(t)dt. The real numbers are

denotedR, the non-negative realsR+ and the extended realsR = R∪{∞}; the rules of arithmetic
with extended real numbers and the need for them in convex analysis are explained by Rockafellar
(1970). Random variables are written in sans-serif font:S, X, Y. Sets are in calligraphic font:X
(the “input” space),Y (the “label” space). Vectors are written in bold font:a,ααα,xxx ∈ Rm. We will
often have cause to take expectations (E) of various functions over the random variableX. We write
such quantities in blackboard bold:I, L, B, J. The elementary loss isℓ, its conditional expectation
w.r.t. Y is L and the full expectation (over the joint distributionP of (X,Y)) is L. Lower bounds on
quantities with an intrinsic lower bound (e.g., the Bayes optimal loss) are written with an underbar:
L, L. Quantities related by double integration appear in this paper and we notate thestarting point in
lower case, the first integral with upper case, and the second integral inupper case with an overbar:
w, W, W. Estimated quantities are hatted:η̂. In several places we overload the notation. In all cases
careful attention to the type of the arguments or subscripts reliably disambiguates.
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Symbol Meaning Defined

Iφ Perspective transform (1)

(P,Q) Binary experiment §3

ℓ Loss §4.2

L Conditional risk §4.2

L Expected risk §4.2

L Conditional Bayes risk §4.2

L Expected Bayes Risk §4.2

Jµ[φ] Jensen gap Th. 5

I f (P,Q) f -divergence betweenP andQ §3.2

φ♦ Csisźar dual ofφ (2)

φ⋆ Legendre-Fenchel dual ofφ (3)

Bφ Bregman divergence and regret §4.4

TPr , FNr True Positive / False Negative rate for testr (10)

β(·,P,Q) Neyman-Pearson function for(P,Q) (11)

r, τ Test, Test statistic §3.1

Bφ(P,Q) Generative Bregman divergence §3.3

P Joint distribution onX×Y §4.1

M Reference measure for(P,Q) with prior π §4.1

π A priori probability of positive class §4.1

η Probability of positive class §4.2

η(·) Conditional probability of positive class §4.2

T = (η,M;ℓ) = (π,P,Q;ℓ) Task §4.2

η̂(·) Estimator ofη(·) §4.2

Bφ(S) Bregman information ofS §4.5

w(·) Weight function for proper loss §5.3

γ(·) Weight function forf -divergence §5.1

∆L(η,M) Statistical information (20)

ℓc,Lc Cost-sensitive mis-classification loss (29),(30)

ROC(τ) Receiver Operating Characteristic curve (37)

AUC(τ) Area Under the ROC Curve (38)

Vπ(P,Q) Generalised Variational divergence (49)

Table 1: Standard notation used throughout the paper.

2. Convex Functions and Their Representations

Many of the properties of divergences and losses are best understood through properties of the con-
vex functions that define them. One aim of this paper is to explain and relate various divergences
and losses by understanding the relationships between their primitive functions. The relevant def-
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initions and theory of convex functions will be introduced as required. Any terms not explicitly
defined can be found in books by Hiriart-Urruty and Lemaréchal (2001) or Rockafellar (1970).

A set S ⊆ Rd is said to beconvexif for all λ ∈ [0,1] and for all pointss1,s2 ∈ S the point
λs1+(1−λ)s2 ∈ S. A functionφ : S→ R defined on a convex setS is said to be a (proper)convex
functionif3 for all λ ∈ [0,1] and pointss1,s2 ∈ S the functionφ satisfies

φ(λs1+(1−λ)s2)≤ λφ(s1)+(1−λ)φ(s2).

A function is said to beconcaveif −φ is convex.
The remainder of this section presents properties, representations and transformations of convex

functions that will be used throughout this paper.

2.1 The Perspective Transform and the Csisźar Dual

WhenS= R+ andφ : R+ → R is convex, theperspective transformof φ is defined forτ ∈ R+ via

Iφ(s,τ) :=







τφ(s/τ), τ> 0,s> 0

0, τ = 0,s= 0

τφ(0), τ> 0,s= 0

sφ′
∞, τ = 0,s> 0,

(1)

whereφ(0) := lims→0 φ(s) ∈ R andφ′
∞ is theslope at infinitydefined as

φ′
∞ := lim

s→+∞

φ(s0+s)−φ(s0)

s
= lim

s→+∞

φ(s)
s

for everys0 ∈ S whereφ(s0) is finite. This slope at infinity is only finite whenφ(s) = O(s), that
is, whenφ grows at most linearly ass increases. Whenφ′

∞ is finite it measures the slope of the
linear asymptote. The functionIφ : [0,∞)2 → R is convex in both arguments (Hiriart-Urruty and
Lemaŕechal, 1993b) and may take on the value+∞ when s or τ is zero. It is introduced here
because it will form the basis of thef -divergences described in the next section.4

The perspective transform can be used to define theCsisźar dual φ♦ : [0,∞) → R of a convex
functionφ : R+ → R by letting

φ♦(τ) := Iφ(1,τ) = τφ
(

1
τ

)

(2)

for all τ ∈ (0,∞) andφ♦(0) := φ′
∞. The originalφ can be recovered fromIφ sinceφ(s) = I f (s,1).

The convexity of the perspective transformIφ in both its arguments guarantees the convexity of
the dualφ♦. Some simple algebraic manipulation shows that for alls,τ ∈ R+

Iφ(s,τ) = Iφ♦(τ,s).

This observation leads to a natural definition of symmetry for convex functions. We will call a
convex function♦-symmetric(or simplysymmetricwhen the context is clear) when its perspective
transform is symmetric in its arguments. That is,φ is ♦-symmetric whenIφ(s,τ) = Iφ(τ,s) for all
s,τ ∈ [0,∞). Equivalently,φ is♦-symmetric if and only ifφ♦ = φ.

3. The restriction of the values ofφ toR will be assumed throughout unless explicitly stated otherwise. This implies the
properness ofφ since it cannot take on the values−∞ or+∞.

4. The perspective transform is closely related toepi-multiplicationwhich is defined for allτ ∈ [0,∞) and (proper)
convex functionsφ to beτ⊗φ := s 7→ τφ(s/τ) for τ > 0 and is 0 whenτ = s= 0 and+∞ otherwise. Bauschke et al.
(2008) summarise the properties of this operation and its relationship to other operations on convex functions.

737



REID AND WILLIAMSON

2.2 The Legendre-Fenchel Dual Representation

A second important dual operator for convex functions is theLegendre-Fenchel (LF) dual. The LF
dualφ⋆ of a functionφ : S→ R is a function defined by

φ⋆(s⋆) := sup
s∈S

{〈s,s⋆〉−φ(s)}. (3)

The LF dual of any function is convex and, if the functionφ is convex and closed then theLF bidual
is a faithful representation of the original function. That is,

φ⋆⋆(s) = sup
s⋆∈S⋆

{〈s⋆,s〉−φ⋆(s⋆)}= φ(s).

Whenφ : S → R, S ⊆ R, is a function of a real arguments and the derivativeφ′(s) exists, the
Legendre-Fenchel conjugateφ⋆ is given by theLegendre transform(Hiriart-Urruty and Lemaŕechal,
2001; Rockafellar, 1970)

φ⋆(s) = s· (φ′)−1(s)−φ
(
(φ′)−1(s)

)
.

2.3 Integral Representations

In this paper we are primarily concerned with convex and concave functions defined on subsets of
the real line. A central tool in their analysis is the integral form of their Taylor expansion. Here,φ′

andφ′′ denote the first and second derivatives ofφ respectively.

Theorem 1 (Taylor’s Theorem) Let S = [s0,s] be a closed interval ofR and let φ : S → R be
differentiable on[s0,s] and twice differentiable on(s0,s). Then

φ(s) = φ(s0)+φ′(s0)(s−s0)+
∫ s

s0

(s− t)φ′′(t)dt. (4)

The arguments appears in the limits of integral in the above theorem and consequently can
be awkward to work with. Also, it will be useful to expandφ about some point not at the end of
the interval of integration. The following corollary of Taylor’s theorem removes these problems by
introducing piecewise linear terms of the form(s− t)+ = (s− t)∨0.

Corollary 2 (Integral Representation I) Suppose−∞ < a < b < ∞ and let φ : [a,b] → R be a
twice differentiable function. Then, for all s,s0 ∈ [a,b] we have

φ(s) = φ(s0)+φ′(s0)(s−s0)+
∫ b

a
φs0(s, t)φ′′(t)dt, (5)

where

φs0(s, t) :=







(s− t) s0 < t ≤ s

(t −s) s< t ≤ s0

0 otherwise

is piecewise linear and convex in s for each s0, t ∈ [a,b].
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This result is a consequence of the way in whichφt effectively restricts the limits of integration to
the interval(s0,s)⊆ [a,b] or (s,s0)⊆ [a,b] depending on whethers0 < s or s0 ≥ s with appropriate
reversal of the sign of(s− t).

Whena= 0 andb= 1 a second integral representation for the unit interval can be derivedfrom
(5) that removes the term involvingφ′.

Corollary 3 (Integral Representation II) A twice differentiable functionφ : [0,1]→ R can be ex-
pressed as

φ(s) = φ(0)+(φ(1)−φ(0))s−
∫ 1

0
ψ(s, t)φ′′(t)dt, (6)

whereψ(s, t) = (1− t)s∧ (1−s)t is piecewise linear and concave in s∈ [0,1] for each t∈ [0,1].

The result follows by integration by parts oftφ′′(t). The proof can be found in Appendix A.1. It
is used in Section 5 below to obtain an integral representation of losses for binary class probability
estimation. This representation can be traced back to Temple (1954) who notes that the kernel
ψ(s, t) is the Green’s function for the differential equationψ′′ = 0 with boundary conditionsψ(a) =
ψ(b) = 0.

Both these integral representations state that the non-linear part ofφ can be expressed as a
weighted integral of piecewise linear termsφs0 or ψ. When we restrict our attention to convexφ
we are guaranteed the “weights”φ′′(t) for each of these terms are non-negative. Since the measures
of risk, information and divergence we examine below do not depend on the linear part of these
expansions we are able to identify convex functions with the weightsw(t) = φ′′(t) that define their
non-linear part. The sets of piecewise linear functions{φs0(s, t)}t∈[a,b] and{ψ(s, t)}t∈[0,1] can be
thought of as families of “primitive” convex functions from which others can be built through their
weighted combination. Representations like these are often calledChoquet representationsafter
work by Choquet (1953) on the representation of compact convex spaces (Phelps, 2001).

2.4 Representations for Non-Differentiable Convex Functions

It is possible to weaken the conditions on the representation results so they hold for continuous but
not necessarily differentiable functions. As much of this paper deals with functions that fall into
this category—namely general convex functions—being able to generalisethese results is essen-
tial in order to understand the weight functions corresponding to the primitive f -divergences and
loss functions. We will briefly discuss these generalisations and introduce some conventions for
interpreting subsequent results in an effort to avoid too many distracting technicalities.

The convention for the remainder of this paper is that thefirst derivativeof a convex func-
tion φ overR is to be interpreted as a right derivative. That is, we will takeφ′(t) to beφ′

+(t) :=

limε↓0
φ(t)−φ(t+ε)

ε . Theorem 24.1 of Rockafellar (1970) guarantees that this derivativeexists and
is non-decreasing and right continuous on the domain ofφ. It is therefore possible to define a
Lebesgue-Stieltjes measureλφ((a,b]) := φ′(b)−φ′(a) for intervals in the domain ofφ.

Second derivativesof convexφ are only ever used within integrals to “weight” the contribution
of the non-negative, piecewise linear functionsφs0(·, t) andψ(·, t) discussed above. Thus, we write∫ b

a f (t)φ′′(t)dt as a short-hand for the Lebesgue-Stieltjes integral
∫ b

a f (t)dλφ(t). For simplicity,
we will often speak of weight “functions” being equal to the second derivative of general convex
functions. As we only ever consider linear operators on these weight functions, it is unproblematic to
treat second derivatives as Schwartz distributions or “generalised functions” (Antosik et al., 1973;
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Friedlander, 1982) and add, scale, and evaluate them like normal functions. The most exotic of
these we will consider explicitly are the weight functions corresponding to the primitiveφs0 andψ
functions. They correspond to Dirac delta distributionsδ(·) as defined in Section 1.4.

As Liese and Vajda (2006) carefully show, it is possible to derive generalised versions of the
integral representations using the interpretations above. Of course, when the functionsφ are twice
differentiable these interpretations and generalised results coincide with those for the usual first and
second derivatives.

2.5 Bregman Divergence

Bregman divergences are a generalisation of the notion of distances between points. Given a differ-
entiable5 convex functionφ : S→ R and two pointss0,s∈ S theBregman divergence6 of s from s0
is defined to be

Bφ(s,s0) := φ(s)−φ(s0)−〈s−s0,∇φ(s0)〉 , (7)

where∇φ(s0) is the gradient ofφ at s0. A concise summary of many of the properties of Bregman
divergences is given by Banerjee et al. (2005b, Appendix A); see also Censor and Zenios (1997).
In particular, Bregman divergences always satisfyBφ(s,s0) ≥ 0 andBφ(s0,s0) = 0 for all s,s0 ∈ S,
regardless of the choice ofφ. They are not always metrics, however, as they do not always satisfy
the triangle inequality and their symmetry depends on the choice ofφ.

WhenS=R andφ is twice differentiable, comparing the definition of a Bregman divergence in
(7) to the integral representation in (4) reveals that Bregman divergences between real numbers can
be defined as the non-linear part of the Taylor expansion ofφ. Rearranging (4) shows that for all
s,s0 ∈ R ∫ s

s0

(s− t)φ′′(t)dt = φ(s)−φ(s0)− (s−s0)φ′(s0) = Bφ(s,s0) (8)

since∇φ = φ′ and the inner product is simply multiplication over the reals. This result also holds
for more general convex setsS. Importantly, it intuitively shows why the following holds (because
the Bregman divergence depends only on thenonlinearpart of the Taylor expansion).

Theorem 4 Let φ andψ both be real-valued, differentiable convex functions over the convex setS

such thatφ(s) = ψ(s)+as+b for some a,b∈ R. Then, for all s and s0, Bφ(s,s0) = Bψ(s,s0).

A proof can be obtained directly by substituting and expandingψ in the definition of a Bregman
divergence.

Equation 8 also shows whyB(s,s0) is decreasing as|s− s0| decreases (a fact we will exploit
later): sinceφ′′(t) ≥ 0 for all t, if s0 < s, then the integrand in (8) is always non-negative and the
result is immediate by the nature of integration. Ifs0 > s, a similar argument holds.

2.6 Jensen’s Inequality and the Jensen Gap

A central inequality in the study of convex functions is Jensen’s inequality.It relates the expectation
of a convex function applied to a random variable to the convex function evaluated at its mean. We
will denote byEµ [·] :=

∫
S ·dµexpectation overS with respect to a probability measureµ overS.

5. Technically,φ need only be differentiable on the relative interior ri(S) of S. We omit this requirement for simplicity
and because it is not relevant to this discussion.

6. Named in reference to Bregman (1967) although he was not the firstto consider such an equation, at least in the one
dimensional case; confer Brunk et al. (1957, p.838).
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Theorem 5 (Jensen’s Inequality)Letφ : S→R be a convex function, µ be a distribution andS be
anS-valued random variable (measurable w.r.t. µ) such thatEµ [|S|]< ∞. Then

Jµ[φ] := Eµ [φ(S)]−φ(Eµ [S])≥ 0. (9)

The proof is straight-forward and can be found in (Dudley, 2003, §10.2). Jensen’s inequality can
also be used to characterise the class of convex functions. Ifφ is a function such that (9) holds for
all random variables and distributions thenφ must be convex.7 Intuitively, this connection between
expectation and convexity is natural since expectation can be seen as an operator that takes convex
combinations of random variables.

We will call the differenceJµ[φ] theJensen gap forφ whenS∼ µ. Many measures of divergence
and information studied in the subsequent sections can be expressed as the Jensen gap of some
convex function. Due to the linearity of expectation, the Jensen gap is insensitive to the addition of
affine terms to the convex function that defines it:

Theorem 6 Let φ : S → R be convex function andS and µ be as in Theorem 5. Then for each
a,b∈ R the convex functionψ(s) := φ(s)+as+b satisfiesJµ[φ(S)] = Jµ[ψ(S)].

The proof is a consequence of the definition of the Jensen gap and the linearity of expectations
and can be found in Appendix A.2. An implication of this theorem is that when considering sets
of convex functions as parameters to the Jensen gap operator they only need be identified by their
non-linear part. Thus, the Jensen gap operator can be seen to impose anequivalence relation over
convex functions where two convex functions are equivalent if they have the same Jensen gap, that
is, if their difference is affine.

In light of the two integral representations in Section 2.3, this means the Jensen gap only depends
on the integral terms in (5) and (6) and so is completely characterised by the weights provided by
φ′′. Specifically, for suitably differentiableφ : [a,b]→ R we have

Jµ[φ(S)] =
∫ b

a
Jµ[φs0(S, t)]φ

′′(t)dt.

Since several of the measures of divergence, information and risk we analyse can be expressed as a
Jensen gap, this observation implies that these quantities can be identified with the weights provided
by φ′′ as it is these that completely determine the measure’s behaviour.

3. Binary Experiments and Measures of Divergence

The various properties of convex functions developed in the previous section have many implica-
tions for the study of statistical inference. We begin by consideringbinary experiments(P,Q) where
P andQ are probability measures8 over a common spaceX. We will considerP the distribution over
positiveinstances andQ the distribution overnegativeinstances. The densities ofP andQ with re-
spect to some third reference distributionM overX will be defined bydP= pdM anddQ= qdM
respectively. Unless stated otherwise we will assume thatP andQ are both absolutely continuous

7. This can be seen by considering a distribution with a finite, discrete set ofpoints as its support and applying Theo-
rem 4.3 of Rockafellar (1970).

8. We intentionally avoid too many measure theoretic details for the sake of clarity. Appropriateσ-algebras and conti-
nuity can be assumed where necessary.
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with respect toM. (One can always chooseM to ensure this by settingM := (P+Q)/2; but see the
next section.)

There are several ways in which the “separation” ofP andQ in a binary experiment can be
quantified. Intuitively, these all measure the difficulty of distinguishing between the two distri-
butions using instances drawn from their mixture. The further apart the distributions are the easier
discrimination becomes. This intuition is made precise through the connections withrisk and MMD
later in Appendix H.

A central statistic in the study of binary experiments and statistical hypothesis testing is the
likelihood ratiodP/dQ. As the following section outlines, the likelihood ratio is, in the sense of
preserving the distinction betweenP andQ, the “best” mapping from an arbitrary spaceX to the
real line.

3.1 Statistical Tests and the Neyman-Pearson Lemma

In the context of a binary experiment(P,Q), a statistical testis any function that assigns each
instancex ∈ X to eitherP or Q. We will use the labels 1 and 0 forP andQ respectively and so a
statistical test is any functionr : X→ {0,1}. In machine learning, a function of this type is usually
referred to as aclassifier. The link between tests and classifiers is explored further in Section 4.

Each testr partitions the instance spaceX into positive and negativeprediction sets:

X+
r := {x∈ X : r(x) = 1},

X−
r := {x∈ X : r(x) = 0}.

There are fourclassification ratesassociated with these predictions sets: the true positive rate (TP),
true negative rate (TN), false positive rate (FP) and the false negativerate (FN). For a given testr
they are defined as follows:

TPr := P(X+
r ), FPr := Q(X+

r ),
FNr := P(X−

r ), TNr := Q(X−
r ).

(10)

The subscriptr will be dropped when the test is clear by the context. SinceP andQ are distributions
overX = X+

r ∪X−
r and the positive and negative sets are disjoint we have that TP+FN = 1 and

FP+TN = 1. As a consequence, the four values in (10) can be summarised by choosing one from
each column.

Often, statistical tests are obtained by applying a thresholdτ0 to a real-valuedtest statistic
τ : X→ R. In this case, the statistical test isr(x) = Jτ(x)≥ τ0K. This leads to parameterised forms
of prediction setsXy

τ(τ0) := X
y
Jτ≥τ0K

for y ∈ {+,−}, and the classification rates TPτ(τ0), FPτ(τ0),
TNτ(τ0), and TPτ(τ0) which are defined analogously. By varying the threshold parameter a range of
classification rates can be achieved. This observation leads to a well known graphical representation
of test statistics known as the ROC curve, which is discussed further in Section 6.1.

A natural question is whether there is a “best” statistical test or test statistic to use for binary
experiments. This is usually formulated in terms of a test’s power and size. Thepowerβr of the test
r for a particular binary experiment(P,Q) is a synonym for its true positive rate (that is,βr := TPr

and so 1−βr := FNr
9) and thesizeαr of same test is just its false positive rateαr := FPr . Here,

9. This is opposite to the usual definition ofβr in the statistical literature. Usually, 1−βr is used to denote the power of
a test. We have chosen to useβr for the power (true positive rate) as this makes it easier to compare with ROC curves
and it is consistent with the usage of Torgersen (1991).
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“best” is considered to be themost powerful(MP) test of a given size (Bickel and Doksum, 2001,
§4.2). That is, a testr is considered MP of sizeα ∈ [0,1] if, αr = α and for all other testsr ′ such that
αr ′ ≤ α we have 1−βr ≤ 1−βr ′ . We will denote byβ(α) := β(α,P,Q) the true positive rate of an
MP test betweenP (the alternative hypothesis) andQ (the null hypothesis) atQ with significanceα.
Torgersen (1991) callsβ(·,P,Q) theNeyman-Pearson function for the dichotomy(P,Q). Formally,
for eachα ∈ [0,1], the Neyman-Pearson functionβ measures the largest true positive rate TPr of
any measurable classifierr : X→{−1,1} that has false positive rate FPr at mostα. That is,

β(α) = β(α,P,Q) := sup
r∈{−1,1}X

{TPr : FPr ≤ α}. (11)

The Neyman-Pearson lemma (Neyman and Pearson, 1933) shows that the likelihood ratioτ∗(x)=
dP/dQ(x) is the most powerful test for each choice of thresholdτ0. Since each choice ofτ0 ∈ R

results in a testJdP/dQ≥ τ0K of some sizeα ∈ [0,1] we have that10

β(FPτ∗(τ0)) = TPτ∗(τ0) (12)

and so varyingτ0 overR results in a maximal ROC curve. This too is discussed further in Sec-
tion 6.1.

The Neyman-Pearson lemma thus identifies the likelihood ratiodP/dQ as a particularly useful
statistic. Given an experiment(P,Q) it is, in some sense, the best mapping from the spaceX to the
reals. The next section shows how this statistic can be used as the basis fora variety of divergence
measures betweenP andQ.

3.2 Csisźar f -divergences

The class off -divergences(Ali and Silvey, 1966; Csisźar, 1967) provide a rich set of relations that
can be used to measure the separation of the distributions in a binary experiment. An f -divergence
is a function that measures the “distance” between a pair of distributionsP andQ defined over a
spaceX of observations. Traditionally, thef -divergence ofP from Q is defined for any convex
f : (0,∞)→ R such thatf (1) = 0. In this case, thef -divergence is

I f (P,Q) = EQ

[

f

(
dP
dQ

)]

=
∫
X

f

(
dP
dQ

)

dQ (13)

whenP is absolutely continuous with respect toQ and equals∞ otherwise.11

The above definition is not completely well-defined as the behaviour off is not specified at the
endpoints of(0,∞). This is remedied via the perspective transform off , introduced in Section 2.1
above which defines the limiting behaviour off . Given convexf : (0,∞)→ R such thatf (1) = 0
the f -divergence of P from Qis

I f (P,Q) := EM [I f (p,q)] = EX∼M [I f (p(X),q(X))] , (14)

whereI f is the perspective transform off (see (1)).

10. Equation (43) in Section 6.3 below, shows thatβ(α) is the lower envelope of a family of linear functions ofα and is
thus concave and continuous. Hence, the equality in (12) holds.

11. Liese and Miescke (2008, pg. 34) give a definition that does not require absolute continuity.
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The restriction thatf (1) = 0 in the above definition is only present to normaliseI f so that
I f (Q,Q) = 0 for all distributionsQ. We can extend the definition off -divergences to all convexf
by performing the normalisation explicitly. Sincef (EQ [dP/dQ]) = f (1) this is done most conve-
niently through the definition of the Jensen gap for the functionf applied to the random variable
dP/dQwith distributionQ. That is, for all convexf : (0,∞)→ R and for all distributionsP andQ

JQ

[

f

(
dP
dQ

)]

= I f (P,Q)− f (1). (15)

Due to the issues surrounding the behaviour off at 0 and∞ the definitions in (13), (14) and (15)
are not entirely equivalent. When it is necessary to deal with the limiting behaviour, the definition
in (14) will be used. However, the version in (15) will be most useful when drawing connections
betweenf -divergences and various definitions of information in Section 4 below.

Several properties off -divergence can be immediately obtained from the above definitions. The
symmetry of the perspectiveI f in (2) means that

I f (P,Q) = I f♦(Q,P) (16)

for all distributionsP andQ, where f ♦ is the Csisźar dual of f . The non-negativity of the Jensen
gap ensures thatI f (P,Q) ≥ 0 for all P andQ. Furthermore, the affine invariance of the Jensen gap
(Theorem 6) implies the same affine invariance forf -divergences.

Several well-known divergences correspond to specific choices ofthe functionf (Ali and Silvey,
1966, §5). One divergence central to this paper is thevariational divergence V(P,Q) which is
obtained by settingf (t) = |t −1| in Equation 14. It is the onlyf -divergence that is a true metric on
the space of distributions overX (Khosravifard et al., 2007) and gets its name from its equivalent
definition in the variational form

V(P,Q) = 2‖P−Q‖∞ := 2 sup
A⊆X

|P(A)−Q(A)|.

(Some authors defineV without the 2 above.) This form of the variational divergence is discussed
further in Section 8. Furthermore, the variational divergence is one of afamily of “primitive” f -
divergences discussed in Section 5. These are primitive in the sense thatall other f -divergences can
be expressed as a weighted sum of members from this family.

Another well knownf -divergence is the Kullback-Leibler (KL) divergence KL(P,Q), obtained
by settingf (t) = t ln(t) in Equation 14. Others are given in Table 2 in Section 5.4.

3.3 Generative Bregman Divergences

Another measure of the separation of distributions can be defined as the expected Bregman diver-
gence between the densitiesp and q with respect to the reference measureM. Given a convex
functionφ : R+ →R thegenerative Bregman divergencebetween the distributionsP andQ is (con-
fer (14))

Bφ(P,Q) := EM
[
Bφ(p,q)

]
= EX∼M

[
Bφ(p(X),q(X))

]
.

We call this Bregman divergence “generative” to distinguish it from the “discriminative” Bregman
divergence introduced in Section 4 below, where the adjectives “generative” and “discriminative”
are explained further.
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Csisźar (1995) notes that there is only one divergence common to the class off -divergences and
the generative Bregman divergences. In this sense, these two classesof divergences are “orthogonal”
to each other. Their only common point is when the respective convex functions satisfy f (t) =
φ(t) = t ln t −at+b (for a,b∈ R) in which case bothI f andBφ are the KL divergence.

4. Risk and Statistical Information

The above discussion off -divergences assumes an arbitrary reference measureM over the space
X to define the densitiesp andq. In the previous section, the choice of reference measure was
irrelevant sincef -divergences are invariant to this choice.

In this section an assumption is made that adds additional structure to the relationship between
P andQ. Specifically, we assume that the reference measureM is a mixture of these two distribu-
tions. That is,M = πP+(1−π)Q for someπ ∈ (0,1). In this case, by construction,P andQ are
absolutely continuous with respect toM. Intuitively, this can be seen as defining a distribution over
the observation spaceX by first tossing a coin with a biasπ for heads and drawing observations
from P on heads orQ on tails.

This extra assumption allows us to interpret a binary experiment(P,Q) as a generalisedsuper-
vised binary task(π,P,Q) where the positive (y= 1) and negative (y=−1) labels y∈ Y := {−1,1}
are paired withobservations x∈ X through a joint distributionP overX×Y. (We formally define
a task later in terms of an experiment plus loss function.) Given an observation drawn fromX ac-
cording toM, it is natural to try to predict its corresponding label or estimate the probabilityit was
drawn fromP.

Below we will introduce risk, regret, and proper losses and show how these relate to discrimina-
tive Bregman divergence. We then show the connection between the generative view (f -divergence
between the class conditional distributions) and Bregman divergence.

4.1 Generative and Discriminative Views

Traditionally, the joint distributionP of inputsx ∈ X and labelsy∈ Y is used as the starting point
for analysing risk in statistical learning theory. In order to better link risks todivergences, in our
analysis we will consider two related representations ofP.

Thegenerativeview decomposes the joint distributionP into twoclass-conditional distributions
defined asP(X) := P(X|y = 1), Q(X) := P(X|y = −1) for all X ⊆ X and a mixing probability or
prior π := P(X,y= 1). Thediscriminativerepresentation decomposes the joint distribution into an
observation distribution M(X) := P(X,Y) for all X ⊆ X and anobservation-conditional densityor
posteriorη(x) = dH

dM(x) whereH(X) := P(X,y= 1). The terms “generative” and “discriminative”
are used here to suggest a distinction made by Ng and Jordan (2002): in the generative case, the aim
is to model the class-conditional distributionsP andQ and then use Bayes rule to compute the most
likely class; in the discriminative case the focus is on estimatingη(x) directly. Although we are not
directly interested in this paper in the problems of modelling or estimating we find the distinction a
useful one.12

12. The generative-discriminative distinction usually refers to whether one is modelling the process that generates each
class-conditional distribution, or instead wishes solely to perform well on adiscrimination task (Drummond, 2006;
Lasserre et al., 2006; Minka, 2005; Rubinstein and Hastie, 1997). There has been some recent work relating the two
in the sense that if the class conditional distributions are well estimated then willone perform well in discrimination
(Long and Servedio, 2006; Long et al., 2006; Goldberg, 2001; Palmer and Goldberg, 2006).
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Figure 2: The generative and discriminative view of binary experiments.

Both these decompositions are exact sinceP can be reconstructed from either. Also, translating
between them is straight-forward, since

M = πP+(1−π)Q and η = π
dP
dM

,

so we will often swap between(η,M) and(π,P,Q) as arguments to functions for risk, divergence
and information. A graphical representation of the generative and discriminative views of a binary
experiment is shown in Figure 2.

The posteriorη is closely related to the likelihood ratiodP/dQ in the supervised binary task
setting. For each choice ofπ ∈ (0,1) this relationship can be expressed by a mappingλπ : [0,1]→
[0,∞] and its inverseλ−1

π defined by

λπ(c) :=
1−π

π
c

1−c
, (17)

λ−1
π (t) =

πt
πt +1−π

for all c∈ [0,1) andt ∈ [0,∞), andλπ(1) := ∞. Thus

η = λ−1
π

(
dP
dQ

)

and, conversely,
dP
dQ

= λπ(η).

These will be used later when relatingf -divergences and risk.

4.2 Estimators and Risk

We will call a (M-measurable) function̂η : X→ [0,1] a class probabilityestimator. Overloading the
notation slightly, we will also usêη = η̂(x) ∈ [0,1] to denote anestimatefor a specific observation
x∈ X. Many of the subsequent arguments rely on this conditional perspective.

Estimate quality is assessed using aloss functionℓ : Y× [0,1]→ R̄ and the loss of the estimate
η̂ with respect to the labely∈ Y is denotedℓ(y, η̂). If η ∈ [0,1] is the probability of observing the
labely= 1 then thepoint-wise riskof the estimatêη ∈ [0,1] is defined to be theη-average of the
point-wise loss for̂η:

L(η, η̂) := EY∼η[ℓ(Y, η̂)] = ℓ(0, η̂)(1−η)+ ℓ(1, η̂)η. (18)
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(This is what Steinwart 2006 calls theinner risk.) Whenη : X→ [0,1] is an observation-conditional
density, taking theM-average of the point-wise risk gives the(full) risk of the estimator̂η:

L(η, η̂,M) := EM [L(η, η̂)] = EX∼M[L(η(X), η̂(X))]

=
∫
X

L(η(x), η̂(x))dM(x) =: L(π, η̂,P,Q).

The convention of usingℓ, L andL for the loss, point-wise and full risk is used throughout this
paper. Any names or parameters associated toℓ will be propagated toL andL.

We call the combination of a lossℓ and the distributionP a taskand denote it discriminatively
asT = (η,M;ℓ) or generatively asT = (π,P,Q;ℓ). A natural measure of the difficulty of a task is
its minimal achievable risk, orBayes risk:

L(η,M) = L(π,P,Q) := inf
η̂∈[0,1]X

L(η, η̂,M) = EX∼M [L(η(X))] ,

where
[0,1] ∋ η 7→ L(η) := inf

η̂∈[0,1]
L(η, η̂)

is thepoint-wise Bayes risk. Note the use of the underline onL andL to indicate that the corre-
sponding functionsL andL are minimised.

4.3 Proper Losses

If η̂ is to be interpreted as an estimate of the true positive class probabilityη then it is desirable to
require thatL(η, η̂) be minimised when̂η = η for all η ∈ [0,1]. Losses that satisfy this constraint
are said to beFisher consistentand are known asproper scoring rules(Buja et al., 2005; Gneiting
and Raftery, 2007). To use common machine learning terminology we will refer to Fisher consistent
losses asproper losses. This implies that a proper lossℓ satisfiesL(η) = L(η,η) for all η ∈ [0,1].

There are a few properties of losses that we will require to establish certain key theorems below.
The first of these is that we will say a loss isfair wheneverη 7→ ℓ(0,η) and η 7→ ℓ(1,η) are,
respectively, right continuous at 0 and left continuous at 1, and

ℓ(0,0) = ℓ(1,1) = 0.

That is, no loss incurred for perfect prediction and there are no sudden “jumps” in penalty for
near-perfect prediction. The main place fairness is relied upon is in the integral representation of
Theorem 16 where it is used to get rid of some constants of integration. In order to explicitly
construct a proper loss from its associated “weight function” as shownin Theorem 17 we will
require that the loss bedefinite, that is, its point-wise Bayes risk at 0 and 1 must be bounded from
below:

L(0)>−∞ , L(1)>−∞.

Since properness of a loss ensuresL(η)= L(η,η) we see that a fair proper loss is necessarily definite
sinceL(0,0) = ℓ(0,0) = 0> −∞, and similarly forL(1,1). Conversely, if a proper loss is definite
then the finite valuesℓ(0,0) andℓ(1,1) can be subtracted fromℓ(0, ·) andℓ(1, ·) to make it fair.

Finally, for Theorem 7 below to hold at the endpoints of the unit interval we require a loss to be
regular, that is,

lim
ηց0

ηℓ(1,η) = lim
ηր1

(1−η)ℓ(0,η) = 0. (19)
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Intuitively, this condition ensures that making mistakes on events that never happen should not incur
a penalty. It is not difficult to show that any fair, definite loss is also regular (thus, a proper and fair
loss is also regular) but the converse does not hold. Since properness and fairness imply definiteness
and regularity, most of the situations we consider in the remainder of this paper will involve losses
which are both proper and fair.

Proper losses for probability estimation and surrogate margin losses (confer Bartlett et al. 2006)
for classification are closely related. (Surrogate margin losses are considered in more detail in
Appendix D.) Buja et al. (2005) note that “the surrogate criteria of classification are exactly the
primary criteria of class probability estimation” and that most commonly used surrogate margin
losses are just proper losses mapped from[0,1] to R via a link function. The main exceptions are
hinge losses;13 Buja et al. (2005, pg. 4) state that SVMs are “the only case that truly bypasses
estimation of class probabilities and directly aims at classification.” However, commonly used
margin losses of the formφ(yF(x)) are a more restrictive class than proper losses since, as Buja et al.
(2005, §23) note, “[t]his dependence on the margin limits all theory and practice to a symmetric
treatment of class 0 and class 1”. The relation between link functions, proper losses and margin
losses is considered in more detail by Reid and Williamson (2010).

The following important property of proper losses seems to be originally dueto Savage (1971).
It shows that a proper loss is completely characterised by a concave function defining its point-wise
Bayes risk along with a simple structural relationship between its point-wise riskand Bayes risk.

Theorem 7 A loss functionℓ is proper if and only if its point-wise Bayes risk L(η) is concave and
for eachη, η̂ ∈ (0,1)

L(η, η̂) = L(η̂)+(η− η̂)L′(η̂).

Furthermore ifℓ is regular this characterisation also holds at the endpointsη, η̂ ∈ {0,1}.

For general concave functionsL which may not be differentiable,(−L)′ is to be taken to be a
right derivative as discussed in Section 2.4. The following proof uses an argument in Buja et al.
(2005, §17) for the forward direction and the generalised Taylor’s theorem due to Liese and Vajda
(2006) for the converse.
Proof By definition, the point-wise Bayes riskL(η) = infη̂ L(η, η̂) which, for eachη ∈ [0,1] is just
the lower envelope of the linesL(η, η̂) = (1−η)ℓ(0, η̂)+ηℓ(1, η̂) and thusL is concave.14 The
properness ofℓ meansL(η) = L(η,η) and theη̂-derivative ofL is 0 whenη̂ = η. Hence

∂
∂η̂

L(η, η̂)
∣
∣
∣
∣
η̂=η

= (1−η)ℓ′(0,η)+ηℓ′(1,η) = 0

for all η ∈ [0,1]. Using this and expandingL′(η) via the product rule, a little algebra showsL′(η) =
ℓ(1,η)− ℓ(0,η). Thus

L(η̂)+(η− η̂)L′(η̂) = (1−η̂)ℓ(0, η̂)+ η̂ℓ(1, η̂)+(η−η̂)[ℓ(1, η̂)− ℓ(0, η̂)]
= (1−η)ℓ(0, η̂)+ηℓ(1, η̂),

which is the definition ofL(η, η̂). The result holds at the endpoints if the loss is regular by applying
the assumptions in (19).

13. And powers of absolute divergence|y− r|α for α 6= 2.
14. Since this argument made no use of the properness ofℓ we see the concavity of the Bayes risk holds for any loss.
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Conversely, now supposeΛ is a concave function and letℓ(y, η̂) = Λ(η̂)+ (y− η̂)Λ′(η̂). The
Taylor expansion ofΛ is

Λ(η) = Λ(η̂)+(η− η̂)Λ′(η̂)+
∫ η

η̂
(η−c)Λ′′(c)dc

and so

L(η, η̂) = Λ(η̂)−
∫ η

η̂
(η−c)Λ′′(c)dc≥ Λ(η) = L(η)

because the concavity ofΛ meansΛ′′ ≤ 0 and so the integral term is positive and is minimised to 0
whenη̂ = η. This showsℓ is proper, completing the proof.

This characterisation of the concavity ofL means proper losses have a natural connection to
Bregman divergences.

4.4 Discriminative Bregman Divergence

Recall from Section 2.5 that ifS ⊆ Rd is a convex set, then a convex functionφ : S→ R defines a
Bregman divergence

Bφ(s,s0) := φ(s)−φ(s0)−〈s−s0,∇φ(s0)〉 .
WhenS = [0,1], the concavity ofL meansφ(s) = −L(s) is convex and so induces the Bregman
divergence15

Bφ(s,s0) =−L(s)+L(s0)− (s0−s)L′(s0) = L(s,s0)−L(s)

by Theorem 7. The converse also holds. Given a Bregman divergenceBφ overS= [0,1] the convex-
ity of φ guarantees thatL =−φ is concave. Thus, we know that there is a proper lossℓ with Bayes
risk equal to−φ. As noted by Buja et al. (2005, §19), the difference

Bφ(η, η̂) = L(η, η̂)−L(η)

is also known as thepoint-wise regretof the estimatêη w.r.t. η. The corresponding(full) regret is
theM-average point-wise regret

EX∼M[Bφ(η(X), η̂(X))] = L(η, η̂,M)−L(η,M).

4.5 Bregman Information

Banerjee et al. (2005a) recently introduced the notion of theBregman informationBφ(S) of a ran-
dom variableS drawn according to some distributionσ overS. It is the minimalσ-average Bregman
divergence that can be achieved by an elements∗ ∈ S (theBregman representative). In symbols,

Bφ(S) := inf
s∈S

ES∼σ
[
Bφ(S,s)

]
= ES∼σ

[
Bφ(S,s

∗)
]
.

The authors show that the mean ¯s := ES∼σ[S], is the unique Bregman representative. That is,
Bφ(S) = Eσ[Bφ(S, s̄)]. Surprisingly, this minimiseronly depends onS andσ, not the choice ofφ

15. Technically,S is the 2-simplex{(s1,s2) ∈ [0,1]2 : s1+s2 = 1} but we identifys∈ [0,1] with (s,1−s). Also, we once
again interpret(−L)′ as a right derivative for general concaveL as discussed in Section 2.4.
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defining the divergence and is a consequence of Jensen’s inequality and the form of the Bregman
divergence.

Since regret is a Bregman divergence, it is natural to ask what is the corresponding Bregman
information. In this case,φ = −L and the random variableS = η(X) ∈ [0,1], whereX ∈ X is
distributed according to the observation distributionM. Noting thatEX∼M[η(X)] = π, the proof of
the following theorem stems from the definition of Bregman information and some simple algebra
showing that infηL(η,π,M) = L(π,M), since by assumptionℓ is a proper loss.

Theorem 8 Supposeℓ is a proper loss. Given a discriminative task(η,M) and lettingφ =−L, the
corresponding Bregman information ofη(X) satisfies

Bφ(η(X)) = Bφ(η,M) := L(π,M)−L(η,M).

4.6 Statistical Information

The reduction in risk (from priorπ ∈ [0,1] to posteriorη ∈ [0,1]X)

∆L(η,M) = ∆L(π,P,Q) := L(π,M)−L(η,M) (20)

is known asstatistical informationand was introduced by DeGroot (1962) motivated by Lindley
(1956). This reduction can be interpreted as how much risk is removed by knowing observation-
specific class probabilitiesη rather than just the priorπ.

DeGroot originally introduced statistical information in terms of what he called an uncertainty
functionwhich, in the case of binary experiments, is any functionU : [0,1]→ [0,∞). The statistical
information is then the average reduction in uncertainty which can be expressed as a concave Jensen
gap

−JM[U(η)] = JM[−U(η)] =U(EX∼M [η(X)])−EX∼M [U(η(X))] .

DeGroot noted that Jensen’s inequality implies that for this quantity to be non-negative the uncer-
tainty function must be concave, that is,−U must be convex.

Theorem 8 shows that statistical information is a Bregman information and corresponds to the
Bregman divergence obtained by settingφ =−L. This connection readily shows that∆L(η,M)≥ 0
(DeGroot, 1962, Thm 2.1) since the minimiser of the Bregman information isπ = EX∼M[η(X)]
regardless of loss andBφ(η,π)≥ 0 since it is a regret.

4.7 Unifying Information and Divergence

From a generative perspective,f -divergences can be used to assess the difficulty of a learning task by
measuring the divergence between the class-conditional distributionsP andQ. The more divergent
the distributions for the two classes, the easier the classification task.Österreicher and Vajda (1993,
Thm 2) made this relationship precise by showing thatf -divergence and statistical information have
a one-to-one correspondence:

Theorem 9 If (π,P,Q;ℓ) is an arbitrary task and Lis the associated conditional Bayes risk then
defining

f π(t) := L(π)− (πt +1−π)L
(

πt
πt +1−π

)

(21)
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for π ∈ [0,1] implies fπ is convex, fπ(1) = 0 and

I f π(P,Q) = ∆L(π,P,Q)

for all distributions P and Q. Conversely, if f is convex and f(1) = 0 then defining

Lπ(η) :=−1−η
1−π

f

(
1−π

π
η

1−η

)

, π ∈ [0,1]

implies

I f (P,Q) = ∆Lπ(π,P,Q)

for all distributions P and Q, where∆Lπ is the statistical information associated with Lπ.

The proof, given in Appendix A.3, is a straight-forward calculation that exploits the relation-
ships between the generative and discriminative views presented earlier.Combined with the link
between Bregman and statistical information, this result means that they andf -divergences arein-
terchangeableas measures of task difficulty. The theorem leads to some correspondences between
well known losses and divergence: log-loss with KL(P,Q); square loss with triangular discrimina-
tion; and 0-1 loss withV(P,Q). (See Section 5.5 for an explicitly worked out example.)

This connection generalises the link betweenf -divergences andF-errors (expectations of con-
cave functions ofη) in Devroye et al. (1996) and can be compared to the more recent work of
Nguyen et al. (2005) who show that eachf -divergence corresponds to the negative Bayes risk for a
familyof surrogate margin losses. The one-to-many nature of their result may seem at odds with the
one-to-one relationship here. However, the family of margin losses givenin their work can be recov-
ered by combining the proper losses with link functions. Working with properlosses also addresses
a limitation pointed out by Nguyen et al. (2005, pg. 14), namely that “asymmetricf -divergences
cannot be generated byany (margin-based) surrogate loss function” and extends their analysis “to
show that asymmetricf -divergences can be realized by general (asymmetric) loss functions”.

4.8 Summary

The main results of this section can be summarised as follows.

Theorem 10 Let f : R+ → R be a convex function and for eachπ ∈ [0,1] define for c∈ [0,1):

φ(c) :=
1−c
1−π

f (λπ(c)) ,

L(c) := −φ(c),

whereλπ is defined by (17). Then for every binary experiment(P,Q) we have

I f (P,Q) = ∆L(η,M) = Bφ(η,M),

where M:= πP+(1−π)Q, η := πdP/dM andL is the expectation (inX) of the conditional Bayes
risk L. Equivalently,

JQ[ f (dP/dQ)] = JM[−L(η)] = JM[φ(η)].
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What this says is that for each choice ofπ the classes off -divergencesI f , statistical informations
∆L and (discriminative) Bregman informationsBφ can all be defined in terms of the Jensen gap of
some convex function. Additionally, there is a bijection between each of theseclasses due to the
mappingλπ that identifies likelihood ratios with posterior probabilities.

The class off -divergences is “more primitive” than the other measures since its definition does
not require the extra structure that is obtained by assuming that the reference measureM can be
written as the convex combination of the distributionsP andQ. Indeed, eachI f is invariant to the
choice of reference measure and so is invariant to the choice ofπ. The results in the next section
provide another way of looking at this invariance ofI f . In particular, we see that everyf -divergence
is a weighted “average” of statistical informations or, equivalently,I f π divergences.

5. Primitives and Weighted Integral Representations

When given a class of functions likef -divergences, risks or measures of information it is natural to
ask what the “simplest” elements of these classes are. We would like to know which functions are
“primitive” in the sense that they can be used to express other measures but themselves cannot be
so expressed.

The connections between risk,f -divergence, and statistical information discussed in Section 4
are all in terms of the convex functions that define each type of measurement. As discussed in
Section 2.3, integral representations allow these convex functions to be expressed as weighted com-
binations of simple, convex, piecewise linear functions. By thinking of the set of these simple
functions as a “basis” for convex functions, we are able to identify any convex function with its
“coordinates”—that is, its weight function—relative to this basis.

The main result of this section essentially “lifts” this weight function representation of convex
functions through the definitions of proper risks andf -divergence (and therefore also statistical
and Bregman information) so they can be expressed as weighted integrals of primitive elements
corresponding to the simple convex functions acting as the “basis”. In the case of f -divergences
and information the weight function in these integrals completely determines their behaviour. This
means the weight functions can be used as a proxy for the analysis of these measures, or as a knob
the user can adjust in choosing what to measure.

We also show that the close relationships between information andf -divergence in terms of
their convex generators can be directly translated into a relationship between the respective weight
functions associated with these measures. That is, given the weight function that determines an
f -divergence there is, for each choice of the priorπ, a simple transformation that yields the weight
function for the corresponding statistical information, andvice versa.

This shift from “function as graph of evaluations” to “function as weighted combination of
primitive functions” permeates the remainder of the paper and is (loosely!) analogous to the way
the Fourier transform represents functions as sums of simple, periodic signals. In Section 6, risk
curves are used to graphically summarise the values of all the primitive risks for a given binary
experiment. In Section 7, surrogate regret bounds for proper lossesand a tight generalisation of
Pinsker’s inequality are derived by considering the relationship betweengeneral regrets or diver-
gences and the primitive ones comprising them. In both cases, the bounds areestablished by using
weight functions to understand the relative contribution of each primitive to the weighted sum. In
particular, the Pinkser-like inequalities in Appendix B for specificf -divergences are obtained via
direct manipulation of their weight functions.
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5.1 Integral Representations off -divergences

The following result shows that the class off -divergences (and, by the result of the previous section,
statistical and Bregman information) is closed under conic combination.

Theorem 11 For all convex functions f1, f2 : (0,∞)→ R and all α1,α2 ∈ [0,∞), the function

(0,∞) ∋ t 7→ g(t) := α1 f1(t)+α2 f2(t) (22)

is convex. Furthermore, for all distributions P and Q, we have

Ig(P,Q) = α1I f1(P,Q)+α2I f2(P,Q). (23)

Conversely, given f1, f2, α1 and α2, if (23) holds for all P and Q then g must be, up to affine
additions, of the form (22).

The proof is a straight-forward application of the definition of convexity and of f -divergences.
One immediate consequence of this result is that the set off -divergences is closed under conic

combinations∑i αiI fi . Furthermore, the arguments in Section 2.4 can be used to extend this obser-
vation beyond finite linear combination to generalised weight functionsα. By Corollary 2, if f is a
convex function then expanding it about 1 in (5) and settingα(s) = f ′′(s) means that

I f (P,Q) =
∫ ∞

0
IFs(P,Q)α(s)ds (24)

whereFs(t) = Js≤ 1K(s− t)++ Js> 1K(t − s)+.16 The functionsFs, s∈ R+ can therefore be seen
as the generators of the class of primitivef -divergences. As a function oft, eachFs is piecewise
linear, with a single “hinge” ats. Of course, any affine translation of anyFs is also a primitive. In
fact, eachFs may undergo a different affine translation without changing thef -divergenceI f . The
weight functionα is what completely characterises the behaviour ofI f .

The integral in (24) need not always exist since the integrand may not beintegrable. When the
Cauchy Principal Value diverges we say the integral takes on the value∞. We note that many (not
all) f -divergences can sometimes take on infinite values.

The integral form in (24) can be readily transformed into an integral representation that does
not involve an infinite integrand. This is achieved by mapping the interval[0,∞) onto [0,1) via the
change of variablesπ = 1

1+s ∈ [0,1]. In this case,s= 1−π
π and sods=−dπ

π2 and the integral of (24)
becomes

I f (P,Q) = −
∫ 0

1
IF1−π

π
(P,Q)α(1−π

π )π−2dπ

=
∫ 1

0
I f̃π(P,Q)γ(π)dπ (25)

where

f̃π(t) := πF1−π
π
(t) =

{

(1−π(1+ t))+ , π ≥ 1
2

(π(1+ t)−1)+ , π< 1
2

(26)

16. Technically, one must assume thatf is twice differentiable for this result to hold. However, the convexity off
implies it has well-defined one-sided derivativesf ′+ and α(s) can be expressed as the measure corresponding to
d f ′+/dλ for the Lebesgue measureλ. Details can be found in Liese and Vajda (2006). The representation of ageneral
f -divergence in terms of elementary ones is not new; see for exampleÖsterreicher and Feldman (1981) and Feldman
andÖsterreicher (1989).
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and

γ(π) :=
1
π3 f ′′

(
1−π

π

)

.

This observation forms the basis of the following restatement of a theorem byLiese and Vajda
(2006). We include it here with a short proof to discuss the connection between f -divergences and
statistical information.17

Theorem 12 Let f be convex such that f(1) = 0. Then there exists a (generalised) functionγ :
(0,1)→ R such that, for all P and Q:

I f (P,Q) =
∫ 1

0
I fπ(P,Q)γ(π)dπ, where fπ(t) = (1−π)∧π− (1−π)∧ (πt).

Proof The earlier discussion giving the derivation of Equation (25) implies the result. The only
discrepancy is over the form offπ. We determine the precise form by noting that the family of
f̃π given in (26) can be transformed by affine addition without affecting the representation ofI f .
Specifically,

fπ(t) := (1−π)∧π− (1−π)∧ (πt)

=

{

(1−π(1+ t))+ , π ≥ 1
2

(π(1+ t)−1)++π(1− t) , π< 1
2

= f̃π(t)+ Jπ< 1
2Kπ(1− t),

and sof̃π and fπ are in the same affine equivalence class for eachπ ∈ [0,1]. Thus, by Theorem 6 we
haveI fπ = I f̃π for eachπ ∈ [0,1], proving the result.

The specific choice offπ in the above theorem from all of the affine equivalents was made to
make simpler the connection between integral representations for losses and f -divergences, dis-
cussed in Section 5.4.

One can easily verify thatfπ are convex hinge functions oft with a hinge at1−π
π and fπ(1) =

0. Thus{I fπ}π∈(0,1) is a family of primitive f -divergences; confer̈Osterreicher and Feldman
(1981) and Feldman and̈Osterreicher (1989). This theorem implies an existing representation of
f -divergences due töOsterreicher and Vajda (1993, Theorem 1) and Gutenbrunner (1990). They
show that anf -divergence can be represented as a weighted integral of statistical informations for
0-1 loss: for allP,Q

I f (P,Q) =
∫ 1

0
∆L0−1(π,P,Q)γ(π)dπ, (27)

γ(π) =
1
π3 f ′′

(
1−π

π

)

. (28)

An f divergence issymmetricif I f (P,Q) = I f (Q,P) for all P,Q. The representation ofI f in
terms ofγ and Theorem 15 provides an easy test for symmetry:

17. The 1/π3 term in the definition ofγ seems a little unusual at first glance. However, it is easily understood asthe
product of two terms: 1/π2 from the second derivative of(1− π)/π, and 1/π from a transformation of variables
within the integral to map the limits of integration from(0,∞) to (0,1) via λπ.
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Corollary 13 SupposeI f is an f -divergence with corresponding weight functionγ given by (28).
ThenI f is symmetric iffγ(π) = γ(1−π) for all π ∈ [0,1].

The proof is in Appendix A.4.
Corollary 13 provides a way of generating all convexf such thatI f is symmetric that is sim-

pler than that proposed by Hiriart-Urruty and Martı́nez-Legaz (2007): letγ(π) = β(π∧ (1− π))

whereβ ∈ (R+)[0,
1
2 ] (i.e., all symmetric weight functions) and generatef from γ by inverting (28);

explicitly,

f (s) =
∫ s

0

(∫ t

0

1
(τ+1)3 γ

(
1

τ+1

)

dτ
)

dt, s∈ R
+.

5.2 Proper Losses and Cost-Weighted Risk

We now consider a representation of proper losses in terms of primitive losses that originates with
Shuford et al. (1966). Our discussion follows that of Buja et al. (2005) and then examines its
implications in light of the connections between information and divergence just presented.

Thecost-weighted lossesare a family of losses parameterised by a false positive costc∈ [0,1]
that defines a loss fory∈ {±1} andη̂ ∈ [0,1] by

ℓc(y, η̂) = cJy=−1KJη̂ ≥ cK+(1−c)Jy= 1KJη̂< cK. (29)

Intuitively, a cost-weighted loss thresholdsη̂ at c and assigns a cost if the resulting classification
disagrees withy. These correspond to the “signatures” for eliciting the probabilityη as described by
Lambert et al. (2008). Substitutingc= 1

2 will verify that 2ℓ 1
2

is equivalent to 0-1 misclassification

lossℓ0−1. Taking expectations with respect toY we have

Lc(η, η̂) = (1−η)cJη̂ ≥ cK+η(1−c)Jη̂< cK. (30)

We will useLc, Lc and∆Lc to denote the cost-weighted point-wise risk, full risk and statistical
information associated with each cost-weighted loss. The following theorems collect some useful
observations about these primitive quantities. The first shows that the point-wise Bayes risk is a
simple, concave “tent” function. The second shows that cost-weighted statistical information is
invariant under the switching of the classes provided the costs are also switched and thatπ and 1−c
are interchangeable.

Theorem 14 For all η,c∈ [0,1] the point-wise Bayes risk Lc(η) = (1−η)c∧(1−c)η and is there-
fore concave in both c andη.

Proof From the definition ofℓc in Equation 29 and the definition of point-wise Bayes risk, we have,
for η ∈ [0,1],

Lc(η) = inf
η̂∈[0,1]

Lc(η, η̂)

= inf
η̂∈[0,1]

{(1−η)cJη̂ ≥ cK+η(1−c)Jη̂< cK}

= inf
η̂∈[0,1]

{η(1−c)+(c−η)Jη̂ ≥ cK},

where the last step makes use of the identityJη̂< cK = 1− Jη̂ ≥ cK. Since(c−η) is negative if and
only if η> c, the infimum is obtained by havingJη̂ ≥ cK = 1 if and only if η ≥ c, that is, by letting
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η̂=η. In this case, when̂η≥ c we haveLc(η) = c(1−η) and when̂η< c we haveLc(η) = (1−c)η.
The concavity ofLc is evident as this function is the minimum of two linear functions ofc andη.

Theorem 15 For all c ∈ [0,1] and tasks(η,M;ℓc) = (π,P,Q;ℓc) the statistical information satisfies
1)

∆Lc(1−η,M) = ∆L1−c(η,M),

or equivalently,
∆Lc(1−π,Q,P) = ∆L1−c(π,P,Q);

and 2)
∆Lπ(1−c,P,Q) = ∆Lc(1−π,P,Q).

Proof By Theorem 14 we knowLc(η) = min{(1−η)c,(1−c)η} and soLc(1−η) = L1−c(η) for
all η,c ∈ [0,1]. Therefore,Lc(1−η,M) = L1−c(η,M) for any η : X → [0,1] including the con-
stant functionEM[η]. By definition,∆Lc(η,M) = L(EM[η],M)−L(η,M) and so∆L1−c(η,M) =
∆Lc(1−η,M) proving part 1.

Part 2 also follows from Theorem 14 by noting thatLc(1− π) = Lπ(1− c) andEM[Lc(η)] =∫
Xmin{(1−c)πdP,(1−π)cdQ}.

5.3 Integral Representations of Proper Losses

The cost-weighted losses are primitive in the sense that they form the basis for a Choquet integral
representation of proper losses. This representation is essentially a consequence of Taylor’s theorem
and was originally studied by Shuford et al. (1966) and later generalisedby Schervish (1989). The
recent presentation of this result by Lambert et al. (2008) gives yet amore general formulation
in terms of the elicitability of properties of distributions, along with a geometric derivation. An
historical summary of decompositions of scoring rules is given by Winkler etal. (1990, Section 4).

Theorem 16 Let ℓ : Y× [0,1]→ R be a fair, proper loss. Then for eacĥη ∈ (0,1) and y∈ Y

ℓ(y, η̂) =
∫ 1

0
ℓc(y, η̂)w(c)dc (31)

where theweight function18 w : (0,1)→ R+ satisfies

w(c) =−L′′(c)≥ 0 (32)

for all c ∈ (0,1). Conversely, ifℓ is defined by (31) for some weight function w: (0,1)→R+ then it
is proper.

The proof is almost a direct consequence of Taylor’s theorem.

18. The weight function and second derivative of−L are to be interpreted distributionally as discussed in Section 2.4.
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Proof We first assumeℓ is a proper loss so thatL(η, η̂) = EY∼η[ℓ(Y, η̂)] and L(η) = L(η,η).
ExpandingL(η) aboutη̂ ∈ (0,1) using Corollary 2 yields

L(η) = L(η̂)+(η− η̂)L′(η̂)+
∫ 1

0
φc(η, η̂)L′′(c)dc

= L(η, η̂)+
∫ 1

0
φc(η, η̂)L′′(c)dc (33)

by Theorem 7. The generalised functionw(c) = −L′′(c) ≥ 0 by the concavity ofL. Rearranging
(33) gives

L(η, η̂) = L(η)+
∫ 1

0
φc(η, η̂)w(c)dc.

The definition ofL in (18) impliesL(y, η̂) = ℓ(y, η̂) for y∈ {0,1} and so

ℓ(y, η̂) = L(y)+
∫ 1

0
φc(y, η̂)w(c)dc, (34)

where
φc(y, η̂) = Jη̂ ≤ c< yK(y−c)+ Jy≤ c< η̂K(c−y),

which is equal to the definition ofℓc in (29) since the left (resp. right) term is only non-zero when
y = 1 (resp. y = 0). Observe thatL(0) = L(1) = 0 sinceL(0) = L(0,0) = ℓ(0,0) = 0 by the
assumption that the loss is fair, and similarly forL(1).

This shows that (34) is equivalent to (31), completing the forward direction of the theorem.
If we now assume the functionw≥ 0 is given andℓ defined as in (31) then it suffices to show

L(η) = L(η,η). First note that

L(η, η̂) = EY∼η

[∫ 1

0
ℓc(Y, η̂)w(c)dc

]

=
∫ 1

0
Lc(η, η̂)w(c)dc.

Each of theLc are proper and so are minimised whenη̂ = η. Sincew(c) ≥ 0 this must also be
sufficient to minimiseL.

We will write ℓw, Lw andLw to explicitly indicate the parameterisation of the loss, conditional
loss and expected loss by the weight functionw. A proper lossℓw corresponding to a given weight
function can be explicitly derived using the following theorem.

Theorem 17 Given a weight function w: [0,1]→R+, let W(t) =
∫ t w(c)dc andW(t) =

∫ t W(c)dc.
Then the lossℓw defined by

ℓw(y, η̂) =−W(η̂)− (y− η̂)W(η̂)

is a proper loss. Additionally, ifW(0) andW(1) are both finite then

(y, η̂) 7→ ℓw(y, η̂)+(W(1)−W(0))y+W(0) (35)

is a fair, proper loss.
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Proof First we define the loss

ℓ(y, η̂) :=
∫ 1

0
ℓc(y, η̂)w(c)dc

and proceed to show it is equal to the definition ofℓw. Theorem 16 guarantees thatℓ is proper and
that w = −L′′. By definition of the improper integralsW andW and the fundamental theorem of
calculus we know thatW′ = w=−L′′ and soW

′
(t) =W(t) =−L′(t)+a and

W(t) =−L(t)+at+b, (36)

wherea,b ∈ R are constants of integration. Substituting these into the Savage representation of
Theorem 7 for proper losses we see that

L(η, η̂) = L(η̂)+(η− η̂)L′(η̂)
= −W(η̂)+aη̂+b+(η− η̂)[−W(η̂)+a]

= −W(η̂)− (η− η̂)W(η̂)+aη+b.

SinceL(y, η̂) = ℓ(y, η̂) for y∈ {0,1} we haveℓ(0, η̂) = ℓw(0, η̂)+b andℓ(1, η̂) = ℓw(1, η̂)+a+b
for all a,b∈ R. Choosinga= b= 0 achieves the result.

If W(0) andW(1) are both finite then lettinga=W(1)−W(0) andb=W(0) means (36) im-
pliesW(0) =−L(0)+W(0) and soL(0) = 0. Similarly,L(1) = 0 showing that (35) is fair.

As an example of how this theorem lets us explicitly construct proper losses from weight func-
tions, consider the weight functionw(c) = 1. In this case,W(t) = t andW(t) = t2

2 . Thus, noting
thaty2 = y for y∈ {0,1} we have

ℓw(y, η̂) =−1
2η̂2− (y− η̂)η̂+ 1

2y= 1
2(η̂−y)2

which is the square loss.
As a second example, considerw(c) = 1

(1−c)c. In this case,W(t) = ln
(

t
1−t

)
andW(t) = (1−

t) ln(1− t) + t ln(t). Since limε→0 ε ln(ε) = 0 we define 0ln(0) := 0 so thatb = W(0) = 0 and
a=W(1)−W(0) = 0. This implies

ℓw(y, η̂) = −(1− η̂) ln(1− η̂)− η̂ ln(η̂)− (y− η̂) ln

(
η̂

1− η̂

)

= [−(1− η̂)+(y− η̂)] ln(1− η̂)+ [−η̂− (y− η̂)] ln(η̂)
= −(1−y) ln(1− η̂)−yln(η̂)

which is log loss.

5.4 Relating Integral Representations forL and I f

There is also the following direct relationship between the weight functionsγ for an f -divergence
andw for the corresponding statistical information. Since the weight functions are an attractive
parameterization, it is convenient to be able to directly translate between the tworespective weight
functions. The proof is in Appendix A.5.
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Theorem 18 Let f : R+ → R be convex (with f(1) = 0) defineI f with corresponding weight func-
tion γ. Then for eachπ ∈ (0,1) the weight function wπ in Theorem 16 for the lossℓπ given by
Theorem 9 satisfies

wπ(c) =
π(1−π)
ν(π,c)3 γ

(
(1−c)π
ν(π,c)

)

or, inversely,

γ(c) =
π2(1−π)2

ν(π,c)3 w

(
π(1−c)
ν(π,c)

)

,

whereν(π,c) = (1−c)π+(1−π)c.

The representation (27,28) allows the determination of weights for standardf -divergences.
Kullback-Liebler divergence KL(P,Q) corresponds toγ(π) = 1

π2(1−π) . ThusJ(P,Q) = KL(P,Q)+

KL(Q,P) corresponds toγ(π) = 1
π2(1−π)2 . Several f -divergences are presented with their corre-

sponding weight function in Table 2. The weight for KL(P,Q) has a double pole atπ = 0 which is
why KL-divergence is hard to estimate—it puts a lot of weight on∆L0−1(π,PQ) for π ≈ 0 which by
Theorem 15 means a lot of weight on∆Lc(

1
2) for c≈ 1 which requires a good estimate ofLc(η,M)

which is difficult with modest data sample sizes.19

A loss function corresponding to eachf -divergence in Table 2 is also shown. The weight func-
tion w(c) for the loss is for the case whenπ= 1

2, that is, it is a loss for a binary classification problem
with equal proportions of positive and negative examples. In this case, the relationship betweenw
andγ simplifies tow

1
2 (c) = 2γ(1−c) sinceν(1

2,c) =
1
2c+ 1

2(1−c) = 1
2.

The entries in Table 2 without a name for the loss correspond to losses that are not definite. It
turns out that weight functions whose tail behaviour is noto(c−2) or o((1−c)−2) asc goes to 0 or
1, respectively (confer Buja et al., 2005, §6) imply non-definiteness ofa proper loss.

5.5 Example—Squared Loss

We illustrate some of the above concepts with a simple example. Consider squared loss. We have

L(η, η̂) = η̂2(1−η)+(η̂−1)2η

and thusL(η) = L(η,η) = η(1−η) andL′′(η) =−2 and thus by (32)w(η) = 2. From (21) we thus
have

f π(t) =
π(1−π)(πt +1−π)− (1−π)πt

πt +1−π
.

Choosingπ = 1
2 this becomesf

1
2 (t) = 1−t

4t+4. One can check that 8· f
1
2 (t)+ t − 1 = (t−1)2

t+1 which
agrees with thef corresponding to Triangular Discrimination in Table 2. Scaling is just a question
of normalisation and we have already seen thatI f is insensitive to affine offsets inf . This illus-

trates the awkwardness of parameterisingI f in terms of f : at first sight 1−t
4t+4 and (t−1)2

t+1 seem quite

19. Considering KL-divergence from the weight function perspective suggests a scheme to estimate it: avoid attempting
to estimate the regions near zero and one where the weight function diverges. A particular example of this is the
divergence KLε(P,Q) which has weight functionγ(π) = 1

π2(1−π) Jπ ∈ [ε,1− ε]K. The correspondingf can be worked

out but has the rather less intuitively clear formf (t) = Jt < ε
1−ε K(t(ln( ε

1−ε )+1)− ε
1−ε )+ J ε

1−ε ≤ t ≤ 1−ε
ε Kt ln t +

J 1−ε
ε < tK(t(ln( 1−ε

ε )+1)− 1−ε
ε ), ε ∈ [0,1). This approach to regularizing the estimation of the KL-divergence was

suggested by Gutenbrunner (1990, page 454).
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different. Using weight functions automatically filters out the effect of anyaffine offsets—if the
weight functions corresponding tof1 and f2 match, thenI f1 = I f2. Finally observe that substituting

γ(π) = 8 from the table into Theorem 18 we obtainw
1
2 (c) = 1/4

ν(π,c)3 ·8= 2, consistent with the weight
obtained above.

6. Graphical Representations

The last section described representations of risks andf -divergences in terms of weighted integrals
of primitive functions. The values of the primitive functions lend themselves to agraphical inter-
pretation that is explored in this section. In particular, a diagram called arisk curveis introduced.
Risk curves are a useful aid to intuition when reasoning about risks, divergences and information
and they are used in Section 7 to derive bounds between various divergences and risks.

Risk curves are closely related to thecost curvesof Drummond and Holte (2006) as well as
idealisedreceiver operating characteristic, or ROC curves(Fawcett, 2004). Proposition 20 makes
this latter relationship explicit via a point-line duality between risk and ROC curves. Additionally,
results about the Neyman-Pearson function by Torgersen (1981) allowus to establish a transforma-
tion between suitably smooth maximal ROC and minimal risk curves in Theorem 22. Despite the
close ties betweenf -divergences and risks, and between risk curves and ROC curves,we show in
Proposition 19 that theareaunder an ROC curve cannot be interpreted as anf -divergence.

6.1 ROC Curves

Plotting areceiver operating characteristic curveor ROC curveis a way of graphically summarising
the performance of a test statistic. Recall from Section 3.1 that in the contextof a binary experiment
(P,Q) on a spaceX, a test statisticτ is any function that maps points inX to the real line. Each choice
of thresholdτ0 ∈R results in a classifierr(x)= Jτ(x)≥ τ0K and its corresponding classification rates.
An ROC curve for the test statisticτ is simply a plot of the true positive rate of these classifiers as a
function of their false positive rate as the thresholdτ0 varies overR. Formally,

ROC(τ) := {(FPτ(τ0),TPτ(τ0)) : τ0 ∈ R} ⊂ [0,1]2. (37)

A graphical example of an ROC curve is shown as the solid black line in Figure3.
For a fixed experiment(P,Q), the Neyman-Pearson lemma provides an upper envelope for ROC

curves. It guarantees that the ROC curve for the likelihood ratioτ∗ = dP/dQ will lie above, or
dominate, that of any other test statisticτ as shown in Figure 3. This is an immediate consequence
of the likelihood ratio being the most powerful test since for each false positive rate (or size)α it
will have the largest true positive rate (or power)β of all tests (Eguchi and Copas, 2001). Thus
ROC(dP/dQ) is themaximalROC curve.

The performance of a test statisticτ shown in an ROC curve is commonly summarised by
the Area Under the ROC Curve, AUC(τ), and is closely related to the Mann-Whitney-Wilcoxon
statistic. Formally, if(P,Q) is a binary experiment andτ a test statistic the AUC is

AUC(τ) :=
∫ 1

0
βτ(α)dα (38)

=
∫ ∞

−∞
TPτ(τ0)FP′τ(τ0)dτ0, (39)
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Figure 3: Example of an ROC diagram showing an ROC curve for an arbitrary statistical testτ
(middle, bold curve) as well as an optimal statistical testτ∗ (top, grey curve). The dashed
line represents the ROC curve for a random, or uninformative statistical test.

whereβτ(α) = TPτ(τ0) for a τ0 ∈ R such that FPτ(τ0) = α.
In Section 3.1 the Neyman-Pearson lemma was used to argue that the curveβ(α) for the likeli-

hood ratio dominates all other curves. Since the likelihood ratio is used to define f -divergences, it
is natural to ask whether the area under the maximal ROC curve is anf -divergence. Interestingly,
the answer is “no”.

Proposition 19 There is no convex f such thatI f (P,Q) = AUC(dP/dQ) for all distributions P and
Q.

Proof Note that anf -divergence’s integral can be decomposed as follows

I f (P,Q) =
∫ ∞

0
f (t)

∫
Xt

dQdt, (40)

whereXt := {x ∈ X : dP/dP(x) = t} = (dP/dQ)−1(t). Compare this to the definition of AUC(τ)
given in (39) whenτ = dP/dQ

AUC(dP/dQ) =
∫ ∞

−∞
TPτ(t)FP′τ(t)dt

= −
∫ ∞

0
(P◦ τ−1)([t,∞))

∫
Xt

dQdt (41)

since FP′τ(t) = d/dt
∫ ∞

t

∫
Xt

dQ(x)dt = −∫
Xt

dQ anddP/dQ≥ 0. If we assume there exists anf
such that for all binary experiments(P,Q), I f (P,Q) = AUC(dP/dQ) we would require the integrals
in (40) and (41) to be equal for all(P,Q). This would requiref (t) =−(P◦ (dP/dQ)−1)([t,∞)) for
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all t ∈ [0,∞) which is not possible for all binary experiments(P,Q) simultaneously.

Although the maximal AUC for(P,Q) cannot be expressed as anf -divergence, Torgersen (1991)
shows how it can be expressed as the variational divergence betweentheproduct measures P×Q
andQ×P. That is, AUC(dP/dQ) =V(P×Q,Q×P). Following up this connection and considering
other f -divergences of product measures is left as future work.

It is important to realise that AUC is not a particularly intrinsic measure—just a common
one. As the earlier discussion of integral representations has shown, there is value in consider-
ing weighted versions of integrals such as (38). As Hand (2008) notes inhis commentary on a
recent paper (outlining another type of performance curve): “To useall the values of the diagnos-
tic instrument, when integrating to yield the overall AUC measure, it is necessary to decide what
weight to give to each value in the integration. The AUC implicitly does this using a weighting
derived empirically from the data.” Along these lines, Xie and Priebe (2002) and Eguchi and Copas
(2001) have suggested generalisations of the AUC that incorporates weights and show that certain
choice of weight functions yield well-known losses.

A closer investigation of these generalisations of AUC and their connection tomeasures of
divergence is also left as future work.

6.2 Risk Curves

Risk curves are a graphical representation closely related to ROC curves that take into account a
prior π in addition to the binary experiment(P,Q). They provide a concise summary of the risk of
an estimator̂η for the full range of costsc∈ [0,1] for a fixed priorπ ∈ [0,1], or, alternatively, for
the full range of priorsπ given a fixed costc.

A risk curve for costsfor the estimator̂η is the set{(c,Lc(η̂,π,P,Q)) : c ∈ [0,1]} of points
parameterised by cost.20 A risk curve for priorsfor the estimator̂η is the set{(π,L0-1(η̂,π,P,Q)) :
π ∈ [0,1]}.

Figure 4 shows an example of arisk curve diagram. On it is plotted the cost curves for an
estimateη̂ of a true posteriorη on the same graph. The “tent” function also shown is the risk curve
for the majority class predictor min{(1−π)c,(1− c)π}. Hereπ = 1

2. Other choices ofπ ∈ (0,1)
skew the tent and the curves under it towards 0 or 1.

In light of the weighted integral representations described in Theorem 16, several of the quanti-
ties can be associated with properties of a cost curve diagram. The weightfunctionw(c) associated
with a lossℓ can be interpreted as a weighting on the horizontal axis of a risk curve diagram. When
the area under a risk curve is computed with respect to this weighting the result is the full risk L

sinceL(η, η̂) =
∫ 1

0 Lc(η, η̂)w(c)dc.

Furthermore, the weighted area between the risk curves for an estimateη̂ and the true posterior
η is the regretL(η, η̂)−L(η) and the statistical information∆L(η,M) = L(π,M)−L(η,M) is the
weighted area between the “tent” risk curve forπ and the risk curve forη.

The correspondence between ROC and risks curves is due to the relationship between the true
class probabilityη and the likelihood ratiodP/dQ for a fixedπ. As shown in Section 4.1, this

20. Unlike the cost curves originally described by Drummond and Holte (2006), the version presented here does not
normalise the risk, and plots the cost on the horizontal axis rather than the product of the prior probability and cost.
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Figure 4: Example of a risk curve for costs diagram showing risk curvesfor costs for the true
posterior probabilityη (bottom, solid curve), an estimateη̂ (middle, bold curve) and the
majority class or prior estimate (top, dashed curve).

relationship is
dP
dQ

= λπ(η) =
1−π

π
η

1−η
.

Each costc ∈ [0,1] can be mapped to a corresponding test statistic thresholdτ0 = λπ(c) andvice
versa.

Drummond and Holte (2006) show that their cost curves have a point-line dual relationship with
ROC curves. As can be established with some straight-forward algebra, the same result holds for
our risk diagrams.

Proposition 20 For a given point(FP,TP) on an ROC diagram the corresponding line in a risk
diagram is

Lc = (1−π)cFP+π(1−c)(1−TP), c∈ [0,1]

Conversely, the line in ROC space corresponding to a point(c,Lc) in risk space is

TP=
(1−π)c
π(1−c)

FP+
(1−π)c−Lc

π(1−c)
, FP∈ [0,1].

An example of this relationship is shown graphically21 in Figure 5 between the point A and the
line A*.

21. An applet that demonstrates the relationship can be found athttp://mark.reid.name/iem/
visualising-roc-and-cost-curve-duality.html .
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Figure 5: Cost curve diagram (left) and corresponding ROC diagram (right). The black curves on
the left and right represent risk and classification rates of an example predictor. The grey
Bayes risk curve on the left corresponds to the dominating grey ROC curve on the right
for the likelihood statistic. Similarly, the dashed tent on the left corresponds tothe dashed
diagonal ROC line on the right. The point labelled A in the risk diagram corresponds to
the line labelled A* in the ROC diagram.

6.3 Transforming from ROC to Risk Curves and Back

As mentioned earlier, the Neyman-Pearson lemma guarantees the ROC curve for η is maximal.
This corresponds to the cost curve being minimal. In fact, these relationships are dual in the sense
that there exists a transformation from one to the other as we shall now show. We make use of
a connection between the Neyman-Pearson function in (11) and the maximal ROC curve due to
Torgersen (1981). For completeness, a proof using our nomenclaturecan be found in Appendix A.7.

Theorem 21 Let β(α,P,Q) be the Neyman-Pearson function for the binary experiment(P,Q) and
let L(π,P,Q) be the 0-1 Bayes risk on the same experiment for the priorπ. Then, for any choice of
π ∈ [0,1] we have

L(π,P,Q) = L= min
α∈[0,1]

((1−π)α+π(1−β(α,P,Q)) (42)

and conversely for anyα ∈ [0,1],

β(α,P,Q) = inf
π∈(0,1]

1
π
((1−π)α+π−L(π,P,Q)). (43)

π 7→ L(π,P,Q) is the lower envelope of a parameterized (byπ) family of affine functions (inα)
and is thus concave. Whenβ(·) andL(·) are smooth, explicit closed form formulas can be found:
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Theorem 22 Supposeβ andL are differentiable on(0,1] and[0,1] respectively. Then

L(π) = (1−π)β̌(π)+π(1−β(β̌(π))), π ∈ [0,1], (44)

where

β̌(π) := β′−1
(

1−π
π

)

and

β(α) =
1

Ľ(α)
[
(1− Ľ(α))α+ Ľ(α)−L(Ľ(α))

]
, α ∈ (0,1], (45)

where

Ľ(α) := L̃
−1
(α)∧1,

L̃(π) := L(π)−πL′(π).

The proof can be found in Appendix A.6.
Using (45) we present an example. ConsiderL(π) = γπ(1− π) for γ ∈ [0,1] One can readily

check that̃L(γ)(π) = γπ2. HenceL̃
−1
(γ)(α) =

√
α
γ ∈
[

0, 1
γ

]

. ThusĽ(γ)(α) = 0∨ L̃
−1
(γ)(α)∧1=

√

α/γ∧
1. Substituting and rearranging we find that the correspondingβ is given by

βγ(α) =
α+ γ+(

√

α/γ∧1)(1−α− γ)
√

α/γ∧1
.

A graph of thisβ(·) is given in figure 6.
By constructionβ(1) = 1 andβ is concave and continuous on(0,1]. The following lemma is due

to Torgersen (1991). Given mild conditions on the space of instances, thisgives a corollary which
guarantees that all concave curves on a risk diagram can be realised by some pair of distributions.
Their proofs can be found in Appendix A.8 and Appendix A.9, respectively.

Lemma 23 SupposeX contains a connected componentC. Let φ : [0,1] → [0,1] be an arbitrary
function that is concave and continuous on(0,1] such thatφ(1) = 1. Then there exists distributions
P and Q onX such thatβ(α,P,Q) = φ(α) for all α ∈ [0,1].

Corollary 24 SupposeX contains a connected component. Letψ : [0,1] → [0,1] be an arbitrary
concave function such that for allπ ∈ [0,1], 0≤ ψ(π)≤ π∧ (1−π). Then there exists distributions
P and Q onX such thatL(π,P,Q) = ψ(π) for all π ∈ [0,1].

The corollary shows that reasoning about cost-weighted risks for all possible binary experiments
(P,Q) can be done purely geometrically. Each experiment can be associated with aconcave curve
and vice versaso that the existence of an experiment becomes equivalent to the existenceof a
concave curve with certain properties. This relationship is exploited in the next section to establish
bounds forf -divergences in Theorem 30.
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Figure 6: Graph of the parameterised Neyman-Pearson functionα 7→ βγ(α,P,Q) for γ = i/20, i =
1, . . . ,20. (See text.)

7. Bounding General Objects in Terms of Primitives

All of the above results are exact—they are exact representations of particular primitives or general
objects in terms of other primitives. Another type of relationship is an inequality.In this section we
consider how we can (tightly) bound the value of a general object (I f or Bw) in terms of primitive
objects (Vπ—the generalised variational divergence defined below—orBc, the regret with respect to
the cost weight loss (29)). BoundingI f (P,Q) in terms ofVπ(P,Q) is a generalisation of the classical
Pinsker inequality (Pinsker, 1964). BoundingBw(η, η̂) in terms ofBc(η, η̂) is a generalisation of
the so-called “surrogate regret bounds” (Zhang, 2004b; Bartlett etal., 2006).

As explained previously, we work with theconditionalBregman divergenceBw(η, η̂). Results
in terms ofBw(η, η̂), η, η̂ ∈ [0,1] immediately imply results forBw(η, η̂), whereη, η̂ ∈ [0,1]X by
taking expectations with respect toX.

7.1 Surrogate Regret Bounds

Suppose for some fixedc0 ∈ (0,1) that Bc0(η, η̂) = α. What can be said concerning the value
of Bw(η, η̂) for an arbitrary weight functionw? Surrogate regret bounds answer this question by
showing how the value ofBc0 is controlled by a function ofBw. That is,Bc0 ≤ F(Bw) for some
non-decreasingF . The main result of this subsection, Theorem 25, presents a general surrogate
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bound for proper losses implicitly asBw ≥ F−1(Bc0). However, as Corollary 28 shows, this implicit
bound can always be inverted.

Previous work on this problem is summarised in Appendix D. Apart from theirtheoretical
interest, these bounds have direct practical implications: it can often be much simpler to minimise
Bw(η, η̂) over η̂ than to minimiseBc(η, η̂). The bounds below will tell the user of such a scheme
the maximum price they will have to pay, in terms of statistical performance, for using a particular
surrogate.

Theorem 25 Let c0 ∈ (0,1) and let Bc0(η, η̂) denote the point-wise regret for the cost-weighted
lossℓc0. Suppose it is known that Bc0(η, η̂) = α. Then the point-wise regret B(η, η̂) for any proper
surrogate lossℓ with point-wise risk L and Bayes risk Lsatisfies

B(η, η̂)≥ ψ(c0,α)∨ψ(c0,−α), (46)

where
ψ(c0,α) := B(c0,c0+α) = L(c0)−L(c0+α)+αL′(c0).

Furthermore (46) is tight.

The proof of this bound is almost a direct consequence of the fact that regrets for proper losses
are Bregman divergences (see Section 4.4). This is a simplified version ofan earlier proof by Reid
and Williamson (2009). We will make use of the following expression forBc derived by Buja et al.
(2005). Its proof can be found in Appendix A.10.

Lemma 26 Suppose Lc is the conditional risk for cost-sensitive misclassification loss (see 5.2). For
any loss c∈ [0,1] the cost-weighted regret Bc(η, η̂) := Lc(η, η̂)−Lc(η) satisfies

Bc(η, η̂) = |η−c|Jη∧ η̂< c≤ η∨ η̂K.

Proof (Theorem 25) Let B be the conditional regret associated with some arbitrary proper loss
ℓ and suppose that we know the cost-weighted regretBc0(η, η̂) = α. By Lemma 26, this implies
that α = η− c0 whenη̂ ≤ c0 < η andα = c0+η whenη ≤ c0 < η̂. SinceB(η, η̂) is a Bregman
divergence its value decreases as|η− η̂| decreases (see Section 2.5). Thus, in the first case we have
η̂ ≤ c0 < c0+α = η and soB(η, η̂) = B(c0+α, η̂)≥ B(c0+α,c0) and is minimised when̂η = c0.

The proof of the second case, whenη = c0−α ≤ c0 < η̂ proceeds identically. Thus,B(η, η̂) is
no smaller than each ofB(c0+α,c0) andB(c0−α,c0), giving the required result.

By restricting attention to the case whenc0 =
1
2 and symmetric losses we obtain, as a corollary,

a result similar to that presented by Bartlett et al. (2006) for surrogate margin losses sinceB1
2

is

easily shown to be half the 0-1 regret. It is obtained by substitutingα = 1
2 and noting the symmetry

of L impliesL′(1
2) = 0; Appendix D contains some examples illustrating this special case.

Corollary 27 If L is symmetric—that is, L(1
2 −c) = L(1

2 +c) for c∈ [0, 1
2]—and B1

2
(η, η̂) = α, then

B(η, η̂)≥ L(1
2)−L(1

2 +α).

The bounds in Theorem 25 can be inverted to allow the approximate minimisation ofa cost-
weighted loss via the minimisation of a surrogate loss.
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Corollary 28 Minimising B(η, η̂) w.r.t. η̂ minimises the bound on Bc(η, η̂) for each c∈ (0,1).

Proof To see this, letψ′(c0,α) := ∂
∂α ψ(c0,α) = −L′(c0+α)+ L′(c0). SinceL is concave,L′ is

non-increasing and henceL′(c0+α) ≤ L′(c0) and soψ′(c0,α) ≥ 0 and thereforeα 7→ ψ(c0,α) is
non-decreasing and thus invertible (although there may be non-uniqueness at points whereψ(c0,α)
is constant inα). This invertibility means minimisingB(η, η̂) w.r.t. η̂, minimises the bound on
Bc(η, η̂).

Finally, Theorem 25 can be used to immediately establish a loose, second-order bound inα for
symmetric losses in terms of their weight function, similar to a result due to Buja et al. (2005).

Corollary 29 Suppose Bw is the regret for a symmetric proper lossℓwith associated weight function
w. Then

Bw(η, η̂)≥
w(1

2)

2

[

B1
2
(η, η̂)

]2
.

Proof A Taylor series expansion of the second term in the bound of Corollary 27aboutα = 1
2 gives

Bw(η, η̂)≥
w(1

2)

2
α2+

w′′(1
2)

24
α4+ · · ·

since the linear term cancels and there is no third order term sincew is symmetric and thusw′(1
2)= 0.

Settingα = B1
2
(η, η̂) gives the result.

Some extensions to the above result have been recently presented by Scott (2010).

7.2 General Pinsker Inequalities for Divergences

The many differentf divergences are single number summaries of the relationship between two
distributionsP andQ. Each f -divergence emphasises different aspects. Merely considering the
functions f by which f -divergences are traditionally defined makes it hard to understand these
different aspects, and harder still to understand how knowledge ofI f1 constrains the possible values
of I f2. WhenI f1 =V (a special primitive forI f ) andI f2 = KL, this is a classical problem that has
been studied for decades; Appendix E summarises the history.

Vajda (1970) posed the question of atight lower boundon KL-divergence in terms of variational
divergence. This “best possible Pinsker inequality” takes the form

L(V) := inf
V(P,Q)=V

KL(P,Q), V ∈ [0,2), (47)

where the infimum is over allP and Q such thatV(P,Q) = V. Recently Fedotov et al. (2003)
presented animplicit (parametric) version of the form

(V(t),L(t))t∈R+ , (48)

V(t) = t

(

1−
(

coth(t)− 1
t

)2
)

, L(t) = ln

(
t

sinh(t)

)

+ t coth(t)− t2

sinh2(t)
.
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We will now show how viewingf -divergences in terms of their weighted integral representation
simplifies the problem of understanding the relationship between different divergences and leads,
amongst other things, to an explicit formula for (47).

We make use of a generalised notion of variational divergence:

Vπ(P,Q) := 2 sup
r∈[−1,1]X

|πEPr − (1−π)EQr|, (49)

whereπ ∈ (0,1) and the supremum is over all measurable functions fromX to [−1,1].
Fix a positive integern. Consider a sequence 0< π1< π2< · · ·< πn< 1. Suppose we “sampled”

the value ofVπ(P,Q) at these discrete values ofπ. Sinceπ 7→ Vπ(P,Q) is concave, the piecewise
linear concave function passing through points

{(πi ,Vπi (P,Q))}n
i=1

is guaranteed to be an upper bound on the variational curve(π,Vπ(P,Q))π∈(0,1). This therefore gives
a lower bound on thef -divergence given by a weight functionγ. This observation forms the basis
of the theorem stated below.

Theorem 30 For a positive integer n consider a sequence0< π1 < π2 < · · ·< πn < 1. Letπ0 := 0
andπn+1 := 1 and for i= 0, . . . ,n+1 let

ψi := (1−πi)∧πi −Vπi (P,Q)

(observe that consequentlyψ0 = ψn+1 = 0). Let

An :=

{

a= (a1, . . . ,an) ∈ R
n : (50)

ψi+1−ψi

πi+1−πi
≤ ai ≤

ψi −ψi−1

πi −πi−1
, i = 1, . . . ,n

}

.

The set An defines the allowable slopes of a piecewise linear function majorizingπ 7→Vπ(P,Q) and
matching it at each ofπ1, . . . ,πn. For a= (a1, . . . ,an) ∈ An, let

π̃i :=
ψi−ψi+1+ai+1πi+1−aiπi

ai+1−ai
, i = 0, . . . ,n, (51)

j := {k∈ {1, . . . ,n} : π̃k <
1
2 ≤ π̃k+1}, (52)

π̄i := Ji < jKπ̃i + Ji = jK1
2 + J j < iKπ̃i−1, (53)

αa,i := Ji ≤ jK(1−ai)+ Ji > jK(−1−ai−1), (54)

βa,i := Ji≤ jK(ψi−aiπi)+Ji> jK(ψi−1−ai−1πi−1) (55)

for i = 0, . . . ,n+1 and letγ f be the weight corresponding to f given by (28).
For arbitrary I f and for all distributions P and Q onX the following bound holds. If in addition

X contains a connected component, it is tight.

I f (P,Q) ≥ min
a∈An

n

∑
i=0

∫ π̄i+1

π̄i

(αa,iπ+βa,i)γ f (π)dπ (56)

= min
a∈An

n

∑
i=0

[
(αa,i π̄i+1+βa,i)Γ f (π̄i+1)−αa,iΓ̄ f (π̄i+1)

−(αa,i π̄i +βa,i)Γ f (π̄i)+αa,iΓ̄ f (π̄i)
]
, (57)
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whereΓ f (π) :=
∫ π γ f (t)dt andΓ̄ f (π) :=

∫ π Γ f (t)dt.

Equation 57 follows from (56) by integration by parts. The remainder of theproof is in Section A.12.
Although (57) looks daunting, we observe: (1) the constraints ona are convex (in fact they are a
box constraint); and (2) the objective is a relatively benign function ofa.

Whenn= 1 the result simplifies considerably. If in additionπ1 =
1
2 thenV1

2
(P,Q) = 1

4V(P,Q).
It is then a straightforward exercise to explicitly evaluate (56), especially whenγ f is symmetric. The
following theorem expresses the result in terms ofV(P,Q) for comparability with previous results.
The result for KL(P,Q) is a (best-possible) improvement on the classical Pinsker inequality.

Theorem 31 For any distributions P,Q onX, let V := V(P,Q). Then the following bounds hold
and, if in additionX has a connected component, are tight.

Whenγ is symmetric about12 and convex,

I f (P,Q)≥ 2
[
Γ̄ f
(

1
2 − V

4

)
+ V

4 Γ f
(

1
2

)
− Γ̄ f

(
1
2

)]

andΓ f andΓ̄ f are as in Theorem 30.

This theorem gives the first explicit representation of the optimal Pinsker bound.22

Corollary 32 The following special cases hold (γ symmetric about1/2).

h2(P,Q) ≥ 2−
√

4−V2,

J(P,Q) ≥ 2V ln
(

2+V
2−V

)
,

Ψ(P,Q) ≥ 8V2

4−V2 ,

I(P,Q) ≥
(

1
2 − V

4

)
ln(2−V)+

(
1
2 +

V
4

)
ln(2+V)− ln(2),

T(P,Q) ≥ ln
(

4√
4−V2

)

− ln(2).

The following special cases hold (γ is not symmetric)

χ2(P,Q) ≥ JV < 1KV2+ JV ≥ 1K V
(2−V) , (58)

KL(P,Q) ≥ min
β∈[V−2,2−V]

(
V+2−β

4

)

ln
(

β−2−V
β−2+V

)

+
(

β+2−V
4

)

ln
(

β+2−V
β+2+V

)

. (59)

By plotting both (48) and (59) one can confirm that the two bounds (implicit and explicit) coincide;
see Figure 7.

The above theorem suggests a means by which one canestimatean f -divergence by estimating a
sequence(Lci

(π,P,Q))n
i=1. A simpler version of such an idea (more directly using the representation

(27)) has been studied by Song et al. (2008).

22. A summary of existing results and their relationship to those presented here is given in Appendix E.
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Figure 7: Lower bound on KL(P,Q) as a function of the variational divergenceV(P,Q). Both the
explicit bound (59) and Fedotorev et al.’s implicit bound (48) are plotted.

8. Variational Representations

We have already seen a number of connections between the Bayes risk

L(π,P,Q) = inf
η̂∈[0,1]X

EX∼M [ℓ(η(X), η̂(X))]

and thef -divergence

I f (P,Q) = EQ

[

f

(
dP
dQ

)]

. (60)

Comparing these definitions leads to an obvious and intriguing point: the definition of L involves
an optimisation, whereas that forI f does not. Observe that the normal usage of these quantities
is that one wishes to know not just the real numberL(π,P,Q), but also the estimatêη : X→ [0,1]
that attains the minimal risk. In this section we will explore two views ofI f —relating the standard
definition to avariational one that explains where the optimisation is hidden in (60). We then
explore some simpler relationships when using the linear “loss”. In AppendixF we consider the
variational representation ofI f obtained by representingf in terms of the LF dualf ⋆. We also
explore some generalisations that naturally arise from this representation and relate them to each
other and to the standardf -divergence.
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The easiest place to start, unsurprisingly, is with the variational divergence. Below we derive a
straight-forward extension of the classical result relatingL

0−1(1
2,P,Q) to V(P,Q). We then explore

variational representations for generalf -divergences.

8.1 Generalised Variational Divergence

Let C ⊆ {−1,1}X denote a collection of measurable binaryclassifierson X. Consider the (con-
strained23) Bayes risk for 0-1 loss minimised over this set:

L
0−1
C

(π,P,Q) = inf
r∈C

E(X,Y)∼P[ℓ
0−1(r(X),Y)]. (61)

The variational divergence is so called because it can be written

V(P,Q) = 2 sup
A⊆X

|P(A)−Q(A)|, (62)

where the supremum is over all measurable subsets ofX. Since

V(P,Q) = sup
r∈[−1,1]X

|EPr −EQr|,

consider the following generalisation ofV:

VR,π(P,Q) := 2 sup
r∈R⊆[−1,1]X

|πEPr − (1−π)EQr|, (63)

whereπ ∈ (0,1) and the supremum is over all measurable functions fromX to [−1,1]. (If R =
[−1,1]X we just writeVπ(P,Q).) Whenπ = 1

2 this is a scaled version of what M̈uller (1997a,b) calls
an integral probability metric.24

If R is symmetric about zero(r ∈ R ⇒ −r ∈ R), then the absolute value signs in (63) can
be removed. To see this, suppose the supremum was attained atr and thatα := πEPr − (1−
π)EQr < 0. Chooser ′ := −r and observe thatπEPr ′− (1−π)EQr ′ = −α > 0. ThusVR,π(P,Q) =
2supr∈R⊆[−1,1]X(πEPr − (1−π)EQr).

Let sgnR := {sgnr : r ∈ R} and fora,b∈ R, let aR+b := {ar+b: r ∈ R}.

Theorem 33 SupposeR⊆ [−1,1]X is symmetric about zero andsgnR⊆ R. For all π ∈ (0,1) and
all P and Q

L
0−1
(sgnR+1)/2(π,P,Q) = 1

2 − 1
4VR,π(P,Q) (64)

and the infimum in (61) corresponds to the supremum in (63).

The proof is in Appendix A.11.

23. Tong and Koller (2000) call this therestrictedBayes risk.
24. Zolotarev (1984) calls this aprobability metric withζ-structure. There are probability metrics that are neitherf -

divergences nor integral probability metrics. A large collection is due to Rachev (1991). A recent survey on rela-
tionships (inequalities and some representations) has been given by Gibbs and Su (2002). The idea of generalising
variational divergence by restricting the set the supremum is taken overis also used by Ben-David et al. (2010).
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8.2 The Linear “Loss” and the Generalised Variational Divergence

Theorem 33 shows that computingVR,π involves an optimisation problem equivalent to that arising
in the determination ofL. The argmin in the definition ofL is usually called thehypothesis(or
Bayes optimal hypothesis). Following Borgwardt et al. (2006) we will call the argmax in (63) the
witness.

WhenR= [−1,1]X andπ = 1
2, sgnR⊆R and furthermoreC= (sgnR+1)/2= {0,1}X and so

Theorem 33 reduces to the classical result thatL
0−1(1

2,P,Q) = 1
2 − 1

4V(P,Q) (Devroye et al., 1996).
The requirement that sgnR ⊆ R is unattractive. It is necessitated by the use of 0-1 loss. It can

be removed by instead considering thelinear loss

ℓlin(r(x),y) := 1−yr(x), y∈ {−1,1}.

If r is unrestricted, then there is no guarantee thatℓlin > −∞ and is thus a legitimate loss function.
Below we will always considerr ∈ R such that the linear loss is bounded from below. Observe that
the common hinge loss (Steinwart and Christmann, 2008) is simplyℓhinge( f (x),y)= 0∨ℓlin( f (x),y).

Theorem 34 Assume thatR ⊆ [−a,a]X for some a> 0 and is symmetric about zero. Then for all
π ∈ (0,1) and all distributions P and Q onX

L
lin
R (π,P,Q) = 1− 1

2
VR,π(P,Q)

and the r that attainsLlin
R (π,P,Q) corresponds to the r that obtains the supremum in the definition

of VR,π(P,Q).

Proof

L
lin
R (π,P,Q) = inf

r∈R

(
πEX∼Pℓ

lin(r(X),−1)+(1−π)EX∼Qℓ
lin(r(X),+1)

)

= inf
r∈R

(πEX∼P(1+ r(X))+(1−π)EX∼Q(1− r(X)))

= inf
r∈R

(π+πEPr +(1−π)− (1−π)EQr)

= 1+ inf
r∈R

(πEPr − (1−π)EQr)

= 1−sup
r∈R

(πEP(−r)− (1−π)EQ(−r))

= 1−sup
r∈R

(πEPr − (1−π)EQr)

= 1− 1
2

VR,π(P,Q),

where the penultimate step exploits the symmetry ofR.

Now suppose thatR= BH := {r : ‖r‖H ≤ 1}, the unit ball inH, a Reproducing Kernel Hilbert
Space (RKHS) (Scḧolkopf and Smola, 2002). Thus for allr ∈ R there exists afeature mapφ : X→
H such thatr(x) = 〈r,φ(x)〉H and〈φ(x),φ(y)〉H = k(x,y), wherek is a positive definitekernelfunc-
tion. Borgwardt et al. (2006) show that

V2
BH,

1
2
(P,Q) =

1
4
‖EPφ−EQφ‖2

H. (65)
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Given Assumed Derived

(P,Q) f ↔ γ I f (P,Q)

(π,P,Q) U ↔ w,W,W J(U(η)) = ∆L(π,P,Q)
L(η)

η̂ Lw(η, η̂), Bw(η, η̂)

Table 3: Summary relationships between key objects arising in Binary Experiments. “Given” in-
dicates the object is given or provided by the world; “Assumed” is somethingthe user of
assumes or imposes in order to create a well defined problem; “Derived” indicates quanti-
ties that are derived from the primitives.

Thus

L
lin
R (π,P,Q) = 1− 1

4
‖EPφ−EQφ‖H. (66)

Empirical estimators derived from the correspondence between (65) and (66) lead to theν-Support
Vector Machine and Maximum Mean Discrepancy; see Appendix H. Further generalizations of
variational representations ofI f are explored in Appendix F.

9. Conclusions

There are several existing concepts that can be used to quantify the amount of information in a task
and its difficulty: Uncertainty, Bregman information, statistical information, Bayes risk and regret,
and f -divergences. Information is a difference in uncertainty; regret is a difference in risk. In the
case of supervised binary class probability estimation, we have connectedand extended several
existing results in the literature to show how to translate between these perspectives. The represen-
tations allow a precise answer to the question of what are the primitives for binary experiments.

We have derived the integral representations in a simple and unified manner, and illustrated
the value of the representations. Along the way we have drawn connections to a diverse set of
concepts related to binary experiments: risk curves, cost curves, ROCcurves and the area under
them; variational representations off -divergences, risks and regrets.

Two key consequences are surrogate regret bounds that are at once more general and simpler
than those in the literature, and a generalisation of the classical Pinkser inequality providing,inter
alia, an explicit form for the best possible Pinsker inequality relating Kullback-Leibler divergence
and Variational divergence. We have also presented a new derivationof support vector machines
and their relationship to Maximum Mean Discrepancy (integral probability metrics).

The key relationships between the basic objects of study are summarised in Table 3 and Figure 1
in §1.2.

All of the results we have presented demonstrate the fundamental and elementary nature of the
cost-weighted misclassification loss, which is becoming increasingly appreciated in the Machine
Learning literature (Bach et al., 2006; Beygelzimer et al., 2008). The viewpoint developed in this
paper has also recently been used to better understand the structure of composite binary losses
(losses involving a link function)—see Reid and Williamson (2010).
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More generally, the present work is small part of a larger structural research agenda to under-
stand the whole field of machine learning in terms ofrelationsbetween problems. We envisage
these relations being richer and more powerful than the already valuablereductionsbetween learn-
ing problems. Much of the present literature on machine learning is highly solution focussed. Of
course one does indeed like tosolveproblems, and we do not suggest otherwise. But it is hard to
see structure in the panoply of solutions which continue to grow each year.The present paper is a
first step to a pluralistic unification of a diverse set of machine learning problems. The goal we have
in mind can be explained by analogy. There are several such analogies:

Computational Complexity Within the field of NP-completeness (Garey and Johnson, 1979; John-
son, 1982–1992; 2005–2007) lead to a detailed and structured understanding of therelation-
shipsbetween many fundamental problems and consequently guides the search for solutions
for new problems.

Functional Analysis Compare Machine Learning problems with mathematicalfunctions. In the
19th century, each function was considered separately. Functional Analysis (Lindstr̈om,
2008)cataloguedthem by consideringsetsof functions andrelations (mappings) between
them and subsequently developed many new and powerful tools. The increasing abstraction
and focus on relations has remained a powerful force in mathematics (Wikipedia, 2007).

Biology A systematiccataloging (taxonomy) resonates with Biology’s Linnean past—and tax-
onomies can indeed lead to standardisation and efficiency (Bowker and Star, 1999). But
taxonomies alone are inadequate—it seems necessary to understand the relationships in a
manner analogous toSystems Biologywhich “is about putting together rather than taking
apart, integration rather than reduction. . . . Successful integration at the systems level must
be built on successful reduction, but reduction alone is far from sufficient” (Noble, 2006).

Geology Finally, Lyell’s Principles of Geology(Lyell, 1830) was a watershed in Geology’s history
(Bowker, 2005); prior work ispre-historical. Lyell’s key insight was to explain the huge di-
versity of geological formations in terms of a relatively simple set of transformations applied
repeatedly.

These analogies encourage our aspiration that by more systematically understanding therela-
tionshipsbetween machine learning problems and how they can betransformedinto each other, we
will develop a better organised and more powerful toolkit for solving existing and future problems,
and will make progress along the lines suggested by Hand (1994).
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Appendix A. Proofs

This appendix presents the proofs that were omitted in the main body of the paper.

A.1 Proof of Corollary 3

Integration by parts oftφ′′(t) gives
∫ 1

0 t φ′′(t)dt = φ′(1)− (φ(1)−φ(0)) which can be rearranged to
give

φ′(1) =
∫ 1

0
t φ′′(t)dt+(φ(1)−φ(0)).

Substituting this into the Taylor expansion ofφ(s) about 1 yields

φ(s) = φ(1)+φ′(1)(s−1)+
∫ 1

s
(t −s)φ′′(t)dt

= φ(1)+
[∫ 1

0
t φ′′(t)dt+(φ(1)−φ(0))

]

(s−1)+
∫ 1

0
(t −s)+ φ′′(t)dt

= φ(1)+(φ(1)−φ(0))(s−1)+
∫ 1

0
t(s−1)φ′′(t)dt+

∫ 1

0
(t −s)+ φ′′(t)dt

= φ(0)+(φ(1)−φ(0))s−
∫ 1

0
ψ(s, t)φ′′(t)dt,

whereψ(s, t) := min{(1− t)s,(1−s)t}. This form ofψ is valid since

−(t(s−1)+(t −s)+) =

{

−ts+ t − t +s, t ≥ s

−ts+ t, t < s

=

{

s− ts, t ≥ s

t − ts, t < s

= min{(1− t)s,(1−s)t}

as required.

A.2 Proof of Theorem 6

Expanding the definition of the Jensen gap using the definition ofψ gives

Jµ[ψ(S)] = Eµ[ψ(S)]−ψ(Eµ[S])

= Eµ[φ(S)+bS+a]− (φ(Eµ[S])+bEµ[S]+a)

= Eµ[φ(S)]+bEµ[S]+a−φ(Eµ[S])−bEµ[S]−a

= Jµ[φ(S)]

as required.
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A.3 Proof of Theorem 9

Proof Given a task(π,P,Q;ℓ) we need to first check that

f π(t) := L(π)− (πt +1−π)L
(

πt
πt +1−π

)

(67)

is convex and thatf π(1) = 0. This latter fact is obtained immediately by substitutingt = 1 into
f π(t) yieldingL(π)−L(π) = 0. The convexity off π is guaranteed by Theorem 7, which shows that
L is concave and the fact that the perspective transform of a convex function is always convex (see
Section 2.1). Thus the function

t 7→ I−L(πt,πt +1−π) =−(πt +1−π)L
(

πt
πt +1−π

)

is the composition of a convex function and an affine one and therefore convex.
Substituting (67) into the definition off -divergence in (13) yields

EQ [ f π(dP/dQ)] = EQ

[

L(π)−
(

π
dP
dQ

+1−π
)

L

(
πdP

πdP+(1−π)dQ

)]

= L(π)−
∫
X

L

(

π
dP
dM

)

dM

sincedM = πdP+ (1− π)dQ. Recall thatη = πdP/dM. SinceL(π) is constant we note that
L(π) = EM [L(π)] = L(π,M) and so

EQ [ f π(dP/dQ)] = L(π)−EM [L(η)]
= L(π,M)−L(η,M)

= ∆L(η,M)

as required for the forward direction.
Starting with

Lπ(η) :=−1−η
1−π

f

(
1−π

π
η

1−η

)

and substituting into the definition of statistical information in (20) gives us

∆Lπ(η,M) = EM [Lπ(π)]−EM [Lπ(η)]

=
∫
X

−1−π
1−π

f (1)dM−
∫
X

−1−η
1−π

f

(
1−π

π
η

1−η

)

dM

= 0+
∫
X

f

(
dP
dQ

)

dQ

since f (1) = 0, dQ= (1−η)/(1−π)dM and

dP/dQ=
1−π

π
η

1−η

by the discussion in Section 4.1. This proves the converse statement of the theorem.
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A.4 Proof of Corollary 13

Proof Let f ♦(t) := t f (1/t) denote the Csiszár-dual of f as described in Section 2.1 above. It is
known (see (16) and, for example, Liese and Vajda, 2006) that

I f (P,Q) = I f♦(Q,P) if and only if f (t) = f ♦(t)+c1t +c2

for somec1,c2 ∈ R. Since f andγ are related byf ′′
(

1−π
π
)
= π3γ(π) we can argue as follows. Ob-

serve thatf ♦
′
(t)= f (1/t)− f ′(1/t)/t and f ♦

′′
(t)= f ′′(1/t)/t3. Hencef ♦

′′(1−π
π
)
= f ′′

( π
1−π
)( π

1−π
)3

.

Let π′ = 1−π. Thus1−π
π = π′

1−π′ . Hence

f ♦
′′
(

1−π
π

)

= f ′′
(

1−π′

π′

)(
π

1−π

)3

= π′3γ(π′)

(
π

1−π

)3

= π3γ(1−π).

Thus ifγ(1−π) = γ(π), we have shownπ 7→ γ(1−π) is the weight corresponding tof ♦. Observing
that ∂2

∂t2 ( f ♦(t)+c1t +c2) = f ♦
′′

concludes the proof.

A.5 Proof of Theorem 18

Proof Theorem 9 shows that

Lπ(η) =−1−η
1−π

f

(
1−π

π
η

1−η

)

. (68)

and we have seen from (32) thatwπ(c) = −(Lπ)′′(c). The remainder of this proof involves taking
the second derivative ofL, doing some messy algebra and matching the result to the relationship
betweenγ and f ′′ in (Equation 28).

Letting rπ = rπ(η) = 1−π
π

η
1−η and taking derivatives of (68) yields

−(Lπ)′(η) = (1−π)−1[− f (rπ)+(1−η) f ′(rπ)r
′
π]

−(Lπ)′′(η) = (1−π)−1[− f ′(rπ)r
′
π +(1−η)( f ′(rπ)r

′′
π + f ′′(rπ)(r

′
π)

2)− f ′(rπ)r
′
π]

= (1−π)−1[(−2r ′π +(1−η)r ′′π) f ′(rπ)+(1−η)(r ′′π)
2 f ′′(rπ)].

However, the form ofrπ meansr ′π = 1−π
π

1
(1−η)2 and sor ′′π = 1−π

π
2

(1−η)3 . This means the coefficient

of f ′(rπ) in the above expression vanishes

(−2r ′π +(1−η)r ′′π) =
1−π

π

[ −2
(1−η)2 +(1−η)

2
(1−η)3

]

= 0.

Substituting this back into−(L)′′ gives us

−(Lπ)′′(η) =
1−η
1−π

f ′′(rπ)(r
′
π)

2

=
1−η
1−π

f ′′
(

1−π
π

η
1−η

)
(1−π)2

π2

1
(1−η)4

w(η) =
1−π

π2(1−η)3 f ′′
(

1−π
π

η
1−η

)

.
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By Equation 28 we have

γ(t) =
1
t3 f ′′

(
1− t

t

)

.

Letting t = (1−c)π
(1−c)π+(1−π)c in that expression gives

γ
(
(1−c)π
ν(π,c)

)

=
ν(π,c)3

(1−c)3π3 f ′′
(

1−π
π

c
1−c

)

.

Thus
π(1−π)
ν(π,c)3 γ

(
(1−c)π
ν(π,c)

)

=
1−π

π2(1−c)3 f ′′
(

1−π
π

c
1−c

)

= w(c)

as required. The argument to show the inverse relationship is essentially thesame.

A.6 Proof of Theorem 22

Proof Consider the right side of (42) and differentiate with respect toα:

∂
∂α

(1−π)α+π(1−β(α)) = (1−π)−πβ′(α).

Setting this to zero we have(1− π) = πβ′(α) and thusβ′(α) = 1−π
π . Sinceβ is monotonically

increasing and concave,β′ is monotonically decreasing and non-negative. Thus we can set

α = β′−1
(

1−π
π

)

∈ [0,1].

Substituting back into(1−π)α+π(1−β(α)) we obtain (44).
Now consider the right side of (43):

1
π
((1−π)α+π−L(π)). (69)

Differentiating with respect toπ we have−α
π − L

′(π)
π + L(π)

π2 . Setting this equal to zero we obtain

−α
π

− L
′(π)
π

+
L(π)

π2 = 0, π ∈ (0,1]

⇒ α+πL′(π)−L(π) = 0.

Observing the definition of̃L we thus have that̃L(π) = α. Now

L̃
′
(π) =

∂
∂π

(−πL′(π)+L(π))

= −πL′′(π)−L
′(π)+L

′(π)
= −πL′′(π)
≥ 0

sinceL is concave. Thus̃L(·) is monotonically non-decreasing and we can writeπ = L̃
−1
(α). In

order to ensureπ ∈ [0,1] we substituteπ = Ľ(α) into (69) to obtain (45).
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A.7 Proof of Theorem 21

Proof Since the true positive rate forr ∈ {−1,1}X is TPr = P(r−1(1)) and the false positive rate
for r is FPr = Q(r−1(1)) we have

β(α,P,Q) = sup
r∈{−1,1}X

{P(X+
r ) : Q(X+

r )≤ α},

whereX+
r := r−1(1).

Noting that the 0-1 loss ofr is simply its probability of error—that is, the average of the false
positive and false negative rates—we have for eachπ ∈ [0,1] that the Bayes optimal 0-1 loss is

L(π,P,Q) = inf
r∈{−1,1}X

{(1−π)Q(X+
r )+π(1−P(X+

r ))},

since the false negative rate FNr = P(X \X+
r ) = 1−P(X+

r ). Thus for all π,α ∈ [0,1], and all
measurable functionsr : X→{−1,1},

L(π,P,Q) ≤ (1−π)Q(X+
r )+π(1−P(X+

r ))

≤ (1−π)α+π(1−P(X+
r ))

≤ (1−π)α+π(1−β(α,P,Q)).

Thus, we see thatL(π,P,Q) is the largest numberL such that(1−π)α+π(1−β(α)) ≥ L for all
α ∈ [0,1] and hence one can set

L(π,P,Q) = L= min
α∈[0,1]

((1−π)α+π(1−β(α))

for eachπ ∈ [0,1].
Conversely, we can express the Neyman-Pearson functionβ in terms of the Bayes risk. That is,

for anyα ∈ [0,1], β(α,P,Q) is the largest numberβ such that

∀π ∈ [0,1] (1−π)α+π(1−β)≥ L(π)
⇔ ∀π ∈ [0,1] (1−π)α−L(π)≥ π(β−1)

⇒ ∀π ∈ (0,1]
1
π
((1−π)α−L(π))≥ β−1

⇔ ∀π ∈ (0,1] β ≤ 1
π
((1−π)α+π−L(π)).

Thus we can set

β(α) = inf
π∈(0,1]

1
π
((1−π)α+π−L(π)), α ∈ [0,1].
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A.8 Proof of Lemma 23

Proof LetX′ = [0,1] andP be the uniform distribution onX′. OverloadP andQ to also denote the
respective cumulative distribution functions (i.e.,P(x) = P([0,x])). ThusP(π) = π). SetQ(π) =
φ(π). Sinceφ(·) is increasing it suffices to considerr(·) of the formrπ(x) = Jx< πK. Hence

β(α) = max{φ(π) : 0≤ π ≤ 1, π ≤ α}, α ∈ [0,1].

The maximum will always be obtained forπ = α and thusβ(α) = φ(α) for α ∈ [0,1]. Finally, a
pair of distributions onX can be constructed by embedding the connected componentC ⊂ X into
X′. Chooseg: C→ X′ such thatg is invertible. Such ag always exists sinceC is connected. Then
g−1 induces distributionsP′ andQ′ onC and thus onX by subsethood.

A.9 Proof of Corollary 24

Proof Choose aψ satisfying the conditions and substitute into (43). This gives a corresponding
φ(·). We know from the preceding lemma that there existP andQ such thatβ(·,P,Q) = φ(·) which
corresponds toL(·,P,Q). Thus it remains to show that the functionφ defined by

φ(α) = inf
π∈(0,1]

1
π
((1−π)α+π−ψ(π))

is concave and satisfiesφ(1) = 1. Observe thatβ(1) = infπ∈(0,1]
1−ψ(π)

π . Now by the upper bound on

ψ, we have1−ψ(π)
π ≥ 1−1+π

π = 1
π ≥ 1. But limπ→1

1−ψ(π)
π = 1 and thusβ(1) = 1. Finally note that

β(α) = inf
π∈(0,1]

(
1−π

π

)

α+(1−ψ(π)).

This is the lower envelope of a parameterized (byπ) family of affine functions (inα) and is thus
concave.

A.10 Proof of Lemma 26

Proof From Theorem 14 we know thatLc(η) = min{(1−η)c,(1−c)η} and note that(1−η)c≤
(1−c)η ⇐⇒ c≤ η. Then, by the definition ofLc and the identity 1− JpK = J¬pK we have

Bc(η, η̂) = (1−η)cJη̂ ≥ cK+(1−c)ηJη̂< cK−min{(1−η)c,(1−c)η}
= (1−η)cJη̂ ≥ cK+(1−c)ηJη̂< cK− (1−η)cJη ≥ cK− (1−c)ηJη< cK

= (1−η)c(Jη̂ ≥ cK− Jη ≥ cK)+(1−c)η(Jη̂< cK− Jη< cK).

Note thatJη̂ ≥ cK− Jη ≥ cK is either 1 or -1 depending on whetherη̂ ≥ c> η or η̂ < c≤ η and is
zero otherwise. Similarly,Jη̂< cK− Jη< cK is 1 whenη̂< c≤ η, is -1 whenη̂ ≥ c> η and is zero

782



INFORMATION, DIVERGENCE AND RISK

otherwise. This means

Bc(η, η̂) =

{

(1−η)c− (1−c)η, η̂ ≥ c> η
−(1−η)c+(1−c)η, η ≥ c> η̂

=

{

c−η, η̂ ≥ c> η
η−c, η ≥ c> η̂

= |η−c|Jmin{η, η̂} ≤ c<max{η, η̂}K

as required.

A.11 Proof of Theorem 33

Proof Let C := (sgnR+1)/2⊆ {0,1}X and so sgnR= 2C−1. Then

L
0−1
C

(π,P,Q) = inf
r∈C

E(X,Y)∼Pℓ
0−1(r(X),Y)

= inf
r∈C

(
πEX∼Pℓ

0−1(r(X),0)+(1−π)EX∼Qℓ
0−1(r(X),1)

)

= inf
r∈C

(πEX∼PJr(X) = 1K+(1−π)EX∼QJr(X) = 0K)

= inf
r∈C

(πEPr +(1−π)EQ(1− r))

since Ranr = {0,1}⇒ EX∼PJr(X) = 1K = EX∼Pr(X) andEX∼QJr(X) = 0K = EX∼Q(1− r(X)). Let
ρ = 2r −1∈ 2C−1. Thusr = ρ+1

2 . Hence

L
0−1
C

(π,P,Q) = inf
ρ∈2C−1

(

πEP

(
ρ+1

2

)

− (1−π)EQ

(

1− ρ+1
2

))

=
1
2

inf
ρ∈2C−1

(πEP(ρ+1)+(1−π)EQ(1−ρ))

=
1
2

inf
ρ∈2C−1

(πEPρ+(1−π)EQ(−ρ)+π+(1−π))

=
1
2
+

1
2

inf
ρ∈2C−1

(πEPρ− (1−π)EQρ)

=
1
2
− 1

2
sup

ρ∈2C−1
(πEP(−ρ)− (1−π)EQ(−ρ)).

SinceR is symmetric about zero, sgn(R) = 2C− 1, C ⊆ {0,1}X is symmetric about12; that is,
ρ ∈ C⇒ (1−ρ) ∈ C. Thus

L
0−1
C

(π,P,Q) =
1
2
− 1

2
sup

ρ∈2C−1
(πEPρ− (1−π)EQρ)

=
1
2
− 1

4
V2C−1,π(P,Q)

=
1
2
− 1

4
VsgnR,π(P,Q). (70)
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Since by assumption sgnR ⊆ R, the supremum in (63) will be±1-valued everywhere. Thus
VsgnR,π(P,Q) =VR,π(P,Q). Combining this fact with (70) leads to (64).

Finally observe that by replacing inf and sup by argmin and argmax the finalpart of the theorem
is apparent.

A.12 Pinsker Theorems

Proof (Theorem 30)Given a binary experiment(P,Q) denote the corresponding statistical infor-
mation as

φ(π) = φ(P,Q)(π) := ∆L0−1(π,P,Q) = π∧ (1−π)−ψ(P,Q)(π),

whereψ(P,Q)(π) = ψ(π) = L
0−1(π,P,Q). We know thatψ is non-negative and concave and satisfies

ψ(π)≤ π∧ (1−π) and thusψ(0) = ψ(1) = 0.
Since

I f (P,Q) =
∫ 1

0
φ(π)γ f (π)dπ, (71)

I f (P,Q) is minimized by minimizingφ(P,Q) over all(P,Q) such that

φ(πi) = φi = πi ∧ (1−πi)−ψ(P,Q)(πi).

Let ψi := ψ(πi) =
1
2 − 1

4Vπi (P,Q). The problem becomes:

Given(πi ,ψi)
n
i=1 find the maximalψ : [0,1]→ [0, 1

2] such that (72)

ψ(πi) = ψi , i = 0, . . . ,n+1, (73)

ψ(π)≤ π∧ (1−π), π ∈ [0,1], (74)

ψ is concave. (75)

This will tell us the optimalφ to use since optimising overψ is equivalent to optimizing over
L(·,P,Q). Under the additional assumption onX, Corollary 24 implies that for anyψ satisfying
(73), (74) and (75) there existsP,Q such thatL(·,P,Q) = ψ(·).

Let Ψ be the set of piecewise linear concave functions on[0,1] havingn+1 segments such that
ψ ∈ Ψ ⇒ ψ satisfies (73) and (74). We now show that in order to solve (72) it suffices to consider
ψ ∈ Ψ.

If g is a concave function onR, then

ðg(x) := {s∈ R : g(y)≤ g(x)+ 〈s,y−x〉, y∈ R}

denote thesup-differentialof g atx. (This is the obvious analogue of thesub-differential for convex
functions Rockafellar, 1970.) Supposeψ̃ is a general concave function satisfying (73) and (74). For
i = 1, . . . ,n, let

Gψ̃
i :=

{

[0,1] ∋ gψ̃
i : πi 7→ ψi ∈ R is linear and ∂

∂πgψ̃
i (π)

∣
∣
∣
π=πi

∈ ðψ̃(πi)

}

.

Observe that by concavity, for all concaveψ̃ satisfying (73) and (74), for allg∈ ⋃n
i=1Gψ̃

i , g(π) ≥
ψ(π), π ∈ [0,1].
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Figure 8: Illustration of construction of optimalψ(π) = L(π,P,Q). The optimalψ is piecewise
linear such thatψ(πi) = ψi , i = 0, . . . ,n+1.

Thus given any such̃ψ, one can always construct

ψ∗(π) = min(gψ̃
1 (π), . . . ,g

ψ̃
n (π)) (76)

such thatψ∗ is concave, satisfies (73) andψ∗(π)≥ ψ̃(π), for all π ∈ [0,1]. It remains to take account
of (74). That is trivially done by setting

ψ(π) = min(ψ∗(π),π∧ (1−π)) (77)

which remains concave and piecewise linear (although with potentially one additional linear seg-
ment). Finally, the pointwise smallest concaveψ satisfying (73) and (74) is the piecewise linear
function connecting the points(0,0),(π1,ψ1),(π2,ψ2), . . . ,(πm,ψm),(1,0).

Let g: [0,1]→ [0, 1
2] be this function which can be written explicitly as

g(π) =
(

ψi +
(ψi+1−ψ)(π−πi)

πi+1−πi

)

· Jπ ∈ [πi ,πi+1]K, i = 0, . . . ,n,

where we have definedπ0 := 0, ψ0 := 0, πn+1 := 1 andψn+1 := 0.
We now explicitly parameterize this family of functions. Letpi : [0,1] → R denote the affine

segment the graph of which passes through(πi ,ψi), i = 0, . . . ,n+1. Write pi(π) = aiπ+bi . We
know thatpi(πi) = ψi and thus

bi = ψi −aiπi , i = 0, . . . ,n+1.
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In order to determine the constraints onai , sinceg is concave and minorizesψ, it suffices to only
consider(πi−1,g(πi−1)) and(πi+1,g(πi+1)) for i = 1, . . . ,n. We have (fori = 1, . . . ,n)

pi(πi−1) ≥ g(πi−1)

⇒ aiπi−1+bi ≥ ψi−1

⇒ aiπi−1+ψi −aiπi ≥ ψi−1

⇒ ai (πi−1−πi)
︸ ︷︷ ︸

<0

≥ ψi−1−ψi

⇒ ai ≤ ψi−1−ψi

πi−1−πi
.

Similarly we have (fori = 1, . . . ,n)

pi(πi+1) ≥ g(πi+1)

⇒ aiπi+1+bi ≥ ψi+1

⇒ aiπi+1+ψi −aiπi ≥ ψi+1

⇒ ai (πi+1−πi)
︸ ︷︷ ︸

>0

≥ ψi+1−ψi

⇒ ai ≥ ψi+1−ψi

πi+1−πi
.

We now determine the points at whichψ defined by (76) and (77) change slope. That occurs at the
pointsπ when

pi(π) = pi+1(π)
⇒ aiπ+ψi −aiπi = ai+1π+ψi+1−ai+1πi+1

⇒ (ai+1−ai)π = ψi −ψi+1+ai+1πi+1−aiπi

⇒ π =
ψi −ψi+1+ai+1πi+1

ai+1−ai

=: π̃i

for i = 0, . . . ,n. Thus
ψ(π) = pi(π), π ∈ [π̃i−1, π̃i ], i = 1, . . . ,n.

Let a= (a1, . . . ,an). We explicitly denote the dependence ofψ ona by writing ψa. Let

φa(π) := π∧ (1−π)−ψa(π)
= αa,iπ+βa,i , π ∈ [π̄i−1, π̄i ], i = 1, . . . ,n+1,

wherea∈ An (see (50)),̄πi , αa,i andβa,i are defined by (53), (54) and (55) respectively. The extra
segment induced at indexj (see (52)) is needed sinceπ 7→ π∧ (1−π) has a slope change atπ = 1

2.
Thus in general,φa is piecewise linear withn+ 2 segments (recalli ranges from 0 ton+ 2); if
π̃k+1 =

1
2 for somek∈ {1, . . . ,n}, then there will be onlyn+1 non-trivial segments.

Thus {

π 7→
n

∑
i=0

φa(π) · Jπ ∈ [π̄i , π̄i+1]K : a∈ An

}
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Figure 9: The optimisation problem whenn= 1. Givenψ1, there are many risk curves consistent
with it. The optimisation problem involves finding the piecewise linear concave risk curve
ψ ∈ Ψ and the correspondingφ = π∧ (1−π) that maximisesI f . L andU are defined in
the text.

is the set ofφ consistent with the constraints andAn is defined in (50). Thus substituting into (71),
interchanging the order of summation and integration and optimizing we have shown (56). The
tightness has already been argued: under the additional assumption onX, since there is no slop
in the argument above since everyφ satisfying the constraints is the Bayes risk function for some
(P,Q).

Proof (Theorem 31)In this casen= 1 and the optimalψ function will be piecewise linear, concave,
and its graph will pass through(π1,ψ1). Thus the optimalφ will be of the form

φ(π) =







0, π ∈ [0,L]∪ [U,1]
π− (aπ+b), π ∈ [L, 1

2]

(1−π)− (aπ+b), π ∈ [1
2,U ].

whereaπ1+b=ψ1 ⇒ b=ψ1−aπ1 anda∈ [−2ψ1,2ψ1] (see Figure 9). For variational divergence,
π1 =

1
2 and thus

ψ1 = π1∧ (1−π1)−
V
4
=

1
2
− V

4
(78)
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and soφ1 =V/4. We can thus determineL andU :

aL+b = L

⇒ aL+ψ1−aπ1 = L

⇒ L =
aπ1−ψ1

a−1
.

Similarly aU+b= 1−U ⇒U = 1−ψ1+aπ1
a+1 and thus

I f (P,Q)≥ min
a∈[−2ψ1,2ψ1]

1
2∫

aπ1−ψ1
a−1

[(1−a)π−ψ1+aπ1]γ f (π)dπ+

1−ψ1+aπ1
a+1∫

1
2

[(−a−1)π−ψ1+aπ1+1]γ f (π)dπ.

(79)
If γ f is symmetric aboutπ = 1

2 (so by Corollary 13I f is symmetric) and convex andπ1 =
1
2, then

the optimala= 0. Thus in that case,

I f (P,Q) ≥ 2
∫ 1

2

ψ1

(π−ψ1)γ f (π)dπ

= 2
[
(1

2 −ψ1)Γ f (
1
2)+ Γ̄ f (ψ1)− Γ̄ f (

1
2)
]

= 2
[

V
4 Γ f (

1
2)+ Γ̄ f

(
1
2 − V

4

)
− Γ̄ f (

1
2)
]
. (80)

Appendix B. Examples of Generalised Pinsker Inequality

Combining the above with (78) leads to a range of Pinsker style bounds for symmetricI f :

Jeffrey’s Divergence J(P,Q) = KL(P,Q) +KL(Q,P). Thus γ(π) = 1
π2(1−π) +

1
π(1−π)2 = 1

π2(1−π)2 .

(As a check,f (t) = (t −1) ln(t), f ′′(t) = t+1
t2 and soγ f (π) = 1

π3 f ′
(

1−π
π
)
= 1

π2(1−π)2 .) Thus

J(P,Q) ≥ 2
∫ 1/2

ψ1

(π−ψ1)

π2(1−π)2dπ

= (4ψ1−2)(ln(ψ1)− ln(1−ψ1)).

Substitutingψ1 =
1
2 − V

4 gives

J(P,Q)≥V ln

(
2+V
2−V

)

.

Observe that the above bound behaves likeV2 for smallV, andV ln
(

2+V
2−V

)
≥V2 for V ∈ [0,2].

Using the traditional Pinkser inequality (KL(P,Q)≥V2/2) we have

J(P,Q) = KL(P,Q)+KL(Q,P)

≥ V2

2
+

V2

2
= V2
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Jensen-Shannon DivergenceHere f (t) = t
2 ln t− (t+1)

2 ln(t+1)+ ln2 and thus the weight function
γ f (π) = 1

π3 f ′′
(

1−π
π
)
= 1

2π(1−π) . Thus

JS(P,Q) = 2
∫ 1

2

ψ1

π−ψ1

2π(1−π)
dπ

= ln(1−ψ1)−ψ1 ln(1−ψ1)+ψ1 lnψ1+ ln(2).

Substitutingψ1 =
1
2 − V

4 leads to

JS(P,Q)≥
(

1
2
− V

4

)

ln(2−V)+

(
1
2
+

V
4

)

ln(2+V)− ln(2).

Hellinger Divergence Here f (t) = (
√

t −1)2. Consequently the weight function

γ f (π) =
1
π3 f ′′

(
1−π

π

)

=
1
π3

1

2((1−π)/π)3/2
=

1

2[π(1−π)]3/2

and thus

h2(P,Q) ≥ 2
∫ 1

2

ψ1

π−ψ1

2[π(1−π)]3/2
dπ

=
4
√ψ1(ψ1−1)+2

√
1−ψ1√

1−ψ1

=
4
√

1
2 − V

4

(
1
2 − V

4 −1
)
+2
√

1− 1
2 +

V
4

√

1− 1
2 +

V
4

= 2− (2+V)
√

2−V√
2+V

= 2−
√

4−V2.

For smallV, 2−
√

4−V2 ≈V2/4.

Arithmetic-Geometric Mean Divergence Here f (t) = t+1
2 ln

(
t+1
2
√

t

)

. Thus f ′′(t) = t2+1
4t2(t+1) and

henceγ f (π) = 1
π3 f ′′

(
1−π

π
)
= γ f (π) = 2π2−2π+1

π2(π−1)2 and thus

T(P,Q) ≥ 2
∫ 1

2

ψ1

(π−ψ1)
2π2−2π+1
π2(π−1)2 dπ

= −1
2

ln(1−ψ)− 1
2

ln(ψ)− ln(2).

Substitutingψ1 =
1
2 − V

4 gives

T(P,Q) ≥ −1
2

ln

(
1
2
+

V
4

)

− 1
2

ln

(
1
2
− V

4

)

− ln(2)

= ln

(
4√

4−V2

)

− ln(2).
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Symmetric χ2-Divergence HereΨ(P,Q) = χ2(P,Q)+χ2(Q,P) and thus (see below)γ f (π) = 2
π3 +

2
(1−π)3 . (As a check, fromf (t) = (t−1)2(t+1)

t we have f ′′(t) = 2(t3+1)
t3 and thusγ f (π) =

1
π3 f ′′

(
1−π

π
)

gives the same result.)

Ψ(P,Q) ≥ 2
∫ 1

2

ψ1

(π−ψ1)

(
2
π3 +

2
(1−π)3

)

dπ

=
2(1+4ψ2

1−4ψ1)

ψ1(ψ1−1)
.

Substitutingψ1 =
1
2 − V

4 givesΨ(P,Q)≥ 8V2

4−V2 .

When γ f is not symmetric, one needs to use (79) instead of the simpler (80). We consider two
special cases.

χ2-Divergence Here f (t) = (t−1)2 and sof ′′(t) = 2 and henceγ(π) = f ′′
(

1−π
π
)
/π3 = 2

π3 which is
not symmetric. Upon substituting 2/π3 for γ(π) in (79) and evaluating the integrals we obtain

χ2(P,Q)≥ 2 min
a∈[−2ψ1,2ψ1]

1+4ψ2
1−4ψ1

2ψ1−a
− 1+4ψ2

1−4ψ1

2ψ1−a−2
︸ ︷︷ ︸

=:J(a,ψ1)

.

One can then solve∂∂aJ(a,ψ1) = 0 for a and one obtainsa∗ = 2ψ1−1. Nowa∗ >−2ψ1 only
if ψ1 >

1
4. One can check that whenψ1 ≤ 1

4, thena 7→ J(a,ψ1) is monotonically increasing
for a ∈ [−2ψ1,2ψ1] and hence the minimum occurs ata∗ = −2ψ1. Thus the value ofa
minimisingJ(a,ψ1) is

a∗ = Jψ1 > 1/4K(2ψ1−1)+ Jψ1 ≤ 1/4K(−2ψ1).

Substituting the optimal value ofa∗ into J(a,ψ1) we obtain

J(a∗,ψ1) = Jψ1>1/4K(2+8ψ2
1−8ψ1)+ Jψ1≤1/4K

(
1+4ψ2

1−4ψ
4ψ

− 1+4ψ2
1−4ψ

4ψ1−2

)

.

Substitutingψ1 =
1
2 − V

4 and observing thatV < 1⇒ ψ1 > 1/4 we obtain

χ2(P,Q)≥ JV < 1KV2+ JV ≥ 1K
V

(2−V)
.

Observe that the bound diverges to∞ asV → 2.

Kullback-Leibler Divergence In this casef (t)= t ln t and thusf ′′(t)= 1/t and the weight function
γ f (π) = 1

π3 f ′′
(

1−π
π
)
= 1

π2(1−π) which is clearly not symmetric. From (79) we obtain

KL(P,Q)≥ min
[−2ψ1,2ψ1]

(

1− a
2
−ψ1

)

ln

(
a+2ψ1−2

a−2ψ1

)

+
(a

2
+ψ1

)

ln

(
a+2ψ1

a−2ψ1+2

)

.

Substitutingψ1 =
1
2 − V

4 gives KL(P,Q)≥ mina∈[V−2
2 , 2−V

2 ] δa(V), where

δa(V) =

(
V +2−2a

4

)

ln

(
2a−2−V
2a−2+V

)

+

(
2a+2−V

4

)

ln

(
2a+2−V
2a+2+V

)

.

Setβ := 2a and we have (59).
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Appendix C. Background and Prior Work

Specific prior results are referred to in the body of the paper. We now briefly indicate the broad
sweep of prior work along the lines of the present paper.

The most important precursors and inspiration are the three nearly simultaneous25 works by
Buja et al. (2005), Liese and Vajda (2006) and Nguyen et al. (2005).The work by Dawid (2007)
is also very similar in spirit to that presented here. A crucial difference is that he relies on a para-
metric viewpoint, and can use the machinery of Riemannian geometry. Zhang (2004a); Zhang and
Matsuzoe (2009) have developed a number of connections between convex functions, the Bregman
divergences they induce, and Riemannian geometry. All of the results in thepresent paper are, in
contrast, “coordinate-free.” Themotivationof the present work is closely aligned with that of Hand
(1994) whose avowed aim was to “stimulate debate about the need to formulateresearch questions
sufficiently precisely that they may be unambiguously and correctly matched with statistical tech-
niques.” Hand and Vinciotti (2003) develop some refined machine learningtasks that can be viewed
as weighted problems (in the sense of the weight functions we make extensive use of in this paper);
confer Buja et al. (2005).

The paper presents a unification of sorts. This, in itself, is hardly new in machine learning.
There are different approaches to unification. One distinction is betweenMonisticandPluralistic
approaches (James, 1909; Turkle and Papert, 1992); this corresponds to the hedgehog/fox distinction
of Berlin (1953).

Monisticapproaches aim for a single all encompassing theory.26 A problem with most monistic
approaches is that you have to accept it “all or nothing.” There are many unifying approaches
developed in Statistics and Machine learning that have left little trace; For example, Nelson’s use
of non-standard analysis (Nelson, 1987; Lutz and Musio, 2005) as thefoundations for probability;
Topsøe’s (2006), Shafer and Vovk’s (2001) game theory as a basis, and Le Cam’s use of Riesz
measures on a vector lattice to replace the traditional sample space (LeCam, 1964).

Pluralistic approaches are closer to what is proposed here (where, instead of searching for a
single master representation, we study relationships and translations between a range of different
representations). It resonates with Kiefer’s assertion that “Statistics is too complex to be codified in
terms of a simple prescription that is a panacea for all settings, and . . . one must look as carefully
as possible at a variety of possible procedures. . . ” (Kiefer, 1977).Examples of existing pluralistic
attempts include limited problem catalogs such as for different notions ofcost(Turney, 2000) or a
restricted set of problems (Raudys, 2001).

The decision theoretic approach (DeGroot, 1970; Berger, 1985; Kiefer, 1987) due to Wald
(1950, 1949) is central to the present paper. The idea of seekingprimitives for statistics dates
back at least to the elementary experiments of Birnbaum (1961). The relationship between risks
and Bregman divergences is studied by Grünwald and Dawid (2004) and Buja et al. (2005).

25. Nguyen et al. (2005) is dated 13 October, 2005, Liese and Vajda (2006) was received on 26 October 2005 and Buja
et al. (2005) is dated 3 November 2005. Shen’s PhD thesis (Shen, 2005), which contains most of the material in Buja
et al. (2005), is dated 16 October 2005. The paper by Nguyen et al. (2005) has now appeared as Nguyen et al. (2009).

26. Monistic approaches can be categorised into at least four distinct categories. They are briefly summarised in Ap-
pendix C.1.
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There are numerous possible definitions of information. Many of them are sterile; Csisźar
(1978) and Acźel (1984) provide a critical analysis. Floridi (2004) discusses pluralistic versus
monistic approach: is there one single definition of information, or should there be many different
definitions depending on the particular problem? Our view, like Shannon (1948), is that there are
many types. Shannon information was developed with communications problems inmind—there is
no reason why it is the only notion of information that makes sense for learning and inference.

There are many known relationships between risks and divergences between distributions many
of which we explicitly discuss later in the paper. General results include those due toÖsterreicher
(2003),Österreicher and Vajda (1993), Gutenbrunner (1990), Liese and Vajda (2006), Goel and De-
Groot (1979) and Golic (1987). Particular relations between risk in binary classification problems
and f -divergences are not new (Poor and Thomas, 1977; Kailath, 1967).Some more general re-
sults that relate the choice of loss function in a binary learning problem to particular f -divergences
between the class-conditional distributions have been (re)-discovered(Eguchi and Copas, 2001;
Nguyen et al., 2005;̈Osterreicher and Vajda, 1993). Known results relating different distances be-
tween probability distributions are summarised by Gibbs and Su (2002).

The idea of solving a machine learning problem by using a solution to some otherlearning
problem is now called amachine learning reduction(Beygelzimer et al., 2008, 2005) The idea is
not new. Equivalences are a natural structuring device and were explicit in Ashby’s foundational
work on cybernetics (Ashby, 1956), a precursor to Machine Learning. Ben-Bassat (1978) studied
the concept ofε-equivalence, Conover and Iman (1981) showed how rank tests can be derived
by applying nonparametric tests to order statistics, and Goldman et al. (1989)and Bartlett et al.
(1996) used reductions for theoretical purposes. However recentlythere has been a large number
of explicit constructions of reductions (Zadrozny et al., 2003; Langford, 2006; Beygelzimer et al.,
2005; Langford and Beygelzimer, 2005; Langford and Zadrozny, 2005; Langford et al., 2006; Li and
Lin, 2007; Beygelzimer et al., 2007; Langford, 2007; Scott and Davenport, 2007),or development
of results which although not explicitly called reductions are effectively so(Brown et al., 2002;
Brown and Low, 1996; Brown and Zhao, 2003; Chaudhuri and Loh,2002; Cossock and Zhang,
2006; Cuevas and Fraiman, 1997; Domingos, 1999; Steinwart et al., 2005; Tasche, 2001). Two key
differences between the recent machine learning reductions literature and the present paper is that
our relationships between problems are (usually) exact (instead of approximate) and we work with
the true underlying distributions (rather than finite sample distributions).

The theory ofComparison of Experiments, developed by Blackwell (1951, 1953), and signif-
icantly extended by LeCam (1964, 1986) is also related to the overall goalset out here. It has
been used to define notions of isomorphism for statistical problems (Morse and Sacksteder, 1966;
Sacksteder, 1967) and is the subject of three books (Strasser, 1985; Torgersen, 1991; Heyer, 1982)
and a recent review (Goel and Ginebra, 2003). The key differencewith the present work is that the
comparison of experiments theory seeks results that hold forall loss functions rather than for a par-
ticular one; with a few exceptions (Torgersen, 1991, Chapter 10). Blackwell related comparisons to
sufficient statistics and characterised comparisons. LeCam (1964) quantified comparisons in terms
of the degree to which one experiment is “better than” another (the deficiency distance). There are
very few known examples of deficiency distance (Carter, 2002). Furthermore LeCam’s theory is
formulated in a particularly abstract way to make its theorems elegant (Yang and Le Cam, 1999).
Renowned probabilists concur that its arcane formulation has made it inaccessible (van der Vaart,
2002; Pollard, 2000; Strasser, 2000). Consequently the subject hashad relatively limited impact.
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Graphical representations have been used for a long while to better understand binary experi-
ments. In the main body of the paper we develop connections between Receiver Operating Charac-
teristic (ROC) curves, (Fawcett, 2006, 2004; Flach, 2003; Flach and Wu, 2005; Maxion and Roberts,
2004) the Area Under ROC Curve (AUC), (Cortes and Mohri, 2004; Hand, 2008; Hand and Till,
2001; Hanley and McNeil, 1982) and Cost Curves (Drummond and Holte, 2006; Torgersen, 1991).
These can be seen asrepresentationsof Binary Experiments.

C.1 Summary of Previous “Monistic” Approaches to Unification

There are are range of different approaches to unifying machine learning from a monistic perspec-
tive:

Low level data interchange:There is a small amount of work on developing standards for inter-
changing data sets (Grossman et al., 2002; Carey et al., 2007; Wettschereck and Muller, 2001)—this
is analogous to PDDL (Ghallab et al., 1998). There are also some limited higherlevel attempts such
as ontologies (Soldatova and King, 2006) and general frameworks (Fayyad et al., 1996).

Modelling frameworks:To solvea machine learning problem, one needs models. There is a
rich literature on graphical models (Jordan, 1999), factor graphs (Kschischang et al., 2001) and
Markov logic networks (Domingos and Richardson, 2004; Richardson and Domingos, 2006) which
have allowed the unification of sets of problems (Worthen and Stark, 2001), with a focus on the
modelling and computational techniques for particular problems.

Comparison of frameworks:There are several philosophical frameworks/approaches to design-
ing inference and learning algorithms. Barnett (1999), Bayarri and Berger (2004) and Berger (2003)
compare and contrast these. They are effectively comparing different monistic frameworks, not
comparing problems.

Overarching frameworks:These include frameworks such as Bayesian (Robert, 1994), informa-
tion theoretic (Jenssen, 2005b; Harremoës, 1993), game-theoretic (Vovk et al., 2005; Grünwald and
Dawid, 2004), MDL (Gr̈unwald, 2007; Rissanen, 2007), regularised distance minimisation (Bor-
wein and Lewis, 1991; Altun and Smola, 2006; Broniatowski, 2004), and more narrowly focussed
“unifying frameworks” such as information geometry (Dawid, 2007; Eguchi, 2005), exponential
families (Canu and Smola, 2006) and the information bottleneck (Tishby et al., 2000).

Appendix D. Examples and Prior Work on Surrogate Regret Bounds

Surrogate regret bounds have garnered interest in the machine learning community (Zhang, 2004b;
Bartlett et al., 2006; Steinwart, 2007; Steinwart and Christmann, 2008). Steinwart and Christmann
(2008, Chapter 3) have presented a good summary of recent work.

All of the recent work has been in terms ofmargin lossesof the form

Lφ(η, ĥ) = ηφ(ĥ)+(1−η)φ(−ĥ).

As Buja et al. (2005) discuss, such margin losses can not capture the richness of all possible proper
losses. Bartlett et al. (2006) prove that for anyĥ

ψ
(
L0−1(η, ĥ)−L0−1(η)

)
≤ Lφ(η, ĥ)−Lφ(η),

whereψ = ψ̃⋆⋆ is the LF biconjugate of̃ψ,

ψ̃(θ) = H−
(

1+θ
2

)

−H

(
1+θ

2

)

,
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H(η) = Lφ(η) and
H−(η) = inf

α : α(2η−1)≤0
(ηφ(α)+(1−η)φ(−α))

is the optimal conditional risk under the constraint that the sign of the argument α disagrees with
2η−1.

We will consider two examples presented by Bartlett et al. (2006) and showthat the bounds we
obtain with the above theorem match the results we obtain with Theorem 25.

Exponential Loss Consider the linkĥ = ψ(η̂) = 1
2 ln η̂

1−η̂ with corresponding inverse link̂η =
1

1+e−2ĥ
. Buja et al. (2005) showed that this link function combined with exponential margin

lossφ(γ) = e−γ results in a proper scoring rule

L(η, η̂) = η
(

1− η̂
η̂

) 1
2

+(1−η)
(

η̂
1− η̂

) 1
2

.

From (32) we obtain

w(η) =
1

2[η(1−η)] 3
2

.

(Note Buja et al., 2005 have missed the factor of1
2.) ThusW(η) = 2η−1√

η(1−η)
andW(η) =

−2
√

η(1−η). Hence we obtain

L(η) = 2
√

η(1−η) (81)

and from (46) we obtain that ifB1
2
(η, η̂) = α then

B(η, η̂)≥ 1−
√

1−4α2. (82)

Equations 81 and 82 match the results presented by Bartlett et al. (2006) upon noting that
B1

2
(η, η̂) measures the loss in terms ofℓ 1

2
and Bartlett et al. (2006) usedℓ0−1 = 2ℓ 1

2
.

Truncated Quadratic Loss Consider the margin lossφ(ĥ) = (1+ ĥ∨ 0)2 = (2η̂∨ 0)2 with link
function ĥ(η̂) = 2η̂− 1. From (32) we obtainL(η) = 4η(1−η) and from (46) the regret
boundB(η, η̂)≥ 4α2. These match the results presented by Bartlett et al. (2006) when again
it is noted we usedℓ 1

2
and they usedℓ0−1.

The above results are forc0 =
1
2. Generalisations of margin losses to the case of uneven weights are

presented by Steinwart and Christmann (2008, Section 3.5). Nevertheless, since the sameφ function
is still used for both components of the loss (albeit with unequal weights) such a scheme can still
not capture the full generality of all proper scoring rules in the manner achieved by the results in
Section 7.1.

Appendix E. History of Pinsker Inequalities

Pinsker (1964) presented the first bound relating KL(P,Q) to V(P,Q): KL ≥ V2/2 and it is now
known by his name or sometimes as the Pinsker-Csiszár-Kullback inequality since Csiszár (1967)
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presented another version and Kullback (1967) showed KL≥ V2/2+V4/36. Much later Topsøe
(2001) showed KL≥ V2/2+V4/36+V6/270. Non-polynomial bounds are due to Vajda (1970):
KL ≥ LVajda(V) := ln

(
2+V
2−V

)
− 2V

2+V and Toussaint (1978) who showed KL≥ LVajda(V)∨ (V2/2+
V4/36+V8/288).

Care needs to be taken when comparing results from the literature as different definitions for the
divergences exist. For example Gibbs and Su (2002) use a definition ofV that differs by a factor of
2 from ours. There are some isolated bounds relatingV to some other divergences, analogous to the
classical Pinkser bound; Kumar and Chhina (2005) have presented a summary as well as new bounds
for a wide range ofsymmetric f-divergences by making assumptions on the likelihood ratio:r ≤
p(x)/q(x)≤ R< ∞ for all x∈X. This line of reasoning has also been developed by Dragomir et al.
(2001) and Taneja (2005a,b). Topsøe (2000) has presented some infinite series representations for
capacitory discrimination in terms of triangular discrimination which lead to inequalities between
those two divergences. Liese and Miescke (2008, p.48) give the inequality V ≤ h

√
4−h2 (which

seems to be originally due to LeCam, 1986) which when rearranged corresponds exactly to the
bound forh2 in theorem 31. Withers (1999) has also presented some inequalities betweenother
(particular) pairs of divergences; his reasoning is also in terms of infiniteseries expansions.

Unterreiter et al. (2000) considered the case ofn = 1 but arbitraryI f (that is they bound an
arbitrary f -divergence in terms of the variational divergence). Their argument issimilar to the
geometric proof of Theorem 30. They do not compute any of the explicit bounds in theorem 31
except they state (page 243)χ2(P,Q)≥V2 which is looser than (58).

Gilardoni (2006a) showed (via an intricate argument) that iff ′′′(1) exists, thenI f ≥ f ′′(1)V2

2 . He
also showed some fourth order inequalities of the formI f ≥ c2, fV2+ c4, fV4 where the constants
depend on the behaviour off at 1 in a complex way. Gilardoni (2006b,c) presented a completely
different approach which obtains many of the results of theorem 31.27 Gilardoni (2006c) improved
Vajda’s bound slightly to KL(P,Q)≥ ln 2

2−V − 2−V
2 ln 2+V

2 .
Gilardoni (2006b,c) presented a general tight lower bound forI f (P,Q) in terms ofV(P,Q) which

is difficult to evaluate explicitly in general:

I f ≥
V
2

(
f [g−1

R (k(1/V))]

g−1
R (k(1/V))−1

+
f [g−1

L (k(1/V))]

1−g−1
L (k(1/V))

)

,

wherek−1(t) = 1
2

(
1

1−g−1
L (t)

+ 1
g−1

R (t)−1

)

, g(u) = (u−1) f ′(u)− f (u), g−1
R [g(u)] = u for u ≥ 1 and

g−1
L [g(u)] = u for u≤ 1. He presented a new parametric form forI f = KL in terms of Lambert’sW

function. In general, the result is analogous to that of Fedotov et al. (2003) in that it is in a parametric
form which, if one wishes to evaluate for a particularV, one needs to do a one dimensional numerical
search—as complex as (59). However, whenf is such thatI f is symmetric, this simplifies to the
elegant formI f ≥ 2−V

2 f
(

2+V
2−V

)
− f ′(1)V. He presented explicit special cases forh2, J, ∆ and I

identical to the results in Theorem 31. It is not apparent to us how the approach of Gilardoni
(2006b,c) could be extended to more general situations such as that in Theorem 30 (i.e.,n> 1).

Finally Bolley and Villani (2005) have consideredweightedversions of the Pinsker inequalities
(bounds for a weighted generalisation of Variational divergence) in terms of KL-divergence that are
related to transportation inequalities.

27. We were unaware of these two papers until completing the results presented in the main paper.
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Appendix F. Variational Representation ofI f and its Generalizations

The variational representation of the Variational divergence (62) suggests the question of whether
there is a variational representation for a generalf -divergence. This has been considered previously.
We briefly summarise the approach, and then explore some (new) implications of the representation.

One can obtain a variational representation forI f by substituting a variational representation
for f into the definition ofI f (Keziou, 2003a,b; Broniatowski, 2004; Broniatowski and Keziou,
2009). Letp andq denote the densities corresponding toP andQ and assume for now they ex-
ist. Recall from Section 2.2 above, that the Legendre-Fenchel conjugate of f is given by f ⋆(s) =
supu∈Domf us− f (u). In general Ranf ⋆ = R⋆ := R∪{+∞}. Since f (u) = supρ∈Ruρ− f ⋆(ρ), we
can write

I f (P,Q) =
∫
X

q(x)sup
ρ∈R

(

ρ
p(x)
q(x)

− f ⋆(ρ)
)

dx

= sup
ρ∈RX

∫
X

ρ(x)p(x)− f ⋆(ρ(x))q(x)dx.

= sup
ρ∈RX

(EPρ−EQ f ⋆(ρ)). (83)

We make this concrete by considering the variational divergence. The correspondingf is given by
f (t) = |t −1| and (adopting the convention thatJfalseK is a “very strong zero” soJfalseK ·∞ = 0;
confer Knuth, 1992)

f ⋆(x) = Jx 6∈ [−1,1]K∞+ Jx∈ [−1,1]Kx.

Since the supremum in (83) will not be attained if the second term is infinite, onecan restrict the
supremum to be overF = {ρ ∈ RX : ‖ρ‖∞ ≤ 1}. Thus

V(P,Q) = sup
ρ : ‖ρ‖∞≤1

(EPρ−EQρ) = sup
ρ∈{−1,1}X

(EPρ−EQρ)

= sup
ρ∈{0,2}X

(EPρ−EQρ) = 2 sup
ρ∈{0,1}X

(EPρ−EQρ)

= 2sup
A

|P(A)−Q(A)|,

since the supremum will be attained for functionsρ taking on values only in{−1,1} and the re-
maining steps are simply a shift and rescaling (to{0,2} by adding 1, and then to{0,1}).

The representation (83) suggests the generalisation

I f ,F(P,Q) := sup
ρ∈F⊆RX

∫
X

ρ(x)p(x)− f ⋆(ρ(x))q(x)dx

= sup
ρ∈F

(EPρ−EQ f ⋆(ρ)).

Observing this is not symmetric inp andq suggests a further generalisation:

I f ,g,F(P,Q) := sup
ρ∈F⊆RX

∫
X

−g⋆(ρ(x))p(x)− f ⋆(ρ(x))q(x)dx

= sup
ρ∈F

(−EPg⋆(ρ)−EQ f ⋆(ρ)).
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Hereg⋆ is theR⋆-valued LF conjugate of a convex functiong. SetI f ,g := I f ,g,RX .
An alternative generalisation ofI f is

Ĩ f ,g,F(P,Q) := sup
ρ∈F

(EPg⋆(ρ)−EQ f ⋆(ρ))

which is identical to (84) except for removal of the minus sign precedingg⋆. SetĨ f ,g := Ĩ f ,g,RX . If
ρ ∈ F are such that‖ρ‖∞ is unbounded, then in generalĨ f ,g,F(P,Q) will be infinite. Properties of the
alternative definition relate to the extended infimal convolution between two convex functions.

Definition 35 Suppose f,g: R+ → R∗ are convex. The extended infimal convolution is

( f�g)(τ) := inf
x∈R+

f (x)+ τg(x/τ), τ ∈ R
+.

Note that the second term in this convolution is the perspective function (Section 2.1) applied tog,
that is,Ig(x,τ).

Theorem 36 Suppose f,g: R+ → R∗ are convex. Then

1. I f (P,Q) = I f ,RX(P,Q), Ĩ f ,id,F(P,Q) = I f ,F(P,Q), and

It 7→|t−1|,F(P,Q) = 2V
F,

1
2
(P,Q).

2. Ĩ f1,g1,F = I f2,g2,F only if f1− f2 = fa and g1−g2 = ga and f1, f2, fa,g1,g2,ga are affine.

3. I f , f ,F = Iid,id, f ⋆(F)(P,Q).

4. Ĩ f , f ,F = Ĩid,id, f ⋆(F)(P,Q) = 2Vf ⋆(F)(P,Q).

5. I f ,g = I f�g.

Proof Part 1 follows immediately from the various definitions. Since affine functionsare the only
functions that are simultaneously convex and concave,Ĩ f1,g1,F = I f2,g2,F only if f1, f2 (resp.g1,g2)
are affine and their differences are affine (since an affine offset will not changẽI). This proves part
2.

We have by change of variables

Ĩ f , f ,F(P,Q) = sup
ρ∈F

(EP f ⋆(ρ)−EQ f ⋆(ρ)) = sup
ψ∈ f ⋆(F)

(EPψ−EQψ) = Ĩid,id, f ⋆(F)(P,Q),

wheref ⋆(F) := { f ⋆◦ρ : ρ∈F}. (The same argument applies toI f , f ,F although supψ∈g⋆(F)(−EPψ−
EQψ) does not correspond to a generalised variational divergence.) This proves parts 3 and 4.

In order to prove 5 we need the following lemma.

Lemma 37 Let f : R → R and K: R×R → R be convex and bounded from below. Then the
extended infimal convolution

( f�K)(x) = inf
y∈R

f (y)+K(x,y), x∈ R

is convex in x∈ R.
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Observe that ifK(x,y) = g(x−y) for convexg, then f�K = f ⊕g, the standard infimal convolution
(Hiriart-Urruty and Lemaŕechal, 1993b). This extended infimal convolution seems little studied
with the exception owith the exception of Cepedello-Boiso (1998).
Proof Let f̃ (x,y) := f (y), x ∈ R. Clearly f̃ is convex onR×R. Let h̃(x,y) = f̃ (x,y)+K(x,y).
Hiriart-Urruty and Lemaŕechal (1993b, Proposition 2.1.1) show thath̃ is convex onR×R. Observe
that( f�K)(x) = inf{h̃(x,y) : y∈ R}, that is, themarginal function ofh̃. Since by constructioñh is
bounded from below, using the result of Hiriart-Urruty and Lemaréchal (1993b, p.169) proves the
result.

Corollary 38 For any convex f and g, f�g is convex.

Proof Observe that( f�g)(x) = infy∈R+ f (y)+xg(y/x) = infy∈R+ f (y)+ Ig(x,y), x∈ R+, whereIg
is the perspective function (1). Hiriart-Urruty and Lemaréchal (1993b, Proposition 2.2.1) show that
if g: Rn →R is convex then the perspectiveIg is convex onRn+1. The corollary then follows from
the lemma.

Proof (part 5 of Theorem 36)Observe that ifh(x) = tφ(x) then the LF conjugateh∗(s) = tφ(s/t).
Thus using the Fenchel duality theorem (Rockafellar, 1970) we have, using (Rockafellar and Wets,
2004, Theorem 14.60) to justify the swapping the order of the supremum and integration,

I f ,g(P,Q) = sup
ρ∈R̄X

∫
X

−g⋆(ρ(x))p(x)− f ⋆(ρ(x))q(x)dx

=
∫
X

sup
ρ∈R̄

−g⋆(ρ)p(x)− f ⋆(ρ)q(x)dx

=
∫
X

inf
ρ∈R̄

f

(
ρ

q(x)

)

+g

(
ρ

p(x)

)

dx

=
∫
X

inf
ρ∈R̄

q(x) f

(
ρ

q(x)

)

+ p(x)g

(
ρ

p(x)

)

dx

=
∫
X

i f ,g(p,q)(x)dx,

where

i f ,g(p,q)(·) := inf
ρ∈R̄

q(·) f

(
ρ

q(·)

)

+ p(·)g
(

ρ
p(·)

)

.

Let x := ρ
q ∈ R̄+. Thusρ = xqand

i f ,g(p,q) = inf
x∈R̄+

q f(x)+ pg(xq/p).

Let τ = p
q ∈ R̄+. Thus

i f ,g(p,q)(τ) = inf
x∈R+

q f(x)+ pg(x/τ)

= q

[

inf
x∈R̄+

f (x)+ τg(x/τ)
]

= q· ( f�g)(τ). (84)
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Let h := f�g. Observe from (84) thati f ,g(p,q) = qh(p/q) and thus

I f ,g(p,q) =
∫
X

q(x)h

(
p(x)
q(x)

)

dx= Ih(p,q)

if h is convex, which we know to be the case from Corollary 38.

It suggests the question: given a suitable convexf , does there always existg such thatf = g�g?
This is analogous to the question of spectral factorisation (Sayed and Kailath, 2001) for ordinary
linear convolution. We do not know the answer to this question, but have collected a few examples
in Appendix G that demonstrates it is certainly true forsome f. There does not appear to be a result
analogous to part 5 of Theorem 36 forĨ f ,g.

We have seen howf -divergences are related to integral probability metricsVF. It turns out that
the variational divergence is special in being both. Many integral probability metrics are true metrics
(Müller, 1997a,b). The onlyf -divergence that is a metric is the variational divergence. Whether
there existF such thatVF(·, ·) is not a metric but equalsI f (·, ·) for some f 6= t 7→ |t −1| (or affine
transformation thereof) is left as an open problem.28

We end with another open problem. We have seen howLF andVF are related. This begs the
question whether there is a representation of the form

I f ,F(P,Q)
?
=

∫ 1

0
∆L0−1

F
(π,P,Q)γ f (π)dπ.

Appendix G. Examples of Extended Convolution Factorisation

In this section we present three examples off which can be written asf = g�g.
If g(t) = (t − 1)2 (corresponding to Pearsonχ2 divergence),(g�g)(τ) = infx∈R+(x− 1)2 +

τ(x/τ− 1)2. Differentiating the right-hand side with respect tox, setting to zero and solving for

x gives x = 4
2(1+1/τ) . Substituting we obtain(g�g)(τ) = (τ−1)2

τ−1 which is the f for ∆(P,Q), the
triangular discrimination.

If g(t) = t ln(t), a similar straightforward calculation yields(g�g)(τ) = −2
√

τ
e .

If g(t) = (
√

t − 1)2 (corresponding to Hellinger divergence) then a similar calculation yields
(g�g)(τ)= 1

2(
√

τ−1)2 = g(τ)/2. Thus thisg plays a role analogous to a gaussian kernel in ordinary
convolution. The significance of this is unclear.

We summarise the results (and the associatedg⋆) in the following table.

g(t) (g�g)(τ) g⋆(s)

(t −1)2 (τ−1)2

τ−1
s2

4 +s

t ln t −2
√

τ
e es−1

(
√

t −1)2 1
2(
√

τ−1)2 s
1−sJs< 1K+∞Js≥ 1K

28. This has in fact been solved by Sriperumbudur et al. (2009) sincean earlier version of the present paper was published
as an ArXiV preprint.
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Whilst it is indeed straightforward to compute(g�g) giveng (although a simple closed form is
not always possible), it is far from obvious how to go from a givenf to ag such thatf = g�g.

Hiriart-Urruty and Lemaŕechal (1993a, page 69) show that forf convex onR+, g convex and
increasing onR+,

(g◦ f )⋆(s) = inf
α>0

α f ⋆( s
α)+g⋆(α) = f ⋆�g⋆.

This illuminates the difficulty of the above “factorisation problem”. It is equivalent to: given a
convex increasingf ⋆, find a convex increasingg⋆ such thatf ⋆ = g⋆ ◦g⋆.

Appendix H. Empirical Estimators of VBH,
1
2
(P,Q) and SVMs

This appendix further develops the observations made in Section 8.2 regarding the relationship be-
tween divergence and risk whenR = BH, a unit ball in a reproducing kernel Hilbert spaceH. In
contrast to the rest of the paper (which focussed on relationships involving the underlying distri-
butions), in this appendix we will consider the practical situation where thereis only an empirical
sample. We will see how the general results have interesting implications for sample based machine
learning algorithms.

If we require an empirical estimate ofVR,π(P,Q) we can replaceP andQ by empirical distribu-
tions. We will useweightedempirical distributions. Given an independent identically distributed
samplew= (w1, . . . ,wm)∈Xm theααα-weighted empirical distribution̂Pααα

w with respect tow is defined
by

dP̂ααα
w :=

m

∑
i=1

αiδ(·−wi)

whereααα = (α1, . . . ,αm), αi ≥ 0, i = 1, . . . ,m and ∑m
i=1 αi = 1. We will write Êααα

wφ := EP̂ααα
w

φ =

∑m
i=1 αiφ(wi). Thus

V2
R, 1

2
(P̂ααα

w , P̂
βββ
z ) =

1
2
‖Êααα

wφ− Ê
βββ
z‖2

H.

Suppose now thatP andQ correspond to the positive and negative class conditional distributions.
Let x := (x1, . . . ,xm) be a sample drawn fromM = πP+(1−π)Q with corresponding label vector
y = (y1, . . . ,ym). Let I := {1, . . . ,m}, I+ := {i ∈ I : yi = 1}, I− := {i ∈ I : yi = −1}. Consider a
weight vectorααα = (α1, . . . ,αm) over the whole sample. Thus

ÊPφ = ∑
i∈I+

αiφ(xi) and ÊQφ = ∑
i∈I−

αiφ(xi)

where we also require

∑
i∈I+

αi =
m+

m
and ∑

i∈I−
αi =

m−

m

and hence

∑
i∈I

αiyi =
m+−m−

m
.
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Substituting into (65) we have

2VBH,
1
2
(P̂,Q̂) =

〈
ÊPφ− ÊQφ, ÊPφ− ÊQφ

〉

=

〈

∑
i∈I+

αiφ(xi)− ∑
i∈I−

αiφ(xi), ∑
j∈I+

α jφ(x j)− ∑
j∈I−

α j

〉

=

〈

∑
i∈I

αiyiφ(xi),∑
j∈I

α jy jφ(x j)

〉

= ∑
i∈I

∑
j∈I

αiα jyiy j〈φ(xi),φ(x j)〉

= ∑
i∈I

∑
j∈I

αiα jyiy jk(xi ,x j) =: J(ααα,x). (85)

We now consider three different choices ofααα.
Uniform weighting If we setαi =

1
m, i = 1, . . . ,m, then (85) becomes

1
m2 ∑

i, j∈I

yiy jk(xi ,x j) = MMD2
b[BH,xxx

+,xxx−]

wherexxx+ := (xi)i∈I+ , xxx− := (xi)i∈I− and MMDb is the biased estimator of theMaximum Mean
Discrepancy(Gretton et al., 2008), an alternate name forVR. Observe that from theorem 34, this
case corresponds to using a Fisher linear discriminant in feature space (Devroye et al., 1996) when
it is assumed that the within-class covariance matrices are both the identity matrix.This follows by
observing that the constructed hypothesis is identical in both cases.

Pessimistic WeightingInstead of weighting each sample equally, one can optimise overααα. By
theorem 34, minimizingJ(ααα,x) overααα will maximizeL

lin and is thus the most pessimistic choice.
Explicitly, we have

min
ααα

m

∑
i=1

m

∑
i=1

αiα jyiy jk(xi ,x j) (86)

s.t. αi ≥ 0, i = 1, . . . ,m (87)
m

∑
i=1

αiyi =
m+−m−

m
(88)

m

∑
i=1

αi = 1 (89)

which can be recognized as the support vector machine (Cortes and Vapnik, 1995). The SVM uses
the sign of the “witness” (Gretton et al., 2008),x 7→ ∑m

i=1 αiyik(xi ,x) as its predictor.
Interpolation between above two casesA parameterized interpolation between the above two

cases can be constructed by the addition of the constraints

αi ≤
1

νm
, i = 1, . . . ,m, (90)

whereν ∈ (0,1] is an adjustable parameter. Observe thatν controls the sparsity ofααα since (90),
(87) and (89) together imply that|{i ∈ I : αi 6= 0}| ≥ νm. Crisp and Burges (2000) have shown that
(86),. . .,(90) is equivalent to theν-SVM algorithm (Scḧolkopf et al., 2000).
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While “information-theoretic” approaches to the SVM and weighted kernel representations are
hardly new,29 the results presented here are novel and provide a simple and direct derivation of the
SVM via the generalised variational divergence.

If VBH,
1
2
(P̂www,Q̂zzz) is used as a test statistic to infer whether two sampleswww andzzz are drawn from

the same distribution (as Gretton et al., 2008 do), then when the distributions from whichwww andzzz
are drawn are close, the classification performance of the corresponding classifier (i.e., the classifier
that uses the sign of the witness function) will be close to the worst possible.Thus one will be
operating in a regime distinct from the normal situation, where the risk is typicallysmall.

Finally observe that the derivation of the SVM presented here could be viewed as an application
of an alternate “inductive principle”—a general recipe for constructinglearning algorithms from
learning task specification (Vapnik, 1989, 2006). The traditional Empirical Risk Minimization prin-
ciple entails replacing(P,Q) with (P̂xxx+ ,Q̂xxx−) in the definition ofL(π,P,Q). Then, in order to not
overfit, one restricts the class of functions from which hypotheses are drawn. That is, there are two
approximations:

L(π,P,Q) Empirical Approximation (uniform)−−−−−−−−−−−−−−−−−−−−−→ L(π, P̂xxx+ ,Q̂xxx−) Restrict Class−−−−−−−−→ LR(π, P̂xxx+ ,Q̂xxx−).

Upon settingααα+ = (αi)i∈I+ andααα− = (αi)i∈I− , the derivation presented above, in contrast, can be
summarised schematically by

“L(π,P,Q)” Restrict Class−−−−−−−−→ LR(π,P,Q) Empirical Approximation (ααα-weighted)−−−−−−−−−−−−−−−−−−−−−−−→ LR(π, P̂ααα+

xxx+ ,Q̂
ααα−
xxx− ),

where a different loss (the “linear” loss) was used at the start. With that loss function, reversing the
order of the two approximations would not work, and is (thus) not equivalent to the ERM inductive
principle. The first step makesL well defined—with no restriction it is not, hence the quotes; and
will avoid overfitting in any case. The second step is the more general (ααα-weighted) empirical
approximation.

We believe that this alternate derivation of the SVM is of interest because it issimpler (avoids
the need to introduces margins) and it elucidates the connection between the kernel methods for

29. The use of kernel representations for classification is of course not new: from the classical kernel classifier (where
αi = 1/m for all i ∈ I ) (Devroye et al., 1996, Chapter 10) to the Generalised Portrait (Aizerman et al., 1964), the
Generalised Discriminant (Baudat and Anouar, 2000) and the panoplyof techniques inspired by Support Vector
Machines (Scḧolkopf and Smola, 2002; Herbrich, 2002). None of these techniques isdesigned from the perspective
of minimising a f -divergence.

Principe et al. (2000a) have developed an approach to machine learning problems based on information theoretic
criteria (Principe et al., 2000b; Jenssen et al., 2004; Xu et al., 2005; Jenssen, 2005a; Jenssen et al., 2006; Pavia et al.,
2006). Jenssen et al. (2004, 2006) considered kernel methods from the perspective of Renyi’s quadratic entropy.
They do not exploit the formal relationship between maximising divergence and minimising risk. They interpret the
SVM as being constructed from weighted Parzen windows density estimates. Gretton et al. (2008) explained the
relationship between their MMD estimators and those derived from (unweighted) Parzen windows estimates of the
class-conditional distributions. Weighted Parzen windows estimates were used as a basis for building a classifier by
Babich and Camps (1996). Weighted empirical distributions are widely used in particle filtering (Crisan and Doucet,
2002).

McDermott and Katagiri (2002) considered the direct optimisation of a classifier built on top of Parzen windows
density estimates. They showed that the minimum classification error criterion is equivalent to a Parzen windows
estimate of the theoretical Bayes risk. They re-derive the traditional approach of minimising an estimate of the
expected loss. McDermott and Katagiri (2003) extended their approach to the multi-class setting in a way that takes
account of all the “other” classes better in estimating the probability of error of a given class.
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classification and MMD—indeed MMD is nothing but the Fisher linear discriminant applied to a
binary problem induced by the given distributionsP andQ.
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J. Acźel. Measuring information beyond communication theory — why some generalized informa-
tion measures maybe be useful, others not.Aequationes Mathematicae, 27:1–19, 1984.
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