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Abstract
In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian
network models for parsimonious analysis of multivariate data. We propose a computationally ef-
ficient method for joint parameter and model inference, and model comparison. It consists of a
fully Bayesian hierarchy for sparse models using slab and spike priors (two-componentδ-function
and continuous mixtures), non-Gaussian latent factors anda stochastic search over the ordering
of the variables. The framework, which we call SLIM (Sparse Linear Identifiable Multivariate
modeling), is validated and bench-marked on artificial and real biological data sets. SLIM is clos-
est in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian
network structure learning and model comparison. Experimentally, SLIM performs equally well
or better than LiNGAM with comparable computational complexity. We attribute this mainly
to the stochastic search strategy used, and to parsimony (sparsity and identifiability), which is
an explicit part of the model. We propose two extensions to the basic i.i.d. linear framework:
non-linear dependence on observed variables, called SNIM (Sparse Non-linear Identifiable Mul-
tivariate modeling) and allowing for correlations betweenlatent variables, called CSLIM (Corre-
lated SLIM), for the temporal and/or spatial data. The source code and scripts are available from
http://cogsys.imm.dtu.dk/slim/ .
Keywords: parsimony, sparsity, identifiability, factor models, linear Bayesian networks

1. Introduction

Modeling and interpretation of multivariate data are central themes in machine learning. Linear
latent variable models (or factor analysis) and linear directed acyclic graphs (DAGs) are prominent
examples of models for continuous multivariate data. In factor analysis, datais modeled as a linear
combination of independently distributed factors thus allowing for capture ofa rich underlying co-
variation structure. In the DAG model, each variable is expressed as regression on a subset of the
remaining variables with the constraint that total connectivity is acyclic in order to have a properly
defined joint distribution. Parsimonious (interpretable) modeling, using sparse factor loading ma-
trix or restricting the number of parents of a node in a DAG, are good prior assumptions in many
applications. Recently, there has been a great deal of interest in detailedmodeling of sparsity in
factor models, for example in the context of gene expression data analysis(West, 2003; Lucas et al.,
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2006; Knowles and Ghahramani, 2007; Thibaux and Jordan, 2007; Carvalho et al., 2008; Rai and
Daume III, 2009). Sparsity arises for example in gene regulation because the latent factors represent
driving signals for gene regulatory sub-networks and/or transcriptionfactors, each of which only in-
cludes/affects a limited number of genes. A parsimonious DAG is particularly attractable from an
interpretation point of view but the restriction to only having observed variables in the model may
be a limitation because one rarely measures all relevant variables. Furthermore, linear relationships
might be unrealistic for example in gene regulation, where it is generally accepted that one can-
not replace the driving signal (related to concentration of a transcriptionfactor protein in the cell
nucleus) with the measured concentration of corresponding mRNA. Bayesian networks represent a
very general class of models, encompassing both observed and latent variables. In many situations
it will thus be relevant to learn parsimonious Bayesian networks with both latent variables and a
non-linear DAG parts. Although attractive, by being closer to what one mayexpect in practice,
such modeling is complicated by difficult inference (Chickering 1996 showed that DAG structure
learning is NP-hard) and by potential non-identifiability. Identifiability means that each setting of
the parameters defines a unique distribution of the data. Clearly, if the model isnot identifiable in
the DAG and latent parameters, this severely limits the interpretability of the learned model.

Shimizu et al. (2006) provided the important insight that every DAG has a factor model repre-
sentation, that is, the connectivity matrix of a DAG gives rise to a triangular mixing matrix in the
factor model. This provided the motivation for the Linear Non-Gaussian Acyclic Model (LiNGAM)
algorithm which solves the identifiable factor model using Independent Component Analysis (ICA,
Hyvärinen et al., 2001) followed by iterative permutation of the solutions towardstriangular, aim-
ing to find a suitable ordering for the variables. As final step, the resulting DAG is pruned based on
different statistics, for example, Wald, Bonferroni,χ2 second order model fit tests. Model selection
is then performed using some pre-chosen significance level, thus LiNGAM select from models with
different sparsity levels and a fixed deterministically found ordering. There is a possible number of
extensions to their basic model, for instance Hoyer et al. (2008) extend it toallow for latent variables,
for which they use a probabilistic version of ICA to obtain the variable ordering, pruning to make
the model sparse and bootstrapping for model selection. Although the model seems to work well in
practice, as commented by the authors, it is restricted to very small problems (3or 4 observed and 1
latent variables). Non-linear DAGs are also a possibility, however findingvariable orderings in this
case is known to be far more difficult than in the linear case. These methods inspired by Friedman
and Nachman (2000), mainly consist of two steps: performing non-linear regression for a set of
possible orderings, and then testing for independence to prune the model,see for instance Hoyer
et al. (2009) and Zhang and Hyvärinen (2010). For tasks where exhaustive order enumeration is not
feasible, greedy approaches like DAG-search (see “ideal parent” algorithm, Elidan et al., 2007) or
PC (Prototypical Constraint, see kernel PC, Tillman et al., 2009) can be used as computationally
affordable alternatives.

Factor models have been successfully employed as exploratory tools in manymultivariate anal-
ysis applications. However, interpretability using sparsity is usually not part of the model, but
achieved through post-processing. Examples of this include, bootstrapping, rotating the solutions
to maximize sparsity (varimax, procrustes), pruning or thresholding. Another possibility is to im-
pose sparsity in the model throughL1 regularization to obtain a maximum a-posteriori estimate
(Jolliffe et al., 2003; Zou et al., 2006). In fully Bayesian sparse factormodeling, two approaches
have been proposed: parametric models with bimodal sparsity promoting priors (West, 2003; Lucas
et al., 2006; Carvalho et al., 2008; Henao and Winther, 2009), and non-parametric models where
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the number of factors is potentially infinite (Knowles and Ghahramani, 2007; Thibaux and Jordan,
2007; Rai and Daume III, 2009). It turns out that most of the parametricsparse factor models can be
seen as finite versions of their non-parametric counterparts, for instance West (2003) and Knowles
and Ghahramani (2007). The model proposed by West (2003) is, as far as the authors know, the
first attempt to encode sparsity in a factor model explicitly in the form of a prior. The remaining
models improve the initial setting by dealing with the optimal number of factors in Knowles and
Ghahramani (2007), improved hierarchical specification of the sparsityprior in Lucas et al. (2006),
Carvalho et al. (2008) and Thibaux and Jordan (2007), hierarchical structure for the loading ma-
trices in Rai and Daume III (2009) and identifiability without restricting the model in Henao and
Winther (2009).

Many algorithms have been proposed to deal with the NP-hard DAG structure learning task.
LiNGAM, discussed above, is the first fully identifiable approach for continuous data. All other
approaches for continuous data use linearity and (at least implicitly) Gaussianity assumptions so
that the model structure learned is only defined up to equivalence classes. Thus in most cases the
directionality information about the edges in the graph must be discarded. Linear Gaussian-based
models have the added advantage that they are computationally affordable for the many variables
case. The structure learning approaches can be roughly divided into stochastic search and score
(Cooper and Herskovits, 1992; Heckerman et al., 2000; Friedman and Koller, 2003), constraint-
based (with conditional independence tests) (Spirtes et al., 2001) and twostage; like LiNGAM,
(Tsamardinos et al., 2006; Friedman et al., 1999; Teyssier and Koller, 2005; Schmidt et al., 2007;
Shimizu et al., 2006). In the following, we discuss in more detail previous work in the last category,
as it is closest to the work in this paper and can be considered representative of the state-of-the-art.
The Max-Min Hill-Climbing algorithm (MMHC, Tsamardinos et al., 2006) first learns the skeleton
using conditional independence tests similar to PC algorithms (Spirtes et al., 2001) and then the
order of the variables is found using a Bayesian-scoring hill-climbing search. The Sparse Candidate
(SC) algorithm (Friedman et al., 1999) is in the same spirit but restricts the skeleton to within a
predetermined link candidate set of bounded size for each variable. TheOrder Search algorithm
(Teyssier and Koller, 2005) uses hill-climbing first to find the ordering, and then looks for the skele-
ton with SC.L1 regularized Markov Blanket (Schmidt et al., 2007) replaces the skeletonlearning
from MMHC with a dependency network (Heckerman et al., 2000) written asa set of local condi-
tional distributions represented as regularized linear regressors. Since the source of identifiability in
Gaussian DAG models is the direction of the edges in the graph, a still meaningful approach con-
sists of entirely focusing on inferring the skeleton of the graph by keepingthe edges undirected as
in Dempster (1972), Dawid and Lauritzen (1993), Giudici and Green (1999) and Rajaratman et al.
(2008).

In this paper we propose a framework called SLIM (Sparse Linear Identifiable Multivariate mod-
eling, see Figure 1) in which we learn models from a rather general class of Bayesian networks and
perform quantitative model comparison between them.1 Model comparison may be used for model
selection or serve as a hypothesis-generating tool. We use the likelihood on atest set as a com-
putationally simple quantitative proxy for model comparison and as an alternative to the marginal
likelihood. The other two key ingredients in the framework are the use of sparse and identifiable
model components (Carvalho et al., 2008; Kagan et al., 1973, respectively) and the stochastic search
for the correct order of the variables needed by the DAG representation. Like LiNGAM, SLIM ex-

1. A preliminary version of our approach appears in NIPS 2009: Henao and Winther, Bayesian sparse factor models
and DAGs inference and comparison.
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Figure 1: SLIM in a nutshell. Starting from a training-test set partition of data{X,X⋆}, our frame-
work produces factor modelsC and DAG candidatesB with and without latent variables
Z that can be compared in terms of how well they fit the data using test likelihoodsL .
The variable orderingP needed by the DAG is obtained as a byproduct of a factor model
inference. Besides, changing the prior over latent variablesZ produces two variants of
SLIM called CSLIM and SNIM.

ploits the close relationship between factor models and DAGs. However, since we are interested in
the factor model by itself, we will not constrain the factor loading matrix to havetriangular form,
but allow for sparse solutions so pruning is not needed. Rather we may ask whether there exists a
permutation of the factor-loading matrix agreeing to the DAG assumption (in a probabilistic sense).
The slab and spike prior biases towards sparsity so it makes sense to search for a permutation in par-
allel with factor model inference. We propose to use stochastic updates for the permutation using
a Metropolis-Hastings acceptance ratio based on likelihoods with the factor-loading matrix being
masked. In practice this approach gives good solutions up to at least fiftydimensions. Given a set
of possible variable orderings inferred by this method, we can then learn DAGs using slab and spike
priors for their connectivity matrices. The so-called slab and spike prior isa two-component mix-
ture of a continuous distribution and degenerateδ-function point mass at zero. This type of model
implicitly defines a prior over structures and is thus a computationally attractive alternative to com-
binatorial structure search since parameter and structure inference are performed simultaneously.
A key to effective learning in these intractable models is Markov Chain Monte Carlo (MCMC)
sampling schemes that mix well. For non-Gaussian heavy-tailed distributions likethe Laplace and
t-distributions, Gibbs sampling can be efficiently defined using appropriate infinite scale mixture
representations of these distributions (Andrews and Mallows, 1974). Wealso show that our model
is very flexible in the sense that it can be easily extended by only changing the prior distribution of
a set of latent variables, for instance to allow for time series data (CSLIM, Correlated SLIM) and
non-linearities in the DAG structure (SNIM, Sparse non-Linear Identifiable Multivariate modeling)
through Gaussian process priors.
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The rest of the paper is organized as follows: Section 2 describes the model and its identifiability
properties. Section 3 provides all prior specification including sparsity, latent variables and driving
signals, order search and extensions for correlated data (CSLIM) and non-linearities (SNIM). Sec-
tion 4 elaborates on model comparison. Section 5 and Appendix A provide anoverview of the
model and practical details on the MCMC-based inference, proposed workflow and computational
cost requirements. Section 6 contains the experiments. We show simulations based on artificial
data to illustrate all the features of the model proposed. Real biological dataexperiments illustrate
the advantages of considering different variants of Bayesian networks. For all data sets we com-
pare with some of the most relevant existing methods. Section 7 concludes with adiscussion, open
questions and future directions.

2. Linear Bayesian Networks

A Bayesian network is essentially a joint probability distribution defined via a directed acyclic
graph, where each node in the graph represents a random variablex. Due to the acyclic property of
the graph, its node setx1, . . . ,xd can be partitioned intod subsets{V1,V2, . . . ,Vd} ≡ V , such that if
x j → xi thenx j ∈Vi , that is,Vi contains allparentsof xi . We can then write the joint distribution as
a product of conditionals of the form

P(x1, . . . ,xd) =
d

∏
i=1

P(xi |Vi) ,

thusxi is conditionally independent of{x j |xi /∈Vj} givenVi for i 6= j. This means thatp(x1, . . . ,xd)
can be used to describe the joint probability of any set of variables onceV is given. The problem is
thatV is usually unknown and thus needs to be (at least partially) inferred fromobserved data.

We consider a model for a fairly general class of linear Bayesian networks by putting together
a linear DAG,x = Bx+ z, and a factor model,x = Cz+ εεε. Our goal is to explain each one ofd
observed variablesx as a linear combination of the remaining ones, a set ofd+m independent latent
variablesz and additive noiseεεε. We have then

x = (R⊙B)x+(Q⊙C)z+ εεε , (1)

where⊙ is the element-wise product and we can further identify the following elements:

• z is partitioned into two subsets,zD is a set ofd driving signals for each observed variable inx and
zL is a set ofm shared general purpose latent variables.zD is used here to describe the intrinsic
behavior of the observed variables that cannot regarded as “external” noise.

• R is ad×d binary connectivity matrix that encodes whether there is an edge between observed
variables, by means ofr i j = 1 if xi → x j . Since every non-zero element inR is an edge of a
DAG, r ii = 0 andr i j = 0 if r ji 6= 0 to avoid self-interactions and bi-directional edges, respectively.
This also implies that there is at least one permutation matrixP such thatP⊤RP is strictly lower
triangular where we have used thatP is orthonormal thenP−1 = P⊤.

• Q = [QD QL] is ad× (d+m) binary connectivity matrix, this time for the conditional indepen-
dence relations between observed and latent variables. We assume that each observed variable
has a dedicated latent variable, thus the firstd columns ofQD are the identity. The remainingm
columns can be arbitrarily specified, by means ofqi j 6= 0 if there is an edge betweenxi andzj for
d < j ≤ m.
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• B andC = [CL CD] are respectively,d×d andd× (d+m) weight matrices containing the edge
strengths for the Bayesian network. Their elements are constrained to be non-zero only if their
corresponding connectivities are also non-zero.

The model (1) has two important special cases, (i) if all elements inR andQD are zero it becomes
a standard factor model (FM) and (ii) ifm= 0 or all elements inQL are zero it is a pure DAG. The
model is not a completely general linear Bayesian network because connections to latent variables
are absent (see for example Silva, 2010). However, this restriction is mainly introduced to avoid
compromising the identifiability of the model. In the following we will only writeQ andR explicitly
when we specify the sparsity modeling.

2.1 Identifiability

We will split the identifiability of the model in Equation (1) in three parts addressing first the factor
model, second the pure DAG and finally the full model. By identifiability we mean that each dif-
ferent setting of the parametersB andC gives a unique distribution of the data. In some cases the
model is only unique up to some symmetry of the model. We discuss these symmetries and their
effect on model interpretation in the following.

Identifiability in factor modelsx = CLzL + εεε can be obtained in a number of ways (see Chapter
10, Kagan et al., 1973). Probably the easiest way is to assume sparsity inCL and restrict its number
of free parameters, for example by restricting the dimensionality ofz, namelym, according to the
Ledermann boundm≤ (2d+ 1− (8d+ 1)1/2)/2 (Bekker and ten Berge, 1997). The Ledermann
bound guarantees the identification ofεεε and follows just from counting the number of free param-
eters in the covariance matrices ofx, εεε and inCL, assuming Gaussianity ofz andεεε. Alternatively,
identifiability is achieved using non-Gaussian distributions forz. Kagan et al. (Theorem 10.4.1,
1973) states that when at leastm−1 latent variables are non-Gaussian,CL is identifiable up to scale
and permutation of its columns, that is, we can identifyĈL = CLSfPf , whereSf andPf are arbitrary
scaling and permutation matrices, respectively. Comon (1994) provided analternative well-known
proof for the particular case ofm−1= d. TheSf andPf symmetries are inherent in the factor model
definition in all cases and will usually not affect interpretability. However,some researchers prefer
to make the model completely identifiable, for example, by makingCL triangular with non-negative
diagonal elements (Lopes and West, 2004). In addition, if all components of εεε are Gaussian and the
rank of CL is m, then the distributions ofz andεεε are uniquely defined to within common shift in
mean (Theorem 10.4.3, Kagan et al., 1973). In this paper, we use the non-Gaussianz option for two
reasons, (i) restricting the number of latent variables severely limits the usability of the model and
(ii) non-Gaussianity is a more realistic assumption in many application areas suchas for example
biology.

For pure DAG modelsx = Bx+CDzD, identifiability can be obtained using the factor model
result from Kagan et al. (1973) by rewriting the DAG into an equivalent factor modelx = Dz with
D = (I −B)−1CD, see Figure 2. From the factor model result it only follows thatD is identifiable
up to a scaling and permutation. However, as mentioned above, due to the acyclicity there is at
least one permutation matrixP such thatP⊤BP is strictly lower triangular. Now, ifx admits DAG
representation, the sameP makes the permuted̂D = (I −P⊤BP)−1CD, triangular withCD on its
diagonal. The constraint on the number of non-zero elements inD due to triangularity removes the
permutation freedomPf such that we can subsequently identifyP, B andCD. It also implies that
any valid permutationP will produce exactly the same distribution forx.
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Figure 2: FM-DAG equivalence illustration. In the left side, a DAG model withfour variables with
corresponding connectivity matrixR, bi j = 1 whenr i j = 1 andCD = I . In the right hand
side, the equivalent factor model with mixing matrixD. Note that the factor model is
sparse even if its corresponding DAG is dense. The gray boxes inD andR⊙B represent
elements that must be zero by construction.

In the general case in Equation (1),D = (I −B)−1C is of sized× (d+m). What we will show
is that even ifD is still identifiable, we can no longer obtainB andC uniquely unless we “tag” the
model by requiring the distributions of driving signalszD and latent signalszL to differ. In order to
illustrate why we get non-identifiability, we can writex = Dz invertingD explicitly. For simplicity
we considerm= 1 andP= I but generalizing tom> 1 is straight forward




x1

x2

x3
...

xd



=




c11 0 0 · · · c1L

b21c11 c22 0 · · · b21c1L +c2L

b31c11+b32b21c11 b32c22 c33 · · · b31c1L +b32b21c1L +a32c2L +c3L
...

...
...

. ..
...

c11+∑i−1
k=1bikdk1 · · · · · · · · · ciL +∑i−1

k=1bikdkL







z1

z2

z3
...

zd+1



.

We see from this equation that if all latent variables have the same distribution and c1L is non-
zero then we may exchange the first and last column inD to get two equivalent distributions with
different elements forB andC. The model is thus non-identifiable. If the firsti elements in latent
column ofC are zero then the(i + 1)-th and last column can be exchanged. Hoyer et al. (2008)
made the same basic observation through a number of examples. Interestingly, we also see from
the triangularity requirement of the “driving signal” part ofD thatP is actually identifiable despite
the fact thatB and C are not. To illustrate that the non-identifiability may lead to quite severe
confusion about inferences, consider a model with only two observed variablesx = [x1,x2]

⊤ and
c11 = c22 = 1. Two different hypothesis{b21,c1L,c2L} = {0,1,1} and{b21,c1L,c2L} = {1,1,−1}
with graphs shown in Figure 3 have equivalent factor models written as

[
x1

x2

]
=

[
1 0 1
0 1 1

]


z1

z2

zL


 and

[
x1

x2

]
=

[
1 0 1
1 1 0

]


z′1
z′2
z′L


 .

The two models above have the same mixing matrixD, up to permutation of columnsPf . In general
we expect the number of solutions with equivalent distribution may be as largeas 2m, corresponding
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Figure 3: Two DAGs with latent variables. They are equivalent ifz has the same distribution asz′.

to the number of times a column ofD from its latent part (lastmcolumns) con be exchanged with a
column from its observed part (firstd columns). This readily assumes that the sparsity pattern inD
is identified, which follows from the results of Kagan et al. (1973).

One way to get identifiability is to change the distributionszD andzL such that they differ and
cannot be exchanged. Here it is not enough to change the scale of the variables, that is, variance
for continuous variables, because this effect can be countered by rescalingC with Sf . So we need
distributions that differ beyond rescaling. In our examples we use Laplace and the more heavy-tailed
Cauchy forzD andzL, respectively. This specification is not unproblematic in practical situations
however it can be sometimes restrictive and prone to model mismatch issues. Wenevertheless show
one practical example which leads to sensible inferences.

In time series applications for example, it is natural to go beyond an i.i.d. model for z. One
may for example use a Gaussian process prior for each factor to get smoothness over time, that is,
zj1, . . . ,zjN |ν j ∼ N (0,Kν j ), whereKν j is the covariance matrix with elementsk j,nn′ = kυ j ,n(n,n

′)
andkυ j ,n(·) is the covariance function. For the i.i.d. Gaussian model the source distribution is only
identifiable up to an arbitrary rotation matrixU, that is, the rotated factorsUz are still i.i.d. . We
can show that contrary to the i.i.d. Gaussian model, the Gaussian process factor model is identifi-
able if the covariance functions differ. We need to show thatẐ = UZ has a different covariance
structure thanZ = [z1 . . . zN]. We getznz⊤n′ = diag(k1,nn′ , . . . ,kd+m,nn′) and ẑnẑ⊤n′ = Uznz⊤n′U

⊤ =
Udiag(k1,nn′ , . . . ,kd+m,nn′)U⊤ for the original and rotated variables, respectively. The covariances
are indeed different and the model is thus identifiable if no covariance functionskυ j ,n(n,n

′), j =
1, . . . ,d+mare the same.

3. Prior Specification

In this section we provide a detailed description of the priors used for eachone of the elements of
our sparse linear identifiable model already defined in Equation (1). We start with εεε, the noise term
that allow us to quantify the mismatch between a set ofN observationsX = [x1 . . . xN] and the
model itself. For this purpose, we use uncorrelated Gaussian noise componentsεεε ∼N (εεε|0,ΨΨΨ) with
conjugate inverse gamma priors for their variances as follows

X|m,ΨΨΨ ∼
N

∏
n=1

N (xn|m,ΨΨΨ) ,

ΨΨΨ−1|ss,sr ∼
d

∏
i=1

Gamma(ψ−1
i |ss,sr) ,

where we have already marginalized outεεε, ΨΨΨ is a diagonal covariance matrix denoting uncorrelated
noise across dimensions andm is the mean vector such thatmFM = Czn andmDAG = Bxn+Czn.
In the noise covariance hyperprior,ss andsr are the shape and rate, respectively. The selection of
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hyperparameters forΨΨΨ should not be very critical as long as both “signal and noise” hypotheses are
supported, that is, diffuse enough to allow for small values ofψi as well as forψi = 1 (assuming
that the data is standardized in advance). We setss = 20 andsr = 1 in the experiments for instance.
Another issue to consider when selectingss andsr is the Bayesian analogue of the Heywood problem
in which likelihood functions are bounded below away from zero asψi tends to zero, hence inducing
multi-modality in the posterior ofψi with one of the modes at zero. The latter can be avoided by
specifyingss andsr such that the prior decays to zero at the origin, as we did above. It is well
known, for example, that Heywood problems cannot be avoided using improper reference priors,
p(ψi) ∝ 1/ψi (Martin and McDonald, 1975).

The remaining components of the model are described as it follows in five parts named sparsity,
latent variables and driving signals, order search, allowing for correlated data and allowing for non-
linearities. The first part addresses the interpretability of the model by means of parsimonious priors
for C andD. The second part describes the type of non-Gaussian distributions used onz in order
to keep the model identifiable. The third part considers how a search overpermutations of the
observed variables can be used in order to handle the constraints imposedon matrixR. The last two
parts describe how introducing Gaussian process process priors in themodel can be used to model
non-independent observations and non-linear dependencies in the DAGs.

3.1 Sparsity

The use of sparse models will in many cases give interpretable results and isoften motivated by the
principle of parsimony. Also, in many application domains it is also natural froma prediction point
of view to enforce sparsity because the number of explanatory variablesmay exceed the number of
examples by orders of magnitude. In regularized maximum likelihood type formulations of learning
(maximum a-posteriori) it has become popular to use one-norm (L1) regularization for example to
achieve sparsity (Tibshirani, 1996). In the fully Bayesian inference setting (with averaging over
variables), the corresponding Laplace prior will not lead to sparsity because it is very unlikely for
a posterior summary like the mean, median or mode to be estimated as exactly zero even asymp-
totically. The same effect can be expected from any continuous distributionused for sparsity like
Student’st, α-stable and bimodal priors (continuous slab and spike priors, Ishwaranand Rao, 2005).
Exact zeros can only be achieved by placing a point mass at zero, that is, explicitly specifying that
the variable at hand is zero or not with some probability. This has motivated theintroduction of
many variants over the years of so-called slab and spike priors consistingof two component mix-
tures of a continuous part and aδ-function at zero (Lempers, 1971; Mitchell and Beauchamp, 1988;
George and McCulloch, 1993; Geweke, 1996; West, 2003). In this paradigm, the columns of ma-
tricesC or B encode respectively, the connectivity of a factor or the set of parentsassociated to an
observed variable. It is natural then to share information across elementsin column j by assuming
a common sparsity level 1−ν j , suggesting the following hierarchy

ci j |qi j , · ∼ (1−qi j )δ(ci j )+qi j Cont(ci j |·) ,

qi j |ν j ∼ Bernoulli(qi j |ν j) ,

ν j |βm,βp ∼ Beta(ν j |βpβm,βp(1−βm)) ,

(2)

whereQ, the binary matrix in Equation (1) appears naturally,δ(·) is a Diracδ-function, Cont(·)
is the continuous slab component, Bernoulli(·) and Beta(·) are Bernoulli and beta distributions,
respectively. Reparameterizing the beta distribution as Beta(ν j |αβ/m,β) and taking the number of
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columnsmof Q⊙C to infinity, leads to the non-parametric version of the slab and spike model with
a so-called Indian buffet process prior over the (infinite) masking matrixQ = {qi j} (Ghahramani
et al., 2006). Note also thatqi j |ν j is mainly used for clarity to make the binary indicators explicit,
nevertheless in practice we can work directly withci j |ν j , · ∼ (1−ν j)δ(ci j )+ν jCont(ci j |·) because
qi j can be marginalized out.

As illustrated and pointed out by Lucas et al. (2006) and Carvalho et al. (2008) the model with
a shared beta-distributed sparsity level per factor introduces the undesirable side-effect that there is
strong co-variation between the elements in each column of the masking matrix. For example, in
high dimensions we might expect that only a finite number of elements are non-zero, implying a
prior favoring a very high sparsity rate 1−ν j . Because of the co-variation, even the parameters that
are clearly non-zero will have a posterior probability of being non-zero, p(qi j = 1|x, ·), quite spread
over the unit interval. Conversely, if our priors do not favor sparsity strongly, then the opposite
situation will arise and the solution will become completely dense. In general, it isdifficult to set
the hyperparameters to achieve a sensible sparsity level. Ideally, we wouldlike to have a model
with a high sparsity level with high certainty about the non-zero parameters.We can achieve this
by introducing a sparsity parameterηi j for each element ofC which has a mixture distribution with
exactly this property

qi j |ηi j ∼ Bernoulli(qi j |ηi j ) ,

ηi j |ν j ,αp,αm ∼ (1−ν j)δ(ηi j )+ν jBeta(ηi j |αpαm,αp(1−αm)) .
(3)

The distribution overηi j expresses that we expect parsimony: eitherηi j is zero exactly (implying
that qi j andci j are zero) or non-zero drawn from a beta distribution favoring high values, that is,
qi j andci j are non-zero with high probability. We useαp = 10 andαm = 0.95 which has mean
αm = 0.95 and varianceαm(1−αm)/(1+αp) ≈ 0.086. The expected sparsity rate of the modified
model is(1−αm)(1−ν j). This model has the additional advantage that the posterior distribution
of ηi j directly measures the distribution ofp(qi j = 1|x, ·). This is therefore the statistic for rank-
ing/selection purposes. Besides, we may want to reject interactions with highuncertainty levels
when the probability ofp(qi j = 1|x, ·) is less or very close to the expected value,αm(1−ν j).

To complete the specification of the prior, we let the continuous slab part in Equation (2) be
Gaussian distributed with inverse gamma prior on its variance. In addition, we scale the variances
with ψi as

Cont(ci j |ψi ,τi j ) = N (ci j |0,ψiτi j ) ,

τ−1
i j |ts, tr ∼ Gamma(τ−1

i j |ts, tr) .
(4)

This scaling makes the model easier to specify and tend to have better mixing properties (see Park
and Casella, 2008). The slab and spike forB (DAG) is obtained from Equations (2), (3) and (4) by
simply replacingci j with bi j andqi j with r i j . As already mentioned, we useαp = 10 andαm= 0.95
for the hierarchy in Equation (3). For the column-shared parameterν j defined in Equation (2) we
set the precision toβp = 100 and consider the mean values for factor models and DAGs separately.
For the factor model we set a diffuse prior by makingβm= 0.9 to reflect that some of the factors can
be in general nearly dense or empty. For the DAG we consider two settings, ifwe expect to obtain
dense graphs we setβm= 0.99, otherwise we setβm= 0.1. Both settings can produce sparse graphs,
however smaller values ofβm increase the overall sparsity rate and the gap betweenp(r i j = 0) and
p(r i j = 1). A large separation between these two probabilities makes interpretation easier and also
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Figure 4: Slab and spike prior example. (a) Posterior unnormalized densities for the magnitude of
two particular elements ofC. (b) Posterior density forηi j = p(ci j 6= 0|x, ·). Here,c64 6= 0
andc54 = 0 correspond to elements of the mixing matrix from the experiment shown in
Figure 8.

helps to spot non-zeros (edges) with high uncertainty. The hyperparameters for the variance of
the non-zero elements ofB andC are set to get a diffuse prior distribution bounded away from
zero (ts = 2 andtr = 1), to allow for a better separation between slab and spike components. For
the particular case ofCL, in principle the prior should not have support on zero at all, that is, the
driving signal should not vanish, however for simplicity we allow this anyway as it has not given
any problems in practice. Figure 4 shows a particular example of the posterior, p(ci j ,ηi j |x, ·) for
two elements ofC under the prior just described. In the example,c64 6= 0 with high probability
according toηi j , whereasc54 is almost certainly zero since most of its probability mass is located
exactly at zero, with some residual mass on the vicinity of zero, in Figure 4(a). In the one level
hierarchy Equation (2) sparsity parameters are shared,η64 = η54 = ν4. The result would then be
less parsimonious with the posterior density ofν4 being spread in the unit interval with a single
mode located close toβm.

3.2 Latent Variables and Driving Signals

We consider two different non-Gaussian—heavy-tailed priors forz, in order to obtain identifiable
factor models and DAGs. A wide class of continuous, unimodal and symmetric distributions in one
dimension can be represented as infinite scale mixtures of Gaussians, whichare very convenient for
Gibbs-sampling-based inference. We focus on Student’st and Laplace distributions which have the
following mixture representation (Andrews and Mallows, 1974)

Laplace(z|µ,λ) =
∫ ∞

0
N (z|µ,υ)Exponential(υ|λ2)dυ , (5)

t(z|µ,θ,σ2) =
∫ ∞

0
N (z|µ,υσ2)Gamma

(
υ−1

∣∣∣∣
θ
2
,
θ
2

)
dυ , (6)

whereλ > 0 is the rate,σ2 > 0 the scale,θ > 0 is the degrees of freedom, and the distributions
have exponential and gamma mixing densities accordingly. For varying degrees of freedomθ, the
t distribution can interpolate between very heavy-tailed (power law and Cauchy whenθ = 1) and
very light tailed, that is, it becomes Gaussian when the degrees of freedom approaches infinity. The
Laplace (or bi-exponential) distribution has tails which are intermediate between a t (with finite
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degrees of freedom) and a Gaussian. In this sense, thet distribution is more flexible but requires
more careful selection of its hyperparameters because the model may become non-identifiable in
the largeθ limit (Gaussian).

An advantage of the Laplace distribution is that we can fix its parameterλ = 1 and let the model
learn the appropriate scaling fromC in Equation (1). If we use the pure DAG model, we will need
to have a hyperprior forλ2 in order to learn the variances of the latent variables/driving signals, as in
Henao and Winther (2009). A hierarchical prior for the degrees of freedom in thet distribution is not
easy to specify because there is no conjugate prior available with a standard closed form. Although
a conjugate prior exists, is not straightforward to sample from it, since numerical integration must
be used to compute its normalization constant. Another possibility is to treatθ as a discrete variable
so computing the normalizing constant becomes straight forward.

Laplace and Student’st are not the only distributions admitting scale mixture representation.
This mean that any other compatible type can be used as well, if the application requires it, and
without considerable additional effort. Some examples include the logistic distribution (Andrews
and Mallows, 1974), the stable family (West, 1987) and skewed versions of heavy-tailed distribu-
tions (Branco and Dey, 2001). Another natural extension to the mixtures scheme could be, for
example, to set the mean of each component to arbitrary values and let the number of components
be an infinite sum, thus ending up providing each factor with a Dirichlet process prior. This might
be useful for cases when the latent factors are expected to be scattered in clusters due to the presence
of subgroups in the data, as was shown by Carvalho et al. (2008).

3.3 Order Search

We need to infer the order of the variables in the DAG to meet the constraints imposed onR in Sec-
tion 2. The most obvious way is to try to solve this task by inferring all parameters {P,B,C,z,εεε}
by a Markov chain Monte Carlo (MCMC) method such as Gibbs sampling. However, algorithms
for searching over variable order prefer to work with models for which parameters other thanP can
be marginalized analytically (see Friedman and Koller, 2003; Teyssier and Koller, 2005). For our
model, where we cannot marginalize analytically overB (due toR being binary), estimatingP andB
by Gibbs sampling would mean that we had to propose a newP for fixedB. For example, exchang-
ing the order of two variables would mean that they also exchange parameters in the DAG. Such a
proposal would have very low acceptance, mainly as a consequence ofthe size of the search space
and thus very poor mixing. In fact, for a givend number of variables there ared! possible orderings
P, while there ared!2(d(d+2m−1))/2 possible structures for{P,B,C}. We therefore opt for an alterna-
tive strategy by exploiting the equivalence between factor models and DAGsshown in Section 2.1.
In particular form= 0, sinceB can be permuted to strictly lower triangular, thenD = (I −B)−1CD

can be permuted to triangular. This means that we can perform inference for the factor model to
obtainD while searching in parallel for a set of permutationsP that are in good agreement (in a
probabilistic sense) with the triangular requirement ofD. Such a set of orderings is found during
the inference procedure of the factor model. To set up the stochastic search, we need to modify the
factor model slightly by introducing separate data (row) and factor (column) permutations,P andPf

to obtainx=P⊤DPfz+εεε. The reason for using two different permutation matrices, rather than only
one like in the definition of the DAG model, is that we need to account for the permutation free-
dom of the factor model (see Section 2.1). Using the same permutation for rowand column would
thus require an additional step to identify the columns in the factor model. We makeinference for
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the unrestricted factor model, but proposeP⋆ andP⋆
f independently according toq(P⋆|P)q(P⋆

f |Pf).
Both distributions draw a new permutation matrix by exchanging two randomly chosen elements,
for example, the order may change as[x1,x2,x3,x4]

⊤ → [x1,x4,x3,x2]
⊤. In other words, the pro-

posalsq(P⋆|P) andq(P⋆
f |Pf) are uniform distributions over the space of transpositions forP and

Pf . Assuming we have no a-priori preferred ordering, we may use a Metropolis-Hastings (M-H)
acceptance probability min(1,ξ→⋆) with ξ→⋆ as a simple ratio of likelihoods with the permutedD
masked to match the triangularity assumption. Formally, we use the binary maskM (containing
zeros above the diagonal of itsd first columns) and write

ξ→⋆ =
N (X|(P⋆)⊤(M ⊙P⋆D(P⋆

f )
⊤)P⋆

f Z,ΨΨΨ)

N (X|P⊤(M ⊙PDP⊤
f )PfZ,ΨΨΨ)

, (7)

whereM ⊙D is the maskedD andZ = [z1 . . .zN]. The procedure can be seen as a simple approach
for generating hypotheses about good orderings, producing close totriangular versions ofD, in a
model where the slab and spike prior provide the required bias towards sparsity. Once the inference
is done, we end up having an estimate for the desired distribution over permutationsP= ∑d!

i πiδPi ,
whereπππ = [π1 π2 . . .] is a sparse vector containing the probability forP = Pi , which in our case
is proportional to the number of times permutationPi was accepted by the M-H update during
inference. Note thatPf is just a nuisance variable that does not need to be stored or summarized.

3.4 Allowing for Correlated Data (CSLIM)

For the case where independence of observed variables cannot be assumed, for instance due to (time)
correlation or smoothness, the priors discussed before for the latent variables and driving signals do
not really apply anymore, however the only change we need to make is to allowelements in rows
of Z to correlate. We can assume then independent Gaussian process (GP) priors for each latent
variable instead of scale mixtures of Gaussians, to obtain what we have called correlated sparse
linear identifiable modeling (CSLIM). For a set ofN realizations of variablej we set

zj1, . . . ,zjN |υ j ∼ GP(zj1, . . . ,zjN |kυ j ,n(·)) , (8)

where the covariance function has the formkυ j ,n(n,n
′) = exp(−υ j(n−n′)2), {n,n′} is a pair of ob-

servation indices or time points andυ j is the length scale controlling the overall level of correlation
allowed for each variable (row) inZ. Conceptually, Equation (8) implies that each latent variablej
is sampled from a function and the GP acts as a prior over continuous functions. Since such a length
scale is very difficult to set just by looking at the data, we further place priors onυ j as

υ j |us,κ ∼ Gamma(υ j |us,κ) , κ|ks,kr ∼ Gamma(κ|ks,kr) . (9)

Given that the conditional distribution ofυυυ = [υ1, . . . ,υm] is not of any standard form, Metropolis-
Hastings updates are used. In the experiments we use thatus = ks = 2 andkr = 0.02. The details
concerning inference for this model are given in Appendix A.

It is also possible to easily expand the possible applications of GP priors in thiscontext by,
for instance, using more structured covariance functions through scalemixture of Gaussian rep-
resentations to obtain a prior distribution for continuous functions with heavy-tailed behavior—a
t-processes (Yu et al., 2007), or learning the covariance function as well using inverse Wishart hy-
perpriors.
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3.5 Allowing for Non-linearities (SNIM)

Provided that we know the true ordering of the variables, that is,P is known thenB is surely strictly
lower triangular. It is very easy to allow for non-linear interactions in the DAG model from Equation
(1) by rewriting it as

Px= (R⊙B)Py+(Q⊙C)z+ εεε , (10)

wherey = [y1, . . . ,yd]
⊤ andyi1, . . . ,yiN |υi ∼ GP(yi1, . . . ,yiN |kυi ,x(·)) has a Gaussian process prior

with for instance, but not limited to, a stationary covariance function likekυi ,x(x,x
′) = exp(−υi(x−

x′)2), similar to Equation (8) and with the same hyperprior structure as in Equation (9). This is a
straight forward extension that we call sparse non-linear multivariate modeling (SNIM) that is in
spirit similar to Friedman and Nachman (2000), Hoyer et al. (2009), Zhangand Hyv̈arinen (2009),
Zhang and Hyv̈arinen (2010) and Tillman et al. (2009), however instead of treating the inherent
multiple regression problem in Equation (10) and the conditional independence of the observed
variables independently, we proceed within our proposed framework byletting the multiple regres-
sor be sparse, thus the conditional independences are encoded through R. The main limitation of
the model in Equation (10) is that if the true ordering of the variables is unknown, the exhaustive
enumeration ofP is needed. This means that this could be done for very small networks, forexam-
ple, up to 5 or 6 variables. In principle, an ordering search procedurefor the non-linear model only
requires the latent variablesz to have Gaussian process priors as well. The main difficulty is that in
order to build covariance functions forz we need a set of observations that are not available because
z is latent.

4. Model Comparison

Quantitative model comparison between factor models and DAGs is a key ingredient in SLIM. The
joint probability of dataX and parameters for the factor model part in Equation (1) is

p(X,C,Z,εεε, ·) = p(X|C,Z,εεε)p(C|·)p(Z|·)p(εεε)p(·) ,

where(·) indicates additional parameters in the hierarchical model. Formally the Bayesian model
selection yardstick, the marginal likelihood for modelM

p(X|M ) =
∫

p(X|ΘΘΘ,Z)p(ΘΘΘ|M )p(Z|M )dΘΘΘdZ ,

can be obtained by marginalizing the joint over the parametersΘΘΘ and latent variablesZ. Computa-
tionally this is a difficult task because the marginal likelihood cannot be written as an average over
the posterior distribution in a simple way. It is still possible using MCMC methods, for example
by partitioning of the parameter space and multiple chains or thermodynamic integration (see Chib,
1995; Neal, 2001; Murray, 2007; Friel and Pettitt, 2008), but in general it must be considered as
computationally expensive and non-trivial. On the other hand, evaluating the likelihood on a test set
X⋆, using predictive densitiesp(X⋆|X,M ) is simpler from a computational point of view because it
can be written in terms of an average over the posterior of theintensive variables, p(C,εεε, ·|X) and
the prior distribution of theextensive variablesassociated with the test points,2 p(Z⋆|·) as

LFM
def
= p(X⋆|X,MFM) =

∫
p(X⋆|Z⋆,ΘΘΘFM, ·)p(Z⋆|·)p(ΘΘΘFM, ·|X)dZ⋆dΘΘΘFMd(·) , (11)

2. Intensive means not scaling with the sample size. Extensive means scaling with sample size in this case the size of
the test sample.
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whereΘΘΘFM = {C,εεε}. This average can be approximated by a combination of standard sampling
and exact marginalization using the scale mixture representation of the heavy-tailed distributions
presented in Section 3.2. For the full DAG model in Equation (1), we will not average over permu-
tationsP but rather calculate the test likelihood for a number of candidatesP(1), . . . ,P(c), . . . as

LDAG
def
= p(X⋆|P(c),X,MDAG) ,

=
∫

p(X⋆|P(c),X,Z⋆,ΘΘΘDAG, ·)p(Z⋆|·)p(ΘΘΘDAG, ·|X)dZ⋆dΘΘΘDAGd(·) , (12)

whereΘΘΘDAG = {B,C,εεε}. We use sampling to compute the test likelihoods in Equations (11) and
(12). With Gibbs, we draw samples from the posterior distributionsp(ΘΘΘFM, ·|X) andp(ΘΘΘDAG, ·|X),
where (·) is shorthand for example for the degrees of freedomθ, if Studentt distributions are
used. The average over the extensive variables associated with the testpoints p(Z⋆|·) is slightly
more complicated because naively drawing samples fromp(Z⋆|·) results in an estimator with high
variance—forψi ≪υ jn. Instead we exploit the infinite mixture representation to marginalize exactly
Z⋆ and then draw samples in turn for the scale parameters. Omitting the permutation matrices for
clarity, in general we get

p(X⋆|ΘΘΘ, ·) =
∫

p(X⋆|Z⋆,ΘΘΘ, ·)p(Z⋆|·)dZ⋆ ,

=∏
n

∫
N (x⋆n|mn,ΣΣΣn)∏

j
p(υ jn|·)dυ jn ≈

1
Nrep

∏
n

Nrep

∑
r
N (x⋆n|mn,ΣΣΣn) ,

whereNrep is the number of samples generated to approximate the intractable integral (Nrep= 500
in the experiments). For the factor modelmn = 0 andΣΣΣn = CDUnC⊤

D +ΨΨΨ. For the DAG,mn = Bx⋆n
and ΣΣΣn = CUnC⊤ + ΨΨΨ. The covariance matrixUn = diag(υ1n, . . . ,υ(d+m)n) with elementsυ jn,
is sampled directly from the prior, accordingly. Once we have computedp(X⋆|ΘΘΘFM, ·) for the
factor model andp(X⋆|ΘΘΘDAG, ·) for the DAG, we can use them to average overp(ΘΘΘFM, ·|X,) and
p(ΘΘΘDAG, ·|X) to obtain the predictive densitiesp(X⋆|X,MFM) andp(X⋆|X,MDAG), respectively.

For the particular case in whichX and consequentlyZ are correlated variables—CSLIM, we
use a slightly different procedure for model comparison. Instead of using a test set, we randomly
remove some proportion of the elements ofX and perform inference with missing values, then we
summarize the likelihood on the missing values. In particular, for the factor model we useMmiss⊙
X = Mmiss⊙ (QL ⊙CLZ + εεε) whereMmiss is a binary masking matrix with zeros corresponding to
test points, that is, the missing values. See details in Appendix A. Note that this scheme is not
exclusive to CSLIM thus can be also used with SLIM or when the observeddata contain actual
missing values.

5. Model Overview and Practical Details

The three models described in the previous section namely SLIM, CSLIM andSNIM can be sum-
marized as a graphical model and as a probabilistic hierarchy as follows
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xn|W,yn,zn,ΨΨΨ ∼ N (xn|W[yn zn]
⊤,ΨΨΨ) , W = [B C] ,

ψ−1
i |ss,sr ∼ Gamma(ψ−1

i |ss,sr) ,

wik|hik,ψi ,τik ∼ (1−hik)δ0(wik)+hikN (wik|0,ψiτik) ,

hik|ηik ∼ Bernoulli(hik|ηik) , H = [R Q] ,

ηik|νk,αp,αm ∼ (1−νk)δ(ηik)+νkBeta(ηik|αpαm,αp(1−αm)) ,

νk|βm,βp ∼ Beta(νk|βpβm,βp(1−βm)) ,

τ−1
ik |ts, tr ∼ Gamma(τ−1

ik |ts, tr) ,

zj1, . . . ,zjN |υ ∼

{
∏nN (zjn|0,υ jn) , (SLIM)

GP(zj1, . . . ,zjN |kυ j ,n(·)) , (CSLIM)

yi1, . . . ,yiN |υ ∼

{
xi1, . . . ,xiN , (SLIM)

GP(yi1, . . . ,yiN |kυi ,x(·)) , (SNIM)

xin

wik

yin

zjn

υ jn

hik

ηik

νk

τik

υi

ψi

i = 1 : d

k= 1 : 2d+m

n= 1 : N

j = 1 : d+m

where we have omittedP and the hyperparameters in the graphical model. Latent variable and driv-
ing signal parametersυ can have one of several priors: Exponential(υ|λ2) (Laplace),
Gamma(υ−1|θ/2,θ/2) (Student’st) or Gamma(υ|us,κ) (GP), see Equations (5), (6) and (9), respec-
tively. The latent variables/driving signalszjn and the mixing/connectivity matrices with elements
ci j or bi j are modeled independently. Each element inB andC has its own slab varianceτi j and
probability of being non-zeroηi j . Moreover, there is a shared sparsity rate per columnνk. Variables
υ jn are variances ifzjn use a scale mixture of Gaussian’s representation, or length scales in the GP
prior case. Since we assume no sparsity for the driving signals,ηik = 1 for d+ i = k andηik = 0
for d+ i 6= k. In addition, we can recover the pure DAG by makingm= 0 and the standard factor
model by making insteadηik = 0 for k≤ 2d. All the details for the Gibbs sampling based inference
are summarized in appendix A.

5.1 Proposed Workflow

We propose the workflow shown in Figure 1 to integrate all elements of SLIM,namely factor model
and DAG inference, stochastic order search and model selection using predictive densities.

1. Partition the data into{X,X⋆}.

2. Perform inference on the factor model and stochastic order search. One Gibbs sampling
update consists of computing the conditional posteriors in Equations (13), (14), (15), (16),
(17), (18) and (19) in sequence, followed by several repetitions (weuse 10) of the M-H
update in Equation (7) for the permutation matricesP andPf .

3. Summarize the factor model, mainlyC, {ηi j} andLFM using quantiles (0.025, 0.5 and 0.975).

4. Summarize the orderings,P. Select the topmtop candidates according to their frequency
during inference in step 2.
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Figure 5: Runtime comparison.

5. Perform inference on the DAGs for each one of the ordering candidates,P(1), . . . ,P(mtop) us-
ing Gibbs sampling by computing Equations (13), (14), (15), (16), (17),(18) and (19) in
sequence, up to minor changes described in Appendix A.

6. Summarize the DAGs,B, CL, {ηik} andL (1)
DAG, . . . ,L

(mtop)
DAG using quantiles (0.025, 0.5 and

0.975). Note that{ηik} contains non-zero probabilities forR andQ corresponding toB and
CL, respectively.

We use medians to summarize all quantities in our model becauseD, B and{ηik} are bimodal while
the remaining variables are in general skewed posterior distributions. Inference with GP priors
for time series data (CSLIM) or non-linear DAGs (SNIM) is fairly similar to the i.i.d. case, see
Appendix A for details. Source code for SLIM and all its variants proposed so far has been made
available athttp://cogsys.imm.dtu.dk/slim/ as Matlab scripts.

5.2 Computational Cost

The cost of running the linear DAG with latent variables or the factor model isroughly the same, that
is, O(Nsd2N) whereNs is the total number of samples including the burn-in period. The memory
requirements on the other hand are approximatelyO(Npd2) if all the samples after the burn-in period
Np are stored. This means that the inference procedures scale reasonably well if Ns is kept in the
lower ten thousands. The non-linear version of the DAG is considerably more expensive due to the
GP priors, hence the computational cost rises up toO(Ns(d−1)N3).

The computational cost of LiNGAM, being the closest to our linear models, is mainly dependent
on the statistic used to prune/select the model. Using bootstrapping results inO(N3

b), whereNb is the
number of bootstrap samples. The Wald statistic leads toO(d6), while Wald withχ2 second order
model fit test amounts toO(d7). As for the memory requirements, bootstrapping is very economic
whereas Wald-based statistics requireO(d6).

The method for non-linear DAGs described in Hoyer et al. (2009) is defined for a pair of vari-
ables, and it uses GP-based regression and kernelized independence tests. The computational cost
isO(NgN3) whereNg is the number of gradient iterations used to maximize the marginal likelihood
of the GP. This is the same order of complexity as our non-linear DAG sampler.

Figure 5 shows average running times in a standard desktop machine (two cores, 2.6GHz and
4Gb RAM) over 10 different models withN = 1000 andd = {10,20,50,100}. As expected,
LiNGAM with bootstrap is very fast compared to the others while our model approaches LiNGAM
with Wald statistic as the number of observations increases. We did not includeLiNGAM with
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second order model fit because ford = 50 it is already prohibitive. For this small test we used a
C implementation of our model withNs = 19000. We are aware that the performance of a C and
a Matlab implementation can be different, however we still do the comparison because the most
expensive operations in the Matlab code for LiNGAM are computed throughBLAS routines not
involving large loops, thus a C implementation of LiNGAM should not be noticeablyfaster than its
Matlab counterpart.

6. Simulation Results

We consider six sets of experiments to illustrate the features of SLIM. In ourcomparison with other
methods we focus on the DAG structure learning part because it is somewhat easier to benchmark
a DAG than a factor model. However, we should stress that DAG learning is just one component
of SLIM. Both types of model and their comparison are important, as will be illustrated through
the experiments. For the reanalysis of flow cytometry data using our models, quantitative model
comparison favors the DAG with latent variables rather than the standard factor model or the pure
DAG which was the paradigm used in the structure learning approach of Sachs et al. (2005).

The first two experiments consist of extensive tests using artificial data in asetup originally from
LiNGAM and network structures taken from the Bayesian net repository.We test the features of
SLIM and compare with LiNGAM and some other methods in settings where they have proved to
work well. The third set of experiments addresses model comparison, the fourth and fifth present
results for our DAG with latent variables and the non-linear DAG (SNIM) onboth artificial and real
data. The sixth uses real data previously published by Sachs et al. (2005) and the last one provides
simple results for a factor model using Gaussian process priors for temporal smoothness (CSLIM),
tested on a time series gene expression data set (Kao et al., 2004). In all cases we ran 10000 samples
after a burn-in period of 5000 for the factor model, and a single chain with 3000 samples and 1000
as burn-in iterations for the DAG, that is,Ns = 19000 used in the computational cost comparison.
As a summary statistic we use median values everywhere, and Laplace distributions for the latent
factors if not stated otherwise.

6.1 Artificial Data

We evaluate the performance of our model against LiNGAM,3 using the artificial model generator
presented and fully explained in Shimizu et al. (2006). Concisely, the generator produces both dense
and sparse networks with different degrees of sparsity,Z is generated from a heavy-tailed non-
Gaussian distribution through a generalized Gaussian distribution with zero mean, unit variance
and random shape,X is generated recursively using Equation (1) withm= 0 and then randomly
permuted to hide the correct order,P. Approximately, half of the networks are fully connected while
the remaining portion comprises sparsity levels between 10% and 80%. Havingdense networks
(0% sparsity) in the benchmark is crucial because in such cases the correct order of the variables is
unique, thus more difficult to find. This setup is particularly challenging because the model needs
to identify both dense and sparse models. For the experiment we have generated 1000 different
data set/models usingd = {5,10}, N = {200,500,1000,2000} and the DAG was selected using the

median of the training likelihood,p(X|P(k)
r ,R(k),B(k),C(k)

D ,Z,ΨΨΨ, ·), for k= 1, . . . ,mtop.

3. Matlab package (v.1.42) available athttp://www.cs.helsinki.fi/group/neuroinf/lingam/ .
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Figure 6: Ordering accuracies for LiNGAM suite usingd = 5 in (a,b) andd = 10 in (c,d). (a,c)
Total correct ordering rates where DENSE is our factor model without sparsity prior and
DS corresponds to DENSE but using the deterministic ordering search used in LiNGAM.
(b,c) Correct ordering rate vs. candidates from SLIM. The crossesand horizontal lines
correspond to LiNGAM while the triangles are accumulated correct orderings across can-
didates used by SLIM.

6.1.1 ORDER SEARCH

With this experiment we want to quantify the impact of using sparsity, stochasticordering search
and more than one ordering candidate, that is,mtop = 10 in total. Figure 6 evaluates the proportion
of correct orderings for different settings. We have the following abbreviations for this experiment,
DENSE is our factor model without sparsity prior, that is, assuming thatp(r i j = 1) = 1 a priori.
DS (deterministic search) assumes no sparsity as in DENSE but replaces our stochastic search for
permutations with the deterministic approach used by LiNGAM, that is, we replace the M-H update
from Equation (7) by the procedure described next: after inference we computeD−1 followed by a
column permutation search using the Hungarian algorithm and a row permutationsearch by iterative
pruning until getting a version ofD as triangular as possible (Shimizu et al., 2006). Several com-
ments can be made from the results, (i) Ford= 5 there is no significant gain for increasingN, mainly
because the size of the permutation space is small, that is, 5!. (ii) The difference in performance
between SLIM and DENSE is not significative because we look for triangular matrices in a prob-
abilistic sense, hence there is no real need for exact zeros but just very small values, this does not
mean that the sparsity in the factor model is unnecessary, on the contrary we still need it if we want
to have readily interpretable mixing matrices. (iii) Using more than one ordering candidate consid-
erably improves the total correct ordering rate, for example, by almost 30% for d = 5, N = 200 and
35% ford = 10, N = 500. (iv) The number of accumulated correct orderings found saturates as the
number of candidates used increases, suggesting that further increasing mtop will not considerably
change the overall results. (v) The number of correct orderings tends to accumulate on the first
candidate whenN increases since the uncertainty of the estimation of the parameters in the factor
model decreases accordingly. (vi) When the network is not dense, it could happen that more than
one candidate has a correct ordering, hence the total rates (triangles)are not just the sum of the bar
heights in Figures 6(b) and 6(d). (vii) It seems that except ford = 10, N = 5000 it is enough to con-
sider just the first candidate in SLIM to obtain as many correct orderings as LiNGAM does. (viii)
From Figures 6(a) and 6(c), the three variants of SLIM considered perform better than LiNGAM,
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Figure 7: Performance measures for LiNGAM suite. Results include the settings:d= {5,10}, N =
{200,500,1000,2000}, four model selectors for LiNGAM (bootstrap, Wald, Bonferroni
and Wald +χ2 statistics) and sevenp-value cutoffs for the statistics used in LiNGAM
(0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5). ORACLE corresponds to oracle results for
SLIM, both computed for two settings: diffuseβm = 0.99 and sparseβm = 0.1 priors.
Markers close to the top-left corner denote better results in average.

even when using the same single candidate ordering search proposed byShimizu et al. (2006). (ix)
In some cases the difference between SLIM and LiNGAM is very large, for example, ford = 10
using two candidates andN = 1000 is enough to obtain as many correct orderings as LiNGAM with
N = 5000.

6.1.2 DAG LEARNING

Now we evaluate the ability of our model to capture the DAG structure in the data,provided the
permutation matrices obtained in the previous stage as a result of our stochastic order search. Results
are summarized in Figure 7 using receiving operating characteristic (ROC)curves. The true and
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false positive rates are averaged over the number of trials (1000) for each setting to make the scaling
in the plots more meaningful given the various levels of sparsity considered. The rates are computed
in the usual way, however it must be noted that the true number of absent links in a network can be
as large asd(d−1), that is, twice the number of links in a DAG, because in the case of an estimated
DAG based in a wrong ordering the number of false positives can sum up tod(d−1)/2 even if the
true network is not empty. For LiNGAM we use four different statistics to prune the DAG after the
ordering has been found, namely bootstrapping, Wald, Bonferroni and Wald with second orderχ2

model fit test. In every case we run LiNGAM for 7 differentp-value cutoffs, namely, 0.0005, 0.001,
0.005, 0.01, 0.05, 0.1 and 0.5 to build the ROC curve. For SLIM we considerthe two settings forβm

discussed in Section 3.1, that is, a diffuse prior supporting the existence of dense graphs,βm = 0.99
andβm = 0.1. In order to test how good SLIM is at selecting one DAG out of themtop candidates,
we also report the oracle results under the name of ORACLE, where in every case we select the
candidate with less error instead of argmaxk p(X|P(k)

r ,R(k),B(k),C(k)
D ,Z,ΨΨΨ, ·). Usingβm = 0.99 is

not very useful in practice because in a real situation we expect that theunderlying DAG is sparse,
however the LiNGAM suite has as many dense graphs as sparse ones making βm = 0.1 a poor
choice. From Figure 7, it is clear that forβm = 0.99, SLIM is clearly superior, providing the best
true positive rate (TPR) - false positive rate (FPR) tradeoff. Forβm = 0.1 there is no real difference
between SLIM and some settings of LiNGAM (Wald and Bonferroni). Concerning SLIM’s model
selection procedure, it can be seen that the difference between SLIM and ORACLE nicely decreases
as the number of observations increases. We also tested the DAG learning procedure in SLIM when
the true ordering is known (results not shown) and we found only a verysmall difference compared
to ORACLE. It is important to mention that further increasing or reducingβm does not significantly
change the results shown; this is becauseβm does not fully control the sparsity of the model, thus
even forβm = 1 the model will be still sparse due to element-wise link confidence,αm. As for
LiNGAM, it seems that Wald performs better than Wald+ χ2, however just by looking at Figure 7,
it is to be expected that for largerN the latter perform better because the Wald statistic alone will
tend to select more dense models.

6.1.3 ILLUSTRATIVE EXAMPLE

Finally we want to show some of the most important elements of SLIM taking one successfully
estimated example from the LiNGAM suite. Figure 8 shows results for a particular DAG with
10 variables obtained using 500 observations, see Figures 8(d) and 8(e) for the ground truth and
the estimated DAG, respectively. True and estimated mixing matricesD for the equivalent factor
model are also shown in Figures 8(a) and 8(b), respectively. In total our algorithm produced 92
orderings out of 3.6×106 possible, from which allmtop = 10 candidates were correct. Figure 8(c)
shows the first 50 candidates and their frequency during sampling, the shaded area encloses the
mtop = 10 candidates. From Figure 8(f) we see that the elements ofB are correctly estimated and
their credible intervals are small, mainly due to the lack of model mismatch. Figure 8(g) shows
a good separation between zero and non-zero elements ofB as summarized byp(r i j = 1|X, ·). It
is worthwhile mentioning that usingβm = 0.99 instead ofβm = 0.1 in this example, still produces
the right DAG, although the separation between zero and non-zero elements in Figure 8(g) will be
smaller and with higher uncertainty, that is, larger credible intervals.
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Figure 8: Ground truth and estimated structures. (a) Ground truth mixing matrix. (b) Estimated
mixing matrix using our sparse factor model. Note the sign ambiguity in some of the
columns. (c) First 50 (out of 92) ordering candidates produced by our method during
inference and their frequency, the firstmtop candidates were used for to learn DAGs.
(d) Ground truth DAG. (e) Top candidate estimated using SLIM. (f) Estimatedmedian
weights for the DAG including 95% credible intervals and ground truth (squares). (g)
Summary of link probabilities measured asηi j = p(r i j = 1|X, ·).
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Figure 9: Performance measures for the Bayesian networks repositoryexperiments. Each con-
nected marker correspond to a differentp-value in LiNGAM, starting left to right from
0.005. Disconnected markers denote SLIM results. Numbers in parentheses indicate
number of variables.

6.2 Bayesian Networks Repository

Next we want to compare our method against LiNGAM on some realistic structures. We consider
7 well known benchmark structures from the Bayesian network repository,4 namely alarm, barley,
carpo, hailfinder, insurance, mildew and water (d = 37, 48, 61, 56, 27, 35, 32 respectively). Since
we do not have continuous data for any of the structures, we generated10 data sets of sizeN = 500
for each of them using heavy-tailed distributions with different parametersand Equation (1) with
m= 0, in a similar way as we did for the previous set of experiments, withR set to the ground truth
andB from sign(N (0,1))+N (0,0.2). For LiNGAM, we only use Wald statistics because as seen
in the previous experiment, it performs significantly better that bootstrapping. Again, we estimate
models for differentp-value cutoffs (0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.5). For SLIM, we
setβm = 0.1 since all the networks in the repository are sparse. Figures 9(a), 9(b) and 9(c) show
averaged performance measures respectively as ROC curves and theproportion of links reversed in
the estimated model due to ordering errors.

In this case, the results are mixed when looking at the performances obtained. Figure 9(b) shows
that SLIM is better than LiNGAM in the larger data sets with a significant difference. Figure 9(a)
shows for the remaining four data sets, that LiNGAM is better in two cases corresponding to the
insurance and mildew networks. In general, both methods perform reasonably well given the size
of the problems and the amount of data used to fit the models. However, SLIMtends to be more
stable, when looking at the range of the true positive rates. It is important to note that the best and
worst case for SLIM correspond to the largest and smallest network, respectively. We do not have
a sensible explanation about why SLIM is performing that poorly on the insurance network. Figure
9(c) implicitly reveals that both methods are unable to find the right ordering ofthe variables.

We also tried the following methods with encoded Gaussian assumptions: standard DAG search,
order search, sparse candidate pruning then DAG search (Friedman et al., 1999), L1MB then DAG

4. Network structures available athttp://compbio.cs.huji.ac.il/Repository/ .
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search (Schmidt et al., 2007), and sparse candidate pruning then order search (Teyssier and Koller,
2005). We observed (results not shown) that these methods produce similar results to those obtained
by either LiNGAM or SLIM when only looking at the resulting undirected graph, that is, removing
the directionality of the links. Evaluation of directionality in Gaussian models is out of the question
because such methods can only find DAGs up to Markov equivalence classes, thus evaluation must
be made using partially directed acyclic graphs (PDAGs). It is still possible to modify some of the
methods mentioned above to handle non-Gaussian data by for instance usingsome other appropriate
conditional independence tests, however this is out of the scope of this paper.

6.3 Model Comparison

In this experiment we want to evaluate the model selection procedure described in Section 4. For
this purpose we have generated 1000 different data sets/models withd = 5 andN = {500,1000}
following the same procedure described in the first experiment, but this time weselected the true
model to be either a factor model or a DAG with equal probability. In order to generate a factor
model, we basically just need to ensure thatD cannot be permuted to a triangular form, so the
data generated from it does not admit a DAG representation. We kept 20%of the data to compute
the predictive densities to then select between all estimated DAG candidates and the factor model.
We found that forN = 500 our approach was able to select true DAGs 96.78% of the times and
true factor models 87.05%, corresponding to an overall accuracy of 91.9%. Increasing the number
of observations, that is, forN = 1000, the true DAG, true factor model rates and overall error
increased to 98.99%, 95.0% and 96.99%, respectively. Figure 10 shows separately the empirical
log-likelihood ratio distributions obtained from the 1000 data sets for DAGs and factor models. The
shaded areas correspond to the true DAG/factor model regions, with zero as their boundary. Note
that when the wrong model is selected the likelihood ratio is nicely close to the boundary and the
overlap of the two distributions decreases with the number of observations used, since the quality
of the predictive density increases accordingly. The true DAG rates tendto be larger than for factor
models because it is more likely that the latter is confused with a DAG due to estimationerrors
or closeness to a DAG representation, than a DAG being confused with a factor model which is
naturally more general. This is precisely why the likelihood ratios tend to be larger on the factor
model side of he plots. All in all, these results demonstrate that our approachis very effective at
selecting the true underlying structure when the data is generated by one ofthe two hypotheses.

6.4 DAGs with Latent Variables

We will start by illustrating the identifiability issues of the model in Equation (1) discussed in
Section 2.1 with a very simple example. We generatedN = 500 observations from the graph in
Figure 3(b) and kept 20% of the data to compute test likelihoods. Now, we perform inference on
two slightly different models, namely, (u) wherez′ = [z′1 z′2 z′L] is provided with Laplace distributions
with unit variance, that is,λ = 2, and (i) wherez1,z2 have Laplace distributions with unit variance
andzL is Cauchy distributed. We want to show that even if both models match the true generating
process, (u) is non-identifiable whereas (i) can be successfully estimated. In order to keep the
experiment controlled as much as possible, we setβm= 0.99 to reflect that the ground truth is dense
and we did not inferCD and set it to the true values, that is, the identity. Then, we ran 10 independent
chains for each one of the models and summarizedB, CL, D and the test likelihoods in Figure 11.
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Figure 10: Log-likelihood ratio empirical distributions for, (a)N = 500 and (b)N = 1000. Top bars
correspond to true factor models, bottom bars to true DAGs and the ratio is computed as
described in Section 4. Top bars lying below zero are true factor models predicted to be
better explained by DAGs, thus model comparison errors.

Figure 11(a) shows that model (u) finds the DAG in Figure 3(b) (the ground truth) in 3 cases,
and in the remaining 7 cases it finds the DAG in Figure 3(a). Note also that the test likelihoods in
Figure 11(c) are almost identical, as must be expected due to the lack of identifiability of the model,
so they cannot be used to select among the two alternatives. Model (i) finds the right structure all
the times as shown in Figure 11(d). The mixing matrix of the equivalent factor model, D is shown
in Figures 11(b) and 11(e) for (u) and (i), respectively. In Figure 11(b), the first and third column
of D exchange positions because all the components ofz have the same distribution, which is not
the case of Figure 11(e). The small quantities inD are due to estimation errors when computing
b21c1L + c2L, and this cancels out in the true model. The sign changes in Figures 11(a) and 11(d)
are caused by the sign ambiguity ofzL in the productCLzL. We also tested the alternative model in
Figure 3(b) obtaining equivalent results, that is, 4 successes for model (u) and 10 for model (i). This
small example shows how non-identifiability may lead to two very different DAG solutions with
distinct interpretations of the data.

Hoyer et al. (2008) recently presented an approach to DAGs with latent variables based on
LiNGAM (Shimizu et al., 2006). Their procedure uses probabilistic ICA andbootstrapping to infer
the equivalent factor model distributionp(D|X), then greedily selectsm columns ofD to be latent
variables until the remaining ones can be permuted to triangular and the resulting DAG is compatible
with the faithfulness assumption (see, Pearl, 2000). If we assume that theirprocedure is able to find
the exactD for the graphs in Figures 3(a) and 3(b), due to the faithfulness assumption, the DAG in
Figure 3(a) will be always selected regardless of the ground truth.5 In practice, the solution obtained
for D is dense and needs to be pruned, hence we rely onp(X,D) being larger for the ground truth in
Figure 3(b) than for the graph in Figure 3(a), however since both modelsdiffer only by a permutation
of the columns ofD, they have exactly the same joint densityp(X,D)—they are non-identifiable,
thus the algorithm will select one of the options by chance. Since the sourceof non-identifiability of
their algorithm is permutations of columns ofD, it does not matter if probabilistic ICA match or not
the distribution of the underlying process as in our model. Anyway, we decided to try models (u)

5. See Robins et al. (2003) for a very interesting explanation of faithfulness using the same example presented here.
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Figure 11: Identifiability experiment for the DAG with latent variables. Connectivities B andCL

are shown for (u) in (a) and (i) in (d). Equivalent mixing matrixD for (u) in (b) and for
(i) in (d). Test likelihoods for (u) and (i) are shown in (c) and (f) respectively. The first
column in (a,b,d,e) denoted as T is the ground truth. Dark and light boxes arenegative
and positive numbers, accordingly.

and (i) described above using the algorithm just described.6 Regardless of the ground truth, Figures
3(a) or 3(b), the algorithm always selected the DAG in Figure 3(b), whichin this particular case is
due top(X,D) being slightly larger for the denser model.

Now we test the model in a more general setting. We generate 100 models and data sets of
sizeN = 500 using a similar procedure to the one in the artificial data experiment. The models
haved = 5 andm= 1, no dense structures are generated and the distributions forz are heavy-
tailed, drawn from a generalized Gaussian distribution with random shape.For SLIM, we use the
following settings,βm = 0.1, zD is Laplace with unit variances andzL is Cauchy. Furthermore, we
have doubled the number of iterations of the DAG sampler, that is, 6000 samples and a burn-in
period of 2000, so as to compensate for the additional parameters that need to be inferred due to
inclusion of latent variables. Our ordering search procedure was ableto find the right ordering 78
out of 100 times. The true positive rates, true negative rates and median AUC are 88.28%, 96.40%
and 0.929, respectively, corresponding to approximately 1.5 structure errors per network. Using
Hoyer et al. (2008) we obtained 1 true ordering out of 100, 91.63% truepositive rate, 65.18% true
negative rate and 0.800 median AUC, showing again the preference of thealgorithm for denser
models. We regard these results as very satisfactory for both methods considering the difficulty of
the task and the lack of identifiability of the model by Hoyer et al. (2008).

6. Matlab package (v.1.1) freely available athttp://www.cs.helsinki.fi/group/neuroinf/lingam/ .
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Figure 12: Non-linear DAG artificial example. (a) Network with non-linear interactions between
observed nodes used as ground truth. (b,c,d) Median error, likelihoodand test likelihood
for all possible orderings and 10 independent repetitions. The plots aresorted according
to number of errors and only the first two are valid according to the groundtruth in (a),
that is,(1,2,3,4) and(1,3,2,4). Note that when the error is zero in (b) the likelihoods
are larger with respect to the remaining orderings in (c) and (d).

6.5 Non-linear DAGs

For Sparse Non-linear Identifiable Modeling (SNIM) described in Section3.5, first we want to show
that our method can find and select from DAGs with non-linear interactions.We used the artificial
network from Hoyer et al. (2009) shown here in Figure 12(a) and generated 10 different data sets
corresponding toN = 100 observations, each time using driving signals sampled from different
heavy-tailed distributions. Since we do not yet have an ordering searchprocedure for non-linear
DAGs, we perform DAG inference for all possible orderings and data sets. The results obtained are
evaluated in two ways, first we check if we can find the true connectivity matrix when the ordering
is correct. Second, we need to validate that the likelihood is able to select the model with less error
and correct ordering among all possible candidates so we can use it in practice. Figures 12(b), 12(c)
and 12(d) show the median errors, training and test likelihoods (using 20%of the data) for each one
of the orderings, respectively. In this particular case we only have two correct orderings, namely,
(1,2,3,4) and(1,3,2,4), corresponding to the first and second candidates in the plots. Figure 12(b)
shows that the error is zero only for the two correct orderings, then our model is able to infer the
structure once the right ordering is given as desired. As a result of theidentifiability, data and test
likelihoods shown in Figures 12(c) and 12(d) correlate nicely with the structural error in Figure
12(b). This means that we can use use the likelihoods as a proxy for the structural error just as in
the linear case.

We also tested the network in Figure 12(a) using three non-linear structurelearning procedures
namely greedy standard hill-climbing DAG search, the “ideal parent” algorithm (Elidan et al., 2007)
and kernel PC (Tillman et al., 2009). The first two methods use a scaled sigmoid function to capture
the non-linearities in the data. In particular, they assume that a variablex can be explained as
scaled sigmoid transformation of a linear combination of its parents. The best median result we
could obtain after tuning the parameters of the algorithms was 2 errors and 2 reversed links.7 Both

7. Maximum number of iterations, random restarts to avoid local minima, regularization of the non-linear regression
and the number of ranking candidates in ideal parent algorithm.
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Figure 13: Testing{duration, interval} in Old Faithful data set. (a,b) Data and test likelihood box-
plots for 10 independent repetitions. (c,d) Training and test likelihood densities for one
of the repetitions. The test likelihood separates consistently the two tested hypotheses.

methods perform similarly in this particular example, the only significant difference being their
computational cost, which is considerably smaller for the “ideal parent” algorithm, as it was also
pointed out by Elidan et al. (2007). The reason why we consider these algorithms do not perform
well here is that the sigmoid function can be very limited at capturing certain non-linearities due
to its parametric form whereas the nonparametric GP gives flexible non-linear functions. The third
method uses non-linear independence tests together with non-linear regression (relevance vector
machines) and the PC algorithm to produce mixed DAGs. The best median result we could get in
this case was 2 errors, 0 reversed links and 1 bidirectional links. Thesethree non-linear DAG search
algorithms have the great advantage of not requiring exhaustive enumeration of the orderings as
our method and others available in the literature. Zhang and Hyvärinen (2009) provides theoretical
evidence of the possibility for flexible non-linear modeling without exhaustive order search but not
a way to do it in practice. Yet another possibility not tried here will be to take thebest parts of
both strategies by taking the outcome of the non-linear DAG search algorithm and refine it using
a nonparametric method like SNIM. However, it is not entirely clear how the non-linearities can
affect the ordering of the variables. In the remaining part of this section we only focus on tasks for
pairs of variables where the ordering search is not an issue.

The data set known as Old Faithful (Asuncion and Newman, 2007) contains 272 observations
of two variables measuring waiting time between eruptions and duration of eruptions for the Old
Faithful geyser in Yellowstone National Park, USA. We want to test the two possible orderings, du-
ration→ interval and interval→ duration. Figures 13(a) and 13(b) show training and test likelihood
boxplots for 10 independent randomizations of the data set with 20% of the observations used to
compute test likelihoods. Our model was able to find the right ordering, that is, duration→ interval
in all cases when the test likelihood was used but only 7 times with the training likelihood due to the
proximity of the densities, see Figure 13(c). On the other hand, the predictive density is very dis-
criminative, as shown for instance in Figure 13(d). This is not a very surprising result since making
the duration a function of the interval results in a very non-linear function,whereas the alternative
function is almost linear (data not shown).

Abalone is one of the data sets from the UCI ML repository (Azzalini and Bowman, 1990). It is
targeted to predict the age of abalones from a set of physical measurements. The data set contains
9 variables and 4177 observations. First we want to test the pair{age, length}. For this purpose,
we use 10 subsets ofN = 200 observations to build the models and compute likelihoods just as
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Figure 14: Testing{length, age} in Abalone data set. (a,b) Data and test likelihood boxplots for
10 independent repetitions. (c,d) Training and test likelihood densities forone of the
repetitions. The likelihoods largely separate the two tested hypotheses.

before. Figures 14(a) and 14(b) show training and test likelihoods respectively as boxplots. Both
training and test likelihoods pointed to the right ordering in all 10 repetitions. In this experiment, the
separation of the densities for the two hypotheses considered is very large, making age→ length
significantly better supported by the data. Figures 14(c) and 14(d) showpredictive densities for
one of the trials indicating again that age→ length is consistently preferred. We also decided to
try another three sets of hypotheses:{age, diameter}, {age, weight} and{age, length, weight}
for which we found the right orderings{10,10}, {10,10} and{10,6} out of 10 by looking at the
training and the test likelihoods, respectively. In the model with three variables, increasing the
number of observations used to fit the model fromN = 200 toN = 400, increased the number of
cases in which the test likelihood selected the true hypothesis from 6 to 8 times, which is more than
enough to make a decision about the leading hypothesis.

To conclude this set of experiments we test SNIM against another three recently proposed meth-
ods,8 namely Non-linear Additive Noise (NAN) model (Hoyer et al., 2009), Post-Non-Linear (PNL)
model (Zhang and Hyv̈arinen, 2009) and Informational Geometric Causal Inference (IGCI)(Daniu-
sis et al., 2010), using an extended version of “cause-effect pairs”task for the NIPS 2008 causality
competition9 (Mooij and Janzing, 2010). The task consists on distinguishing the causefrom the ef-
fect of 51 different pairs of observed variables. NAN and PNL rely on an independence test (HSIC,
Hilbert-Schmidt Independence Criterion, Gretton et al., 2008) to decide which of the two variable
is the cause. NAN was able to take 10 decisions all being accurate. PNL wasaccurate 40 times out
of 42 decisions made. IGCI and SNIM obtained an accuracy of 40 and 39pairs, respectively.10 The
results indicate (i) that NAN and PNL are very accurate when the independence test used is able
to reach a decision and (ii) in terms of accuracy, the results obtained by PNL, IGCI and SNIM are
comparable. For SNIM we decide based upon the test likelihood and for IGCI we used a uniform
reference measure (rescaling the data between 0 and 1). From the fourtested methods we can iden-
tify two main trends. One is to explicitly model the data and decide the cause-effect direction using
independence tests or test likelihoods like in NAN, PNL and SNIM. The second is to directly define
a measure for directionality as in IGCI. The first option has the advantage of being able to convey

8. Matlab packages available athttp://webdav.tuebingen.mpg.de/causality/ .
9. Data available athttp://webdav.tuebingen.mpg.de/cause-effect/ .

10. Results for NAN, PNL and IGCI were taken from Daniusis et al. (2010) because we were unable to entirely reproduce
their results with the software provided by the authors.
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more information about the data at hand whereas the second option is orders of magnitude faster
than the other three because it only tests for directionality.

6.6 Protein-signaling Network

This experiment demonstrates a typical application of SLIM in a realistic biological largeN, small
d setting. The data set introduced by Sachs et al. (2005) consists of flow cytometry measurements
of 11 phosphorylated proteins and phospholipids (raf, erk, p38, jnk,akt, mek, pka, pkc, pip2, pip3,
plc). Each observation is a vector of quantitative amounts measured from single cells. Data was
generated from a series of stimulatory cues and inhibitory interventions. Hence the data is composed
of three kinds of perturbations: general activators, specific activators and specific inhibitors. Here
we are only using the 1755 observations—clearly non-Gaussian, for example, see Figure 16(a),
corresponding to general stimulatory conditions. It is clear that using the whole data set, that is,
using specific perturbations, will produce a richer model, however handling interventional data is
out of the scope of this paper mainly because handling that kind of data with afactor model is
not an easy task. Thus our current order search procedure is notappropriate. Focused only on
the observational data, we want to test all the possibilities of our model in this data set, namely,
standard factor models, pure DAGs, DAGs with latent variables, non-linear DAGs and quantitative
model comparison using test likelihoods. The textbook DAG structure taken from Sachs et al. (see
Figure 2 and Table 3, 2005) is shown in Figure 15(a) and the models are estimated using the true
ordering and SLIM in Figures 15(b) and 15(c), respectively.

The DAG found using the right ordering of the variables shown in Figure 15(b) turned out to
be the same structure found by the discrete Bayesian network from Sachset al. (2005) without
using interventional data (see supplementary material, Figure 4(a)), with one important difference:
the method presented by Sachs et al. (2005) is not able to infer the directionality of the links in
the graph without interventional data, that is, their resulting graph is undirected. SLIM in Figure
15(c) finds a network almost equal to the one in Figure 15(b) apart fromone reversed link, plc→
pip3. Surprisingly this was also found reversed by Sachs et al. (2005)using interventional data. In
addition, there is just one false positive, the pair{jnk, p38}, even with a dedicated latent variable in
the factor model mixing matrix shown in Figure 16(b), thus we cannot attribute such a false positive
to estimation errors. A total of 211 ordering candidates were produced during the inference out
of approximately 107 possible and onlymtop = 10 of them were used in the structure search step.
Note from Figure 16(d) that the predictive densities for the DAGs correlate well with the structural
accuracy, apart from candidate 8. Candidates 3 and 8 have the same number of structural errors,
however candidate 8 has 3 reversed links instead of 1 as shown in Figure15(c). The predictive
densities for the best candidate, third in Figure 16(d) are shown in Figure16(c) and suggest that
the factor model fits the data better. This makes sense considering that estimated DAG in Figure
15(c) is a substructure of the ground truth. We also examined the estimated factor model in Figure
16(b) and we found that several factors could correspond respectively to three unmeasured proteins,
namely pi3k in factors 9 and 11, m3 (mapkkk, mek4/7) and m4 (mapkkk, mek3/6) in factor 7, ras in
factors 4 and 6.

We also wanted to assess the performance of our method and several others using this data
set, including LiNGAM and those mentioned in the Bayesian network repositoryexperiment, even
knowing that this data set contains non-Gaussian data. We found that all of them have similar
results in terms of true and false positive rates when comparing them to SLIM.However the number
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Figure 15: Result for protein-signaling network data. (a) Textbook signaling network as reported
in Sachs et al. (2005). Estimated structure using SLIM: (b) using the true ordering, (c)
obtaining the ordering from the stochastic search, (d) top DAG with 2 latent variables
and (e) the runner-up (in test likelihood). False positives are shown in red dashed lines
and reversed links in green dotted lines. Below each structure we also report the median
test likelihood (larger is better).

of reversed links was not in any case less than 6, which corresponds tomore than 50% of the true
positives found in every case. This means that they are essentially able to find the skeleton in Figure
15(b). Besides, we do not have knowledge of any other method for DAGlearning using only the
observational data that also provides results substantially better than the ones shown in Figure 15(c).
The poor performance of LiNGAM is difficult to explain but the large amountof reversed links may
be due to the FastICA based deterministic ordering search procedure.

We also tried DAG models with latent variables in this data set. The results obtainedby the DAG
with 2 a priori assumed latent variables are shown in Figures 15(d) and 15(e), corresponding to the
first and second DAG candidates in terms of test likelihoods. The first option is different to the pure
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Figure 16: Results for protein-signaling network data. (a) Boxplot for each one of the 11 vari-
ables in the data set. (b) Estimated factor model. (c) Test likelihoods for the best DAG
(dashed) and the factor model (solid). (d) Test likelihoods (squares)and structure errors
(circles) included reversed links for all candidates. (e) Non-linear variablesy obtained
as a function of the observed variablesx for pip3 and pkc. Each dot in the plot is an
observation and the solid lines are 95% credible intervals.

DAG in Figure 15(c) only in the reversed link, p38→ pkc, but captures some of the behavior of
pik3 and ras in l1 and l2 respectively. It is very interesting to see how, due to the link between pik3
and ras that is not possible to model with our model, the second inferred latent variable is detecting
signals pointing towards pip2 and plc. We also considered a second option because l1 in the top
model is only connected to a single variable pip3 and thus could be regarded as an estimation error
since it can be easily confounded with a driving signal. Comparing Figures15(c) and 15(e) reveals
two differences in the observed part, a false negative pip3 → plc and a new true (reversed) positive
mek→ pka. This candidate is particularly interesting because the first latent variable captures the
connectivity of pik3 while connecting itself to plc due to the lack of connectivitybetween pip3 and
plc. Moreover, the second latent variable resembles ras and the link between pik3 and ras as a
link from itself to pip3. In both solutions there is a connection between l2 and mek that might be
explained as a link through a phosphorylation of raf different to the observed one, that is, rass259. In
terms of median test likelihoods, the model in Figure 15(d) is only marginally betterthan the factor
model in Figure 16(b) and in turn marginally worse than the DAG in Figure 15(e).

For SNIM we started from the true ordering of the variables but we could not find any improve-
ment compared to the structure in Figure 15(c). In particular there are onlytwo differences, plc→
pip2 and jnk→ p38 are missing, meaning that at least in this case there are no false positives in
the non-linear DAG. Looking at the parameters of the covariance functionused,υυυ (not shown) with
acceptance rates of approximately≈ 20% and reasonable credible intervals, we can say that our
model found almost linear functions since all the parameters of the covariance functions are rather
small. Figure 16(e) shows two particular non-linear variables learned by the model, corresponding
to pip3 and plc. In each case the uncertainty of the estimation nicely increaseswith the magnitude
of the observed variable and although the functions are fairly linear they resemble the saturation ef-
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fect we can expect in this kind of biological data. From the three non-linear methods non-requiring
exhaustive order search described in the previous section (DAG search, “ideal parent” and kPC), the
best result we obtained was 11 structural errors, 10 true positives, 34 true negatives, 2 reversed and
6 bidirectional links for kPC vs 12, 9, 34, 1 and 0 by SLIM and 12, 8, 35,0 and 0 by SNIM.

6.7 Time Series Data

We illustrate the use Correlated Sparse Linear Identifiable Modeling (CLSIM) on the data set in-
troduced by Kao et al. (2004) consisting of temporal gene expression profiles of E. coli during
transition from glucose to acetate measured using DNA microarrays. Samplesfrom 100 genes were
taken at 5, 10, 15, 30, 60 minutes and every hour until 6 hours after transition.11 The general goal
is to reconstruct the unknown transcription factor activities from the expression data and some prior
knowledge. In Kao et al. (2004) the prior knowledge consisted of taking the set of transcription
factors (ArcA, CRP, CysB, FadR, FruR, GatR, IcIR, LeuO, Lrp, NarL, PhoB, PurB, RpoE, RpoS,
TrpR and TyrR) controlling the observed genes and the (up-to-date) connectivity between genes
and transcription factors from RegulonDB12 (Gama-Castro et al., 2008). From this setting, we can
immediately relate the transcriptions factors withZ, such a connectivity withQL, and their rela-
tive strengths withCL, hence the problem can be seen as a standard factor model. In Kao et al.
(2004) they applied a method called Network Component Analysis (NCA), that uses a least-squares
based algorithm to solve a problem similar to the one in Equation (1), but assuming that the sparsity
pattern (masking matrixQL) of CL is fixed and known. It is well-known that the information in
RegulonDB is still incomplete and hard to obtain for organisms different thanE. coli. Our goal here
is thus to obtain similar transcription factor activities to those found by Kao et al.(2004) without
using the information from RegulonDB, but taking into account that the data at hand is a time series
by letting each transcription factor activity have an independent Gaussianprocess prior as described
for CSLIM in Section 3.4. We will not attempt to useQL to recover the ground truth connectivity
information since RegulonDB is collected from a wide range of experimental conditions and not
only from the transcriptional activity produced by theE. coli during its transition from glucose to
acetate. The results are shown in Figure 17.

Results in Figure 17(e) show the source matrixZ recovered by our model together with those
from NCA.13 In this experiment we ran a single chain and collected 6000 samples after a burn-in
period of 2000 samples (approximately 10 minutes in a desktop machine). Mostof the profiles
obtained by our method are similar to those obtained by NCA (Kao et al., 2004).We ran two
versions of our model, one withQL fixed to the RegulonDB values, that is, similar in spirit to NCA,
and another when we inferQL without any restriction. The results of NCA and our model with
fixed QL are directly comparable (up to scaling) whereas we had to match the permutationPf of
the unrestricted model to those found by NCA in order to compare, using the Hungarian algorithm.
Figure 17(a) shows the mixing matrices obtained by NCA and our two models. Figures 17(a) and
17(b) are very similar due to the restriction imposed onQL. The mixing matrix obtained by our
unrestricted model in Figure 17(c) is clearly denser than the other two, suggesting that there are
different ways of connecting genes and transcription factors and still reconstruct the transcription
factor activities given the observed gene expression data. When looking to the test log-likelihood

11. Data available athttp://www.seas.ucla.edu/ ˜ liaoj/NCA_module_Data .
12. RegulonDB can be found athttp://regulondb.ccg.unam.mx/ .
13. Matlab package (v.2.3) available athttp://www.seas.ucla.edu/ ˜ liaoj/download.htm .
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Figure 17: Results forE. coli data set. Mixing matrices estimated using: (a) NCA, (b) our formu-
lation when restrictingQL using RegulonDB information and (c) the factor model. (d)
Model comparison results using test likelihoods. The restricted model (dash-dotted line)
obtained a median negative log-likelihood of 1463.4 whereas the unrestricted model
(solid line) obtained 1317.1, suggesting no significant model preferences. (e) Estimated
transcription factor activities,Z. Our methods (solid and dash-dotted lines for unre-
stricted and restricted model respectively) produce similar results to those produced by
NCA (dashed line).
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densities obtained by our two models in Figure 17(d) they are very similar, which suggests that
there is no evidence that one of the models makes a better fit on test data. In terms of Mean Squared
Error (MSE), NCA obtained 0.0146 while our model reached 0.0264 and 0.0218 on the restricted
and unrestricted models, respectively, when using 90% of the data for inference. In addition, the
95% credible intervals for the MSE were(0.0231,0.0329) and(0.0164,0.0309) respectively. The
latter shows again that there is no evidence that one of the three models is better than the other two,
considering that: (i) NCA is trained on the entire data set and (ii) our unrestricted model could, in
principle, produce mixing matrices arbitrarily denser than the connectivity matrix extracted from
RegulonDB, and thus, again in principle, lower MSE values.

7. Discussion

We have proposed a novel approach called SLIM (Sparse Linear Identifiable Multivariate model-
ing) to perform inference and model comparison of general linear Bayesian networks within the
same framework. The key ingredients for our Bayesian models are slab and spike priors to pro-
mote sparsity, heavy-tailed priors to ensure identifiability and predictive densities (test likelihoods)
to perform the comparison. A set of candidate orderings is produced bystochastic search during
the factor model inference. Subsequently, a linear DAG with or without latent variables is learned
for each of the candidates. To the authors’ knowledge this is the first time that a method for com-
paring such closely related linear models has been proposed. This setting can be very beneficial in
situations where the prior evidence suggests both DAG structure and/or unmeasured variables in the
data. We also show that the DAG with latent variables can be fully identifiable and that SLIM can
be extended to the non-linear case (SNIM - Sparse Non-linear Identifiable Multivariate modeling),
if the ordering of the variables is provided or can be tested by exhaustiveenumeration. For example
in the protein-signaling network (Sachs et al., 2005), the textbook groundtruth suggests both DAG
structure and a number of unmeasured proteins. The previous approach (Sachs et al., 2005) only
performed structure learning in pure DAGs but our results using observational data alone suggest
that the data is better explained by a (possibly non-linear) DAG with latent variables. Our extensive
results on artificial data showed one by one the features of our model in each one of its variants,
and demonstrated empirically their usefulness and potential applicability. Whencomparing against
LiNGAM, our method always performed at least as well in every case with acomparable compu-
tational cost. The presented Bayesian framework also allows easy extension of our model to match
different prior beliefs about the problems at hand without significantly changing the model and its
conceptual foundations, as in CSLIM and SNIM.

We believe that the priors that give raise to sparse models in the fully Bayesian inference setting,
like the two-level slab (continuous) and spike (point-mass in zero) priors used are very powerful
tools for simultaneous model and parameter inference. They may be usefulin many settings in
machine learning where sparsity of parameters is desirable. Although the posterior distributions
for slab and spike priors will be non-convex, it is our experience that inference with blocked Gibbs
sampling actually has very good convergence properties. In the two-level approach, one uses a
hierarchy of two slab and spike priors. The first is on the parameter and the second is on the mixture
parameter (i.e., the probability that the parameter is non-zero). Instead of letting this parameter be
controlled by a single Beta-distribution (one level approach) we have a slab and spike distribution
on it with a Beta-distributed slab component biased towards one. This makes the model more
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parsimonious, that is, the probability that parameters are zero or non-zero is closer to zero and one
and parameter settings are more robust.

In the following we will discuss open questions and future directions. Fromthe Bayesian net-
work repository experiment it is clear that we need to improve our orderingsearch procedure if we
want to use SLIM for problems with more than say 50 variables. This basicallyamounts to finding
proposal distributions that better exploit the particularities of the model at hand. Another option
could be to provide the proposal distribution with some notion of memory to avoid permutations
with low probability and/or expand the coverage of the searching procedure.

It is well studied in the literature on sparse models that for increasing numberof observations
any model tends to loose its sparsity capabilities. This is because the likelihood starts dominating the
inference, making the prior distribution less informative. The easiest way tohandle such an effect
is to make the hyperparameters of the sparsity prior dependent onN. We have not explored this
phenomenon in SLIM but it should certainly be taken into account in the specification of sparsity
priors.

Directly specifying the distributions of the latent variables in order to obtain identifiability in
the general DAG with latent variables requires having different distributions for the driving signals
of the observed variables and latent variables. This may introduce model mismatch or be restrictive
in some cases as one will not have this kind of knowledge a priori. We thus need more principled
ways to specify distributions forz ensuring identifiably, without restricting some of its components
to having a particular behavior, like having heavier tails than the driving signals for instance. We
conjecture that providingz with a parameterization of Dirichlet process priors with appropriate base
measures would be enough but we are not certain whether this would be sufficient in practice.

We set a priori that the components ofz are independent. Although this is a very reasonable
assumption, it does not allow for connectivity between latent variables as we see for example in the
protein signaling network, see Figure 15(a). It is straight forward to specify such a model, although
identifiability becomes even harder to ensure in this case.

We do not have an ordering search procedure for the non-linear version of SLIM. This is a nec-
essary step since exhaustive enumeration of all possible orderings is not an option beyond say 10
variables. The main problem is that the non-linear DAG has no equivalent factor model representa-
tion so we cannot directly exploit the permutation candidates we find in SLIM. However, as long as
the non-linearities are weak, one might in principle use the permutation candidates found in a factor
model, that is, the linear effects will determine the correct ordering of the variables.

SLIM cannot handle experimental (interventional) data, and consequently around 80% of the
data from the Sachs et al. (2005) study is not used. It is well-establishedhow to learn with interven-
tions in DAGs (see Sachs et al., 2005). The problem remains of how to formulate effective inference
with interventional data in the factor model.
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Appendix A. Gibbs Sampling

Given a set ofN observations ind dimensions, the dataX = [x1, . . . ,xN] andm latent variables,
MCMC analysis is standard and can be implemented through Gibbs sampling. Notethat in the fol-
lowing, X i: andX:i are rows and columns ofX, respectively, andi, j, n are indexes for dimensions,
factors and observations, respectively. In the following we describe the conditional distributions
needed to sample from the standard factor model hierarchy. Below we will briefly discus the modi-
fications needed for the DAG.

A.1 Noise Variance

We can sample each element ofΨΨΨ independently using

ψ−1
i |X i:,Ci:,Z,V i ,ss,sr ∼ Gamma

(
ψ−1

i

∣∣∣∣ss+
N+d

2
,sr +u

)
, (13)

whereV i is a diagonal matrix with entriesτi j and

u=
1
2
(X i: −Ci:Z)(X i: −Ci:Z)⊤+

1
2

Ci:V−1
i C⊤

i: .

A.2 Factors

The conditional distribution of the latent variablesZ using the scale mixtures of Gaussians repre-
sentation can be computed independently for each element ofzjn using

zjn|X:n,C: j ,Z:n,ΨΨΨ,υ jn ∼ N (zjn|C⊤
: j ΨΨΨ

−1εεε\ jn,u jn) , (14)

whereu jn = (C⊤
: j ΨΨΨ

−1C: j +υ−1
jn )−1 andεεε\ jn = X:n −CZ:n|zjn=0. If the latent factors are Laplace

distributed the mixing variancesυ jn have exponential distribution, thus the resulting conditional is

υ−1
jn |zjn,λ ∼ IG

(
υ−1

jn
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λ

|zjn|
,λ2
)

,

and for the Student’st, with corresponding gamma densities as

υ−1
jn |zjn,σ2,θ ∼ Gamma

(
υ−1

jn

∣∣∣∣∣
θ+1

2
,
θ
2
+

z2
jn

2σ2

)
,

where IG(·|µ,λ) is the inverse Gaussian distribution with meanµ and scale parameterλ (Chhikara
and Folks, 1989).

A.3 Gaussian Processes

In practice, the prior distribution for each row of the matrixZ in CSLIM has the formzj1, . . . ,zjN ∼
N (0,K j), whereK j is a covariance matrix of sizeN×N built usingkυ j ,n(n,n

′). The conditional
distribution forzj1, . . . ,zjN can be computed using

zj1, . . . ,zjN |X,C j:,Z\ j ,ΨΨΨ ∼ N (zj1, . . . ,zjN |C⊤
: j ΨΨΨ

−1εεε\ jV,V) ,
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whereZ\ j is Z without row j, V = (U+K−1
j )−1, U is a diagonal matrix with elementsC⊤

: j ΨΨΨ
−1C: j

andεεε\ j = X −CZ|zj1,...,zjN=0. The computation ofV can be done in a numerically stable way by
rewritingV = K j −K j(U−1+K j)

−1K j and then using Cholesky decomposition and back substitu-
tion to obtain in turnLL ⊤ = U−1+K j andL−1K j . The hyperparameters of the covariance function
in Equation (9) can be sampled using

κ|υυυ,ks,kr ∼ Gamma

(
κ

∣∣∣∣∣ks+mus,kr +
m

∑
j=1

υ j

)
.

For the inverse length-scales we use Metropolis-Hastings updates with proposalq(υ⋆
j |υ j) = p(υ⋆

j )
and acceptance ratio

ξ→⋆ =
N (zj1, . . . ,zjN |0,K ⋆

j )

N (zj1, . . . ,zjN |0,K j)
,

whereK ⋆
j is obtained usingkυ⋆

j ,n(n,n
′). For SNIM, we only need to replaceC by B, Z by Y =

[y1 . . .yN] andkυ j ,n(n,n
′) by kυi ,x(x,x

′).

A.4 Mixing Matrix

In order to sample eachci j from the conditional distribution of the matrixC we use

ci j |X i:,C\i j ,Z j:,ψi ,τi j ∼ N (ci j |ui j εεε\i j Z
⊤
j:,ui j ψi) , (15)

whereui j = (Z j:Z⊤
j: + τ−1

i j )−1 andεεε\i j = X i: −Ci:Z|di j=0. Note that we only need to sample those
ci j for which r i j = 1, that is, just the slab distribution. Sampling from the conditional distributions
for τi j can be done using

τ−1
i j |d jn, ts, tr ∼ Gamma

(
τ−1

i j

∣∣∣∣∣ts+
1
2
, tr +

d2
i j

2ψi

)
. (16)

The conditional distributions for the remaining parameters in the slab and spikeprior can be written
first for the masking matrixQ as

qi j |X i:,Di:,Z,ψi ,τi j ,ηi j ∼ Bernoulli

(
qi j

∣∣∣∣
ξηi j

1+ξηi j

)
, (17)

where

ξηi j =
αmν j

1−αmν j

ψ1/2
i

(Z j:Z⊤
j: + τ−1

i j )1/2
exp

(
(εεε\i j Z⊤

j:)
2

2ψi(Z j:Z⊤
j: + τ−1

i j )

)
,

and the probability of each element ofC of being non-zero as

ηi j |ui j ,qi j ,αp,αm ∼ (1−ui j )δ(ηi j )+ui j Beta(ηi j |αpαm+qi j ,αp(1−αm)+1−qi j ) , (18)

whereui j ∼ Bernoulli(hi j |r i j +(1− r i j )ν j(1−αm)/(1− ν jαm)), that is, we setui j = 1 if qi j = 1.
Finally, for the column-wise shared sparsity rate we have

ν j |u j ,βp,βm ∼ Beta

(
ν j

∣∣∣∣∣βpβm+
d

∑
i=1

ui j ,βp(1−βm)+
d

∑
i=1

(1−ui j )

)
. (19)
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Sampling from the DAG model only requires minor changes in notation but the conditional poste-
riors are essentially the same. The changes mostly amount to replacing accordingly C by B andQ
by R. Note thatQL is the identity andR is strictly lower triangular a priori, thus we only need to
sample their active elements.

A.5 Inference with Missing Values

We introduce a binary masking matrix indicating whether an element ofX is missing or not. For
the factor model we have the following modified likelihood

p(Xtr|C,Z,ΨΨΨ,Mmiss) =N (Mmiss⊙X|Mmiss⊙ (CZ),ΨΨΨ) .

Testing on the missing values,M ⋆
miss= 11⊤−M requires averaging the test likelihood

p(X⋆|C,Z,ΨΨΨ,M ⋆
miss) =N (M ⋆

miss⊙X|M ⋆
miss⊙ (CZ),ΨΨΨ) ,

overC,Z,ΨΨΨ givenXtr (training). We can approximate the predictive densityp(X⋆|Xtr, ·) by com-
puting the likelihood above during sampling using the conditional posteriors ofC, Z andΨΨΨ and then
summarizing using for example the median. Drawing fromC, Z, ΨΨΨ can be achieved by sampling
from their respective conditional distributions as described before with some minor modifications.
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