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Abstract

In this paper we consider sparse and identifiable lineaniat&riable (factor) and linear Bayesian
network models for parsimonious analysis of multivariedéad We propose a computationally ef-
ficient method for joint parameter and model inference, adehcomparison. It consists of a
fully Bayesian hierarchy for sparse models using slab ailegpiors (two-componerd-function
and continuous mixtures), non-Gaussian latent factorsaasichastic search over the ordering
of the variables. The framework, which we call SLIM (Sparseear Identifiable Multivariate
modeling), is validated and bench-marked on artificial aa biological data sets. SLIM is clos-
est in spirit to LINGAM (Shimizu et al., 2006), but differs Isstantially in inference, Bayesian
network structure learning and model comparison. Expenrtaily, SLIM performs equally well
or better than LINGAM with comparable computational comjile We attribute this mainly
to the stochastic search strategy used, and to parsimoays{gpand identifiability), which is
an explicit part of the model. We propose two extensions &Mhsic i.i.d. linear framework:
non-linear dependence on observed variables, called SISpprée Non-linear Identifiable Mul-
tivariate modeling) and allowing for correlations betwéatent variables, called CSLIM (Corre-
lated SLIM), for the temporal and/or spatial data. The sewmde and scripts are available from
http://cogsys.imm.dtu.dk/slim/

Keywords: parsimony, sparsity, identifiability, factor models, EmdBayesian networks

1. Introduction

Modeling and interpretation of multivariate data are central themes in machimeniga Linear
latent variable models (or factor analysis) and linear directed acyclihgrd@pAGs) are prominent
examples of models for continuous multivariate data. In factor analysisisdetadeled as a linear
combination of independently distributed factors thus allowing for captueeriwh underlying co-
variation structure. In the DAG model, each variable is expressed asseigm on a subset of the
remaining variables with the constraint that total connectivity is acyclic inrdalbave a properly
defined joint distribution. Parsimonious (interpretable) modeling, usingsgdactor loading ma-
trix or restricting the number of parents of a node in a DAG, are good pssuraptions in many
applications. Recently, there has been a great deal of interest in detailbeling of sparsity in
factor models, for example in the context of gene expression data an@Wess 2003; Lucas et al.,
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2006; Knowles and Ghahramani, 2007; Thibaux and Jordan, 200ValGa et al., 2008; Rai and
Daume lll, 2009). Sparsity arises for example in gene regulation bethesatent factors represent
driving signals for gene regulatory sub-networks and/or transcrifdictors, each of which only in-
cludes/affects a limited number of genes. A parsimonious DAG is particulargctatyle from an
interpretation point of view but the restriction to only having observed krgin the model may
be a limitation because one rarely measures all relevant variables. Fuotieetinear relationships
might be unrealistic for example in gene regulation, where it is generallypttehat one can-
not replace the driving signal (related to concentration of a transcrifdictor protein in the cell
nucleus) with the measured concentration of corresponding mRNA. Bayestworks represent a
very general class of models, encompassing both observed and ataties. In many situations
it will thus be relevant to learn parsimonious Bayesian networks with bothtlatgiables and a
non-linear DAG parts. Although attractive, by being closer to what one exgygct in practice,
such modeling is complicated by difficult inference (Chickering 1996 shaivat DAG structure
learning is NP-hard) and by potential non-identifiability. Identifiability meamas #ach setting of
the parameters defines a unique distribution of the data. Clearly, if the mou#l igentifiable in
the DAG and latent parameters, this severely limits the interpretability of the tharadel.

Shimizu et al. (2006) provided the important insight that every DAG hastarfanodel repre-
sentation, that is, the connectivity matrix of a DAG gives rise to a triangular gixiatrix in the
factor model. This provided the motivation for the Linear Non-Gaussiarckcilodel (LINGAM)
algorithm which solves the identifiable factor model using Independent Goemp Analysis (ICA,
Hyvarinen et al., 2001) followed by iterative permutation of the solutions towaiatsgular, aim-
ing to find a suitable ordering for the variables. As final step, the resultk@ B pruned based on
different statistics, for example, Wald, Bonferrogf, second order model fit tests. Model selection
is then performed using some pre-chosen significance level, thus LiNGAddtdrom models with
different sparsity levels and a fixed deterministically found orderingr@ feea possible number of
extensions to their basic model, for instance Hoyer et al. (2008) extenrallibtofor latent variables,
for which they use a probabilistic version of ICA to obtain the variable andepruning to make
the model sparse and bootstrapping for model selection. Although the nemhes $0 work well in
practice, as commented by the authors, it is restricted to very small problemmd (bserved and 1
latent variables). Non-linear DAGs are also a possibility, however findangble orderings in this
case is known to be far more difficult than in the linear case. These meth@itethby Friedman
and Nachman (2000), mainly consist of two steps: performing non-liregaession for a set of
possible orderings, and then testing for independence to prune the reeddbr instance Hoyer
et al. (2009) and Zhang and Himinen (2010). For tasks where exhaustive order enumeration is not
feasible, greedy approaches like DAG-search (see “ideal parkguttithm, Elidan et al., 2007) or
PC (Prototypical Constraint, see kernel PC, Tillman et al., 2009) candxascomputationally
affordable alternatives.

Factor models have been successfully employed as exploratory tools immgtisariate anal-
ysis applications. However, interpretability using sparsity is usually ndtgfathe model, but
achieved through post-processing. Examples of this include, bootstgapptating the solutions
to maximize sparsity (varimax, procrustes), pruning or thresholding. Angbssibility is to im-
pose sparsity in the model through regularization to obtain a maximum a-posteriori estimate
(Jolliffe et al., 2003; Zou et al., 2006). In fully Bayesian sparse fagtodeling, two approaches
have been proposed: parametric models with bimodal sparsity promoting ffest, 2003; Lucas
et al., 2006; Carvalho et al., 2008; Henao and Winther, 2009), anga@mmetric models where
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the number of factors is potentially infinite (Knowles and Ghahramani, 200ibatlix and Jordan,
2007; Rai and Daume l11, 2009). It turns out that most of the paransgtecse factor models can be
seen as finite versions of their non-parametric counterparts, for irstast (2003) and Knowles
and Ghahramani (2007). The model proposed by West (2003) isy &s fthe authors know, the
first attempt to encode sparsity in a factor model explicitly in the form of a piitee remaining
models improve the initial setting by dealing with the optimal number of factors in kewand
Ghahramani (2007), improved hierarchical specification of the spamsiyin Lucas et al. (2006),
Carvalho et al. (2008) and Thibaux and Jordan (2007), hieratc$ticecture for the loading ma-
trices in Rai and Daume 11l (2009) and identifiability without restricting the nhadélenao and
Winther (2009).

Many algorithms have been proposed to deal with the NP-hard DAG steulgarmning task.
LINGAM, discussed above, is the first fully identifiable approach forticmous data. All other
approaches for continuous data use linearity and (at least implicitly) Gaitgsassumptions so
that the model structure learned is only defined up to equivalence clalses in most cases the
directionality information about the edges in the graph must be discardedal@aussian-based
models have the added advantage that they are computationally affordatie imany variables
case. The structure learning approaches can be roughly dividedtatioastic search and score
(Cooper and Herskovits, 1992; Heckerman et al., 2000; Friedman aherK2003), constraint-
based (with conditional independence tests) (Spirtes et al., 2001) anstdge; like LINGAM,
(Tsamardinos et al., 2006; Friedman et al., 1999; Teyssier and Kolles, Zrhmidt et al., 2007,
Shimizu et al., 2006). In the following, we discuss in more detail previou& wathe last category,
as it is closest to the work in this paper and can be considered repteseafdhe state-of-the-art.
The Max-Min Hill-Climbing algorithm (MMHC, Tsamardinos et al., 2006) first lesthe skeleton
using conditional independence tests similar to PC algorithms (Spirtes et al) 200 then the
order of the variables is found using a Bayesian-scoring hill-climbingchedie Sparse Candidate
(SC) algorithm (Friedman et al., 1999) is in the same spirit but restricts thetskeo within a
predetermined link candidate set of bounded size for each variable Ofidexr Search algorithm
(Teyssier and Koller, 2005) uses hill-climbing first to find the ordering, thien looks for the skele-
ton with SC.L; regularized Markov Blanket (Schmidt et al., 2007) replaces the skele&wning
from MMHC with a dependency network (Heckerman et al., 2000) writtea set of local condi-
tional distributions represented as regularized linear regressor® tBmesource of identifiability in
Gaussian DAG models is the direction of the edges in the graph, a still medrapgiwach con-
sists of entirely focusing on inferring the skeleton of the graph by keepegdges undirected as
in Dempster (1972), Dawid and Lauritzen (1993), Giudici and GreefiQ)Lland Rajaratman et al.
(2008).

In this paper we propose a framework called SLIM (Sparse Lineatifadyle Multivariate mod-
eling, see Figure 1) in which we learn models from a rather general di&ss/esian networks and
perform quantitative model comparison between tHeviodel comparison may be used for model
selection or serve as a hypothesis-generating tool. We use the likelihoodeshs®t as a com-
putationally simple quantitative proxy for model comparison and as an altegrtatihe marginal
likelihood. The other two key ingredients in the framework are the use ofs@nd identifiable
model components (Carvalho et al., 2008; Kagan et al., 1973, resglgrtind the stochastic search
for the correct order of the variables needed by the DAG represemtafice LINGAM, SLIM ex-

1. A preliminary version of our approach appears in NIPS 2009: blama Winther, Bayesian sparse factor models
and DAGs inference and comparison.
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Figure 1: SLIM in a nutshell. Starting from a training-test set partition of ¢xtaX*}, our frame-
work produces factor modetd and DAG candidateB with and without latent variables
Z that can be compared in terms of how well they fit the data using test likelihoods
The variable ordering needed by the DAG is obtained as a byproduct of a factor model
inference. Besides, changing the prior over latent variablesoduces two variants of
SLIM called CSLIM and SNIM.

ploits the close relationship between factor models and DAGs. Howevege, wimare interested in
the factor model by itself, we will not constrain the factor loading matrix to haeegular form,
but allow for sparse solutions so pruning is not needed. Rather we rkaytether there exists a
permutation of the factor-loading matrix agreeing to the DAG assumption (intabilgstic sense).
The slab and spike prior biases towards sparsity so it makes sensectofeearpermutation in par-
allel with factor model inference. We propose to use stochastic updatédsefpermutation using
a Metropolis-Hastings acceptance ratio based on likelihoods with the faeiding matrix being
masked. In practice this approach gives good solutions up to at leagtififgnsions. Given a set
of possible variable orderings inferred by this method, we can then le&BsDising slab and spike
priors for their connectivity matrices. The so-called slab and spike priatwso-component mix-
ture of a continuous distribution and degenegfatanction point mass at zero. This type of model
implicitly defines a prior over structures and is thus a computationally attradteraative to com-
binatorial structure search since parameter and structure inferemgeidormed simultaneously.
A key to effective learning in these intractable models is Markov Chain MoratdoGMCMC)
sampling schemes that mix well. For non-Gaussian heavy-tailed distributiorthdikeaplace and
t-distributions, Gibbs sampling can be efficiently defined using appropriéitéténscale mixture
representations of these distributions (Andrews and Mallows, 1974 gl8geshow that our model
is very flexible in the sense that it can be easily extended by only changirgritr distribution of
a set of latent variables, for instance to allow for time series data (CSLbvietated SLIM) and
non-linearities in the DAG structure (SNIM, Sparse non-Linear Identdisdtultivariate modeling)
through Gaussian process priors.
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The rest of the paper is organized as follows: Section 2 describes thed amatiits identifiability
properties. Section 3 provides all prior specification including sparstgniaariables and driving
signals, order search and extensions for correlated data (CSLidW@mlinearities (SNIM). Sec-
tion 4 elaborates on model comparison. Section 5 and Appendix A provideemiew of the
model and practical details on the MCMC-based inference, proposddlowe and computational
cost requirements. Section 6 contains the experiments. We show simulatsets dra artificial
data to illustrate all the features of the model proposed. Real biologicaédpéiments illustrate
the advantages of considering different variants of Bayesian neswdéir all data sets we com-
pare with some of the most relevant existing methods. Section 7 concludesdigttuasion, open
guestions and future directions.

2. Linear Bayesian Networks

A Bayesian network is essentially a joint probability distribution defined via acttidceacyclic
graph, where each node in the graph represents a random vati&hle to the acyclic property of
the graph, its node se&i, ..., %y can be partitioned intd subset§V;,V,,...,Vy} = V, such that if
Xj — X thenx; € Vj, that is,V; contains alparentsof x;. We can then write the joint distribution as
a product of conditionals of the form

d
PO %0) = [POGM)

thusx; is conditionally independent di;|x ¢ Vj} givenV, fori # j. This means thab(xy,...,Xq)
can be used to describe the joint probability of any set of variables ‘bhisagiven. The problem is
that 7/ is usually unknown and thus needs to be (at least partially) inferreddtasarved data.

We consider a model for a fairly general class of linear Bayesian nksaayr putting together
a linear DAG,x = Bx+ z, and a factor modek = Cz+¢&. Our goal is to explain each one of
observed variablesas a linear combination of the remaining ones, a sdtiomindependent latent
variablesz and additive noise. We have then

x=(R®B)x+(Q®C)z+¢, 1)
where® is the element-wise product and we can further identify the following elements:

e Zzis partitioned into two subsets; is a set ofd driving signals for each observed variableiand
Z, is a set ofm shared general purpose latent variablgsis used here to describe the intrinsic
behavior of the observed variables that cannot regarded as “ektanise.

e Ris ad x d binary connectivity matrix that encodes whether there is an edge betwserved
variables, by means aof; = 1 if X, — X;. Since every non-zero elementihis an edge of a
DAG, rij =0 andr;; = 0if rj # O to avoid self-interactions and bi-directional edges, respectively.
This also implies that there is at least one permutation mBtsmch thalP ' RP is strictly lower
triangular where we have used thiais orthonormal the® 1t =P'.

e Q=[Qp Q] is ad x (d 4+ m) binary connectivity matrix, this time for the conditional indepen-
dence relations between observed and latent variables. We assumacthatserved variable
has a dedicated latent variable, thus the firsblumns ofQp are the identity. The remaining
columns can be arbitrarily specified, by meansjpf# O if there is an edge betweanandz; for
d<j<m
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e B andC = [C_ Cp] are respectivelyd x d andd x (d + m) weight matrices containing the edge
strengths for the Bayesian network. Their elements are constrained tinkeero only if their
corresponding connectivities are also non-zero.

The model (1) has two important special cases, (i) if all elemen&andQp are zero it becomes
a standard factor model (FM) and (ii)rifi= 0 or all elements i, are zero it is a pure DAG. The
model is not a completely general linear Bayesian network becauseatimmseto latent variables
are absent (see for example Silva, 2010). However, this restriction idymiairoduced to avoid
compromising the identifiability of the model. In the following we will only wrifeandR explicitly
when we specify the sparsity modeling.

2.1 ldentifiability

We will split the identifiability of the model in Equation (1) in three parts addregBist the factor
model, second the pure DAG and finally the full model. By identifiability we meanetheh dif-
ferent setting of the parametdBsandC gives a unique distribution of the data. In some cases the
model is only unique up to some symmetry of the model. We discuss these symmetrite
effect on model interpretation in the following.

Identifiability in factor modelsx = C_ z, + € can be obtained in a number of ways (see Chapter
10, Kagan et al., 1973). Probably the easiest way is to assume sparSjtyaid restrict its number
of free parameters, for example by restricting the dimensionaliy oAmelym, according to the
Ledermann boundh < (2d 4+ 1 — (8d + 1)1/2) /2 (Bekker and ten Berge, 1997). The Ledermann
bound guarantees the identificationeofind follows just from counting the number of free param-
eters in the covariance matrices»gfe and inC, assuming Gaussianity afand€. Alternatively,
identifiability is achieved using non-Gaussian distributionsZorKagan et al. (Theorem 10.4.1,
1973) states that when at least- 1 latent variables are non-Gaussi@n,is identifiable up to scale
and permutation of its columns, that is, we can iderfﬂty: CLSiPs, whereS andP; are arbitrary
scaling and permutation matrices, respectively. Comon (1994) providaltiesinative well-known
proof for the particular case ofi— 1 = d. TheS; andP; symmetries are inherent in the factor model
definition in all cases and will usually not affect interpretability. Howegeme researchers prefer
to make the model completely identifiable, for example, by makind¢riangular with non-negative
diagonal elements (Lopes and West, 2004). In addition, if all componéntare Gaussian and the
rank of C._ is m, then the distributions af and€ are uniquely defined to within common shift in
mean (Theorem 10.4.3, Kagan et al., 1973). In this paper, we use tHeaussiarz option for two
reasons, (i) restricting the number of latent variables severely limits thdityssabthe model and
(i) non-Gaussianity is a more realistic assumption in many application areassuoh example
biology.

For pure DAG modelx = Bx + Cpzp, identifiability can be obtained using the factor model
result from Kagan et al. (1973) by rewriting the DAG into an equivalantdr modek = Dz with
D = (I —B)~1Cp, see Figure 2. From the factor model result it only follows thas identifiable
up to a scaling and permutation. However, as mentioned above, due to tieigcyhere is at
least one permutation matr such thatP " BP is strictly lower triangular. Now, ik admits DAG
representation, the sanfemakes the permuted = (I — PTBP)~1Cp, triangular withCp on its
diagonal. The constraint on the number of non-zero elemeridsdue to triangularity removes the
permutation freedor®s such that we can subsequently identfyB andCp. It also implies that
any valid permutatio® will produce exactly the same distribution for
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Figure 2: FM-DAG equivalence illustration. In the left side, a DAG model vigtlr variables with
corresponding connectivity matrR, bjj = 1 whenrj; = 1 andCp = I. In the right hand
side, the equivalent factor model with mixing matfx Note that the factor model is
sparse even if its corresponding DAG is dense. The gray boXxesamdR © B represent
elements that must be zero by construction.

In the general case in Equation (D= (I —B)~1C is of sized x (d +m). What we will show
is that even iD is still identifiable, we can no longer obtaBhandC uniquely unless we “tag” the
model by requiring the distributions of driving signats and latent signalg_ to differ. In order to
illustrate why we get non-identifiability, we can wrike= Dz inverting D explicitly. For simplicity
we considem= 1 andP = | but generalizing ton > 1 is straight forward

X1 C11 0 o - CiL b4
X2 bo1C11 C22 o - bo1c1 +CoL r4)
X3 D31C11 4+ b32b21C11  D32Co €33 -+ D31C1 4 D32b1C1 4 832CoL 4 CaL Z3

: i : : . o :
Xd Ciit Y gbida - e e GiL + Y7 bk Zy11

We see from this equation that if all latent variables have the same distribuibey,ais non-
zero then we may exchange the first and last columd to get two equivalent distributions with
different elements foB andC. The model is thus non-identifiable. If the fiistlements in latent
column of C are zero then thé + 1)-th and last column can be exchanged. Hoyer et al. (2008)
made the same basic observation through a number of examples. Interestimgliso see from
the triangularity requirement of the “driving signal” partBfthatP is actually identifiable despite
the fact thatB and C are not. To illustrate that the non-identifiability may lead to quite severe
confusion about inferences, consider a model with only two obseragdblesx = [x1,%] " and
€11 = Cx2 = 1. Two different hypothesi§b,1, ¢y, co } = {0,1,1} and{bys,cy,Co } = {1,1, -1}
with graphs shown in Figure 3 have equivalent factor models written as

Za\ 7
[xl} {101] , and[xl] [101] J
011 2 110 2[

X2 X2

The two models above have the same mixing md;ixip to permutation of columri%. In general
we expect the number of solutions with equivalent distribution may be asdargf corresponding
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Figure 3: Two DAGs with latent variables. They are equivaleamthifis the same distribution &5

to the number of times a column Bffrom its latent part (lastin columns) con be exchanged with a
column from its observed part (firdtcolumns). This readily assumes that the sparsity patten in
is identified, which follows from the results of Kagan et al. (1973).

One way to get identifiability is to change the distributi@asandz_ such that they differ and
cannot be exchanged. Here it is not enough to change the scale crthbles, that is, variance
for continuous variables, because this effect can be counteredstgliregC with S;. So we need
distributions that differ beyond rescaling. In our examples we use Laplad the more heavy-tailed
Cauchy forzp andz_, respectively. This specification is not unproblematic in practical situations
however it can be sometimes restrictive and prone to model mismatch issuasvévtheless show
one practical example which leads to sensible inferences.

In time series applications for example, it is natural to go beyond an i.i.d. model fOne
may for example use a Gaussian process prior for each factor to get srg®tbver time, that is,
zj1,...,Zin|Vj ~ AL(O,Ky;), whereK,, is the covariance matrix with elemerkgny = ky; n(n,n’)
andky, n(-) is the covariance function. For the i.i.d. Gaussian model the source distrilisiimly
identifiable up to an arbitrary rotation mattix that is, the rotated factokdz are still i.i.d. . We
can show that contrary to the i.i.d. Gaussian model, the Gaussian processfi@del is identifi-
able if the covariance functions differ. We need to show that UZ has a different covariance
structure tharZ = [z; ... zy]. We getznz), = diagkynr, ..., Kgrmnn) @ndZ,z), = Uzaz U™ =
Udiag(ky nn, - ..,derm’nrf)UT for the original and rotated variables, respectively. The covariances
are indeed different and the model is thus identifiable if no covarianaeti@uns ky, n(n,n’), j =
1,...,d+ mare the same.

3. Prior Specification

In this section we provide a detailed description of the priors used for @aelof the elements of
our sparse linear identifiable model already defined in Equation (1). \Wensth €, the noise term
that allow us to quantify the mismatch between a selNajbservationsX = [X; ... xn] and the
model itself. For this purpose, we use uncorrelated Gaussian noise centgor A (€|0, W) with
conjugate inverse gamma priors for their variances as follows

N
XIm, W~ [T A (Xn|m, W) ,
[0

d
W, s ~ _ﬂGammﬁtbi‘llss,sr) :
=

where we have already marginalized eu¥ is a diagonal covariance matrix denoting uncorrelated
noise across dimensions andis the mean vector such thaigy = Cz, andmpac = Bxn + Cz,.
In the noise covariance hyperprigg,ands; are the shape and rate, respectively. The selection of
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hyperparameters fd¥ should not be very critical as long as both “signal and noise” hyposhese
supported, that is, diffuse enough to allow for small valuegiofs well as fonp; = 1 (assuming
that the data is standardized in advance). Weset20 ands, = 1 in the experiments for instance.
Another issue to consider when selectiggnds; is the Bayesian analogue of the Heywood problem
in which likelihood functions are bounded below away from zergaends to zero, hence inducing
multi-modality in the posterior ofy; with one of the modes at zero. The latter can be avoided by
specifyingss ands: such that the prior decays to zero at the origin, as we did above. It is well
known, for example, that Heywood problems cannot be avoided usingpapreference priors,
p(wi) O 1/W; (Martin and McDonald, 1975).

The remaining components of the model are described as it follows in fitenmamned sparsity,
latent variables and driving signals, order search, allowing for tzde® data and allowing for non-
linearities. The first part addresses the interpretability of the model bysmwdgarsimonious priors
for C andD. The second part describes the type of non-Gaussian distributiodogen order
to keep the model identifiable. The third part considers how a searchpevetutations of the
observed variables can be used in order to handle the constraints ingrosedrixR. The last two
parts describe how introducing Gaussian process process priorsritotted can be used to model
non-independent observations and non-linear dependencies in ths. DA

3.1 Sparsity

The use of sparse models will in many cases give interpretable results@tehisnotivated by the
principle of parsimony. Also, in many application domains it is also natural fxgorediction point
of view to enforce sparsity because the number of explanatory variaialgexceed the number of
examples by orders of magnitude. In regularized maximum likelihood type fations of learning
(maximum a-posteriori) it has become popular to use one-nbiyrégularization for example to
achieve sparsity (Tibshirani, 1996). In the fully Bayesian inferenttnge(with averaging over
variables), the corresponding Laplace prior will not lead to sparsitaumeeit is very unlikely for
a posterior summary like the mean, median or mode to be estimated as exactlyeaeasgmp-
totically. The same effect can be expected from any continuous distribugied for sparsity like
Student'd, a-stable and bimodal priors (continuous slab and spike priors, IshvaahRao, 2005).
Exact zeros can only be achieved by placing a point mass at zero,,thapiitly specifying that
the variable at hand is zero or not with some probability. This has motivateidtioeluction of
many variants over the years of so-called slab and spike priors consi$ting component mix-
tures of a continuous part anddunction at zero (Lempers, 1971; Mitchell and Beauchamp, 1988;
George and McCulloch, 1993; Geweke, 1996; West, 2003). In thedjgn, the columns of ma-
tricesC or B encode respectively, the connectivity of a factor or the set of passstsciated to an
observed variable. It is natural then to share information across elemaisimn j by assuming
a common sparsity level-1vj, suggesting the following hierarchy

Gij [dlij, - ~ (1—aj)d(cij) +aijCont(cij|-) ,
Gij|vj ~ Bernoulli(g;j[v;) , )
Vi Bm, Bp ~ BetaVv;|BpBm, Bp(1—Bm)) ,

whereQ, the binary matrix in Equation (1) appears naturallf) is a Diracd-function, Cont:)
is the continuous slab component, Berndu)liand Betg-) are Bernoulli and beta distributions,
respectively. Reparameterizing the beta distribution as(Bgte3/m,3) and taking the number of
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columnsmof Q ® C to infinity, leads to the non-parametric version of the slab and spike model with
a so-called Indian buffet process prior over the (infinite) masking m&trix {q;; } (Ghahramani
et al., 2006). Note also thaf; |v; is mainly used for clarity to make the binary indicators explicit,
nevertheless in practice we can work directly witfjv;,- ~ (1—v;)d(ci;) +Vv;Cont(cij|-) because
gij can be marginalized out.

As illustrated and pointed out by Lucas et al. (2006) and Carvalho @08 the model with
a shared beta-distributed sparsity level per factor introduces theitattleside-effect that there is
strong co-variation between the elements in each column of the masking matrigxdraple, in
high dimensions we might expect that only a finite number of elements areanonimplying a
prior favoring a very high sparsity rate-lv;. Because of the co-variation, even the parameters that
are clearly non-zero will have a posterior probability of being non-zefq; = 1/, -), quite spread
over the unit interval. Conversely, if our priors do not favor sparditgrgly, then the opposite
situation will arise and the solution will become completely dense. In generaldiificsult to set
the hyperparameters to achieve a sensible sparsity level. Ideally, we iifeutd have a model
with a high sparsity level with high certainty about the non-zero parameéféescan achieve this
by introducing a sparsity parametgyj for each element of which has a mixture distribution with
exactly this property

gijInij ~ Bernoulli(g;j[nij) ,

3
Nij|[Vj, 0p, Om ~ (1—v;j)d(Nij) + vjBetanij|o pdim, 0p(1—0m)) . )

The distribution oven);; expresses that we expect parsimony: eitheis zero exactly (implying
thatq;; andcjj are zero) or non-zero drawn from a beta distribution favoring highesalthat is,
gij andcij are non-zero with high probability. We usg = 10 andam = 0.95 which has mean
am = 0.95 and varianceim(1—am)/(1+ap) ~ 0.086. The expected sparsity rate of the modified
model is(1—am)(1—vj). This model has the additional advantage that the posterior distribution
of njj directly measures the distribution pfqg;j = 1|x,-). This is therefore the statistic for rank-
ing/selection purposes. Besides, we may want to reject interactions wittuhiggrtainty levels
when the probability op(qgij = 1]x, -) is less or very close to the expected valug(1—v;).

To complete the specification of the prior, we let the continuous slab partuatieng (2) be
Gaussian distributed with inverse gamma prior on its variance. In additioncale the variances
with ; as

Cont(cij |y, Tij) = A(cij |0, YiTij ) 4
T st ~ Gammdt; Hts tr) . “)
This scaling makes the model easier to specify and tend to have better mixpeytps (see Park

and Casella, 2008). The slab and spikeBdiDAG) is obtained from Equations (2), (3) and (4) by
simply replacinggij with bjj andg;; with rjj. As already mentioned, we usg = 10 andam = 0.95

for the hierarchy in Equation (3). For the column-shared paramegteefined in Equation (2) we

set the precision tf, = 100 and consider the mean values for factor models and DAGs separately.
For the factor model we set a diffuse prior by makgag= 0.9 to reflect that some of the factors can

be in general nearly dense or empty. For the DAG we consider two settings,ekpect to obtain
dense graphs we sgt, = 0.99, otherwise we s§},, = 0.1. Both settings can produce sparse graphs,
however smaller values @, increase the overall sparsity rate and the gap betyweéen= 0) and

p(rij = 1). A large separation between these two probabilities makes interpretationaabiaso
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Figure 4: Slab and spike prior example. (a) Posterior unnormalized derfsitithe magnitude of
two particular elements &. (b) Posterior density faf;j = p(cij # 0|x,-). Here,css # 0
andcs4 = 0 correspond to elements of the mixing matrix from the experiment shown in
Figure 8.

helps to spot non-zeros (edges) with high uncertainty. The hypengseas for the variance of
the non-zero elements & andC are set to get a diffuse prior distribution bounded away from
zero (s = 2 andt; = 1), to allow for a better separation between slab and spike components. For
the particular case df, in principle the prior should not have support on zero at all, that is, the
driving signal should not vanish, however for simplicity we allow this anywaa it has not given
any problems in practice. Figure 4 shows a particular example of the posGg, n;;|x,-) for

two elements ofC under the prior just described. In the exampulg, # 0 with high probability
according tan;j, whereass, is almost certainly zero since most of its probability mass is located
exactly at zero, with some residual mass on the vicinity of zero, in Figude 4#fahe one level
hierarchy Equation (2) sparsity parameters are shaygd= ns4 = v4. The result would then be
less parsimonious with the posterior densityvgfbeing spread in the unit interval with a single
mode located close 8.

3.2 Latent Variables and Driving Signals

We consider two different non-Gaussian—heavy-tailed priorgfam order to obtain identifiable
factor models and DAGs. A wide class of continuous, unimodal and symmetitbdtions in one
dimension can be represented as infinite scale mixtures of Gaussians andhigry convenient for
Gibbs-sampling-based inference. We focus on Studeatsl Laplace distributions which have the
following mixture representation (Andrews and Mallows, 1974)

Laplacéz|y,\) :/ A (z]p, v)Exponentialu|A?)du , (5)
0

(20,0 = | N(zm,qu)Gamma(ul 2,2>du, ©)
0

where) > 0 is the rateg? > 0 the scalep > 0 is the degrees of freedom, and the distributions
have exponential and gamma mixing densities accordingly. For varyingekegof freedond, the

t distribution can interpolate between very heavy-tailed (power law andhyauben6 = 1) and
very light tailed, that is, it becomes Gaussian when the degrees of freggproaches infinity. The
Laplace (or bi-exponential) distribution has tails which are intermediate betaedwith finite
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degrees of freedom) and a Gaussian. In this sensé,distribution is more flexible but requires
more careful selection of its hyperparameters because the model maypdecn-identifiable in
the larged limit (Gaussian).

An advantage of the Laplace distribution is that we can fix its parametet and let the model
learn the appropriate scaling froéhin Equation (1). If we use the pure DAG model, we will need
to have a hyperprior fox? in order to learn the variances of the latent variables/driving signals, as in
Henao and Winther (2009). A hierarchical prior for the degreessafdom in thé distribution is not
easy to specify because there is no conjugate prior available with a slaridsed form. Although
a conjugate prior exists, is not straightforward to sample from it, since ricah@rtegration must
be used to compute its normalization constant. Another possibility is toftieesaa discrete variable
so computing the normalizing constant becomes straight forward.

Laplace and Studentisare not the only distributions admitting scale mixture representation.
This mean that any other compatible type can be used as well, if the applicagigineseit, and
without considerable additional effort. Some examples include the logistidodistn (Andrews
and Mallows, 1974), the stable family (West, 1987) and skewed versidmsavy-tailed distribu-
tions (Branco and Dey, 2001). Another natural extension to the mixtwiesnse could be, for
example, to set the mean of each component to arbitrary values and letntbhemof components
be an infinite sum, thus ending up providing each factor with a Dirichlet ggopgor. This might
be useful for cases when the latent factors are expected to be stattelesters due to the presence
of subgroups in the data, as was shown by Carvalho et al. (2008).

3.3 Order Search

We need to infer the order of the variables in the DAG to meet the constraintsédpoR in Sec-
tion 2. The most obvious way is to try to solve this task by inferring all paramé¢RB,C,z, €}

by a Markov chain Monte Carlo (MCMC) method such as Gibbs sampling. Menvalgorithms
for searching over variable order prefer to work with models for whitameters other thahcan
be marginalized analytically (see Friedman and Koller, 2003; Teyssier alelrK2005). For our
model, where we cannot marginalize analytically d€due toR being binary), estimating andB

by Gibbs sampling would mean that we had to propose afméw fixed B. For example, exchang-
ing the order of two variables would mean that they also exchange parariretbe DAG. Such a
proposal would have very low acceptance, mainly as a consequetioe size of the search space
and thus very poor mixing. In fact, for a giveimumber of variables there agé possible orderings
P, while there arg!2(4(d+2m-1))/2 nossible structures fdiP, B, C}. We therefore opt for an alterna-
tive strategy by exploiting the equivalence between factor models and BGen in Section 2.1.
In particular form = 0, sinceB can be permuted to strictly lower triangular, tHer-= (I — B)~'Cp
can be permuted to triangular. This means that we can perform inferentdgeffactor model to
obtainD while searching in parallel for a set of permutatidghshat are in good agreement (in a
probabilistic sense) with the triangular requiremenbDofSuch a set of orderings is found during
the inference procedure of the factor model. To set up the stochastithse& need to modify the
factor model slightly by introducing separate data (row) and factor (colyp@mutationsP andPs

to obtainx = P" DPsz+ €. The reason for using two different permutation matrices, rather than only
one like in the definition of the DAG model, is that we need to account for theation free-
dom of the factor model (see Section 2.1). Using the same permutation fanwolumn would
thus require an additional step to identify the columns in the factor model. We imf@kence for
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the unrestricted factor model, but propd®eandP; independently according w(P*|P)q(P5 |Ps).
Both distributions draw a new permutation matrix by exchanging two randomlsechelements,
for example, the order may change[as xz,x3,x4]T — [xl,x4,x3,x2]T. In other words, the pro-
posalsq(P*|P) and q(Ps|Ps) are uniform distributions over the space of transpositionsPfand
Ps. Assuming we have no a-priori preferred ordering, we may use a plgtssHastings (M-H)
acceptance probability mif, _,,) with &_,, as a simple ratio of likelihoods with the permuted
masked to match the triangularity assumption. Formally, we use the binary vhgskntaining
zeros above the diagonal of idfirst columns) and write

£ N(X|(P)T (Mo PD(P;)")PfZ, W)
T A(XIPT(M@PDP)PZ,W)

(7)

whereM @ D is the maske®® andZ = [z; ...zy]. The procedure can be seen as a simple approach
for generating hypotheses about good orderings, producing cldsarigular versions ob, in a
model where the slab and spike prior provide the required bias towaadsityp Once the inference

is done, we end up having an estimate for the desired distribution over péiomsR= 5 1;p,,
wheremt= [y TR ...] is a sparse vector containing the probability P& P;, which in our case

is proportional to the number of times permutatiBnwas accepted by the M-H update during
inference. Note tha®; is just a nuisance variable that does not need to be stored or summarized.

3.4 Allowing for Correlated Data (CSLIM)

For the case where independence of observed variables canmsstumes, for instance due to (time)
correlation or smoothness, the priors discussed before for the latéatilea and driving signals do
not really apply anymore, however the only change we need to make is toelowents in rows
of Z to correlate. We can assume then independent Gaussian processi@Ejop each latent
variable instead of scale mixtures of Gaussians, to obtain what we havd calielated sparse
linear identifiable modeling (CSLIM). For a set Wfrealizations of variablg we set

Zj1,...,Zn|0j ~ GP(Zj1,...,Zin ko (")) , (8)

where the covariance function has the fdgnn(n,n') = exp(—v;(n—n')2), {n,n’} is a pair of ob-
servation indices or time points angl is the length scale controlling the overall level of correlation
allowed for each variable (row) id. Conceptually, Equation (8) implies that each latent varigble
is sampled from a function and the GP acts as a prior over continuous fusic8nce such a length
scale is very difficult to set just by looking at the data, we further plamgponu; as

Ujlus,K ~ Gammauj|us,K) , K|ks,k ~ Gammak|ks,k) . 9)

Given that the conditional distribution of = [u1,...,Uy] is not of any standard form, Metropolis-
Hastings updates are used. In the experiments we useghaks = 2 andk, = 0.02. The details
concerning inference for this model are given in Appendix A.

It is also possible to easily expand the possible applications of GP priors icdhiext by,
for instance, using more structured covariance functions through sgatare of Gaussian rep-
resentations to obtain a prior distribution for continuous functions with héalgd behavior—a
t-processes (Yu et al., 2007), or learning the covariance functioredsiging inverse Wishart hy-
perpriors.
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3.5 Allowing for Non-linearities (SNIM)

Provided that we know the true ordering of the variables, th&tis known therB is surely strictly
lower triangular. It is very easy to allow for non-linear interactions in th&&DAodel from Equation
(1) by rewriting it as

Px=(R®B)Py+(Q®C)z+¢, (10)

wherey = [y1,...,yd]" andyis,...,yin|0i ~ GP(Yi1,...,¥in |k x(-)) has a Gaussian process prior
with for instance, but not limited to, a stationary covariance functionkike(x,x’) = exp(—u;(x —
x')?), similar to Equation (8) and with the same hyperprior structure as in EquatjoiTks is a
straight forward extension that we call sparse non-linear multivariate Ingd&NIM) that is in
spirit similar to Friedman and Nachman (2000), Hoyer et al. (2009), ZhadgHyvarinen (2009),
Zhang and Hydrinen (2010) and Tillman et al. (2009), however instead of treating trerenk
multiple regression problem in Equation (10) and the conditional indeperdeinthe observed
variables independently, we proceed within our proposed framewoldttiryg the multiple regres-
sor be sparse, thus the conditional independences are encodeghtRrolihe main limitation of

the model in Equation (10) is that if the true ordering of the variables is umknthe exhaustive
enumeration oP is needed. This means that this could be done for very small networledan-

ple, up to 5 or 6 variables. In principle, an ordering search procddutbe non-linear model only
requires the latent variabledo have Gaussian process priors as well. The main difficulty is that in
order to build covariance functions famwe need a set of observations that are not available because
zis latent.

4. Model Comparison

Quantitative model comparison between factor models and DAGs is a keyliagrén SLIM. The
joint probability of dataX and parameters for the factor model part in Equation (1) is

p(X,C,Z.¢,-) = p(X|C,Z,&)p(C|-)p(Z|-)p(€)P(:) ,
where(-) indicates additional parameters in the hierarchical model. Formally the Baymsidel
selection yardstick, the marginal likelihood for mociél

IO(XIM)Z/p(XIG,Z)p(GW)D(ZIM)deZ,

can be obtained by marginalizing the joint over the param@eand latent variableZ. Computa-
tionally this is a difficult task because the marginal likelihood cannot be writeanaaverage over
the posterior distribution in a simple way. It is still possible using MCMC methamtsexample
by partitioning of the parameter space and multiple chains or thermodynamicitivegisee Chib,
1995; Neal, 2001; Murray, 2007; Friel and Pettitt, 2008), but in garnemust be considered as
computationally expensive and non-trivial. On the other hand, evaluagrgkéiihood on a test set
X*, using predictive densitigs(X*|X, M) is simpler from a computational point of view because it
can be written in terms of an average over the posterior ointeasive variablesp(C, €,-|X) and
the prior distribution of thextensive variableassociated with the test poirtg(Z*|-) as

Lem = p(X*|X, Mew) = / P(X*(Z*,©rm,)P(Z*]) P(OFm, | X)dZ*dOmd(-) ,  (11)

2. Intensive means not scaling with the sample size. Extensive meaimgsgith sample size in this case the size of
the test sample.
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where®gy = {C,€}. This average can be approximated by a combination of standard sampling
and exact marginalization using the scale mixture representation of the-tagl@dydistributions
presented in Section 3.2. For the full DAG model in Equation (1), we will metage over permu-
tationsP but rather calculate the test likelihood for a number of candid@ifes...,P(©. ... as

def

Loag = p(X* [P, X, Mpac) ,
— [ P(X"IP9, X, Z",@0nc. )P(Z" | P(@0sc. [X)dZ dODscd() . (12)

where®pac = {B,C,€}. We use sampling to compute the test likelihoods in Equations (11) and
(12). With Gibbs, we draw samples from the posterior distributio(@gy, -|X) andp(Opag, - | X),
where (-) is shorthand for example for the degrees of freeddnif Studentt distributions are
used. The average over the extensive variables associated with tipeitestp(Z*|-) is slightly
more complicated because naively drawing samples fp0fi1|-) results in an estimator with high
variance—fon); < vj,. Instead we exploit the infinite mixture representation to marginalize exactly
Z* and then draw samples in turn for the scale parameters. Omitting the permutatiaresiair
clarity, in general we get

P(X*©,-) /p (X*1Z*,8,-)p(Z*|)dzZ* ,

Nrep

[/ AxiIma. Z0) 1 dUJﬂNinN AImn, Zn)

rep

whereNep is the number of samples generated to approximate the intractable intdgpat (500
in the experiments). For the factor mode) = 0 andZ,, = CDUnCE +W. For the DAG,mj = Bxj,
and Z, = CU,C" +W. The covariance matrixJ, = diag(Vin, - - -, V(g+mn) With elementsujy,
is sampled directly from the prior, accordingly. Once we have comppted|®gy,-) for the
factor model andp(X*|@pagc, -) for the DAG, we can use them to average opé®gy,-|X,) and
P(®pac, -|X) to obtain the predictive densitiggX*| X, Mrm) and p(X*|X, Mpac), respectively.

For the particular case in whick and consequently are correlated variables—CSLIM, we
use a slightly different procedure for model comparison. Insteadiofustest set, we randomly
remove some proportion of the elementsxond perform inference with missing values, then we
summarize the likelihood on the missing values. In particular, for the factor InagdeseM niss®
X =Mniss® (QL ® CLZ + &) whereM piss is @ binary masking matrix with zeros corresponding to
test points, that is, the missing values. See details in Appendix A. Note thattiéms is not
exclusive to CSLIM thus can be also used with SLIM or when the obseta¢a contain actual
missing values.

5. Model Overview and Practical Details

The three models described in the previous section namely SLIM, CSLINSAHEI can be sum-
marized as a graphical model and as a probabilistic hierarchy as follows
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Xn|W,¥n, Zn, W ~ N (Xn|W[yn Zn]Tal‘p) , W=[BC], ([ k=t:zd+m v |
0 s, s ~ Gammay; s, ) . Q
Wik [ i, Wi, Tik ~ (1 — hix) 8o (Wik ) + hik AL (Wik |0, WiTik ) [ Tik 1]
hik|r]ik ~ Bernoulli(hikmik) s H= [R Q} s Wlk? ?hik
Nik|Vk, Op, Om ~ (1 —Vi)3(Nik) + VkBetanik|otpOm, ap(1—am)) , Q:\—Q
Vk|Bm>Bp ~ Beta(Vk|Bme,Bp(1—Bm)) ) Ry
T s, tr ~ Gammat; Yts,tr) 1 nl:NO (,)/ Wi
2o Znl0 ~ {nanjnm,um), (SLIM) Zn é Xn
GP(zj1,...,Zn[Ky; (")), (CSLIM) Vin
i Yo N{xil,...,xiN , (SLIM) | Ujn i{)ui
GP(Yi1, - -, Yinlku x(-)) ,  (SNIM) (i=tdrm J{Li=t:d J

where we have omitteB and the hyperparameters in the graphical model. Latent variable and driv
ing signal parameter®) can have one of several priors: Exponerititd®) (Laplace),
Gammdu~1(6/2,0/2) (Student's) or Gammaéu|us, K) (GP), see Equations (5), (6) and (9), respec-
tively. The latent variables/driving signatg, and the mixing/connectivity matrices with elements
cij or bjj are modeled independently. Each elemerBiandC has its own slab variancg; and
probability of being non-zern;;. Moreover, there is a shared sparsity rate per colugnVariables

Ljn are variances i¢j, use a scale mixture of Gaussian’s representation, or length scales in the GP
prior case. Since we assume no sparsity for the driving signalss 1 ford+i =k andng =0

for d+i # k. In addition, we can recover the pure DAG by making= 0 and the standard factor
model by making insteaqi = 0 fork < 2d. All the details for the Gibbs sampling based inference
are summarized in appendix A.

5.1 Proposed Workflow

We propose the workflow shown in Figure 1 to integrate all elements of Shélvhely factor model
and DAG inference, stochastic order search and model selection usidigtive densities.

1. Partition the data intX, X*}.

2. Perform inference on the factor model and stochastic order se@aok Gibbs sampling
update consists of computing the conditional posteriors in Equations (), (L5), (16),
(17), (18) and (19) in sequence, followed by several repetitionsusee10) of the M-H
update in Equation (7) for the permutation matri€esndP;.

3. Summarize the factor model, mair@ly {n;; } and Lgw using quantiles (0.025, 0.5 and 0.975).

4. Summarize the ordering®,. Select the topm,, candidates according to their frequency
during inference in step 2.
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Figure 5: Runtime comparison.

5. Perform inference on the DAGs for each one of the ordering catetidP(D) ... P(Mo) ys-
ing Gibbs sampling by computing Equations (13), (14), (15), (16), ((I18) and (19) in
sequence, up to minor changes described in Appendix A.

6. Summarize the DAGSB, C., {ni} and L,(DQG,...,L,(D'E&") using quantiles (0.025, 0.5 and
0.975). Note tha{ni} contains non-zero probabilities f& andQ corresponding t® and
CL, respectively.

We use medians to summarize all quantities in our model beéyBand{ni } are bimodal while
the remaining variables are in general skewed posterior distributionsrehde with GP priors
for time series data (CSLIM) or non-linear DAGs (SNIM) is fairly similar to the i.cdse, see
Appendix A for details. Source code for SLIM and all its variants preploso far has been made
available atttp://cogsys.imm.dtu.dk/slim/ as Matlab scripts.

5.2 Computational Cost

The cost of running the linear DAG with latent variables or the factor modelighly the same, that

is, O(Nsd?N) whereN;s is the total number of samples including the burn-in period. The memory
requirements on the other hand are approximzmélypdz) if all the samples after the burn-in period
N, are stored. This means that the inference procedures scale relgseahlif Ns is kept in the
lower ten thousands. The non-linear version of the DAG is considerahlg expensive due to the
GP priors, hence the computational cost rises up(ss(d — 1)N2).

The computational cost of LINGAM, being the closest to our linear models, islydépendent
on the statistic used to prune/select the model. Using bootstrapping resm{tsﬁm whereN, is the
number of bootstrap samples. The Wald statistic lead3(t¥), while Wald withx? second order
model fit test amounts to(d”). As for the memory requirements, bootstrapping is very economic
whereas Wald-based statistics requi@®).

The method for non-linear DAGs described in Hoyer et al. (2009) is éefiar a pair of vari-
ables, and it uses GP-based regression and kernelized indepenestsc The computational cost
is O(NgN®) whereNg is the number of gradient iterations used to maximize the marginal likelihood
of the GP. This is the same order of complexity as our non-linear DAG sampler.

Figure 5 shows average running times in a standard desktop machine (e# 26GHz and
4Gb RAM) over 10 different models withl = 1000 andd = {10,20,50,100}. As expected,
LINGAM with bootstrap is very fast compared to the others while our modelaggires LINGAM
with Wald statistic as the number of observations increases. We did not inciN@®@AM with

879



HENAO AND WINTHER

second order model fit because fbe= 50 it is already prohibitive. For this small test we used a
C implementation of our model witNs = 19000. We are aware that the performance of a C and
a Matlab implementation can be different, however we still do the comparisaube¢he most
expensive operations in the Matlab code for LINGAM are computed thr@lgkS routines not
involving large loops, thus a C implementation of LINGAM should not be noticetasiter than its
Matlab counterpart.

6. Simulation Results

We consider six sets of experiments to illustrate the features of SLIM. Inaaparison with other
methods we focus on the DAG structure learning part because it is soineasiar to benchmark
a DAG than a factor model. However, we should stress that DAG learningti®je component
of SLIM. Both types of model and their comparison are important, as will betifited through

the experiments. For the reanalysis of flow cytometry data using our modelstitative model

comparison favors the DAG with latent variables rather than the standztat faodel or the pure
DAG which was the paradigm used in the structure learning approactchs®aal. (2005).

The first two experiments consist of extensive tests using artificial datsatug originally from
LINGAM and network structures taken from the Bayesian net repositdfy.test the features of
SLIM and compare with LINGAM and some other methods in settings where thaygraved to
work well. The third set of experiments addresses model comparisomuhth fand fifth present
results for our DAG with latent variables and the non-linear DAG (SNIMbpoth artificial and real
data. The sixth uses real data previously published by Sachs et &) @0f the last one provides
simple results for a factor model using Gaussian process priors for tehspovathness (CSLIM),
tested on a time series gene expression data set (Kao et al., 2004) .aseslhee ran 10000 samples
after a burn-in period of 5000 for the factor model, and a single chain 09 3amples and 1000
as burn-in iterations for the DAG, that il = 19000 used in the computational cost comparison.
As a summary statistic we use median values everywhere, and Laplace tmstor the latent
factors if not stated otherwise.

6.1 Artificial Data

We evaluate the performance of our model against LINGAMing the artificial model generator
presented and fully explained in Shimizu et al. (2006). Concisely, thegemg@roduces both dense
and sparse networks with different degrees of sparZitis generated from a heavy-tailed non-
Gaussian distribution through a generalized Gaussian distribution with zean, mgit variance
and random shapé& is generated recursively using Equation (1) with= 0 and then randomly
permuted to hide the correct ordBr, Approximately, half of the networks are fully connected while
the remaining portion comprises sparsity levels between 10% and 80%. Hisisg networks
(0% sparsity) in the benchmark is crucial because in such cases teetamaler of the variables is
unique, thus more difficult to find. This setup is particularly challenging bsedhe model needs
to identify both dense and sparse models. For the experiment we haveitgein000 different
data set/models usiry= {5,10}, N = {200,500 100Q 2000} and the DAG was selected using the

median of the training likelihoodp(X [P RW B® c¥ 7z w ) fork=1,...,mgp.

3. Matlab package (v.1.42) availablehtp://www.cs.helsinki.fi/group/neuroinf/lingam/
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Figure 6: Ordering accuracies for LINGAM suite usidg=5 in (a,b) andd = 10 in (c,d). (a,c)
Total correct ordering rates where DENSE is our factor model withpatsity prior and
DS corresponds to DENSE but using the deterministic ordering seardhirulsSeNGAM.
(b,c) Correct ordering rate vs. candidates from SLIM. The croaedshorizontal lines
correspond to LINGAM while the triangles are accumulated correct orgieEnross can-
didates used by SLIM.

6.1.1 ORDER SEARCH

With this experiment we want to quantify the impact of using sparsity, stochastering search
and more than one ordering candidate, thatng, = 10 in total. Figure 6 evaluates the proportion
of correct orderings for different settings. We have the followingrabiations for this experiment,
DENSE is our factor model without sparsity prior, that is, assuming &t = 1) = 1 a priori.
DS (deterministic search) assumes no sparsity as in DENSE but replacgtechastic search for
permutations with the deterministic approach used by LINGAM, that is, we refitecM-H update
from Equation (7) by the procedure described next: after inferemceomputeD—* followed by a
column permutation search using the Hungarian algorithm and a row permesiarh by iterative
pruning until getting a version dd as triangular as possible (Shimizu et al., 2006). Several com-
ments can be made from the results, (i) &et 5 there is no significant gain for increasiNgmainly
because the size of the permutation space is small, that is, 5!. (ii) The ditere performance
between SLIM and DENSE is not significative because we look for tri@nguoatrices in a prob-
abilistic sense, hence there is no real need for exact zeros but jystall values, this does not
mean that the sparsity in the factor model is unnecessary, on the congatiflmeed it if we want
to have readily interpretable mixing matrices. (iii) Using more than one ordeandidate consid-
erably improves the total correct ordering rate, for example, by alméstf80d = 5, N = 200 and
35% ford = 10, N = 500. (iv) The number of accumulated correct orderings found saties the
number of candidates used increases, suggesting that further ingresgsp, will not considerably
change the overall results. (v) The number of correct orderingstemdccumulate on the first
candidate wheiN increases since the uncertainty of the estimation of the parameters in the factor
model decreases accordingly. (vi) When the network is not densejld bappen that more than
one candidate has a correct ordering, hence the total rates (triaagde®t just the sum of the bar
heights in Figures 6(b) and 6(d). (vii) It seems that exceptiferl0, N = 5000 it is enough to con-
sider just the first candidate in SLIM to obtain as many correct orderia@gsNGAM does. (viii)
From Figures 6(a) and 6(c), the three variants of SLIM considergdnpe better than LINGAM,
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Figure 7: Performance measures for LINGAM suite. Results include thegeettin- {5,10}, N =
{200,500,1000Q 2000}, four model selectors for LINGAM (bootstrap, Wald, Bonferroni
and Wald +x? statistics) and sevep-value cutoffs for the statistics used in LINGAM
(0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5). ORACLE correspondrsatieoresults for
SLIM, both computed for two settings: diffufl, = 0.99 and spars@y, = 0.1 priors.
Markers close to the top-left corner denote better results in average.

even when using the same single candidate ordering search propoSadbyu et al. (2006). (ix)

In some cases the difference between SLIM and LINGAM is very largegeXample, ford = 10
using two candidates amdl= 1000 is enough to obtain as many correct orderings as LINGAM with
N = 5000.

6.1.2 DAG LEARNING

Now we evaluate the ability of our model to capture the DAG structure in the dedsided the
permutation matrices obtained in the previous stage as a result of our siwohder search. Results
are summarized in Figure 7 using receiving operating characteristic (R@@s. The true and
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false positive rates are averaged over the number of trials (100 ¢brsetting to make the scaling
in the plots more meaningful given the various levels of sparsity considéhedrates are computed
in the usual way, however it must be noted that the true number of abdeniriia network can be
as large adl(d — 1), that is, twice the number of links in a DAG, because in the case of an estimated
DAG based in a wrong ordering the number of false positives can sumdfgte 1) /2 even if the
true network is not empty. For LINGAM we use four different statistics taprthe DAG after the
ordering has been found, namely bootstrapping, Wald, Bonferrah’aid with second ordex?
model fit test. In every case we run LINGAM for 7 differgmvalue cutoffs, namely, 0.0005, 0.001,
0.005, 0.01, 0.05, 0.1 and 0.5 to build the ROC curve. For SLIM we considewo settings foBn,
discussed in Section 3.1, that is, a diffuse prior supporting the existédemse graphf,» = 0.99
andfmn = 0.1. In order to test how good SLIM is at selecting one DAG out ofrtig candidates,
we also report the oracle results under the name of ORACLE, where iy esse we select the
candidate with less error instead of argmaX|P{* R, BK), Cg‘),z, W, ). UsingPm=0.99is
not very useful in practice because in a real situation we expect thahtterlying DAG is sparse,
however the LINGAM suite has as many dense graphs as sparse oneg fdakin0.1 a poor
choice. From Figure 7, it is clear that f8, = 0.99, SLIM is clearly superior, providing the best
true positive rate (TPR) - false positive rate (FPR) tradeoff.froe 0.1 there is no real difference
between SLIM and some settings of LINGAM (Wald and Bonferroni). Comiog SLIM’s model
selection procedure, it can be seen that the difference between SIAKMRACLE nicely decreases
as the number of observations increases. We also tested the DAG leaiotegyre in SLIM when
the true ordering is known (results not shown) and we found only asresll difference compared
to ORACLE. It is important to mention that further increasing or redu@ngloes not significantly
change the results shown; this is becafigaloes not fully control the sparsity of the model, thus
even forBy, = 1 the model will be still sparse due to element-wise link confidenge, As for
LINGAM, it seems that Wald performs better than Wald?, however just by looking at Figure 7,
it is to be expected that for largét the latter perform better because the Wald statistic alone will
tend to select more dense models.

6.1.3 ILLUSTRATIVE EXAMPLE

Finally we want to show some of the most important elements of SLIM taking oceessfully
estimated example from the LINGAM suite. Figure 8 shows results for a pantiDA& with
10 variables obtained using 500 observations, see Figures 8(d) entbB¢he ground truth and
the estimated DAG, respectively. True and estimated mixing matfickes the equivalent factor
model are also shown in Figures 8(a) and 8(b), respectively. In tatahigorithm produced 92
orderings out of 3 x 1P possible, from which aling, = 10 candidates were correct. Figure 8(c)
shows the first 50 candidates and their frequency during sampling, #uedlarea encloses the
myp = 10 candidates. From Figure 8(f) we see that the elemersasé correctly estimated and
their credible intervals are small, mainly due to the lack of model mismatch. FiggjesBows

a good separation between zero and non-zero elememsasfsummarized bp(r;; = 1|X,-). It

is worthwhile mentioning that using, = 0.99 instead of3,, = 0.1 in this example, still produces
the right DAG, although the separation between zero and non-zero akeindtigure 8(g) will be
smaller and with higher uncertainty, that is, larger credible intervals.
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Figure 8: Ground truth and estimated structures. (a) Ground truth mixing m@r>Estimated
mixing matrix using our sparse factor model. Note the sign ambiguity in some of the
columns. (c) First 50 (out of 92) ordering candidates produced byrmthod during
inference and their frequency, the firs,, candidates were used for to learn DAGs.
(d) Ground truth DAG. (e) Top candidate estimated using SLIM. (f) Estimatedian
weights for the DAG including 95% credible intervals and ground truth (sg)a (g)
Summary of link probabilities measuredmgg = p(ri; = 1/X,-).
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Figure 9: Performance measures for the Bayesian networks reposikpgyiments. Each con-
nected marker correspond to a differgavalue in LINGAM, starting left to right from
0.005. Disconnected markers denote SLIM results. Numbers in parestiredicate
number of variables.

6.2 Bayesian Networks Repository

Next we want to compare our method against LINGAM on some realistic stesctiWe consider
7 well known benchmark structures from the Bayesian network repggittamely alarm, barley,
carpo, hailfinder, insurance, mildew and wate 37, 48, 61, 56, 27, 35, 32 respectively). Since
we do not have continuous data for any of the structures, we gend@tiata sets of sizd = 500
for each of them using heavy-tailed distributions with different parametetsEquation (1) with
m= 0, in a similar way as we did for the previous set of experiments, Risiet to the ground truth
andB from sign(A((0,1)) + A((0,0.2). For LINGAM, we only use Wald statistics because as seen
in the previous experiment, it performs significantly better that bootstrappiggin, we estimate
models for differentp-value cutoffs (0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.5). FaviSké
setPmn = 0.1 since all the networks in the repository are sparse. Figures 9(3)a®@9(c) show
averaged performance measures respectively as ROC curves gmdpbetion of links reversed in
the estimated model due to ordering errors.

In this case, the results are mixed when looking at the performances abtgigare 9(b) shows
that SLIM is better than LINGAM in the larger data sets with a significant diffeee Figure 9(a)
shows for the remaining four data sets, that LINGAM is better in two casessmonding to the
insurance and mildew networks. In general, both methods perform isagomell given the size
of the problems and the amount of data used to fit the models. However, ®bidd to be more
stable, when looking at the range of the true positive rates. It is importawtéctimat the best and
worst case for SLIM correspond to the largest and smallest netwesgectively. We do not have
a sensible explanation about why SLIM is performing that poorly on theamae network. Figure
9(c) implicitly reveals that both methods are unable to find the right orderitigeofariables.

We also tried the following methods with encoded Gaussian assumptions: rst&#da search,
order search, sparse candidate pruning then DAG search (Friedrmbanl®99), LIMB then DAG

4. Network structures available kitp://compbio.cs.huji.ac.il/Repository/
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search (Schmidt et al., 2007), and sparse candidate pruning therseeteh (Teyssier and Koller,
2005). We observed (results not shown) that these methods prdohilse sesults to those obtained
by either LINGAM or SLIM when only looking at the resulting undirected draghat is, removing
the directionality of the links. Evaluation of directionality in Gaussian models is fahiecquestion
because such methods can only find DAGs up to Markov equivalencees|abus evaluation must
be made using partially directed acyclic graphs (PDAGS). It is still possible thfyneome of the
methods mentioned above to handle non-Gaussian data by for instanceamiagther appropriate
conditional independence tests, however this is out of the scope of fies. pa

6.3 Model Comparison

In this experiment we want to evaluate the model selection procedurelmssar Section 4. For
this purpose we have generated 1000 different data sets/modeld with andN = {500, 1000}
following the same procedure described in the first experiment, but this timrseleeted the true
model to be either a factor model or a DAG with equal probability. In orderetwegate a factor
model, we basically just need to ensure tBatannot be permuted to a triangular form, so the
data generated from it does not admit a DAG representation. We kepb2@% data to compute
the predictive densities to then select between all estimated DAG candiddtédseaiactor model.
We found that folN = 500 our approach was able to select true DAGE8% of the times and
true factor models 805%, corresponding to an overall accuracy 0f%4. Increasing the number
of observations, that is, fod = 1000, the true DAG, true factor model rates and overall error
increased to 989%, 950% and 989%, respectively. Figure 10 shows separately the empirical
log-likelihood ratio distributions obtained from the 1000 data sets for DA@dactor models. The
shaded areas correspond to the true DAG/factor model regions, wittageheir boundary. Note
that when the wrong model is selected the likelihood ratio is nicely close to thedhopand the
overlap of the two distributions decreases with the number of observatsaus since the quality
of the predictive density increases accordingly. The true DAG ratesodnel larger than for factor
models because it is more likely that the latter is confused with a DAG due to estinegatans

or closeness to a DAG representation, than a DAG being confused witttax faodel which is
naturally more general. This is precisely why the likelihood ratios tend to berlang the factor
model side of he plots. All in all, these results demonstrate that our appi®aehy effective at
selecting the true underlying structure when the data is generated by theetaio hypotheses.

6.4 DAGs with Latent Variables

We will start by illustrating the identifiability issues of the model in Equation (1) uised in
Section 2.1 with a very simple example. We generdled 500 observations from the graph in
Figure 3(b) and kept 20% of the data to compute test likelihoods. Now, werpeinference on
two slightly different models, namely, (u) wheze= [, Z, 7 ] is provided with Laplace distributions
with unit variance, that is\ = 2, and (i) wherez;, z, have Laplace distributions with unit variance
andz is Cauchy distributed. We want to show that even if both models match the tneeagieg
process, (u) is non-identifiable whereas (i) can be successfully estiméteorder to keep the
experiment controlled as much as possible, wget 0.99 to reflect that the ground truth is dense
and we did not infe€p and set it to the true values, that is, the identity. Then, we ran 10 indepiende
chains for each one of the models and summar&egd, , D and the test likelihoods in Figure 11.
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Figure 10: Log-likelihood ratio empirical distributions for, (&)= 500 and (b)N = 1000. Top bars
correspond to true factor models, bottom bars to true DAGs and the ratimizuted as
described in Section 4. Top bars lying below zero are true factor modsdécped to be
better explained by DAGs, thus model comparison errors.

Figure 11(a) shows that model (u) finds the DAG in Figure 3(b) (themtdruth) in 3 cases,
and in the remaining 7 cases it finds the DAG in Figure 3(a). Note also thatshikadihoods in
Figure 11(c) are almost identical, as must be expected due to the lack tfiadelity of the model,
so they cannot be used to select among the two alternatives. Model §)tfiadight structure all
the times as shown in Figure 11(d). The mixing matrix of the equivalent factdehid is shown
in Figures 11(b) and 11(e) for (u) and (i), respectively. In Figutéb), the first and third column
of D exchange positions because all the componentshalfve the same distribution, which is not
the case of Figure 11(e). The small quantitie®imre due to estimation errors when computing
bo1c1 + ¢, and this cancels out in the true model. The sign changes in Figures hti(a)L&d)
are caused by the sign ambiguityzpfin the productC, z, . We also tested the alternative model in
Figure 3(b) obtaining equivalent results, that is, 4 successes forlifuydand 10 for model (i). This
small example shows how non-identifiability may lead to two very different DAfBt®Ns with
distinct interpretations of the data.

Hoyer et al. (2008) recently presented an approach to DAGs with laterables based on
LINGAM (Shimizu et al., 2006). Their procedure uses probabilistic ICA bodtstrapping to infer
the equivalent factor model distributige{D|X), then greedily selects columns ofD to be latent
variables until the remaining ones can be permuted to triangular and the rg&Ahis compatible
with the faithfulness assumption (see, Pearl, 2000). If we assume thagtbeddure is able to find
the exacD for the graphs in Figures 3(a) and 3(b), due to the faithfulness assumtht@DAG in
Figure 3(a) will be always selected regardless of the ground ¥rinipractice, the solution obtained
for D is dense and needs to be pruned, hence we rep(XnD) being larger for the ground truth in
Figure 3(b) than for the graph in Figure 3(a), however since both mddfdsonly by a permutation
of the columns oD, they have exactly the same joint dengityX, D)—they are non-identifiable,
thus the algorithm will select one of the options by chance. Since the somoa-identifiability of
their algorithm is permutations of columnsf it does not matter if probabilistic ICA match or not
the distribution of the underlying process as in our model. Anyway, we dddial try models (u)

5. See Robins et al. (2003) for a very interesting explanation of faiteéslnsing the same example presented here.
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Figure 11: Identifiability experiment for the DAG with latent variables. Caningies B andC,
are shown for (u) in (a) and (i) in (d). Equivalent mixing matxor (u) in (b) and for
(i) in (d). Test likelihoods for (u) and (i) are shown in (c) and (f) resfively. The first
column in (a,b,d,e) denoted as T is the ground truth. Dark and light boxemgative
and positive numbers, accordingly.

and (i) described above using the algorithm just descifbRdgardless of the ground truth, Figures
3(a) or 3(b), the algorithm always selected the DAG in Figure 3(b), wimi¢his particular case is
due top(X, D) being slightly larger for the denser model.

Now we test the model in a more general setting. We generate 100 modelsiansets of
sizeN = 500 using a similar procedure to the one in the artificial data experiment. Thelsnod
haved = 5 andm = 1, no dense structures are generated and the distributiorsaia heavy-
tailed, drawn from a generalized Gaussian distribution with random slapeSLIM, we use the
following settings 3, = 0.1, zp is Laplace with unit variances aragd is Cauchy. Furthermore, we
have doubled the number of iterations of the DAG sampler, that is, 6000 sauapdea burn-in
period of 2000, so as to compensate for the additional parameters tltonlee inferred due to
inclusion of latent variables. Our ordering search procedure wadalfiled the right ordering 78
out of 100 times. The true positive rates, true negative rates and medi@rafdJ38.28%, 96.40%
and 0.929, respectively, corresponding to approximately 1.5 structtoes goer network. Using
Hoyer et al. (2008) we obtained 1 true ordering out of 100, 91.63%oséive rate, 65.18% true
negative rate and 0.800 median AUC, showing again the preference afgbethm for denser
models. We regard these results as very satisfactory for both methosldeximg the difficulty of
the task and the lack of identifiability of the model by Hoyer et al. (2008).

6. Matlab package (v.1.1) freely availablehgp://www.cs.helsinki.filgroup/neuroinf/lingam/
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Figure 12: Non-linear DAG artificial example. (a) Network with non-linearriatéions between
observed nodes used as ground truth. (b,c,d) Median error, likeldmuabtest likelihood
for all possible orderings and 10 independent repetitions. The plotoeel according
to number of errors and only the first two are valid according to the grautiain (a),
that is,(1,2,3,4) and(1,3,2,4). Note that when the error is zero in (b) the likelihoods
are larger with respect to the remaining orderings in (c) and (d).

6.5 Non-linear DAGs

For Sparse Non-linear Identifiable Modeling (SNIM) described in Se@&ibnfirst we want to show
that our method can find and select from DAGs with non-linear interactiesused the artificial
network from Hoyer et al. (2009) shown here in Figure 12(a) ancigead 10 different data sets
corresponding tdN = 100 observations, each time using driving signals sampled from different
heavy-tailed distributions. Since we do not yet have an ordering s@aociedure for non-linear
DAGs, we perform DAG inference for all possible orderings and detist 3 he results obtained are
evaluated in two ways, first we check if we can find the true connectivityixnatren the ordering
is correct. Second, we need to validate that the likelihood is able to select ted with less error
and correct ordering among all possible candidates so we can useatticpr Figures 12(b), 12(c)
and 12(d) show the median errors, training and test likelihoods (usingo2€9é data) for each one
of the orderings, respectively. In this particular case we only have br@ct orderings, namely,
(1,2,3,4) and(1,3,2,4), corresponding to the first and second candidates in the plots. Figfime 12
shows that the error is zero only for the two correct orderings, themaualel is able to infer the
structure once the right ordering is given as desired. As a result adémifiability, data and test
likelihoods shown in Figures 12(c) and 12(d) correlate nicely with the sirakcerror in Figure
12(b). This means that we can use use the likelihoods as a proxy for totusél error just as in
the linear case.

We also tested the network in Figure 12(a) using three non-linear strueturéng procedures
namely greedy standard hill-climbing DAG search, the “ideal parent” alguor{ilidan et al., 2007)
and kernel PC (Tillman et al., 2009). The first two methods use a scaledidifumation to capture
the non-linearities in the data. In particular, they assume that a vavatde be explained as
scaled sigmoid transformation of a linear combination of its parents. The beamesult we
could obtain after tuning the parameters of the algorithms was 2 errors @verded links. Both

7. Maximum number of iterations, random restarts to avoid local minintalaeization of the non-linear regression
and the number of ranking candidates in ideal parent algorithm.
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Figure 13: Testind duration, interval in Old Faithful data set. (a,b) Data and test likelihood box-
plots for 10 independent repetitions. (c,d) Training and test likelihoodities for one
of the repetitions. The test likelihood separates consistently the two testethbgps.

methods perform similarly in this particular example, the only significant difieeebeing their
computational cost, which is considerably smaller for the “ideal parent'righgo, as it was also
pointed out by Elidan et al. (2007). The reason why we consider thgsdgtams do not perform
well here is that the sigmoid function can be very limited at capturing certaidinearities due
to its parametric form whereas the nonparametric GP gives flexible non-fiuneztions. The third
method uses non-linear independence tests together with non-lineagsiegrérelevance vector
machines) and the PC algorithm to produce mixed DAGs. The best medidihwestould get in
this case was 2 errors, 0 reversed links and 1 bidirectional links. Thesenon-linear DAG search
algorithms have the great advantage of not requiring exhaustive eatiomeof the orderings as
our method and others available in the literature. Zhang andhtityan (2009) provides theoretical
evidence of the possibility for flexible non-linear modeling without exhaasiider search but not
a way to do it in practice. Yet another possibility not tried here will be to takebtst parts of
both strategies by taking the outcome of the non-linear DAG search algoritdmeéine it using
a nonparametric method like SNIM. However, it is not entirely clear how thelmearities can
affect the ordering of the variables. In the remaining part of this sectonly focus on tasks for
pairs of variables where the ordering search is not an issue.

The data set known as Old Faithful (Asuncion and Newman, 2007) ceri&ia observations
of two variables measuring waiting time between eruptions and duration die@rsgor the Old
Faithful geyser in Yellowstone National Park, USA. We want to test the vasiple orderings, du-
ration— interval and interval» duration. Figures 13(a) and 13(b) show training and test likelihood
boxplots for 10 independent randomizations of the data set with 20% ofobervations used to
compute test likelihoods. Our model was able to find the right ordering, théuiation— interval
in all cases when the test likelihood was used but only 7 times with the training tlkelitiue to the
proximity of the densities, see Figure 13(c). On the other hand, the preddginsity is very dis-
criminative, as shown for instance in Figure 13(d). This is not a venyring result since making
the duration a function of the interval results in a very non-linear functidrereas the alternative
function is almost linear (data not shown).

Abalone is one of the data sets from the UCI ML repository (Azzalini angBan, 1990). It is
targeted to predict the age of abalones from a set of physical measuseribe data set contains
9 variables and 4177 observations. First we want to test the{pg#, length. For this purpose,
we use 10 subsets &f = 200 observations to build the models and compute likelihoods just as
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Figure 14: Testinglength, agé in Abalone data set. (a,b) Data and test likelihood boxplots for
10 independent repetitions. (c,d) Training and test likelihood densitiesni@rof the
repetitions. The likelihoods largely separate the two tested hypotheses.

before. Figures 14(a) and 14(b) show training and test likelihoogeotisely as boxplots. Both
training and test likelihoods pointed to the right ordering in all 10 repetitianthi$ experiment, the
separation of the densities for the two hypotheses considered is veey taaking age— length
significantly better supported by the data. Figures 14(c) and 14(d) phesictive densities for
one of the trials indicating again that age length is consistently preferred. We also decided to
try another three sets of hypothesdsige, diametédr, {age, weight and {age, length, weight
for which we found the right orderinggl0, 10}, {10,10} and{10,6} out of 10 by looking at the
training and the test likelihoods, respectively. In the model with three \agalncreasing the
number of observations used to fit the model fridm= 200 toN = 400, increased the number of
cases in which the test likelihood selected the true hypothesis from 6 to 8 timies, iw more than
enough to make a decision about the leading hypothesis.

To conclude this set of experiments we test SNIM against another ttoestheproposed meth-
ods® namely Non-linear Additive Noise (NAN) model (Hoyer et al., 2009), Post\inear (PNL)
model (Zhang and Hyarinen, 2009) and Informational Geometric Causal Inference (I@2iiu-
sis et al., 2010), using an extended version of “cause-effect gagkfor the NIPS 2008 causality
competitio! (Mooij and Janzing, 2010). The task consists on distinguishing the ¢amaehe ef-
fect of 51 different pairs of observed variables. NAN and PNL relyaa independence test (HSIC,
Hilbert-Schmidt Independence Criterion, Gretton et al., 2008) to decidehvatfi the two variable
is the cause. NAN was able to take 10 decisions all being accurate. PNaosasate 40 times out
of 42 decisions made. IGCI and SNIM obtained an accuracy of 40 apdi&§ respectivel}’ The
results indicate (i) that NAN and PNL are very accurate when the indepeedest used is able
to reach a decision and (ii) in terms of accuracy, the results obtained by IBdL and SNIM are
comparable. For SNIM we decide based upon the test likelihood and @Irw@ used a uniform
reference measure (rescaling the data between 0 and 1). From thedtma methods we can iden-
tify two main trends. One is to explicitly model the data and decide the causa-@iffection using
independence tests or test likelihoods like in NAN, PNL and SNIM. Thersgisoto directly define
a measure for directionality as in IGCI. The first option has the advantageiry able to convey

8. Matlab packages availabletdtp://webdav.tuebingen.mpg.de/causality/
9. Data available atttp://webdav.tuebingen.mpg.de/cause-effect/
10. Results for NAN, PNL and IGCI were taken from Daniusis et al. (B(mbcause we were unable to entirely reproduce
their results with the software provided by the authors.
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more information about the data at hand whereas the second option is ofdeagnitude faster
than the other three because it only tests for directionality.

6.6 Protein-signaling Network

This experiment demonstrates a typical application of SLIM in a realistic biadbFicgeN, small

d setting. The data set introduced by Sachs et al. (2005) consists ofyitometry measurements
of 11 phosphorylated proteins and phospholipids (raf, erk, p38aktkmek, pka, pkc, pip pips,
plc). Each observation is a vector of quantitative amounts measured ingie sells. Data was
generated from a series of stimulatory cues and inhibitory interventiomeeHhe data is composed
of three kinds of perturbations: general activators, specific actvatad specific inhibitors. Here
we are only using the 1755 observations—clearly non-Gaussian, éon@e, see Figure 16(a),
corresponding to general stimulatory conditions. It is clear that using tidewdata set, that is,
using specific perturbations, will produce a richer model, howeverlmanihterventional data is
out of the scope of this paper mainly because handling that kind of data viétt@a model is
not an easy task. Thus our current order search procedure mppobpriate. Focused only on
the observational data, we want to test all the possibilities of our model in dtgsst, namely,
standard factor models, pure DAGs, DAGs with latent variables, nonrlDa&s and quantitative
model comparison using test likelihoods. The textbook DAG structure takem$achs et al. (see
Figure 2 and Table 3, 2005) is shown in Figure 15(a) and the models taretesi using the true
ordering and SLIM in Figures 15(b) and 15(c), respectively.

The DAG found using the right ordering of the variables shown in Fig&)lturned out to
be the same structure found by the discrete Bayesian network from 8aahs(2005) without
using interventional data (see supplementary material, Figure 4(a)), vathrgrortant difference:
the method presented by Sachs et al. (2005) is not able to infer the digdityimf the links in
the graph without interventional data, that is, their resulting graph is wtdde SLIM in Figure
15(c) finds a network almost equal to the one in Figure 15(b) apart ére@reversed link, ple»
pip3. Surprisingly this was also found reversed by Sachs et al. (2608 interventional data. In
addition, there is just one false positive, the gak, p38}, even with a dedicated latent variable in
the factor model mixing matrix shown in Figure 16(b), thus we cannot attriluae & false positive
to estimation errors. A total of 211 ordering candidates were producedgdilne inference out
of approximately 16 possible and onlyn,p = 10 of them were used in the structure search step.
Note from Figure 16(d) that the predictive densities for the DAGs cdeel&ll with the structural
accuracy, apart from candidate 8. Candidates 3 and 8 have the sambemaf structural errors,
however candidate 8 has 3 reversed links instead of 1 as shown in Rif(ge The predictive
densities for the best candidate, third in Figure 16(d) are shown in Fii(® and suggest that
the factor model fits the data better. This makes sense considering that estipAdiein Figure
15(c) is a substructure of the ground truth. We also examined the estimatedrfeodel in Figure
16(b) and we found that several factors could correspond riégplgdo three unmeasured proteins,
namely pi3k in factors 9 and 11,nimapkkk, mek4/7) and ;mapkkk, mek3/6) in factor 7, ras in
factors 4 and 6.

We also wanted to assess the performance of our method and several udimg this data
set, including LINGAM and those mentioned in the Bayesian network repostqrgriment, even
knowing that this data set contains non-Gaussian data. We found thdtth#ro have similar
results in terms of true and false positive rates when comparing them to $ldiever the number

892



SPARSELINEAR IDENTIFIABLE MULTIVARIATE MODELING

(d) log(Lpag) = —3.4e3 (e) oy Loac) = —3.7063

Figure 15: Result for protein-signaling network data. (a) Textbookadigg network as reported
in Sachs et al. (2005). Estimated structure using SLIM: (b) using the tdezing, (c)
obtaining the ordering from the stochastic search, (d) top DAG with 2 |latmidbles
and (e) the runner-up (in test likelihood). False positives are showedinashed lines
and reversed links in green dotted lines. Below each structure we alsio tiep median
test likelihood (larger is better).

of reversed links was not in any case less than 6, which correspomaisreothan 50% of the true
positives found in every case. This means that they are essentially alvid tbdiskeleton in Figure
15(b). Besides, we do not have knowledge of any other method for RBAfRIng using only the
observational data that also provides results substantially better tharethelmwn in Figure 15(c).
The poor performance of LINGAM is difficult to explain but the large amaafrreversed links may
be due to the FastICA based deterministic ordering search procedure.
We also tried DAG models with latent variables in this data set. The results obtairied DAG

with 2 a priori assumed latent variables are shown in Figures 15(d) defl, tbrresponding to the
first and second DAG candidates in terms of test likelihoods. The firstrogtidifferent to the pure
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Figure 16: Results for protein-signaling network data. (a) Boxplot fatheone of the 11 vari-
ables in the data set. (b) Estimated factor model. (c) Test likelihoods for ghdB&
(dashed) and the factor model (solid). (d) Test likelihoods (squares¥tructure errors
(circles) included reversed links for all candidates. (e) Non-lineeabkesy obtained
as a function of the observed variabbefor pip3 and pkc. Each dot in the plot is an
observation and the solid lines are 95% credible intervals.

DAG in Figure 15(c) only in the reversed link, p38 pkc, but captures some of the behavior of
pik3 and ras in{ and b respectively. It is very interesting to see how, due to the link between pik3
and ras that is not possible to model with our model, the second inferred Vargable is detecting
signals pointing towards pjpand plc. We also considered a second option becauisethe top
model is only connected to a single variablegsmd thus could be regarded as an estimation error
since it can be easily confounded with a driving signal. Comparing Fidilsé9 and 15(e) reveals
two differences in the observed part, a false negative piplc and a new true (reversed) positive
mek — pka. This candidate is particularly interesting because the first latenbleadaptures the
connectivity of pik3 while connecting itself to plc due to the lack of connectivéjween pip and

plc. Moreover, the second latent variable resembles ras and the linkdrepile3 and ras as a
link from itself to pips. In both solutions there is a connection betweearld mek that might be
explained as a link through a phosphorylation of raf different to therobdeone, that is, rassye. In
terms of median test likelihoods, the model in Figure 15(d) is only marginally ibtiarthe factor
model in Figure 16(b) and in turn marginally worse than the DAG in Figure)15(e

For SNIM we started from the true ordering of the variables but we coatifimd any improve-
ment compared to the structure in Figure 15(c). In particular there arawalglifferences, ple—+
pip2 and jnk— p38 are missing, meaning that at least in this case there are no false gasitive
the non-linear DAG. Looking at the parameters of the covariance funeied,v (not shown) with
acceptance rates of approximatety20% and reasonable credible intervals, we can say that our
model found almost linear functions since all the parameters of the cogarfanctions are rather
small. Figure 16(e) shows two particular non-linear variables learnedeomtdel, corresponding
to pip3 and plc. In each case the uncertainty of the estimation nicely incre@thdbe magnitude
of the observed variable and although the functions are fairly linear g¢sgmble the saturation ef-
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fect we can expect in this kind of biological data. From the three non#imethods non-requiring
exhaustive order search described in the previous section (DAGséieal parent” and kPC), the
best result we obtained was 11 structural errors, 10 true positidds)&negatives, 2 reversed and
6 bidirectional links for kPC vs 12, 9, 34, 1 and 0 by SLIM and 12, 8,Band 0 by SNIM.

6.7 Time Series Data

We illustrate the use Correlated Sparse Linear Identifiable Modeling (C).8fMhe data set in-
troduced by Kao et al. (2004) consisting of temporal gene expressaditep of E. coli during
transition from glucose to acetate measured using DNA microarrays. Safingoie$00 genes were
taken at 5, 10, 15, 30, 60 minutes and every hour until 6 hours aftesiticant* The general goal
is to reconstruct the unknown transcription factor activities from theesgion data and some prior
knowledge. In Kao et al. (2004) the prior knowledge consisted of takiagsét of transcription
factors (ArcA, CRP, CysB, FadR, FruR, GatR, IcIR, LeuO, LrpriN&hoB, PurB, RpoE, RpoS,
TrpR and TyrR) controlling the observed genes and the (up-to-datejectivity between genes
and transcription factors from Regulon®Gama-Castro et al., 2008). From this setting, we can
immediately relate the transcriptions factors wthsuch a connectivity witlQ, , and their rela-
tive strengths withC, hence the problem can be seen as a standard factor model. In Kao et al.
(2004) they applied a method called Network Component Analysis (NCA)utdes a least-squares
based algorithm to solve a problem similar to the one in Equation (1), but aggtimirthe sparsity
pattern (masking matriQ, ) of C, is fixed and known. It is well-known that the information in
RegulonDB is stillincomplete and hard to obtain for organisms differentEhaoli. Our goal here
is thus to obtain similar transcription factor activities to those found by Kao ¢2@04) without
using the information from RegulonDB, but taking into account that the ddtaral is a time series
by letting each transcription factor activity have an independent Gaussiaass prior as described
for CSLIM in Section 3.4. We will not attempt to u&® to recover the ground truth connectivity
information since RegulonDB is collected from a wide range of experimentalitons and not
only from the transcriptional activity produced by t&e coli during its transition from glucose to
acetate. The results are shown in Figure 17.

Results in Figure 17(e) show the source ma#irecovered by our model together with those
from NCA.13 In this experiment we ran a single chain and collected 6000 samples aften-inbu
period of 2000 samples (approximately 10 minutes in a desktop machine). d¥itst profiles
obtained by our method are similar to those obtained by NCA (Kao et al., 2004@)ran two
versions of our model, one wit, fixed to the RegulonDB values, that is, similar in spirit to NCA,
and another when we inf&_ without any restriction. The results of NCA and our model with
fixed Q. are directly comparable (up to scaling) whereas we had to match the permiratbn
the unrestricted model to those found by NCA in order to compare, usinguhgdtian algorithm.
Figure 17(a) shows the mixing matrices obtained by NCA and our two modelsresid 7(a) and
17(b) are very similar due to the restriction imposed@n The mixing matrix obtained by our
unrestricted model in Figure 17(c) is clearly denser than the other twggestigg that there are
different ways of connecting genes and transcription factors andestiinstruct the transcription
factor activities given the observed gene expression data. When ¢ptikihe test log-likelihood

11. Data available dtttp://www.seas.ucla.edu/ ~ liaoj/NCA_module_Data
12. RegulonDB can be found kitp://regulondb.ccg.unam.mx/
13. Matlab package (v.2.3) availablehép://www.seas.ucla.edu/ ~ liaoj/download.htm
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Figure 17: Results foE. coli data set. Mixing matrices estimated using: (a) NCA, (b) our formu-
lation when restricting, using RegulonDB information and (c) the factor model. (d)
Model comparison results using test likelihoods. The restricted modédi-@tztsed line)
obtained a median negative log-likelihood of 1463vhereas the unrestricted model
(solid line) obtained 13117, suggesting no significant model preferences. (e) Estimated
transcription factor activitiesZ. Our methods (solid and dash-dotted lines for unre-
stricted and restricted model respectively) produce similar results to thodaqed by
NCA (dashed line).
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densities obtained by our two models in Figure 17(d) they are very similarhvghiggests that
there is no evidence that one of the models makes a better fit on test datandrofeMean Squared
Error (MSE), NCA obtained @146 while our model reached0264 and 0218 on the restricted
and unrestricted models, respectively, when using 90% of the data &eide. In addition, the
95% credible intervals for the MSE we(6.0231 0.0329 and(0.0164 0.0309 respectively. The
latter shows again that there is no evidence that one of the three modelsiighzeitthe other two,
considering that: (i) NCA is trained on the entire data set and (ii) our uioestrmodel could, in

principle, produce mixing matrices arbitrarily denser than the connectivityixrattracted from

RegulonDB, and thus, again in principle, lower MSE values.

7. Discussion

We have proposed a novel approach called SLIM (Sparse Lineatifidble Multivariate model-
ing) to perform inference and model comparison of general linear #ayenetworks within the
same framework. The key ingredients for our Bayesian models are sthbpéte priors to pro-
mote sparsity, heavy-tailed priors to ensure identifiability and predictivsities (test likelihoods)
to perform the comparison. A set of candidate orderings is producetidchastic search during
the factor model inference. Subsequently, a linear DAG with or withouttatmmbles is learned
for each of the candidates. To the authors’ knowledge this is the first tinha tihathod for com-
paring such closely related linear models has been proposed. This sattibg wery beneficial in
situations where the prior evidence suggests both DAG structure anaiaasared variables in the
data. We also show that the DAG with latent variables can be fully identifialdelet SLIM can
be extended to the non-linear case (SNIM - Sparse Non-linear Ideteifiéldtivariate modeling),
if the ordering of the variables is provided or can be tested by exhawestiv@eration. For example
in the protein-signaling network (Sachs et al., 2005), the textbook groutidsuggests both DAG
structure and a number of unmeasured proteins. The previous app®@achs et al., 2005) only
performed structure learning in pure DAGSs but our results using oasemal data alone suggest
that the data is better explained by a (possibly non-linear) DAG with lateratblas. Our extensive
results on artificial data showed one by one the features of our modetinoze of its variants,
and demonstrated empirically their usefulness and potential applicability. Wdmeparing against
LINGAM, our method always performed at least as well in every case witbnaparable compu-
tational cost. The presented Bayesian framework also allows easyiextefisur model to match
different prior beliefs about the problems at hand without significantinging the model and its
conceptual foundations, as in CSLIM and SNIM.

We believe that the priors that give raise to sparse models in the fully Bayie&sence setting,
like the two-level slab (continuous) and spike (point-mass in zero) prieed are very powerful
tools for simultaneous model and parameter inference. They may be usehany settings in
machine learning where sparsity of parameters is desirable. Although sheripo distributions
for slab and spike priors will be non-convex, it is our experience thatemce with blocked Gibbs
sampling actually has very good convergence properties. In the twbdppeoach, one uses a
hierarchy of two slab and spike priors. The firstis on the parameter arsttond is on the mixture
parameter (i.e., the probability that the parameter is non-zero). Insteaitirg kbis parameter be
controlled by a single Beta-distribution (one level approach) we havebaasia spike distribution
on it with a Beta-distributed slab component biased towards one. This makesdtiel more
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parsimonious, that is, the probability that parameters are zero or noriszelpser to zero and one
and parameter settings are more robust.

In the following we will discuss open questions and future directions. RlenBayesian net-
work repository experiment it is clear that we need to improve our ordegagch procedure if we
want to use SLIM for problems with more than say 50 variables. This basealbunts to finding
proposal distributions that better exploit the particularities of the modelrad.hAnother option
could be to provide the proposal distribution with some notion of memory to aveidyiations
with low probability and/or expand the coverage of the searching proeedu

It is well studied in the literature on sparse models that for increasing nuoflodrservations
any model tends to loose its sparsity capabilities. This is because the likelitaosttominating the
inference, making the prior distribution less informative. The easiest whgrdle such an effect
is to make the hyperparameters of the sparsity prior dependeNt ave have not explored this
phenomenon in SLIM but it should certainly be taken into account in thefag@ion of sparsity
priors.

Directly specifying the distributions of the latent variables in order to obtaintifigbility in
the general DAG with latent variables requires having different distribstionthe driving signals
of the observed variables and latent variables. This may introduce modehituals or be restrictive
in some cases as one will not have this kind of knowledge a priori. We thegsmere principled
ways to specify distributions far ensuring identifiably, without restricting some of its components
to having a particular behavior, like having heavier tails than the drivingatsgior instance. We
conjecture that providingwith a parameterization of Dirichlet process priors with appropriate base
measures would be enough but we are not certain whether this wouldfiegeatiin practice.

We set a priori that the componentsoére independent. Although this is a very reasonable
assumption, it does not allow for connectivity between latent variablegas®/for example in the
protein signaling network, see Figure 15(a). It is straight forward ézi$psuch a model, although
identifiability becomes even harder to ensure in this case.

We do not have an ordering search procedure for the non-linesiowesf SLIM. This is a nec-
essary step since exhaustive enumeration of all possible orderingsads ogtion beyond say 10
variables. The main problem is that the non-linear DAG has no equivaetarfmodel representa-
tion so we cannot directly exploit the permutation candidates we find in SLibWener, as long as
the non-linearities are weak, one might in principle use the permutation céeslidand in a factor
model, that is, the linear effects will determine the correct ordering of thiahlas.

SLIM cannot handle experimental (interventional) data, and conséguweound 80% of the
data from the Sachs et al. (2005) study is not used. It is well-establigivetb learn with interven-
tions in DAGs (see Sachs et al., 2005). The problem remains of how to fatereffective inference
with interventional data in the factor model.
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Appendix A. Gibbs Sampling

Given a set ofN observations ird dimensions, the datd = [x,...,Xny] andm latent variables,
MCMC analysis is standard and can be implemented through Gibbs samplingthisioite the fol-
lowing, X;- andX.; are rows and columns o, respectively, and j, n are indexes for dimensions,
factors and observations, respectively. In the following we describednditional distributions
needed to sample from the standard factor model hierarchy. Below werigfiMdiscus the modi-
fications needed for the DAG.

A.1 Noise Variance

We can sample each elementBfindependently using

qu_l|XiI>CiZ>Z>VivsS>sl’ NGamm{wrl 2

N+d
SS++7SI’+U> ) (13)

whereV; is a diagonal matrix with entries; and

u— %(xi; —CiZ) (X —Ci.Z2) +

1 _
SGiV cl.
A.2 Factors

The conditional distribution of the latent variabl&susing the scale mixtures of Gaussians repre-
sentation can be computed independently for each elemept a$ing

Zjn‘x:n,c:jaz:naq"aujn ~ N(Zjn!CE‘P*lS\jn?an), (14)

whereuj, = (CHLIJ*1C;,- + U]})*l andg, j, = Xin — CZ:n\z,-n:o- If the latent factors are Laplace
distributed the mixing variances, have exponential distribution, thus the resulting conditional is

A }\2>

|Zjn|

=15 -1
an |ZJn7)\ ~ IG (an

and for the Student with corresponding gamma densities as

0110 7
2’2 202 )’

jn

U [Zjn, 0%,6 ~ Gamma(u‘l

where |G|, A) is the inverse Gaussian distribution with mgaand scale parametar(Chhikara
and Folks, 1989).

A.3 Gaussian Processes

In practice, the prior distribution for each row of the ma#iin CSLIM has the forng;,,...,zjn ~
A(0,K ), whereK  is a covariance matrix of sizé x N built usingky, n(n,1’). The conditional
distribution forzjs, ...,z can be computed using

Zj1,... . ZNIX,Cj, 20, W ~ N(Zj1,-..,Zn[C W eV, V)
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whereZ,; is Z without row j, V = (U+K )71, U is a diagonal matrix with elemen@} W~ *C;;
ande,; = X — CZ|z, . zy=0- The computatlon o¥ can be done in a numerically stable way by
rewritingV = K — K (U™t +K;)~1K| and then using Cholesky decomposition and back substitu-
tion to obtain in turrLL T=U" 1+ Kj andL‘lKj. The hyperparameters of the covariance function
in Equation (9) can be sampled using

K|V, ks, ke ~ Gamma<|<

m
ks+mus, ke + S v | .

For the inverse length-scales we use Metropolis-Hastings updates witbsaig(u7j|vj) = p(v})
and acceptance ratio

E _ N(Zjl, . ..,Zj|\||0,KT)
o N(zj1,-..,Zjn|0,K)

whereK7 is obtained using<UT7n(n, n’). For SNIM, we only need to repladcé by B, Z by Y =
[y1 -..yn] @andky, n(n, ') by ky, x(x,x’).

A.4 Mixing Matrix
In order to sample eaaly; from the conditional distribution of the matrX we use
Gij|Xis, Cijs Zj Wi, Tij ~ AL(Gij|Uij &y Z ., i i) (15)

whereu;; = (Zj:ZI +Ii}1)*1 ande,j; = X;; — C;.Z|q,—0. Note that we only need to sample those
¢j for whichrjj = 1, that is, just the slab distribution. Sampling from the conditional distributions
for 1j; can be done using

-1 -1
TI] |d]n,ts,tr NGamma(T”

The conditional distributions for the remaining parameters in the slab andmpdkean be written
first for the masking matriQ as

2
WA (16)
2’ 24

. &ni
Gij |Xi:, Di:, Z, Wi, Tij , Nij NBernOU”|<Qij‘1+nEJ > , 17)
Nij

where

_ OmVj i1/2 Xp (E\IJZ)
l—(XmVj (Zj;ZI—FTﬁl)l/z Zqu(Zj:ZI+Tﬁl) ’

and the probability of each element®©fof being non-zero as

ErliJ'

Nij|Uij,Cij,qp,am ~ (1—uij)d(n;ij) + uijBetan;j|apam+dfj,0p(1l—am) +1—qj),  (18)

whereu;j ~ Bernoulli(hyj |rij + (1 —rij)vj(1—am)/(1—vjam)), that is, we seti; = 1 if ¢; = 1.
Finally, for the column-wise shared sparsity rate we have

Vj|uj,Bp,Bm ~Beta<vj

d d
Bme—k;uij?Bp(l—Bm)+z\(1—uij)> . (29)
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Sampling from the DAG model only requires minor changes in notation but theittmnal poste-
riors are essentially the same. The changes mostly amount to replacindiagbo€ by B andQ

by R. Note thatQ, is the identity andR is strictly lower triangular a priori, thus we only need to
sample their active elements.

A.5 Inference with Missing Values

We introduce a binary masking matrix indicating whether an elemekt isfmissing or not. For
the factor model we have the following modified likelihood

p(Xtr‘C,Z, LIJ, M miss) = N(M miss© X|M miss® (CZ)7 l.p) .

Testing on the missing valueld, ... = 11" — M requires averaging the test likelihood

p(X*‘C7Z7qJ7M:1(”|iSS) = N(MrniSSQX‘M;]iSSQ (CZ>7l'p) )

overC,Z, W given Xy (training). We can approximate the predictive dengit)X*|Xy, ) by com-
puting the likelihood above during sampling using the conditional posteridts HfandW and then
summarizing using for example the median. Drawing frénZ, W can be achieved by sampling
from their respective conditional distributions as described before wittesminor modifications.
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