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Abstract
We sharply characterize the performance of different penalization schemes for the problem of se-
lecting the relevant variables in the multi-task setting. Previous work focuses on the regression
problem where conditions on the design matrix complicate the analysis. A clearer and simpler pic-
ture emerges by studying the Normal means model. This model,often used in the field of statistics,
is a simplified model that provides a laboratory for studyingcomplex procedures.
Keywords: high-dimensional inference, multi-task learning, sparsity, normal means, minimax
estimation

1. Introduction

We consider the problem of estimating a sparse signal in the presence of noise. It has been em-
pirically observed, on various data sets ranging from cognitive neuroscience (Liu et al., 2009) to
genome-wide association mapping studies (Kim et al., 2009), that considering related estimation
tasks jointly can improve estimation performance. Because of this, joint estimation from related
tasks ormulti-task learninghas received much attention in the machine learning and statistics com-
munity (see for example Turlach et al., 2005; Zou and Yuan, 2008; Zhang, 2006; Negahban and
Wainwright, 2009; Obozinski et al., 2011; Lounici et al., 2009; Liu et al.,2009; Lounici et al.,
2010; Argyriou et al., 2008; Kim et al., 2009, and references therein). However, the theory behind
multi-task learning is not yet settled.

An example of multi-task learning is the problem of estimating the coefficients of several mul-
tiple regressions

y j = X jβ j +ǫ j , j ∈ [k] (1)

whereX j ∈ Rn×p is the design matrix,y j ∈ Rn is the vector of observations,ǫ j ∈ Rn is the noise
vector andβ j ∈ Rp is the unknown vector of regression coefficients for thej-th task, with[k] =
{1, . . . ,k}.

When the number of variablesp is much larger than the sample sizen, it is commonly assumed
that the regression coefficients are jointly sparse, that is, there exists a small subsetS⊂ [p] of the
regression coefficients, withs := |S| ≪ n, that are non-zero for all or most of the tasks.

The model in (1) under the joint sparsity assumption was analyzed in, for example, Obozinski
et al. (2011), Lounici et al. (2009), Negahban and Wainwright (2009), Lounici et al. (2010) and
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Kolar and Xing (2010). Obozinski et al. (2011) propose to minimize the penalized least squares
objective with a mixed(2,1)-norm on the coefficients as the penalty term. The authors focus on
consistent estimation of the support setS, albeit under the assumption that the number of tasksk
is fixed. Negahban and Wainwright (2009) use the mixed(∞,1)-norm to penalize the coefficients
and focus on the exact recovery of the non-zero pattern of the regression coefficients, rather than
the support setS. For a rather limited case ofk = 2, the authors show that when the regression do
not share a common support, it may be harmful to consider the regression problems jointly using
the mixed(∞,1)-norm penalty. Kolar and Xing (2010) address the feature selection properties of
simultaneous greedy forward selection. However, it is not clear what thebenefits are compared to
the ordinary forward selection done on each task separately. In Lounici et al. (2009) and Lounici
et al. (2010), the focus is shifted from the consistent selection to benefitsof the joint estimation for
the prediction accuracy and consistent estimation. The number of tasksk is allowed to increase with
the sample size. However, it is assumed that all tasks share the same features; that is, a relevant
coefficient is non-zero for all tasks.

Despite these previous investigations, the theory is far from settled. A simple clear picture of
when sharing between tasks actually improves performance has not emerged. In particular, to the
best of our knowledge, there has been no previous work that sharplycharacterizes the performance
of different penalization schemes on the problem of selecting the relevantvariables in the multi-task
setting.

In this paper we study multi-task learning in the context of themany Normal means model.
This is a simplified model that is often useful for studying the theoretical properties of statistical
procedures. The use of the many Normal means model is fairly common in statistics but appears
to be less common in machine learning. Our results provide a sharp characterization of the sparsity
patterns under which the Lasso procedure performs better than the group Lasso. Similarly, our
results characterize how the group Lasso (with the mixed(2,1) norm) can perform better when
each non-zero row is dense.

1.1 The Normal Means Model

The simplest Normal means model has the form

Yi = µi +σεi , i = 1, . . . , p (2)

whereµ1, . . . ,µp are unknown parameters andε1, . . . ,εp are independent, identically distributed
Normal random variables with mean 0 and variance 1. There are a variety of results (Brown and
Low, 1996; Nussbaum, 1996) showing that many learning problems can beconverted into a Nor-
mal means problem. This implies that results obtained in the Normal means setting canbe trans-
ferred to many other settings. As a simple example, consider the nonparametricregression model
Zi = m(i/n) + δi wherem is a smooth function on[0,1] and δi ∼ N(0,1). Let φ1,φ2, . . . , be an
orthonormal basis on [0,1] and writem(x) = ∑∞

j=1µjφ j(x) whereµj =
∫ 1

0 m(x)φ j(x)dx. To estimate
the regression functionm we need only estimateµ1,µ2, . . . ,. Let Yj = n−1 ∑n

i=1Zi φ j(i/n). Then
Yj ≈ N(µj ,σ2) whereσ2 = 1/n. This has the form of (2) withσ = 1/

√
n. Hence this regression

problem can be converted into a Normal means model.
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However, the most important aspect of the Normal means model is that it allowsa clean setting
for studying complex problems. In this paper, we consider the following Normal means model. Let

Yi j ∼
{

(1− ε)N (0,σ2)+ εN (µi j ,σ2) j ∈ [k], i ∈ S
N(0,σ2) j ∈ [k], i ∈ Sc (3)

where(µi j )i, j are unknown real numbers,σ = σ0/
√

n is the variance withσ0 > 0 known,(Yi j )i, j are
random observations,ε ∈ [0,1] is the parameter that controls the sparsity of features across tasks
andS⊂ [p] is the set of relevant features. Lets= |S| denote the number of relevant features. Denote
the matrixM ∈ Rp×k of means

Tasks
1 2 . . . k

1 µ11 µ12 . . . µ1k

2 µ21 µ22 . . . µ2k
...

...
...

.. .
...

p µp1 µp2 . . . µpk

and letθi = (µi j ) j∈[k] denote thei-th row of the matrixM. The setSc = [p]\S indexes the zero rows
of the matrixM and the associated observations are distributed according to the Normal distribu-
tion with zero mean and varianceσ2. The rows indexed byS are non-zero and the corresponding
observation are coming from a mixture of two Normal distributions. The parameter ε determines
the proportion of observations coming from a Normal distribution with non-zero mean. The reader
should regard each column as one vector of parameters that we want to estimate. The question is
whether sharing across columns improves the estimation performance.

It is known from the work on the Lasso that in regression problems, the design matrix needs to
satisfy certain conditions in order for the Lasso to correctly identify the support S(see van de Geer
and B̈uhlmann, 2009, for an extensive discussion on the different conditions). These regularity con-
ditions are essentially unavoidable. However, the Normal means model (3) allows us to analyze the
estimation procedure in (4) and focus on the scaling of the important parameters (n,k, p,s,ε,µmin)
for the success of the support recovery. Using the model (3) and the estimation procedure in (4),
we are able to identify regimes in which estimating the support is more efficient using the ordinary
Lasso than with the multi-task Lasso and vice versa. Our results suggest that the multi-task Lasso
does not outperform the ordinary Lasso when the features are not considerably shared across tasks;
thus, practitioners should be careful when applying the multi-task Lasso without knowledge of the
task structure.

An alternative representation of the model is

Yi j =

{
N (ξi j µi j ,σ2) j ∈ [k], i ∈ S

N(0,σ2) j ∈ [k], i ∈ Sc

whereξi j is a Bernoulli random variable with success probabilityε. Throughout the paper, we
will set ε = k−β for some parameterβ ∈ [0,1); β < 1/2 corresponds to dense rows andβ > 1/2
corresponds to sparse rows. Letµmin denote the following quantityµmin = min|µi j |.

Under the model (3), we analyze penalized least squares proceduresof the form

µ̂= argmin
µ∈Rp×k

1
2
||Y−µ||2F +pen(µ) (4)
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where||A||F = ∑ jk A2
jk is the Frobenious norm, pen(·) is a penalty function andµ is a p×k matrix

of means. We consider the following penalties:

1. theℓ1 penalty
pen(µ) = λ ∑

i∈[p]
∑
j∈[k]

|µi j |,

which corresponds to the Lasso procedure applied on each task independently, and denote the
resulting estimate aŝµℓ1

2. the mixed(2,1)-norm penalty
pen(µ) = λ ∑

i∈[p]
||θi ||2,

which corresponds to the multi-task Lasso formulation in Obozinski et al. (2011) and Lounici
et al. (2009), and denote the resulting estimate asµ̂ℓ1/ℓ2

3. the mixed(∞,1)-norm penalty

pen(µ) = λ ∑
i∈[p]

||θi ||∞,

which correspond to the multi-task Lasso formulation in Negahban and Wainwright (2009),
and denote the resulting estimate asµ̂ℓ1/ℓ∞ .

For any solution̂µ of (4), letS(µ̂) denote the set of estimated non-zero rows

S(µ̂) = {i ∈ [p] : ||θ̂i ||2 6= 0}.

We establish sufficient conditions under whichP[S(µ̂) 6=S]≤α for different methods. These results
are complemented with necessary conditions for the recovery of the support setS.

In this paper, we focus our attention on the three penalties outlined above. There is a large
literature on the penalized least squares estimation using concave penalties as introduced in Fan
and Li (2001). These penalization methods have better theoretical properties in the presence of the
design matrix, especially when the design matrix is far from satisfying the irrepresentable condition
(Zhao and Yu, 2006). In the Normal means model, due to the lack of the design matrix, there is no
advantage to concave penalties in terms of variable selection.

1.2 Overview of the Main Results

The main contributions of the paper can be summarized as follows.

1. We establish a lower bound on the parameterµmin as a function of the parameters(n,k, p,s,β).
Our result can be interpreted as follows: for any estimation procedure there exists a model
given by (3) with non-zero elements equal toµmin such that the estimation procedure will
make an error when identifying the setSwith probability bounded away from zero.

2. We establish the sufficient conditions on the signal strengthµmin for the Lasso and both vari-
ants of the group Lasso under which these procedures can correctly identify the set of non-
zero rowsS.
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By comparing the lower bounds with the sufficient conditions, we are able to identify regimes
in which each procedure is optimal for the problem of identifying the set of non-zero rowsS. Fur-
thermore, we point out that the usage of the popular group Lasso with the mixed(∞,1) norm can be
disastrous when features are not perfectly shared among tasks. This isfurther demonstrated through
an empirical study.

1.3 Organization of the Paper

The paper is organized as follows. We start by analyzing the lower boundfor any procedure for
the problem of identifying the set of non-zero rows in Section 2. In Section 3we provide sufficient
conditions on the signal strengthµmin for the Lasso and the group Lasso to be able to detect the set
of non-zero rowsS. In the following section, we propose an improved approach to the problemof
estimating the setS. Results of a small empirical study are reported in Section 4. We close the paper
by a discussion of our findings.

2. Lower Bound on the Support Recovery

In this section, we derive a lower bound for the problem of identifying the correct variables. In
particular, we derive conditions on(n,k, p,s,ε,µmin) under which any method is going to make an
error when estimating the correct variables. Intuitively, ifµmin is very small, a non-zero row may
be hard to distinguish from a zero row. Similarly, ifε is very small, many elements in a row will be
zero and, again, as a result it may be difficult to identify a non-zero row.Before, we give the main
result of the section, we introduce the class of models that are going to be considered.

Let
F [µ] := {θ ∈ Rk : min

j
|θ j | ≥ µ}

denote the set of feasible non-zero rows. For eachj ∈ {0,1, . . . ,k}, let M ( j,k) be the class of all
the subsets of{1, . . . ,k} of cardinality j. Let

M[µ,s] =
⋃

ω∈M (s,p)

{
(θ1, . . . ,θp)

′ ∈ Rp×k : θi ∈ F [µ] if i ∈ ω, θi = 0 if i 6∈ ω
}

(5)

be the class of all feasible matrix means. For a matrixM ∈M[µ,s], let PM denote the joint law of
{Yi j}i∈[p], j∈[k]. SincePM is a product measure, we can writePM =⊗i∈[p]Pθi . For a non-zero rowθi ,
we set

Pθi (A) =
∫
N (A; θ̂,σ2Ik)dν(θ̂), A∈ B(Rk),

where ν is the distribution of the random variable∑ j∈[k]µi j ξ jej with ξ j ∼ Bernoulli(k−β) and
{ej} j∈[k] denoting the canonical basis ofRk. For a zero rowθi = 0, we set

P0(A) =N (A;0,σ2Ik), A∈ B(Rk).

With this notation, we have the following result.

Theorem 1 Let
µ2

min = µ2
min(n,k, p,s,ε,β) = ln

(
1+u+

√
2u+u2

)
σ2
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where

u=
ln
(

1+ α2(p−s+1)
2

)

2k1−2β .

If α ∈ (0, 1
2) and k−βu< 1, then for all µ≤ µmin,

inf
µ̂

sup
M∈M[µ,s]

PM[S(µ̂) 6= S(M)]≥ 1
2
(1−α)

whereM[µ,s] is given by(5).

The result can be interpreted in words in the following way: whatever the estimation procedure
µ̂, there exists some matrixM ∈ M[µmin,s] such that the probability of incorrectly identifying the
supportS(M) is bounded away from zero. In the next section, we will see that some estimation
procedures achieve the lower bound given in Theorem 1.

3. Upper Bounds on the Support Recovery

In this section, we present sufficient conditions on(n, p,k,ε,µmin) for different estimation proce-
dures, so that

P[S(µ̂) 6= S]≤ α.

Let α′,δ′ > 0 be two parameters such thatα′+δ′ = α. The parameterα′ controls the probability of
making a type one error

P[∃i ∈ [p] : i ∈ S(µ̂) andi 6∈ S]≤ α′,

that is, the parameterα′ upper bounds the probability that there is a zero row of the matrixM that
is estimated as a non-zero row. Likewise, the parameterδ′ controls the probability of making a type
two error

P[∃i ∈ [p] : i 6∈ S(µ̂) andi ∈ S]≤ δ′,

that is, the parameterδ′ upper bounds the probability that there is a non-zero row of the matrixM
that is estimated as a zero row.

The control of the type one and type two errors is established through the tuning parameterλ. It
can be seen that if the parameterλ is chosen such that, for alli ∈ S, it holds thatP[i 6∈ S(µ̂)]≤ δ′/s
and, for alli ∈ Sc, it hold thatP[i ∈ S(µ̂)] ≤ α′/(p− s), then using the union bound we have that
P[S(µ̂) 6= S] ≤ α. In the following subsections, we will use the outlined strategy to chooseλ for
different estimation procedures.

3.1 Upper Bounds for the Lasso

Recall that the Lasso estimator is given as

µ̂ℓ1 = argmin
µ∈Rp×k

1
2
||Y−µ||2F +λ||µ||1.

It is easy to see that the solution of the above estimation problem is given as thefollowing soft-
thresholding operation

µ̂ℓ1
i j =

(
1− λ

|Yi j |

)

+

Yi j , (6)

2420



UNION SUPPORTRECOVERY

where(x)+ :=max(0,x). From (6), it is obvious thati ∈S(µ̂ℓ1) if and only if the maximum statistic,
defined as

Mk(i) = max
j

|Yi j |,

satisfiesMk(i)≥ λ. Therefore it is crucial to find the critical value of the parameterλ such that

{
P[Mk(i)< λ] < δ′/s i∈ S
P[Mk(i)≥ λ] < α′/(p−s) i ∈ Sc.

We start by controlling the type one error. Fori ∈ Sc it holds that

P[Mk(i)≥ λ]≤ kP[|N (0,σ2)| ≥ λ]≤ 2kσ√
2πλ

exp
(
− λ2

2σ2

)
(7)

using a standard tail bound for the Normal distribution. Setting the right handside toα′/(p−s) in
the above display, we obtain thatλ can be set as

λ = σ

√
2ln

2k(p−s)√
2πα′ (8)

and (7) holds as soon as 2ln2k(p−s)√
2πα′ ≥ 1. Next, we deal with the type two error. Let

πk = P[|(1− ε)N (0,σ2)+ εN (µmin,σ2)|> λ]. (9)

Then for i ∈ S, P[Mk(i) < λ] ≤ P[Bin(k,πk) = 0], where Bin(k,πk) denotes the binomial random
variable with parameters(k,πk). Control of the type two error is going to be established through
careful analysis ofπk for various regimes of problem parameters.

Theorem 2 Let λ be defined by(8). Suppose µmin satisfies one of the following two cases:

(i) µmin = σ
√

2r lnk where

r >

(√
1+Ck,p,s−

√
1−β

)2

with

Ck,p,s =
ln 2(p−s)√

2πα′

lnk

and limn→∞Ck,p,s ∈ [0,∞);

(ii) µmin ≥ λ when

lim
n→∞

lnk
ln(p−s)

= 0

and k1−β/2≥ ln(s/δ′).

Then
P[S(µ̂ℓ1) 6= S]≤ α.
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The proof is given in Section 6.2. The two different cases describe two different regimes character-
ized by the ratio of lnk and ln(p−s).

Now we can compare the lower bound onµ2
min from Theorem 1 and the upper bound from

Theorem 2. Without loss of generality we assume thatσ = 1. We have that whenβ < 1/2 the lower
bound is of the orderO

(
ln
(
kβ−1/2 ln(p−s)

))
and the upper bound is of the order ln(k(p− s)).

Ignoring the logarithmic terms inp ands, we have that the lower bound is of the orderÕ(kβ−1/2)
and the upper bound is of the orderÕ(lnk), which implies that the Lasso does not achieve the lower
bound when the non-zero rows are dense. When the non-zero rows are sparse,β > 1/2, we have
that both the lower and upper bound are of the orderÕ(lnk) (ignoring the terms depending onp and
s).

3.2 Upper Bounds for the Group Lasso

Recall that the group Lasso estimator is given as

µ̂ℓ1/ℓ2 = argmin
µ∈Rp×k

1
2
||Y−µ||2F +λ ∑

i∈[p]
||θi ||2,

whereθi = (µi j ) j∈[k]. The group Lasso estimator can be obtained in a closed form as a result ofthe
following thresholding operation (see, for example, Friedman et al., 2010)

θ̂
ℓ1/ℓ2
i =

(
1− λ

||Yi·||2
)

+

Yi· (10)

whereYi· is the ith row of the data. From (10), it is obvious thati ∈ S(µ̂ℓ1/ℓ2) if and only if the
statistic defined as

Sk(i) = ∑
j

Y2
i j ,

satisfiesSk(i) ≥ λ. The choice ofλ is crucial for the control of type one and type two errors. We
use the following result, which directly follows from Theorem 2 in Baraud (2002).

Lemma 3 Let {Yi = fi +σξi}i∈[n] be a sequence of independent observations, where f= { fi}i∈[n]

is a sequence of numbers,ξi
iid∼ N (0,1) andσ is a known positive constant. Suppose that tn,α ∈ R

satisfiesP[χ2
n > tn,α]≤ α. Let

φα = I{ ∑
i∈[n]

Y2
i ≥ tn,ασ2}

be a test for f= 0 versus f6= 0. Then the testφα satisfies

P[φα = 1]≤ α

when f= 0 and
P[φα = 0]≤ δ

for all f such that

|| f ||22 ≥ 2(
√

5+4)σ2 ln

(
2e
αδ

)√
n.
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Proof This follows immediately from Theorem 2 in Baraud (2002).

It follows directly from lemma 3 that setting

λ = tn,α′/(p−s)σ2 (11)

will control the probability of type one error at the desired level, that is,

P[Sk(i)≥ λ]≤ α′/(p−s), ∀i ∈ Sc.

The following theorem gives us the control of the type two error.

Theorem 4 Let λ = tn,α′/(p−s)σ2. Then

P[S(µ̂ℓ1/ℓ2) 6= S]≤ α

if

µmin ≥ σ
√

2(
√

5+4)

√
k−1/2+β

1−c

√
ln

2e(2s−δ′)(p−s)
α′δ′

where c=
√

2ln(2s/δ′)/k1−β.

The proof is given in Section 6.3.
Using Theorem 1 and Theorem 4 we can compare the lower bound onµ2

min and the upper
bound. Without loss of generality we assume thatσ = 1. When each non-zero row is dense, that is,
whenβ < 1/2, we have that both lower and upper bounds are of the orderÕ(kβ−1/2) (ignoring the
logarithmic terms inp ands). This suggest that the group Lasso performs better than the Lasso for
the case where there is a lot of feature sharing between different tasks. Recall from previous section
that the Lasso in this setting does not have the optimal dependence onk. However, whenβ > 1/2,
that is, in the sparse non-zero row regime, we see that the lower bound is of the orderÕ(ln(k))
whereas the upper bound is of the orderÕ(kβ−1/2). This implies that the group Lasso does not have
optimal dependence onk in the sparse non-zero row setting.

3.3 Upper Bounds for the Group Lasso with the Mixed (∞,1) Norm

In this section, we analyze the group Lasso estimator with the mixed(∞,1) norm, defined as

µ̂ℓ1/ℓ∞ = argmin
µ∈Rp×k

1
2
||Y−µ||2F +λ ∑

i∈[p]
||θi ||∞,

whereθi = (µi j ) j∈[k]. The closed form solution for̂µℓ1/ℓ∞ can be obtained (see Liu et al., 2009),
however, we are only going to use the following lemma.

Lemma 5 (Liu et al., 2009)θ̂ℓ1/ℓ∞
i = 0 if and only if∑ j |Yi j | ≤ λ.

Proof See the proof of Proposition 5 in Liu et al. (2009).

Suppose that the penalty parameterλ is set as

λ = kσ
√

2ln
k(p−s)

α′ . (12)
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It follows immediately using a tail bound for the Normal distribution that

P[∑
j

|Yi j | ≥ λ]≤ kmax
j

P[|Yi j | ≥ λ/k]≤ α′/(p−s), ∀i ∈ Sc,

which implies that the probability of the type one error is controlled at the desired level.

Theorem 6 Let the penalty parameterλ be defined by(12). Then

P[S(µ̂ℓ1/ℓ∞) 6= S]≤ α

if

µmin ≥ 1+ τ
1−c

k−1+βλ

where c=
√

2ln(2s/δ′)/k1−β andτ = σ
√

2k ln 2s−δ′
δ′ /λ.

The proof is given in Section 6.4.
Comparing upper bounds for the Lasso and the group Lasso with the mixed(2,1) norm with

the result of Theorem 6, we can see that both the Lasso and the group Lasso have better dependence
on k than the group Lasso with the mixed(∞,1) norm. The difference becomes more pronounced
asβ increases. This suggest that we should be very cautious when using thegroup Lasso with the
mixed(∞,1) norm, since as soon as the tasks do not share exactly the same features, the other two
procedures have much better performance on identifying the set of non-zero rows.

4. Simulation Results

We conduct a small-scale empirical study of the performance of the Lasso and the group Lasso (both
with the mixed(2,1) norm and with the mixed(∞,1) norm). Our empirical study shows that the
theoretical findings of Section 3 describe sharply the behavior of procedures even for small sample
studies. In particular, we demonstrate that as the minimum signal levelµmin varies in the model (3),
our theory sharply determines points at which probability of identifying non-zero rows of matrixM
successfully transitions from 0 to 1 for different procedures.

The simulation procedure can be described as follows. Without loss of generality we letS= [s]
and draw the samples{Yi j}i∈[p], j∈[k] according to the model in (3). The total number of rowsp is
varied in{128,256,512,1024} and the number of columns is set tok = ⌊plog2(p)⌋. The sparsity
of each non-zero row is controlled by changing the parameterβ in {0,0.25,0.5,0.75} and setting
ε = k−β. The number of non-zero rows is set tos= ⌊log2(p)⌋, the sample size is set ton = 0.1p
andσ0 = 1. The parametersα′ andδ′ are both set to 0.01. For each setting of the parameters, we
report our results averaged over 1000 simulation runs. Simulations with other choices of parameters
n,sandk have been tried out, but the results were qualitatively similar and, hence, wedo not report
them here.

The regularization parameterλ is chosen according to Equations (8), (11) and (12), which as-
sume that the noise levelσ0 is known. In practice, estimating the standard deviation of the noise in
high-dimensions is a hard problem and practitioners often use cross-validation as a data-driven way
to choose the penalty parameter. For recent work on data-driven tuningof the penalty parameters,
we refer the reader to Arlot and Bach (2009).
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4.1 Lasso

We investigate the performance on the Lasso for the purpose of estimating theset of non-zero rows,
S. Figure 1 plots the probability of success as a function of the signal strength. On the same figure
we plot the probability of success for the group Lasso with both(2,1) and (∞,1)-mixed norms.
Using theorem 2, we set

µlasso=
√

2(r +0.001) lnk (13)

wherer is defined in theorem 2. Next, we generate data according to (3) with all elements {µi j}
set toµ= ρµlasso, whereρ ∈ [0.05,2]. The penalty parameterλ is chosen as in (8). Figure 1 plots
probability of success as a function of the parameterρ, which controls the signal strength. This
probability transitions very sharply from 0 to 1. A rectangle on a horizontalline represents points
at which the probabilityP[Ŝ= S] is between 0.05 and 0.95. From each subfigure in Figure 1, we
can observe that the probability of success for the Lasso transitions from 0 to 1 for the same value
of the parameterρ for different values ofp, which indicates that, except for constants, our theory
correctly characterizes the scaling ofµmin. In addition, we can see that the Lasso outperforms the
group Lasso (with(2,1)-mixed norm) when each non-zero row is very sparse (the parameterβ is
close to one).

4.2 Group Lasso

Next, we focus on the empirical performance of the group Lasso with the mixed (2,1) norm. Fig-
ure 2 plots the probability of success as a function of the signal strength. Using theorem 4, we
set

µgroup= σ
√

2(
√

5+4)

√
k−1/2+β

1−c

√
ln
(2s−δ′)(p−s)

α′δ′
(14)

wherec is defined in theorem 4. Next, we generate data according to (3) with all elements{µi j} set
to µ= ρµgroup, whereρ ∈ [0.05,2]. The penalty parameterλ is given by (11). Figure 2 plots prob-
ability of success as a function of the parameterρ, which controls the signal strength. A rectangle
on a horizontal line represents points at which the probabilityP[Ŝ= S] is between 0.05 and 0.95.
From each subfigure in Figure 2, we can observe that the probability of success for the group Lasso
transitions from 0 to 1 for the same value of the parameterρ for different values ofp, which indi-
cated that, except for constants, our theory correctly characterizes the scaling ofµmin. We observe
also that the group Lasso outperforms the Lasso when each non-zero row is not too sparse, that is,
when there is a considerable overlap of features between different tasks.

4.3 Group Lasso with the Mixed (∞,1) Norm

Next, we focus on the empirical performance of the group Lasso with the mixed (∞,1) norm. Fig-
ure 3 plots the probability of success as a function of the signal strength. Using theorem 6, we
set

µinfty =
1+ τ
1−c

k−1+βλ (15)

whereτ andc are defined in theorem 6 andλ is given by (12). Next, we generate data according to
(3) with all elements{µi j} set toµ= ρµinfty , whereρ∈ [0.05,2]. Figure 3 plots probability of success
as a function of the parameterρ, which controls the signal strength. A rectangle on a horizontal line
represents points at which the probabilityP[Ŝ= S] is between 0.05 and 0.95. From each subfigure
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Probability of successful support recovery: Lasso
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Figure 1: The probability of success for the Lasso for the problem of estimatingSplotted against
the signal strength, which is varied as a multiple ofµlassodefined in (13). A rectangle on
each horizontal line represents points at which the probabilityP[Ŝ= S] is between 0.05
and 0.95. To the left of the rectangle the probability is smaller than 0.05, while to the
right the probability is larger than 0.95. Different subplots represent the probability of
success as the sparsity parameterβ changes.

in Figure 3, we can observe that the probability of success for the groupLasso transitions from 0
to 1 for the same value of the parameterρ for different values ofp, which indicated that, except
for constants, our theory correctly characterizes the scaling ofµmin. We also observe that the group
Lasso with the mixed(∞,1) norm never outperforms the Lasso or the group Lasso with the mixed
(2,1) norm.
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Probability of successful support recovery: group Lasso
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Figure 2: The probability of success for the group Lasso for the problem of estimatingS plotted
against the signal strength, which is varied as a multiple ofµgroup defined in (14). A
rectangle on each horizontal line represents points at which the probabilityP[Ŝ= S] is
between 0.05 and 0.95. To the left of the rectangle the probability is smaller than 0.05,
while to the right the probability is larger than 0.95. Different subplots represent the
probability of success as the sparsity parameterβ changes.

5. Discussion

We have studied the benefits of task sharing in sparse problems. Under many scenarios, the group
lasso outperforms the lasso. Theℓ1/ℓ2 penalty seems to be a much better choice for the group lasso
than theℓ1/ℓ∞. However, as pointed out to us by Han Liu, for screening, where falsediscoveries
are less important than accurate recovery, it is possible that theℓ1/ℓ∞ penalty could be useful. From
the results in Section 3, we can further conclude that the Lasso procedure performs better than the
group Lasso when each non-zero row is sparse, while the group Lasso (with the mixed(2,1) norm)
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Probability of successful support recovery: group Lasso with the mixed (∞,1) norm
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Figure 3: The probability of success for the group Lasso with mixed(∞,1) norm for the problem
of estimatingSplotted against the signal strength, which is varied as a multiple ofµinfty

defined in (15). A rectangle on each horizontal line represents points atwhich the prob-
ability P[Ŝ= S] is between 0.05 and 0.95. To the left of the rectangle the probability is
smaller than 0.05, while to the right the probability is larger than 0.95. Different subplots
represent the probability of success as the sparsity parameterβ changes.

performs better when each non-zero row is dense. Since in many practical situations one does not
know how much overlap there is between different tasks, it would be useful to combine the Lasso
and the group Lasso in order to improve the performance. For example, one can take the union of
the Lasso and the group Lasso estimate,Ŝ= S(µ̂ℓ1)∪S(µ̂ℓ1/ℓ2). The suggested approach has the
advantage that one does not need to know in advance which estimation procedure to use. While
such a combination can be justified in the Normal means problem as a way to increase the power to
detect the non-zero rows, it is not clear whether the same approach canbe justified in the multi-task
regression model (1).
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The analysis of the Normal means model in (3) provides insights into the theoretical results we
could expect in the conventional multi-task learning given in (1). However, there is no direct way
to translate our results into valid results for the model in (1); a separate analysis needs to be done in
order to establish sharp theoretical results.

6. Proofs

This section collects technical proofs of the results presented in the paper. Throughout the section
we usec1,c2, . . . to denote positive constants whose value may change from line to line.

6.1 Proof of Theorem 1

Without loss of generality, we may assumeσ = 1. Let φ(u) be the density ofN (0,1) and define
P0 andP1 to be two probability measures onRk with the densities with respect to the Lebesgue
measure given as

f0(a1, . . . ,ak) = ∏
j∈[k]

φ(a j) (16)

and

f1(a1, . . . ,ak) = EZEmEξ ∏
j∈m

φ(a j −ξ jµmin)∏
j 6∈m

φ(a j) (17)

whereZ ∼ Bin(k,k−β), m is a random variable uniformly distributed overM (Z,k) and{ξ j} j∈[k]
is a sequence of Rademacher random variables, independent ofZ andm. A Rademacher random
variable takes values±1 with probability 1

2.
To simplify the discussion, suppose thatp−s+1 is divisible by 2. LetT = (p−s+1)/2. Using

P0 andP1, we construct the following three measures,

Q̃= Ps−1
1 ⊗P

p−s+1
0 ,

Q0 =
1
T ∑

j∈{s,...,p}
j odd

Ps−1
1 ⊗P

j−s
0 ⊗P1 ⊗P

p− j
0

and

Q1 =
1
T ∑

j∈{s,...,p}
j even

Ps−1
1 ⊗P

j−s
0 ⊗P1 ⊗P

p− j
0 .

It holds that

inf
µ̂

sup
M∈M

PM[S(M) 6= S(µ̂)]≥ inf
Ψ

max
(
Q0(Ψ = 1),Q1(Ψ = 0)

)

≥ 1
2
− 1

2
||Q0−Q1||1,

where the infimum is taken over all testsΨ taking values in{0,1} and|| · ||1 is the total variation
distance between probability measures. For a readable introduction on lower bounds on the minimax
probability of error, see Section 2 in Tsybakov (2009). In particular, our approach is related to the
one described in Section 2.7.4. We proceed by upper bounding the total variation distance between
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Q0 andQ1. Let g= dP1/dP0 and letui ∈ Rk for eachi ∈ [p], then

dQ0

dQ̃
(u1, . . . ,up)

=
1
T ∑

j∈{s,...,p}
j even

∏
i∈{1,...,s−1}

dP1

dP1
(ui) ∏

i∈{s,..., j−1}

dP0

dP0
(ui)

dP1

dP0
(u j) ∏

i∈{ j+1,...,p}

dP0

dP0
(ui)

=
1
T ∑

j∈{s,...,p}
j even

g(u j)

and, similarly, we can computedQ1/dQ̃. The following holds

‖Q0−Q1‖2
1

=

(∫ ∣∣∣ 1
T

(
∑

j∈{s,...,p}
j even

g(u j)− ∑
j∈{s,...,p}

j odd

g(u j)
)∣∣∣ ∏

i∈{s,...,p}
dP0(ui)

)2

≤ 1
T2

∫ (
∑

j∈{s,...,p}
j even

g(u j)− ∑
j∈{s,...,p}

j odd

g(u j)
)2

∏
i∈{s,...,p}

dP0(ui)

=
2
T

(
P0(g

2)−1
)
,

(18)

where the last equality follows by observing that

∫
∑

j∈{s,...,p}
j even

∑
j′∈{s,...,p}

j′ even

g(u j)g(u j ′) ∏
i∈{s,...,p}

i even

dP0(ui) = T P0(g
2)+T2−T

and ∫
∑

j∈{s,...,p}
j even

∑
j′∈{s,...,p}

j′ odd

g(u j)g(u j ′) ∏
i∈{s,...,p}

dP0(ui) = T2.

Next, we proceed to upper boundP0(g2), using some ideas presented in the proof of Theorem 1 in
Baraud (2002). Recall definitions off0 and f1 in (16) and (17) respectively. Theng= dP1/dP0 =
f1/ f0 and we have

g(a1, . . . ,ak) = EZEmEξ

[
exp
(
− Zµ2

min

2
+µmin ∑

j∈m

ξ ja j

)]

= EZ

[
exp
(
− Zµ2

min

2

)
Em

[
∏
j∈m

cosh(µmina j)
]]
.
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Furthermore, letZ′ ∼ Bin(k,k−β) be independent ofZ andm′ uniformly distributed overM (Z′,k).
The following holds

P0(g
2)

= P0

(
EZ′,Z

[
exp
(
− (Z+Z′)µ2

min

2

)
Em,m′ ∏

j∈m
cosh(µmina j) ∏

j∈m′
cosh(µmina j)

])

= EZ′,Z

[
exp
(
− (Z+Z′)µ2

min

2

)

Em,m′

[
∏

j∈m∩m′

∫
cosh2(µmina j)φ(a j)daj

∏
j∈m△m′

∫
cosh(µmina j)φ(a j)daj

]]
,

where we usem△m′ to denote(m∪m′)\(m∩m′). By direct calculation, we have that
∫

cosh2(µmina j)φ(a j)daj = exp(µ2
min)cosh(µ2

min)

and ∫
cosh(µmina j)φ(a j)daj = exp(µ2

min/2).

Since1
2|m△m′|+ |m∩m′|= (Z+Z′)/2, we have that

P0(g
2) = EZ,Z′

[
Em,m′

[(
cosh(µ2

min)
)|m∩m′|]]

= EZ,Z′

[ k

∑
j=0

p j
(

cosh(µ2
min)
) j
]

= EZ,Z′

[
EX

[
cosh(µ2

min)
X
]]
,

where

p j =





0 if j < Z+Z′−k or j > min(Z,Z′)
(Z′

j )(
k−Z′
Z− j )

(k
Z)

otherwise

andP[X = j] = p j . Therefore,X follows a hypergeometric distribution with parametersk, Z, Z′/k.
[The first parameter denotes the total number of stones in an urn, the second parameter denotes the
number of stones we are going to sample without replacement from the urn and the last parameter
denotes the fraction of white stones in the urn.] Then following (Aldous, 1985, p. 173; see also
Baraud 2002), we know thatX has the same distribution as the random variableE[X̃|T ] where
X̃ is a binomial random variable with parametersZ andZ′/k, andT is a suitableσ-algebra. By
convexity, it follows that

P0(g
2)≤ EZ,Z′

[
EX̃

[
cosh(µ2

min)
X̃
]]

= EZ,Z′

[
exp

(
Z ln

(
1+

Z′

k

(
cosh(µ2

min)−1
)))]

= EZ′EZ

[
exp

(
Z ln

(
1+

Z′

k
u
))]
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whereµ2
min = ln(1+u+

√
2u+u2) with

u=
ln
(

1+ α2T
2

)

2k1−2β .

Continuing with our calculations, we have that

P0(g
2) = EZ′ exp

(
k ln
(
1+k−(1+β)uZ′))

≤ EZ′ exp
(

k−βuZ′
)

= exp

(
k ln
(

1+k−β(exp(k−βu
)
−1)

))

≤ exp
(

k1−β(exp
(
k−βu

)
−1
))

≤ exp
(

2k1−2βu
)

= 1+
α2T

2
,

(19)

where the last inequality follows sincek−βu< 1 for all largep. Combining (19) with (18), we have
that

‖Q0−Q1‖1 ≤ α,

which implies that

inf
µ̂

sup
M∈M

PM[S(M) 6= S(µ̂)]≥ 1
2
− 1

2
α.

6.2 Proof of Theorem 2

Without loss of generality, we can assume thatσ = 1 and rescale the final result. Forλ given in (8),
it holds thatP[|N (0,1)≥ λ] = o(1). For the probability defined in (9), we have the following lower
bound

πk = (1− ε)P[|N (0,1)| ≥ λ]+ εP[|N (µmin,1)| ≥ λ]≥ εP[N (µmin,1)≥ λ].

We prove the two cases separately.
Case 1: Large number of tasks.By direct calculation

πk ≥ εP[N (µmin,1)≥ λ] =
1√

4π logk
(√

1+Ck,p,s−
√

r
)k−β−

(√
1+Ck,p,s−

√
r
)2

=: πk.

Since 1−β >
(√

1+Ck,p,s−
√

r
)2

, we have thatP[Bin(k,πk) = 0]
n→∞−−−→ 0. We can conclude that

as soon askπk ≥ ln(s/δ′), it holds thatP[S(µ̂ℓ1) 6= S]≤ α.
Case 2: Medium number of tasks.Whenµmin ≥ λ, it holds that

πk ≥ εP[N (µmin,1)≥ λ]≥ k−β

2
.

We can conclude that as soon ask1−β/2≥ ln(s/δ′), it holds thatP[S(µ̂ℓ1) 6= S]≤ α.
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6.3 Proof of Theorem 4

Using a Chernoff bound,P[Bin(k,k−β)≤ (1−c)k1−β]≤ δ′/2s for c=
√

2ln(2s/δ′)/k1−β. Fori ∈S,
we have that

P[Sk(i)≤ λ]≤ δ′

2s
+
(

1− δ′

2s

)
P

[
Sk(i)≤ λ

∣∣
{
||θi ||22 ≥ (1−c)k1−βµ2

min

}]
.

Therefore, using lemma 3 withδ = δ′/(2s− δ′), if follows thatP[Sk(i) ≤ λ] ≤ δ′/(2s) for all i ∈ S
when

µmin ≥ σ
√

2(
√

5+4)

√
k−1/2+β

1−c

√
ln

2e(2s−δ′)(p−s)
α′δ′

.

Sinceλ = tn,α′/(p−s)σ2, P[Sk(i)≥ λ]≤ α′/(p−s) for all i ∈ Sc. We can conclude thatP[S(µ̂ℓ1/ℓ2) 6=
S]≤ α.

6.4 Proof of Theorem 6

Without loss of generality, we can assume thatσ = 1. Proceeding as in the proof of theorem 4,
P[Bin(k,k−β)≤ (1−c)k1−β]≤ δ′/2s for c=

√
2ln(2s/δ′)/k1−β. Then fori ∈ S it holds that

P[∑
j

|Yi j | ≤ λ]≤ δ′

2s
+
(

1− δ′

2s

)
P[(1−c)k1−βµmin+zk ≤ λ],

wherezk ∼N (0,k). Since(1−c)k1−βµmin ≥ (1+ τ)λ, the right-hand side of the above display can
upper bounded as

δ′

2s
+
(

1− δ′

2s

)
P[N (0,1)≥ τλ/

√
k]≤ δ′

2s
+
(

1− δ′

2s

) δ′

2s−δ′
≤ δ′

s
.

The above display gives us the desired control of the type two error, and we can conclude that
P[S(µ̂ℓ1/ℓ∞) 6= S]≤ α.
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